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Abstract

Forward premium puzzle and the exchange rate level puzzle are two violation-

s of interest parity. The former implies high interest rate currency is riskier

while the latter implies the opposite. We propose a consumption-based gener-

al equilibrium models with disaster recovery and jump propagation to explain

the two puzzles and hence address the paradox. The model reproduces pat-

terns of multihorizon UIP regression slopes in Engel (2016), which is the key

to resolve the currency puzzles. It also matches the term structure of real

yields, as well as some basic moments of exchange rate growth and interest

rate.
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1 Introduction

The forward premium puzzle is a well-documented puzzle that concerns the re-

lationship between exchange rates and interests. According to the uncovered

interest rate parity, the country whose interest rate is relative low should expe-

riences a appreciation in its currency, so that risk-free assets across countries

have same returns when evaluated in the same currency. However, empirical

works, including Fama et al. (1984), Bilson et al. (1981) and Hansen and Ho-

drick (1980), reveals that when the interest in one country is high relative to

another, the short term deposits of that currency tend to earn an excess return.

That is, currency with high interest-rate tend to appreciate. These findings vi-

olate the UIP condition and therefore inspire new models to explain it. There

are a rich number of models in the literature that dissolve the forward premium

puzzle.

However, the forward premium puzzle, if examined together with the exchange

rate level puzzle, generates another paradoxical implication. The exchange rate

level puzzle also describes the relationship between exchange rates and inter-

est rates, but concerns the level instead of the growth rate of exchange rate.

Classic exchange models, such as Dornbusch (1976) and Frankel (1979), as-

sume UIP condition holds. In these model, the level of exchange is determined

by the weighted average of the expectation of future interest rate differentials.

Their models predict that, the country whose interest rate is higher than average

should have a lower-than-average price of foreign currency. In other words, high

interest rate relates to strength home currency. However, according to Engel

(2016), though this relationship is borne out in the data, home currency tends

to be stronger than is warranted by the models.
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The two puzzles seem contradict to each other in the aspect of risk. To explain

the forward premium puzzle, the high interest rate currency should be riskier, so

that the compensation for risk-bearing is positive. On the contrary, the exchange

rate level puzzle requires the high interest rate currency to be less risky, as lower

expected future risk premiums can explain the strength of exchange rate. This

contradiction is firstly documented in Engel (2016).

To reconcile Engel puzzle, the key is to reproduce the multiperiod currency

risk premium regression slopes. Engel (2016) runs the following regression for

different horizon j

Et[ρt+j] = αj + βj(r
∗
t − rt) + ujt ,

where ρt+j is the excess return on the foreign deposit held by domestic investor

from time t + j to t + j + 1, r∗t and rt are the foreign and domestic risk rate

respectively. He finds that for the first few j, βj is positive, but it eventually

turns negative at long horizons, and finally converges to 0. What’s more, the

overall average of βj is negative. The positive βj in the short term corresponds

to the forward premium puzzle, and the negative sum of βj reflects the exchange

rate level puzzle.

Chernov and Creal (2021) also investigate the multihorizon currency risk pre-

mium. They regress future depreciation rate, instead of expected future currency

risk premium, on the interest rate differential, and find similar pattern as Engel

(2016), especially the reversal slope sign and the convergence to 0 in the long

end. The implication of this finding is that the shape of slopes of multihori-

zon currency risk premium regressions is inherited from expected depreciation,

instead of expected future interest rate differentials.

The literature documents many theories that are able to explain the forward

premium puzzle. Among them are external formation model by Verdelhan (2010),
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long-run risk model by Bansal and Shaliastovich (2013), rare disaster models by

Du (2013) and Farhi and Gabaix (2016), model of overconfidence by Burnside,

Han, Hirshleifer and Wang (2011). However, there are few models aims to explain

the Engel puzzle or multihorizon UIP puzzle. Engel (2016) checks two basic

models of exchange risk premium and ”delayed overshooting”, and concludes

that both models can not account for the exchange level puzzle. He therefore

proposes a model that introduces a non-pecuniary liquidity return on assets to

account for the puzzle. Bacchetta and Van Wincoop (2021) shows that a model

featured with delayed portfolio adjustment can address Engel puzzle. In these

models, markets is with fraction of either liquidity or portfolio management cost.

There are also some models with exogenously specified SDF that attempts to

explain the multihorizon currency risk premium. Examples are a no-arbitrage

term structure model that includes exchange rate as state variable in Chernov

and Creal (2021), a term structure model with unspanned macroeconomic risks

in Chen, Du and Zhu (2016).

To the best of our knowledge, there are not consumption-based general equi-

librium models with frictionless markets in the literature that can address Engel

puzzle. In this paper we propose a consumption-based model to fill the gap.

In the model, rational investors in two countries are with recursive preference.

In the economy of each country there are disasters followed by recoveries. The

risk of disaster is highly but imperfectly shared between countries. The key fea-

ture is jump propagation for the unshared disasters. After the occurrence of a

disaster, recovery and jump propagation have opposite implications of risk and

therefore determines expectation of future currency risk premium that coincides

with Engel’s.

Specifically, the unshared disaster and diffusion risks together determine the
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spot currency risk premium while the future risk premium is shaped by recov-

ery and jump propagation. When the domestic disaster probability is higher

than foreign, the interest rate at home is lower as domestic investor will save

more for precautionary reason. At the same time, higher disasters risk derives

higher price of risk at home, and hence domestic shocks dominates exchange

rate dynamics. As a consequence, the foreign risk-free asset is riskier to home

investor than domestic one to foreign investor, and domestic investor require risk

premium from foreign risk-free asset for risk-bearing. This channel explains the

forward premium puzzle. The diffusion risk have similar effect.

For future currency risk premium, jump propagation plays an important role.

Suppose the foreign country is under strong recovery, which implies that it-

s consumption growth rate will be high in the near future, hence there are less

precautionary savings, and the foreign interest rate is high. However, as recovery

is accompanied with jump propagation, In the near future, the foreign disaster

risk will ramp up, and the currency risk premium will decrease. With appropri-

ate strength of recovery and jump propagation, the risk premium can turn into

negative. In other words, future foreign exchange risk for foreign investor will

increase more than for domestic investor, and foreign currency is less riskier for

domestic investor. As in the long run, both recovery and jump propagation will

fade away, βj will gradually converge to 0 as in Engel (2016).

To show that the multihorizon currency risk premia are inherited from ex-

pected depreciation, rather than the expected future interest rate differentials,

we also calculate the theoretical slopes with ex ante depreciation rate as depen-

dent variable. The resulting pattern of slopes coincides with Chernov and Creal

(2021).

The model also generate pro-cyclical interest rate and counter-cyclical term
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structure of real bond yields. In good times, when interest rate is high, the term

structure is downward sloping and vise verse.

Our model builds on the rare disasters literature. Since proposed by Rietz

(1988), rare disasters explain a lot of puzzles about asset returns. Recent studies

show that incorporating time-varying risk of disasters enriches its explanation

power (e.g. Gabaix (2012), Wachter (2013) and Seo and Wachter (2018)). Pio-

neered by Gourio (2008), the recoveries after disasters start to attract attention.

Hasler and Marfe (2016) show that recovery explains the downward sloping term

structure of equity premium. Our setup of recovery follows Hasler and Marfe

(2016) but in a slightly different way. This model contribute to the disaster liter-

ature by showing that, combined with jump propagation, disaster recovery can

explain the multihorizon UIP puzzle.

Our setup of jump propagation is new to the literature. Previous in the liter-

ature, jump propagation is modelled based on Hawkes process (Hawkes (1971)),

examples are Boswijk, Laeven and Lalu (2015) and Du and Luo (2019)). In their

setup, Each jump only has an ephemeral effect on the intensity. While in our

model, self-excitation of jump will last for some time. Besides, as recovery and

jump propagation start at the same time, our model is the first to investigate

how they interact with each other to determine the multihorizon currency risk

premium.

We proceed as follows. Section 2 proposes an equilibrium model with disas-

ter recovery and jump propagation. Section 3 presents the model solutions of

stochastic discount factor, bonds and exchange rate. Section 4 describes the

details of calibration. Section 5 presents the models implications, especially for

multihorizon UIP regressions and the term structure of bond yields. Section 6

concludes.
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2 The Model

The model assumes two endowment economics, namely the home country and

the foreign country. The two economics are completely symmetry. In other word-

s, the economies evolve under the same mechanism and with identical parame-

ters; The representative agents in both countries are characterized by the same

underlying structural parameters. The model features with disaster recoveries

and jump propagation.

2.1 Disasters with recoveries

Throughout this paper, the variables in the foreign country is super-indexed by

”*”. Let ct = logCt, where Ct is the aggregate consumption in the home country.

The dynamics of ct is assumed to be as follows

dct = (µc + ωczt)dt+ σtdWc,t + ξitdN
i
t + ξgt dN

g
t ,

dσ2
t = ϕσ(σ̄

2 − σ2
t )dt+ νσ

√
σ2
t dWσ,t,

dzt = −ϕzztdt+ ξitdN
i
t + ξgt dN

g
t .

(1)

where Wc,t and Wσ,t are two independent standard Brownian motions. There are

two sets of rare disasters on consumption. One is a common global disaster N g
t ,

and the other is a idiosyncratic disaster N i
t . In other words, the disaster risk is

imperfectly shared among countries. Both N g
t and N i

t are Poisson processes. ξgt

and ξit are the sizes of disasters respectively. The global jump size ξgt follows a

negative time invariant distribution with probability density function(PDF) given
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by

f(ξgt ; η
g
0 , η

g
1) =

η
g
1e
ηg1(ξ

g
t +η

g
0), if ξgt ≤ −ηg0 ;

0, otherwise.

where ηg0 and ηg1 are positive parameters. The distribution can be obtained from

translation of a negative exponential distribution. ηg1 is the intensity of the expo-

nential distribution and −ηg0 is the upper bound of the distribution, or ηg0 is the

lower bound of the global disaster size. The moment generating function (MGF)

is hence

ϱg(u) = Et(e
uξgt ) =

1

1 + u
ηg1

e−η
g
0u.

The first two moments of ξgt are therefore

Et(ξ
g
t ) = −

(
1

ηg1
+ ηg0

)
, Et(ξ

g
t
2) =

1

ηg1
2 +

(
1

ηg1
+ ηg0

)2

.

The distribution of ξit is of the same form as ξgt , but the parameters are ηi0 and ηi1

respectively.

Similar to Hasler and Marfe (2016), the recovery factor zt models the recov-

ery after disaster. However, in Hasler and Marfe (2016), zt is directly added to

the level of consumption, while in our model, it only affects the expected con-

sumption growth rate. When a disaster occurs, zt turns into negative, but the

mean-reverting property makes it revert to its long term average 0. ωc < 0 cap-

tures the impact of recoveries factor on consumption growth. After disaster, a

negative zt will increase the expected growth rate of consumption, which repre-

sents that the consumption is recovering. However, as zt reverts, the expected

growth rate of consumption will decrease gradually towards its normal level.

Given the dynamics of zt, ωc determines the recovery rate of consumption,
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therefore, we term ωc as ’recovery degree’ for convenience.

2.2 Jump propagation

Let λgt and λit denote the intensities of the Poisson processes N g
t and N i

t . The jump

intensities are supposed to follow the processes below.

dλgt = ϕg(λ̄
g − λgt )dt+ σg

√
λgtdWg,t,

dλit = ϕi(λ̄
i + ωizt − λit)dt+ σi

√
λitdWi,t,

(2)

where ωi < 0. The standard Brownian motions Wg,t, Wi,t, Wc,t and Wσ,t are mutu-

ally independent.

The intensity of global disaster follows a CIR process (Cox, Ingersoll Jr and

Ross (1985)), which is highly skewed. As discussed in Wachter (2013), with CIR

intensity, there are times when rare disasters can occur with high probability,

but these times are themselves unusual. If ωi = 0, the domestic disaster inten-

sity also follows a CIR process. The recovery factor zt in the drift of domestic

disaster intensity λit models the jump propagation and ωi measures the degree

of jump propagation. With jump propagation, the probability of domestic disas-

ter is expected to be higher than usual after the occurrence of a disaster (either

global or domestic). The non-negative property of ωizt promises that jump inten-

sity is well-defined, if the Feller condition σ2
i < 2ϕiλ̄

i (Feller (1951)) is satisfied.

Intuitively, without zt term, the drift is already strong enough to pull the process

back to its long-term mean when its value is approaching 0. The zt term in drift

will only strengthen the pull-back effect, therefore the process will always stay

non-negative.

Previous studies in the literature usually model jump propagation based on
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Hawkes process (Hawkes (1971)) and directly add jump component to the dy-

namics of intensity as dλt = ϕ(λ̄− λt)dt + βdNt (e.g. Boswijk et al. (2015); Du and

Luo (2019)). In their setup, the occurrence of one jump will cause the jump

intensity to ramp up instantly. Each jump only has an ephemeral effect on

the intensity. However, we model the self-excitation of jump in a different way,

where the occurrence of one jump will increase the long-term mean of the inten-

sity. Note that zt will gradually revert to its long-term mean zero, so the effect of

one jump on intensity will also disappear gradually.

In Seo and Wachter (2018), the disaster intensity also mean-reverts to a time-

varying long-term mean. In their model, the long-term mean itself is a diffusion

CIR process without jumps. In our model, however, the long-term mean of each

λt is λ̄ + ωizt, where zt will jump at the events of consumption disasters. The

simultaneousness of consumption disaster and zt, and the higher disaster prob-

abilities in the subsequent years, enable the model to capture the characteristic

of jump propagation in the real world, e.g. the 2008 financial crisis.

Note that λgt in both countries are identical and has not direct influence on

the exchange rate. However, it affects both consumption growth and the recovery

factor zt, which have real impact on the exchange rate. We do not assume jump

propagation for global disasters, just to make sure that λgt = λg,∗t for all t.

2.3 The recursive preference

Assume the preference of the representative investor in the home country can

be described by the recursive utility function, as developed by Epstein and Zin

(1989). In continuous time, the recursive utility function is

Ut =
[
(1− δdt)C

1−γ
θ

t + δdtEt
(
U1−γ
t+dt

) 1
θ

] θ
1−γ
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where γ is the coefficient of risk aversion, δ the subjective discount rate, ψ is the

elasticity of intertemporal substitution(EIS) and θ = 1−γ
1−1/ψ

.

3 Model Solution

We follow the methodology developed by Duffie, Pan and Singleton (2000) and

Eraker and Shaliastovich (2008) to solve the model. Eraker and Shaliastovich

(2008) shows that asset prices are approximately exponential affine in state

variables under the affine jump-diffusion structure when the representative in-

vestor’s preference is recursive. The methodology is based on the log-linearization

of returns, as in Campbell and Shiller (1988), which facilitates the analytical

tractability of the model. For convenience and to put the affine jump-diffusion

structure more clear, we stack the variables in the home economy as a vector Yt.

That is, Yt = (ct, zt, λ
g
t , λ

i
t, σ

2
t )

⊤. Then we have

dYt = µ(Yt)dt+ Σ(Yt)dWt + JtdNt,

µ(Yt) =M +KYt,

Σ(Yt)Σ(Yt)
⊤ = h+

5∑
j=1

HjY j
t ,

Jt =
(
Jgξ

g
t Jiξ

i
t

)
,

lt(Yt) = l0 + l1Yt.

where Wt = (Wc,t,Wz,t,Wg,t,Wi,t,Wσ,t)
⊤, Nt = (N g

t , N
i
t )

⊤, Hj is the jth page of H,

Y j
t is the jth element in Yt and l(Yt) is the vector of jump intensity. M ∈ R5×1,

K ∈ R5×5, h ∈ R5×5, H ∈ R5×5×5, Jg, Ji ∈ R5×1, l0 ∈ R2×1 and l1 ∈ R2×5 are matrixes

derived from the setup of variables in Yt. The specification of these matrixes is in

Appendix.
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3.1 The Price-consumption ratio

Let V c
t denote the aggregate wealth, or the price of a claim on all future con-

sumption and Rc,t denote the cumulative return till time t on the wealth portfolio

that pays consumption as its dividend. Hence νc,t = log
V c
t

Ct
denotes the log of the

price-consumption ratio. A log-linearization of Rt is

d logRc,t ≈ k0dt+ k1dνc,t − (1− k1)νc,tdt+ dct, (3)

where

k0 = − log
(
(1− k1)

1−k1kk11
)
, k1 =

eE(νc,t)

1 + eE(νc,t)
. (4)

This is the standard log-linearization method in the literature that is adopted

in Eraker and Shaliastovich (2008) and Hasler and Marfe (2016), among others.

It is the continuous time version of the counterpart in Campbell and Shiller

(1988). The approximation error is a second order Taylor term. Campbell, Lo and

MacKinlay (2012) and Bansal, Kiku and Yaron (2007) show that, when shocks

are normally distributed, the approximation error is quite small and does not

have material effects. Hasler and Marfe (2016) shows that the approximation is

still of high accuracy when there are jumps in the model.

Recursive utility generates the continuous time dynamics of the stochastic

discount factor(SDF) Mt as

d logMt = θ log δdt− θ

ψ
dct − (1− θ)d logRc,t. (5)

The Euler equation applied on Rc,t, is

Et

[
exp

(∫ t+τ

t

d logMs +

∫ t+τ

t

d logRc,s

)]
= 1 (6)
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Assume that log of price-consumption ratio is affine on Yt,

νc,t ≡ log
V c
t

Ct
= A+B⊤Yt,

where A ∈ R and B = (Bc, Bz, Bg, Bi, Bσ)
⊤. The Appendix shows that the solution

coefficient A and B satisfy the following equations

0 = K⊤χ− θ(1− k1)B +
1

2
χ⊤Hχ+ l⊤1

(
ϱ(χ)− 12×1

)
,

0 = θ
(
log δ + k0 − (1− k1)A

)
+M⊤χ+

1

2
χ⊤hχ+ l⊤0

(
ϱ(χ)− 12×1

)
.

(7)

with χ = θ((1− 1/ψ)δc + k1B), δc = (1, 0, 0, 0, 0)⊤. And ϱ(·) is defined as

ϱ(α) =
(
ϱg(α⊤Jg), ϱ

i(α⊤Ji)
)⊤
, (8)

where α ∈ R5×1, ϱg(·) and ϱi(·) are the MGF of ξgt and ξit respectively. Combining

equation (4) and (7), we can solve k0, k1, A and B systematically.

3.2 The Stochastic Discount Factor

Plugging equation (3) and the dynamics of consumption into equation (5), apply-

ing the Ito-Doeblin Formula and using the fact that θ− θ/ψ− 1 = −γ, we have the

SDF dynamics as

dMt

Mt−
= −rtdt− Λct

⊤dWt −
(
Λdt

⊤
dNt − lt(Yt)

⊤ [12×1 − ϱ(−Ω)] dt
)
, (9)
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where the risk free rate rt, the price of risk for Brownian shocks Λct and the price

of risk for disasters Λdt are defined by

rt = Φ0 + Φ⊤
1 Yt,

Λct = Σ(Yt)
⊤Ω,

Λdt =
(
1− e−Ω⊤Jgξ

g
t , 1− e−Ω⊤Jiξit

)⊤
,

Ω = γδc + (1− θ)k1B,

with Φ0 and Φ1 given by

Φ1 = (1− θ)(k1 − 1)B +K⊤Ω− 1

2
Ω⊤HΩ− l⊤1

(
ϱ(−Ω)− 12×1

)
,

Φ0 = −θ log δ + (1− θ) [k0 + (k1 − 1)A] +M⊤Ω− 1

2
Ω⊤hΩ− l⊤0

(
ϱ(−Ω)− 12×1

)
.

where ϱ(·) is defined by equation (8).

The second two last term in Φ1 and Φ0 can be interpreted as precautionary

saving terms originating from the diffusion shocks and jump risk, respectively.

rt is a decreasing linear function of all of the four state variables (zt, λ
g
t , λit and σ2

t ),

irrespective to the value of EIS. A small zt implies that the economy is recovering

and the consumption is growing in a rate higher than average, which lowers the

investor’s willing to save and increases the interest rate. An increase on λgt , λit

or σ2
t means that the jump risk or diffusion risk increases, therefore investor

requires more risk-free assets to hedge the increasing risks, which drives down

the risk-free rate.
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3.3 Bond prices

Let Q denotes the risk-neutral measure induced by the SDF. The Appendix shows

that under measure Q, the state variables follow

dYt = (MQ +KQYt)dt+ Σ(Yt)dW
Q
t + JQt dN

Q
t ,

where
MQ =M − hΩ,

KQ = K −HΩ,

dWQ
t = dWt + Λctdt.

And the intensity of the jump is given by

lQt = lt ·Q(−Ω).

The MGFs for jump sizes are

ϱg,Q(u) = ϱg(u− Ω⊤Jg)/ϱ
g(−Ω⊤Jg), ϱi,Q(u) = ϱi(u− Ω⊤Ji)/ϱ

i(−Ω⊤Ji).

For convenience, we define

ϱQ(α) =
(
ϱg,Q(α⊤Jg), ϱ

i,Q(α⊤Ji)
)⊤

= ϱ(u− Ω)./ϱ(−Ω), (10)

with ./ being the element-by-element division.

Let Pt(τ) denote the price at time t of zero-coupon bond of maturity τ with unit

payment. Then

Pt(τ) = EQ
t

(
exp

(
−
∫ t+τ

t

rudu

))
= exp

[
aB(τ) + b⊤B(τ)Yt

]
14



where aB(τ) and bB(τ) solve the ODEs below.

ḃB(τ) = −Φ1 +KQ⊤
bB(τ) +

1

2
b⊤B(τ)HbB(τ) + lQ1

⊤
(ϱQ(bB(τ))− 1),

ȧB(τ) = −Φ0 +MQ⊤
bB(τ) +

1

2
b⊤B(τ)hbB(τ) + lQ0

⊤
(ϱQ(bB(τ))− 1)

with initial conditions aB(0) = 0 and bB(0) = 05×1.

The n-period holding return of the zero-coupon bond is Rt+n(τ) = Pt+n(τ −

n)/Pt(τ), for n ≤ τ .

3.4 The exchange rate and the currency risk premia

Recall that we assume complete symmetry on the foreign country. Both the

diffusion risk and the jump risk on consumption between the two countries are

partially correlated. Assume the correlation coefficient between Wc,t and W ∗
c,t is

ρc. They share the global jump risk N g
t , and the sizes of the global disaster, ξgt

and ξg,∗t , are assume to be the same across countries.

Let st = logSt, where St denotes the real exchange rate between home country

and foreign country, expressed in domestic goods per foreign good. An increasing

St implies depreciation of the home currency. It is a standard result in the

international finance literature (e.g., Backus, Foresi and Telmer (2001)) that

st = logM∗
t − logMt. (11)

Generally in no-arbitrage jump models, the market is not complete, especially

when jump sizes follows continuous distribution. Therefore there are multiple

SDFs in each economy, and appropriate Mt and M∗
t have to be chosen to satisfy

equation (11) (see e.g. Brandt, Cochrane and Santa-Clara (2006)). However, the
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present model is a consumption-based general equilibrium model, and the SDF

is determined endogenously.

We define the currency risk premium in continuous time as

rxFXt+τ =

∫ t+τ

t

r∗udu−
∫ t+τ

t

rudu+ st+τ − st

=

∫ t+τ

t

r∗udu−
∫ t+τ

t

rudu+

∫ t+τ

t

d logM∗
u −

∫ t+τ

t

d logMu.

(12)

which can be interpreted as the excess return on the foreign deposit held by

domestic investor from period t to t + τ . The domestic investor borrows funds at

home, and investor on the foreign risk-free asset at time t. During time t to t+ τ ,

she earns a return
∫ t+τ
t

r∗udu in the foreign risk-free asset, and when she transfers

to home currency, her gain/loss is st+τ−st. And her cost is the domestic risk-free

return
∫ t+τ
t

rudu.

According to the dynamics of SDF in equation (9), we have

d logMt =

(
−rt − l⊤t [ϱ(−Ω)− 12×1]−

1

2
Λct

⊤Λct

)
dt− Λct

⊤dWt + log(1− Λdt
⊤
)dNt,

≡ (M0 +K0Yt) dt− Λct
⊤dWt − Ω⊤JtdNt

where
M0 = −Φ0 − l⊤0 [ϱ(−Ω)− 12×1]−

1

2
Ω⊤hΩ,

K0 = −Φ1 − l⊤1 [ϱ(−Ω)− 12×1]−
1

2
Ω⊤HΩ.

And the dynamics of log real exchange rate is

dst =d logM
∗
t − d logMt

=K0 (Y
∗
t − Yt) dt− Λc,∗t

⊤
dW ∗

t + Λct
⊤dWt

− Ω⊤Jiξ
i,∗
t dN

i,∗
t + Ω⊤Jiξ

i
tdN

i
t .

(13)
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For the expected currency risk premium, we have the following proposition.

Proposition 1. expected currency risk premium is given by

Et[rx
FX
t+τ ] =

∫ t+τ

t

Et[r
∗
u]du−

∫ t+τ

t

Et[ru]du+ Et[st+τ ]− st, (14)

where
Et[r

∗
T ] = Ar(τ) +B⊤

r (τ)Y
∗
t ,

Et[rT ] = Ar(τ) +B⊤
r (τ)Yt,

Et[sT ]− st = B⊤
m(τ)(Y

∗
t − Yt),

with τ = T − t, and Ar(τ), Br(τ) and Bm(τ) satisfied ODE systems given in the

Appendix.

Let B⊤
x (τ) denote

Bx(τ) =

∫ τ

0

Br(s)ds+Bm(τ),

where the integration is evaluated for each entry in Br(s) individually, with a

slight abuse of notation. Then

Et[rx
FX
t+τ ] = B⊤

x (τ)(Y
∗
t − Yt), (15)

If we regress for the annualized expected currency excess return for holding

foreign deposit from t + τ to t + τ + j on the interest rate difference, the slope

coefficient is

βrxτ,τ+j =
Cov

(
Et[rxFX

t+τ+j ]−Et[rxFX
t+τ ]

j
, r∗t − rt

)
V ar(r∗t − rt)

=
[B⊤

x (τ + j)−B⊤
x (τ)]VYΦ1

jΦ⊤
1 VYΦ1

,

where VY is the covariance matrix of Y ∗
t − Yt. If j goes to 0, we have the slope for
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the instantaneous currency risk premium in t+ τ ,

βrxτ =
[Br(s) + Ḃm(τ)]

⊤VYΦ1

Φ⊤
1 VYΦ1

. (16)

Here Ḃm(τ) is is a vector of the derivatives of each entry in Bm(τ). If the dependent

variable is the expected exchange rate growth, the slope coefficient is

βsτ =
Ḃ⊤
m(τ)VYΦ1

Φ⊤
1 VYΦ1

. (17)

4 Data and Calibration

In this section, we calibrate the model to the data of United States and United

Kingdom.

4.1 Data

The consumption on United States is calculated as the sum of per capita per-

sonal consumption expenditure on nondurables and services. The data on con-

sumption of nondurables and services are from Bureau of Economic Analysis

(BEA). The U.S. population data comes from Factset. The consumption on Unit-

ed Kingdom is the per capita ’Total Final Consumption Expenditure’, which is

from Office for National Statistics (ONS). The UK population data is from Thom-

son Reuters Datastream. The risk-free interest rate is proxied by the yield on 3-

month T-bills, which are obtained from Federal Reserve Economic Data (FRED)

for U.S. and from Bank of England (BoE) for U.K.. The U.S. Consumer Price

Index (CPI) inflation comes from CRSP, while the U.K. CPI inflation is from BoE.

Both consumption and risk-free rate data on both countries are quarterly, and
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span from 1955Q1 to 2020Q4. The choice of the beginning date of 1955Q1 is

because of the availability of U.K. consumption data.

The USD/GBP exchange rate data is also quarterly in order to in line with

consumption and interest rate. The data is downloaded from Datastream and

spans from 1975Q1 to 2020Q4, the period after dissolution of the Bretton Woods

System.

4.2 Calibration

Table 1 presents the calibrated parameter values. The two countries share the

same set of parameters.

We set the subjective discount rate at 0.975. The coefficient of risk aversion

is set at 8, in the range between 1 and 10, as suggested by Mehra and Prescott

(1985). It is also a reasonable level compared with the number commonly used

in models with recursive utilities (e.g., Colacito and Croce (2013)). I set The

elasticity of intertemporal substitution at 2, consistent with Colacito and Croce

(2011) and Du (2013).

The expected consumption growth rate without disaster, µc is set at 0.0218.

After taking disasters and recoveries into account, the average consumption

growth is 0.0188, which falls in between the historical means of consumption

growth rates in U.S. and U.K. in our sample (see Table 2). The standard de-

viation of consumption growth is 0.0095 for U.S. in Du (2013), which is based

on a sample period between 1952Q1 and 2006Q4, when there are no economic

disasters. Barro (2006) reports that the volatility of consumption growth in U.S.

from 1890 to 2004 is 0.035, and the value is 0.045 for real per capita GDP. In

our sample, the consumption volatilities is 0.0236 and 0.0329. All the evidence
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above considered, we let the volatility of consumption growth without disasters

be 0.01. The unconditional consumption growth volatility, taking both diffusion

risk and jump risk into consideration, is therefore 0.0381.

The literature documents low correlation between U.S. and U.K. consumption

growth (e.g. 0.28 in Colacito and Croce (2011) and 0.31 in Brandt et al. (2006)).

It is worth noting that their samples are before year 2000, and cover a period

without economic disasters. Table 2 show that the consumption growth corre-

lation on our full sample is 0.6372. However, if we focus on the period before

2008, the correlation becomes as low as 0.1630. And the value is 0.9125 for

period between 2008Q1 and 2020Q4, when their are two disasters happened,

i.e., the 2008 financial crisis and the pandemic of Covid-19. We therefore choose

the value 0.2 for the correlation between domestic and foreign consumption dif-

fusions.

We assume that home and global disaster sizes share the same distribution,

i.e. ηg0 = ηi0 and ηg1 = ηi1. The average probability of disaster and the average

size of disaster are crucial in asset pricing models, and they highly dependent

on the definition of a ”disaster”. Based on Table 10 in Barro and Ursúa (2008),

we set the lower bound of a disaster to be 0.10, considering that a smaller drop

down of consumption could be the result of diffusion shocks instead of jump.

We calibrate the total disaster probability to 0.023 (λ̄i+ λ̄g), which is conservative

compared with empirical data in Barro and Ursúa (2008). We set λ̄g/(λ̄g + λ̄i) =

22/23, which is close to the counterpart in Du (2013) and implies that more than

95% of the disaster risk is shared among countries. We set ηg1 = 9 and therefore

the average size of disaster is 0.10 + 1/9 = 0.211, which is close to the empirical

result in Barro and Ursúa (2008).

The speed of recovery is equal to 0.30, which is close to the value 0.302 in
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Hasler and Marfe (2016). We set ωc = −0.12, which means that, the instan-

taneous consumption growth rate right after an average disaster is 0.0471. The

jump propagation degree is set at −0.047 artificially, implying that the conditional

expectation of domestic jump intensities will increase by around 0.99% right after

the occurrence of a disaster. However, as the disasters are themselves rare, ωi

only causes an increase of 0.079% on the domestic jump probability on average.

Other parameters are mean reversions and volatilities of consumption volatil-

ity and jump intensities. We set ϕg = ϕi, and calibrate these parameters to match

the empirical mean and volatility of risk-free rate, as well as the volatility of

exchange rate.

5 Model implications

5.1 Basic moments

Table 2 reports the moments from both empirical data from U.S. and U.k. and

theoretical value. The model well matches the mean, volatility and autocorrela-

tion of risk free rate and exchange rate. The correlation of stochastic discount

factor is 0.8430 in our model, which promises the smooth movements of ex-

change rate. The theoretical consumption growth is close to the data in level,

but the volatility is higher than the data, mainly because disasters are seldom in

our sample period. The correlation of interest rate between countries is too high

in our model, due to the highly shared disasters. We can lower the correlation by

decreasing the proportion of global disasters. However, it will cause an increase

in the volatility of exchange rate growth. For similar reason, the cross-country
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Table 1: Calibration Parameters
Parameter description Symbol Value

Preference

Subjective discount rate δ 0.975

Elasticity of intertemporal substitution ψ 2

Coefficient of risk aversion γ 8

Consumption parameters not related to disasters

Long-run expected growth µc 0.0218

Volatility of consumption growth without disaster σ̄ 0.01

Reversion speed of consumption growth volatility ϕσ 0.8

Volatility of of consumption growth volatility νσ 0.008

Correlation of consumption diffusions between countries ρc 0.2

Disasters and recovery

Long-run intensity of global disaster λ̄g 0.022

Long-run intensity of idiosyncratic disaster λ̄i 0.001

Reversion speed of global disaster intensity ϕg 0.9

Reversion speed of idiosyncratic disaster intensity ϕi = ϕg

Volatility of global disaster intensity σg 0.16

Volatility of idiosyncratic disaster intensity σi 0.006

Reversion speed of recovery factor ϕz 0.3

Consumption recovery coefficient ωc -0.12

Jump propagation degree ωλ -0.047

Minimum size of global disaster ηg0 0.1

Minimum size of idiosyncratic disaster ηi0 = ηg0

Parameter for distribution of global disaster size ηg1 9

Parameter for distribution of idiosyncratic disaster size ηi1 = ηg1
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Table 2: Empirical and theoretical moments

Moment US data UK data Theoretical

Correlation of SDF, corr(d logMt, d logM
∗
t ) - 0.8430

Average consumption growth 0.0171 0.0203 0.0188

volatility of consumption growth 0.0236 0.0329 0.0381

Autocorrelation of of consumption growth 0.1461 0.1156 0

Correlation of consumption growth (full sample) 0.6372 0.8750∗

Correlation of consumption growth (1955Q1-2007Q4) 0.1630 0.2∗∗

Correlation of consumption growth (2008Q1-2020Q4) 0.9125 -

Average risk-free interest rate 0.0117 0.0133 0.0123

Volatility of risk-free interest rate 0.0163 0.0230 0.0180

Autocorrelation of of risk-free interest rate 0.7245 0.8032 0.6616

Correlation of risk-free interest rate 0.6551 0.9988

Average exchange rate growth -0.0131 0

Volatility of exchange rate growth 0.1128 0.1202

Autocorrelation of exchange rate growth 0.07 0

The table displays moments both empirical and theoretical. The means and variance are calcu-
lated using quarterly data and the results are annualized. Correlations are using annual data.
(*) is the unconditional correlation of consumption growth, and (**) is the correlation conditional
on no disasters.
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correlation of consumption growth in the model is a little bit higher than in the

data. Overall, the model fits the basic moments regarding consumption, interest

rate and exchange rate.

5.2 The forward premium puzzle

From equation (12) we have

d rxFXt = r∗t dt− rudt+ d logM∗
t − d logMt.,

Therefore

Et[
d rxFXt
dt

] = Kx[Y
∗
t − Yt],

Kx = −l⊤1
[
ϱ(−Ω)− 12×1 − Ω⊤E(Jt)

]
− 1

2
Ω⊤HΩ.

Note that since ex− 1− x ≥ 0, we have ϱ(−Ω)− 12×1 −Ω⊤E(Jt) ≥ 0, and Kx ≤ 0 with

strict inequality for at least three of the elements.

The UIP regression slope coefficient can be repressed as

βUIP =
Cov(Et[

d rxFX
t

dt
], r∗t − rt)

V ar(r∗t − rt)
= βrx0 ≤ 0,

as Φ1 ≤ 0. Here βrx0 is defined in equation (16). In our model, βUIP is 1.871

based on calibration (see Figure 1), which is close to the counterpart in empirical

literature (e.g., in Engel (2016), βUIP is 1.850 for USD/GBP; in Chernov and

Creal (2021), the number is 1.770 averaged across 4 currencies, including GBP,

against USD with nominal data.).

What is the underlying mechanism that enables our model to explain the

UIP puzzle? In Kx, the loadings on zt is 0, and on the other three variables

are negative (see Figure 3 for values at τ = 0). However, as the global disaster

24



is shared among countries, λgt does not have an impact on the currency risk

premium. Suppose a shock increases the domestic disaster probability, λit > λi,∗t ,

and let other variables be equal across countries. The higher domestic disaster

risk results in decrease on domestic risk-free rate, due to more precautionary

savings. At the same time, the higher disaster intensity gives rise to higher price

of risk in home country. In this case, domestic disaster shocks dominates the

effect of foreign disaster shocks in exchange rate. As risk-free assets in their

own currency are riskless, the riskiness for currency return comes from the

movement of exchange rate. Since the domestic price of risk is higher, Equation

(13) implies that, the riskiness of the foreign risk-free asset for home investor is

higher than the riskiness of the domestic risk-free asset for foreign asset. Hence

the domestic investor expects an excess return for risk-bearing. The analysis

above concludes that the expected currency risk premium is higher at times

when r∗t − rt > 0, which reflects a positive βUIP . A larger impact of λit on the price

of risk relates to a larger UIP regression slope.

The mechanism for σ2
t to contribute to the UIP regression slope is similar to λit

(see Figure 3). In other words, both diffusion risk and jump risk play important

roles in determination of UIP regression slope. As for zt, B
(zt)
r (0) is negative. A

small zt means higher expected consumption growth and decreases investor’s

willing to save, and therefore increases the interest rate. However, zt does not

contribute to the expected currency risk premium, as zt is not in the price of risk.

Therefore, any change in the spot interest rate differential will be cancelled out

by the expected depreciation/appreciation of spot exchange rate.

Figure 1 displays the impact of recovery degree ωc and jump propagation de-

gree ωi on the UIP regression slope. The top panel shows that, a large recovery

degree will lower the UIP regression of spot currency return. When ωc = 0.15, βUIP
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Figure 1: Theoretical Slope of Ex ante Return Regression. This figure plots
the theoretical slope for regression of ex ante currency excess return on risk-
free rate differential, as defined in equation (16). In the top panel, the solid line
is the baseline calibration. The dashed line is with weaker recovery, and the
dash-dotted line is with stronger recovery. In the bottom panel, the solid line is
the baseline calibration. The dashed line is without jump propagation, and the
dash-dotted line is with higher degree of jump propagation.
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Figure 2: Theoretical Slope of Ex ante Exchange Depreciation Regression.
This figure plots the theoretical slope for regression of ex ante exchange rate de-
preciation on risk-free rate differential, as defined in equation (17). In the top
panel, the solid line is the baseline calibration. The dashed line is with weak-
er recovery, and the dash-dotted line is with stronger recovery. In the bottom
panel, the solid line is the baseline calibration. The dashed line is without jump
propagation, and the dash-dotted line is with higher degree of jump propagation.
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is only 0.584. This result is intuitive, as recovery lessens jump risk. As showed

in Figure 3, with larger recovery coefficient, the loading on λit for spot interest

rate is smaller, which reflects less precautionary saving, as the investor expects

stronger recoveries after possible disasters. It also shows that Ḃ(λit)
m (0) becomes

smaller for larger ωc, which implies that, for a given λit−λi,∗t , the expected change

in exchange rate is weaker, since λit contributes less to the price of risk.

The effects of jump propagation on βUIP are twofold. First, it aggravates the

impacts of a disaster, and therefore increase the loading on λit for both interest

rate and exchange rate (Figure 4). Second, it increases the unconditional vari-

ance of λit, and hence its weight on determining βUIP . Overall, a larger ωi leads to

larger βUIP (see the bottom panel in Figure 1).

5.3 The multihorizon UIP regressions

In addition to the forward premium puzzle, can our model generates the pattern

of multihorizon UIP regressions as in Engel (2016)? The solid curve in Figure

1 shows the theoretical multihorizon UIP regression slope coefficients define in

Equation (16), which is the theoretical counterpart as in Engel’s regression. The

curve starts from a positive value (βUIP ) and then turns into negative at the

horizon of around 13 months. In further horizons, it reaches the trough and

then converges to 0 gradually. It catches main features with comparable values

as in Engel (2016). If we run the following regression

Et[

∫ ∞

0

d rxFXτ ] = α∞ + β∞(r∗t − rt) + ut,
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Figure 3: Loadings with Different Recovery Degree. The figure plots instan-
taneous exchange rate growth, interest rate differential, and currency risk pre-
mium loadings on the state variable differentials for different horizons and with
different ωc.
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Figure 4: Loadings with Different Degrees of Jump Propagation. The figure
plots instantaneous exchange rate growth, interest rate differential, and curren-
cy risk premium loadings on the state variable differentials for different horizons
and with different ωi.
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the slope coefficient will be

β∞ =

∫ ∞

0

βrxτ dτ.

In Engel (2016), β∞ = −30.890 for G6, and −10.717 for United Kingdom with a

90% interval (−27.130, 1.060). For individual countries in G6, the value ranges

from −10.717 to −33.895. In our calibration, β∞ = −2.300, which is transferred

to −27.600 to compared with Engel (2016) (his dependent variable is constructed

in monthly frequency). Therefore, our model not only catches the shape of the

multihorizon UIP regression slope coefficient curve, but also matches its size.

Negative β∞ implies that high risk interest rate currency is less risky. Hence,

our model provides a risk-based explanation for the puzzle proposed by Engel

(2016).

What explains the model’s ability to address Engel puzzle? The key is the

feature of jump propagation. Even though zt does not affect the spot currency

risk premium, it determines expectation of future currency risk premium.

Suppose zt < z∗t , then rt > r∗t as discussed before. The smaller zt indicates that

in the near future, the domestic disaster intensity is expected to be larger than

foreign because of jump propagation. Based on the discussion in last section, a

lower expectation of λi,∗t+τ−λit+τ is related to higher expectation of exchange growth

rate. In other words, Ḃ(z)
m (τ) is increasing for small τ , as showed in the top left

panel of Figure 3. At the same time, the lower expectation λi,∗t+τ − λit+τ increases

the expected interest rate differential until even a reverse sign (see middle left

panel in Figure 4. Though with ωi = 0, B(z)
r is already an increase function on τ

due to mean-reversion of zt, jump propagation accelerates the increase of B(z)
r ).

The effects of z∗t − zt on the expectation of exchange rate growth and interest rate

differential add up to a hump-shape loading function on z∗t − zt for currency risk

premium (see bottom left panel in Figure 4).
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Without jump propagation, the mean-reverting property of λit and σ2
t will

lead to a monotone decreasing multihorizon UIP regression slopes, which never

change signs, as the red dash curve in the bottom panel of Figure 1 shows. The

slope coefficients therefore inherits both the monotone decreasing effects of λit

and σ2
t , and the (reversed) hump-shape effects of zt.

Next we investigate how the degree of recovery and jump propagation affects

the multihorizon currency risk premium. As mentioned before, recovery lessens

the effect of λit. This is true for not only spot exchange rate. As a consequence,

a larger ωc generates a lower hump in the bottom left panel in Figure 3. As the

currency risk premium loading on λi,∗t − λit also getting smaller in level on lager

ωc, the resulting slope coefficient curve is flatter (see top panel in Figure 1). If the

recovery degree is too small, however, the slope coefficient curve could become

monotone, as the effect of λi,∗t − λit is too strong and dominates the hump-shape

effect of z∗t − zt. The effect of ωi is not apparent. On the one hand, a larger ωi

results in a bigger hump of currency risk premium loading on z∗t − zt. On the

other hand, it also increase both the loading on and the unconditional variance

of λi,∗t − λit. The ultimate effect dependents on the relative strength of these two

effects.

Figure 2 displays βsτ defined in Equation (17). Similar to Figure 1, the solid

line starts at a positive value and then turns to negative. It coincides with the

empirical results in Chernov and Creal (2021). It shows that the slope coefficient

curve of multihorizon UIP regressions originates from the expectation of future

exchange rate depreciations, instead of the expectation of future interest rate

differentials.
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5.4 Term Structure of Real Yields

As there are not perfect real bonds in real world, the empirical literature usually

relies on inflation-indexed bonds or TIPS contracts to study the term structure

of real yields. However, because of issues like sample size, liquidity or indexation

lags, there are not consensus on the average term structure of the real yields. For

example, the term structure is downward sloping using U.K. inflation-indexed

bonds in Evans (1998), and it becomes flat when Verdelhan (2010) extends the

results using Bank of England real yields and with a different sample period.

Ang, Bekaert and Wei (2008) shows that the unconditional term structure of real

yields is fairly flat, with a slight hump at 1-year maturity with U.S. data.

However, it is consensus that long term yields are less volatile than short

term yields (Evans (1998), Evans (2003), Seppälä (2004) and Ang et al. (2008)).

Besides, the real rate is pro-cyclical, and therefore, Ang et al. (2008) show that in

regimes when interest rate is high, the yield term structure is downward-sloping,

and when interest rate is low, it is upward sloping. In other words, the slope is

counter-cyclical.

Table 3: The Theoretical Bond Yields
maturity r 2 years 4 years 6 years 8 years 10 years

mean(%) 1.234 1.262 1.261 1.259 1.258 1.256

volatility(%) 1.799 0.825 0.482 0.330 0.248 0.199

Our model can reproduce these patterns. Table 3 presents the theoretical

mean and volatility of bond yields for different maturities. It shows that the

long term yields are highly stable, while the short term yields are volatile. This

observation is also displayed in Figure 5. Besides, Figure 5 shows that the
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Figure 5: The Term Structure of Bond Yields. The figure plots the term struc-
ture of bond yields with state variables set at different levels.

unconditional term structure is flat with a slight hump (see the solid line in

left and right panel) as in Ang et al. (2008). When zt is small, which means

that the economy is under recovery and can be interpreted as good times for

the consumption growth rate is high, the term structure is downward sloping.

When the disaster intensity is large, which can be interpreted as bad times, term

structure is upward sloping. Hence the slope of real yields term structure is

counter-cyclical in our model, consistent with Ang et al. (2008).

6 Conclusion remarks

Empirical research documents two puzzles that violates the UIP condition: the

forward premium puzzle and the exchange rate level puzzle. The former implies

that high interest rate currency is riskier and the latter implies the opposite.

We propose a consumption-based general equilibrium models to reconcile the

paradox.

The model features disaster recovery and jump propagation. The unshared
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part of disasters generates the forward premium puzzle, while jump propagation

explains the multihorizon UIP pattern. Specifically, jump propagation produces

negative correlation between interest rate differential and ex ante currency risk

premium. When foreign country is under recovery, its interest rate is high. In

the meanwhile, jump propagation implies that in the near future, foreign price

of risk will dominate domestic in determining the exchange rate, and there for-

eign currency will be less risky to domestic investor. This channel drives the

multihorizon UIP regression slope curve to reverse sign in the near future.

In addition to address the forward premium puzzle and Engel’s puzzle, the

model also accounts for the term structure of real bond yields, as well as some

basic moments of the exchange rate growth and interest rate.
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Appendix A The dynamics of Yt

The matrixes which defines the dynamics of Yt are given by

M =



µc

0

ϕgλ̄
g

ϕiλ̄
i

ϕσσ̄
2


, K =



0 ωc 0 0 0

0 −ϕz 0 0 0

0 0 −ϕg 0 0

0 ωiϕi 0 −ϕi 0

0 0 0 0 −ϕσ


, H3 =



0 0 0 0 0

0 0 0 0 0

0 0 σ2
g 0 0

0 0 0 0 0

0 0 0 0 0


,

H4 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 σ2
i 0

0 0 0 0 0


, H5 =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 ν2σ


, H1 = H2 = h = 05×5,

l0 = 02×1, l1 =

0 0 1 0 0

0 0 0 1 0

 , Jg = Ji =
(
1 1 0 0 0

)⊤
.

Appendix B Solve the price-consumption ratio

Define

Zt =MtRc,t
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Then
d logZt =d logMt + d logRc,t

=θ log δdt− θ

ψ
dct + θd logRc,t

=

[
θ
(
log δ + k0

)
− θ(1− k1)νc,t

]
dt+

(
θ − θ

ψ

)
dct + θk1B

⊤dYt

=

[
θ
(
log δ + k0

)
− θ(1− k1)(A+B⊤Yt)

]
dt+ χ⊤dYt

=

[
θ
(
log δ + k0

)
− θ(1− k1)(A+B⊤Yt) + χ⊤(M +KYt)

]
dt

+ χ⊤Σ(Yt)dWt + χ⊤JtdNt

where χ = θ((1− 1/ψ)δc+ k1B), δc = (1, 0, 0, 0, 0)⊤. The first equality is by definition.

The second equality uses equation(5). The third equality is based on substitution

of d logRc,t and rearrangement. The fourth equality uses the fact that dct = δ⊤c dYt.

The final line is straightforward.

An application of Ito-Doeblin Formula yields

dZt
Zt−

=

[
θ
(
log δ + k0

)
− θ(1− k1)(A+B⊤Yt) + χ⊤(M +KYt) +

1

2
χ⊤Σ(Yt)Σ(Yt)

⊤χ

]
dt

+ χ⊤Σ(Yt)dWt +
(
eχ

⊤Jgξ
g
t − 1

)
dN g

t +
(
eχ

⊤Jiξit − 1
)
dN i

t

=

[
θ
(
log δ + k0

)
− θ(1− k1)(A+B⊤Yt) + χ⊤(M +KYt) +

1

2
χ⊤Σ(Yt)Σ(Yt)

⊤χ

]
dt

+ λgt
[
ϱg(χ⊤Jg)− 1

]
dt+ λit

[
ϱi(χ⊤Ji)− 1

]
dt+ χ⊤Σ(Yt)dWt

+

[(
eχ

⊤Jgξ
g
t − 1

)
dN g

t − λgt
[
ϱg(χ⊤Jg)− 1

]
dt

]

+

[(
eχ

⊤Jiξit − 1
)
dN i

t − λit
[
ϱi(χ⊤Ji)− 1

]
dt

]

The Euler equation (6) implies that Zt is martingale, therefore its drift is 0, which

yields equation (7) by collecting terms in drift. Combining equation (4) and (7),
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we can solve k0, k1, A and B either systematically or iteratively.

Appendix C Variables dynamics under the risk neu-

tral measure

Define

h̃t = (e−Ω⊤Jgξ
g
t , e−Ω⊤Jiξit)⊤./ϱ(−Ω),

where ./ denotes element-by-element division. ϱ(·) is defined by (8). Note that

E(h̃t) = 12×1 and E(ϱ(−Ω) · h̃t) = ϱ(−Ω).

Let

Lt =exp

{∫ t

0

[
l⊤s
(
12×1 − ϱ(−Ω) · E(h̃s)

)
− 1

2
Λcs

⊤Λcs

]
ds−

∫ t

0

Λcs
⊤dWs

}
× exp

{∫ t

0

log
[
ϱ(−Ω) · h̃s

]
dNs

}

with · denoting element-by-element multiplication1. Then by Ito-Doeblin formula

we have

dLt
Lt−

= −Λct
⊤dWt +

[
ϱ(−Ω) · h̃t − 12×1

]
dNt − l⊤t

[
ϱ(−Ω) · E(h̃t)− 12×1

]
dt,

=
dMt

Mt−
+ rtdt.

Therefore Lt is a P -local martingale and it is non-negative by definition. Define

an equivalent probability measure Q by dQ/dP |Ft = Lt/L0. We can easily show

that, for any asset payment PT on time T , its price conditional on the information

1The definition of Lt is in the sense of the more general Radon-Nikodym derivatives in Rung-
galdier (2003)
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up to time t, with t < T , satisfies the following equation.

Pt = Et

[
MT

Mt

PT

]
= EQ

t

[
MTLt
MtLT

PT

]
= EQ

t

[
e−

∫ T
t rsdsPT

]
.

In other words, the time t price is the expectation of the discounted time T price

under measure Q. Therefore Q is actually the risk-neutral probability measure.

Let

WQ
t = Wt +

∫ t

0

Λcsds,

M̃Q
t = Nt −

∫ t

0

ls · ϱ(−Ω)ds.

We can show that LtW
Q
t and LtM̃

Q
t are P -local martingales by mimicking the

proof of Lemma 2 and Lemma 3 in Duffie et al. (2000). Hence we conclude that

WQ
t and M̃Q

t are Q-local martingales. It follows that Nt is a vector Piosson process

with intensity lQt = lt · ϱ(−Ω) . Next we will solve the distribution of jump sizes

under measure Q. Define

M̃ c,Q
t = ξt ·Nt −

∫ t

0

lQs · EQ[ξs]ds,

where ξt = (ξgt , ξ
i
t)

⊤. It is clear that M̃ c,Q
t is a 2× 1 vector of compensated compound

Poisson process under measure Q, so it is Q-local martingale (see, for example,

Theorem 11.3.1 in Shreve (2004)). LtM̃
c,Q
t is thus P -local martingale. By Ito-
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Doeblin formula, under measure P , we obtain the dynamics of LtM̃
c,Q
t as

d
[
LtM̃

c,Q
t

]
=M̃ c,Q

t− dLt + Lt−dM̃
c,Q
t + Lt−

[
ϱ(−Ω) · h̃t − 12×1

]
· ξt · dNt

=M̃ c,Q
t− dLt + Lt−ξt · dNt − Lt−l

Q
t · EQ[ξt]dt+ Lt−

[
ϱ(−Ω) · h̃t − 12×1

]
· ξt · dNt

=M̃ c,Q
t− dLt + Lt−ϱ(−Ω) · h̃t · ξt · dNt − Lt−l

Q
t · EQ[ξt]dt

=M̃ c,Q
t− dLt + Lt−ϱ(−Ω) · h̃t · ξt · dNt − Lt−lt · ϱ(−Ω) · E[h̃t · ξt]dt

+ Lt−lt · ϱ(−Ω) · E[h̃t · ξt]dt− Lt−lt · ϱ(−Ω) · EQ[ξt]dt

Ito-Doeblin formula yields the first equality. Substitution of dM̃ c,Q
t generates the

second. Collecting terms relative to dNt results in the third. The last equality

is constructing compensated process for dNt term, and uses lQt = lt · ϱ(−Ω). For

LtM̃
c,Q
t to be P -local martingale, it should hold that

Lt−lt · ϱ(−Ω) · E[h̃t · ξt]dt− Lt−lt · ϱ(−Ω) · EQ[ξt]dt = 0.

Therefore

EQ[ξt] = E[h̃t · ξt].

We thus conclude that the PDF of ξt under measure Q is

fQ(ξgt ; η
g
0 , η

g
1) = h̃

(1)
t f(ξgt ; η

g
0 , η

g
1) =

e−Ω⊤Jgξ
g
t

E
[
e−Ω⊤Jgξ

g
t

]f(ξgt ; ηg0 , ηg1),
fQ(ξit; η

i
0, η

i
1) = h̃

(2)
t f(ξit; η

i
0, η

i
1) =

e−Ω⊤Jiξit

E
[
e−Ω⊤Jiξit

]f(ξit; ηi0, ηi1).

40



The MGFs of jump sizes under measure Q are hence

ϱg,Q(u) =EQ
t (e

uξgt ) =

∫
euξ

g
s

e−Ω⊤Jgξ
g
s

E
[
e−Ω⊤Jgξ

g
s

]f(ξgs ; ηg0 , ηg1)ds
=

1

E
[
e−Ω⊤Jgξ

g
s

] ∫ e(u−Ω⊤Jg)ξgsf(ξgs ; η
g
0 , η

g
1)ds

=ϱg(u− Ω⊤Jg)/ϱ
g(−Ω⊤Jg),

ϱi,Q(u) =ϱi(u− Ω⊤Ji)/ϱ
i(−Ω⊤Ji).

With the results above, we can immediately obtain the dynamics of Yt under

measure Q as in the main text.

Appendix D The expected currency risk premium

Note that logMt has an affine structure on Yt. Let Y e
t = (Y ⊤

t , logMt)
⊤ be the

extension of Yt to include logM⊤
t , then Y e

t is a 6× 1 vector.

dY e
t = µe(Y e

t )dt+ Σe(Y e
t )dWt + Jet dNt,

µe(Y e
t ) =M e +KeY e

t ,

Σe(Y e
t )Σ

e(Y e
t )

⊤ = he +
6∑
i=1

He,iY e,i
t ,

Jet =
(
Jegξ

g
t Jei ξ

i
t

)
,

le(Y e
t ) ≡ λt = le0 + le1Y

e
t .

where

M e =

M

M0

 , Ke =

K 05×1

K0 01×1

 , He,i =

 H i H iΩ

Ω⊤H i⊤ Ω⊤H iΩ

 ∀i = 1, ..., 5,
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he =

 h hΩ

Ω⊤h⊤ Ω⊤hΩ

 , He,6 = 06×6,

le0 = l0, le1 =
(
l1 02×1

)
, Jeg =

 Jg

−Ω⊤Jg

 , Jei =

 Ji

−Ω⊤Ji

 .

Based on Duffie et al. (2000), we have

Lemma 1. The expectation of logMT , conditional on time t information, is given by

Et(logMT ) = Aem(τ) +Be
m

⊤(τ)Y e
t , (18)

where τ = T − t, and Aem(τ) and Be
m(τ) solve the following ODEs.

dBe
m(τ)

dτ
= Ke⊤Be

m(τ) + le1
⊤E[Jet

⊤Be
m(τ)],

dAem(τ)

dτ
=M e⊤Be

m(τ) + le0
⊤E[Jet

⊤Be
m(τ)].

with boundary conditions Aem(0) = 0 and Be
m(0) = (0, 0, 0, 0, 0, 1)⊤.

Proof: If we apply Ito-Deoblin formula on Et(logMT ) in equation (18), from the

resulting SDE we can see that Et(logMT ) is a martingale when the above ODEs

holds, which proves the Lemma.

Note that the last element of Be
m(τ) is always 1. Let Am(τ) = Aem(τ), Bm(τ) =

Be
m(τ)[1 : 5], where Be

m(τ)[1 : 5] is the first five entries of Be
m(τ), then

Et[st+τ ]− st = Et(logM
∗
T )− Et(logMT )− (logM∗

t − logMt)

=
(
Be
m

⊤(τ)−Be
m

⊤(0)
)
(Y e

t − Y e,∗
t ) = B⊤

m(τ)(Y
∗
t − Yt).
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Similarly, the expectation of the risk-free rate is

Et(rT ) = Ar(τ) +B⊤
r (τ)Yt,

where Ar(τ) and Br(τ) solve the following ODEs,

dBr(τ)

dτ
= K⊤Br(τ) + l1

⊤Eξ[J⊤
t Br(τ)],

dAr(τ)

dτ
=M⊤Br(τ) + l0

⊤Eξ[J⊤
t Br(τ)].

with initial conditions Ar(0) = Φ0 and Br(0) = Φ1.

Appendix E The stable state unconditional moments

of the state variables

The unconditional mean and variance of the state variables crucial for the model

to provide empirical implications. Some of the setup of the state variables in

this model are trivial while some are not. Therefore here we provide the method-

ology to calculate the moments concerned. By ’stable state’, we mean that the

processes are assumed to start infinitely long time ago.

Both the volatility of consumption growth rate and the global jump intensity

are standard CIR processes. Based on Cox et al. (1985), the stable state mean

and variance are given by

E[σ2
∞] = σ̄2, V ar[σ2

∞] =
ν2σσ̄

2

2ϕσ
, E[λg∞] = λ̄g, V ar[λg∞] =

σ2
g σ̄

g

2ϕg
. (19)

And as σ2
t and λgt are uncorrelated to each other and any other variables, the
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correlation coefficients between them and with any other variables are 0.

Appendix E.1 The unconditional moments of zt

Das (2002) calculate the moments of a jump-diffusion CIR process using char-

acteristic function. In our model, the recovery factor zt has time-varying jump

intensities, and λit and zt are inter-dependent, which makes it impossible to solve

the characteristic function or moment generating function in closed-form. Even

so, our method relies on moment generating function, but in a more circuitous

way.

Recall that zt follows the SDE in (1). The solution for zt is

zt = z0e
−ϕzt +

N i
t∑

n=1

ξiτne
−ϕz(t−τn) +

Ng
t∑

m=1

ξgτme
−ϕz(t−τm),

= e−ϕzt

z0 + N i
t∑

n=1

ξiτne
ϕzτn +

Ng
t∑

m=1

ξgτme
ϕzτm

 ,

= e−ϕzt
(
z0 +

∫ t

0

ξise
ϕzsdN i

s +

∫ t

0

ξgse
ϕzsdN g

t

)
,

(20)

where τn is the arrival time of the nth jump. τn, τm ≤ t as n ≤ N i
t and m ≤ N g

t . The

following lemma describes the characteristic function for the first summations

in zt. Note that the results for summations across N g
t are similar.

Lemma 2. Let

yt =

N i
t∑

n=1

ξiτne
ϕzτn

The moment generating function (MGF) of yt is given by

My,t(u) ≡ E[euyt ] = E

[
exp

(∫ t

0

λis
[
ϱi
(
ueϕzs

)
− 1

]
ds

)]
,
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where ϱi(·) is the MGF of ξit.

Proof: The expression for MGF can be obtained by the method of conditioning.

See, for example, Léveillé and Hamel (2018).

Therefore the first and second moments of yt can be calculated as

E[yt] =
dMy,t(u)

du

∣∣
u=0

=E

[∫ t

0

λisE[ξ
i]eϕzsds

]
=

∫ t

0

E[λis]E[ξ
i]eϕzsds,

E[y2t ] =
d2My,t(u)

du2
∣∣
u=0

=E

[(∫ t

0

λisE[ξ
i]eϕzsds

)2
]
+ E

[∫ t

0

λisE[ξ
i2]e2ϕzsds

]

where we use ϱi (0) = 1, dϱi(u)
du

∣∣
u=0

= E[ξi] and d2ϱi(u)
du2

∣∣
u=0

= E[ξi
2
]. The first term in

the second moment is

E

[(∫ t

0

λisE[ξ
i]eϕzsds

)2
]
=E

[∫ t

0

∫ t

0

λisλ
i
τE

2[ξi]eϕz(s+τ)dsdτ

]
=

∫ t

0

∫ t

0

E
[
λisλ

i
τ

]
E2[ξi]eϕz(s+τ)dsdτ

=E2[ξi]

∫ t

0

∫ t

0

(
Cov[λis, λ

i
τ ] + E[λis]E[λ

i
τ ]
)
eϕz(s+τ)dsdτ

=E2[ξi]

∫ t

0

∫ t

0

Cov[λis, λ
i
τ ]e

ϕz(s+τ)dsdτ + E2[yt]

Hence, the variance of e−ϕztyt is given by

V ar[e−ϕztyt] =e
−2ϕzt

(
E[y2t ]− E2[yt]

)
=e−2ϕztE2[ξi]

∫ t

0

∫ t

0

Cov[λis, λ
i
τ ]e

ϕz(s+τ)dsdτ + e−2ϕztE

[∫ t

0

λisE[ξ
i2]e2ϕzsds

]
=2e−2ϕztE2[ξi]

∫ t

0

∫ τ

0

Cov[λis, λ
i
τ ]e

ϕz(s+τ)dsdτ + e−2ϕzt

∫ t

0

E[λis]E[ξ
i2]e2ϕzsds.

Assuming the process starts infinitely long time ago, i.e., letting t goes to infinity,
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we obtain

lim
t→∞

2E2[ξi]
∫ t
0

∫ τ
0
Cov[λis, λ

i
τ ]e

ϕz(s+τ)dsdτ

e2ϕzt
= lim

t→∞

2E2[ξi]
∫ t
0
Cov[λis, λ

i
t]e

ϕz(s+t)ds

2ϕze2ϕzt

= lim
t→∞

E2[ξi]
∫ t
0
Cov[λis, λ

i
t]e

ϕzsds

ϕzeϕzt
=
E2[ξi]V ar[λi∞]

ϕ2
z

,

and

lim
t→∞

∫ t
0
E[λis]E[ξ

i2]e2ϕzsds

e2ϕzt
=
E[λi∞]E[ξi

2
]

2ϕz

by L’Hopital’s rule. So

lim
t→∞

V ar[e−ϕztyt] =
E2[ξi]V ar[λi∞]

ϕ2
z

+
E[λi∞]E[ξi

2
]

2ϕz
.

In like fashion, we have

lim
t→∞

E[e−ϕztyt] =
E[λi∞]E[ξi]

ϕz
.

Similar results can be obtain for the second summation across N g
t in (20). There-

fore, as N i
t and N g

t are independent, we have

E[z∞] =
E[λi∞]E[ξi]

ϕz
+
E[λg∞]E[ξg]

ϕz
, (21)

and

V ar[z∞] = E2[ξi]
V ar [λi∞]

ϕ2
z

+ E[ξi
2
]
E[λi∞]

2ϕz
+ E2[ξg]

V ar [λg∞]

ϕ2
z

+ E[ξg2]
E[λg∞]

2ϕz
, (22)

where the first two moments for ξi and ξg are given in the main text, V ar [λg∞] and

E[λg∞] are in equation (19). V ar [λi∞] and E[λi∞] are left to be calculated in next

section.
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Appendix E.2 The stable state unconditional moments of λit

It can be easily verified that the SDE for λit in (2) is equivalent to the following

equation

λit =λ
i
0e

−ϕit + λ̄i
(
1− e−ϕit

)
+

∫ t

0

e−ϕi(t−s)σi
√
λis dWi,s

+
ϕiωλ
ϕi − ϕz

e−ϕzt

z0 + N i
t∑

n=1

ξiτne
ϕzτn +

Ng
t∑

m=1

ξgτme
ϕzτm


− ϕiωλ
ϕi − ϕz

e−ϕit

 N i
t∑

n=1

ξiτne
ϕiτn +

Ng
t∑

m=1

ξgτme
ϕiτm


=λi0e

−ϕit + λ̄i
(
1− e−ϕit

)
+

∫ t

0

e−ϕi(t−s)σi
√
λis dWi,s

+
ωλϕi
ϕi − ϕz

(zt − wit) +
ϕiωλ
ϕi − ϕz

e−ϕitwi0.

(23)

Here wit is is a stochastic process with the same SDE as zt, but with a different

mean-reverting rate ϕi,

dwit = −ϕiwitdt+ ξitdN
i
t + ξgt dN

g
t .

So we calculate its stable state mean and variance by the same method for zt.

E[wi∞] =
E[λi∞]E[ξi]

ϕi
+
E[λg∞]E[ξg]

ϕi
, (24)

V ar[wi∞] = E2[ξi]
V ar [λi∞]

ϕ2
i

+ E[ξi
2
]
E[λi∞]

2ϕi
+ E2[ξg]

V ar [λg∞]

ϕ2
i

+ E[ξg2]
E[λg∞]

2ϕi
. (25)

If we let

yw,t =

N i
t∑

n=1

ξiτne
ϕiτn ,
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the joint moment generating function (MGF) of yt and yw,t is

My,yw,t(u, v) ≡ E[euyt+vyw,t ] = E

[
exp

(∫ t

0

λis
[
ϱi
(
ueϕzs + veϕis

)
− 1

]
ds

)]
.

Following the same procedure as calculation for zt, we obtain the stable state

covariance from the joint MGF as

Cov[z∞, w
i
∞] = E2[ξi]

V ar [λi∞]

ϕzϕi
+ E[ξi

2
]
E[λi∞]

ϕz + ϕi
+ E2[ξg]

V ar [λg∞]

ϕzϕi
+ E[ξg2]

E[λg∞]

ϕz + ϕi
. (26)

From Equation (23), we have

E[λi∞] = λ̄i +
ωλϕi
ϕi − ϕz

(E[z∞]− E[wi∞]), (27)

and

V ar[λi∞] =
σ2
iE[λ

i
∞]

2ϕi
+

(
ωλϕi
ϕi − ϕz

)2 (
V ar[z∞] + V ar[wi∞]− 2Cov[z∞, w

i
∞]

)
. (28)

Combining Equation (21), (24) and (27) solves

E[z∞] =
E[ξi]λ̄i + E[ξg]λ̄g

ϕz − ωλE[ξi]
,

E[λi∞] =λ̄i + ωλE[z∞].

(29)

Note that in the model we assume E[ξi] < 0, E[ξg] < 0 and ωλ < 0. When |ωλ| is a

small number, so that

ωλE[ξ
i] < ϕz,

we have E[λi∞] > λ̄i.
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Combining Equation (22), (25), (26) and (28) solves

V ar[λi∞] =Ai + ω2
λC1 + C2,

V ar[z∞] =a+ C1 +BiC2.
(30)

where

a =E[ξi
2
]
E[λi∞]

2ϕz
+ E[ξg2]

E[λg∞]

2ϕz
,

Ai =
σ2
iE[λ

i
∞]

2ϕi
, Ag =

σ2
gE[λ

g
∞]

2ϕg
, Bi =

E2[ξi]

ϕ2
z

, Bg =
E2[ξg]

ϕ2
z

,

C1 =
BiAi +BgAg
1− ω2

λBi

, C2 =
ω2
i ϕia

(1− ω2
λB1)(ϕi + ϕz)

.

Appendix E.3 The unconditional covariance between zt and

jump intensities

From (23), we know that

Cov(z∞, λ
i
∞) =

ωλϕi
ϕi − ϕz

(
V ar[z∞]− Cov[z∞, w

i
∞]

)
.

Appendix F The stable state covariance matrix of

Yt − Y ∗
t

As both the exchange rate and difference of risk-free rate are affine function on

Yt−Y ∗
t , the covariance matrix of Yt−Y ∗

t is crucial for the calculation of theoretical

UIP regression coefficient. As the coefficient on ct is 0 for both risk-free rate

and exchange rate, here we only calculate the covariance matrix for the other

variables in Yt − Y ∗
t , except ct − c∗t .

a. Variance and covariance of λg∞ − λg,∗∞

49



λgt and λg,∗t are identity, so the variance of λgt − λg,∗t and the covariance with

other variables in Yt − Y ∗
t are 0.

b. Variance and covariance of σ2
∞ − σ∗

∞
2

As σ2
t is uncorrelated to other variables and independent across countries, we

have V ar[σ2
∞ − σ∗

∞
2] = 2V ar[σ2

∞], and its covariance with the difference of other

variables are 0.

b. Variance and covariance of z∞ − z∗∞

zt and z∗t shares the same global jumps, and their jump sizes for each time t

are i.i.d., therefore

Cov[z∞, z
∗
∞] = E2[ξg]

V ar [λg∞]

ϕ2
z

+ E[ξg2]
E[λg∞]

2ϕz
,

And hence by the assumption that countries are symmetry, we have

V ar[z∞ − z∗∞] = 2V ar[z∞]− 2Cov[z∞, z
∗
∞].

In like fashion, we can obtain the following covariances.

Cov[z∞, w
i,∗
∞ ] = E2[ξg]

V ar [λg∞]

ϕzϕi
+ E[ξg2]

E[λg∞]

ϕz + ϕi
,

Cov[wi∞, w
i,∗
∞ ] = E2[ξg]

V ar [λg∞]

ϕ2
i

+ E[ξg2]
E[λg∞]

2ϕi

Cov[z∞, λ
i,∗
∞ ] =

ωλϕi
ϕi − ϕz

(Cov[z∞, z
∗
∞]− Cov[z∞, w

i,∗
∞ ]),

Cov[z∞ − z∗∞, λ
i
∞ − λi,∗∞ ] = 2Cov[z∞, λ

i
∞]− 2Cov[z∞, λ

i,∗
∞ ].

d. Variance of λi∞ − λi,∗∞
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Based on Equation (23), we have

Cov[λi∞, λ
i,∗
∞ ] =

(
ωλϕi
ϕi − ϕz

)2 (
Cov[z∞, z

∗
∞] + Cov[wi∞, w

i,∗
∞ ]− 2Cov[z∞, w

i,∗
∞ ]

)
.

Therefore

V ar[λi∞ − λi,∗∞ ] = 2V ar[λi∞]− 2Cov[λi∞, λ
i,∗
∞ ].
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