

Understanding ETFs

AUT

Professor Bart Frijns

Auckland University of Technology

Auckland Centre for Financial Research

What are ETFs?

- Exchange traded funds can be seen as a hybrid between an open- and a closed-end fund
- They share resemblance to an open-end fund in the sense that units can be created when investors buy the ETF
- They share resemblance to closed-end funds in the sense that units can be freely traded regardless of whether units are created or not
- This hybrid structure allows for a mechanism where funds can be traded continuously during trading hours

Exchange Traded Fund

Trading ETFs

Since ETFs are exchange traded, costs are:

- Brokerage
- Bid-ask spread
- Expense ratio
- Entry/Exit fees
- Since you are trading on an exchange, liquidity can be an issue.

ETF Benchmarks

- ETFs generally have clearly specified benchmarks that they track
- Understanding the exact benchmark that the ETFs tracks is crucial
- With more complex ETFs, benchmarks are often not easily understood

Barclays iPath VXX

- VXX tracks short-term implied volatility of the S&P500 (specifically, it tracks the SPVXSTR index)
- Popularised as a tool to diversify/cover market risk

Barclays iPath VXX

- Negative roll yield on VIX futures accumulates losses to VXX
- Reverse splits seem to make people unaware to this

Barclays iPath VXX

- Popularity in the product keeps growing (\$1.1bn AUM)
- Since then there are also leveraged (TVX 2x) and inverse products (XIV – -1x)

Tracking Performance

- Most ETFs passively track a benchmark (ETFs often track benchmarks that are easily replicated)
- However, just like regular mutual funds, they do not track benchmarks perfectly, resulting in tracking error.
- Since ETFs are mostly passive, tracking error performance is easily measured
 - Regression Analysis
 - Cointegration Analysis

Tracking Error Exercise on the FONZ

- FONZ tracks the S&P/NZX 50 Portfolio Index and was introduced in Dec 2004.
- In a regression analysis we compare the returns on the ETF with the returns on the index, i.e.

$$(r_t^{ETF} - r_t^f) = \alpha + \beta(r_t^{IND} - r_t^f) + \varepsilon_t$$

• Perfect replication means α = 0 and β = 1 and R^2 is high

FONZ Regression Analysis

Explaining Tracking Error

What are the sources of the tracking error of the FONZ

Tracking Error

- NZX 50P Volatility
- ETF traded volume

	Intercept	Volatility	%Spread	Volume	R ²
Tracking Error	0.0101***	1.3860***	0.1270***	-1.3115***	29.18%
	(14.26)	(8.11)	(7.68)	(-9.79)	

Cointegration Analysis

 In Cointegration Analysis, we examine whether the prices of the ETF track the prices of its index, i.e.

$$p_t^{ETF} = \gamma + \delta p_t^{IND} + \eta_t$$

- Perfect replication implies that γ captures the multiplier and $\delta = 1$.
- The estimated coefficients provide us with the price deviation:

$$ECT_{t} = p_{t}^{ETF} - \gamma - \delta p_{t}^{IND}$$

 Based on this we can examine how long it takes for price deviations to disappear

Cointegration Analysis

- Cointegration analysis shows that the relation is close to one-to-one.
- There is some variation in the price differences

Further estimation shows a speed-of-adjustment coefficient of -0.16, this implies a half-life of about 4.5 days

Understanding ETFs

- We have identified several factors that affect ETFS pricing:
 - ETF Structure
 - Costs
 - Benchmarks
 - Tracking Error
 - Price deviations