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Abstract 

Market microstructure invariance (MMI) stipulates that trading costs of financial assets are 

driven by the volume and volatility of bets, but these variables are inherently difficult to identify. 

With futures transactions data, we estimate bet volume as the trading volume of brokerage firms 

that trade on behalf of their clients and bet volatility as the trade‐related component of futures 

volatility. We find that the futures bid‐ask spread lines up with bet volume and bet volatility as 

predicted by MMI, and that intermediation by high frequency traders does not interfere with the 

MMI relation. 
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1. Introduction 

Kyle and Obizhaeva (2016a) propose the market microstructure invariance (MMI) theory. It 

stipulates that the distributions of risk transfers and transactions costs are constant across 

assets and over time, if trades are converted into bets, trading time into business time, and 

return volatility into bet volatility (Kyle, Obizhaeva and Kritzman, 2016). Bets are transactions 

intended to produce idiosyncratic gains based on investors’ beliefs and can be thought of as 

portfolio managers’ parent orders that are typically split into several trades.1 Business time 

refers to the calendar time between bets, and bet volatility is the part of return volatility that is 

attributable to order flow imbalances, and not driven by public information.2 The execution of 

bets affects transactions costs by generating market impact due to adverse selection. 

In real financial markets, bets are difficult to distill from trades, which makes it hard to test MMI 

empirically. Our solution is to estimate bet volume as the trading volume of brokerage firms that 

trade on behalf of their clients and bet volatility as the trade‐related component of return 

volatility. Regulatory data on futures transactions with trading firm IDs allow us to separate 

proprietary trading by high‐frequency trading (HFT) firms from client‐induced trading, and we 

assume that the latter constitutes bet volume. We use the decomposition technique from 

Hasbrouck (1991) to isolate bet volatility with tick‐by‐tick trade and quote futures data. 

According to Kyle and Obizhaeva (2016a), the MMI implies a specific relation between the 

percentage bid‐ask spread and the dollar bet activity of an asset, where dollar bet activity equals 

                                                        
1 Kyle and Obizhaeva (2016) define a bet as a “metaorder”, i.e., a collection of trades that belong to the same trading 
decision of a single trader. 
2 Mandelbrot and Taylor (1967), Clark (1973), Jones, Kaul and Lipson (1994), and Ane and German (2000), among 
others, study the relationships between the number of trades, trading volume, and return variance, in business time.  
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the product of bet volatility and bet dollar volume.3 We use our measures of bet volatility and 

bet volume to construct a measure of dollar bet activity, and to empirically test the MMI by 

regressing the percentage futures bid‐ask spread on the dollar bet activity measure. Our findings 

show that the futures bid‐ask spread lines up with dollar bet activity, and, thus, bet volume and 

bet volatility, as predicted by the MMI.  

We perform the regressions by aggregating our measures of bid‐ask spreads, bet activity, and 

bet volatility on a daily and intraday basis, following the methodology in Andersen, Bondarenko, 

Kyle and Obizhaeva (2018). Our regression results support MMI in both aggregation settings. 

However, we find that MMI does a relatively worse job in describing the intraday pattern of the 

futures bid‐ask spread than the one across days. The reason is that the minimum tick size regime 

in the futures market creates a boundary restriction for the bid‐ask spread. MMI predicts that 

the futures bid‐ask spread level is positively related to bet volatility and the futures price, and 

negatively related to bet volume. Our results show that the futures spread becomes binding with 

the tick size towards the end of the trading day, when bet activity levels are high. Thus, we claim 

that the futures tick size is too large as it hinders the spread from reaching levels low enough to 

adapt to the large bet activity as predicted by MMI.  

Andersen et al. (2018) translate the MMI into the intraday trading invariance (ITI) theory, in 

which they assume that the distributions of risk transfers and transactions costs are invariant 

without converting trades into bets, trading time into business time, and return volatility into 

bet volatility. The intuition is that traders trade more often, and in smaller lots, when the 

volatility is high. Andersen et al. (2018) stress that the auxiliary assumptions for MMI to carry 

                                                        
3 Kyle and Obizhaeva (2016b) derive the invariance relationships from dimensional analysis, leverage neutrality, 
and the market invariance hypothesis, while Kyle and Obizhaeva (2020) use a theoretical model of informed trading 
with different beliefs for the same purpose.  
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over to the ITI setting are very strict. Kyle and Obizhaeva (2016a) introduce a volatility 

multiplier that measures the fraction of return volatility attributed to bet volatility, and a volume 

multiplier that determines the ratio between bet volume and total trading volume. When the 

multipliers are assumed to be constants, MMI translates into ITI in the sense that MMI can be 

tested by regressing the percentage bid‐ask spread on trading activity rather than bet activity.  

We estimate the volatility multiplier and the volume multiplier from our measures of bet 

volatility and bet volume. Our results show that the multipliers vary somewhat both on a daily 

and intra‐daily basis. Moreover, the multipliers are correlated with futures return volatility and 

trading volume. However, when we evoke the assumption of constant multipliers, and test the 

ITI version of MMI, we find that the percentage futures bid‐ask spread lines up with trading 

activity in an almost identical way as to bet activity.  

We contribute to previous research in several ways. First, by estimating bet activity and bet 

volatility we directly test if the relationship between transactions costs, bet activity, and bet 

volatility, implied by MMI, holds. We focus on the invariance of transactions costs while most 

previous studies study the invariance of the distributions of risk transfers. One notable exception 

is Rizopoulos (2018), who studies the invariance of transactions costs in the ITI version, without 

estimating bet activity and bet volatility, in the UK equity market. Papers that study the 

invariance of the distributions of risk transfers approximate bets with trades (Andersen et al., 

2018), portfolio transitions related to rebalancing decisions made by institutional investors and 

executed by brokers (Kyle and Obizhaeva, 2016a), prints from the US equity TAQ data set (Kyle, 

Obizhaeva and Tuzun, 2020), and counting the time when traders change their trading direction 

from buying to selling or selling to buying (Bae, Kyle, Lee and Obizhaeva, 2016).  
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Second, we estimate the volatility multiplier and the volume multiplier and analyze their 

characteristics on a daily and intraday basis. According to Kyle and Obizhaeva (2016a), the 

assumptions that the multipliers are constants or time varying are important for testing the MMI 

predictions empirically. Also, if the multipliers are correlated with volatility and volume, 

empirical estimates of parameters predicted by invariance may be biased. We contribute by 

studying the validity of the assumption that the multipliers are constant in the test of MMI.  

Third, we contribute to the literature of the determinants of futures transactions costs. Several 

studies investigate the relationship between transactions costs, trading volume and volatility on 

futures markets. Wang and Yau (2000) study the relations between trading volume, the bid‐ask 

spread, and price volatility for financial and metal futures, and find a positive relationship 

between trading volume and price volatility and a negative relationship between trading volume 

and the bid‐ask spread. Ding (1999) analyzes the determinants of bid‐ask spreads in the foreign 

exchange futures market and reports that the number of transactions is negatively related to the 

bid‐ask spread, whereas volatility in general is positively related to it. Xu (2014) examines the 

intertwined dynamics between trading patience, order flows, and liquidity in the OMXS 30 index 

futures and finds that a higher proportion of patient traders and a higher order arrival rate leads 

to a smaller spread. Our paper adds to these papers by documenting that the bid‐ask spread is 

positively related to bet volatility and the futures price, and negatively related to bet activity, in 

a particular functional form suggested by MMI.  

Another strand of literature discusses the relationship between the tick size and futures 

transactions costs. Kurov and Zabotina (2005) document that the minimum tick sizes of the E‐

mini S&P 500 and E‐mini Nasdaq‐100 futures contracts act as binding constraints on the bid‐ask 

spreads by not allowing the spreads to decline to competitive levels. The authors suggest that 
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the Chicago Mercantile Exchange (CME) should decrease the minimum tick sizes of the S&P 500 

and Nasdaq‐100 E‐mini futures contracts, and they claim that a tick size reduction is likely to 

result in lower futures trading costs. Indeed, in 2006, the CME reduced the minimum tick size of 

the floor‐traded and the E‐mini Nasdaq‐100 futures from 0.5 to 0.25 index points. In a follow‐up 

article, Kurov (2008) investigates this event and finds a significant reduction in the effective 

spreads in the E‐mini futures. He also finds that the tick size reduction improves price discovery 

and informational efficiency. Similar results of improved liquidity and lowered transaction costs 

are found in Alampieski and Lepone (2008), for the tick size reduction in treasury bond futures 

traded on Sydney Futures Exchange, and in Martineza and Tse (2019), for the tick size reduction 

in foreign currency futures contracts on the Chicago Mercantile Exchange.  

Complementing previous studies, we find that the current minimum tick size regime in the OMXS 

30 index futures creates a boundary restriction for the bid‐ask spread, and the futures spread 

becomes binding with the tick size especially towards the end of the trading day. Our main 

contribution to this strand of the literature is to analyze the tick size boundary conditions within 

the MMI framework, where bet activity is the key determinant of bid‐ask spreads. Not only can 

we draw the, somewhat trivial, conclusion that the bid‐ask spread often is binding with the tick‐

size, but by obtaining the implied bid‐ask spread from MMI, we also learn how large the spread 

would be in a frictionless setting, given the level of bet activity in the market. 

Our results offer important policy implications for exchange decision makers and regulators in 

financial markets. In the equity market, various tick size regimes are implemented. For example, 

in the US, the tick size equals one penny for all stocks with a price above one dollar, while in 

European equity markets, tick sizes vary with the price level and trading activity of stocks. The 

current debate, in both the US and in Europe, concerns how the “optimal” (Graziani and Rindi, 
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2022), or even the “intelligent” (Nasdaq, 2019), tick size should be determined. Our suggestion 

is to use the MMI framework and determine the asset tick size so that its bid‐ask spread is 

allowed to line up with bet volatility, bet activity, and price level for the asset in question. If bet 

variables are difficult to obtain, we suggest to instead use the ITI framework, where return 

volatility, trading activity, and price level determine bid‐ask spreads, and thus, also tick sizes. 

Roughly speaking, we suggest adapting the European equity market model by adding return 

volatility as a third reference point to the first two, namely, trading activity and price level, when 

determining tick sizes. Our suggested model (ITICKS) implies a relatively wide tick size for an 

asset with high return volatility, low trading activity, and high price level.  

2. Theory and empirical framework  

In this section, we briefly present the MMI theory according to Kyle and Obizhaeva (2016a) for 

the purpose of achieving an empirical testing framework. Although we perform tests with data 

from the index futures market, the following presentation applies for any financial asset. In the 

following, we first go through MMI and derive a testable regression equation for the futures bid‐

ask spread as a function of bet activity. Second, we show that the ITI concept of Andersen et al. 

(2018) is a special case of MMI. Finally, we present our measures for bet volatility and bet 

volume that enable us to measure bet activity, and we provide the multipliers necessary for 

converting MMI to ITI, or vice versa.  

2.1 Market microstructure invariance  

MMI stipulates two invariance principles that (i) the distributions of risk transfers, and (ii) 

transactions costs, are constant over business time. Business time is defined as the expected time 
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between the arrival of bets to the asset market, and bet activity is assumed to drive both the risk 

and transaction costs of an asset.  

In the first principle of MMI, the volatility per bet is proportional to the expected dollar bet size. 

Kyle and Obizhaeva (2016a) formulate the first principle as that the random variable 𝐼  has an 

invariant distribution across all intervals 𝜏: 

𝐼 = 𝑃 𝑄 𝜎 /(𝑁 ) / . (1) 

Using the notation in Andersen et al. (2018), for each interval 𝜏, the random realization of a 

variable during the interval is indicated by the tilde on top of the variable. Likewise, by omitting 

the tilde, we denote the expected value of the variable in question in interval 𝜏, conditional on 

the information available from interval 𝜏 − 1. Thus, 𝑃  denotes the average futures price (dollar 

per contract) in interval 𝜏, 𝑄  is the average bet size (number of contracts per bet) in interval 𝜏, 

𝜎  is the average percentage bet volatility per unit of time, and 𝑁  is the bet arrival rate per unit 

of time. In addition, bet volume (number of contracts per unit of time) equals 𝑉 = 𝑁 𝑄 . The 

invariance of 𝐼  in Eq. (1) implies that betting agents adjust their bet sizes and bet arrival rates 

to control the risk (volatility) of their futures bets.  

The second principle of the MMI theory according to Kyle and Obizhaeva (2016a) relates to the 

invariance of transactions costs. MMI implies that the percentage bid‐ask spread is proportional 

to the product of bet volatility and bet activity to the power of −1/3 as4  

𝑆𝑃𝑅

𝑃
= 𝑅𝑆𝑃𝑅 = 𝐾 𝜎 (𝑊 ) / , (2) 

                                                        
4 See Eq. (19) in Kyle and Obizhaeva (2016a). 
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where 𝑆𝑃𝑅  is the dollar bid‐ask spread in interval 𝜏, 𝑅𝑆𝑃𝑅  is the percentage bid‐ask spread, 

𝐾  is a constant, and 𝑊 = 𝜎 𝑃 𝑉  is the bet activity as defined by Kyle and Obizhaeva (2016a).  

Taking the natural logarithm of both sides in Eq. (2) yields  

log 𝑅𝑆𝑃𝑅 = log(𝐾 ) + log(𝜎 ) −
1

3
log 𝑊 ,  (3) 

which can be rewritten as  

𝑟𝑠𝑝𝑟 −
1

2
�̃� = 𝑘 −

1

3
𝑤 ,  (4) 

where 𝑟𝑠𝑝𝑟 = log 𝑅𝑆𝑃𝑅 , �̃� = 2log(𝜎 ) , 𝑘 = log(𝐾 )  and 𝑤 = log 𝑊 . By taking the 

expectation in Eq. (4), conditional on information at time 𝜏 − 1, and adding an error term, we 

arrive at the following equation: 

𝑟𝑠𝑝𝑟 −
1

2
𝑠 = 𝑘 −

1

3
𝑤 + 𝜀 , (5) 

where 𝜀  is a zero‐mean residual. Testing the transactions costs part of the MMI theory boils 

down to regressing the bet variance‐adjusted relative bid‐ask spread on the left‐hand side of Eq. 

(5) on the bet activity variable 𝑤 . Accordingly, the MMI theory can be rejected if the associated 

regression coefficient is significantly different from −1/3.  

In the spirit of Andersen et al. (2018), it is possible to back out the implied average bid‐ask 

spread from the left‐hand side of Eq. (5) as a function of the average bet activity 𝑤 , the average 

bet variance 𝑠 , and the average futures price 𝑝  as 
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𝑠𝑝𝑟∗ = 𝑘∗ −
1

3
𝑤 +

1

2
𝑠 + 𝑝 , (6) 

where the constant 𝑘∗ is identified through the moment condition 𝐸(𝜀 − 𝑘) = 0 from Eq. (5). 

When compared with the actual bid‐ask spread, the implied spread from Eq. (6) could be seen 

as a metric of how well MMI works. Eq. (6) also showcases the intuition of MMI when it comes 

to the determinants of transactions costs. Accordingly, the bid‐ask spread is positively related to 

bet volatility and the futures price, and negatively related to bet activity.  

2.2 Intraday trading invariance  

Andersen et al. (2018) introduce ITI with a focus on the first principle of MMI. By extending their 

framework to the second principle, which also Rizopoulos (2018) does, it follows that the 

percentage bid‐ask spread is proportional to the product of return volatility and trading activity, 

rather than bet volatility and bet activity as in Eq. (2), to the power of −1/3 as  

𝑆𝑃𝑅

𝑃
= 𝑅𝑆𝑃𝑅 = 𝐾𝜎 𝑊

/
, (7) 

where 𝐾 is a constant, 𝜎  is the average percentage return volatility per unit of time, 𝑊 = 𝜎 𝑃 𝑉  

is trading activity, and 𝑉  is the trading volume (number of contracts per unit of time).  

The expression in Eq. (7) can be transformed into a regression equation by taking the natural 

logarithm of both sides, taking the expectation, conditional on information at time 𝜏 − 1, and 

adding an error term 𝜀  as 

𝑟𝑠𝑝𝑟 −
1

2
𝑠 = 𝑘 −

1

3
𝑤 + 𝜀 . (8) 
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where 𝑠 = 2log(𝜎 ), 𝑘 = log(𝐾) and 𝑤 = log 𝑊 . 

Thus, we can test the ITI version of the second principle of the MMI theory by regressing the 

return variance‐adjusted relative bid‐ask spread on the trading activity variable 𝑤 . If the ITI 

version of the MMI theory holds, the associated regression coefficient should not be significantly 

different from −1/3. 

2.3 Multipliers 

The variables bet variance and bet activity are not easily observed in data, which makes it 

difficult to directly test MMI. For ITI to correspond to MMI, we need restrictions on the trading 

variables 𝑠  and 𝑤  relative the bet variables 𝑠  and 𝑤 . Here, we present measures of the bet 

variables and of time‐varying multipliers that relate the bet variables to the corresponding 

trading variables. 

Bet volatility 

Kyle and Obizhaeva (2016a) and Kyle et al. (2016) define bet volatility 𝜎  as the fraction of 

return volatility 𝜎  that is due to order flow imbalances caused by bet activity, and not driven by 

public information that is incorporated into prices without trading, in the following way: 𝜎 =

𝜓 𝜎 , where 0 ≤ 𝜓 ≤ 1 is the volatility multiplier measured over the interval 𝜏 . Hence, the 

natural logarithm of (expected) bet variance is a function of the corresponding return variance 

according to 𝑠 = 2log𝜓 + 𝑠 .  

We estimate 𝜓  from observed futures trades and quotes using the decomposition technique 

from Hasbrouck (1991). Let the time scale (s) be the transaction sequence so that a futures trade 

at time s during the interval 𝜏  is represented by the indicator variable 𝑥 = +1 for a buyer‐
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initiated trade, 𝑥 = −1 for a seller‐initiated trade, and 𝑥 = 0 for an unclassified trade. Denote 

the logarithm of the futures midpoint quote prior to the trade at time s as 𝑝 , and the 

corresponding change in the logarithm of the midpoint quote since prior to the previous trade 

at time 𝑠 − 1 as 𝑟 . Following Hasbrouck (1991), and using the notation in Barclay, Hendershott 

and McCormick (2003), we estimate the following vector autoregression (VAR) model:  

𝑟 = 𝛼 𝑟 + 𝛽 𝑥 + 𝜀 , , (9) 

𝑥 = 𝛾 𝑟 + 𝛿 𝑥 + 𝜀 , , (10) 

where 𝜀 , ~𝑁(0, 𝜎 ), 𝜀 , ~𝑁(0, 𝜎 ), and 𝐸𝜀 , 𝜀 , = 𝐸𝜀 , 𝜀 , = 𝐸𝜀 , 𝜀 , = 0 for lags r < s.  

We invert the estimated VAR system into the vector moving average (VMA) model:  

𝑟
𝑥 =

𝑎(𝐿) 𝑏(𝐿)

𝑐(𝐿) 𝑑(𝐿)

𝜀 ,

𝜀 ,
, (11) 

where a(L), b(L), c(L), and d(L) are lag polynomial operators.  

Consistent with Hasbrouck (1991), we decompose the logarithm of the futures midpoint 𝑝  into 

a permanent random‐walk component 𝑚  and a transitory stationary component 𝑠 : 

𝑝 = 𝑚 + 𝑠 , (12) 

where 𝑚 = 𝑚 + 𝑣 , 𝑣 ~𝑁(0, 𝜎 ), and 𝐸𝑣 𝑣 = 0 for lags 𝑟 ≠ 𝑠. From the definition that 𝑟 =

𝑝 − 𝑝 , and denoting ∆𝑠 = 𝑠 − 𝑠 , we obtain 𝑟 = 𝑣 + ∆𝑠 . Defining 𝜎 = 𝐸∆𝑠 , we write 

the futures return variance as the sum of a permanent component and a transitory component: 
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𝜎 = 𝜎 + 𝜎 . (13) 

Accordingly, the futures return variance is decomposed into an efficient part due to changes in 

the “true” futures value, and an inefficient part caused by microstructure imperfections. Using 

the VMA model above, we further decompose the efficient part of the variance into a trade‐

unrelated component and a trade‐related component: 

𝜎 = 𝑎 𝜎 + 𝑏 𝜎 . (14) 

As stated by Hasbrouck (1991), the first component of the efficient variance in Eq (11) reflects 

the arrival of public information that is incorporated in futures prices through quote updates, 

without trading. The second component is caused by the arrival of private information through 

futures trading. The first component is not contributing to bet volatility. Thus, we measure 𝜓  as  

𝜓 = 1 −
𝜎

𝜎
𝑎 , (15) 

and use it to convert 𝑠  into 𝑠 .  

Bet volume 

Following Kyle and Obizhaeva (2016a) and Kyle et al. (2016), bet volume relates to trading 

volume through the volume multiplier 𝜁  as 𝑉 = 2𝑉 /𝜁 , or in natural logarithms and expected 

form as 𝑣 = log2 − log𝜁 + 𝑣 . If the volume multiplier is equal to one in interval 𝜏, each trade 
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matches two bets, where one side is buying, and the other one is selling. The volume multiplier 

exceeds one if each bet generates trades among intermediaries other than the betting sides.  

If bet volume is known, 𝜁  could be obtained from the ratio between bet volume and trading 

volume. In our futures data, we know the trading firm behind each trade. Thus, we have 

information about the initiators of proprietary trades that are carried out by trading firms for 

their own accounts. However, if the trading firms trade on behalf of clients, we are not able to 

discern the client IDs. As a result, it is difficult to figure out individual client bets and which 

trades, carried out by each trading firm, that belong to the individual client bets.  

As a proxy for bet volume 𝑉 , we use the broker volume, which is the trading volume by 

brokerage firms that trade on behalf of clients. On the one hand, this proxy will overestimate the 

actual bet volume if the brokerage firms engage in market making that generates intermediary 

trades other than the bet trades. On the other hand, the proxy might underestimate the actual 

bet activity if proprietary trading firms engage in bet activity. However, with our data it is 

straightforward to estimate 𝜁  from the ratio of total futures trading volume to broker volume 

during the interval 𝜏. 

With the estimated volatility multiplier and volume multiplier we can relate bet activity to 

trading activity according to: 𝑊 = 𝜎 𝑃 𝑉 = 𝜓 𝜎 𝑃 2𝑉 /𝜁 = 2𝜓 /𝜁 𝑊 . Hence, by converting 

𝑠  into 𝑠  and 𝑤  into 𝑤 , we can run the regression for the bid‐ask spread in Eq. (5). Note that 

when 𝜓 = 1  and 𝜁 = 2 , we have that 𝑠 = 𝑠  and 𝑤 = 𝑤 . In this case, the MMI and ITI 

specifications for transactions costs coincide. In the more general case, when 𝜓  and 𝜁  are 

constants, but not necessarily equal to 1 and 2 respectively, the regressions in Eq. (5) and Eq. (8) 
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differ only with respect to the constant terms 𝑘  and k. Hence, when the multipliers are constant, 

both regressions yield a slope coefficient equal to −1/3 under both MMI and ITI. 

Kyle and Obizhaeva (2016a) note that the assumptions that 𝜓  and 𝜁  are constants are 

important for testing the predictions of MMI empirically, and that these assumptions should be 

tested empirically. Moreover, Kyle and Obizhaeva (2016a) state that if 𝜓  and 𝜁  are correlated 

with 𝑉  and 𝜎  in the ITI setting, empirical estimates of parameters predicted by invariance may 

be biased. The authors call for an empirical examination of these correlations, so that necessary 

adjustments can be made in tests of the invariance hypotheses. In a response to their call, we 

perform a correlation analysis of the multipliers.  

3. Institutional setting and data 

3.1 Description of the OMXS futures market  

The OMXS 30 index futures are traded at Nasdaq Stockholm (henceforth Nasdaq). The OMXS 30 

index consists of the 30 most actively traded and largest stocks on the same exchange, which is 

revisited every six months. The futures trading is consolidated to Nasdaq. It is, however, possible 

to trade the OMXS 30 index futures at other venues, but this rarely happens during our sample 

period. We focus on the transactions at Nasdaq and exclude other transactions (0.44%). 

The trading environment for the OMXS 30 index futures constitutes an electronic limit order 

book. Traders can choose to submit market orders or limit orders, which are executed and stored 

according to the price‐visibility‐time priority rule. Limit orders posted on the same price level 

are executed according to the time of submission, except that visible orders have higher priority 

than hidden orders. Only members of the exchange, either dealers, brokers, or proprietary 
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trading firms, can trade directly through the Nasdaq. Some trading firms are designated market 

makers in the sense that they have contractual agreements with Nasdaq to provide liquidity.  

Trading in the OMXS 30 index futures starts at 8:45 AM with an opening call auction which 

uncrosses at 9:00 AM. Continuous trading through the limit order book is possible during trading 

hours from 9:00 AM to 5:25 PM, when the closing call auction starts. If the day before a Swedish 

bank holiday is a trading day, the closing auction starts at 12:55 PM. The contract size equals 

100 times the underlying index. The tick size for the OMXS 30 index futures contract is SEK 0.25. 

During our sample period, the futures price fluctuates in the range 1,238 and 1,679 (see Table 

1). Hence, the relative tick size ranges between roughly 1.5 and 2.0 basis points (bps).  

The OMXS 30 index futures contracts have different maturities. At any time, trading is possible 

in at least three futures contract series, with up to one, two, and three months left to maturity, 

respectively. On the third Friday of the expiration month, if it is a Swedish bank day, one contract 

series expires. If the day in question is not a Swedish bank day, or a half trading day, the contract 

series expires on the preceding bank day. A new expiration month series is listed four days prior 

to the expiration of the previous series. The futures contracts are settled in cash at maturity. 

In addition to trading in the regular futures contracts, it is possible to trade calendar spreads in 

the OMXS 30 index futures. The OMXS 30 Roll contract is a standardized combination of trades 

in OMXS 30 futures. The OMXS 30 Roll technically implements a calendar spread strategy by 

selling the nearby contract and buying the second nearby contract simultaneously. Nasdaq 

automatically creates the combinations. The tick size for the OMXS 30 Rolls is 0.05 SEK 

compared to 0.25 SEK for the individual regular futures contracts. Calendar spreads trading is 

only active during the expiration weeks. 
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3.2 Data  

We obtain tick‐by‐tick quote and trade records for the OMXS 30 index futures from Refinitiv Tick 

History (RTH), time‐stamped at a microsecond granularity. The quote data include quote 

updates on the best bid and ask prices and the number of futures contracts available at the best 

bid and ask prices (i.e., the bid and ask size). The trade data include the execution prices and 

volumes. We follow Lee and Ready (1991) to classify whether a trade is buyer‐ or seller‐initiated. 

In addition, we retrieve the intraday five‐second data for the OMXS 30 index futures from RTH, 

which includes the best bid price, the best ask price, and the corresponding sizes at these prices. 

To identify which trading firms are responsible for the OMXS 30 index futures trades, we use 

data from the Transaction Reporting System (TRS). All financial institutions supervised by one 

of the national financial supervisory authorities in the European Union must report their 

transactions to TRS, in accordance with the Markets in Financial Instruments Directive (MiFID). 

We get access to the TRS transaction data through the Swedish financial supervisory authority, 

Finansinspektionen. The TRS data include information on prices and volumes with a buy/sell 

indicator. The data also include identifiers for the trading firms responsible for their trades.  

We use the identifiers to separate proprietary trading firms from brokerage firms. We follow 

Baron, Brogaard, Hagströmer and Kirilenko (2019) and identify trading firms that are members 

of the Futures Industry Association’s European Principal Traders Association (FIA EPTA), which 

is an industry organization for principal trading firms, as high‐frequency trading firms. These 

firms are known to be proprietary traders (see Aramian and Nordén, 2021, who perform a 
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similar classification of trading firms).5 Moreover, trading firms that are not high‐frequency 

traders are classified as brokerage firms.  

In the TRS database, transactions are double reported with a time stamp down to the nearest 

second. For example, if trading firm X places a buy order of 100 contracts in OMXS 30 index 

futures and the order is executed against two sell orders, 40 contracts from trading firm Y and 

60 contracts from trading firm Z, then this trade results in three entries, one from each trading 

firm X, Y and Z, respectively, in the TRS database.  

In our analyses, we use all trades and quotes during continuous trading between 9:05 AM and 

5:20 PM from RTH and TRS. We exclude the data during the first five and last five minutes of the 

continuous trading session to avoid possible issues due to the opening and closing auctions.  

Our sample period is from January 4, 2016, to December 29, 2017, and half trading days are 

excluded. Following Andersen et al. (2018), we focus on the nearby futures contract (the one 

closest to maturity), which is the most actively traded contract. Each month, when the next 

nearby futures contract becomes more actively traded than the current one, we “roll over” to the 

next nearby contract. This rolling over always happens one or two trading days before the 

current nearby contract expires. We further exclude the trading days during the expiration 

weeks (with less than seven days to maturity) to avoid any calendar spread trades in the nearby 

contract and the next contract. The final sample period consists of 413 trading days. 

3.3 Variables 

                                                        
5 Following Aramian and Nordén (2021), we also classify trading firms as high‐frequency traders if they describe 
themselves as such on their websites. 
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MMI implies that the percentage bid‐ask spread, adjusted for bet volatility, is proportional to bet 

activity to the power of −1/3. In this section, we explain how we measure the bid‐ask spread, 

volatility, and volume that are relevant for our empirical investigations. Following the setting in 

Andersen et al. (2018), we measure all the variables in each interval for a given day. Specifically, 

the sample begins at time 0 and contains D trading days, each comprising T intraday intervals of 

length ∆𝑡 = 1/𝑇. Thus, the full sample includes the consecutive non‐overlapping intervals 𝜏 =

1, … , 𝐷 × 𝑇. To identify the specific trading day and the intraday period associated with a specific 

interval, we follow Andersen et al. (2018) and use the double‐index notation (𝑑, 𝑡), where 𝑑 ∈

𝐷 = {1, … , 𝐷} denotes the trading day, and 𝑡 ∈ 𝑇 = {1, … , 𝑇} is the intraday interval.  

We choose ∆𝑡 to be five‐minute intervals since only 0.26% of the intervals have a measured 

volatility equal to zero (no price changes), and thus, produce missing values of log volatility. 

Choosing, e.g., one‐minute intervals instead produces 9.76% missing values of log volatility.  

Quoted bid-ask spread and effective spread 

Our first measure of the relative bid‐ask spread 𝑅𝑆𝑃𝑅  in Eq. (2) is the quoted bid‐ask spread 

that we denote 𝑅𝑆𝑃𝑅 . We measure 𝑅𝑆𝑃𝑅  as the average five‐second quoted bid‐ask spread 

for each τ, or alternatively, for each five‐minute interval t and day d, according to:  

𝑅𝑆𝑃𝑅 = 𝑅𝑆𝑃𝑅 , =
𝑎𝑠𝑘 , , − 𝑏𝑖𝑑 , ,

60 × 𝑚𝑖𝑑 , ,  
 (16) 

where 𝑏𝑖𝑑 , ,  and 𝑎𝑠𝑘 , ,  are the best buy and sell prices, and 𝑚𝑖𝑑 , ,  is the corresponding 

midpoint of these prices, which is our proxy of the futures price 𝑃  in Eq. (2), prevailing at the 

end of the five‐second interval i, within the five‐minute interval t, on day d.  
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As our second measure of the relative bid‐ask spread, we obtain the effective bid‐ask spread, 

denoted 𝑅𝑆𝑃𝑅 , for each τ as:  

𝑅𝑆𝑃𝑅 = 𝑅𝑆𝑃𝑅 , =
2𝑞 , , (𝑃 , , − 𝑚𝑖𝑑 , , )

𝑆 , × 𝑚𝑖𝑑 , ,  

,

 (17) 

where 𝑃 , ,  is the sth trade price in the trade sequence 𝑠 = 1, … , 𝑆 , , 𝑚𝑖𝑑 , ,  is the midpoint 

price prevailing at the time of the trade, and 𝑞 , ,  is the trade side indicator, which is equal to +1 

for a buyer‐initiated trade and −1 for a seller‐initiated trade, following Lee and Ready (1991), 

for the sth trade, during the five‐minute interval t, on day d.  

Bet volatility and volatility multiplier 

We measure the return volatility from five‐second squared midpoint returns for each τ, or 

alternatively, for each five‐minute interval t on each day d, according to: 

𝜎 = 𝜎 , = ln (𝑚𝑖𝑑 , ,  ) − ln (𝑚𝑖𝑑 , ,  ) . (18) 

To estimate the bet volatility, we first need to estimate the volatility multiplier 𝜓 . In the first 

estimation setting, we allow the volatility multiplier to vary across trading days but to be 

constant within the days. Hence, for each trading day d, we estimate 𝜓  according to Eq. (15) 

based on futures trades and quotes using the decomposition technique from Hasbrouck (1991) 

described in Eq. (9) to (14). In the second setting, we let the volatility multiplier vary on an 

intraday basis, but to be constant across trading days. Thus, for each five‐minute interval t from 

9:05 AM to 05:20 PM, we estimate 𝜓  according to Eq. (15) based on futures trades and quotes 
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to decompose the variance into bet volatility and non‐bet volatility. We use five lags in the VAR 

model and truncate the VMA at thirty lags following Hasbrouck (1991).6  

Then, we follow Kyle and Obizhaeva (2016a) and Kyle et al. (2016), and obtain bet volatility as 

𝜎 = 𝜓 𝜎  in the daily aggregation setting, and as 𝜎 = 𝜓 𝜎  in the intraday aggregation setting. 

Bet volume, volume multiplier, and bet activity 

In the TRS data, we have information on the trading firm behind each entry with a buy/sell 

indicator. For each interval τ, we obtain the bet volume, 𝑉  or 𝑉 , , as the trading volume by 

brokerage firms. We also obtain the trading volume, 𝑉  or 𝑉 , , as the half of the total sum of 

volume from all trading firms recorded in TRS, for each interval. Thus, we first calculate the 

volume multiplier as 𝜁 = 2𝑉 /𝑉  following Kyle and Obizhaeva (2016a) and Kyle et al. (2016) 

for each interval τ. Then, we aggregate the volume multiplier in the daily setting to obtain 𝜁  by 

averaging across intraday periods on day d, and in the intraday setting to get 𝜁  by averaging 

across days in interval t. we  

Finally, obtain trading activity 𝑊  as 𝜎 𝑃 𝑉  for each τ, where 𝑃 𝑉  equals half of the total sum of 

dollar trading volume from all trading firms in the interval. We use both multipliers to get bet 

activity 𝑊  as 𝜎 𝑃 𝑉 = 𝜓 𝜎 𝑃 2𝑉 /𝜁 = 2𝜓 /𝜁 𝑊 , where 𝜓  and 𝜁  are either 𝜓  and 𝜁  in the 

daily setting or 𝜓  and 𝜁  in the intraday setting. 

3.4 Descriptive statistics 

                                                        
6 We also estimate the VAR and VMA system using varying numbers of lagged trades and quote changes. Our results 
are not sensitive to the choice of the number of lags. 
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Table 1 presents descriptive statistics for our measures of futures return volatility, trading 

volume, trading activity, and different measures of liquidity. Each mean statistic is obtained as 

an average across all five‐minute intervals during the sample period. The mean futures return 

volatility is 0.12 on an annual basis, and the mean double‐counted trading volume equals more 

than 2,000 contracts per five‐minute period. Double counting means that we measure volume 

from both the long and the short side of each futures trade to facilitate comparisons between bet 

and non‐bet volume in subsequent analyses. Our measure of futures trading activity, which 

equals the product of return volatility, futures price, and trading volume amounts to an average 

of more than SEK 2,600 per five‐minute period. In addition, a five‐minute interval contains an 

average of 116 trades with an average size of six contracts per trade. 

Insert Table 1 here 

The average futures depth at the best quotes on both sides of the limit order book equals 46 

contracts. Thus, the order book is liquid enough to accommodate an average trade of six 

contracts. Also, on average, the quoted futures bid‐ask spread is just above the minimum quoted 

spread level 0.25, which is implied by the minimum tick size restriction. Thus, most of the time, 

the tick size puts a binding restriction on the quoted bid‐ask spread. Relative to the midpoint of 

the bid and ask quotes, the quoted bid‐ask spread equals 1.8 basis points on average. Numbers 

for the effective bid‐ask spread are similar.  

Andersen et al. (2018) report that, during US trading hours, the E‐mini S&P 500 index futures is 

much more heavily traded, with an average one‐minute trading volume of almost 5,000 

contracts (not double counted), and more liquid, with an average depth of almost 1,000 
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contracts, than the OMXS 30 index futures. Both futures markets share the common feature of 

an average bid‐ask spread being very close to the respective minimum tick size boundary. 

4. Results 

This section presents our main results. First, we show statistics for our estimates of bet volatility, 

bet volume, the volatility multiplier, and the volume multiplier, and we illustrate how the 

variables evolve on both a daily and an intraday basis. We test whether the multipliers are 

correlated with other variables. Then, we turn to the main results from the regressions of quoted 

and effective bid‐ask spread and test the transaction costs principle of MMI. 

4.1 Bet volatility and volatility multiplier 

Table 2 reports descriptive statistics for the estimated bet volatility and volatility multiplier, 

obtained from the variance decompositions according to sections 2.3 and 3.3, for both the daily 

(Panel A) and the intraday (Panel B) frequency. The mean bet volatility is 0.115 across days, and 

0.114 across intraday intervals, on an annual basis, and the corresponding volatility multiplier 

is 0.861 and 0.836, respectively. This implies that bets generate 86% and 84% of the return 

volatility on daily basis and during the five‐minute intervals, respectively. We note that the 

standard deviation of the volatility multiplier is about twice as large when estimated across days 

than intraday. Across days, the volatility multiplier fluctuates in the range between 0.64 and 

0.95, while the corresponding range, 0.75 to 0.91, is tighter on an intraday basis.  

Insert Table 2 here 

Figure 1 plots the daily time series of bet volatility, futures return volatility, and the volatility 

multiplier. Evidently, bet volatility and return volatility follow each other closely over time, and 



24 
 

both variables are much higher during the beginning of the sample than towards the end. 

Nevertheless, the volatility multiplier appears to oscillate around its daily mean 0.86 during the 

entire sample period.7 

Insert Figure 1 here 

In Figure 2, we illustrate the intraday time series of each variable bet volatility, return volatility, 

and the volatility multiplier. There is a clear commonality in the intraday variation in both the 

bet volatility and the return volatility in that they are at their respective highest level in the 

morning and diminish throughout the trading day with common jumps at 2:30 PM, when the US 

equity markets open, and at 3:30 PM, when several key news announcements occur. The 

volatility multiplier seems to fluctuate around the intraday mean 0.84 throughout the day, with, 

perhaps, more variability in the afternoon than in the morning.  

Insert Figure 2 here 

4.2 Bet volume and volume multiplier 

We estimate bet volume as the trading volume by brokerage firms that trade on behalf of clients. 

Table 2 reports descriptive statistics for the estimated bet volume and volume multiplier for 

both the daily (Panel A) and the intraday (Panel B) frequency.  

The average bet volume is 1,367 futures contracts, and the corresponding average bet multiplier 

is 1.68, both per day and per five‐minute interval. From MMI, if the volume multiplier equals one, 

there are no intermediaries, and all trades are executed directly between the betting sides. If the 

                                                        
7 We do not conduct formal tests of whether the multipliers are constants. Instead, we perform subsequent bid‐ask 
spread regressions under different assumptions about fluctuations of the multipliers. That way, we can evaluate 
how important the assumptions of constant multipliers are directly in the regression framework. 
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multiplier equals two, an intermediary is executing each bet. The value 1.68 implies that 

intermediaries are needed for some bets, but not for all. Sometimes, the betting sides manage to 

find each other directly in the futures limit order book.  

Average bet volume is highly variable and ranges from a minimum of 312 contracts to a 

maximum of 3,568 contracts daily, and between from a minimum of 738 contracts and 4,144 

contracts intraday. As for the volatility multiplier, the volume multiplier has a higher variability 

across days than across intraday intervals. The volume multiplier ranges between 1.03 and 2.35 

across days, and between 1.43 and 1.79 across intraday intervals. 

Insert Figure 3 here 

Figure 3 shows the average bet volume, the average non‐bet volume, and the average volume 

multiplier for each trading day in the sample. Both bet volume and non‐bet volume (by 

intermediaries) exhibit large variability across trading days. The daily volume multiplier 

fluctuates around the average level 1.68. 

We plot the intraday average bet volume and non‐bet volume in Figure 4. Bet volume shows a 

“U‐shaped” intraday pattern, with a relatively higher volume in the morning and late afternoon 

than during the midday. Non‐bet volume has a similar “U‐shaped” pattern, but less accentuated 

towards the end of the trading day. Interestingly, bet volume increases sharply and reaches 

levels of about twice as large as non‐bet volume in the last half hour of trading. As a result, the 

volume multiplier diminishes towards the end of the trading day. 

Insert Figure 4 here 

4.3 Correlation analysis 
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Table 3 presents pair‐wise correlations for our measures of the volatility multiplier, volume 

multiplier, return volatility, and dollar trading volume. We obtain the correlations for both daily 

(Panel A) and intraday observations (Panel B). The volatility multiplier is significantly negatively 

correlated with return volatility (at the 1% level) daily, but not intraday, and with dollar volume 

(at the 10% level) both daily and intraday. Hence, on days with low volatility and/or low dollar 

volume, bet volatility makes up a larger proportion of return volatility.  

Insert Table 3 here 

The volume multiplier is significantly positively correlated with dollar volume (at the 1% level) 

and return volatility (at the 1% level) daily. One interpretation of these daily positive 

correlations is that on days with high return volatility and dollar volume, bets generate more 

trades among intermediaries than on days when volatility and volume are low. However, 

intraday, the correlation between the volume multiplier and volume is significantly negative (at 

the 1% level). This stems from the observation in Figure 4 that the volume multiplier is relatively 

constant, while volume is distinctly U‐shaped, throughout the trading day. Also, the two 

multipliers are significantly positively correlated both daily (at the 5% level) and intraday (at 

the 1% level).  

4.4 Main regression results of quoted and effective spread 

We now turn to the regression analysis that encompasses tests of MMI. We run two sets of 

regressions according to Eq. (5), in which we aggregate the five‐minute observations during 

either days across intraday time periods, or during intraday time periods across days. In the 

following, we first present results from the daily regressions and then from the intraday ones. 

Daily regression results 
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Table 4 presents the empirical results from the daily time series regressions with the following 

aggregated version of Eq. (5): 𝑟𝑠𝑝𝑟 − 0.5𝑠 = 𝑘 + 𝛽𝑤 + 𝜀 . The estimation is done by 

Ordinary Least Squares (OLS) with Newey and West (1987) standard errors with ten lags. The 

first line in Table 4 shows the results using the natural logarithm of the average percentage 

quoted bid‐ask spread, as 𝑟𝑠𝑝𝑟 . The main parameter of interest 𝛽 equals −0.335, which is very 

close to −1/3 , the value according to MMI, and we cannot reject the null hypothesis that 𝛽 =

−1/3 at any conventional significance level. The second line in Table 4 reports the results using 

the effective spread as a measure of transaction cost, with an estimated 𝛽 of −0.347 which is still 

quite close to, and not significantly different from, −1/3. The results are very similar to the ones 

for the quoted bid‐ask spread. Thus, we cannot reject MMI even at the 10% significance level 

based on the daily time series regression analysis. 

Insert Table 4 here 

Intraday regression results 

Next, we aggregate the five‐minute observations during intraday time periods across days and 

estimate intraday regressions using the following aggregated version of Eq. (5): 𝑟𝑠𝑝𝑟 − 0.5𝑠 =

𝑘 + 𝛽𝑤 + 𝜀 . The estimation is performed by OLS with Newey and West (1987) standard 

errors with six lags. The results are presented in Table 5, where the first line holds the results 

for the quoted bid‐ask spread whereas the second line is for the effective spread. The main 

parameter of interest 𝛽  is −0.301 (−0.285) for the quoted spread (effective spread) which 

deviates more from −1/3 than the 𝛽 in the daily regressions. Nevertheless, we cannot reject the 

null hypothesis that 𝛽 = −1/3 at any conventional significance level. Thus, we fail to reject MMI 

even at the 10% significance level based on either the daily or the intraday regression analysis. 
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Insert Table 5 here 

Although we cannot reject MMI based on the results in Table 4 and Table 5, we do observe 

deviations of estimated 𝛽s from −1/3, especially in the intraday setting. In addition, it is well 

documented that liquidity measured as the quoted spread, or the effective spread, has an 

intraday pattern.8 Thus, we zoom in on how transaction costs, bet volatility, and bet activity are 

related during the continuous trading hours and investigate how large the actual deviations 

between the predicted and observed quoted spread (effective spread) are. 

Given the MMI specification in Eq. (5), we express the implied average spread as a function of 

the expected average bet activity and bet volatility and then back out the implied average spread 

according to Eq. (6) using the generalized method of moments. Figure 5 depicts the actual 

average quoted futures bid‐ask spread (bold line) and the implied average quoted bid‐ask 

spread (dotted line) for each five‐minute interval from 9:05 AM to 5:20 PM for all trading days 

in the sample. Both the actual and the implied quoted bid‐ask spread are relatively higher in the 

beginning of the trading day than towards the end. However, the variation in the implied spread 

is somewhat larger than in the actual spread. Towards the end of the trading day, at about 3:30 

PM, the implied spread starts deviate substantially from the actual spread. In Figure 5, the 

implied spread drops below 0.2 after 5:00 PM while the actual spread remains above 0.25, which 

is the minimum level for the quoted spread given the tick size restriction.  

Figure 6 plots the actual average effective spread and the implied effective spread for each five‐

minute interval from 9:05 AM to 5:20 PM for all trading days in the sample, which tells us the 

same story as for the average quoted spread. Clearly, the current tick size of SEK 0.25 for the 

                                                        
8 See, among others, the early work by Chan, Christie and Schultz (1995) and McInish and Wood (1992) for evidence 
from the equity market, and Xu (2014) for evidence from the index futures market. 
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OMXS 30 index futures is too large according to MMI. With the sizable increase in bet activity 

towards the end of the trading day, the spread should decrease accordingly. However, the actual 

spread is binding at the minimum tick of SEK 0.25. 

Insert Figure 5 and Figure 6 here 

4.5 Robustness check and ITI regression results 

Kyle and Obizhaeva (2016a) note that the assumptions that the volume and volatility multiplier 

are constants are important for testing the predictions of MMI empirically, and that these 

assumptions should be tested empirically. One way to test whether the two multipliers are 

constants is the correlation analysis as in section 4.3 suggested by Kyle and Obizhaeva (2016a), 

where we see some evidence showing that the volume and volatility multipliers are correlated 

with volume and volatility. Here, we adopt a more practical approach, by running a series of 

regressions for testing MMI under different assumptions for the two multipliers. 

In the main regression analysis presented in section 4.4, we allow the volatility multiplier and 

the volume multiplier to vary either across trading days, but to be constant within days, or to 

vary on an intraday basis, but to be constant across days. We conclude that we cannot reject MMI 

under either the daily or the intraday setting. In this section, we check if MMI still holds with 

more restrictive assumptions for the multipliers. In the spirit of section 4.4, we first present 

results from the daily regressions and then from the intraday ones. 

Daily regressions with restrictive assumptions for the multipliers 

In the daily regression setting, we allow the volatility multiplier and volume multiplier to vary 

across trading days but to be constant within the days. Here, we first assume that the two 
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multipliers are constants (𝜓 and 𝜁), and then we estimate these two constants based on the RTH 

and TRS data for the whole sample period. More specifically, we obtain 𝜓 by estimating a new 

VAR and VMA model using all trades and quotes data in the sample, and 𝜁 by taking the average 

volume multipliers across all 5‐min intervals. The estimated 𝜓 and 𝜁 are 0.829 and 1.677, which 

means that bet volatility accounts for 82.9% of return volatility, and that one unit of bet volume 

generates 1.677 units of trading volume. 

We use the two constants to transform 𝑠  into 𝑠  and 𝑤  into 𝑤 , and we estimate daily time 

series regressions with the following aggregated version of Eq. (5): 𝑟𝑠𝑝𝑟 − 0.5𝑠 = 𝑘 +

𝛽𝑤 + 𝜀 . Panel A of Table 6 holds the results. The main parameter of interest 𝛽 is still very 

close to −1/3 , the value according to MMI, and we cannot reject the null hypothesis that 𝛽 =

−1/3 at any conventional significance level for either the quoted bid‐ask spread or the effective 

spread. We also set 𝜓 = 1 and 𝜁 = 2, which means that 𝑠 = 𝑠  and 𝑤 = 𝑤 , and re‐estimate 

the regressions. Panel B of Table 6 shows the results. The estimated 𝛽 parameters are identical 

to the ones in Panel A. The only difference between MMI with constant multipliers and ITI is that 

the constant terms are different. 

Insert Table 6 here 

Intraday regressions with restrictive assumptions for the multipliers  

In the intraday regression setting, we allow the volatility multiplier and volume multiplier to 

vary on an intraday five‐minute basis, but to be constant across trading days. Here, we also allow 

the multipliers to vary intraday, every ten minutes and every hour. In addition, we assume 

constant multipliers (𝜓 = 0.829  and 𝜁 = 1.667), and that the multipliers take on the values 

according to ITI (𝜓 = 1 and 𝜁 = 2). Thus, for each ten‐minute (one hour) interval from 9:05 AM 
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to 05:20 PM, we estimate 𝜓  based on futures trades and quotes, and we obtain 𝜁  as the average 

across days for each ten‐minute (one hour) interval.  

We estimate intraday regressions using the following aggregated version of Eq. (5): 𝑟𝑠𝑝𝑟 −

0.5𝑠 = 𝑘 + 𝛽𝑤 + 𝜀 , where the ten‐minute, one hour, or constant multipliers are used to 

calculate 𝑠  and 𝑤 . The regression results are presented in Table 7, where Panel A holds the 

results for the quoted bid‐ask spread and Panel B for the effective spread. Irrespective of the 

specification, we cannot reject the null hypothesis that 𝛽 = −1/3  at any conventional 

significance level. Thus, we fail to reject MMI and ITI even at the 10% significance level. 

Insert Table 7 here 

We find some evidence that the volatility and volume multipliers vary across trading days and 

intraday empirically. However, these variations do not disrupt the MMI. We find that the futures 

bid‐ask spread lines up with bet volume and bet volatility as predicted by MMI, and that the 

relationship is not sensitive to whether we allow the multipliers to vary or if we restrict them to 

be constant. Our findings imply that ITI works well and is indistinguishable from MMI in our 

empirical setting. Apparently, bet volatility is the most important part of return volatility, so that 

volatility caused by intermediaries’ quote updates does not affect the MMI relation. Moreover, 

bet volume is the driving force behind the development of trading volume, and intermediation 

by high frequency traders does not interfere with the MMI relation. 

5. Concluding remarks 

Kyle and Obizhaeva (2016a) propose the market microstructure invariance (MMI) theory. It  

stipulates two invariance principles, i.e., the distributions of risk transferred by bets and the 

transactions costs of executing bets, are constant over business time and across assets. Given the 
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importance of the invariance theory, many studies test it empirically in different markets 

focusing on the invariance of the distributions of risk transferred by bets. However, bets ‐ 

transactions intended to produce idiosyncratic gains based on investors’ beliefs ‐ are difficult to 

distill from trades, and we propose a solution to this difficulty.  

Our main contribution to the existing literature is to test the invariance of transaction cost and 

to approximate bet volume as the trading volume of brokerage firms that trade on behalf of their 

clients and bet volatility as the trade‐related component of return volatility. Our regulatory data 

on futures transactions with trading firm IDs allow us to separate proprietary trading by high‐

frequency trading (HFT) firms from client‐induced trading, and we assume that the latter 

constitutes bet volume.  

MMI stipulates a specific relationship between the bid‐ask spread, bet volatility, and bet volume. 

Our empirical analysis finds that this relationship holds up well in the index futures market.  
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Figure 1: Daily bet volatility.  

The figure shows the average bet volatility, the average futures return volatility, and the average 

volatility multiplier (right scale), for each trading day in the sample.  
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Figure 2: Intraday bet volatility.  

The figure shows the average bet volatility, the average futures return volatility, and the average 

volatility multiplier (right scale), for each five‐minute interval across all trading days in the 

sample.  
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Figure 3: Daily bet volume.  

The figure shows the average bet volume, the average non‐bet volume, and the average volume 

multiplier (right scale), for each trading day in the sample. 
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Figure 4: Intraday bet volume.  

The figure shows the average bet volume, the average non‐bet volume, and the average volume 

multiplier (right scale), for each five‐minute interval across all trading days in the sample. 
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Figure 5: Intraday implied quoted bid‐ask spread.  

The figure shows the actual average quoted futures bid‐ask spread and the implied average 

quoted bid‐ask spread for each five‐minute interval for all trading days in the sample. 
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Figure 6: Intraday implied effective spread.  

The figure shows the actual average effective futures spread and the implied average effective 

spread for each five‐minute interval for all trading days in the sample. 
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Table 1: Descriptive statistics  

 Mean Min Max St. Dev. 

Volatility 0.125 0.000 0.826 0.142 
Volume 2,137 21 59,624 2,145 
Trading activity 2,694 0 106,434 4,164 
No. of Trades 117 2 1,187 84 
Trade size 6 1 26 2 
Futures price 1,493 1,238 1,679 115 
Depth 46 10 179 14 
Absolute quoted spread 0.269 0.250 0.536 0.020 
Relative quoted spread 1.820 1.489 4.032 0.236 
Absolute effective spread 0.263 0.250 0.557 0.018 
Relative effective spread 1.775 1.489 3.976 0.218 

 
The table presents descriptive statistics for the nearby futures contract, which is defined as the most actively traded 
regular futures contract on a specific day. The data include 413 days and 99 five‐minute intervals per day, from 9:05 
to 17:20. Half trading days are excluded. Contract maturity spans from 36 days to 7 days before the expiration day. 
Volatility is the realized volatility, calculated from the sum of five‐second squared midpoint returns during each 
five‐minute interval, averaged across all observations, and reported in annualized terms. Volume is the number of 
contracts traded per five‐minute interval (double counted). Trading activity equals the product of volatility, futures 
price, and volume. Futures price is the average midpoint between the best ask price and the best bid price, observed 
every five seconds, per five‐minute interval. No. of Trades is the number of trades per five‐minute interval. Trade 
Size equals Volume divided by No. of Trades per five‐minute interval. Depth is the average number of futures 
contracts at the best bid and ask observed every five seconds, per five‐minute interval. Absolute quoted spread is 
the average quoted bid‐ask spread, i.e., best ask price minus best bid price, observed every five seconds, per five‐
minute interval. Relative quoted spread is the absolute quoted spread divided by the midpoint between the best ask 
price and the best bid price, observed every five seconds, per five‐minute interval, reported in basis points. Absolute 
effective spread is twice the average signed difference between trade price and the midpoint between the best ask 
price and the best bid price at the time of the trade, per five‐minute interval. Relative effective spread is the absolute 
effective spread divided by the midpoint between the best ask price and the best bid price at the time of the trade, 
per five‐minute interval, reported in basis points. 
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Table 2: Bet volatility, bet volume, and bet activity: Daily and intraday averages 

 Panel A: Daily  Panel B: Intraday 

 Mean Min Max St. Dev.  Mean Min Max St. Dev. 

Volatility 0.125 0.053 0.318 0.117  0.125 0.093 0.245 0.088 
Bet volatility 0.115 0.042 0.291 0.106  0.114 0.085 0.224 0.081 
Volatility multiplier 0.861 0.641 0.952 0.049  0.836 0.752 0.905 0.024 
Volume 2,137 348 5,816 852  2,137 1,191 6,893 983 
Bet volume 1,367 312 3,568 552  1,367 738 4144 639 
Volume multiplier 1.677 1.028 2.347 0.182  1.677 1.428 1.794 0.062 
Trading activity 2,694 336 12,900 1,969  2,694 1,086 15,439 1,975 
Bet activity 2,696 409 11,597 1,728  2,692 999 15,233 1,969 

 
The table presents descriptive statistics for measures of average bet volatility, bet volume, and bet activity across 
99 five‐minute intervals for each trading day (Panel A), and across 413 trading days for each five‐minute interval 
(Panel B). The variables volatility, volume, futures price, and trading activity are described in Table 1. Bet volatility 
is the part of volatility driven by bet activity. Volatility multiplier measures the fraction of bet volatility to volatility. 
Bet volume is the average five‐minute trading volume by brokerage firms that trade on behalf of clients for each 
trading day. Volume multiplier equals the double counted volume divided by the bet volume. Bet activity equals the 
product of bet volatility, futures price, and bet volume.  
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Table 3: Correlation analysis 

 Panel A: Daily  Panel B: Intraday 

 
Volatility 
multiplier 

Volume 
multiplier Volatility 

 Volatility 
multiplier 

Volume 
multiplier Volatility 

Volume multiplier 0.1076**    0.2891***   
Volatility ‐0.2425*** 0.5567***   -0.0583 0.0930  
Dollar volume ‐0.0885* 0.1386*** 0.5392***  ‐0.1757* ‐0.3299*** 0.8334*** 

 
The table presents pair‐wise correlations for measures of volatility multiplier, volume multiplier, volatility, and 
dollar volume based on daily observations on the 413 trading days (Panel A) and intraday observations for the 99 
five‐minute intervals (Panel B). Dollar volume equals the product of futures price and total volume. Other variables 
are described in Table 1. *, ** and *** indicate significance at the 10%, 5% and 1% levels. 
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Table 4: Daily regression results  

 N. Obs k 𝛽 se(k) se(𝛽) 𝑅  t (𝛽 = −1/3) p‐value 

Quoted spread 413 1.125 ‐0.335 0.139 0.021 0.645 ‐0.079 0.937 
Effective spread 413 1.183 ‐0.347 0.134 0.020 0.672 ‐1.135 0.256 

 
The table presents results from daily regressions according to the following version of Eq. (5): 𝑟𝑠𝑝𝑟 − 0.5𝑠 =
𝑘 + 𝛽𝑤 + 𝜀 ,  where 𝑟𝑠𝑝𝑟  is the natural logarithm of the average percentage quoted bid‐ask spread, or the 
average percentage effective spread, on day 𝑑 , 𝑠  denotes the natural logarithm of the average percentage bet 
variance per day 𝑑, 𝑤  is the natural logarithm of the bet activity per day 𝑑, 𝑘  is a constant, and 𝜀  is a residual 
with zero mean. Both spread measures are defined in Table 1. The data include 413 trading days, and each daily 
variable observation is obtained as an average across 99 five‐minute intervals per day, from 9:05 to 17:20. Half 
trading days are excluded. Regressions are performed for the nearby regular futures contract using days in the 
sample with 7‐36 days until the expiration day. The nearby contract is defined as the most actively traded regular 
futures contract on a specific day. Standard errors (se(c) and se(𝛽)) are corrected for heteroskedasticity and 
autocorrelation in the residuals (10 lags) according to Newey and West (1987). 
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Table 5: Intraday regression results  

 N. Obs k 𝛽 se(k) se(𝛽) 𝑅  t (𝛽 = −1/3) p‐value 

Quoted spread 99 0.921 ‐0.301 0.202 0.032 0.871 1.010 0.312 
Effective spread 99 0.791 ‐0.285 0.202 0.033 0.846 1.465 0.143 

 
The table presents results from intraday regressions according to the following version of Eq. (5): 𝑟𝑠𝑝𝑟 − 0.5𝑠 =
𝑘 + 𝛽𝑤 + 𝜀 ,  where 𝑟𝑠𝑝𝑟  is the natural logarithm of the average percentage quoted bid‐ask spread, or the 
average percentage effective spread, per intraday interval 𝑡 , 𝑠  denotes the natural logarithm of the average 
percentage bet variance per intraday interval 𝑡, 𝑤  is the natural logarithm of the bet activity per interval 𝑡, 𝑘  is a 
constant, and 𝜀  is a residual with zero mean. Both spread measures are defined in Table 1. The data include 99 
five‐minute intervals per day, from 9:05 to 17:20, and each intraday variable observation is obtained as an average 
across 413 trading days. Half trading days are excluded. Regressions are performed for the nearby regular futures 
contract using days in the sample with 7‐36 days until the expiration day. The nearby contract is defined as the most 
actively traded regular futures contract on a specific day. Standard errors (se(c) and se(𝛽)) are corrected for 
heteroskedasticity and autocorrelation in the residuals (6 lags) according to Newey and West (1987). 
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Table 6: Daily regression results for constant multipliers 

 N. Obs k 𝛽 se(k) se(𝛽) 𝑅  t (𝛽 = −1/3) p‐value 

Panel A: MMI with constant multipliers 
Quoted spread 413 1.192 ‐0.342 0.121 0.018 0.768 ‐0.471 0.638 
Effective spread 413 1.235 ‐0.352 0.119 0.018 0.781 ‐1.037 0.300 
 
Panel B: ITI with constant multipliers 
Quoted spread 413 1.008 ‐0.342 0.121 0.018 0.768 ‐0.471 0.638 
Effective spread 413 1.052 ‐0.352 0.120 0.018 0.781 ‐1.037 0.300 

 
The table presents results from daily regressions as in Table 4. 𝑠 = 2log𝜓 + 𝑠 , where 𝑠  equals the natural 
logarithm of the average percentage return variance per day 𝑑, and 𝜓  is the volatility multiplier on day d. 𝑤 =
log2 + log𝜓 − log𝜁 + 𝑤 , where 𝑤  the natural logarithm of the trading activity per day 𝑑, and 𝜁  is the volume 
multiplier on day d. Panel A holds results for constant multipliers, estimated over the entire sample period, and 
Panel B contains results for specific assumptions of constant multipliers: 𝜓 = 1, and 𝜁 = 2. Spread measures are 
defined in Table 1. Data and sample description is in Table 4.  
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Table 7: Intraday regression results for different multiplier aggregations 

 N. Obs k 𝛽 se(k) se(𝛽) 𝑅  t (𝛽 = −1/3) p‐value 

Panel A: Quoted Spread 
MMI (5 min) 99 0.921 ‐0.301 0.202 0.032 0.871 1.010 0.312 
MMI (10 min) 99 0.937 ‐0.304 0.196 0.032 0.882 0.917 0.359 
MMI (Hourly) 99 0.960 ‐0.307 0.189 0.031 0.894 0.849 0.396 
MMI (Constant) 99 0.994 ‐0.312 0.152 0.025 0.925 0.853 0.394 
ITI 99 0.810 ‐0.312 0.152 0.025 0.925 0.853 0.394 
 
Panel B: Effective Spread 
MMI (5 min) 99 0.791 ‐0.285 0.202 0.033 0.846 1.465 0.312 
MMI (10 min) 99 0.808 ‐0.288 0.196 0.032 0.859 1.417 0.359 
MMI (Hourly) 99 0.831 ‐0.291 0.215 0.031 0.872 1.366 0.396 
MMI (Constant) 99 0.865 ‐0.296 0.153 0.025 0.906 1.493 0.394 
ITI 99 0.681 ‐0.296 0.153 0.025 0.906 1.493 0.394 

 
The table presents results from intraday regressions as in Table 5. 𝑠 = 2log𝜓 + 𝑠 , where 𝑠  equals the natural 
logarithm of the average percentage return variance per intraday period 𝑡, and 𝜓  is the corresponding volatility 
multiplier. 𝑤 = log2 + log𝜓 − log𝜁 + 𝑤 , where 𝑤  the natural logarithm of the trading activity per intraday 
period 𝑡, and 𝜁  is the corresponding. Panel A holds results for the average percentage quoted bid‐ask spread, and 
Panel B contains results for the average percentage effective spread. ITI refers to specific assumptions of constant 
multipliers: 𝜓 = 1, and 𝜁 = 2. Spread measures are defined in Table 1. Data and sample description is in Table 5.  
 


