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1 Introduction

Energy commodities have become a major part of financial markets as a result of the rapid

growth in trading volume and the variety of derivative products, among which the crude oil fu-

tures and options have taken a significant proportion. Specifically, the trading volume of crude

oil futures and options accounts for over 50% of the total trading volume of energy contracts on

the NYMEX in 2015. As for the equity (index) option market, the commodity option market

enables the study of variance risk premium, that is, the premium asked by market participants

to invest/trade volatility risk. For the extensive literature on variance risk premium we refer,

without being exhaustive, to Bakshi et al. (2003), Carr and Wu (2009), Trolle and Schwartz

(2010) and Prokopczuk and Wese Simen (2014).

The fact that financial markets react differently to positive and negative shocks has been

widely acknowledged in previous literature. Consequently, semivariance measures, considered

in Barndorff-Nielsen et al. (2008) or Patton and Sheppard (2013), were found to carry more

information than unconditional measures. For the specific case of crude oil market and the

relevance of semivariance measures see Chevallier and Sévi (2012) or Sévi (2014). Following

that line of research it is therefore natural to assess whether tail risk premium or conditional

variance risk premium carries more information than standard (i.e. unconditional) variance risk

premium. In Bollerslev et al. (2015), Lettau et al. (2014) and Kilic and Shaliastovich (2015), it

was confirmed that conditional variance risk premium has higher forecasting power for equity

index excess returns.

Beyond variance risk premium, skew risk premium has recently attracted a strong interest among

academics. In Kozhan et al. (2013), see also the important and related work of Neuberger (2012),

the authors found that skew risk premium naturally completes variance risk premium for the

equity index option market. In Da Fonseca and Xu (2016), the authors analyze the specifics

of the volatility index option market (i.e. VIX options) with respect to variance and skew risk

premiums and show the consistency of the results with the shapes of the smile observed in the

equity and volatility index option markets.
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Based on these works we contribute to the literature by performing a conditional decomposition

of variance and skew risk premiums extracted from options written on the USO (an exchange

traded fund tracking the daily price changes of the WTI light sweet crude oil). We assess the

time variation property of these risk premiums and analyze the relations between these decom-

posed higher moment risk premiums and the USO excess returns. Lastly, we show how these

decomposed higher moment risk premiums enable a much better prediction of USO excess re-

turns.

The paper is organized as follows. Section 2 presents a formal definition of the key quantities

used in this work. Section 3 provides a description of the data used in the empirical analysis.

We discuss the empirical implementation and the results in Section 4 while Section 5 concludes.

2 Pricing formulas

In this section we describe the variance and skew swaps that are the main financial products

used in this work. A variance swap is a derivative contract by which two counterparties agree

to exchange some cash flows at some prespecified dates. One counterparty will pay an amount

at the initiation of the contract, denoted by t, and will receive an amount at the maturity of

the contract, denoted by T , equals to the realized variance of the underlying asset computed

between t and T . As the amount paid at time t is known during the life of the contract, it is

called the fixed leg of the swap while the amount received at time T is only determined at date,

which is unknown during the life of the contract, and is therefore called the floating leg of the

swap. If between t and T the realized volatility increases to the point that it offsets the premium

paid at time t, the net position will be positive for that counterparty who is often qualified as

the protection buyer (against an increase of volatility). The counterparty holding the other side

of the deal is called the protection seller.

A skew swap has the same characteristics as a variance swap except that the premium paid at

time t is related to the risk-neutral third moment of the underlying asset return while at time

T the realized skew of the underlying asset is paid. This product allows a market participant to
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hedge against a change in the skewness of the asset.

Computing the values of such contracts involves the evaluation of the realized variance and

skewness of the underlying asset as well as the determination of the premiums paid at initiation

of the contracts, that is to say, the computation of the fixed legs of the variance and skew swaps.

This task can be achieved thanks to the results of Carr and Madan (1998) and Kozhan et al.

(2013). Once these quantities are evaluated, by averaging over time we deduce the variance

and skew risk premiums that are of fundamental importance in finance as they quantify the

compensations asked by market participants to invest or bear those risks.

A closer look at the formulas suggests to decompose the variance and skew risk premiums con-

ditionally on the evolution of the underlying asset and, therefore, to define conditional versions

of such quantities and to expect them to have higher information content than unconditional

ones. These analytical considerations are further justified by the well known empirical fact that

an asset behaves differently depending on whether its return is positive or negative. This latter

property has been extensively used in the finance literature, either in asset pricing papers such

as Ang et al. (2006) which shows that investors ask for additional compensation when market

goes down and the downside premium is reflected by the cross section of stock returns, or Lettau

et al. (2014) which demonstrates that in the currency market the differential between high and

low interest rate currencies is higher under bad market conditions compared to good market

conditions, or Smith (2007) which proves that investors demand different premiums conditional

on the sign and magnitude of market skewness. As a result, it seems judicious to perform such

conditional decomposition for the variance and skew risk premiums and assess whether these

decomposed quantities carry more information. Empirical results will confirm this intuition.

We first present the variance swap contract and related quantities such as variance risk premium,

then conditional decompositions as well as excess returns of investments made on such contracts.

It will allow us to specify the notations used throughout this work. We pursue with the skew

swap and related quantities that are important for this work and constitute a contribution to

the literature.
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2.1 Variance risk premiums

The valuation of a variance swap contract of maturity T requires the computation of the fixed

leg that is paid at time t, the initiation date of the contract. Let St be the underlying asset

price at time t, then the log return from t to T is rt,T = lnST − lnSt. In this work the asset

St will be the USO, an exchange traded fund tracking the daily price changes of the WTI light

sweet crude oil. Firstly, we define the USO excess return from t to T as

xmUSO
t,T = rt,T − rft,T , (1)

where rft,T is the risk-free rate.

Following the literature, to value the fixed leg of the swap, Kozhan et al. (2013) proposes the

following formula

ivt,T = EQt [gv(rt,T )], (2)

where EQt [.] denotes the risk-neutral expectation conditional on time t and gv(r) = 2 (er − 1− r).

A Taylor expansion of this function around zero shows that it is equal to r2, thus its choice for

this product.

It was shown in the literature that any twice-continuously differentiable payoff function can

be spanned by a continuum of out-of-the-money (OTM) European calls and puts. Specifically,

Kozhan et al. (2013) show that based on the payoff function gv the risk-neutral variance ivt,T

can be expressed as follows

ivt,T = 2

∫ +∞

St

Ct,T (K)

Bt,TK2
dK + 2

∫ St

0

Pt,T (K)

Bt,TK2
dK

= ivut,T + ivdt,T ,

(3)

where Ct,T (K) and Pt,T (K) denote the prices at time t of calls and puts with expiry date T and

strike price K and Bt,T is the zero-coupon bond at time t with maturity T . In fact, ivut,T and

ivdt,T can be spanned by a continuum of OTM calls and puts, respectively, which correspond

to the first and second integrals in Eq.(3). A detailed proof is presented in Appendix A. The
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decomposition is quite intuitive, the upside risk neutral variance ivut,T is constructed upon a

set of call options that will pay only when the underlying asset return from t to T , that is to

say rt,T = lnST − lnSt, is positive. In fact, it captures the second moment of the upper tail

distribution. Likewise, the downside risk neutral variance ivdt,T is constructed upon a set of put

options that will pay only when the underlying asset return from t to T is negative and, in that

case, it captures the second moment of the lower tail distribution. As we have

gv(rt,T ) = gv(rt,T )1{rt,T>0} + gv(rt,T )1{rt,T≤0}, (4)

it is natural to also name ivut,T and ivdt,T the upside and downside risk-neutral variances and

state

ivut,T = EQt [gv(rt,T )1{rt,T>0}],

ivdt,T = EQt [gv(rt,T )1{rt,T≤0}].
(5)

As there are only a finite number of options available in the market, ivut and ivdt can be approx-

imated in practice by the following sums:

ivut,T = 2
∑
St≤Ki

Ct,T (Ki)

Bt,TK2
i

∆I(Ki),

ivdt,T = 2
∑
Ki≤St

Pt,T (Ki)

Bt,TK2
i

∆I(Ki),

(6)

with the weight function ∆I(Ki) defined as

∆I(Ki) =


Ki+1−Ki−1

2 , 0 ≤ i ≤ N (with K−1 = 2K0 −K1,KN+1 = 2KN −KN−1)

0, otherwise.

By definition of the variance swap contract, the floating leg is given by

rvt,T = EPt [gv(rt,T )] =

T−1∑
i=t

gv(ri,i+1), (7)

where ri,i+1 is the daily log return of the underlying asset (so we split the interval [t T ], which

will be one-month long in this work, into daily sub-intervals), and EPt [.] denotes the historical

expectation conditional on time t. Following Kilic and Shaliastovich (2015), we decompose the

realized variance rvt,T into two parts that are related to the two opposite sides of the asset

return distribution. More precisely, we will write

rvt,T =
T−1∑
i=t

gv(ri,i+1)1{ri,i+1>0} +
T−1∑
i=t

gv(ri,i+1)1{ri,i+1≤0}

= rvut,T + rvdt,T ,

(8)
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where rvut,T and rvdt,T denote the upside and downside realized variances, respectively.

These quantities being defined, the payoff of a variance swap (payer of the fixed leg and receiver

of the floating leg) is given by rvt,T − ivt,T and after averaging under the historical probability

measure the variance risk premium is obtained. As explained in Kozhan et al. (2013), it is

convenient to define the excess return of an investment in the variance swap and it is given by

vpt,T =
rvt,T
ivt,T

− 1. (9)

The decomposition performed on the variance swap allows us to define the upside and downside

variance swaps as rvut,T − ivut,T and rvdt,T − ivdt,T , respectively, as well as the corresponding risk

premiums. Here also, it is convenient to define excess returns associated with these swaps and

it leads to

vput,T =
rvut,T
ivut,T

− 1, vpdt,T =
rvdt,T

ivdt,T
− 1. (10)

Remark 2.1 The decomposition of the variance risk premium into two components follows Kilic

and Shaliastovich (2015) where the authors qualified them as ”good” (for the upside) and ”bad”

(for the downside) risk premiums, a naming justified by the fact that they analyze an equity index

(the S&P500) for which a positive (negative) return is often favorably (unfavorably) considered.

In the case of the crude oil, such naming is inappropriate as a too high oil price leads to a

decrease of consumption and a weakening of the economy.

Remark 2.2 In Kilic and Shaliastovich (2015), the decomposition of Eq.(8) is computed using

high frequency data and as explained by these authors it is known that, thanks to Barndorff-

Nielsen et al. (2008), under the hypothesis that (rt)t≥0 satisfies the dynamic rt =
∫ t

0 µsds +∫ t
0 σsdws + Jt with (wt)t≥0 a Brownian motion and Jt a pure jump process, then the following

convergences in probability hold

rvut,T →
1

2

∫ T

t
σ2
sds+

∑
t≤s≤T

(∆rs)
21{∆rs≥0},

rvdt,T →
1

2

∫ T

t
σ2
sds+

∑
t≤s≤T

(∆rs)
21{∆rs≤0},
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with ∆rs = rs − rs−.

For the risk neutral part of the variance swap, they perform the decomposition in Eq.(3). Notice

that while the upside risk neutral variance depends on positive evolutions of the underlying asset

over the interval [t T ], the upside realized variance does not and similar remark applies to the

downside decomposition. As a result, it does not lead exactly to risk premiums as, by definition,

a risk premium requires the same quantity to be computed under the risk neutral and historical

probabilities. Still, we will follow these authors and qualify the average value of rvut,T − ivut,T and

rvdt,T − ivdt,T as risk premiums.

2.2 Skew risk premiums

For the skew swap we will closely follow Kozhan et al. (2013) and we refer to that work for

further details. These authors propose to compute the fixed leg of the swap at time t with

maturity T as

ist,T = EQt [gs(rt,T )], (11)

where gs(r) = 6 (2 + r − 2er + rer). A Taylor expansion of gs shows that it behaves like r3 and

it justifies its use to compute the skewness. 1The expectation in Eq.(12) can be expressed as a

function of a continuum of OTM options as it can be written as

ist,T = 3(vEt,T − ivt,T ), (12)

where the quantity vEt,T is defined as

vEt,T =
2

Bt,T

∫ +∞

St

Ct,T (K)

KFt,T
dK +

2

Bt,T

∫ St

0

Pt,T (K)

KFt,T
dK

= vu,Et,T + vd,Et,T .

Thanks to the decomposition of ivt,T into upside and downside parts and similar decomposition

that can also be performed on vEt,T , still denoted by vu,Et,T and by vd,Et,T , we conclude that ist,T can

be decomposed as

ist,T = 3(vu,Et,T − iv
u
t,T )− 3(vd,Et,T − iv

d
t,T )

= isut,T − isdt,T .
(13)

1We refer to Kozhan et al. (2013) for an explanation why the function gs is is used instead of r3 as well as gv

given in the variance swap section instead of r2.
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As isut,T only involves OTM calls, it depends on the third moment of the underlying asset return

conditional on this return to be positive and, as such, it depends on the asset’s right or upper

tail distribution. A similar remark applies to isdt,T , this time OTM puts are involved and with

the difference that it is conditional on the asset return to be negative, so it depends on the

asset’s left or lower tail distribution. As a result, we can write

gs(rt,T ) = gs(rt,T )1{rt,T>0} − gs(|rt,T |)1{rt,T≤0}, (14)

from which we deduce

isut,T = EQt

[
gs(rt,T )1{rt,T>0}

]
, isdt,T = EQt

[
gs(|rt,T |)1{rt,T≤0}

]
. (15)

In practice, there are only a finite number of options available in the market, so vu,Et,T and vd,Et,T

can be approximated by the following sums:

vu,Et,T = 2
∑
St≤Ki

Ct,T (Ki)

Bt,TKiFt,T
∆I(Ki),

vd,Et,T = 2
∑
Ki≤St

Pt,T (Ki)

Bt,TKiFt,T
∆I(Ki),

(16)

with weight function ∆I(Ki) as previously defined.

Regarding the floating leg of the skew swap, it is in fact the expectation of the payoff function

gs(r) under the physical measure P , and it is given by

rst,T = EPt [gs(rt,T )] =

T−1∑
i=t

gs(ri,i+1). (17)

The decomposition of Eq.(14) leads to define the upside and downside realized skew, namely,

rsut,T and rsdt,T , and these quantities are

rsut,T =

T−1∑
i=t

gs(ri,i+1)1{ri,i+1>0},

rsdt,T =

T−1∑
i=t

gs(|ri,i+1|)1{ri,i+1≤0}.

(18)

The skew swap contract value, payer of the fixed leg and receiver of the floating leg, can be

written as rst,T − ist,T and after averaging under the historical probability measure the skew
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risk premium is obtained. As for the variance swap, it is convenient to define the excess return

of an investment on a skew swap contract as

spt,T =
rst,T
ist,T

− 1. (19)

Lastly, the decompositions performed on the risk-neutral and realized skews lead to define the

upside and downside skew swaps and after averaging under the historical probability measure

to obtain the upside and downside skew risk premiums. Again, it is convenient to compute the

excess returns associated with these upside and downside skew swaps, they are given by

sput,T =
rsut,T
isut,T

− 1,

spdt,T =
rsdt,T

isdt,T
− 1.

(20)

To implement these quantities we will use options on crude oil and only monthly maturities are

available. As a consequence, the risk-neutral expectations can only be evaluated twelves times

a year and t will run through the first days following the option maturity dates. Therefore, all

the quantities are on a monthly basis. Also, to lighten notations we will drop the dependency

with respect to T , that is to say, we will use ivt instead of ivt,T in the following parts and the

same rule applies to all the other quantities.

3 Data and descriptive statistics

The empirical analysis spans the period from January 2010 to June 2016. To compute the vari-

ance and skew risk premiums as well as their decompositions, we obtain both European call and

put options written on the USO from Thomson Reuters Ticker History (TRTH) of SIRCA.2

Option information such as Ticker, date, last price, close bid, close ask, expiration date, strike

price and option type is extracted and consistently with the pricing formulas presented in the

previous section only OTM options are used. As previously mentioned, the empirical study is

carried out at monthly frequency, so only one-month maturity options will be used here, and the

computation will run through the first days following the option maturity dates. Also, because

the moneyness range of options varies a lot across time, especially for the puts, we restrict it

2http://www.sirca.org.au/

10



from 0.5 to 2.0 to avoid illiquidity issues caused by deep OTM options. We use Libor rates to

proxy the risk-free rates, all of them provided by Bloomberg.

Figure 1 contains the evolution of the USO for the period considered while Figure 2 illustrates

the distribution of its daily log returns as well as the normal distribution having the same mean

and standard deviation as the data sample. Compared to the normally distributed curve, USO

density curve exhibits a slightly negative skewness, fatter tails, and a higher peak, it highlights

the importance of higher moment risks such as skewness and kurtosis.

[ Insert Figure 1 here ]

[ Insert Figure 2 here ]

Figure 3 exhibits the time series of total, upside and downside risk-neutral variances, namely,

iv, ivu and ivd, from January 2010 to June 2016. The comovement of the three variables

demonstrates their positive correlations. In general, the curve of ivd is above that of ivu, so we

can expect the average value of ivd to be larger, and it implies that the variance of the left tail

is larger than the variance of the right tail. We also notice that compared to ivd, the curve of

ivu exhibits more spikes.

[ Insert Figure 3 here ]

Figure 4 shows the time series of total, upside and downside realized variances, namely, rv, rvu

and rvd, over the same period. All the three quantities are positively correlated as the curves

move together, and the moving trend is similar to that of their risk-neutral counterparts. The

magnitude of rvd is slightly larger than that of rvu but their difference is smaller compared to

ivu and ivd. Moreover, there are more spikes on the downside realized variance curve compared

to the upside realized variance curve.

[ Insert Figure 4 here ]

Figure 5 displays the time series of total, upside and downside variance risk premiums, namely,

vp, vpu and vpd. Generally, vp, vpu and vpd show similar evolution patterns over time, it suggests
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positive correlations among the variables. On average, vp, vpu and vpd are negative, indicating

that positive premiums are paid to hedge against the total, upside and downside volatility of the

underlying asset. Moreover, the curve of vpd shows more larger spikes than that of vpu. There

are mainly two concentrated periods of spikes revealed by the curves of vpu and vpd, namely,

the period from 2010 to 2012 and the period from 2014 to 2016 during which the crude oil price

dropped dramatically. The curves of vpu and vpd exhibit spikes at different times indicating

that the decomposed variance premiums are driven by different underlying state variables.

[ Insert Figure 5 here ]

Figure 6 shows the time series of total, upside and downside risk-neutral skews, namely, is, isu

and isd. The comovement of isu and isd suggests a positive correlation between these variables.

Comparing the upper and lower figures, and consistently with the decomposition of is, isu

captures the positive spikes of is and isd captures the negative spikes of is. Also of interest is to

notice that we can have is that remains unchanged from one observation date to the next while

isu and isd vary substantially. As a result, the disaggregation of is into isu and isd can provide

additional information. A similar remark applies to iv although here ivu and ivd add up to give

iv. Both the average value and volatility of isd are greater than those of isu, as the curve of isd

is above that of isu for most part and it displays more larger spikes as well.

[ Insert Figure 6 here ]

Figure 7 shows the time series of total, upside and downside realized skews, namely, rs, rsu and

rsd. It depicts similar moving trend to their risk-neutral counterparts. A positive correlation

between rsu and rsd can be observed as they comove together. As for the risk-neutral variances,

rsu captures the positive spikes of rs while rsd captures the negative spikes of rs, as shown by

Figure 7. Lastly, rsd reveals higher values on average compared to rsu.

[ Insert Figure 7 here ]

Figure 8 exhibits the time series of total, upside and downside skew risk premiums, namely,

sp, spu and spd. The three variables display distinct extreme values from those of the series
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in Figure 6 and Figure 7 as spikes in risk premiums, decomposed or not, are due to strong

differences between realized and risk-neutral quantities. It suggests that the risk premium

components contain different information. Also, during the two crisis periods, namely, years

2010 to 2012 and years 2014 to 2016, many spikes are present in spu and spd curves while for

the sp curve there is only one extreme value around 2011. It suggests that the sp curve, which

aggregates spu and spd, is less informative than its constituents considered separately. Lastly,

the curve of spd exhibits larger spikes than the one of spu.

[ Insert Figure 8 here ]

Table I reports descriptive statistics such as mean and standard deviation for the realized and

risk-neutral variance and skewness. Regarding the variance, either realized or risk-neutral, the

downside component is larger than the upside component. A similar remark applies to the

skewness, it results in negative skews (realized and risk-neutral). For both the variance and

the skew, the realized values are smaller than the risk-neutral values, it implies that investors

are willing to pay in order to hedge variance and skew risks. Lastly, the asymmetry between

downside and upside risk-neutral quantities (variance and skew) explains the downward slope

of the volatility smile observed in the USO option market and is similar to what is known for

the equity index options (S&P500).

[ Insert Table I here ]

Table II reports descriptive statistics for the key quantities vp, vpu, vpd, sp, spu and spd for the

period under study. On average, the variance risk premiums are negative, with the downside

variance risk premium as the lowest. Note that in Kilic and Shaliastovich (2015), which inves-

tigates the upside and downside variance risk premiums for the S&P500 market, ivu is positive

while ivd is negative3, highlighting a difference between equity index and commodity markets.

In other words, in the equity market, a downward market movement is bad news but an upward

market movement is good news. In sharp contrast, in the commodity market, both upward

and downward market shifts are bad news. Regarding the skew risk premiums, which were not

analyzed in Kilic and Shaliastovich (2015), all of them are negative. Moreover, we notice that

3Kilic and Shaliastovich (2015) defines moment risk premium as the difference between risk-neutral and realized
moments, it will result in risk a premium of opposite sign than ours.
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upside and downside skew risk premiums are quite close. For the standard deviations, both

downside variance and skew risk premiums are higher than their upside counterparts and the

difference is even larger for the skew. It suggests that downside skew risk premium is the most

sensitive variable to left tail market crashes.

[ Insert Table II here ]

Table III provides a correlation matrix for those variables. Both vpu and vpd have strong

correlations with vp, as high as 0.487 and 0.885, respectively. As expected, vpu and vpd are

weakly correlated, only 0.051. In contrast, spd has a much higher correlation with sp than spu

with sp as we find -0.601 for the former while for the latter we find -0.195. Notice that in both

cases, downside decompositions carry more information (i.e. higher correlations) with respect

to aggregated or unconditional risk premiums than upside decompositions.

[ Insert Table III here ]

4 Empirical analysis

In order to deepen our understanding of the information content of the variables constructed

in the previous part, namely, the upside and downside variance and skew risk premiums, a

thorough empirical analysis of these quantities is performed. The first part aims to test time-

varying properties of the total and decomposed risk premiums. Time variation of variance and

skew risk premiums for the U.S. equity index market (i.e. S&P500 index options) has been

documented in the literature such as Kozhan et al. (2013) while similar conclusion was obtained

for the volatility index market (i.e. VIX index options) in Da Fonseca and Xu (2016). The second

part proposes several factor models for the total as well as decomposed risk premiums using the

USO excess return as explanatory variable. The third part is about predictability of USO excess

returns by these quantities and to show that upside and downside risk premiums jointly have

higher forecasting power than the (unconditional) variance and skew risk premiums. As shown

by Bollerslev et al. (2009), variance risk premium contains significant predictive information

for equity index excess returns within a forecast horizon of 6 months. From the construction

of the quantities, it is intuitive that upside and downside variance and skew risk premiums
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jointly contain more information than total variance and skew risk premiums. The recent work

of Kilic and Shaliastovich (2015) decomposed the variance premium into ”good” and ”bad”

variance premiums and further demonstrated that the two components jointly have a stronger

predictive power for equity index excess returns over a longer horizon (they study the same

data as Bollerslev et al. (2009)). Our objective is to analyze the predictability of USO excess

returns by the upside and downside variance and skew risk premiums over forecast horizons

spanning from 1 week to 9 months. Our results extend existing results in both directions. First,

along with variance risk premiums (unconditional and conditional) it also considers skew risk

premiums (unconditional and conditional), thus it extends the study of Chevallier and Sévi

(2013) that analyzes the predictability of crude oil futures returns using the (unconditional)

variance risk premium.4 Second, it underlines the specifics, compared with the equity index

option market and volatility index option market, of the crude oil option market.

4.1 Time variation of risk premiums

Time variation of variance risk premiums: Following Kozhan et al. (2013), we test the

time variation of the total variance risk premiums by performing the univariate regression of

realized variance on risk-neutral variance, as well as the univariate regressions of upside and

downside realized variances on upside and downside risk-neutral variances

rvt = α0 + α1ivt + εαt , (21)

rvut = β0 + β1iv
u
t + εβt , (22)

rvdt = γ0 + γ1iv
d
t + εγt , (23)

and the results are reported in Table IV.

[ Insert Table IV here ]

Under the null hypothesis that the variance risk premium is constant over time, the slope should

be one and the intercept should be zero. Regarding Eq.(21), the slope of total risk neutral

variance (iv) is 0.798, thus significantly smaller than 1 (and different from 0), it indicates that

4The point of view of Chevallier and Sévi (2013) is somewhat different than ours as they consider along the
variance risk premium other explanatory variables such as Han Index, Killian Index and the De RoonS Index,
among others.
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vp is time varying. Similar conclusion applies to ivd as the slope coefficient is 0.528 and highly

significant. It contrasts with ivu as the estimated coefficient in that case is 1.042 and highly

significant from which we deduce that the upside variance risk premium is not time varying if

we follow Kozhan et al. (2013)’s interpretation. The empirical results, at least for iv and ivd, are

consistent with Figure 5 that shows the time-varying evolutions of total and downside variance

risk premiums. Regarding the R2, the values are as high as 61.29%, 55.28% and 32.08% and all

the intercepts are not significantly different from zero.

Time variation of skew risk premiums: To test the dynamics of skew risk premiums,

either total, upside or downside skew risk premiums, we run the following univariate regressions

rst = α0 + α1ist + εαt , (24)

rsut = β0 + β1is
u
t + εβt , (25)

rsdt = γ0 + γ1is
d
t + εγt , (26)

and report the results in Table V.

[ Insert Table V here ]

Regarding Eq.(24) about the total skew risk premium, the slope is significantly different from

zero at 5%, while both slopes of upside and downside skew risk premiums are highly significantly

different from one. It indicates that all the skew risk premiums are time varying. Moreover, the

R2 for Eq.(24) is as low as 10.15%, while for Eq.(25) and Eq.(26) they increase to 49.75% and

26.11%, respectively. It demonstrates that after decomposition, the upside and downside risk

neutral skew provides more information on their realized counterparts.

4.2 Factor models for risk premiums

In this part, to better understand the source of risk premiums, we analyze to which extent they

are related to USO excess returns. As previously stated, we adopt the ratio expressions given by

Eqs.(9), (10), (19) and (20), so that the risk premiums can be interpreted as the excess returns

of investments made on the corresponding moment swap contracts. For example, vpd is actually

the excess return from an investment made on the downside variance swap contract, for which
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the value of the floating leg is rvd and the value of the fixed leg is ivd. Therefore, the synthetic

downside variance swap vpd enables the buyer of the contract to hedge against an increase of

the downside variance. Moreover, for simplicity, we name the underlying of vpd the downside

USO, it is related to negative USO returns. Similarly, the underlying of vpu is the upside USO,

it is related to positive USO returns. Same interpretation also applies to spu and spd.

Factor models for total variance and skew risk premiums: Regarding the total variance

and skew risk premiums, we consider the regressions

vpt = α0 + α1xm
USO
t + εαt , (27)

spt = β0 + β1xm
USO
t + εβt , (28)

where xmUSO denotes the USO monthly excess return starting on day t as defined in Eq.(1).

Results for Eq.(27) and Eq.(28) are reported in Table VI.

[ Insert Table VI here ]

The first regression leads to a highly significant and negative coefficient for xmUSO and R2 of

10.44%, and the coefficient’s sign is consistent with the leverage effect implied by the negative

slope of the volatility smile observed on USO options. If the market goes down, that is, a

negative value for xmUSO, it will lead to an increase of market volatility and thus an increase

of vp. Furthermore, as the market volatility increases, the left tail of USO distribution grows

larger and it will result in a volatility smile with a steeper slope. The coefficient of xmUSO in

the second regression is not significantly different from zero, so the relationship between xmUSO

and sp cannot be confirmed here. Note that xmUSO explains more vp than sp.

Factor models for upside variance and skew risk premiums: We consider whether

the upside variance and skew risk premiums, which can be interpreted as the excess return of

investments made on those swap contracts, can be explained by market excess returns. We run

the following regressions

vput = α0 + α1xm
USO
t + εαt , (29)

sput = β0 + β1xm
USO
t + εβt , (30)
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with the estimation results reported in Table VI. Regarding the regression for the upside variance

risk premium, the slope estimate is positive and highly significant and indicates that a positive

relationship exists between the USO excess return and upside variance risk premium. Similarly,

Eq.(30) also leads to a positive and significant coefficient for xmUSO, thus a positive relationship

also exists between the USO excess return and upside skew risk premium. Also, the R2 for

Eq.(29) is 22.82% while it is 11.66% for Eq.(30), indicating that xmUSO explains more the

variable vpu than spu. Moreover, before decomposition, xmUSO contributes only to 10.44% of

vp (the regression Eq.(27)), while after decomposition, xmUSO contributes to 22.82% of vpu.

Similar remark applies to sp and spu, as xmUSO is not correlated to the former while it explains

a considerable part of the latter.

Factor models for downside variance and skew risk premiums: We preform univariate

regressions of downside variance and skew risk premiums on the USO excess return

vpdt = α0 + α1xm
USO
t + εαt , (31)

spdt = β0 + β1xm
USO
t + εβt , (32)

and results are reported in Table VI. The coefficients for vpd and spd are both negative and

significant, the R2 are equal to 38.16% and 19.22% for Eq.(31) and Eq.(32), respectively. Similar

to the previous case, xmUSO explains more of vpd than spd. In conclusion, the higher the risk

premium moment order is, the less xmUSO can explain. Interestingly, xmUSO explains more vpd

than vp or vpu. Likewise, among sp, spu and spd, xmUSO explains more of spd.

4.3 Predictability

Predictability by upside and downside variance risk premiums: In this part, we will

focus on the role of upside and downside variance risk premiums in predicting USO excess

returns. We will consider the following regressions
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xmUSO
t,h = α0,h + α1,hvpt + εαt , (33)

xmUSO
t,h = β0,h + β1,hvp

u
t + εβt , (34)

xmUSO
t,h = γ0,h + γ1,hvp

d
t + εγt , (35)

xmUSO
t,h = δ0,h + δ1,hvp

u
t + δ2,hvp

d
t + εδt , (36)

where h denotes the horizon of prediction and xmUSO
t,h denotes the future USO excess return

over the horizon h that is computed as

xmUSO
t,h =

1

h

h∑
i=0

rt+i,T+i − rft+h,T+h, (37)

with rt,T and rft,T representing the monthly USO return, as previously defined, and the monthly

risk-free rate starting at day t and ending at time T , respectively. The results for Eqs.(33) -

(36) are presented in Table VII.

[ Insert Table VII here ]

Eq.(33) analyzes the predictability of USO excess returns by the variance risk premium over

various time horizons ranging from 1 week to 9 months. The regression results show that vp

remains a significant predictor variable only over a short horizon of 2 weeks, with a low R2 of

6.70%.5 In contrast, Bollerslev et al. (2009) demonstrate that variance risk premium serves as

a significant predictor for equity index returns over a forecasting horizon of 6 months, which is

much longer than the 2-week horizon in the crude oil market, and illustrates a first difference

between the equity index market and the crude oil market. Also, the coefficient of vp in Eq.(33)

is negative, it indicates that investors are willing to pay a premium to hedge against the volatility

of the underlying asset (i.e. the USO) regardless of the moving direction.

For comparison, Eq.(34) investigates the predictability of USO excess returns by the upside vari-

ance risk premium over various forecasting horizons. Compared to vp, the predictive information

of vpu remains significant over the much longer horizon of 3 months. For the 3-month ahead

USO excess return regression, vpu is only moderately significant and leads to a low R2 of 5.28%.

5In fact it is an adjusted R-square but we will omit the term adjusted hereafter.
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Considering the forecasting horizon of 2 months, the coefficient of vpu is highly significant with

a R2 of 15.93% and suggests that vpu contains more predictive information than vp.

Eq.(35) investigates the predictive information of vpd for the USO excess return xmUSO. For

the 2-week forecasting horizon, vpd is highly significant with a R2 of 26.73%, thus vpd is the

most informative variable among vp, vpu and vpd. Moreover, the longest forecastable horizon

for vpd is 3 months, even though vpd is lowly significant in that case (i.e. the t-statistic is at a

significance level of 5%).

The results of univariate regressions from the previous parts show that among the total and

decomposed variance risk premiums, the latter, and especially vpd, work better as predictor

variables, in terms of forecasting horizons and level of significance, and generally vpd contributes

a bit more to explain the future USO excess returns than vpu. We further analyze the joint

predictive information of vpu and vpd for USO excess returns in Eq.(36). Compared to the

univariate regressions, the R2 increases for all forecasting horizons, it underlines the comple-

mentary contributions of vpu and vpd. Naturally, the R2 decreases from 58.67% to 8.18% when

the forecasting horizon increases from 1 week to 3 months, where for the 3-month horizon vpu

is only moderately significant while vpd is lowly significant. For the 2-week ahead USO excess

return, vpu and vpd jointly contribute to explain 45.16% of xmUSO, with both coefficients highly

significant. In summary, it is statistically important to include upside and downside variance

premiums to better predict future USO returns.

Predictability by upside and downside skew risk premiums: In this part, similar anal-

ysis is carried out for the predictability of USO excess returns by upside and downside skew risk

premiums and a comparison is performed when the total skew risk premium is used. We will

run the following regressions

xmUSO
t,h = α0,h + α1,hspt + εαt , (38)

xmUSO
t,h = β0,h + β1,hsp

u
t + εβt , (39)

xmUSO
t,h = γ0,h + γ1,hsp

d
t + εγt , (40)

xmUSO
t,h = δ0,h + δ1,hsp

u
t + δ2,hsp

d
t + εδt , (41)

and report the results in Table VIII.
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[ Insert Table VIII here ]

Eq.(38) focuses on the predictability of USO excess returns by the total skew risk premium (sp)

over horizons ranging from 1 week to 9 months. The results show that sp does not contain any

predictive information about xmUSO, as the coefficients are insignificant and the R2 are low for

all horizons. In contrast, as previously shown, the total variance risk premium (vp) contains

significant predictive information regarding xmUSO for a forecasting horizon of up to 2 weeks.

Eq.(39) investigates the predictive information for xmUSO contained in the upside skew risk

premium (spu) over the same forecasting horizons. The coefficient of spu remains significant

up to an horizon of 3 months, even though the significance level at 3 months is only at 5%.

Unlike sp, spu contains predictive information for xmUSO as suggested by both the significant

coefficients and the decent R2. Moreover, spu is positively correlated with future USO excess

returns as the coefficients of spu remain positive for all horizons. Note that the intercept term

is also significant for up to 3 months.

For comparison, Eq.(40) analyzes the predictive information for xmUSO contained in the down-

side skew risk premium (spd). Similar to the case of spu, both the intercept and slope of spd

remain significant for up to 3 months but notice that the R2 only remain decent, that is to say

above 10%, for horizons up to 1 month. Here also, the constant terms remain significant and of

constant sign for forecasting horizons less than or equal to 3 months. The negative sign of spd

shows that spd is negatively correlated to xmUSO.

Eq.(41) further analyzes the joint predictive information of spu and spd for xmUSO. Firstly, both

spu and spd remain significant up to 3 months, with a high degree of significance for shorter

horizons. Compared to the univariate regressions on spu and spd, for all the horizons, the R2 is

much higher and larger than the sum of the R2 of the univariate regressions. It suggests that

these variables not only do not have redundant information but, indeed, have complementary

information. The constant terms that were significant in the univariate regressions are no longer

significant (except for the 2-month regression). Lastly, the coefficient signs are consistent with

those of the univariate regressions. Again, decomposed skew risk premiums have a much stronger

predictive power for USO excess returns than the (undecomposed) skew risk premium.
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Predictability by combining upside and downside risk premiums: The previous two

parts demonstrate the advantage of decomposing variance and skew risk premiums. In this part,

we will further explore the impact of this decomposition by considering the predictability of USO

excess returns by combining upside variance and skew risk premiums as explanatory variables on

one hand and downside variance and skew risk premiums as explanatory variables on the other

hand. Lastly, we will also consider the combination of upside and downside variance and skew

risk premiums. For simplicity, we use the total higher moment risk premiums to refer to the total

variance risk premium and the total skew risk premium. Similarly, we use the upside (downside)

higher moment risk premiums to refer to the upside (downside) variance risk premium and the

upside (downside) skew risk premium. We run the following regressions

xmUSO
t,h = α0,h + α1,hvpt + α1,hspt + εαt , (42)

xmUSO
t,h = β0,h + β1,hvp

u
t + β2,hsp

u
t + εβt , (43)

xmUSO
t,h = γ0,h + γ1,hvp

d
t + γ2,hsp

d
t + εγt , (44)

xmUSO
t,h = δ0,h + δ1,hvp

u
t + δ1,hvp

d
t + δ1,hsp

u
t + δ1,hsp

d
t + εδt , (45)

and report the results in Table IX.

[ Insert Table IX here ]

The Eq.(42) shows that total higher moment risk premiums can forecast USO excess returns only

for an horizon of 2 weeks as beyond that horizon the R2 is close to zero and only the variance

variable is significant. In sharp contrast, upside high moment risk premiums, given by Eq.(43),

and downside high moment risk premiums, given by Eq.(44), lead to decent forecast of USO

excess returns for up to 2 months, thus confirming the interest of decomposition for forecasting.

For the upside higher moment risk premiums the variance seems to contain all the information

as it is the only significant variable and, as a result, the R2 obtained for these regressions are

close to those obtained when only the upside variance variable is used. For the downside higher

moment risk premiums and for short horizons, both the variance and the skew are significant,

and in that case the R2 is higher than those obtained when regressing on the downside variance

alone (i.e. Eq.(35)) or the downside skew alone (i.e. Eq.(40)), whereas for longer horizons the

variance is the only significant variable with the natural consequence that the R2 in those cases

are close to those obtained when regressing on the variance alone. Lastly, in Eq.(45), all the
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variables are considered, it leads to regressions with very large R2 for up to 2 months and among

all the variables vpd seems to be the most important one. The coefficients’ signs are consistent

with those obtained in the previous regressions. Notice also that there is a complementary effect

between upside and downside variables as the R2 in a given regression involving these variables

largely dominates those obtained when only upside or downside variables are used and further

confirm, if needed be, the interest of the decomposition proposed in this work.

5 Conclusion

In this work we provide a comprehensive analysis of the total and decomposed variance and skew

risk premiums for the USO, an exchange traded fund tracking the daily price changes of the

WTI light sweet crude oil. So far, most of the literature mainly discusses the use of decomposed

variance risk premiums for the S&P 500 option market. We contribute to the literature by

extending the analysis of decomposed variance risk premiums to the crude oil market, but also

extend the discussion to skew risk premiums. To build these quantities we rely on two key works,

the decomposition proposed by Kilic and Shaliastovich (2015) for the variance risk premium and

the computation methodology for variance and skew risk premiums developed by Kozhan et al.

(2013).

We obtain three main findings. Firstly, we find that all the risk premiums, no matter decomposed

or not, are time varying. Secondly, if we apply one factor models to the total, upside and

downside variance and skew risk premiums with the USO excess returns as explanatory variable,

we find that it better explains the decomposed higher moment risk premiums (both variance and

skew) than their total counterparts. Thirdly, by analyzing the predictability of crude oil market

excess returns by decomposed variance and skew risk premiums, we found that the decomposed

high moment risk premiums contain much more predictive information than their undecomposed

counterparts. The downside higher moment risk premiums, the variance and to a lesser extent

the skewness, are especially informative about future evolutions of the crude oil market excess

return.

It would be interesting to fully explore how the decomposed risk premiums combine with ob-

servable economic variables commonly used in the literature, see for example Chevallier and Sévi
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(2013), for analyzing the crude oil market. Also, other commodity markets such as gas and gold

option markets could be considered along with commodity volatility option markets. We leave

these open questions for further research.
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A Decomposition of risk-neutral variance and skew

Following Bakshi et al. (2003), any twice-continuously differentiable function H(S) where S is spot price of the

underlying can be spanned by a position in bonds, stocks and out-of-money options

H(S) = H(S̄) + (S − S̄)HS(S̄) +

∫ ∞
S̄

HSS(K)(S −K)+dK +

∫ S̄

0

HSS(K)(K − S)+dK.

Under risk-neutral measure Q, the arbitrage-free price of the contingent claim with payoff H(S) is

EQ[e−rf (T−t)H(S)] =
(
H(S̄)− S̄HS(S̄)

)
e−rf (T−t) + HS(S̄)St

+

∫ ∞
S̄

HSS(K)C(t, T ;K)dK +

∫ S̄

0

HSS(K)P (t, T ;K)dK. (46)

Specifically, Kozhan et al. (2013) define the payoff function for the variance swap contract as gv(r(S)) =

2 (er − 1− r), with r(S) = ln S
St

. Referring to Eq.(46), we set S̄ = S(t). Under the risk-neutral measure Q,

value of the payoff function is

EQ[H(S)] =
1

Bt,T

∫ +∞

St

2

K2
Ct,T (K)dK +

1

Bt,T

∫ St

0

2

K2
Pt,T (K)dK. (47)

where Bt,T is the time-t price of zero-coupon bond with maturity T .

Based on the previous work, we define the payoff function for the upside variance swap contract as

Hu(S) =

{
gv(r(S)), if S > St,

0, otherwise.
(48)

The first order derivative of Hu(S) is

Hu
S (S) =

2
(

1
St
− 1

S

)
, if S > St,

0, otherwise,

where Hu
S (S) is continuous but not differentiable at S = St.

The second order derivative of Hu(S) is

Hu
SS(S) =

{
2
S2 , if S > St,

0, otherwise,

where Hu
SS(S) is not continuous at S̄ = St, but it is continuous on (−∞, St) and (St,∞) separately.

Even though Hu(S) is not twice-continuously differentiable at S = St, it is well defined and the discontinuity

will not result in an infinite integral. Therefore, for the upside variance swap, the expected value of the payoff

function under risk-neutral measure Q is

EQ[Hu(S)] =
1

Bt,T

∫ +∞

St

2

K2
Ct,T (K)dK. (49)

Likewise, if we define the payoff function for the downside variance swap contract as

Hd(S) =

{
0, if S > St,

gv(r(S)), otherwise,
(50)

by taking the second derivative of Hd(S), we get the expected value of the payoff function under risk-neutral

measure Q

EQ[Hd(S)] =
1

Bt,T

∫ St

0

2

K2
Pt,T (K)dK. (51)

26



Considering Eq.(47), we get

EQ[H(S)] = EQ[Hu(S)] + EQ[Hd(S)]. (52)

Eq.(52) demonstrates that the risk-neutral variance can be decomposed into upside and downside risk-neutral vari-

ance, respectively, with the former constructed upon a continuum of out-of-money calls and the latter constructed

upon a continuum of out-of-money puts.

As to the decomposition of risk-neutral skew, the same methodology applies. We define the payoff function for

the upside and downside skew swap as

Hu(S) =

{
gs(r(S)), if S > St,

0, otherwise.
(53)

and

Hd(S) =

{
0, if S > St,

−gs(r(S)), otherwise.
(54)

By utilizing Eq.(46), under risk-neutral measure Q, the expected value for Hu(S) and Hd(S) can be expressed

by a continuum of out-of-money calls and puts, respectively

EQ[Hu(S)] =
6

Bt,T

∫ ∞
St

K − St

K2St
Ct,T (K)dK,

EQ[Hd(S)] =
6

Bt,T

∫ St

0

St −K

K2St
Pt,T (K)dK.

(55)

Therefore, for skew swap contract, we have

EQ[H(S)] = EQ[Hu(S)]− EQ[Hd(S)]. (56)
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B Tables

Table I: Descriptive statistics of variances and skews

Mean Std. dev. Mean Std. dev.

rv 7.64e-03 7.48e-03 rs -2.526e-05 2.422e-04

rvu 3.54e-03 4.32e-03 rsu 1.417e-04 2.779e-04

rvd 4.10e-03 4.09e-03 rsd 1.670e-04 2.426e-04

iv 10.65e-03 7.36e-03 is -8.446e-04 8.754e-04

ivu 4.27e-03 3.10e-03 isu 1.335e-03 1.257e-03

ivd 6.38e-03 4.45e-03 isd 2.179e-03 1.919e-03

Note: Descriptive statistics such as mean, standard deviation for the variables: the realized skew (rs, given by

Eq.(17)), the upside realized skew (rsu, given by Eq.(18)) and the downside realized skew (rsd, given by Eq.(18)),

the risk neutral skew (is, given by Eq.(12)), the upside risk neutral skew (isu, given by Eq.(15)) and the downside

risk neutral skew (isd, given by Eq.(15)). Sample with monthly frequency ranging from January 2010 to June

2016.

Table II: Descriptive statistics of risk premiums

Mean Std. dev. Q1 Median Q3

vp -0.304 0.395 -0.565 -0.408 -0.207

vpu -0.239 0.474 -0.531 -0.315 -0.020

vpd -0.323 0.605 -0.676 -0.435 -0.178

sp -1.096 0.808 -1.071 -1.000 -0.919

spu -0.915 0.094 -0.975 -0.938 -0.899

spd -0.912 0.153 -0.981 -0.956 -0.921

Note: Descriptive statistics such as mean, standard deviation, the 25th percentile, median, and 75th percentile

for the variables: the variance risk premium (vp, given by Eq.(9)), the upside variance risk premium (vpu, given

by Eq.(10)), the downside variance risk premium (vpd, given by Eq.(10)), the skew risk premium (sp, given by

Eq.(19)), the upside skew risk premium (spu, given by Eq.(20)) and the downside skew risk premium (spd, given

by Eq.(20)). Sample with monthly frequency ranging from January 2010 to June 2016.
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Table III: Correlations
vp vpu vpd sp spu spd

vp 1.000 0.487 0.885 -0.339 0.536 0.807

vpu 1.000 0.051 -0.154 0.899 0.088

vpd 1.000 -0.418 0.153 0.923

sp 1.000 -0.195 -0.601

spu 1.000 0.172

spd 1.000

Note: Correlation between the variables: the variance risk premium (vp, given by Eq.(9)), the upside variance

risk premium (vpu, given by Eq.(10)) and the downside variance risk premium (vpd, given by Eq.(10)), the skew

risk premium (sp, given by Eq.(19)), the upside skew risk premium (spu, given by Eq.(20)) and the downside

skew risk premium (spd, given by Eq.(20)). Sample with monthly frequency ranging from January 2010 to June

2016.

Table IV: Time variation of upside and downside variance premiums

Const. iv ivu ivd Adj. R2(%)

rv -0.0008 0.798∗∗∗ 61.29

(-0.91) (8.82)

rvu -0.0009 1.042∗∗∗ 55.28

(-1.46) (6.49)

rvd 0.0008 0.528∗∗∗ 32.08

(1.31) (6.34)

Note: Regressions of the realized variance (rv, given by Eq.(7)) on the risk neutral variance (iv, given by Eq.(3)),

the upside realized variance (rvu, given by Eq.(8)) on the upside risk neutral variance (ivu, given by Eq.(3))

and the downside realized variance (rvd, given by Eq.(8)) on the downside risk neutral variance (ivd, given by

Eq.(3)). The t-statistics are computed according to Newey and West (1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote the

significance level of 5%, 1% and 0.1% respectively. Sample with monthly frequency ranging from January 2010

to June 2016.

Table V: Time variation of upside and downside skew premiums

Const. is isu isd Adj. R2(%)

rs -0.0001∗∗ -0.093∗ 10.15

(-2.96) (-2.50)

rsu -0.00006∗ 0.157∗∗∗ 49.75

(-2.04) (5.81)

rsd 0.00002 0.066∗∗∗ 26.11

(0.63) (4.73)

Note: Regressions of the realized skew (rs, given by Eq.(17)) on the risk neutral variance (is, given by Eq.(12)),

the upside realized variance (rsu, given by Eq.(18)) on the upside risk neutral variance (isu, given by Eq.(15))

and the downside realized variance (rsd, given by Eq.(18)) on the downside risk neutral variance (isd, given by

Eq.(15)). The t-statistics are computed according to Newey and West (1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote

the significance level of 5%, 1% and 0.1% respectively. Sample with monthly frequency ranging from January

2010 to June 2016.
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Table VI: Market excess returns and risk premiums

Const. xmUSO Adj. R2(%)

vp -0.314∗∗∗ -1.450∗ 10.46

(-8.01) (-2.15)

sp -1.098∗∗∗ -0.225 -1.24

(-15.84) (-0.22)

vpu -0.198∗∗∗ 2.554∗∗∗ 22.82

(-3.79) (4.56)

spu -0.908∗∗∗ 0.377∗∗ 11.66

(-84.20) (2.95)

vpd -0.366∗∗∗ -4.045∗∗∗ 38.16

(-7.66) (-4.57)

spd -0.920∗∗∗ -0.726∗∗ 19.22

(-66.13) -3.23

Note: The table shows to what extent the risk premiums, namely, the variance premium (vp, given by Eq.(9)),

the skew premium (sp, given by Eq.(19)), the upside variance premium (vpu, given by Eq.(10)), the upside skew

premium (spu, given by Eq.(20)), the downside variance premium (vpd, given by Eq.(10)) and the downside skew

premium (spd, given by Eq.(20)), can be explained by the USO excess return (xmUSO, given by Eq.(1)). The

t-statistics are computed according to Newey and West (1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote the significance

level of 5%, 1% and 0.1% respectively. The monthly observations range from January 2010 to June 2016.
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Table VII: Market return prediction using upside and downside variance premiums

xmUSO

1w 2w 1m 2m 3m 6m 9m

1 Const. -0.035∗ -0.030 -0.022 -0.017 -0.015 -0.013 -0.013

(-2.49) (-1.91) (-1.29) (-0.89) (-0.71) (-0.59) (-0.83)

vp -0.074∗∗∗ -0.057∗ -0.032 -0.013 -0.008 0.002 0.005

(-3.33) (-2.44) (-1.34) (-0.75) (-0.42) (0.18) (0.49)

Adj. R2(%) 9.84 6.70 1.64 -0.65 -1.05 -1.38 -1.07

2 Const. 0.006 0.002 0.0007 -0.003 -0.006 -0.010 -0.012

(0.57) (0.21) (0.06) (-0.23) (-0.40) (-0.55) (-0.87)

vpu 0.083∗∗∗ 0.068∗∗∗ 0.060∗∗∗ 0.043∗∗∗ 0.029∗∗ 0.014 0.010

(5.21) (5.30) (4.84) (4.08) (2.81) (1.77) (1.24)

Adj. R2(%) 19.91 15.93 14.27 9.29 5.28 2.29 1.35

3 Const. -0.041∗∗ -0.035∗∗ -0.029∗ -0.022 -0.018 -0.015 -0.014

(-3.29) (-2.85) (-2.23) (-1.61) (-1.16) (-0.67) (-0.92)

vpd -0.089∗∗∗ -0.070∗∗∗ -0.049∗∗∗ -0.028∗∗∗ -0.018∗ -0.004 0.0002

(-4.84) (-4.33) (-3.57) (-3.88) (-2.06) (-0.75) (0.030)

Adj. R2(%) 35.56 26.73 14.53 5.46 2.48 -0.94 -1.47

4 Const. -0.023 -0.020 -0.015 -0.012 -0.012 -0.011 -0.012

(-1.90) (-1.77) (-1.38) (-1.11) (-0.87) (-0.66) (-0.96)

vpu 0.088∗∗∗ 0.071∗∗∗ 0.063∗∗∗ 0.045∗∗∗ 0.030∗∗ 0.015 0.010

(6.78) (6.06) (5.21) (4.00) (2.73) (1.82) (1.30)

vpd -0.092∗∗∗ -0.072∗∗∗ -0.051∗∗∗ -0.029∗∗∗ -0.019∗ -0.005 -0.0001

(-5.41) (-4.77) (-3.97) (-4.24) (-2.21) (-0.95) (-0.03)

Adj. R2(%) 58.67 45.16 30.56 15.62 8.18 1.47 -0.12

Note: The table shows the predictability of future USO excess returns (xmUSO) which is defined as Eq.(37), by

using the variance premium (vp, given by Eq.(9)) alone, and using the upside variance premium (vpu, given by

Eq.(10)) and downside variance premium (vpd, given by Eq.(10)) jointly. The forecasting horizon h can be 1 week

(1w), 2 weeks (2w), 1 month (1m), 2 months (2m), 3 months (3m), 6 months (6m) and 9 months (9m). The

t-statistics are computed according to Newey and West (1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote the significance

level of 5%, 1% and 0.1% respectively. The monthly observations range from January 2010 to June 2016.
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Table VIII: Market return prediction using upside and downside skew premiums

xmUSO

1w 2w 1m 2m 3m 6m 9m

1 Const. -0.010 -0.009 -0.007 -0.010 -0.007 -0.011 -0.013

(-0.56) (-0.57) (-0.48) (-0.67) (-0.40) (-0.45) (-0.85)

sp 0.002 0.003 0.005 0.002 0.005 0.002 0.001

(0.15) (0.22) (0.54) (0.42) (1.55) (0.79) (0.39)

Adj. R2(%) -1.28 -1.24 -1.02 -1.25 -0.82 -1.22 -1.43

2 Const. 0.281∗∗∗ 0.257∗∗∗ 0.251∗∗∗ 0.192∗∗∗ 0.127∗ 0.053 0.043

(4.27) (4.75) (4.71) (3.98) (2.42) (1.47) (1.23)

spu 0.321∗∗∗ 0.296∗∗∗ 0.290∗∗∗ 0.224∗∗∗ 0.153∗ 0.072 0.063

(4.13) (4.59) (4.56) (3.87) (2.46) (1.38) (1.24)

Adj. R2(%) 11.54 12.09 13.45 10.35 6.06 2.50 3.07

3 Const. -0.265∗∗ -0.222∗∗ -0.164∗∗ -0.091∗∗∗ -0.060∗ -0.015 -0.007

(-2.94) (-2.79) (-2.61) (-3.33) (-2.34) (-0.74) (-0.48)

spd -0.277∗∗ -0.229∗∗ -0.165∗∗ -0.086∗∗∗ -0.051∗ -0.002 0.008

(-2.97) (-2.81) (-2.63) (-3.46) (-2.40) (-0.10) (0.48)

Adj. R2(%) 20.95 17.46 9.91 2.67 0.61 -1.40 -1.29

4 Const. 0.063 0.074 0.114 0.115∗ 0.079 0.046 0.044

(0.65) (0.86) (1.49) (2.16) (1.53) (1.14) (1.22)

spu 0.403∗∗∗ 0.365∗∗∗ 0.341∗∗∗ 0.253∗∗∗ 0.171∗ 0.075 0.062

(5.14) (5.12) (4.79) (3.98) (2.52) (1.50) (1.43)

spd -0.321∗∗∗ -0.269∗∗ -0.203∗∗ -0.114∗∗∗ -0.070∗∗ -0.010 0.002

(-3.32) (-3.21) (-3.19) (-4.16) (-3.08) (-0.66) 0.11

Adj. R2(%) 39.83 36.41 28.91 16.03 8.32 1.27 1.63

Note: The table shows the predictability of future USO excess returns (xmUSO) which is defined as Eq.(37), by

using the variance premium (sp, given by Eq.(19)) alone, and using the upside variance premium (spu, given by

Eq.(20)) and downside variance premium (spd, given by Eq.(20)) jointly. The forecasting horizon h can be 1 week

(1w), 2 weeks (2w), 1 month (1m), 2 months (2m), 3 months (3m), 6 months (6m) and 9 months (9m). The

t-statistics are computed according to Newey and West (1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote the significance

level of 5%, 1% and 0.1% respectively. The monthly observations range from January 2010 to June 2016.
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Table IX: Market return prediction using upside and downside variance and skew premiums

xmUSO

1w 2w 1m 2m 3m 6m 9m

1 Const. -0.050∗∗ -0.040∗ -0.023 -0.017 -0.009 -0.010 -0.010

(-2.84) (-2.08) (-1.19) (-0.79) (-0.37) (-0.39) (-0.78)

vp -0.082∗∗∗ -0.062∗∗ -0.032 -0.013 -0.005 0.003 0.006

(-3.73) (-2.63) (-1.37) (-0.73) (-0.24) (0.35) (0.53)

sp -0.012 -0.008 -0.0004 0.00005 0.004 0.003 0.002

(-1.17) (-0.82) (-0.05) (0.01) (0.87) (0.85) (0.70)

Adj. R2(%) 9.64 5.98 0.32 2.01 -2.10 -2.55 -2.37

2 Const. -0.226 -0.026 0.100 0.144 0.099 0.032 0.074

(-1.60) (-0.19) (0.70) (0.97) (0.64) (0.26) (0.82)

vpu 0.132∗∗∗ 0.074∗ 0.039 0.012 0.007 0.005 -0.008

(3.70) (2.18) (1.12) (0.35) (0.20) (0.19) (-0.40)

spu -0.267 -0.033 0.114 0.169 0.121 0.048 0.098

(-1.64) (0.84) (0.68) (0.94) (0.63) (0.30) (0.84)

Adj. R2(%) 20.54 14.84 13.57 9.31 4.85 1.20 1.96

3 Const. 0.251∗∗ 0.129 0.061 0.077 0.066 0.062 0.029

(2.88) (1.45) (0.68) (0.78) (0.58) (0.70) (0.63)

vpd -0.169∗∗∗ -0.115∗∗∗ -0.073∗ -0.055 -0.041 -0.025 -0.012

(-6.06) (-4.12) (-2.42) (-1.64) (-1.03) (-0.83) (-0.76)

spd 0.349∗∗∗ 0.196 0.107 0.118 0.101 0.091 0.052

(3.30) (1.79) (0.94) (0.92) (0.68) (0.75) (0.96)

Adj. R2(%) 40.03 27.83 14.09 5.31 2.28 -0.21 -1.87

4 Const. 0.270 0.306 0.307 0.324 0.239 0.120 0.119

(1.65) (1.76) (1.67) (1.51) (0.89) (0.70) (1.42)

vpu 0.070∗ 0.025 0.004 -0.012 -0.010 -0.0003 -0.010

(2.43) (0.83) (0.13) (-0.32) (-0.25) (-0.01) (-0.59)

vpd -0.155∗∗∗ -0.108∗∗∗ -0.070∗ -0.055 -0.041 -0.024 -0.013

(-5.30) (-3.62) (-2.25) (-1.72) (-0.99) (-0.94) (-0.84)

spu 0.077 0.245 0.317 0.304 0.213 0.075 0.107

(0.57) (1.59) (1.76) (1.58) (1.03) (0.56) (1.23)

spd 0.270∗ 0.137 0.057 0.087 0.081 0.080 0.046

(2.18) (1.11) (0.49) (0.75) (0.56) (0.80) (0.91)

Adj. R2(%) 60.85 46.26 32.07 17.60 8.74 0.91 -0.02

Note: The table compares the predictability of future USO excess returns (xmUSO) which is defined as Eq.(37),

by dividing the risk premiums into two groups: the upside variance and skew premiums and the downside variance

and skew premiums. The forecasting horizon h can be 1 week (1w), 2 weeks (2w), 1 month (1m), 2 months (2m),

3 months (3m), 6 months (6m) and 9 months (9m). The t-statistics are computed according to Newey and West

(1987). We use ∗, ∗∗ and ∗ ∗ ∗ to denote the significance level of 5%, 1% and 0.1% respectively. The monthly

observations range from January 2010 to June 2016.
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C Figures

Figure 1: Evolution of USO price
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The curve shows the time series of USO price from January 2010 to July 2016. The market went through turmoil

in 2015 and 2016.
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Figure 2: Density curve of USO returns
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The histogram shows the empirical density of the daily log returns of USO from January 2010 to July 2016. The

curve stands for the normal distribution with the same mean and standard deviation of the sample data.
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Figure 3: Decomposition of risk-neutral variance
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The upper figure shows the evolution of risk-neutral variance (iv, given by Eq.(3)) from January 2010 to June

2016, based on monthly observations. The lower figure shows the evolutions of upside risk-neutral variance (ivu,

given by Eq.(6), black solid line) and downside risk-neutral variance (ivd, given by Eq.(6), red dashed line) of the

same period, also based on monthly observations. In general, the downside risk-neutral variance is greater and

more volatile than upside risk-neutral variance, and the two sum up to the total risk-neutral variance.
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Figure 4: Decomposition of realized variance
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The upper figure shows the evolution of realized variance (rv, given by Eq.(7)) from January 2010 to June 2016,

based on monthly observations. The lower figure shows the evolutions of upside realized variance (rvu, given by

Eq.(8), black solid line) and downside realized variance (rvd, given by Eq.(8), red dashed line) of the same period,

also based on monthly observations. In general, the volatility of the downside realized variance is greater than

upside realized variance, and the two sum up to the total realized variance.
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Figure 5: Decomposition of variance risk premium
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The upper figure shows the evolution of variance risk premium (vp, given by Eq.(9)) from January 2010 to June

2016, based on monthly observations. The lower figure shows the evolutions of upside variance risk premium (vpu,

given by Eq.(10), black solid line) and downside variance risk premium (vpd, given by Eq.(10), red dashed line)

of the same period, also based on monthly observations. In general, the volatility of the downside variance risk

premium is greater.
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Figure 6: Decomposition of risk-neutral skew
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The upper figure shows the evolution of risk-neutral skew (is, given by Eq.(12)) from January 2010 to June 2016,

based on monthly observations. The lower figure shows the evolutions of upside risk-neutral skew (isu, given by

Eq.(13), black solid line) and downside risk-neutral skew (isd, given by Eq.(13), red dashed line) of the same

period, also based on monthly observations. In general, the volatility of the downside risk-neutral skew is greater

than upside risk-neutral skew, and the two sum up to the total risk-neutral skew.
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Figure 7: Decomposition of realized skew
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The upper figure shows the evolution of realized skew (rs, given by Eq.(17)) from January 2010 to June 2016,

based on monthly observations. The lower figure shows the evolutions of upside realized skew (rsu, given by

Eq.(18), black solid line) and downside realized skew (rsd, given by Eq.(18), red dashed line) of the same period,

also based on monthly observations. In general, the volatility of the downside realized skew is greater than upside

realized skew, and the two sum up to the total realized skew.
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Figure 8: Decomposition of skew risk premium
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The upper figure shows the evolution of skew risk premium (sp, given by Eq.(19)) from January 2010 to June

2016, based on monthly observations. The lower figure shows the evolutions of upside skew risk premium (spu,

given by Eq.(20), black solid line) and downside skew risk premium (spd, given by Eq.(20), red dashed line) of the

same period, also based on monthly observations. In general, the volatility of the downside skew risk premium is

greater than upside skew risk premium.
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