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I.1. The Phenomenon explained 

 
For many reasons, expected returns (henceforth, ER) on assets change over time.  For 
instance, if bonds have risk premia related positively to term, their ER decline as 
they mature.  Equities are also subject to changing ER because lines of business 
evolve, firms issue more debt or retire some, they become larger, more mature and 
have longer and more familiar records of performance; there are probably many other 
driving reasons for equities. 
 
One of the fundamental tenets of efficient markets is that returns should not be very 
serially dependent, i.e., autocorrelations of returns (AR, hereafter) should be rather 
small and insignificant.  But we point out in here that this tenet can be empirically 
contradicted when returns are lumped together across regimes with different ER.  
Within each regime, when the ER is relatively constant, return AR is close to zero, 
yet combining different regimes and naïvely computing an unconditional AR will 
sometimes find it to be positive.  The effect, however, is spurious in that no profit can 
be earned on the seemingly non-zero serial correlation.1 
 
To give a simple example, consider a stock that has no debt for a given decade and 
then borrows large amounts during the next decade.2  Its debt to total asset ratio is, 
say, 50%, in the second decade, so it is quite a bit riskier, and its market beta is larger.  
Just for illustration, assume its beta is 1.0 in the first decade and then, using a simple 
Modigliani/Miller adjustment with no taxes, is 2.0 in the second decade.  Suppose its 
ER in the first decade is the broad market’s average, say six percent per annum or 
0.5% per month.  Assuming that the riskless rate is zero for ease of illustration, its 
ER in the second decade is twice the market’s, or 1% per month.  
 

 
1  We present how our paper differs from the studies in this branch in Section I.2. 
2  This is not unusual among US industrial firms; see DeAngelo and Roll (2015). 
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However, the observed monthly return on a stock is its expected plus its unexpected 
return; if the latter is relatively large, any spurious AR might not be so obvious.  To 
illustrate, the three panels of Figure 1 show simulated monthly returns for two 
decades that differ by doubling of the ER in the second decade, as described in the 
previous paragraph but with different levels of unexpected return volatility in the 
three panels.   
 
Panel A illustrates the scatter diagram of returns in adjacent months when the noise 
is very small, 0.1% per month.  The problem is readily apparent.  There are two 
distinct (and obvious) clusters centered on means of .5% and 1%.  The return AR 
within the first (second) decade is -0.0283 and 0.00820; neither is statistically 
significant.  In contrast, the unconditional AR with all observations lumped into a 
single calculation is 0.864 and is highly significant.  (The solid plotted line depicts the 
unconditional OLS regression of returns on first-order lagged returns while the two 
dashed lines depict the conditional regressions.) 
 
Although the simple illustration in Figure 1, Panel A, deals with first-order AR, it 
should be obvious that second- and higher-order AR will also be spuriously 
overstated.  This will continue until the AR lag relates a return in the second decade 
to a return in the first, i.e., it relates t to t-s where t has one ER and t-s has the other.  
For AR orders greater than this point, the bias will be negative, not positive. 
  
For a slightly larger amount of volatility, a monthly standard deviation of .2%, the 
scatter is considerably less obvious.  This is shown in Panel B which is identical in 
every respect to Panel A except for the variance.  Even the underlying random 
numbers are identical. 
 
An astute observer might notice some clustering in Panel B, but it is certainly harder 
to discern.  The first-order return AR are exactly the same within each constant mean 
regime (indeed, it’s easy to see that AR is unaffected by a constant ER whatever its 
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value.)  However, the unconditional AR has fallen from 0.864 to 0.621.  This might be 
misleading to an observer who does not notice the clustering and is eager to exploit a 
seeming profit. 

 
Going further into a more realistic situation with abundant volatility, an individual 
stock’s return standard deviation is about 30% per annum, or, with no serial 
correlation, about 9% per month, which is much higher than the volatilities in Panels 
A and B of Figure 1.  Indeed, as Panel C below shows, it is really impossible to discern 
any clustering with such a level of volatility; the unconditional AR has fallen to -
0.00656.3 
 
Yet the clustering is still there.  The underlying data are identical except for the 
volatility. The ER are still 0.5% and 1%, respectively in the two decades, but the noise 
is so overwhelming that the clustering is completely hidden.  Of course, discernment 
would become more possible with a larger sample, but discovery can be frustratingly 
futile with even decades-long samples of monthly observations. 
 
The simple examples in Figure 1 are undoubtedly too simple.  There is little reason 
why a firm should have a constant ER in one decade and another constant in a second 
decade.  Indeed, changes in ER must evolve for some firms at a rather steady pace 
while those of other firms are sudden (such as when the firm issues substantially 
more debt), which could occur anywhere in the record of observations.  In addition to 
the endemic volatility of unexpected returns, such diverse experiences of various 
firms seem likely to render detection all that more difficult. 
 
We should also mention that the phenomenon under study in this paper affords a 
new method for detecting changes in ER.  If markets are efficient, serial correlation 

 
3 The solid and dashed regression lines in Panel C cannot be distinguished from the horizontal axis. 
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should be small and insignificant.  Consequently, under the assumption of market 
efficiency, return AR is intrinsic evidence that ER has changed during the sample.  
 
Note that the argument that variations in ER can influence AR is not new, as we see 
in the next section.  What is new in this paper is the observation that it can create 
spurious AR, with a bias that is generally positive (assuming, as we show, that regime 

shifts in ER are infrequent).  We provide analytical verification of this observation, 
and, under the null of efficient markets, investigate whether the data provide 
evidence in favor of the existence of spurious components to AR.   
 
Our second contribution in this paper is to link AR to shifts in ex ante measures of 
ER, obtained not only from realized returns, but also from options markets, analysts’ 
price targets, and a standard factor model.  We are not aware of earlier attempts to 
measure spurious AR using actual ex ante metrics for ER. 
 
I.2 Literature review 

 

The main point of this paper is that changing ER can induce spurious auto-
correlations (AR), which is distinct from a spurious AR due to microstructure biases.  
We review the main studies on AR within this section. 
 

Examining autocorrelation in portfolios, Fama and French (1988), Ball and Kothari 
(1989), and Poterba and Summers (1988) document positive AR over short horizons 
and negative AR over long horizon. The last study finds this evidence in both the US 
and 17 international stock indexes. Richardson and Stock (1989) stipulate that the 
joint testing of the hypothesis that portfolio autocorrelations at various lags jointly 
equal zero is hampered when using long-horizon data.  This is due to the paucity of 
truly independent observations. 
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The evidence and explanation of the AR of individual stock returns, which is the focus 
of this study, is different from those of portfolio returns. While daily returns of market 
indices exhibit pronounced positive AR, individual stocks exhibit on average only 
slightly positive first-order AR. Fama (1965, 1976), French and Roll (1986), and Lo 
and MacKinlay (1988,1990) find that short-horizon individual security returns tend 
to be positively autocorrelated with no empirical evidence of significant AR for higher 
lags. They also show the returns of many securities are negatively autocorrelated, 
but larger firms’ stocks tend to exhibit weak positive AR (see Chan, 1993; Sias and 
Starks, 1997; Chordia, Roll, and Subrahmanyam 2005). French and Roll (1986) show 
that the AR(1) of the returns of the largest three equities of NYSE and Amex stocks 
are positive. Atchison et al (1987) report average AR close to zero.  
 
Outside the US, Safvenblad (2000) examines the AR of individual stocks traded on 
the Stockholm Stock Exchange (SSE) and finds a positive AR on average with larger 
firms exhibiting a higher AR. In less liquid markets, positive return AR has been 
observed in several markets such as Austria (Huber, 1997), Finland (Berglund and 
Liljeblom, 1988), Israel (Ronen, 1998), and Malaysia and Singapore (Laurence, 1986).  
 
 
Autocorrelation can vary with the length of time horizon. The literature has shown 
the time-series of short-horizon returns of individual stocks and portfolios reveal 
intriguing properties. Campbell (1987), French and Roll (1986), Keim and Stambaugh 
(1986), Conrad and Kaul (1988,1989), Lo and MacKinlay (1988) and Mech (1993) 
show that weekly and monthly portfolios returns are significantly and positively 
autocorrelated and that a positive AR is inversely related to firm size.  
 
The underlying causes of a short-term AR could be different from those inducing a 
long-term AR. Ball and Kothari (1989) argue that trading frictions explain short-term 
AR. They argue that short intervals are characterized by noise that masks the impact 
of risk shifts and nonstationary ER. Studying daily returns of stocks, Brown, Harlow, 
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and Tinic (1988) argue that short-term negative serial correlation is caused by bad 
information whose effects are reversed in prices.  Campbell et al. (1993) postulate 
that, if the main motive for trading is informationless hedging, then extreme short-
term stock returns, positive or negative, will tend to be reversed when they are 
associated with large trading volume. 
 
Over longer intervals, Fama and French (1988), French, Schwert, and Stambaugh 
(1988), and Poterba and Summers (1988) present a simple model in which aggregate 
returns show negative serial correlation. The model assumes that the aggregated ER 
is autocorrelated but mean-reverting and that revisions in these returns are 
independent of revisions in aggregate expected future dividends. Fama and French 
(1988) and Poterba and Summers (1988) argue AR is weak for the daily and weekly 
holding periods but stronger for long-horizon return. A large negative AR for return 
horizons beyond a year suggests that predictable price variation due to mean 
reversion accounts for large fractions of 3-5-year return variances. Fama and French 
(1988) posit a mean reverting process for ER. They argue that expected returns are 
positively correlated in the short term but mean revert in the long run, thus 
generating negative serial correlation over long horizons. Their paper is different 
from ours in two ways.  First, we do not posit any particular process for ER; i.e., any 
change in ER will suffice.  Second, they do not remark that changes in ER produce 
positive ARs over short horizons. In Section I.5, we show algebraically why this 
happens. Third, a predictable process for ER allows for profit enhancement by astute 
longer-term trading, while we argue that no profit is possible relative to the 
conditional ER in each period.   Ball and Kothari (1989) provide supporting evidence 
of negative serial correlation over five years and argue the changing risks should be 
more apparent at longer horizons. 
 
Using weekly returns of size-based portfolios over the 1962-85 period, Conrad and 
Kaul (1988) characterize the time pattern of ER by a stationary first-order 
autoregressive process. They document strong and positive first-order AR for all 
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portfolios and even second-order AR for the smaller stock portfolios.  They dismiss 
microstructure as an underlying cause. However, they do not mention (1) that non-
stationary ER alone is sufficient to produce the positive AR, or (2) that the observed 
positive AR is spurious in the sense that it does not provide a profit opportunity.   In 
short, they present empirical evidence that ER is non-constant and that AR is positive 
but they do not show that the former is the cause and the latter is the effect.  
 
Conrad and Kaul (1989) extend Conrad and Kaul (1988) by modelling the monthly 
ER as a decaying function of the weekly ER. They show the mean reversion in the 
shorter-horizon (weekly) ER explains a significant proportion of the variation in the 
monthly ER and that the observed return variance is explained by the variation of 
the ER. The impact of the latter is more pronounced for small firm portfolios. Our 
paper is different from these papers. Specifically, we make the point that a change in 
ER over time, for any reason, will produce spurious short-horizon ARs if the 
computation of the AR incorrectly uses a constant mean.  We say the computed AR is 
spurious because it does not imply a profit opportunity which would be zero in an 
efficient market if the conditional mean is used rather than an incorrectly assumed 
constant mean.4  
 
 
Campbell (1991) derives an expression for the autocovariance that depends on 
movement in expected returns (ER).5  A very similar result is in Campbell (2018, p. 
138), who lists three distinct sources of autocovariance in ex post returns:   
 

1.     The positive covariance between dividend news and revisions in expected 
returns  
 

 
4 Roll (1970) applies a similar argument to bonds and finds that much of the serial dependence in 

raw T-Bill returns is accounted for by changes in the level of the one-period yield.  
5 See also Anderson (2011) and Anderson et al. (2013). 
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2.     The direct autocovariance of expected returns (through expected returns 
(ER) following an AR(1) process)   
 
3.     The negative capital loss that occurs when expected returns unexpectedly 
increase  
 

They note that these three effects could conceivably be exactly offsetting but 
“reasonable parameter values” suggest that the third is dominant and thus actual 
returns are negatively autocorrelated.  

 

We do not consider #1 or #3 because our main point is that structural (permanent) 
changes in ER can induce positive unconditional return autocovariance, as distinct 
from the conditional autocovariances induced by #1 and #3.  Also, there are numerous 
other reasons for intertemporal movements in ER, such as permanent shifts in a 
firm’s risk profile or alterations in the business climate or in the firm’s policies, inter 

alia.  In other words, our focus is on unconditional autocorrelation over lengthy 
samples associated with large and permanent changes in ER.  Pastor and Stambaugh 
(2009) have a related approach where the expected return follows an AR(1) process 
but is imperfectly observable.  The distinction between the conditional autocovariance 
and the unconditional autocovariance is relevant – but the terms that influence the 
conditional autocovariance also show up in a complete expression for the 
unconditional autocovariance.  We emphasize that unconditional autocovariance has 
an additional effect. Pastor and Stambaugh (2012) demonstrate the distinction 
between the conditional and unconditional autocovariance  (see also Campbell, 2018, 
p. 278-279). 

 
Brennan and Wang (2010) make a different point on autocorrelations: When prices 
depart from fundamentals, but the departure is zero on average, expected returns 
will be biased due to Jensen’s inequality.  They show that this bias in expected 
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returns is related to autocorrelations in factor model residuals.  We instead make the 
point that changing expected returns affect return autocorrelations.  Beyond the 
differences from earlier papers delineated above, of course, we also advance the 
literature by considering the relation between AR shifts and changes in actual 
estimates of ER from options prices and analysts price forecasts. 
 

Cross-autocorrelations 

 

Although our studies focus on time-series AR, a large group of studies from 1990s 
focuses on cross-autocorrelations (cross-AR). Lo and MacKinlay (1990) and Mech 
(1993) present cross-AR patterns in an attempt to investigate the sources of 
contrarian profits. They argue that the returns on a portfolio of small stocks is 
correlated with lagged returns of a large stock portfolio, but not vice versa.  
 
The most common explanation of cross-AR is that the time series of stock prices are 
not sampled synchronously. Atchison et al (1987), Lo and MacKinlay (1988, 1990) and 
others argue that some of the cross-autocorrelations might be attributed to 
nonsynchronous trading problems, but to claim all of them suffer that requires 
markets to be unrealistically thin. Boudoukh, Richardson and Whitelaw (1994) show 
the cross-AR between large and small stock portfolio can be explained by the AR of 
small stock portfolios.  
 
Controlling for firm size, Chordia and Swaminathan (2002) show daily and weekly 
returns on high volume portfolios lead returns on low volume portfolios. 
Nonsynchronous trading or low volume portfolio AR cannot explain this finding, but 
it appears that the traded returns of low volume portfolios react more slowly to 
information in market returns. Avramov, Chordia and Goyal (2006) show that 
controlling for trading volume, illiquidity causes negative cross-AR for individual 
stocks as price pressures caused by non-informational demands for immediacy are 
accommodated.   
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We describe the implications of our analysis for cross-AR in Section V. 
 
I.3. Some underlying algebra for two regimes with different expected returns 

 
In the simplest case theoretically, there are two disjoint regimes, A and B, which have 
different ER and (possibly) different variances.  The first, Regime A, lasts for a 
fraction α of all observations and the subsequent Regime B follows and lasts for the 

complementary fraction.  If ERs in the two regimes are denoted, respectively,  and 

, the unconditional ER is   

 
An expected first-order unconditional autocovariance for regime A, computed with 

the unconditional ER, is ,6  where  is the return during 

Regime A at time t and, of course, , with analogous expressions for 

Regime B.7  
 
This autocovariance can also be expressed as 
     

   (I.1) 

 
If markets are fully efficient, the first term in Eq. (I.1) is zero because it’s a conditional 
autocovariance.  In the second term, both expectations within the bracket are also 
zero.  Hence the entire autocovariance is simply  The analogous 

 
6  Note that this is a population as opposed to a sample covariance; the latter can deviate because of 

sampling error.  We work with population values throughout this section.   
7 For now, we ignore the transition observation between the two regimes.  It will be covered in detail 

subsequently. 
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autocovariance in Regime B is  Both of these autocovariances are zero if there 

is no difference in ER between Regimes A and B, otherwise, they are (spuriously) 
positive. 
 
The unconditional variance of returns in Regime A is  

 

   (I.2) 

 
where  denotes the conditional variance of returns during Regime A.  As with the 

autocovariance, the second term in Eq. (I.2) is zero.  Hence the unconditional variance 
of returns in Regime A consists of the sum of the conditional variance plus the 
squared difference between the conditional ER in A and the unconditional ER.  There 
is an analogous argument for Regime B. 
 
To obtain the first-order AR coefficient, r, we simply weight-average the terms from 
Regimes A and B in the numerator and denominator, while noting that the population 
variances of returns and lagged returns are identical.  The resulting expression is  

   (I.3) 

Provided that the two regimes share the observations (i.e., ), the AR is always 

positive. 
 

The expression can be simplified because  while 

  Substituting and collecting terms, we obtain  

   (I.4) 
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There are some interesting special cases.  For instance, as one regime becomes much 
longer than the other, either α or (1-α) approaches zero and the AR approaches zero.  
Also, if the regimes are equal in length, as we assumed them to be in some of our 
empirical work, the AR coefficient simplifies further to 
 

   (I.5) 

 
In any case, the coefficient is non-negative and will be biased upward if the two 
regimes have different ERs.   
 
All of the above expressions for the AR coefficient reveal the influence of volatility in 
unexpected returns.  Since the denominator contains return variances, greater 
volatility in return innovations implies less AR bias.  The extent of the magnitudes 
involved is illustrated in Table 1, which is based on Eq. (I.5) with the same volatility 
in the two regimes. 
 
Table 1 verifies the patterns we have already discussed by computing (I.5) with a 
variety of ER and volatilities. For small levels of unexpected return volatility (the 
first few rows of the table) and large changes in ER (the last few columns), there is 
substantial bias in the AR coefficient, rising to a level of more than 0.5 in an extreme 
case. Conversely, when volatility is substantial, there is little bias.  It is still positive 
but would be hard to detect in a finite sample. 
 
I.4. Autocorrelations across changes in regimes. 

 

To this point, we have not discussed AR for an observation that occurs just as regimes 
shift.  This cannot matter much when the sample is long and there is only one regime 
change.  However, if regimes shift frequently, the autocovariance is affected.  To see 

2
A B

2 2 2
A B A B

[( ) / 2] .
( ) / 2 [( ) / 2]

µ -µ
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this, a first-order unconditional autocovariance for an observation that occurs when 
a shift occurs from A to B is  
     

   (I.6) 

 
Reasoning along the same lines following (I.1) above, and collecting terms, the 
resulting autocovariance is , which is negative for 

 Hence changes of regime offset the positive AR bias discussed above.  If such 

changes are more frequent than continuations, the AR could even be biased 
negatively.8 
 
In general, if g denotes the fraction of observation pairs (i.e., pairs of t and t-1) that 
are in the same regime, the overall autocovariance is   The 

fraction  is a measure of regime persistence.  It is close to +1 when regime shifts 

are infrequent while it is closer to -1 when regimes shift back and forth repeatedly 
and often. 
 
Unlike the autocovariance, the unconditional variance is not affected by regime 
shifts.  Equation (I.2) above still holds for the unconditional variance of returns in 
Regime A, regardless of how they are interspersed over time, and there is an identical 
valid expression for the unconditional variance of observations in Regime B.  Hence, 
the general expression for the AR coefficient when a fraction 1-g of the observations 
coincide with a regime shift from t-1 to t is, analogously to Eq. (I.4), 
 

   (I.7) 

 

 
8 See Campbell (1991) for an analysis supporting negative autocorrelation. 
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According to (I.7), the AR coefficient in an efficient market is biased unless there are 
just as many reversals of regimes as continuations; in that case g = 1/2 and r = 0 but 
this is probably a rather serendipitous situation.   
 
It is interesting to speculate on whether actual regimes are more likely to persist or 
exhibit frequent reversals.  In the case of bonds, persistence seems more likely 
because ER decline with shorter maturities and with lower inflation, which has 
historically been rather stable.  For equities, driving influences such as leverage, 
product lines, or industry structure suggest persistence.  In contrast, episodes of rapid 
change, such as periods around earnings announcements, could generate reversals, 
i.e., short-term risk and higher ER falling back to a normal level after each episode, 
(see Savor and Wilson (2016).)   General empirical investigations of persistence and/or 
reversal would seem to be a useful and important topic for future research. 
 

I.5. Multiple regimes (more than two). 

 

A natural extension of our theory is to examine the influence of multiple regimes on 
the return AR coefficient.  We require an expression corresponding to Eq. (I.7) with 
more than just regimes A and B.  Assume that we know there are exactly K different 
possible sequential ER regimes but we do not know when any particular one of the K 
becomes the prevailing regime.   If each can occur only once during a time series with 
T observations, the persistence parameter discussed previously is g = 1-(K-1)/T. 
However, persistence could be larger if regimes re-occur and arrive randomly because 
a “shift” could simply leave the old regime in place. 
 

Let  denote the fraction of observations in the  regime, t=1,…,K, and  Then 

the return AR coefficient in an efficient market is a generalization of Eq. (I.3), viz.,  

ta tht
K

t
t 1

1.
=

a =å



 

18 
 

 

  (I.8) 

where  is now the conditional ER in Regime t while the unconditional ER is 

 Unlike our earlier development with just two regimes, the arguments of 

the second summation in the numerator of Eq. (I.8) are not invariably negative; 
indeed, if regime shifts tend to sequentially move in the same direction, most of them 

or perhaps all of them except one, (when  moves from less than  to greater than 

), could be positive.  Alternatively, if most regime shifts tend to be reversals, these 

terms could be mostly or all negative.  In other words, the sign of each element in this 

second summation is determined by whether both  and  are on the same side 

of  or on opposite sides. 

 
The first summation in the numerator of Eq. (I.8) is strictly non-negative, so the AR 
coefficient’s sign is decreased by the prevalence of reversals, with frequency 1-g, and 
by whether terms in the second summation in the numerator of Eq. (I.8)  tend to be 
negative.   
 
Fitting Eq. (I.8) to actual data would appear to be a daunting task, though perhaps 
not impossible.  Since the number of regimes K is an unknown, one would have to 
search over values of K from 1 to T while for each such value, find the best fit for the 

other 3K+1 parameters (g, Kα’s, Ks’s and Kµ’s.)   
 
We leave a detailed estimation of Eq. (I.8) for future research, but note here that for 
large K, the second summation in the numerator of Eq (I.8) is dominated by the first.  
Moreover the entire fraction of Eq. (I.8) is increasing in the first summation, which 
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is a transformation of the volatility of ER.  This suggests a relation between spurious 
AR and the volatility of various ER.   
 
We next show the algebra of the volatility of the ER in more detail.   For this purpose, 
we assume that there are multiple regimes and ER changes every month. Note that 
the presence of spurious serial correlation is not an artifact of the specific stochastic 
process followed by the mean.  Even if the mean follows a standard drift with 
diffusion (it fluctuates with drift stochastically), our assertion still holds. Our model 
holds as long as there is some variation in ER; the specific process does not matter.  
 
However, the task could be much less challenging if one is willing to make 
assumptions about the process that drives the temporal evolution of the ER.  For 
example, it could change monthly but be a constant over the days within each month.  
When expected returns follow a general AR(1) process, they obey 

                            (I.9) 

where the symbols are as follows: 

the expected return in period t 

the long-run expected return, which is, asymptotically, 9 

the autoregressive parameter; for stationarity 

the volatility of the AR(1) process 

a mean zero standardized IID perturbation 

 
For simplicity, specification (I.9) ignores the chance that the expected return might 
become negative.  This can be corrected with a square root process such as the one 
adopted by Cox, Ross, and Rubinstein, but only by making everything more 
complicated and  more opaque. 

 
9 This result can be confirmed by recursive substitution; i.e., and so on, which 

delivers because and for large t and  
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It will be convenient below to rewrite equation (I.9) slightly as 

     

   (I.10) 

Let the observed return be  

      (I.11) 

where the symbols denote: 

the return in period t 

the unexpected return in t, a mean zero IID perturbation that includes risk 

volatility 
By assumption,   and  

The first order autocovariance is given by 
 

  (I.12) 

 
Expanding (I.12), it becomes 

 

  

 

 
Substituting, these terms become 
  

E[ξtξt-1)  

 
By assumption, the first three of these terms are zero.  The fourth term is 
  

      (I.13) 
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which is strictly positive if there is some variation in ER and is positive. The 

expectation in (I.13) is the conditional variance of ER as of period t-1.  Thus, Eq. (I.13) 
models the (spurious) autocovariance as a function of the volatility of the expected 

return,   For most realistic applications we expect the autoregressive parameter 

ϕ to be positive.  A constantly sign-flipping expected return is not for the most part 
realistic.  Under ϕ > 0 the spurious component of AR is positively related to the 
volatility of ER.   This is an implication we test below. 
 

II. Spurious (?) Autocorrelation in U.S. Equities. 

 
In this section, we test our main conclusion from the previous analyses.   Specifically, 
under the assumption that markets are efficient (so that true serial correlations are 
zero), we ask: Is there evidence that serial correlations do have a spurious 
component?  As the analysis indicates, under the null of market efficiency, spurious 
serial correlations manifest themselves in their links with shifts in expected returns. 
Therefore, we consider the empirical connection between measured serial 
correlations and shifts in various proxies for expected returns.   
 
II.1. Data 

 

We collect monthly returns data from CRSP for common stocks listed on NYSE, 
AMEX, and NASDAQ, for the period 1963-2020.  We use monthly data to mitigate 
the potential biases associated with nontrading and the bid-ask effect in daily data. 
Data with missing values are discarded.  We also often use the midpoint of closing 
bid and ask prices to avoid these biases and standard methods as in Fama and French 
(1992) to match with Compustat in tests that use financial statements. 
 
 
 

f

2 .µs
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II.2.  A first look. 

 

We take an admittedly very rough first look at the data by computing the 
unconditional return AR over the entire sample of data available for each stock 
described in Section II.1.  We then use average realized returns as proxies for 
expected returns and consider the link between AR and shifts in the average returns. 
 
More specifically, we split each stock’s sample in half and compute the mean return 
from the observations in each half.  Next, we take the absolute difference between 
each half’s mean return and rank those absolute differences across stocks, sorting 
them into ten deciles, where decile 1 (10) has stocks with the lowest (highest) absolute 
return difference.10 Within each decile, we compute an equally weighted average 
return AR.  The results are shown in Figure 2. 

 
There is clearly an upward trend in AR, albeit non-monotonic, from the lowest to the 
highest decile of absolute mean return differences.  This clear pattern surprises us 
because the absolute return difference between two half-samples of each stock is a 
rather crude measure of changes in ER.  The means are sample means, not ER, and 
there is no good reason why true changes in ER should be manifest in half-samples.  
Yet, Figure 2 seems to portray exactly the pattern we would have anticipated a priori.   
 
The other surprise in Figure 2 is that AR are negative on average for every decile.  
The data are monthly so we did not anticipate pronounced microstructure issues, but 
evidently there might still be a bid/ask bounce-induced negative AR, or else there is 
really a tendency for stock returns to reverse themselves at a monthly frequency. 
 

 
10  Obviously, this is a very crude measure of a change in ER.  Many firms with considerable variation 

in ER are not captured by simple decade-long sample means, so we did not anticipate a lot of 
discriminatory power.   
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For actively traded stocks, the impact of bid/ask bounce on monthly AR can be 
expunged by simply using the mid-price of bid and ask prices.  We adopt this simple 
cure to find the results shown in Figure 3, which corresponds to Figure 2 in every 
respect except for the elimination of the last trading day of every month.   
 
The difference between Figures 2 and 3 is obvious and rather startling.  The average 
AR in every absolute return difference decile has increased in Figure 3 and the 
pattern has become more monotonic.11  This suggests that AR over even monthly 
intervals are rather seriously contaminated by the bid/ask bounce.   
 
To compare different groups of stocks, we next follow common practice (e.g., Fama 
and French, 1992) and compute separate results that exclude financial firms,12 firms 
with negative book values, and both financial firms and firms with negative book 
values.   
 
II.3. Transformed autocorrelation 

 
To transform AR into a variable that is not bounded by negative and positive unity, 
we perform the following standard procedure:  

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑	𝐴𝑅 = 𝑇𝐴𝑅 =
𝐴𝑅 ∗ √𝑇 − 2
√1 − 𝐴𝑅!

 

The transformed AR is not bounded, and we employ this throughout the rest of the 
analyses.  Again, in order to avoid contamination of return serial correlations by bid-
ask bounce, we compute returns from quote midpoints of the last reported bid and 
ask prices each day.  For ER, we apply three methodologies, as detailed in the three 
subsections below. 
 

 
11  Only decile 7 breaks the monotonicity 
12  Financial firms have 4-digit SIC codes of 6000 to 6999. 
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For an ease of interpretation, we standardize an absolute change in ER 
(thereafter,|∆ER|) or the standard deviation of ER to have a zero mean and unit 
variance and then relate the transformed AR to either one of them. 
 
II.4 Cross-sectional dependence 

It is possible that the residual from cross-sectional regression of unconditional AR on 
absolute changes in mean returns computed from the first and second half of 
available observations for each stock might be correlated across firms. To address this 
possibility, we apply Feasible Generalized Least Square regression (FGLS), 
Generalized Least Square (GLS), and clustered standard errors by industries and the 
results remain intact. For brevity, we report the results from FGLS in the main draft 
and the results from clustering standard errors in the Appendix. Assuming there is 
no cross-sectional dependence in the sample AR, we also apply OLS and the results 
still hold.13 
 
Table 2 presents the t-statistic of the slope from regressing AR on absolute change in 
ER  exceeds 11.59 in each case and is highly significant with the p-value less than 
.<0001. The fitness of all regression is high with a probability greater than the F 
value of <.0001. This is the pattern to be anticipated if markets are efficient and there 
have been changes in ER for at least some firms.   
 
Although the results in Table 2 are consistent with the phenomenon under study, we 
know that volatility in unexpected returns reduces the effect.  We address this issue 
when we compute ex ante expected returns using various approaches in the next 
section. 
 
 
 

 
13 The results of OLS and GLS are available upon request. 



 

25 
 

 

III. Analyses based on ex ante expected returns. 

 

In Section II, we use observed mean returns as proxies for expected returns. In this 
section, we apply three different methodologies to estimate ex ante expected returns.   
 
III.1 Using options prices   

 
The first approach to ex ante ER is based on Martin and Wagner (2019), who derive 
a formula for the ER on a stock in terms of the risk-neutral variance of the market 
and the stock’s excess risk-neutral variance relative to that of the average stocks. 
Their parameters are computed from index and stock option prices. We estimate ER 
of stock i at time t (𝐸"𝑅#,"%&) from their Eq. (17) as follows: 

 

𝐸"𝑅#,"%& = 6𝑅',"%& ∗ 7𝑆𝑉𝐼𝑋"! + 0.56𝑆𝑉𝐼𝑋#,"! − 𝑆𝑉𝐼𝑋@@@@@@@"!ABA + 𝑅',"%& 

 

where 𝑆𝑉𝐼𝑋#,"!  is the risk-neutral variance of firm i, 𝑆𝑉𝐼𝑋"! is the risk-neutral variance 

of the index, 𝑆𝑉𝐼𝑋@@@@@@@"! is the average risk-neutral variance, and 𝑅',"	is the gross riskless 

rate of returns. Martin and Wagner (2019) provide the data on SVIXt, SVIXi,t, 𝑆𝑉𝐼𝑋@@@@@@@"! 
and Rf,t.14 We apply their approach for several reasons. First, their ER is based on 
current market prices rather than historical financial characteristics. It is more 
parsimonious than relying on multiple characteristics. In addition, which 
characteristics are associated with expected returns is still inconclusive.  Second, 
their approach does not rely only on any regression estimation, but on just the three 
measures of risk-neutral variance. Thus, it is less subject to bias from the estimation 
of factor loadings and factor construction. Third, it makes specific predictions about 
the relationship between ER and the three measures of risk-neutral variance whereas 
the relationship between characteristics and ER is less deterministic and varies with 
types of stocks and sample period. The caveat of this approach is the data does not 

 
14 https://onlinelibrary.wiley.com/doi/full/10.1111/jofi.12778 
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start until 1996 when Option Metrics became available and the number of covered 
stocks is just above 800. Relying on the authors’ data, our sample period ends in 2013 
and is limited to firms that are constituents of S&P500. 
 
III.2 Factor models 

 
The second approach is factor models, which are commonly applied in academics and 
industry.  The multi-factor arbitrage pricing theory (APT) of Ross (1976) can be 
expressed in two equivalent forms.  The basic form expresses the total return on asset 
i at time t as  

 
																								𝑅#," = 𝐸#," + 𝛽#,&𝑓D&,"+. . . 𝛽#,(𝑓D(," + 𝜀#̃,"        (III.1) 

 
where the K systematic risk factors, each have a zero mean; Ej,t is the ER on asset i 
at time t (it can be time-varying); and the last (firm-specific) term is an IID stochastic 
idiosyncratic risk component at time t for asset i.  A fundamental feature of the APT 
is that the factor realizations are unpredictable.  Any predictable component should 
be subsumed and incorporated by the market into expectations.   
 
If risk premiums (denoted by l’s) are time varying, while the betas are constant, the 
APT’s absence of arbitrage condition at time t is  

Ei,t=λ0,t +βj,1 λ 1,t+…βi,k λk,t                                         (III.2) 
It seems completely plausible that risk premiums are time varying; why not?  For 
demographic and many other reasons, aggregate risk tolerances can change over 
time.  Also, the volatilities of risk factors can change for macroeconomic reasons and 
actually have been observed to change in some cases (such as inflation volatility that 
was once considerably larger than it has been recently.) All this implies that when 
factor risk premiums are time varying, spurious serial correlation can be induced in 
securities, measured jointly across regimes. 
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There are various factor models.  For illustration purposes, we apply 5- and 6-factor 
Fama-French models (FF5 and FF6).  To be specific, we perform the following steps 
(using the FF5 factors as an example): 

 
1.  For any month j, we estimate factor loadings over the months j-1 to j-60 and 
save these loadings for each month j. That is, for each stock, we estimate factor 
loadings for FF5 (𝛽),#,*)	in every month using rolling data for 60 months where 

i, k and j stand for factor k, firm i, and month j. 
 

Ri,j – Rfj =	𝛼 + 𝛽+!,+"(Rm-Rfj )+ 𝛽-./HMLj + 𝛽0.1SMB j + 𝛽+.2RMWj + 

𝛽3.4CMAj +𝜀#,* 

 
2. For each month j, we then run the Fama-MacBeth regression of monthly 
returns on factor loadings measured at time j-1 over the past 48 months and 
save the coefficients 𝜆),#,* 	of stock i for factor k in each month j.15 

 

Ri,j =𝛼J*  +𝜆K+!,+",#,* 𝛽K+!,+",#,*,&+	𝜆K-./,#,*𝛽K-./,#,*,&+ 𝜆K0.1,#,*𝛽K0.1,#,*,& + 

𝜆K+.2,#,*𝛽K+.2,#,*,&+𝜆K3.4,#,*𝛽K3.4,#,*,&+𝜂#,* 

 
3. For the ER prediction, we use the average Fama-MacBeth coefficients and 
intercepts over the past 48 months (j-48 to j-1) from Step 2 and the current 
estimate of factor loadings from Step 1 to predict month j’s ER.   

 

𝐸𝑅#,* =
∑ 𝛼J#,*",&
*5",67

48 +PQ
∑ 𝜆K),#,*",&
*5",67

48 × 𝛽K),#,*,&S
)

 

 

 
15 We follow Brennan, Chordia, and Subrahmanyam (1998) and Haugen and Baker (1996) and use the 

past 48 rolling months. We could instead simply estimate ER using a standard FM regression and 
the most recent past month but we think that approach may be noisy. 
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III.3 Analysts’ price targets 

 
The third method is ER estimated from price targets forecasted by analysts. For this 
approach, we follow Engelberg, McLean, and Pontiff (2020) exactly.  Specifically, we 
collect 12-month price targets from IBES to impute an expected return relative to the 
current price.  The data on price targets are available monthly from the IBES starting 
in 1999.  For each month in our sample, we use the most recent price target issued 
by each analyst over the last 12 months and compute the median across all such 
targets.  The ER estimate is then simply the expected price appreciation implied by 
the median target price relative to the actual transaction price as of the end of the 
month.16 
 
III.4 Implementation 

 
Since we compute AR from monthly returns, we split our sample into two equal 
halves.  For each stock, we then compute the average of the monthly ERs within each 
half of the sample. We also compute the volatility of the monthly ER series for each 
stock. 
 
Table 3 shows the results of ER estimated by the Martin and Wagner (2019) 
approach. The |∆ER| and volatility of ER induce AR at 5% and 1% significance levels, 
respectively. The economic magnitude of the change in AR is more material: A one 
standard deviation increase in |∆ER|and volatility of ER increase AR by 10.8% and 
22.6%, respectively. The impact of ER volatility on AR is over two times stronger than 
that of |∆ER|. Compared to the mean of TAR of -2.88%,|∆ER| and volatility of ER 
are economically and strongly impactful.  
 

 
16 We ignore dividend yields for convenience. 
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Table 4 presents the results from the ER estimated from FF5 and FF6. This 
estimation allows us to expand the sample to the 1982 to 2020 period and the results 
become stronger. Both |Δ	𝐸𝑅| and volatility of ER estimated by FF5 and FF6 are 
significant at 1% and their impact is economically meaningful. A one standard 
deviation change in either quantity increases AR by 8% and 10.6%, respectively for 
FF5 (7.5% and 9.7%, respectively for FF6). The economic impact of volatility is about 
1.3 times larger than that of |∆ER|. Similar to Table 2, the impact of |∆ER| and 
volatility of ER is strong relative to the mean TAR of -9.49%.  
 
Table 5 presents the results of ER derived from analysts’ price targets and they 
support our conjecture as well. Both |∆ER| and volatility of ER are significant at the 
1% level. Economically, the impact of |∆ER| and volatility of ER are higher relative 
to FF5 and FF6; a one standard deviation change increases AR by 9.8% and 15.1%,  
respectively. The ER estimated by the Martin and Wagner (2019) approach yields the 
best results which might be due to the fact that their ER is forward looking and does 
not rely on historical data.17 
 

IV. Tests with regime shifts. 

 

In the previous sections, we examine how AR increases with |∆ER| in two equally 
split sample periods. In this section, we formally identify regime shifts for individual 
stock returns and factors using the Quandt-Andrews test (henceforth, QA; see 
Quandt, 1960; Andrews, 1993; Andrews and Ploberger, 1994) and the Bai-Perron test 
(henceforth, BP; see Bai, 1997; Bai and Perron, 1998, 2003a and 2003b).  
 
The QA approach tests a specified equation for one or more structural breakpoints 
during a time series sample by performing the single breakpoint Chow (1960) test 

 
17 To address issues arising from cross-sectional correlation of errors, we re-estimate all regressions of 

Table 5 while clustering errors at the industry level, using the 48 industry-classification at Kenneth 
French’s website (http://tinyurl.com/mr3zpd29).  The results are virtually unchanged. 
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across every two adjacent observations. Those Chow tests are then aggregated into 
one statistic for a test against the null hypothesis of no breakpoints anywhere in the 
sample. We set the QA parameters so that we infer only a single breakpoint over the 
entire available sample, the most significant one in terms of the largest absolute 
change in means.  This is tantamount to applying a single Chow test. 
 
After detecting the largest regime shift (breakpoint) using the QA and BP tests, we 
compute the absolute difference in returns before and after the breakpoint.  We 
regress the unconditional AR over the entire sample for the stock against this 
absolute difference in returns. For QA, Table 6 reports a slope coefficient t-statistic 
of over 3.3 for all expected returns estimated from various approaches except the 
Martin and Wagner (2019)’s approach, thereby supporting the notion that changes in 
ER increase sample unconditional AR.  
 
Next, we retain only the regime shifts that are significant according to the QA test 
and perform similar regressions with them. The t-statistic of over 3.4 to 5.8 for 
observed returns and expected returns from FF5 and FF6 again supports the same 
inference.  
 
Lastly, we detect all and significant breakpoints with the BP (1998) test. Bai (1997) 
and Bai and Perron (1998, 2003a) provide theoretical and computational results that 
extend the Quandt-Andrews framework. The ideas behind this implementation are 
described in Hothorn and Zeileis (2008). We find again that the absolute change in 
returns is significantly related to unconditional AR; regression slope t-statistic of 2.78 
and 2.97 for all and significant breakpoints of observed returns, respectively. The 
results for FF5 and FF6 are weaker due to a significant decrease in sample size but 
are still significant at 10%. We hesitate to draw any conclusion from the expected 
returns estimated from options and analysts’ forecasts due to their small number of 
observations.  
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V. Cross-autocorrelations. 

 

Our basic idea also applies to cross-autocorrelation. Stocks should display spurious 
positive cross-autocorrelation when their expected returns are correlated and change 
over time. For example, two stocks with similar betas from the market model should 
have larger spurious positive cross-autocorrelations because their expected returns, 
(driven by the market’s expected return and transmitted by their betas from the 
market model), should have stronger co-movement. Higher beta stocks have more 
volatile returns, both total and expected; consequently, higher beta quintiles should 
display more positive cross-autocorrelations unless there is no movement in the 
market’s expected return. 
 
The algebra of cross-autocorrelation is very similar to that presented in Section I, 
which derives the first-order autocorrelation for a single asset whose expected return 
(ER) changes once, from Regime A to Regime B.  The only addendum is that we now 
have two assets, both of which experience a regime change at the same time.  Once 
this is done for a single regime change, the further generalization to multiple 
changes, to shifts in regimes (both presented also in section I), and to non-
simultaneous regime changes, are straightforward and so we do not present these 
analyses here. 
 
Suppose that assets i and j both have a concurrent regime change from A to B.  The 

conditional expected returns for i are denoted and and similarly for asset j.  

As before, Regime A lasts for a fraction  of all observations and Regime B lasts for 

the complementary fraction. Hence, the unconditional ER for i is 

and similarly for j.   
 
A first-order unconditional cross-autocovariance computed with the respective 
unconditional ERs, is with an analogous expression for the 

i,Aµ i,Bµ

a

i i,A i,B(1 )µ = aµ + -a µ

i,A,t i j,A,t 1 jE[(R )(R )]--µ -µ
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cross autocovariance during Regime B.18   Note also that a cross-autocovariance can 
be computed in two ways, with j either lagging or leading i. 
 
The cross-autocovariance above can also be written as 
 

   (V.1) 

 (V.2) 

 
If markets are efficient, the first three terms in Eq. (V.2) are zero because they 
involve, respectively, a conditional cross-autocorrelation and two conditional 
expectations about conditional means.  Hence, the entire cross-autocovariance is the 
fourth term,   There is an analogous expression for Regime B.   

 
Unlike the situation for a single asset in Section I, where the analogous remaining 
term was a square, the sign of this remaining term in Eq. (V.2) depends on whether 
the two assets change expected returns in the same direction from Regime A to 
Regime B.  This would be the situation, for example, if both assets are driven by the 
market model with positive betas and the only change between regimes is in the 
market’s expected return.  However, there could be other cases where a negative 
cross-autocovariance might occur for two competing firms that had opposite 
responses to a concurrent alteration in economic circumstances.  In either case, the 
resulting computed cross-AR does not indicate a profit opportunity. 
 
The unconditional variance of returns for asset i in Regime A is 

= 

   (V.3) 

 
18 As in section I, this is a population covariance. 

i,A,t i,A i,A i j,A,t 1 j,A j,A jE[(R )(R )--µ +µ -µ -µ +µ -µ
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where denotes the conditional variance of returns for asset i during Regime A.  

The second term in Eq. (V.3) is zero.  There are analogous expressions for asset j and 
Regime B. 
 
The first-order cross-autocorrelation coefficient weight averages across regimes the 
remaining expression from Eq. (V.2) in the numerator and the square roots of Eq. 
(V.3) in the denominator, to obtain, after collecting terms and simplifying, 

,  (V.4) 

 

where the weight-averaged conditional variance is denoted for 

asset i and similarly for asset j.  The Appendix shows that when (i) asset returns 
conform to the market model, (ii) all betas are positive, and (iii) only market expected 
returns shift across the regimes, the right-hand side of Eq. (V.4) increases in the betas 
of the two stocks.19  Thus, the implication is that the measured cross-AR should 
increase across portfolios sorted in increasing order of beta. 
 

To assess the empirical extent of the above effect, we select stocks that have at least 
30 monthly returns and compute the market model beta of each stock using all 
available months. We then sort stocks by their betas into quintiles and within a 
quintile, sort stocks by their PERMNO. We compute the cross-autocorrelations for 
N/2 sorted pairs in each quintile, where N is the number of stocks in a quintile.  To 
avoid unnecessary sampling dependence, we use each stock only once, with its 
adjacent partner by the next lower PERMNO, instead of twice (with the partners both 
above and below it.)  Then the average cross-autocorrelation is computed for the N/2 

 
19 Intuitively, the numerator is proportional to the product of the betas times the squared change in 
the expected market return.  Dividing the numerator and denominator by the product of the betas and 
substituting for the total variance from a market model, it can be seen that the denominator decreases 
in each individual beta. 

2
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pairs in each quintile and transformed into a TAR between Ri,t  and Rj,t-1  and another 
between Ri,t-1 and Rj,t.20 As shown in Panel A of Table 7, the average TAR generally 
increases with beta. The result is monotonic for with CAPM betas  but for Ri,t-1 with 
Rj,t, the average TAR is highest in Q4 (0.352) and is slightly lower in Q5 (0.330).  
 
 
PERMNO might be related to firm characteristics. To guard against this possible 
contamination, we randomly draw, without replacement, pairs of stocks within each 
beta quintile and compute their cross-autocorrelation. The results are given in the 
Panel B of Table 7, which shows a monotonic pattern, the average cross-
autocorrelation increasing with beta.  
 
VI. Bond returns 

 

Our premise should hold for bonds, which have obvious changes in ER from varying 
term premium over their lives. We collect bond data from TRACE and follow Bai et 
al (2019)’s approach for the cleaning process and bond returns estimation. Our bond 
returns data is from June 2002 to December 2019. We lose about 10 years of 
observation from the  three-step procedure below to estimate expected bond returns. 
To maximize number of observations, we perform an analysis at bond level and do 
not aggregate bonds across different grades within a firm.  
 
We apply bond factors from Bai et al (2019) and follow the steps below to compute 
expected returns. The steps are similar to what we apply to estimate expected returns 
for stocks. However, since we have shorter series of bond data, we slightly adjust the 
requirements in steps 1 and 2 to be 36 months and step 3 to be 12 months. As a 
robustness check, we apply Liu and Zhang (2008)’s four factors they construct based 

 
20 The TAR transformation is given in the first equation of Section III. 
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on Chen, Roll, and Ross (1986) and the results remain robust. Our steps to estimate 
bond expected returns are the followings:  

  
1.  For any month j, we estimate factor loadings over the months j-1 to j-36and 
save these loadings for each month j. That is, for each bond, we estimate factor 
loadings (𝛽),#,*)	 for Bai et al (2019) in every month using rolling data for 36 

months where i, k and j stand for factor k, firm i, and month j
 

Ri,j – Rfj =	𝛼 + 𝛽.(89:;<(MKTbondj )+ 𝛽=+>DRFj + 𝛽3+>CRF j + 𝛽/+>LRFj +𝜀#,* 

 
2. For each month j, we then run the Fama-MacBeth regression of monthly 
returns on factor loadings measured at time j-1 over the past 36 months and 
save the coefficients 𝜆),#,* 	of bond i for factor k in each month j. 

 

Ri,j =𝛼J*  +𝜆K.(89:;<,#,* 𝛽K.(89:;<,#,*,&+	𝜆K=+>,#,*𝛽K=+>,#,*,&+ 𝜆K3+>,#,*𝛽K3+>,#,*,& + 

𝜆K/+>,#,*𝛽K/+>,#,*,&+𝜂#,* 

 
3. For the ER prediction, we use the average Fama-MacBeth coefficients and 
intercepts over the past 12 months (j-12 to j-1) from Step 2 and the current 
estimate of factor loadings from Step 1 to predict month j’s ER.   

 

𝐸𝑅#,* =
∑ 𝛼J#,*",&
*5",&!

12 +PQ
∑ 𝜆K),#,*",&
*5",&!

12 × 𝛽K),#,*,&S
)

 

 
We first use actual bond returns as expected returns in a similar vein as the test we 
did in Table 2. We split the sample into two equal periods.  Using actual returns as 
expected returns allows us to have large number of observations. For panel A Table 
8, we limit each bond to have data no less than 4 months, which leave us with 21,358 
observations. We find |change in ER| and volatility of ER increase autocorrelation. 
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Next, we estimate expected returns using Bai et al (2019)’s factor model. For panel 
B, we need each bond to have monthly returns data for 120 months to estimate the 
expected returns using the above steps and at least 36 months to run regressions. 
  
We are left with 1,137 bonds. Our conclusion remains intact, although the degree of 
significance is lower. |change in ER| and volatility of ER are associated with an 
increase in AR. 
 
VII. Conclusions.   
 

The goal of our paper is to demonstrate the following: An absolute change in expected 
return, |Δ	𝐸𝑅|, or volatility in ER can induce spurious components to return 
autocorrelation, AR, and that this bias is generally positive regardless of the direction 
of shifts in ER, provided regime shifts in ER are infrequent.  The bias is generally an 
increasing function of either the absolute change in ER or the volatility of ER.  Thus, 
under the null of efficient markets, measured AR should be positively related to 
variations in expected returns.  We demonstrate this with simple examples and 
derive analytics that verify the phenomenon.  We also contribute to the literature by 
testing for spurious AR using shifts in actual ex ante metrics for ER obtained from 
options markets, analysts’ price targets, and standard factor models. 
 
Although AR bias is mitigated by volatility in unexpected returns, we find significant 
evidence supporting the existence of such bias for individual US Equities. We also 
show that potential for spuriousness also applies to cross-autocorrelation. We observe 
that stocks in higher beta quintiles, whose expected returns change more with 
movements in the market-wide expected return, indeed exhibit more positive cross-
autocorrelation, as suggested by our theory. Our results also hold for corporate bonds. 
 
In future work, one could broaden our enquiry by looking into other possible measures 
of change in ER.  These include but are not necessarily limited to: A. Slow drifts in 
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mean returns over time; B. Events that precipitate sudden changes in ER (such as 
mergers, debt issuance or retirement, etc.); C. EGARCH models.  In each case, we 
would be able to estimate the statistical significance of a change in ER and thereby 
sort stocks into groups that are more or less likely to have biased return AR. 
 
In addition, it would be worthwhile to expand the sample to other asset classes such 
as options where changing hedge ratios should deliver changing expected 
returns.21The phenomenon applies to any asset class and it would be interesting to 
ascertain which classes are subject to it. 
  

 
21 Assuming, of course, that there are term premiums. 
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Appendix  
Spurious Cross-Autocorrelations and Betas 

 
If changes in expected return are entirely driven by changes in the market’s expected 
return transmitted through the assets’ betas, which are assumed to be constant, then 
Eq. (5.4) can be written as  

 (A.1) 

 
This is the same as 

    (A.2) 

where .   

 
The weighted average conditional variance for asset i is  

 

 
or in simpler notation,  
 
where is the market model idiosyncratic disturbance for asset i in Regime A and 

similarly for asset j.  
 
If the market’s variance and the idiosyncratic variances are the same in the two 
regimes, this expression simplifies to 

 

 
If the betas of the two assets are the same (and are constants over time) and both 
weight-averaged variances are also the same, A.2 reduces to  
 

2
i j M,B M,A

2 2 2 2 2 2 1/2
i i M,B M,A j j M,B M,A

(1 ) [E(R ) E(R )]
{[ (1 ) [E(R ) E(R )] ][ (1 ) [E(R ) E(R )] ]}

a -a bb -
r =

s +a -a b - s +a -a b -

i j
2 2 2 2 1/2
i i j j{[ ][ ]}

b b f
r =

s +b f s +b f

2
M,B M,A(1 )[E(R ) E(R )]f =a -a -

2 2 2
i i M.A i,A i M,B i,B[ Var(R ) Var( )] (1 )[ Var(R ) Var( )]s =a b + e + -a b + e

i,Ae

2 2 2 2
i i M es = b s +s



 

44 
 

 

 

 
so the cross-AR increases with beta (assuming that idiosyncratic volatility is non-
zero.) 
 
More generally, dividing numerator and denominator of Eq. (A.2) by its numerator, 
it becomes 

   (A.3) 

A simplified version of Eq. (A.3)  

 
  (A.4) 

 
If both betas or either one increases, ceteris paribus, the denominator decreases and 
the cross-AR increases.  Hence, groups of stocks ranked by beta should display higher 
cross-ARs in the higher betas groups.  The same would be true (and would perhaps 
be even more accurate) for groups ranked by the ratio of beta to idiosyncratic 
variance. 
  

2 2 2 2 2 2 2 2
M M/ ( ) 1/ ( / / 1),e er = b f b s +s +b f = s f+s b f+

j i ji

2 2 22
2 2 2 1/2
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r = f+s + f+s + +
f b b b b
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Figure 1. Simulated scatter diagram for successive returns with two regimes that 
differ only in ER.  In one regime, the ER is 0.5% per period and in the other regime, 
it is 1% per period.  The three panels illustrate the impact of volatility, in standard 
deviation per period, which is 0.1%, 0.2% and 8.66%, respectively, in Panels A, B and 
C.  The dashed lines show the conditional autoregression within each regime while 
the solid line shows the unconditional autoregression using all observations 
regardless of regime.  
 
 
  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
et

ur
n 

(t
)

Return (t-1)

Panel A, Sigma=0.1%

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Re
tu

rn
 (t

)

Return (t-1)

Figure 1, Panel B, Sigma=0.2%



 

46 
 

 

 
 

 
 
 
 
  

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

Re
tu

rn
 (t

)

Return (t-1)

Figure 1, Panel C, Sigma=8.66%



 

47 
 

 

Figure 2.  For each non-financial firm common stock listed on the NYSE, AMEX, and 
NASDAQ, with at least 2 years of presence in Compustat, the unconditional monthly 
return first-order AR is computed over the entire available sample.  Then the stock’s 
sample is divided in half and mean returns are computed from each half.  The 
absolute difference between the two halves’ mean returns is computed and ranked 
across stocks, then sorted into deciles, where decile 1 (10) has stocks with the lowest 
(highest) absolute mean return difference. An equally weighted average return AR is 
computed for each decile and is plotted here. 
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Figure 3.  For each non-financial firm common stock listed on the NYSE, AMEX, and 
NASDAQ, with at least 2 years of presence in Compustat, the unconditional monthly 
return first-order AR is computed over the entire available sample while excluding 
the last trading day of each month.  Then the stock’s sample is divided in half and 
mean returns are computed from each half.  The absolute difference between the two 
halves’ mean returns is computed and ranked across stocks, then sorted into deciles, 
where decile 1 (10) has stocks with the lowest (highest) absolute mean return 
difference. An equally weighted average return AR is computed for each decile and is 
plotted here. 
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Table 1 

Theoretical Spurious Return Autocorrelation Coefficients for Different 
Combinations of Return Volatility and Expected Return Differences in Two Regimes 

of Equal Length, 
Monthly Observations, Annualized Means and Volatilities 

 
This table is generated from simulated returns with two regimes that differ only in 
ER.  Sigma is the standard deviation of returns per period in percent per annum. 
 
 

Sigma22 Expected Return Difference, (% per annum) 
0 5 10 15 20 25 30 

0 N/A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
5 0 0.0383 0.1324 0.2478 0.3600 0.4581 0.5397 
10 0 0.0099 0.0368 0.0761 0.1233 0.1745 0.2267 
15 0 0.0044 0.0167 0.0353 0.0588 0.0859 0.1153 
20 0 0.0025 0.0094 0.0202 0.0340 0.0502 0.0683 
25 0 0.0016 0.0061 0.0130 0.0220 0.0327 0.0448 
30 0 0.0011 0.0042 0.0091 0.0154 0.0229 0.0315 
35 0 0.0008 0.0031 0.0067 0.0113 0.0170 0.0234 
40 0 0.0006 0.0024 0.0051 0.0087 0.0130 0.0180 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
22 Standard Deviation of returns in percent per annum. 
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Table 2 
Bivariate Regression of Return Autocorrelation on the Absolute Change 

In Mean Observed Return between Two Half-Samples; 
All Available Firms, Non-Financials, and Always Positive Book Values 

 
The sample of available observations for each stock is split into two halves and the 
explanatory variable is the absolute difference in the sample mean return in the two 
halves.  The dependent variable is the unconditional autocorrelation with all monthly 
observations in each stock’s entire sample expunging the last trading day of every 
month.  All stock prices are the mid-price of bid and ask closing prices to avoid bid-
ask bounce. N is the number of firms included in a regression.  To be included, a stock 
must have 30 available monthly observations during 1963-2020 inclusive.  ***,**, and 
* present 1%, 5%, and 10% significance levels, respectively. 
 
 
 
 

All Firms 
Positive Book 

Value Non-Financial 

Non-Financial 
Positive Book 

Value 
|∆ER|  0.142*** 0.148*** 0.137*** 0.144*** 
T-Statistic 14.24 12.70 12.95 11.59 
N 15,820 13,266 11,607 9,271 
F-Value 202.70 161.26 167.66 134.31 
Pr>F <0.0001 <.0001 <.0001 <.0001 
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Table 3 
Bivariate Regression of Return Autocorrelation on the Absolute Change 

In (and Volatility of) Expected Return based on Martin and Wagner (2019) 
 
The sample is provided by Martin and Wagner (2019) consisting of 799 stocks from 
January 1996 to September 2013. The dependent variable is the unconditional AR, 
transformed based on the first equation in Section III.  The sample is split into two 
halves and the explanatory variable is the absolute difference in the ER (|∆ER|) in 
the two halves or the volatility of ER. The ERs are computed based on Martin and 
Wagner (2019). Both|∆ER| and volatility of ER are standardized to have a zero mean 
and unit variance. All stock prices are the mid-price of bid and ask closing prices to 
avoid bid-ask bounce. ***,**, and * present 1%, 5%, and 10% significance levels, 
respectively.  
 
 
 
  Coef t Stat F Value Pr>F 
Intercept -0.096** -2.21 6.33 0.012 
|∆ER|  0.108** 2.52   
  Coef t Stat F Value Pr>F 
Intercept -0.096** -2.25 28.33 <.0001 
Volatility of ER 0.226*** 5.32   
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Table 4 
Bivariate Regression of Return Autocorrelation on the Absolute Change 

In (and Volatility of) Expected Returns estimated from 5- and 6-factor  Fama-
French Models 

 
The sample of available observations for each stock is split into two halves and the 
explanatory variable is the absolute difference in the sample mean return in the two 
halves (|∆ER|) or the volatility of ER. The ER are estimated by 5- and 6-factors Fama 
French models. Both|∆ER| and volatility of ER are standardized to have a zero mean 
and unit variance. The dependent variable is the unconditional AR with all monthly 
observations in each stock’s entire sample and it is transformed based on the first 
equation in Section III.  To be included, a stock must have 30 available monthly 
observations during July 1963 to December 2020. All stock prices are the mid-price 
of bid and ask closing prices to avoid bid-ask bounce. ***,**, and * present 1%, 5%, 
and 10% significance levels, respectively. The number of observations is 13,298. 
 
 
 
 Coeff t-stat F Value  Pr>F 
    Fama-French 5 factors model 
Intercept -0.055*** -5.01 51.12  <.0001 
|Δ	𝐸𝑅| 0.080*** 7.15     
        
Intercept -0.059*** -5.38 99.57  <.0001 
Volatility of ER 0.106*** 9.98     
  Fama-French 6 factors model 
Intercept -0.056*** -5.08 46.30  <.0001 
|Δ	𝐸𝑅| 0.075*** 6.80     
         
Intercept -0.060*** -5.47 83.95  <.0001 
Volatility of ER 0.097*** 9.16     
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Table 5 
Bivariate Regression of Return Autocorrelation on the Absolute Change 

In (and Volatility of) Expected Return Estimated from Analysts’ Forecasts 
 
The sample of available observations for each stock is split into two halves and the 
explanatory variable is the absolute difference in the sample mean return in the two 
halves (|∆ER|) or the volatility of ER. The ER are estimated by 12-month price target 
from analysts’ forecasted data in IBES. Both|∆ER| and volatility of ER are 
standardized to have a zero mean and unit variance. The dependent variable is the 
unconditional AR with all monthly observations in each stock’s entire sample, and it 
is transformed based on the first equation in Section III. All stock prices are measured 
as the mid-point of bid and ask quotes to avoid bid-ask bounce. To be included, a stock 
must have 30 available monthly observations during 1997-2020 inclusive.  ***,**, and 
* present 1%, 5%, and 10% significance levels, respectively. The number of 
observations is 5,730. 
 
 
  

Estimate t-stat F Value Pr>F 
Intercept -0.155*** -9.85 33.01 <.0001 
|Δ	𝐸𝑅| 0.098*** 5.75  

 
   

  

Intercept -0.155*** -9.91 82.92 <.0001 
Volatility of ER 0.151*** 9.11   
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Table 6 
Bivariate Regression of Return Autocorrelation on the Absolute Change In Mean 

Return during Periods before and after Identified Mean Return Breakpoints; 
All Available Firms and Factors 

 
The sample of available observations for individual stocks and factors is split based 
on either all breakpoints or significant breakpoints identified by the Quandt-Andrews 
test developed by Andrews (1993, 2003) and Quandt (1960) and significant 
breakpoints suggested by the Bai-Perron (1998) test. Then a cross-sectional 
regression is computed where the explanatory variable is the absolute difference in 
the sample mean returns for a stock or a factor before and after the breakpoint, and 
the dependent variable is the unconditional AR with all monthly observations in each 
stock or factor’s entire sample expunging the last trading day of every month.   The 
regression slope t-statistic is reported in the first row.  N is the number of firms 
included in a regression.  To be included, a stock must have 30 available monthly 
observations during 1982-2020 inclusive. ***, **, and * present 1%, 5%, and 10% 
significance levels, respectively. 
 
 
 All breakpoints 

from 
Quandt-Andrews 

test 

All breakpoints 
from Bai-

Perron 
test 

Significant 
breakpoints 

from 
Quandt-
Andrews 

test 

Significant 
breakpoints 

from 
Bai-Perron 

test 

Observed returns 
|∆ER|  0.126*** 0.148*** 0.133*** 0.160*** 
T-Statistic 3.536 2.782 3.413 2.965 
N 13,802 1,415 2,795 1,409 

Martin and Wagner (2019) 
|∆ER|  0.058 0.182 0.130 0.182 
T-Statistic 0.739 0.853 0.626 0.853 
N 310 15 18 15 

                                    Fama-French 5 factors model 
|∆ER|  0.089*** 0.105* 0.215*** 0.105* 
T-Statistic 3.339 1.833 5.811 1.826 
N 8,017 769 1,534 795 

Fama-French 6 factors model 
|∆ER|  0.091*** 0.120* 0.170*** 0.120* 
T-Statistic 3.771 1.693 4.084 1.689 
N 8,017 796 1,534 795 

Analyst’s price target 
|∆ER|  0.102*** 0.193 0.121 0.194 
T-Statistic 3.609 0.784 0.919 0.784 
N 3,332 182 475 182 
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Table 7 

Cross-autocorrelation and Market-model Betas 
 
This table presents cross-autocorrelation among stocks sorted by their market-model 𝛽 
into quintiles. For those stocks that have at least 30 monthly returns observations, we 
estimate the market-model 𝛽. In Panel A, we sort stocks by their PERMNOs and 
compute cross-autocorrelations of stocks that have adjacent PERMNOs. In Panel B, we 
sort stocks into 𝛽 quintiles and, within a quintile, randomly draw a pair of stocks and 
compute their cross-autocorrelations. We then take an average of the cross-
autocorrelations across stock pairs within a quintile as a robustness check. For both 
methods, we do not use any stock twice and estimate cross autocorrelations between 
Ri,t and Rj,t-1 (and Ri,t-1 and Rj,t) where i and j represent stocks i and j, and t is the 
time index, in units of a month.  The autocorrelation is transformed based on the first 
equation in Section III. 
 
 
Beta Quintile Q1 Q2 Q3 Q4 Q5 
Mean market-model 𝛽 0.014 0.656 1.000 1.381 2.378 

Panel A: Pairs with adjacent PERMNOs  
TAR(R1t, R2t-1) 

Mean TAR 0.186 0.197 0.238 0.302 0.331 
# of unique pairs 1,866 1,852 1,856 1,834 1,915  

TAR(R1t-1, R2t)  
TAR 0.154 0.240 0.261 0.352 0.33 
# of unique pairs 1,866 1,854 1,857 1,838 1,917 

                            Panel  B: Pairs chosen randomly within each beta quintile 
      (without replacement within each Beta Quintile)  

TAR(R1t, R2t-1)  
Mean TAR 0.071 0.111 0.181 0.210 0.244 
# of unique pairs 2,011 2,015 2,011 2,016 2,006  

TAR(R1t-1, R2t)  
Mean TAR 0.083 0.157 0.188 0.203 0.211 
# of unique pairs 2,013 2,019 2,014 2,017 2,004 
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Table 8 
Bivariate Regression of Bond Return Autocorrelation on the Absolute Change 
In Mean Observed Return and Expected Returns between Two Half-Samples; 

 
The sample of available observations for each bond is split into two halves, and the 
explanatory variable is the absolute difference in the sample mean return in the two 
halves.  The dependent variable is the unconditional autocorrelation with all monthly 
observations in each stock’s entire sample, expunging the last trading day of every 
month.  Panels A and B report the expected returns estimated by actual bond returns 
and expected bond returns estimated from Bai et al. (2019)’s factor model. The 
regression t-statistics are reported in the first row.  N is the number of firms included 
in a regression.  The bond data is from 2002-2019 inclusive. Panels A and B require 
bonds with data no less than 4 and 120 months, respectively.  ***,**, and * present 
1%, 5%, and 10% significance levels. 
 
 
Panel A: Actual bond returns as expected returns 
 

 Intercept |∆ER|  # of obs R2 Adj-R2 
Estimate -0.623*** 0.214*** 21,358 1.36% 1.35% 
T-statistic -63.153 17.139    

      
 Intercept Volatility of ER # of obs R2 Adj-R2 

Estimate -0.647*** 0.059*** 21,358 0.17% 0.16% 
T-statistic -65.789 5.966    

       
Panel B: Expected bond returns estimated from the factor model 
 

 Intercept |∆ER|  # of obs R2 Adj-R2 
Estimate -0.152*** 0.015** 1,137 0.48% 0.39% 
T-statistic -24.300 2.346    

      
 Intercept Volatility of ER # of obs R2 Adj-R2 

Estimate -1.070*** 0.109** 1,137 0.48% 0.39% 
T-statistic -22.875 2.331    

       
 


