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Abstract

There is a close link between prices of equity options and the probabil-
ity of default of a firm. We show that in the presence of positive expected
equity recovery, the standard methods that assume zero equity recovery
at default misestimate the probability of default implicit in option prices.
We introduce a simple method to detect stocks with positive expected eq-
uity recovery by examining option prices, and propose a method to extract
the probability of default from option prices in the presence of positive
expected equity recovery. Our empirical results based on six large finan-
cial institutions in the US during the 2007-2009 crisis show that assuming
zero recovery leads to significant mispricing of options and misestimation
of implied probability of default.
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1 Introduction

There is a long line of literature linking option prices with the probability of
default of a firm, following the seminal work by Merton (1974). Most of the
studies in this literature (e.g., Bayraktar and Yang (2011), Carr and Linetsky
(2006), Carr and Madan (2010), Carr and Wu (2009), and Linetsky (2006))
assume that there is no residual asset left to pay equity investors in the event of
a firm’s default. That is, the stock price goes to zero when a default occurs. In
most cases, the assumption of zero equity recovery at default is valid. However,
in some instances, there is significant residual value to equity investors even after
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a firm defaults.1 Ignoring a positive expected equity recovery at default has
important implications for pricing options and also for estimating probability
of default from observed option prices.
The present study makes two important contributions to the literature.

First, we propose a simple method to detect stocks with positive expected equity
recovery by examining prices of equity options. Second, we propose a simple
closed-form equity call option pricing formula that takes positive equity recovery
into account.
Our methodology is based on new static arbitrage-free lower bounds for

European call and put option prices when the expected default probability and
equity recovery are known. We derive these lower bounds by generalizing the
results of Orosi (2014).
We use the prices of options on General Motors (GM) stock close to its

bankruptcy filing in June 2009 to illustrate how the violation of the proposed
lower bounds can be used to detect positive expected recovery for GM. We
also apply our method to six large U. S. financial institutions that were under
tremendous stress during the financial crisis of 2007-2009. We find that lower
bound violations occurred frequently for options on these stocks, indicating that
the expected equity recovery rates of these stocks were often positive during the
crisis. The positive equity recovery rates for these stocks are consistent with
what happened to these firms eventually. Some were forced to be acquired by
other institutions at very low prices (Bear Stearns and Merrill Lynch) while
one was bailed out by the government (AIG). The positive expected recovery
rates reflect the investors’expectations of what the stocks of these firms would
be worth after going through near-default events such as forced mergers and
government bail-out.
The new lower bounds with positive equity recovery can be also used to

extend the closed-form equity option pricing formula of Orosi (2015a). The
model allows us to estimate the equity recovery rate and the probability of
default. We calibrate two versions of the model: the new formula that allows
for positive equity recovery and the formula in Orosi (2015a) that assumes
zero recovery. We then compare the probability of default estimated from the
two versions of the model with the probability of default estimated from credit
default swaps (CDS) for MGM Resorts International in 2009.
We find that the probabilities of default estimated with positive recovery are

comparable to the CDS-implied probabilities of default whereas the probabilities
estimated under zero recovery assumption are significantly lower than those
implied from CDS. Our example illustrates that ignoring a positive expected
equity recovery at default has important implications for estimating probability
of default from observed option prices. Therefore, other methods of estimating
probability of default from option prices such as Carr and Wu (2011) and Taylor
et al. (2014) must be used with caution when the equity recovery is expected
to be positive.

1See Leland (1994), Leland and Toft (1996), Fan and Sundaresan (2000), Broadie, Chernov,
and Sundaresan (2007), Hackbarth, Hennessy, and Leland (2007), and Davydenko (2012).
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The rest of paper is organized as follows. In Section 2, we show how the
violation of lower bounds for option prices can be explained by positive equity
recovery at default. Section 3 describes the data. In Section 4, we present
examples of the application of the proposed methodology for detecting posi-
tive expected equity recovery from option prices. In Section 5, we propose an
interpolation-based closed-form formula that can be used to infer the probabil-
ity of default from equity options when expected recovery is positive. Section 6
concludes the paper.

2 Violation of Lower Bounds for Options on a
Defaultable Asset

The Merton’s lower bounds for European call and put prices are based on the as-
sumption that the underlying asset price follows a strictly positive price process,
which is not the case when there is a positive probability of default. Orosi (2014)
proposes improved lower bounds under the assumption that the underlying as-
set can default and the price of the asset at default is zero. In the case of equity
options, this means a zero equity recovery at default.

P (K,T ) ≥ max
(
e−rT ·K · PD, 0

)
, (1)

C(K,T ) ≥ max
(
S0e
−dT − e−rT (1− PD) ·K, 0

)
. (2)

In practice, however, Orosi’s lower bounds are often violated for equity op-
tions. In this section, we first present an alternative derivation of the lower
bounds proposed in Orosi (2014), then show that relaxing the assumption of
zero equity recovery can explain the presence of violations of Orosi’s bounds in
practice.

2.1 Lower bounds with zero equity recovery

Following Merton (1973), we assume: (i) perfect capital markets; (ii) there
are no arbitrage opportunities; (iii) investors have positive marginal utility of
wealth; and (iv) current and future interest rates are strictly positive. Let
C (K,T ) and P (K,T ) be the current prices of European call and put options
on the stock with strike K and maturity T . r and d denote the interest rate
and the continuous dividend yield, respectively.
Consider a stock that has a current price of S0 with a positive risk-neutral

default probability of PD prior to some time T . Then, since the stock is worth-
less in the case of default

PD = P (ST = 0),

P (ST > 0) = 1− PD.

Moreover, as De Marco et al. (2013) show, P (ST > 0) can be calculated from
call options using the identity of Breeden and Litzenberger (1978) and is given
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by

P (ST > 0) = −e−rT ∂+C (K,T )

∂K

∣∣∣∣
K=0

= −e−rT
(

lim
∆K→0

C (∆K,T )− C (0, T )

∆K

)
.

Then, a digital contract that pays a unit currency at time T if default happens
prior to time T and pays zero otherwise is given by

D(T ) = e−rT · PD,

and can be replicated in terms of call options and cash as follows:

D(T ) = e−rT · PD = e−rT − e−rTP (ST > 0) =

e−rT +
∂+C (K,T )

∂K

∣∣∣∣
K=0

= e−rT + lim
∆K→0

C (∆K,T )− C (0, T )

∆K
. (3)

Proposition 1 The lower bound of a European put option written on a default-
able asset is

P (K,T ) ≥ e−rT ·K · PD. (4)

Proof. Assuming otherwise, one can assume (4) does not hold, and form the
following zero value portfolio at time zero:

Π = P (K,T )−K ·D(T ) +B,

where B represent the amounts invested in bonds. In the case of default, the
value of the portfolio at the time of expiry is given by:

Π = K −K +BerT = BerT > 0,

because the payoff of D(T ) = 1. If the asset does not default prior to expiry and
the option does not finish in the money (or ST > K equivalently), then the value
of the portfolio at the time of expiry is given by

Π = BerT > 0

because the put option and D(T ) become worthless. Finally, if the asset does
not default prior to expiry and the option finishes in the money (or ST 6 K
equivalently), then the value of the portfolio at the time of expiry is given by

Π = K − ST +BerT > 0.

Proposition 2 The lower bound of a European call option written on a default-
able asset is

C(K,T ) ≥ S0e
−dT − e−rT (1− PD) ·K. (5)

Proof. Using equation (4) and the put-call parity relationship:

C(K,T ) = S0e
−dT −K · e−rT + P (K,T )

≥ S0e
−dT −K · e−rT + e−rT ·K · PD

≥ S0e
−dT − e−rT (1− PD) ·K.
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2.2 Lower bounds with positive equity recovery

We now assume that if a company’s stock price falls below a default barrier, db,
then the company defaults. Moreover, when a firm defaults, the stock price is
worth R ≥ 0, hereafter referred to as equity recovery.

2.2.1 Random equity recovery

We assume that equity recovery at expiry T is a continuously distributed random
variable with a probability density function fR(ρ) at a known recovery value ρ.
Then, we observe that the price of a put option can be written as follows:

P (K,T ) = e−rTE
[
(K − ST )+

]
= (6)

e−rTE
[
(K − ST )+

∣∣D] · PD +

e−rTE
[
(K − ST )+

∣∣ND] · (1− PD)

where E
[
(K − ST )+

∣∣D] is the conditional expectation if default occurs,
E
[
(K − ST )+

∣∣ND] is the conditional expectation if default does not occur,
and PD = P (ST ≤ db). Let E (R), min(R), and max(R) be the expected value,
minimum, and maximum values of the recovery at time T , respectively. Then,
the value of a put option is

P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] = 0 if K ≤ min(R), (7)

P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] · PD
= e−rT

 K∫
min(R)

(K − r) · fR(ρ)dρ

 · PD if min(R) ≤ K ≤ max(R),

P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] = e−rT (K − E (R)) · PD if max(R) ≤ K ≤ db,

The value of a call option follows from the put-call parity as

C (K,T ) = S0e
−dT −Ke−rT if K ≤ min(R), (8)

C (K,T ) = e−rT

 K∫
min(R)

(K − r) · fR(ρ)dρ

 · PD + S0e
−dT −K · e−rT

if min(R) ≤ K ≤ max(R),

C (K,T ) = e−rT (K − E (R)) · PD + S0e
−dT −K · e−rT if max(R) ≤ K ≤ db.

Hence, for max(R) ≤ K ≤ db, the values of the options are

P (K,T ) = max(K − E (R) , 0)e−rT · PD, (9)

C(K,T ) = S0e
−dT −K · e−rT + max(K − E (R) , 0)e−rT · PD. (10)
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Moreover, since option prices are convex functions of K, the lower bounds of
calls and puts with K ≥ max(R) are

P (K,T ) ≥ max(K − E (R) , 0)e−rT · PD, (11)

C(K,T ) ≥ S0e
−dT −K · e−rT + max(K − E (R) , 0)e−rT · PD. (12)

Note that both calls and puts equal the lower bounds of Merton for K ≤
min(R). Therefore, the lower bounds of the options in the presence of non-
zero recovery is significantly lower than the lower bounds of options with zero
recovery that have the same probability of default. Moreover, in the presence
of recovery, the options equal their lower bounds for strikes K ≥ max(R), and
these values are significantly lower than the lower bounds of the options with
zero recovery.

2.2.2 Constant equity recovery

Note that if one only deals with options for which max(R) ≤ K ≤ db, option
prices are given by

P (K,T ) = max(K − E(R), 0)e−rT · PD,
C(K,T ) = S0e

−dT −K · e−rT + max(K − E(R), 0)e−rT · PD.

As a consequence of convexity, for options with K ≥ max(R), the lower bounds
of calls and puts are given by

P (K,T ) ≥ max(K − E(R), 0)e−rT · PD,
C(K,T ) ≥ S0e

−dT −K · e−rT + max(K − E(R), 0)e−rT · PD.

The above equations indicate that if one deals with options for which K ≥
max(R), then it is reasonable to replace E (R) by a constant parameter R when
examining lower bounds of European calls and puts. Furthermore, if min(R)
and max(R) are close to each other, then a constant recovery assumption at
expiry is also reasonable. Therefore, the lower option bounds for a constant R
are given by

P (K,T ) ≥ max(K −R, 0)e−rT · PD, (13)

C(K,T ) ≥ max(S0e
−dT −K · e−rT + max(K −R, 0)e−rT · PD, 0).(14)

Although in our subsequent analysis we will frequently use (13) and (14), our
conclusions can be easily generalized for non-constant recovery.

2.2.3 Comparison of lower bounds

Figure 1 (left panel) shows an example of what the proposed call price lower
bounds look like compared to the Merton’s lower bound,

C(K,T ) ≥ max
(
Se−dT −Ke−rT , 0

)
. (15)
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If we assume that the recovery is zero, then a positive PD simply makes
the sloped portion of the bound steeper. But if we assume a positive recovery
and PD, then the bound coincides with the Merton’s bound up to the expected
recovery R and starts decreasing linearly from R at the same slope as the bound
with positive PD and zero recovery.
Figure 1 (right panel) shows what can happen if the recovery is indeed

positive, but we apply the lower bound with zero recovery. In this case, we will
find that some of the observed call prices violate the lower bound. This is an
indication that the zero recovery assumption does not hold for the underlying
stock.

< Figure 1: Lower Bound for Call Prices >

Figure 2 (left panel) shows an example of what the proposed put price lower
bounds look like compared to the Merton’s lower bound,

P (K,T ) ≥ max
(
Ke−rT − Se−dT , 0

)
. (16)

Figure 2 (right panel) shows how we can identify the presence of positive recovery
by looking at the observed put prices with respect to the lower bound with
positive PD and zero recovery. If the recovery is positive, then some of the
observed put prices will violate the lower bound with positive PD and zero
recovery.

< Figure 2: Lower Bound for Put Prices >

3 Data

We obtain data on options on eight stocks from IVolatility2 . The data includes
daily end-of-day option settlement prices, dividend rates, and interest rates.
IVolatility uses LIBOR rates for terms up to one year, and ISDA(R) interest
rate swaps par mid rates for longer terms. Our sample includes options on:

• General Motors on 15 April 2009,

• MGM Resorts International in 2009,

• Six U.S. financial institutions considered in Taylor et al. (2014) between
2008 and 2009: American International Group (AIG), Bank of America,
Bear Stearns, JP Morgan, Lehman Brothers, and Merrill Lynch.

2See http://www.ivolatility.com
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4 Detecting Positive Equity Recovery with Lower
Bound Violations

An important implication of (4) and (5) is that these static arbitrage lower
bounds are based on minimal assumptions. If one observes a violation of these
bounds (referred to as lower bound violation hereafter), then the non-zero re-
covery assumption can be readily rejected.

4.1 Illustrative example: General Motors

General Motors (GM) filed for bankruptcy on June 1, 2009, and the ‘old’GM
stock started trading over the counter (pink sheets) on June 2. Its stock traded
at 75 cents the day before the bankruptcy filing, but shot up to about $1.20 a
share by June 12, less than two weeks after the bankruptcy filing. By April 15,
2009, the bankruptcy of GM was highly anticipated and the price of GM stock
had plunged to $1.89 from around $40 in 2007. With this background in mind,
we look at the prices of options on GM stock on April 15, 2009.
The bid and ask prices of call options are shown on Figure 3 (left panel),

together with the Merton’s lower bound and our new proposed lower bound with
PD = 40% and R = 0. A conservative estimate of the PD of 40% (adjusted
to the option maturity of 0.431 years) was implied from 1-year credit default
swaps.
We observe that the observed prices satisfy the Merton’s lower bound, but

the prices of some of the lowest strike call options violate our proposed lower
bound. The violations imply that investors could have made arbitrage profits
if PD was suffi ciently high, which was certainly the case in our example. How
can we explain the presence of these arbitrage opportunities?
One assumption we made in the lower bound plotted in Figure 3 (left panel)

is that the expected equity recovery is zero. We now relax this assumption and
suppose that the expected recovery is $1. The assumption seems reasonable
since the price of GM stock went from 75 cents to $1.20 in two weeks following
the bankruptcy. We plot the lower bound with PD = 40% and R = $1 in
Figure 3 (right panel). Since the lower bound under the assumption of positive
expected recovery, R, coincides with the Merton’s lower bound when the strike
is between zero and R, none of the observed call prices violate this new lower
bound. Therefore, there are no arbitrage opportunities arising from lower bound
violations if investors believed that when GM eventually defaults, the price of
its stock would have dropped to $1 or higher, but not to zero.

< Figure 3: Lower Bound Violations - General Motors >

This example shows that if the probability of default is positive and we find
low strike options violating the lower bound with positive PD, but zero R, then
this can be an indication that the expected equity recovery at default is greater
than zero.
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4.2 U.S. financial institutions during the 2007-2009 finan-
cial crisis

We apply our proposed methodology to identify stocks that are expected to have
a positive equity recovery at default. We select six large financial institutions
in the U.S. during the crisis for several reasons. These financial institutions
were under tremendous stress during the financial crisis. As a result, Lehman
Brothers declared bankruptcy while Bear Stearns and Merrill Lynch were forced
to be acquired by JP Morgan Chase and Bank of America, respectively. AIG
was bailed out by the government. The circumstances leading up to the failure
of these firms provide an interesting case study because a government bail-out
is a form of near-default that often leaves equity holders of the firm in distress
with small but positive residual value. Moreover, the same set of firms and time
period was used in a related study by Taylor et al. (2014) to demonstrate their
methodology for extracting the probability of bankruptcy from stock and option
prices.
The first step in identifying lower bound violations is to obtain an estimate

of the PD. We estimate PDs by using the methodology in Carr and Wu (2011)
described in Appendix A. One assumption behind Carr and Wu (2011) method-
ology is that the equity recovery is zero. As a result, for stocks with positive
equity recovery, the methodology results in underestimating PD. Therefore, a
Carr and Wu (2011) PD provides a downward biased estimate of the actual
PD, which is suffi cient for our purpose of detecting lower bound violations.
We then plug in the Carr-Wu PDs into the Orosi’s call price lower bound,

C(K,T ) ≥ max
(
S0e
−dT − e−rT (1− PD) ·K, 0

)
, to determine whether a call

price violates this lower bound. We report the frequency of lower bound viola-
tions in Table 1. Note that the price of an American call is greater than or equal
to the price of the corresponding European call. Hence, if the above procedure
yields an arbitrage violation for an American call, it also implies an arbitrage
violation for the corresponding European call. For the same reason, we use ask
quotes rather than bid quotes.

< Table 1. Lower Bound Violations - U.S. Financial Institutions >

The results show that lower bound violations occur frequently, indicating
rejection of the zero recovery assumption for these firms. The frequency of
lower bound violations is around 80% for three stocks (AIG, JP Morgan, and
Lehman Brothers). Even for the stock with the smallest number of violations,
the frequency of violations is 27%. The high frequency of lower bound violations
indicates that the expected equity recovery of these stocks during the crisis is
likely to have been often positive. In fact, for Bear Stearns, a positive expected
recovery is consistent with the fact that the firm was eventually sold to JP
Morgan Chase for $10 per share when it failed.
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5 Extracting Probability of Default fromOption
Prices when Equity Recovery is Positive

Assuming zero recovery when the expected recovery is positive can lead to mis-
pricing of options and misestimation of probability of default from equity op-
tions. There are several ways of estimating the probability of default from
options, namely, Carr and Wu (2011), Taylor et al. (2014), and Orosi (2015a).
In this Section, we focus on the method proposed in Orosi (2015a). Since the
formula in Orosi (2015a) does not allow for positive recovery, we first derive an
extension of the formula in Orosi (2015a) for the case of positive recovery. Using
(11) and the results of Orosi (2015a), an analytic expression for European call
options can be derived as:

C (K,T ) =


S0e
−dT −Ke−rT if K ≤ R

S0e
−dT −Ke−rT + e−rT (K −R) · PD if R ≤ K ≤ db(

S0e
−dT − e−rT ·R · PD

)
· c if db < K

,

(17)
where

c =
−B2 +

√
(B2)

2 − 4A2C2

2A2

A2 = 1−G(1− PD)

B2 = x(1− PD)− 1 + 2G ·DB(1− PD),

C2 = −G ·DB2(1− PD),

DB = S0e
−dT − e−rT ·R · PD − e−rT (1− PD) · db,

x =
e−rT ·K

S0e−dT − e−rT ·R · PD
.

To derive (17), we extend the methodology in Orosi (2015a) by allowing
non-zero equity recovery at default. We start by observing that equation (11)
gives the following equations for call option prices when K ≤ db :

C (K,T ) =

{
S0e
−dT −Ke−rT if K ≤ R

S0e
−dT −Ke−rT + e−rT (K −R) · PD if R ≤ K ≤ db .

To obtain analytic call option prices for K > db, apply the following transfor-
mations to the strikes and call option prices:

c =
C (K,T )

S0e−dT − e−rT ·R · PD

x =
Ke−rT

S0e−dT − e−rT ·R · PD
.

Note that if R ≤ K ≤ db, the relation between c and x is given by
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c = 1− (1− PD) · x,

or equivalently

x =
1− c

1− PD.

To ensure that the transformed call option prices, c, are decreasing and convex

functions of x when K > db, we use the following expression to model the
dependence between these two variables

x =
1− c

1− PD +G
(1− c)2

c
, (18)

where G is a positive constant. Note that the above relation also guarantees the
continuity of call prices at K = db and c→ 0 as x→ 0.

The equation (18) can be rearranged as following:

c2(1−G(1− PD)) + c(x(1− PD)− 1 + 2G(1− PD))−G(1− PD) = 0.

Finally, the equation (17) is obtained as the positive root of the above quadratic
equation.

5.1 Illustrative example: MGM Resorts International

We calibrate the call option formula in (17) to call options on MGM stock in
2009. We choose MGM because we have access to data on the credit default
swaps and also because MGM did not pay any dividend after 2000. This simpli-
fies our analysis since American-style call options have no early exercise premia
when dividend is zero, and thus can be treated as European options.
We fit two versions of the formula. In Model 1, R, PD, and db are parameter

that are extracted from option prices whereas Model 2 assumes that R is zero.
For each trading day in the sample, (17) is calibrated by minimizing the root
mean squared percent pricing errors:√√√√ 1

n

n∑
i=1

(
Cij (θj)− Cij

Cij

)2

, (19)

where θj represents the parameters for the jth given trading day, the {Cij}ni=1
are the observed option prices on the jth trading day (for all strikes and expiries),
and the Cij (θj)-s are the option prices based on the model.
We fit the model to in-the-money call options because Orosi (2015b) points

out that the model provides poor fit to out-of-the-money calls. On many days,
we cannot find enough in-the-money call options to calibrate the parameters,
so we use simulated prices instead. First, for each trading day in the sample, a
cubic Hermite spline-based interpolant is fitted to all available call options with
the second longest maturity. The average maturity of the options used is around
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0.74 years, which is approximately 9 months. Then, using this interpolant, 15
uniformly distributed call option prices with the same maturity are generated
so that the minimum of the generated strike prices corresponded to 70% of the
minimum values of all available strike prices, and the maximum of the generated
strike prices corresponds to the stock price.

< Table 2. Probability of Default and Equity Recovery Rate -
MGM Resorts International (2009) >

The results of the model calibration are reported in Table 2, and the 5-day
moving averages of the estimated PDs are plotted in Figure 4. We also plot the
PDs computed from American put option prices using the methodology in Car
and Wu (2011) for comparison. Moreover, to assess whether the equity implied
probabilities agree with those extracted from credit markets, we use CDS with
a maturity of 5 years. We first estimate the constant hazard rate, λCDS , from
CDS spreads by using the relation:

λCDS =
SP

1−RBond
,

where SP is the CDS spread andRBond is the bond recovery rate that is assumed
to be 40%.
To make the PDs implied from options and those implied from CDS compa-

rable in terms of time horizon, we use the relation in equation (21) to calculate
1-year PDs by adjusting PDs estimated from options of different maturities
and λCDS estimated from 5-year CDS spreads.
We report the average estimates of the model parameters for both Model

1 and Model 2 in Table 2. The times series plot of the PDs computed from
Model 1 and Model 2 show that Model 2 significantly underestimates PDs
(Figure 4A). The PDs from Model 1 are comparable to the PDs implied from
American puts or CDS. However, the PDs from Model 2 are significantly lower
than PDs implied from American puts or CDS.
We also plot the time series of expected equity recovery rate in Figure 4B.

The estimated equity recovery rate for MGM ranged from zero to 50% during
this period.

< Figure 4: Probability of Default and Equity Recovery - MGM >

Our example illustrates that ignoring a positive expected equity recovery at
default has important implications for estimating probability of default from
observed option prices. Therefore, other methods of estimating probability of
default from option prices such as Carr and Wu (2011) and Taylor et al. (2014)
must be used with caution when the equity recovery is expected to be positive.

6 Conclusion

In the presence of positive expected equity recovery, the standard methods that
assume zero equity recovery at default misestimate the probability of default
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implicit in option prices. We introduce a simple method to detect stocks with
positive expected equity recovery by examining option prices, and propose a
method to extract the probability of default from option prices in the presence
of positive expected equity recovery. Our methodology is based on new lower
bounds for European call and put option prices when the expected default prob-
ability and equity recovery are known. Our empirical results show that assum-
ing zero recovery leads to significant mispricing of options and misestimation of
implied probability of default.
The possibility of positive equity recovery at default has implications for

other applications such as pricing convertible bonds (Ayache, Forsyth, and Vet-
zal (2003)) and exotic options. In our future research, we will investigate how
our method can be applied to other related problems.

Appendix A: Probability of Default Implied from
Puts - Carr and Wu (2011)

Carr and Wu (2011) defines a unit recovery claim (URC) as a contract that pays
one dollar at default whenever the company defaults prior to the option expiry
and pays zero otherwise. Under the assumption of a constant default arrival
rate, λ, the value of a URC is given by

U(T ) =

T∫
0

λe−rse−λsds = λ
1− e−(r+λ)T

r + λ
. (20)

The probability of default, PD, can be computed from the default arrival rate,
λ, using the relation,

PD = 1− e−λT . (21)

Carr and Wu (2011) show that for low strike prices, the URC can be replicated
by an American put, PAm(K,T ), the following way:

U(T ) =
PAm(K,T )

K
. (22)

PD can be easily calculated by first calculating the value of U(T ) using (22),

then determining the value of λ from (20), and finally plugging λ into the
equation (21).
To compute U(T ), Carr and Wu (2011) use only options that satisfy the

following criteria: (i) bid price is greater than zero; (ii) time-to-maturity is
greater than 360 days; (iii) strike price is $5 or less; and (iv) absolute value of
the put’s delta is not larger than 0.15.

13



References

[1] Ayache, E., Forsyth, P. A., and Vetzal, K. R. (2003), Valuation of Convert-
ible Bonds with Credit Risk, Journal of Derivatives, 11 (1), 9-29.

[2] Bayraktar, E. and Yang, B. (2011), A Unified Framework for Pricing Credit
and Equity Derivatives, Mathematical Finance, 21 (3), 493-517.

[3] Black, F. and Scholes, M.S. (1973), The Pricing of Options and Corporate
Liabilities.”Journal of Political Economy, 81 (3), 637-59.

[4] Breeden, D. and Litzenberger, R. (1978), Price of State-Contingent Claims
Implicit in Options Prices, Journal of Business, 51 (4), 621-651.

[5] Broadie, M., Chernov, M., and Sundaresan, S. (2007), Optimal Debt and
Equity Values in the Presence of Chapter 7 and Chapter 11, The Journal
of Finance, 62 (3), 1341-1377.

[6] Carr, P. and Linetsky, V. (2006), A Jump to Default Extended CEV Model:
An Application of Bessel Processes, Finance and Stochastics, 10 (3), 303-
330.

[7] Carr, P. and Madan, D. (2010), Local Volatility Enhanced by a Jump to
Default, SIAM Journal of Financial Mathematics, 1 (1), 2-15.

[8] Carr, P. and Wu, L. (2009), Stock Options and Credit Default Swaps:
A Joint Framework for Valuation and Estimation, Journal of Financial
Econometrics, 8 (1), 1—41.

[9] Carr, P. and Wu, L. (2011), A Simple Robust Link Between American Puts
and Credit Protection, Review of Financial Studies, 24 (2), 473—505.

[10] Davydenko, S. A., (2012), When Do Firms Default? A Study of the Default
Boundary, Working paper, University of Toronto.

[11] De Marco, S., Hillairet, C., and Jacquier, A. (2013), Shapes of Implied
Volatility with Positive Mass at Zero, Working Paper

[12] Fan, H. and Sundaresan, S. (2000), Debt Valuation, Renegotiation, and
Optimal Dividend Policy, Review of Financial Studies, 13 (4), 1057-1099.

[13] Hackbarth, D., Hennessy, C.A., and Leland, H. E. (2007), Can the Trade-
off Theory Explain Debt Structure?, Review of Financial Studies, 20 (3),
1389-1428.

[14] Leland, H. E. (1994), Corporate Debt Value, Bond Covenants, and Optimal
Capital Structure, The Journal of Finance, 49 (4), 1213-1252.

[15] Leland, H. E. and Toft K. B. (1996), Optimal Capital Structure, Endoge-
nous Bankruptcy, and the Term Structure of Credit Spreads, The Journal
of Finance, 51 (3), 987-1019.

14



[16] Linetsky, V. (2006), Pricing Equity Derivatives Subject to Bankruptcy,
Mathematical Finance 16 (2), 255-282.

[17] Merton, R. C. (1973), Theory of Rational Option Pricing, The Bell Journal
of Economics and Management Science, 4 (1), 141-183.

[18] Merton, R. C. (1974), On the Pricing of Corporate Debt: the Risk Structure
of Interest Rates, Journal of Finance, 29 (2), 449-470.

[19] Merton, R. C. (1976), Option Pricing When Underlying Stock Returns are
Discontinuous, 3 (1-2),125-144.

[20] Orosi, G. (2014), Novel No-Arbitrage Conditions for Options Written on
Defaultable Assets, Journal of Derivatives & Hedge Funds, 20 (4), 201—205.

[21] Orosi, G. (2015a), Closed-Form Interpolation-Based Formulas for Euro-
pean Call Options Written on Defaultable Assets, Journal of Asset Man-
agement,16 (4), 236-242.

[22] Orosi G. (2015b) Estimating Option-Implied Risk-Neutral Densities: A
Novel Parametric Approach, Journal of Derivatives, 23 (1), 41-61.

[23] Taylor, S.J., Tzeng, C., and Widdicks M. (2014). Bankruptcy Probabilities
Inferred from Option Prices, Journal of Derivatives, 22 (2), 8-31.

15



< Table 1. Lower Bound Violations - U.S. Financial Institutions >

Violations Carr-Wu Prob. of Default # Options
(%) mean (std) filtered

AIG 80 0.12 (0.14) 186
Bear Sterns 27 0.17 (0.17) 51
Bank of America 64 0.12 (0.14) 347
JP Morgan 81 0.08 (0.14) 354
Lehman Brothers 81 0.08 (0.08) 123
Merrill Lynch 53 0.12 (0.14) 73

Note: We report the frequency of violation of the Orosi’s lower bound
for call options, C(K,T ) ≥ max

(
S0e
−dT − e−rT (1− PD) ·K, 0

)
,

using all call options on the six U.S. stocks between 2008 and 2009.
To do this, we first compute Carr and Wu (2011) probabilities of
default, PD, by using the methodology described in Appendix A.
We then plug in the estimated PDs into the lower bound formula
to determine whether an option price violates it. We also report the
number of options used in estimating Carr-Wu PDs. The filtered op-
tions satisfy: (i) bid price is greater than zero; (ii) time-to-maturity
is greater than 360 days; (iii) strike price is $5 or less; and (iv)
absolute value of the put’s delta is not larger than 0.15.
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< Table 2. Probability of Default and Equity Recovery Rate -
MGM Resorts International (2009) >

Root Mean
Squared (%Error) G R (%) PD (%) db ($)

Model 1: R>0
Mean 1.02 0.3869 19.11 23.13 2.7330
Standard Deviation n/a 0.3037 17.43 21.93 1.6211
Model 2: R=0
Mean 4.82 0.1302 0 3.18 0
Standard Deviation n/a 0.1140 n/a 7.16 n/a

Note: We calibrate the call option price formula in (17) to call op-
tions on MGM Resorts International stock in 2009. Model 1 assumes
positive equity recovery, thus estimates R by fitting the observed call
prices to the pricing formula. Model 2 assumes zero recovery, thus R
is simply fixed at zero. For each trading day in the sample, the model
is calibrated by minimizing the root mean squared percent pricing er-
rors of generated in-the-money options. To generated in-the-money
call option prices, a cubic Hermite spline-based interpolant is fitted
to all available call options with the second longest maturity. Then,
using this interpolant, 15 uniformly distributed call option prices
with the same maturity are generated so that the minimum of the
generated strike prices corresponded to 70% of the minimum val-
ues of all available strike prices, and the maximum of the generated
strike prices corresponds to the stock price.
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< Figure 1: Lower Bound for Call Prices >

Note: The parameters used are: stock price(S)=$10, riskfree rate(r)=0%,
dividend yield(d)=0%, time-to-maturity(T)=1 year, default barrier(db)=$4.
Merton’s lower bound for call prices, C, is C(K) ≥ max

(
Se−dT −Ke−rT , 0

)
where K is the strike price. The lower bound for call prices with
a positive probability of default, PD, is C(K,T ) ≥ S0e

−dT − K ·
e−rT + max(K −R, 0)e−rT · PD. The call prices on the right panel
are generated using (17) with G = 0.12.

< Figure 2: Lower Bound for Put Prices >

Note: The parameters used are: stock price(S)=$10, riskfree rate(r)=0%,
dividend yield(d)=0%, time-to-maturity(T)=1 year, default barrier(db)=$4.
Merton’s lower bound for put prices, P , is P (K) ≥ max

(
Ke−rT − Se−dT , 0

)
where K is the strike price. The lower bound for put prices with a
positive probability of default, PD, is P (K,T ) ≥ max(K−R, 0)e−rT ·
PD. The put prices on the right panel are generated using put-call
parity and (17) with G = 0.12.
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< Figure 3: Lower Bound Violations - General Motors >

Note: We plot the bid and ask prices of call options on General
Motors’ stock on April 15, 2009. The parameters used are: stock
price(S)=$1.89, riskfree rate(r)=0.93%, dividend yield(d)=0%, time-
to-maturity(T)=0.431 year, and probability of default (PD) = 40%.
The probability of default was estimated from credit default swaps
on General Motors. Merton’s lower bound for call prices, C, is
C(K) ≥ max

(
Se−dT −Ke−rT , 0

)
where K is the strike price. The

lower bound for call prices with a positive probability of default,
PD, is C(K,T ) ≥ S0e

−dT −K · e−rT + max(K −R, 0)e−rT · PD.
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< Figure 4: Probability of Default and Equity Recovery - MGM >

Note: We calibrate the call option price formula in (17) to call op-
tions on MGM Resorts International stock in 2009. Model 1 assumes
positive equity recovery, thus estimates R by fitting the observed call
prices to the pricing formula. Model 2 assumes zero recovery, thus R
is simply fixed at zero. For each trading day in the sample, the model
is calibrated by minimizing the root mean squared percent pricing er-
rors of generated in-the-money options. To generated in-the-money
call option prices, a cubic Hermite spline-based interpolant is fitted
to all available call options with the second longest maturity. Then,
using this interpolant, 15 uniformly distributed call option prices
with the same maturity are generated so that the minimum of the
generated strike prices corresponded to 70% of the minimum val-
ues of all available strike prices, and the maximum of the generated
strike prices corresponds to the stock price.
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