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namics with habit-based preferences, we show that our evidence on the market risk premium is most

consistent with a model specification where a 1% monetary policy shock reduces output by 50–75 basis

points, with the trough occurring at five to eight quarters, depending on the sample period. This evidence
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A substantial body of literature examines the impact of monetary policy on output and the contribution of

monetary policy shocks to output fluctuations. Ramey (2016) reviews the leading approaches to identifying

the relationship between the Fed Funds rate and output, and highlights the wide variation in the estimated

responses of output to monetary policy shocks. Table 1 of her paper shows that output might drop by as

much as 5% in response to a 100 basis point monetary policy shock, or as little as 0.06%. Likewise, the

trough could be as short as eight months but could also be as long as two years.

These approaches often focus on modeling macroeconomic dynamics alone, with little to no empha-

sis on the role of time variation in risk premia. In contrast, Bauer, Bernanke, and Milstein (2023) stress

that monetary policy may affect output through investors’ risk preferences, such as through the risk-taking

channel of Borio and Zhu (2012). Campbell, Pflueger, and Viceira (2020) introduce a novel family of

consumption-based asset pricing models that link time-varying risk premia to macroeconomic dynamics

through habit formation. In their model, lags of the output gap are assumed to affect risk preferences such

that an exact macroeconomic Euler equation links real rates to the lagged, current and expected future out-

put gap. An important benefit of this framework is that it has the potential to induce a hump shape in the

impulse response function of output, and could draw out the trough by several quarters or more. Whether

or not the output gap affects risk preferences and, if it does, the extent to which it affects it, is an empirical

question. The challenge of previous research in addressing this question is that risk preferences are not

directly observable. We overcome this challenge with a new method for measuring variation in the surplus

consumption ratio that allows us to quantify the impact of the output gap on preferences.

Our paper utilizes the Pflueger and Rinaldi (2022) framework, which adapts Campbell, Pflueger, and

Viceira (2020) to incorporate an inertial Taylor rule and measures monetary policy shocks as deviations

from the rule. Unlike Pflueger and Rinaldi (2022), however, who calibrate the model to the relationship

between the Fed Funds rate and output reported by Christiano, Eichenbaum, and Evans (1999), we extract

a measure of the surplus consumption ratio from the prices of corporate debt and calibrate macroeconomic

dynamics to the observed relationship between this ratio and the output gap. Our approach yields the impulse

response function of output to monetary policy shocks as a model output, rather than taking it to be a model

input.

Our evidence on the relationship between the surplus consumption ratio and the output gap aligns most

closely with a model specification where a 100 basis point monetary policy shock reduces output by 0.55%,

with the trough occurring at eight quarters. These estimates are similar to those of Christiano, Eichenbaum,
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and Evans (1999), who report a 0.7% reduction in output at eight quarters. The calibration suggests a longer-

lived impact of monetary shocks when recession periods are included in the estimation of the sensitivity

of preferences to lagged output. Excluding recessions in this estimation, the model-implied response of

output to a 100 basis point monetary policy shock reaches −0.74% at five quarters. Recessions, particularly

the Global Financial Crisis (GFC), increase the impact of lagged consumption growth—which serves as a

benchmark combination of output lags—on preferences, resulting in a larger backward-looking coefficient

in the Euler equation and, therefore, a more distant trough in the impulse response function.

Our approach ensures that the model accurately reflects the sensitivity of the non-AR(1) component

of the log surplus consumption ratio to lagged consumption growth. While New Keynesian models some-

times impose the restriction that the forward- and backward-looking terms in the Euler equation sum to

one (Dennis, 2009), our calibration allows this condition to emerge naturally, and it does so closely. Simi-

lar to Pflueger and Rinaldi (2022), our calibration generates realistic macroeconomic dynamics and equity

returns, while somewhat overestimating interest rate volatility.

To extract a measure of time-varying market risk premia, and thus time-varying log surplus consumption

ratios, from the prices of corporate debt, we take advantage of the fact that the cash flow of a corporate

bond takes on a particularly simple form. This permits a parsimonious representation of credit spreads as

a function of the default probability, the sensitivity of the default event to macroeconomic news, and the

market risk premium. Our bond price data, covering publicly traded non-financial US companies from

January 1973 to September 2021, are sourced from TRACE, the Lehman Brothers Fixed Income Database,

and the Mergent FISD/NAIC Database. The analysis uses Moody’s historical default data to estimate default

probabilities and create a default news index, which aggregates deviations between realized default rates and

estimated default probabilities across firms. This index is assumed to update in sync with macroeconomic

news. We use the default news index to estimate a “default loss beta,” capturing the sensitivity of defaults to

economic shocks. The index varies over the business cycle in a manner consistent with increases in measured

risk premia during recessions. By determining the portion of credit spreads attributable to default risk and

exposure to the default news index, we can isolate and extract the market risk premia. Our estimations are

similar if we exclude the years 1973–1985, when the high-yield segment of the corporate bond market was

still in its infancy (Altman, 1987).

We compare our measure of time-varying risk premia to several established metrics: the excess bond

premium (EBP) from Gilchrist and Zakrajšek (2012), the risk aversion variable from Bekaert, Engstrom, and
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Xu (2021), the Baa-Aaa bond yield spread, and a stock-market volatility index. Our measure shows a high

correlation with these alternatives. While our measure is explicitly designed to capture market risk premia,

these other metrics aim to capture specific components of the market risk premium (e.g., excess premia,

risk aversion, or market-wide volatility) or include additional factors such as default risk or clientele effects

(e.g., Baa-Aaa bond yield spread). Therefore, they are inherently less suited to estimate the relationship

between preferences and the output gap accurately. We provide evidence that cautions against calibrating

preference dynamics using empirical targets based on measures that correlate with the market risk premium

only imperfectly.

Our paper contributes to the literature that incorporates habit utility into a general equilibrium model

of the economy, including work by Smets and Wouters (2003), Smets and Wouters (2007), Cochrane

(2017), Campbell, Pflueger, and Viceira (2020), Fuhrer (2000), Bekaert, Engstrom, and Xu (2021) and Swan-

son (2021), and builds on the seminal work of Campbell and Cochrane (1999). Research that includes output

in the habit equation (Pflueger and Rinaldi, 2022; Pflueger, 2023) calibrates macroeconomic dynamics to

one data point among a wide range of estimates on the relationship between the Fed Funds rate and out-

put (Ramey, 2016). In contrast, we calibrate macroeconomic dynamics to the observed relationship between

the surplus consumption ratio and the output gap, which allows us to quantify the response of output to mon-

etary policy shocks in a fully integrated setting for preferences and macroeconomic fundamentals.

In addition to presenting an innovative approach to estimating the relationship between monetary policy

and output, we contribute to the literature on the monetary policy transmission mechanism by estimating the

relationship between monetary policy shocks and risk aversion. Previous research by Gallmeyer, Hollifield,

and Zin (2005), Gallmeyer, Hollifield, and Zin (2007), Borio and Zhu (2012), Bekaert, Hoerova, and Lo

Duca (2013), Bekaert, Engstrom, and Xu (2021), and Bauer, Bernanke, and Milstein (2023) suggests that

time variation in risk premia is explained at least in part by changes in Federal Reserve policy. These results

are consistent with studies on the stock market reaction to FOMC announcements, such as Bernanke and

Kuttner (2005). Indeed, several studies find evidence that episodes of “low for long” policy lead to such

a decline in risk aversion that investors reach for yield (Rajan, 2006). Dell-Ariccia, Laeven, and Marquez

(2014) and Drechsler, Savov, and Schnabl (2018) model this behavior through the effects of monetary policy

on bank risk-taking.

The paper proceeds as follows. Section 1 presents the model and the solution method. Section 2 de-

scribes the estimation of default loss betas. Section 3 discusses the estimation of market risk premia and
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how the underlying data are sourced. Section 4 computes empirical targets that describe the comovement of

risk premia and output gap lags, calibrates macroeconomic dynamics to these moments, and then produces

the model-implied impulse response of output to monetary policy actions. Section 5 considers alternative

risk premium measures. Section 6 concludes.

1. Model

This section describes the macroeconomy, habit preferences and the stochastic discount factor (SDF).

Lower-case letters indicate the log of the corresponding upper-case letters, and ∆ denotes a one-period

change, so that vt = log(Vt), ∆vt+1 = vt+1 − vt , and so on. We use εv,t+1 = vt+1 −Et(vt+1) = ∆vt+1 −

Et(∆vt+1) to denote surprise changes in vt+1, where Et(vt+1) is the conditional mean. The standard devi-

ation is denoted by σv,t .1 Throughout, stated equations of log dynamics hold up to an additive constant.

Details on the derivations are provided in Appendix A.

1a. Habit preferences

Suppose a representative agent derives utility Ut = U(Ct) from real consumption Ct relative to a slowly-

moving external habit level Ht ,2 such that U(Ct) = [(Ct−Ht)
1−γ −1]/(1− γ) for some curvature parameter

γ > 0. The surplus consumption ratio, defined as St = (Ct −Ht)/Ct , measures the share of the market

consumption that is available to generate utility.3 The real SDF, denoted by Mt+1, has the form Mt+1/Mt =

U ′(Ct+1)/U ′(Ct), up to a multiplicative constant, meaning the log real SDF is given as

∆mt+1 = −γ ∆ log(Ct+1−Ht+1) =−γ (∆ct+1 +∆st+1). (1)

Following Campbell and Cochrane (1999) and Campbell, Pflueger, and Viceira (2020), we model habits

indirectly by assuming that the log surplus consumption ratio, st , satisfies

st+1 = (1−θ0)s+θ0st +θ1xt +θ2xt−1 +λ (st)εc,t+1, (2)

1All of our probabilistic statements are for a given probability space (Ω,F ,P) and a filtration {Ft : t ≥ 0} of sub-sigma algebras
of F satisfying the usual conditions. For details, see Protter (2005).

2Habits are external in the sense that they are influenced by aggregate consumption rather than individual choices. Households
do not internalize how their personal consumption affects overall habits.

3The relative risk aversion equals −CtU ′′(Ct)/U ′(Ct) = γ/St .
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for scalars θ0, θ1, and θ2, and a steady-state value s of the log surplus consumption ratio. In equilibrium, the

consumption surprise εc,t+1 is a scaled version of the normally distributed and homoskedastic fundamental

shock. Its conditional standard deviation is denoted as σc. The sensitivity function takes the usual form,4

λ (st) =


1
S

√
1−2(st − s)−1, st ≤ smax

0, st > smax,

(3)

with S = exp(s) =
√

γ/(1−θ0)σc and smax = s+ 1
2(1−S2

).

Relative to Campbell and Cochrane (1999), Campbell, Pflueger, and Viceira (2020) introduce the terms

“θ1xt + θ2xt−1,” where xt (relative to a steady state) equals stochastically detrended log real consumption,

xt = ct − (1−φ)
∞

∑
j=0

φ
jct−1− j, (4)

for smoothing parameter φ . Pflueger and Rinaldi (2022) present microfoundations under which xt also

equals the log output gap, that is, the difference between between log output and log potential output under

flexible prices. Equation (4) implies

∆ct = xt −φxt−1, (5)

and thus Et(∆ct+1) = Et(xt+1)−φxt .

Pflueger and Rinaldi (2022) emphasize that a non-zero value for θ1 in Equation (2) is necessary to

generate a hump-shaped output response to a monetary shock and they estimate its value by calibrating the

model to empirical estimates of the hump’s timing and magnitude (Christiano, Eichenbaum, and Evans,

1999). In contrast, we estimate θ1 from the empirical properties of our risk aversion measure and use it to

examine the shape of the output response.

4Campbell and Cochrane (1999) designed the sensitivity function (3) so that the log surplus consumption ratio st drops out of
the Euler equation for real risk-free rates.
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1b. Euler equation

The asset pricing first-order condition for the real risk-free rate rt implies the Euler equation

rt = − log(Et(exp(∆mt+1))) . (6)

Substituting (1), (2) and (3) into (6), and simplifying, gives

rt = γ Et(∆ct+1)+ γθ1xt + γθ2xt−1. (7)

Further substituting (5) into (7), and rearranging terms, yields

xt = fxEt(xt+1)+ρxxt−1−ψrt , (8)

where ψ = 1
γ(φ−θ1)

, fx = γψ and ρx = θ2γψ . The sum of the forward- and backward-looking terms in the

Euler equation (8) is denoted by

α = fx +ρx. (9)

Some New Keynesian models assume that the forward- and backward-looking terms fx and ρx sum to

one (α = 1).5 This restriction is also imposed by Pflueger and Rinaldi (2022). However, similar to the

approach of Campbell, Pflueger, and Viceira (2020), we do not assume a specific value for α . Instead, in

our calibration, α is determined empirically based on estimates of the relationship between preferences and

the lagged output gap, as detailed in Section 4. Our analysis indicates that α is close to, but slightly below,

one. Moreover, the backward-looking coefficient ρx in the Euler equation (8) is positive and, across the full

sample, slightly larger than its forward-looking counterpart.

5See, for example, Dennis (2009).
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1c. Monetary policy rule and Phillips curve

Let it denote the nominal risk-free rate between t and t + 1, and let i∗t = ψππt +ψxxt denote the nominal

policy rate. Monetary policy is described by the rule

it = ρiit−1 +(1−ρi)i∗t +νt , (10)

for some inertia parameter ρi ∈ (0,1). The monetary policy shock νt is the fundamental shock to macroeco-

nomic dynamics, and is assumed to be normally distributed with mean zero and standard deviation σMP.

To make the dynamics of inflation and interest rates tractable, we approximate the log one-period nomi-

nal interest rate as the log real rate plus expected log inflation: rt = it −Et(πt+1). Inflation πt is determined

by a log-linearized Phillips curve: πt = fπ Et(πt+1)+ρππt−1 +κxt , for constants fπ , ρπ and κ .6

1d. Equilibrium solutions

The macroeconomic state vector is given as Wt = [xt ,πt , it ]′. Its elements are normalized to have zero

averages. The fundamental shock is νt . We are interested in an equilibrium solution of the form Wt =

BWt−1 +Σνt , where B and Σ are [3×3] and [3×1] matrices, respectively. There may exist alternative equi-

librium dynamics for Wt , with additional lags or sunspot shocks, but characterization of these additional

equilibria is beyond the scope of this paper. We follow the procedure in Pflueger and Rinaldi (2022) to

choose among equilibria of this form. Specifically, we narrow the set of equilibria by requiring that all

eigenvalues of B must be less than one in absolute value. In our applications, there exist exactly three gener-

alized eigenvalues with absolute value less than one, and we pick the non-explosive solution corresponding

to these three eigenvalues.

1e. Asset prices and risk premia

In frictionless markets, the real market value at time t of a claim to a real cash-flow process Yt is

VY,t =
∞

∑
j=1

Et(exp(
j

∑
s=1

mt+s)Yt+ j). (11)

6Following the arguments in the appendix to Pflueger and Rinaldi (2022), the log-linearized Phillips curve can be derived
from microfoundations, where κ is a price-flexibility parameter and the aggregate resource constraint implies that output equals
consumption. The restriction common for New Keynesian models that the forward- and backward-looking terms add up to one
applies ( fπ +ρπ = 1).
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It can be expressed as

VY,t = Et(exp(mt+1))Et(Yt+1 +VY,t+1)(1−premY+VY ,t), (12)

where Et(exp(mt+1))Et(Yt+1 +VY,t+1) is the value of Y that would apply if consumers were risk neutral,

and premY+VY ,t denotes the one-period risk premium on the claim to Y .7 In Appendix A, we derive the

approximate relationship premY+VY ,t = βY,t premt , where

βY,t =
Covt

(
εc,t+1,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
σ2

c
(13)

is the claim’s consumption news beta, and

premt = γ(1+λ (st))σ
2
c (14)

is the risk premium for the one-period consumption claim or, more generally, the risk premium on a one-

period beta-one claim. Going forward, we refer to premt as the “market risk premium.”

According to (3), temporal variation in premt reflects variation in st . Substituting (3) into (14) gives

log(premt) =
1
2

log(1−2(st − s)), (15)

which holds up to a constant.

In the remainder of this section and the next, we detail our method for extracting log(premt) and, conse-

quently, variation in st , from corporate bond price data. With this in hand, we are able to estimate parameters

in the preference specification given by Equation (2), and ultimately to elucidate the relationship between

interest rates and output.

1f. Corporate bonds

While the pricing concept (11)–(14) applies to all assets, it is particularly insightful when applied to corpo-

rate debt where the cash-flow process Y takes on a simple form. Consider a firm i that is solvent at time t

7Note that premY+VY ,t = 1−R f ,t/Et(RY,t+1), where RY,t+1 = (Yt+1 +VY,t+1)/VY,t is the one-period gross return on Y , and R f ,t
is the one-period gross return on the risk-free asset. As long as the expected excess return on Y is near zero, the approximate
relationship premY+VY ,t = log(Et(RY,t+1))− r f ,t holds.
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and which owes one dollar of principal on a zero-coupon bond with a maturity date of t + 1. If it defaults,

investors experience a loss of Li,t+1, which denotes the fractional loss of a dollar owed in time-(t+1) dollars.

If the firm survives, Li,t+1 = 0. The real market value of the bond is

Bit = Et(exp(mt+1))(1− csit), (16)

where csit denotes the one-period credit spread that is given as

csit = Et(Li,t+1)+Et(1−Li,t+1)prem1−L,it . (17)

The credit spread in excess of expected losses is measured by csit −Et(Li,t+1). We distinguish between

observed credit spreads, denoted by ĉsit , and the model-based spreads csit in (17), to allow for observed

excess spreads ĉsit −Et(Li,t+1) to include a proportional illiquidity mark-up exp(`it), so that

ĉsit −Et(Li,t+1) = Et(1−Li,t+1)prem1−L,it exp(`it). (18)

When there are no illiquidity effects (`it = 0), bonds trade at efficient market levels (csit = ĉsit). However,

when there are carrying costs for holding default insurance (`it > 0), defaultable bonds trade at below-

efficient-market levels (csit > ĉsit).

Equation (18) gives observed excess spreads, per unit of expected losses, as

ĉsit −Et(Li,t+1)

Et(Li,t+1)
= −βL,it premt exp(`it), (19)

where βL,it = −β1−L,it Et(1−Li,t+1)/Et(Li,t+1) is the consumption news beta for the default loss claim, or

“default loss beta” for short. A negative βL,it reflects the common notion that default insurance is more likely

to pay in “bad” economic states than in “good” states.
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2. Default Loss Betas

Our ultimate goal is to identify the market risk premium premt in Equation (19), up to a multiplicative

constant. This requires estimates of default loss betas,

βL,it =
1

σ2
c

Covt

(
εc,t+1,

Li,t+1

Et(Li,t+1)

)
. (20)

Due to the infrequency of default events, especially for good and medium credit quality firms, estimating

βL,it for individual firms is unlikely to yield robust results. We therefore assume that the default loss beta

of an individual firm is described well by the average beta of a group of similar firms. Specifically, we use

j·t to index a time-t partition of firms into J non-overlapping cohorts, and jit to denote the cohort that firm i

belongs to at time t. We take L j,t+1 to be the realized average fractional loss of bond notional in time-(t +1)

dollars among firms that belong to cohort j at t. Consistent with (20), we set βL,it = βL, jit t where

Et

(
L j,t+1

Et(L j,t+1)
−1
∣∣∣∣εc,t+1

)
= βL, jit tεc,t+1. (21)

Equation (21) assumes that default loss expectations update proportionally with consumption news (or,

equivalently, fundamental shocks).

To estimate βL, jt we need to relate innovations in default risk to fundamental shocks. Hilscher and

Wilson (2017) show that credit ratings capture firms’ exposure to systematic risk reasonably well. Thus, we

form cohorts using credit ratings. For each date t and rating category jt , we calculate ζ j,t+1 as the realized

average rate of default by time t +1 among firms that belong to rating cohort j at t, and Pjt = Et(ζ j,t+1) as

the associated expected cohort-wide default rate.8 For a constant expected recovery of notional in the event

of default or, more generally, as long as expected recovery rates are independent of realized default rates,

L j,t+1/Et(L j,t+1) = ζ j,t+1/Pjt holds and Equation (21) links unexpected defaults to consumption news via

Et

(
ζ j,t+1

Pjt
−1
∣∣∣∣εc,t+1

)
= βL, jtεc,t+1. (22)

We will document countercyclical increases in unexpected defaults across cohorts, indicating (i) com-

mon temporal variation in default news across cohorts, and (ii) a negative relationship between this common

8Importantly, in estimating cohort-level default rates we link default rates to market conditions, meaning our default predictions
Pjt update through the business cycle. The estimation of Pjt is described in more detail later in the section.
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variation and consumption news. We therefore construct a “default news index” as the first principal com-

ponent of cohort-specific default shocks,

zt+1 =
J

∑
j=1

ω j (ζ j,t+1−Pjt) , (23)

and assume that this index moves in lockstep with consumption news,

Et
(
zt+1

∣∣εc,t+1
)

= −bεc,t+1, (24)

for a positive scalar b. The weights ω j ∈ [0,1] sum to one and are chosen such that zt+1 inherits the maximum

possible variance from the cohort-specific default news. Equation (24) differs from (22) in that, at the index

level, comovement between default news and consumption news remains constant.

If the systematic default risk of a cohort is a function of the default news index, we can use the loadings

on the index, labelled K j, to calculate βL, jt . Specifically, we assume

Et
(
ζ j,t+1−Pjt

∣∣εc,t+1,zt+1
)

= K j zt+1, (25)

which implies

βL, jt = −b
K j

Pjt
. (26)

2a. Cohort-specific default news

We now describe the process for measuring cohort-specific default news, ζ j,t+1−Pjt . We express ζ j,t+1

and Pjt in annualized form and, for robustness purposes, calculate them using their annualized five-year

counterparts. The calculation relies on realized default data reported in Moody’s Default and Recovery Rate

Database. To construct the time series ζ j,t+1, we filter the entire Moody’s database for US non-financial cor-

porates. For each issuer-level letter9 rating j and beginning of month t, we compute the realized cumulative

default rate over the next five years, as shown in Figure B.1.

To predict cohort-level default rates Pjt , for each month from January 1973 onwards, we estimate beta

9Alphanumeric ratings that refine major rating categories were introduced only in 1983. So, for consistency over time, we group
firms by letter rating categories instead of alphanumeric rating categories.
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regression models10 with a logit link function of past annualized five-year default rates:

log
(

ζ j,t+1

1+ζ j,t+1

)
= a j +Ztb′j + ε j,t+1. (27)

The vector of conditioning variables Zt includes recent equity market conditions and forecasts of economic

activity. The choice of conditioning variables is constrained by the need for a long consistent time series that

pre-dates the beginning of our sample period in 1973 by no less than five years. Given that the highest rated

bonds rarely default, the time series would ideally include several recessions that lead to a sharp increase

in the probability of default. The regressions (27) are estimated for each rating cohort separately, using all

available data as of the beginning of the month. Thus, for January 1, 1973, the default data for the regression

starts on January 31, 1927 and ends on December 31, 1967, whereas for February 1, 1973, the data also start

from January 31, 1927 but end on the last day of January 1968, and so on.

The regression results are summarized in Table B.1. Column (1) of each rating category panel shows the

most basic specification, where the probability of default is simply an updated average of the last five years

of default history for the rating category. Adding the trailing 12-month return on the S&P 500 index, such

as in model (2), does not improve the prediction model by much. In contrast, adding in a GDP forecast, as

in column (3), reduces the mean square error markedly for all five rating categories. The best fit is shown

in column (4), and is accomplished by including the term spread as well as the previous two measures of

economic activity. Going forward, we employ the default probability estimates based on specification (4).

Each end-of-month t (or, equivalently, beginning-of-month t +1), we use the estimated beta regression

and the variables in Z observed at end-of-month t to compute P5
jt as the predicted five-year cumulative

default rate for cohort j. Annualized five-year rates are given as P5a
jt = 1−(1−P5

jt)
1/5. Figure B.2 shows the

monthly time series of estimated P5a
jt by letter rating j. As expected, the predicted probabilities are higher

for the lower ratings, as well as more volatile. Earlier in the sample period, there are fewer speculative-

grade bonds at risk of default, adding to the volatility of the BB and B categories. Higher volatility in these

categories also arises from a larger fraction of firms with unintentionally high leverage. In contrast, many

of the lower rated issuers in 1986 and onward are firms that chose to maintain highly leveraged capital

structures (Altman, 1987).

Using the actual and predicted default rates ζ j,t+1 and Pjt , Figure 1 displays the default news ζ j,t+1−Pjt .

10Regressions use the Stata command “betareg,” with the default logit link function and robust standard error estimates.
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Figure 1: Cohort-specific default news
The figure shows the monthly time series of default news, ζ j,t+1 −Pjt , for Moody’s letter rating cohorts. Annualized realized
default rates ζ j,t+1 are proxied as annualized five-year average default rates starting with month-end t, and are shown in Figure B.1.
Annualized default probabilities Pjt are estimated as in Figures B.2. The sample dates t run from January 1, 1973 to January 1,
2017, and the associated default news ζ j,t+1−Pjt are shown in the figure as of time t+2.5. All time series are demeaned and scaled
by their max-min range. The shaded areas indicate NBER recessions.

The graph reveals considerable common countercyclicality in default news across cohorts.

2b. Calibration of default loss betas

Table 1: Default loss beta calibration

Standard deviation of default news Eigenvalues for first principal component
Aa A Baa Ba B Aa A Baa Ba B

0.07 0.12 0.28 1.39 2.81 0.28 0.47 0.47 0.50 0.48

Index weights ω j Default loss beta parameter K j
ωAa ωA ωBaa ωBa ωB KAa KA KBaa KBa KB

0.39 0.39 0.16 0.04 0.02 0.19 0.57 1.35 7.08 13.75

The table describes the inputs to and outputs of the principal component analysis of cohort-level default news, and reports the fitted
parameters for Equations (23) and (25).

We set the weights ω j used to construct the default news index in Equation (23) to the (scaled) eigen-

values of the correlation-based first principal component of cohort-specific default news, ζ j,t+1−Pjt . For

each cohort j, we obtain K j as the regression coefficient of ζ j,t+1−Pjt on zt . The estimates of ω j and

K j are shown in Table 1. The table reports that the loadings ω j on the default news index are larger for

higher-credit-quality cohorts.
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The default news index zt+1 constructed from the parameters in Table 1 is shown in Figure 2. The graph

shows considerable cyclicality in the index, supporting our view that it represents the systematic component

of cohort-level default risk.

Figure 2: Default news index
The figure shows the fitted time series of the default news index zt in Equation (23), based on the data in Figure 1 and the parameter
estimates in Table 1. The shaded areas indicate NBER recessions.

Using the parameters K j reported in the bottom right panel of Table 1, we compute default loss beta

estimates according to (26). These beta estimates inherit their temporal variation from 1/Pjt , and their

cross-sectional variation from K j/Pjt .

3. Measuring Time Variation in Risk Preferences

We take cohorts to be defined narrowly enough so that within-cohort firms have the same illiquidity mark-

ups, `it = ` jit . Equation (19) then implies that ĉsit = ĉs jit t , where ĉs jit t is the within-cohort average credit

spread. At the cohort level, (19) is equivalent to

log
(

ĉs jt −Et(L j,t+1)

Et(L j,t+1)

)
= log(−βL, jt)+ log(premt)+ ` j. (28)
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Having obtained estimates of default loss betas, we can now use them to estimate the risk premium xt .

Specifically, substituting (26) into (28) gives

log
(

ĉs jt −Et(L j,t+1)

K jt

)
= log(premt)+ ` j. (29)

which allows us to estimate log(premt) as time fixed effects in a regression of the left-hand side in (29) on

time and cohort fixed effects.

3a. Credit spread and expected loss data

The credit spreads sit are obtained using month-end prices of senior unsecured debt issued by public non-

financial US-domiciled firms.11 Prices of individual corporate bonds are collected from TRACE, the Lehman

Brothers Fixed Income Database, and the Mergent FISD/NAIC Database (ordered by priority). In combi-

nation, these three sources span the period January 1973 to September 2021. We aggregate these data to

the firm level by first calculating each bond’s credit spread as the difference between the bond’s yield and

that of the maturity-matched Treasury.12 The Treasury yield curve is constructed using the methodology

in Gurkaynak, Sack, and Wright (2007) and the associated model parameter estimates provided by the Fed-

eral Reserve Board.13 In a second step, the firm-level credit spread, sit , is calculated as a weighted average

of the firm’s bond yield spreads where the weights are face values.14 If the firm’s credit spread is negative in

any given month, we delete the observation from the sample. Likewise, we delete firm-month observations

where the spread is far below that of other firms in the same rating category. We focus on medium-term

credit spreads by restricting the computation of sit to include only bonds with a remaining time to maturity

between three and seven years.

Because the original-issue high-yield market is in its infancy until the mid-1980s, there are few firms

with ratings below Baa in the early years of the sample. This is especially true of Caa and lower rated bonds,

which remain a small portion of the bond market throughout the sample period. To ensure that there are a

11Public status is identified by matching bond issuers to CRSP/Compustat files. Bonds are matched with issuers using 6-digit
historical cusips, or via the issuer family structure reported by Mergent FISD.

12The TRACE data are cleaned using the algorithm developed by Dick-Nielsen (2014). The Lehman and TRACE databases
report yields, but the NAIC database only has prices. We compute NAIC yields using the information on maturity, coupon and
early redemption features reported in Mergent FISD, and then choose the minimum of the yield to maturity and the yield to first
call.

13Daily yield curve calibration results are available from https://www.federalreserve.gov/data/nominal-yield-

curve.htm.
14The weights are face values rather than amounts outstanding. The latter are not reported in the Lehman data.
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sufficient number of firms available for estimating rating-specific default loss betas, we exclude all firms

with ratings above Aa or below B. In addition, there are a few months in the 1970s when there are fewer

than two high-yield firms in the sample, which prevents reliable estimation of the model. These months

are dropped from the sample altogether. Firms with data for less than 12 months are excluded. This leaves

us with 162,540 firm-month observations, covering 1,469 public non-financial US firms over the period

January 1973 to September 2021.

The range of credit quality in our data may be judged from Table B.2, which categorizes firms according

to their median rating over the sample period. The table shows, for each letter rating, the number of firms

in our study with that median rating. As the table indicates, the firms in our sample tend to be of medium to

low credit quality. In the technology and utilities sectors, firms are rated investment-grade more often than

high-yield, whereas energy and media firms tend to be rated high-yield. Capital and consumer industries

account for over half of the sample. As expected, credit spreads scaled by expected losses decrease as

default risk increases, consistent with the literature on the credit spread puzzle. That is, the excess spread

over and above expected losses is proportionately higher for investment-grade firms compared to high-yield

firms (Eom, Helwege, and Huang, 2004; Huang and Huang, 2012; Berndt, 2015; Berndt, Douglas, Duffie,

and Ferguson, 2018). Table B.3 presents additional descriptive statistics for the firms in our sample. By

industry, technology firms tend to be the largest and utilities the smallest. Credit spreads tend to be higher for

firms in the energy sector and lower, at the median, in consumer industries, technology and transportation.15

Figure 3 plots average credit spreads by letter rating for our sample. As expected, spreads are highest for

firms with the lowest credit rating. Credit spreads rise around recessions, before reverting back to lower

levels.

To estimate expected default losses betas we require data on actual defaults, which we obtain from the

Moody’s Default and Recovery Database. We also require data on recovery rates. We use a recovery rate

of 0.39, 0.46, 0.44, 0.42 and 0.37 for Aa, A, Baa, Ba and B rated firms, respectively, to reflect the average

recovery rates for senior unsecured bonds measured by trading prices reported in Moody’s (2022) as of 2.5

years prior to default, for the period 1983–2021.

15While the number of investment-grade utilities in our sample exceeds that of high-yield utilities (Table B.2), there are more
firm-month observations for riskier utilities. This explains the fairly high value of median credit spreads for the utilities sector in
Table B.3.
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Figure 3: Credit spreads by letter rating
The figure shows the monthly times series of average five-year senior unsecured bond yield spreads by Moody’s letter rating. The
sample includes 1,469 public non-financial US firms over the period January 1973 to September 2021. The shaded areas indicate
NBER recessions.

3b. Estimation results

We estimate log(premt) as time fixed effects in a regression of the left-hand side in Equation (29) on time

and cohort fixed effects. Panel A of Table 2 shows the results of this regression, including the coefficients

on the cohort fixed effects for each of the rating categories (the omitted category is Baa). We find that

illiquidity mark-ups of bond risk premia, ` j, are significantly larger for investment-grade firms than for

high-yield firms.

Table 2: Risk premium identification

constant Aa A Ba B Mo FEs R-sqr RMSE Obs

Est -4.669** 1.065** 0.475** -1.243** -1.937** X 0.944 0.316 2786
SE (0.219) (0.015) (0.012) (0.015) (0.024)

This table reports the estimation results for the model in Equation (29), which identifies log(premt) as the month fixed effects
in a panel-data regression of log([ĉs jt −Et(L j,t+1)]/K jt) on month and cohort fixed effects. The benchmark cohort is Baa, and
the benchmark month is September 2021. Robust standard errors are shown in parentheses. The sample covers 1,469 public
non-financial US firms from January 1973 to September 2021. We use ** to denote significance at the 1% level.

We plot the time series of log(premt) in Figure 4. The market risk premium is higher in recessions than

other periods, with the highest value of log(premt) occurring in the GFC. Another spike occurs in the Covid

recession, but the magnitude in that period is not very different from the 1975 recession. The risk premium

is lowest in boom periods, especially in the late 1970s, late 1990s, and mid 2000s. The lowest level occurs

a few years before Covid, around the time the Federal Reserve begins to lift off the zero lower bound.
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Figure 4: Market risk premium
The figure shows the monthly time series of log(premt), from January 1973 to September 2021. The displayed time series is
demeaned and scaled by its standard deviation. The shaded areas indicate NBER recessions.

4. Preference Dynamics and Macroeconomic Fundamentals

Our main focus is on the calibration of the relationship (2) which, for a non-zero θ1, we rewrite as

(st+1− s)−θ0(st − s) = θ1

(
xt +

θ2

θ1
xt−1

)
+λ (st)εc,t+1. (30)

In the special case where θ2 = −φθ1, the term “xt +
θ2
θ1

xt−1” simplifies to consumption growth, ∆ct =

xt −φxt−1, as per Equation (5). For ease of interpreting the relationship in Equation (30), and to facilitate a

more robust estimation of θ1 and θ2, we restrict our analysis to this special case, and the resulting preference

dynamics

(st+1− s)−θ0(st − s) = θ1∆ct +λ (st)εc,t+1. (31)

Equation (31) identifies θ1 as the sensitivity of the non-AR(1) component of the log surplus consumption

ratio to lagged consumption growth. While we cannot observe st directly, substituting (3) into (14) gives the

approximate relationship

log(premt) = −(st − s), (32)
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which holds when st is close to its steady state s,16 and up to a constant. Thus, near the steady state, Equa-

tions (31) and (32) allow us to estimate θ1 as the negative of the regression coefficient of log(premt+1)−

θ0 log(premt) on ∆ct . When implementing the regression, we measure log(premt) as in Figure 4 and com-

pute ∆ct as in Equation (5), with the log output gap sourced from the St. Louis Fed’s economic data

depository (FRED).17

The resulting estimates for θ1 are summarized in Panel A of Table 3. Over the full sample period

from 1973.I to 2021.III, the regression coefficient of −(log(premt+1)−θ0 log(premt)) on ∆ct is estimated

at −1.47. This estimate remains similar, at −1.52, if we exclude the years prior to 1986, when the high-

yield segment of the corporate bond market was still underdeveloped (Altman, 1987). The θ1 regression

coefficient estimates are generally not statistically different from zero.18 In that sense, empirical support for

a non-zero value of θ1 in the specification of the preference dynamics in Equation (30) is limited. That said,

a formal specification test of the preference dynamics proposed by Campbell, Pflueger, and Viceira (2020)

is outside the scope of our paper. Instead, we input an empirical point estimate of θ1 into their proposed

preference dynamics and quantify what it implies about the response of output to monetary policy shocks.

We compute log(premt+1)− θ0 log(premt) using the persistence parameter θ0 = 0.871/4, and ∆ct =

xt −φxt−1 using the smoothing parameter φ = 0.93. The persistence of the log surplus consumption ratio

comes directly from Campbell and Cochrane (1999), and the smoothing parameter for detrending potential

output is estimated by Campbell, Pflueger, and Viceira (2020). Table B.5 lists the additional model input

parameters, the articles that these parameter values are drawn from, and the moments in the data that the

literature has targeted with these parameters. As in Pflueger and Rinaldi (2022), we take the utility curvature

parameter of γ = 2 and the parameters for consumption growth and the real risk-free rate from directly

from Campbell and Cochrane (1999). The monetary policy parameters are set to the standard values reported

by Taylor (1993) and Clarida, Gali, and Gertler (2000). The Phillips curve draws its parameterization

from Fuhrer (1997) and Hazell, Herreno, Nakamura, and Steinsson (2022).

For the full sample, the estimated preference parameter θ1 together with the model input parameters

listed in Table B.5 imply θ2 = −φθ1 = 1.37, an annualized discount factor of 0.9, and an Euler equation

16A higher-order Taylor approximation of Equation (15) is log(premt) =−(st − s)− 2
2 (st − s)2− 22

3 (st − s)3− 23

4 (st − s)4....
17Specifically, xt = log(GDPC1/GDPPOT), where GDPC1 is the real GDP in billions of chained 2012 dollars and GDPPOT is

the real potential GDP, also in billions of chained 2012 dollars.
18They remain insignificant even when the restriction θ2 = −φθ1 is lifted, and log(premt+1)− θ0 log(premt) is regressed on

xt +
θ2
θ1

xt−1.
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Table 3: Estimated parameters and moments

Full Post-85 Post-85, excl.
1973.I–21.III 1986.I–21.III recessions

Panel A: Estimated parameters
Surplus consumption–lagged output gap θ1 −1.468 −1.516 −1.026
SD annual MP shock (%) σMP 1.780 1.870 1.150

Panel B: Implied parameters
Surplus cons–twice-lagged output gap θ2 1.37 1.41 0.95
Discount rate (annualized) β 0.90 0.90 0.90
Steady-state surplus cons ratio S 0.03 0.03 0.03
Maximum surplus cons ratio Smax 0.05 0.05 0.05
Euler eq forward coefficient fx 0.42 0.41 0.51
Euler eq backward coefficient ρx 0.57 0.58 0.49
Forward + backward coeff in Euler eq α 0.986 0.985 0.999
Euler equation real rate slope ψ 0.21 0.20 0.26

Panel C: Implied macroeconomic dynamics
SD annual consumption growth Model 1.50 1.50 1.50

Data 1.50 1.50 1.50
Trough effect output (%) −0.55 −0.53 −0.74
Lag trough (quarters) 8 8 5

Panel D: Model and empirical moments: Equity
Equity premium (%) Model 8.47 8.66 7.14

Data 7.30 8.66 12.06
Volatility (%) Model 17.36 17.78 14.54

Data 17.74 17.26 14.75
Sharpe ratio Model 0.49 0.49 0.49

Data 0.41 0.50 0.82

Panel E: Model and empirical moments: Bonds
SD annual change Fed Funds rate (%) Model 3.32 3.49 2.11

Data 2.15 1.39 1.25

Panel A presents the estimates for the model parameters θ1 and σMP. The parameter θ1 is estimated as the coefficient in a regression
of −(log(premt+1)−θ0 log(premt)) on ∆ct . The estimates reported in the first, second, and third columns are based on quarterly
data spanning from 1970.I to 2021.III, from 1986.I to 2021.III, and from non-recession periods between 1986.I and 2021.III,
respectively. For each period, the parameter σMP is chosen to calibrate the model to match model-implied consumption volatility at
1.5%. Panel B displays the parameters implied by the calibration, while Panel C records model-implied macroeconomic moments.
The asset pricing estimates shown in Panels D and E are calculated using the numerical approximation and public code of Pflueger
and Rinaldi (2022).

with roughly equal-sized forward- and backward-looking coefficients ( fx = 0.42,ρx = 0.57). The sum of

these two coefficients is 0.99, so slightly less than one. The coefficient on the real interest rate in the Euler

equation is 0.21, which is closely in line with the estimate in Yogo (2004) of 0.2.

Using our θ1 estimate and the input and implied parameters, we simulate the model for various values for

the standard deviation of monetary policy shocks, σMP. The simulation runs for a length of T = 10,000 pe-

riods, discarding the first 100 periods to ensure that the system reaches the stochastic steady-state. Table B.6
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shows the model-implied macroeconomic dynamics as a function of σMP. Like Pflueger and Rinaldi (2022),

we target an unconditional volatility of annual changes in log consumption of 1.5% reported in Campbell

and Cochrane (1999). For the full sample, this target moment is met at σMP = 1.78%.

Panel C of Table 3 indicates that the model suggests the trough in output response occurs eight quarters

following the initial monetary policy shock, with an estimated decrease of approximately 55 basis points for

every 100 basis point increase in the Fed Funds rate. These estimates closely align with those of Christiano,

Eichenbaum, and Evans (1999), who derived similar figures using a structural VAR model, reporting an

output reduction of 70 basis points at eight quarters. Using the estimates from the post-1985 period, we find

similar results: the trough remains at eight quarters and the effect of a monetary policy shock on output is

nearly the same.

Figure 5 illustrates the transmission of a 100 basis point monetary policy shock. Shown in the top panel,

full-sample estimates indicate that the shock leads to an increase in the risk-free rate that mean-reverts

and converges back to zero at about eight to nine quarters. Output shows an initial decline, reaching a

trough response of approximately −0.55 percentage points at eight quarters, before gradually returning to

its steady-state level. The response of the output gap is slightly less pronounced, reaching a trough of about

−0.42 percentage points around five quarters after the initial shock. We obtain similar impulse response

functions when the sample is restricted to 1986 and later (Panel B of the figure).

4a. Asset pricing implications

To evaluate how effectively the macroeconomic model, when integrated with preference dynamics calibrated

to our credit-market-based risk premium measure, prices other asset classes, we utilize the public source

code from Pflueger and Rinaldi (2022) to compute model-implied equity and Treasury bond prices. These

prices depend on both the macroeconomic state vector Wt and the log surplus consumption ratio st in a highly

non-linear form. The price of equity, Pδ
t , is set to the price of the claim to aggregate consumption, Pc

t , times

the leverage factor δ , as described in Table B.5. The price-consumption ratio for the claim to aggregate

consumption is given as the infinite sum of the price-consumption ratios for n-period zero consumption

claims,

Pc
t

Ct
=

∞

∑
n=1

Pc
n,t

Ct
, (33)
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Panel A: 1973.I–2021.III
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Panel B: 1986.I–2021.III

0 5 10 15

0

0.5

1

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

Panel C: 1986.I–2021.III (excluding recessions)
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Figure 5: Model-implied impulse responses to monetary policy shock
The figure shows the model-implied impulse responses to a 100 basis point monetary policy shock. The left panel shows the
response of the federal funds rate in annualized percent, the middle panel shows the response of output in percent, and the right
panel shows the response of the output gap in percent.

with the n-period claim is priced at

Pc
n,t

Ct
= Et

(
Mt+1

Ct+1

Ct

Pc
n−1,t+1

Ct+1

)
. (34)

The provided code uses numerical methods to find the solution to the recursion in Equation (33). Further

details are available in the online appendix to Pflueger and Rinaldi (2022).
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Panels D and E of Table 3 outline the model’s implications for pricing equity and Treasury bonds.

Notably, the model effectively captures the equity premium, equity volatility, and Sharpe ratio. Restricting

the sample period to 1986 and later, the model is even closer to the equity data. However, these results

suggest a standard deviation of annual changes in the Fed Funds rate that is quite high (3.32% in the full

sample, exceeding the empirical target of 2.15%). This result arises, as it does in Pflueger and Rinaldi (2022),

because the model’s macroeconomic dynamics are driven by a single shock. Therefore, the calibration can

either match consumption volatility or interest-rate volatility, but not both. Given that consumption volatility

plays a crucial role in Equation (30) for preference dynamics, we align with Pflueger and Rinaldi (2022) in

targeting consumption volatility rather than interest-rate volatility.

4b. Excluding recessions when estimating θ1

Since preferences may deviate more heavily from the steady state in bad times than in good times, we

re-calibrate the model by excluding NBER recessions from the post-1985 sample period. The results are

reported in the third column of Table 3. After excluding recessions from the regression of log(premt+1)−

θ0 log(premt) on ∆ct , the θ1 estimate is revised to −1.03. This reflects a somewhat smaller (in absolute

value) measured impact of lagged consumption growth on preferences.

For this calibration, the consumption volatility target moment is met at σMP = 1.15%. The Euler equa-

tion has nearly equal-sized forward- and backward-looking coefficients ( fx = 0.51,ρx = 0.49), with their

sum essentially equal to one. The model indicates that the trough in output response occurs five quarters

after the initial monetary policy shock, with an estimated decrease of approximately 74 basis points for a

100 basis point increase in the Fed Funds rate. These estimates closely align with those targeted by Pflueger

and Rinaldi (2022), who calibrate their model to an output reduction of 70 basis points at four to six quarters.

While Pflueger and Rinaldi (2022) calibrate their model to the “70 basis points at four to six quarters” rela-

tionship between the Fed Funds rate and output, we extract a measure of the surplus consumption ratio from

corporate debt prices and calibrate macroeconomic dynamics to the observed relationship between this ratio

and the output gap. Importantly, our approach yields the impulse response function of output to monetary

policy shocks as a model output, rather than taking it as a model input.
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5. Alternative Proxies of Market Risk Premia

As proxies for the market risk premium, one might also consider several well-known measures of risk in the

corporate bond literature: the Baa-Aaa spread, the excess bond premium (EBP) measure from Gilchrist and

Zakrajšek (2012), and the risk aversion (RA) variable in Bekaert, Engstrom, and Xu (2021). The Baa-Aaa

spread is sourced from FRED. It is the difference between the average yield on Baa-rated bonds and that of

Aaa-rated bonds, and it is affected by the differences in both the expected losses and default loss betas of

Baa and Aaa bonds. By comparing the Baa yield to the Aaa yield, the Baa spread is less affected by liquidity

than if it were measured against a comparable maturity Treasury bond. The EBP measure is based on all

corporate bond spreads rather than just those of the Baa and Aaa bonds. It removes all variation from credit

spreads that is related to variation in expected losses, but it does not necessarily represent a market risk

premium as controlling for expected loss variation may also (partially) control for risk premium variation.

Both the Baa spread and the EBP measure are available for the entire sample period. The RA measure

from Bekaert, Engstrom, and Xu (2021), which relies on the VIX to extract risk premia from corporate bond

spreads, is only available for the time period when the VIX exists (from 1986 onwards). The VIX itself may

proxy for time-varying risk aversion.19

Because our macroeconomic results hinge on the robustness of the log(prem) estimate of the market

risk premia, we provide additional details on this measure here. Figure 6 plots the risk premium proxies

from the literature against the benchmark version of our market risk premium. The figure shows that the

five measures often move together. All of them reach a peak in the 2008–2009 period, and tend to be

lower between recessions. Table B.4 further supports the generally high correlations between the various

measures.

While our log(prem) measure is explicitly designed to capture market risk premia, the other metrics in

Figure 6 aim to capture specific components of the market risk premium (e.g., excess premia, risk aversion,

or market-wide volatility) or include additional factors such as default risk or clientele effects (e.g., Baa-Aaa

bond yield spread). Therefore, these alternative metrics are inherently less suited for accurately estimating

the relationship between preferences and output. Table B.7 provides evidence that cautions against cali-

brating preference dynamics using empirical targets based on measures that only imperfectly correlate with

the market risk premium. Specifically, it reports the θ1 estimates resulting from a regression of (minus)

19The SVIX variable from Martin (2017), which is available from 1996 to 2012, offers another alternative. We note that it is very
highly correlated with the RA measure of Bekaert, Engstrom, and Xu (2021) during the period.
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Figure 6: Risk premium measure and proxies
The figure shows the monthly time series of log(premt), from January 1973 to September 2021. It also displays alternative risk
premium proxies, including the excess bond premium (EBP) of Gilchrist and Zakrajšek (2012), the log Baa-Aaa spread, the
log Bekaert, Engstrom, and Xu (2021) risk aversion measure (RA), and the log VIX index. The displayed time series are de-
meaned and scaled by their respective standard deviations. The shaded areas indicate NBER recessions.

EBPt+1− θ0EBPt , instead of log(premt+1)− θ0 log(premt), on ∆ct . While the EBP-based θ1 estimate of

1−1.18 is close to its log(prem)-based counterpart when recessions are excluded from the sample, it falls

below−2 when recessions are considered. As shown in Panels A and B of Table B.7, at θ1 <−2, the model

can match consumption volatility only at the expense of an overly high interest rate volatility. For estima-

tions derived from data where the log surplus consumption ratio tends to be near the steady state, EBP-based

results are consistent with our benchmark findings, estimating the trough of the output response to monetary

policy shocks at −0.74% at five quarters (Panel C). However, when recessions are included in the sample,

EBP-based results imply a high upward bias in model-implied interest-rate volatilities.

6. Concluding Remarks

We present empirical evidence on the relationship between the surplus consumption ratio and lags of the

output gap using a novel method of extracting a measure of the market risk premium from corporate bond

prices. Our risk premium measure is closely related to the risk sensitivity variable in habit-formation util-

ity models based on Campbell and Cochrane (1999), allowing us to evaluate elements of the preference

specification empirically.
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Our analysis is particularly relevant for recent macroeconomic models that relate FOMC policy to the

output gap. For example, the framework in Campbell, Pflueger, and Viceira (2020) assumes that the log sur-

plus consumption ratio is a function of the lagged output gap and the twice-lagged output gap, as well as of

its own lag. Such an assumption has the appealing quality of inducing a hump shape in the impulse response

function of output to a monetary policy shock. We investigate this assumption by regressing the non-AR(1)

component of our estimate of the log surplus consumption ratio on changes in lagged consumption growth,

using the latter as a benchmark combination of output lags. While we do not find a significant statisti-

cal relationship between the two variables, using the point estimate from the regression implies plausible

macroeconomic dynamics that are consistent with the approach in these models.

Although our findings are largely consistent with this type of preference specification, we note that the

implications of the model are sensitive to variation in the forward- and backward-looking weights in the

Euler equation. Our estimation approach allows these parameters to arise naturally, rather than assuming

that the weights add up to one, as in some New Keynesian macroeconomic models. Nonetheless, the sum

of the weights is very close to one by our estimation.

Our approach to estimating the relationship between the log surplus consumption ratio and output gap

lags provides more accurate parameter estimates when the level of the surplus is close to its steady state.

We find that the coefficient on the twice-lagged output gap (θ2) is smaller (in absolute value) when the

estimations exclude recessions from the sample. This implies that the backward-looking element of the

Euler equation has a smaller impact outside of recessions.

Because our approach incorporates additional information from the corporate bond market, we are not

compelled to calibrate the model to an existing estimate of the impact of monetary policy on output. Instead,

we produce this impulse response function as a model output. We find that the calibration estimates are

consistent with a dynamic macroeconomic model where a 100 basis point Fed Funds rate shock leads to a

drop in output of−0.5% to−0.7%. The impulse response function associated with this set of parameters has

the desired hump shape with a trough at five to eight quarters. The trough is further out when recession years

are included in the estimation sample, reflecting their impact in raising the backward-looking coefficient in

the Euler equation. Our range of estimates of the impact of monetary policy in output are similar to those of

Christiano, Eichenbaum, and Evans (1999), and also those of Bernanke, Boivin, and Eliasz (2005).
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APPENDIX

A. Model Derivations and Macroeconomic Dynamics

This appendix provides detailed derivations for the results in Section 1.

A.1. Euler equation

The real risk-free rate rt satisfies the asset pricing first-order condition

1 = Et

(
Mt+1

Mt
exp(rt)

)
= Et (exp(∆mt+1 + rt)) ,

which implies the Euler equation (6) for real risk-free rates. Substituting (1), (2) and (3) into (6), and

simplifying, gives

rt = − log[Et(exp(−γ (∆ct+1 +∆st+1)))]

= − log(exp(−γ Et(∆ct+1 +∆st+1)+
1
2

γ
2(1+λt−1)

2
σ

2
c ))

= γ Et(∆ct+1)+ γ Et(∆st+1)−
1
2

γ
2(1+λt)

2
σ

2
c

= γ Et(∆ct+1)− γ(1−θ0)(st − st)+ γθ1xt + γθ2xt−1−
1
2

γ
2(1+λ (st))

2
σ

2
c

= γ Et(∆ct+1)+ γθ1xt + γθ2xt−1. (A.1)

The last equation holds because the sensitivity function λ (st) has just the right form so that st drops out.

Substituting (5) into (A.1), and rearranging, yields

rt = γ Et(xt+1)− γφxt + γθ1xt + γθ2xt−1

= γ Et(xt+1)− γ(φ −θ1)xt + γθ2xt−1

γ(φ −θ1)xt = γ Et(xt+1)+ γθ2xt−1− rt

xt =
1

φ −θ1
Et(xt+1)+

θ2

φ −θ1
xt−1−

1
γ(φ −θ1)

rt .
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A.2. Derivation of premY+VY ,t = βY,t premt

The tower property of conditional expectations gives

VY,t =
∞

∑
j=1

Et(exp(
j

∑
s=1

∆mt+s)Yt+ j),

= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)
Et(exp(∆mt+1)(Yt+1 +VY,t+1))

Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)

= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)

(
1+Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

))
= Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)(1−premY+VY ,t),

where premY+VY ,t is defined as

premY+VY ,t = −Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

)
. (A.2)

Let RY,t+1 =
Yt+1+VY,t+1

VY,t
denote the one-period gross return on Y , and R f ,t = 1/Et(exp(∆mt+1)) is the one-

period gross return on the risk-free asset. Then,

Et(RY,t+1)−R f ,t =
Et(Yt+1 +VY,t+1)

VY,t
− 1

Et(exp(∆mt+1))

=
Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)−VY,t

VY,t Et(exp(∆mt+1))

= −
Et(exp(∆mt+1))Et(Yt+1 +VY,t+1)Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
VY,t Et(exp(∆mt+1))

,

and thus

Et(RY,t+1)−R f ,t

Et(RY,t+1)
= −Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Yt+1 +VY,t+1

Et(Yt+1 +VY,t+1)

)
. (A.3)

Equating (A.2) and (A.3) yields

premY+VY ,t =
Et(RY,t+1)−R f ,t

Et(RY,t+1)

≈ 1− exp(−(log(Et(RY,t+1))− r f ,t))

≈ log(Et(RY,t+1))− r f ,t .
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Using (1), and the equilibrium outcome where ∆mt+1 is conditionally normally distributed with mean

Et(−γ (∆ct+1 +∆st+1)) and variance 1
2 γ2(1+λ (st))

2σ2
c , we obtain

exp(∆mt+1)

Et(exp(∆mt+1))
=

exp(−γ (∆ct+1 +∆st+1))

Et(exp(−γ (∆ct+1 +∆st+1)))

= exp
(
−γ(1+λ (st))εc,t+1−

1
2

γ
2(1+λ (st))

2
σ

2
c

)
≈ 1− γ(1+λ (st))εc,t+1−

1
2

γ
2(1+λ (st))

2
σ

2
c . (A.4)

Substituting (A.4) into (A.2) yields the approximate relationship

premY+VY ,t ≈
Covt

(
εc,t+1,

Yt+1+VY,t+1
Et(Yt+1+VY,t+1)

)
σ2

c︸ ︷︷ ︸
=βY,t

γ(1+λ (st))σ
2
c︸ ︷︷ ︸

=premt

.

For cases where Yt+1+VY,t+1 has a conditional log-normal distribution close to one, including the one-period

consumption claim where Yt+1 +VY,t+1 =Ct+1,

βY,t ≈
Covt

(
εc,t+1,εlog(Y+VY ),t+1

)
σ2

c
.

Substituting (3) into (14), and considering cases where st is close to the steady state, we obtain

premt = γ
1
S

√
1−2(st − s)σ2

c

log(premt) = constant+
1
2

log(1−2(st − s))

≈ constant+
1
2

log[exp(−2(st − s))]

= constant− st .
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A.3. Corporate bond pricing

We aim to express the real bond price as Bit = Et(exp(∆mt+1))(1− sit). Since

Bit = Et(exp(∆mt+1)(1−Li,t+1))

= Et(exp(∆mt+1))Et(1−Li,t+1)
Et(exp(∆mt+1)(1−Li,t+1))

Et(exp(∆mt+1))Et(1−Li,t+1)

= Et(exp(∆mt+1))Et(1−Li,t+1)(1−prem1−L,it),

we obtain

sit = Et(Li,t+1)+Et(1−Li,t+1)prem1−L,it .

Observed credit spreads in excess of expected may reflect compensation for illiquidity risk,

ŝit −Et(Li,t+1) = Et(1−Li,t+1)prem1−L,it `it , (A.5)

as modeled by `it . Applying the definition (A.2), Equation (A.5) implies

ŝit −Et(Li,t+1)

Et(Li,t+1)
=

Et(1−Li,t+1)

Et(Li,t+1)
β1−L,it premt `it

= −Et(1−Li,t+1)

Et(Li,t+1)
Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

1−Li,t+1

Et(1−Li,t+1)

)
premt `it

= Covt

(
exp(∆mt+1)

Et(exp(∆mt+1))
,

Li,t+1

Et(Li,t+1)

)
premt `it

= −βL,it premt `it .
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B. Additional Tables and Figures

Table B.1: Predicting default rates

Aa A Baa
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Const -5.37 -5.46 -6.94 -6.74 -4.55 -4.57 -5.64 -5.24 -3.76 -3.80 -4.38 -3.94
(0.06) (0.08) (0.10) (0.10) (0.06) (0.07) (0.06) (0.06) (0.05) (0.06) (0.05) (0.04)

Ret -0.14 0.42 0.56 -0.11 0.91 1.45 -0.33 0.58 1.15
(0.21) (0.11) (0.14) (0.23) (0.16) (0.21) (0.25) (0.22) (0.24)

GDP -2.33 -4.19 -7.82 -16.1 -8.13 -14.7
(0.43) (1.06) (0.92) (1.67) (1.31) (2.13)

Slope 3.59 -2.77 -9.69
(1.02) (1.86) (1.93)

DR 0.46 0.42 0.09 0.12 1.05 1.02 0.32 0.41 2.27 2.15 1.07 1.37
RMSE 0.99 1.01 0.26 0.29 2.03 2.10 0.44 0.46 3.54 3.61 1.05 1.03
Obs 1,170 1,078 835 646 1,170 1,078 835 646 1,170 1,078 835 646

Ba B
(1) (2) (3) (4) (1) (2) (3) (4)

Const -2.73 -2.71 -2.70 -2.30 -1.87 -1.87 -1.70 -1.22
(0.03) (0.03) (0.05) (0.05) (0.03) (0.03) (0.06) (0.04)

Ret -0.79 0.30 1.13 -0.32 0.85 1.07
(0.18) (0.19) (0.18) (0.19) (0.24) (0.16)

GDP -12.6 -24.1 -12.2 -17.3
(1.77) (2.34) (1.94) (2.10)

Slope -3.23 -7.05
(1.81) (1.63)

DR 6.18 6.08 4.92 6.04 14.05 13.90 13.34 16.85
RMSE 6.33 6.47 4.39 4.34 11.09 11.49 9.83 8.32
Obs 1,170 1,078 835 646 1,170 1,078 835 646

This table reports the results for the rating-specific beta regressions of realized default rates on 12-month trailing equity index
returns (Ret), predicted real GDP growth (GDP), and the difference between the ten-year and three-month Treasury rates (slope).
The time periods underlying panels (1)–(4) start in May 1919, January 1927, April 1947 and January 1963, respectively, and each
last through October 2016. The S&P 500 index is from CRSP, the predictions for real GDP growth are four-quarter-ahead consensus
forecasts, and the slope data come from the Federal Reserve.
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Table B.2: Distribution of firms across industries and by credit quality

Aa A Baa Ba B All

Capital Industries 5 63 102 85 120 375
Consumer Industries 12 49 83 60 89 293
Energy & Environment 4 21 57 45 88 215
Media & Publishing 2 13 25 16 25 81
Retail & Distribution 1 20 44 31 21 117
Technology 6 46 69 40 50 211
Transportation 1 2 16 7 10 36
Utilities 4 52 68 11 2 137
Other 1 0 2 1 0 4

All 36 266 466 296 405 1,469

The table reports the distribution of firms across industries and by median Moody’s senior unsecured issuer-level rating. The sample
includes 1,469 public non-financial US firms, over the period January 1973 to September 2021.
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Table B.3: Firm characteristics by industry

Capital
Ind

Cons
Ind

Energy/
Envmt

Media/
Publ

Retail/
Distr

Tech Trans-
port

Utilities

Market capitalization 2,543 6,077 4,255 2,788 6,466 8,656 4,042 1,592
Total assets 4,228 6,213 7,433 4,272 7,914 9,700 9,470 2,654
Book value of debt 2,089 3,052 3,304 2,155 4,593 4,544 4,709 1,554
Market-to-book ratio 0.77 1.03 0.76 0.75 0.86 0.85 0.72 0.66
(Cash+ST invt)/assets 0.05 0.05 0.03 0.03 0.03 0.07 0.04 0.01
Return on assets 0.04 0.07 0.04 0.04 0.05 0.05 0.04 0.03
Operating margin 0.09 0.14 0.10 0.14 0.05 0.12 0.10 0.23
Dividends 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02
Debt issuance 0.01 0.02 0.02 0.00 0.03 0.02 0.02 0.02
Equity issuance 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01
Interest coverage 0.00 0.00 3.96 0.00 0.00 0.00 0.00 3.05
Leverage 0.48 0.50 0.44 0.50 0.57 0.48 0.47 0.53
Trailg 12mo equity return 0.05 0.08 0.01 0.06 0.06 0.07 0.08 0.12
Trailg 12mo SSR 0.09 0.06 0.11 0.09 0.08 0.07 0.09 0.07
5yr credit spread 179 120 203 179 139 125 130 167
10yr credit spread 150 112 163 154 127 120 110 189
Years in sample 8 7 5 5 6 5 7 3

The table reports median firm characteristics by industry. Market capitalization, total assets and book value of debt are reported in
millions of US dollars. Book debt is computed as the sum of short-term debt and long-term debt. The return on assets is calculated
as net income scaled by assets. Operating margin is computed as operating income scaled by sales. Dividends are annual cash
dividends scaled by total assets. Debt issuance is the annual change in book debt scaled by lagged assets. Equity issuance is the
annual growth of balance sheet equity, net of retained earnings, scaled by lagged assets. Interest coverage is EBITDA divided by
annual interest expense. Leverage is book debt divided by total assets. The trailing equity returns and trailing sum of squared equity
returns (SSR) are computed using daily data for the past 12 months. Credit spreads are annualized and reported in basis points.
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Table B.4: Correlations between risk premium measures

Monthly Quarterly
log(prem) EBP log(cs) log(RA) log(VIX) log(prem) EBP log(cs) log(RA) log(VIX)

1973.1–2021.9 1973.I–2021.III
log(prem) 1
EBP 0.76 1 0.78 1
log(cs) 0.58 0.52 1 0.58 0.538 1

1973.1–2021.9 1990.I–2021.III
log(prem) 1 1
EBP 0.81 1 0.81 1
log(cs) 0.70 0.66 1 0.70 0.65 1
log(RA) 0.65 0.72 0.64 1 0.67 0.70 0.63 1
log(VIX) 0.58 0.57 0.50 0.808 1 0.59 0.59 0.50 0.85 1

This table reports correlations between our market risk premium measure log(prem) and other related risk premium proxies. EBP
is the excess bond premium from Gilchrist and Zakrajšek (2012), cs is the Baa-Aaa spread sourced from FRED, RA is the risk
aversion variable in Bekaert, Engstrom, and Xu (2021), and VIX is the stock market volatility index disseminated by the CBOE.
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Table B.5: Model input parameters

Value Source Empirical target

Preferences
Consumption growth g 1.89 Campbell and Cochrane (1999) Average consumption growth
Utility curvature γ 2 Campbell and Cochrane (1999) Equity Sharpe ratio
Steady-state risk-free rate r 0.94 Campbell and Cochrane (1999) Average real risk-free rate
Persistence surplus cons. θ0 0.87 Campbell and Cochrane (1999) AR(1) price-dividend ratio

Monetary policy
MP coefficient output γx 1.5 Taylor (1993) Reduced-form regression
MP coefficient inflation γπ 0.5 Taylor (1993) Reduced-form regression
MP persistence ρi 0.80 Clarida, Gali, and Gertler (2000) Reduced-form regression

Inflation
PC backward coefficient ρπ 0.80 Fuhrer (1997) Quarterly inflation persistence
PC slope κ 0.0062 Hazell et al. (2022) Regional inflation-unempl. slope

Consumption
Cons.–output gap link φ 0.93 Campbell, Pflueger, and Viceira

(2020)
Corr(output gap, detrended cons.)

Asset prices
Leverage δ 0.67 Pflueger and Rinaldi (2022) SD equity returns

Similar to Table 1 in Pflueger and Rinaldi (2022), this table reports the model parameter values, the articles that these parameter
values are drawn from, and the empirical moments that the literature has targeted with these parameters. Consumption growth and
the steady-state risk-free rate are in annualized percent. The monetary policy (MP) coefficient and the Phillips curve slope are in
units corresponding to the empirical variables: the log output gap is in percent and the Fed Funds rate and inflation are in annualized
percent.
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Table B.6: Fitting SD of monetary policy shocks

Panel A: 1973.I–2021.III (θ1 =−1.47, θ2 = 1.37, α = 0.99)
Free parameter
σMP 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85
Implied equity moments
Equity premium 8.41 8.43 8.45 8.47 8.49 8.51 8.53 8.55 8.57 8.59 8.61
Volatility 17.23 17.27 17.32 17.36 17.40 17.45 17.49 17.53 17.58 17.62 17.66
Sharpe ratio 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Implied macroeconomic dynamics
σc 1.47 1.48 1.49 1.50 1.51 1.52 1.52 1.53 1.54 1.55 1.56
σr 3.27 3.29 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.43 3.45
Trough magn. output -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55 -0.55
Lag trough (quarters) 8 8 8 8 8 8 8 8 8 8 8

Panel B: 1986.I–2021.III (θ1 =−1.52, θ2 = 1.41, α = 0.99)
Free parameter
σMP 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90
Implied equity moments
Equity premium 8.52 8.54 8.56 8.58 8.60 8.62 8.64 8.66 8.68 8.70 8.72
Volatility 17.48 17.52 17.56 17.61 17.65 17.69 17.74 17.78 17.82 17.87 17.91
Sharpe ratio 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Implied macroeconomic dynamics
σc 1.44 1.45 1.46 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52
σr 3.36 3.38 3.40 3.42 3.43 3.45 3.47 3.49 3.51 3.53 3.55
Trough magn. output -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53
Lag trough (quarters) 8 8 8 8 8 8 8 8 8 8 8

Panel C: 1986.I–2021.III, excl. recessions (θ1 =−1.03, θ2 = 0.95, α = 1.00)
Free parameter
σMP 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20
Implied equity moments
Equity premium 7.02 7.04 7.06 7.09 7.11 7.14 7.16 7.18 7.21 7.23 7.25
Volatility 14.30 14.35 14.40 14.45 14.49 14.54 14.59 14.64 14.69 14.73 14.78
Sharpe ratio 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Implied macroeconomic dynamics
σc 1.44 1.45 1.46 1.48 1.49 1.50 1.51 1.53 1.54 1.55 1.57
σr 2.01 2.03 2.05 2.07 2.09 2.11 2.12 2.14 2.16 2.18 2.20
Trough magn. output -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74 -0.74
Lag trough (quarters) 5 5 5 5 5 5 5 5 5 5 5

The table reports the model-implied macroeconomic dynamics and equity moments, as a function of the assumed standard deviation
of monetary policy shocks σMP. The parameter θ1 is estimated as in Table 3, and the model input parameters are from Table B.5.
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Table B.7: Fitting SD of monetary policy shocks: EBP measure

Panel A: 1973.I–2021.III (θ1 =−2.08, θ2 = 1.93, α = 0.97)
Free parameter
σMP 0.50 1.00 1.50 2.00 2.50 3.00
Equity
Equity premium 5.48 6.85 8.02 9.06 10.02 10.90
Volatility 11.10 14.00 16.49 18.79 20.95 23.03
Sharpe ratio 0.49 0.49 0.49 0.48 0.48 0.47
Implied macroeconomic dynamics
σc 0.25 0.50 0.75 1.00 1.25 1.49
σr 0.93 1.86 2.78 3.71 4.64 5.57
Trough magn. output -0.36 -0.36 -0.36 -0.36 -0.36 -0.36
Lag trough (quarters) 10 10 10 10 10 10

Panel B: 1986.I–2021.III (θ1 =−3.10, θ2 = 2.89, α = 0.96)
Free parameter
σMP 0.50 1.00 1.50 2.00 2.50 3.00
Equity
Equity premium 5.55 6.97 8.17 9.25 10.23 11.12
Volatility 11.29 14.31 16.92 19.32 21.60 23.78
Sharpe ratio 0.49 0.49 0.48 0.48 0.47 0.47
Implied macroeconomic dynamics
σc 0.15 0.29 0.44 0.58 0.73 0.87
σr 0.92 1.84 2.77 3.69 4.61 5.53
Trough magn. output -0.22 -0.22 -0.22 -0.22 -0.22 -0.22
Lag trough (quarters) 13 13 13 13 13 13

Panel C: 1986.I–2021.III, excl. recessions (θ1 =−1.18, θ2 = 1.10, α = 0.99)
Free parameter
σMP 1.29 1.30 1.31 1.32 1.33 1.34
Equity
Equity premium 7.41 7.44 7.46 7.48 7.50 7.53
Volatility 15.11 15.15 15.20 15.25 15.29 15.34
Sharpe ratio 0.49 0.49 0.49 0.49 0.49 0.49
Implied macroeconomic dynamics
σc 1.47 1.48 1.49 1.50 1.51 1.53
σr 2.40 2.41 2.43 2.45 2.47 2.49
Trough magn. output -0.68 -0.68 -0.68 -0.68 -0.68 -0.68
Lag trough (quarters) 6 6 6 6 6 6

The table reports the model-implied macroeconomic dynamics and equity moments, as a function of the assumed standard deviation
of monetary policy shocks σMP. The parameter θ1 is estimated as the coefficient in a regression of −(EBPt+1−θ0EBPt) on ∆ct ,
and the model input parameters are from Table B.5.
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Figure B.1: Realized default rates
The figure shows the monthly times series of annualized five-year realized default rates by letter rating. The underlying data are
sourced from the Moody’s Default and Recovery Rate Database, filtered for US non-financial corporates. For the high-yield cohorts,
the realized default rates are scaled by a factor of one-half. The sample dates t run from January 1, 1973 to January 1, 2017, and
the associated default rates are shown in the figure as of time t +2.5. The shaded areas indicate NBER recessions.

Figure B.2: Probabilities of default
The figure shows the monthly times series of annualized five-year default probabilities P5a

jt by letter rating cohort j. The underlying
data are sourced from the Moody’s Default and Recovery Rate Database, CRSP, FRED and Gurkaynak, Sack, and Wright (2007).
The sample dates t run from January 1, 1973 to January 1, 2017, and the associated default probabilities are shown in the figure as
of time t +2.5. The shaded areas indicate NBER recessions.
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