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Abstract

This paper investigates both the dynamic and contemporaneous spillover effects be-

tween equity markets in the UK and the US. We use high frequency data and the

“identification through heteroskedasticity” approach of Rigobon (2003) to capture

the contemporaneous volatility spillover effects. Our results imply that during the

time when trading hours overlap, higher stock market volatility in the US leads to

higher volatility in the UK. We demonstrate the relevance of taking into account the

information present during simultaneous trading by comparing the dynamics of the

structural VAR with the dynamics of a traditional VAR. Our findings establish that

the bi-directional dynamic linkages between the US and simultaneous trading periods

are overestimated in the traditional VAR. These results have major implications for

risk management and hedging strategies.

Keywords: Contemporaneous Spillovers; Identification through heteroskedasticity; Volatil-

ity Spillovers.
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1 Introduction

Financial markets have become more and more connected in recent years, resulting in in-

creasing levels of correlations between financial markets and assets (Bekaert et al., 2009).

An example of the consequences of this increased interconnectedness is the recent outcome

of the global financial crisis, which originated in the US and rapidly spread to other coun-

tries. This led to a period of high volatility and instability, and had a strong negative

impact in terms of economic growth for both national and international economies. The

recent crisis demonstrates that economic shocks originating in one market not only affect

that particular market, but are also transmitted to other markets with serious global con-

sequences. Understanding these “spillover effects” among markets and between financial

assets is therefore of great importance.

The total volatility spillover between different markets and across different regions can

be explained by dynamic and contemporaneous effects. The dynamic effects refer to the

return/volatility spillovers that happen over time. This is the case when we have trad-

ing time differences, i.e., one market starts trading while the other is closed. As such,

information from one market will have an impact on the other market in the next trad-

ing period. Contemporaneous spillover may be seen as the return/volatility spillover that

takes place among a group of assets in different regions at the same time. This can be

due to, for example, having overlapping trading hours. So, information from one asset

could be transmitted to another asset on the same day. As such, it is important to inves-

tigate and distinguish between both effects, the contemporaneous and dynamic (lead-lag)

spillover effects at the return/volatility level. Traditional studies measure spillover effects

using methods based on univariate/ multivariate GARCH models (Kanas, 2000; Hakim

and McAller, 2010; Fang et al., 2007; Capiello et al., 2006). These studies model spillover
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effects at return/volatility level through dynamic relations. However, these studies do not

address the contemporaneous spillover.

The main contribution of this paper is analysing the contemporaneous spillover effects in

volatility. Understanding these spillover effects is essential when the markets are trading

simultaneously, i.e., what occurs in one market may spill-over to the other market the same

day. We use the “identification through heteroskedasticity” approach of Rigobon (2003),

to study this relationship between assets in different regions. We will examine not only the

direct transmission channels between assets and markets, but also the indirect transmission

channels as noted by Ehrmann et al. (2011).

An interesting case for capturing the contemporaneous effects is the relation between stocks

in the US and the UK. The S&P 500 and FTSE 100 indices are common representatives

of the stock market and economy in both countries. The issue we must face when we want

to analyse the volatility transmission is the overlapping trading hours between the UK

and the US. To analyse the contemporaneous effects we need to split the trading period

of the UK and the US in two: the part without overlapping trading hours and the part

with overlapping trading hours. We will be able to analyse the contemporaneous spillover

effects by looking at the periods when the two stock exchanges are trading simultaneously.

Our results suggest that there is a high asymmetry in the contemporaneous effects, i.e.,

the opening of the US stock exchange has a stronger effect on the UK overlapping trading

period. Hence, the spillover effects during overlapping trading hours either in the US or

UK have an impact in the same day on the US non-overlapping trading hours. We find

that an increase in the UK overlapping stock market leads to a higher increase in the US

stock market, rather than the spillover from the non-overlapping trading period.

3



The dynamic linkages confirm once again the same day transmission of contemporaneous

spillover effects and next day transmission of spillover effects due to non simultaneous

trading. We highlight the implications of our model by comparing the dynamic linkages of

our model with the dynamics generated by a traditional VAR. Our findings clearly reveal

the importance of keeping in mind the information present during simultaneously trading,

which is disregarded in traditional VAR. We show that the dynamic effects between the

US and simultaneous trading periods, respectively vice versa are seriously overestimated

in the traditional VAR.

These results are relevant firstly for risk management and international portfolio diversi-

fication. Investors and risk managers aim to have well-diversified portfolios and therefore

need to know how correlations between assets change. We find the spillover effects are

asymmetric with different sign and magnitude across assets as such an investor will need

a portfolio adjustment. Secondly, they have implications for the efficient implementation

of global hedging strategies, i.e., in reducing the risk of adverse price movements in assets.

We prove that implementing hedging strategies based on reduced form results, without dis-

tinguishing between the contemporaneous/dynamic spillover effects, leads to an increase

of our risk exposure instead of reducing it.

The rest of the paper is organized as follows. Section 2 briefly reviews the literature on

spillover effects and its applications. Section 3 presents the model based on identification

through heteroskedasticity. Section 4 discusses the data and Section 5 outlines the results.

We conclude in Section 6.
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2 Literature review

The literature on how different markets and assets interact over time is extensive, both

at international and domestic level. In this paper, we classify the literature on spillover

effects into three groups. The first group includes the papers relying on traditional methods,

such as univariate/multivariate GARCH, VAR models to identify the lead-lag dynamics at

return/volatility level. The second group focuses on sampling at higher frequencies when

analysing volatility transmission between markets across regions in an attempt to estimate

contemporaneous spillovers. The last group of studies use a different estimation technique

that relies on heterogeneity in the data to solve the problem of simultaneity and identify

the contemporaneous relationships.

2.1 Traditional methods

Among the first studies addressing the spillover effects in volatility is Engle et al. (1990)

who introduce the concepts of “heat wave” and “meteor shower”. A “heat wave” im-

plies that financial asset volatility is influenced by internal factors such as past shocks

(which may be regarded as a “volatility surprise”). From another perspective, volatility

is closely related to information flow, meaning that news (defined by shocks, innovations)

are transmitted across borders. Common changes in the financial assets from different

states/regions correspond to the hypothesis of “meteor shower”.

Engle et al. (1990) use a GARCH model to test whether news in the yen/dollar exchange

rates in the New York market can predict volatility in Tokyo. The finding of a “meteor

shower” effect contradicts the more natural expectation that volatility would instead con-

tinue in the same market the next day, the “heat wave” hypothesis. Later, Melvin and

Melvin (2003) analyse the volatility transmission of exchange rates over different regions
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and find evidence of both effects, but the “heat wave” effects are larger in magnitude.

Hamao et al. (1990) propose one of the first methods to quantify the volatility spillover

effects between different capital markets. In this sense they study the effects of volatility

in three international markets1: Tokyo, London and New York using a GARCH-M model.

To measure the volatility transmissions from one period to the next within markets (“heat

waves”) and across markets (“meteor showers”) they divide the daily close-to-close returns

into: close-to-open and open-to-close in order to analyse the spillover effects separately.

They find that volatility in one market tends to continue after that market closes, pro-

ducing volatility in markets opening several hours later even though these markets are

geographically distant2.

A similar approach belongs to Lin et al. (1994), who investigate how returns and volatility

stock indices are correlated between Tokyo and New York3. They use daily data which

is divided into daily and overnight returns, and estimate two models that were compared

with the one of Hamao et al. (1990). The results show that daily returns of New York are

correlated with those in Tokyo overnight.

Since then some studies have tried to measure the volatility transmission from one period

to the next within (“heat waves”) and across markets (“meteor showers”) at both return

and volatility level using different extensions of GARCH models.

1See also, Lee and Rui (2002) who examine the dynamic relationship between stocks and volume in
same regions. They found a positive relationship between the volumes and return volatility, therefore the
US trading volume has a predictive power for the other two stock markets.

2Koutmos and Booth (1995) use the same markets but estimate a multivariate E-GARCH model to
test for spillover effects between the conditional first and second moments of returns. They find evidence
of the “meteor shower” effect.

3See also Karolyi (1995) who investigates the return/ volatility spillovers in New York and Toronto
stock exchanges.
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Using an EGARCH model and assuming a constant conditional correlation over time,

Kanas (2000) looks at the volatility spillover between stocks and exchange rates in the US,

EU and Canada. He finds evidence of volatility spillover from stock returns to exchange

rates in all countries but the reverse spillovers (exchange rates to stock returns) are in-

significant. The return spillovers are symmetric, with the direction again from stocks to

exchange rates in all countries with Germany as exception. The model is parsimonious,

but assuming a constant correlation may be restrictive.4

Using a BEKK-GARCH, Fang et al. (2006) analyze the causal transmission between stocks

and bonds. The results show that volatility of the stock market has a greater influence on

bond volatility and there is a contemporaneous/dynamic spillover from the US to Japan.

However, the model includes a large amount of parameters, which may rise exponentially.

RiskMetrics of J. P. Morgan (1996) is another technique similar to the BEKK model of

Engle and Kroner (1995) that imposes the same dynamics on all elements of conditional

variance but assumes the latest one is an integrated process. The model has been used by

Martens and Poon (2001) to investigate the return and volatility spillover between Europe

(France and UK) and US stock markets. Martens and Poon (2001) found no spillover at

the return level but at the volatility level there exists a spillover from the US to Europe

and vice versa. The disadvantage is that correlations may not be bounded between +/-1.

To overcome the problems of previous models, Engle (2002) introduced the DCC-GARCH5

that allows for time-varying correlation and limits the number of unknown parameters.

Conditional volatility may show asymmetric behaviour6 which cannot be captured by the

4See, Hakim and McAller (2010) who study the interactions between different assets and regions as-
suming conditional correlations are constant. They find evidence of mean/volatility spillover from each
market to all other markets, but the results shows also not constant correlations.

5Al-Zeaud ande ALshbiel (2012) evaluate the volatility spillover between US and EU using this model.
They found evidence of a spillover from London to New York, Pairs and Frankfurt stock markets and
within Europe a unidirectional spillover from Frankfurt to Paris and Paris to London.

6Volatility tends to increase more when negative shocks occur then when positive shocks occur.
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Engle’s (2002) model but the ADCC-GARCH model of Capiello et al. (2006) will capture

the leverage effects to conditional volatilities and correlations. Savva et al. (2009) use

this model to analyse the spillovers between the US and some major European (London,

Frankfurt and Paris) stock markets using daily closing prices. The results show that

domestic stock prices and their volatilities are influenced by the foreign market; there is

more spillover from European markets to the US markets than reverse.

More recently, Diebold and Yilmaz (2009, 2012) use a different technique, the forecast error

variance decomposition framework of a generalized VAR model for examining both return

and volatility spillover effects among different markets in Euro area. This model can be

used to examine the direction of spillover effects amongst the different asset markets and

to extract periodizations of the spillover cycles (Louzis, 2012). Several other studies use

the so called “spillover index” in their analysis (Summer et al., 2009; Wang et al., 2012;

Suwanpong, 2010; Louzis, 2012).

A common problem of the above studies is that they model spillovers through dynamic

relations and do not capture the contemporaneous spillover. For instance, when having

overlapping trading hours the information from one asset could be transmitted to another

asset on the same day. Another example is a more recent paper, Sakthivel et al. (2012)

who analyse the volatility transmission of stock markets across different regions using

weekly data. They focus on the long-run relation and miss the contemporaneous effects,

the short-term dynamics when there are overlapping trading hours between regions.

2.2 Sampling at higher frequencies

As a solution to identify the contemporaneous spillover effects many papers sample at

higher frequencies. Making the interval shorter by increasing the sampling frequency will
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allow for more information and could better capture the contemporaneous spillover effects.

Practically, a sample with higher frequency will enable you to treat lagged effects as con-

temporaneous effects, i.e., daily returns are split into periods. These studies analyse the

spillover effects between both, single and different markets over different regions.

Kim (2005) attempts to estimate the contemporaneous and dynamic spillover effects when

having trading time differences by splitting each day returns into: daily, overnight and

intraday periods. The investigation reveals that there is a significant contemporaneous

spillover effect from intraday US returns to other country’s overnight period. Intraday

Japanese returns have a positive contemporaneous effect on all overnight returns that are

examined, but the lagged effects are mixed.

Baur and Jung (2006) follow Kim’s (2005) method of splitting daily returns to capture con-

temporaneous correlations and spillover effects between the US and German stock markets.

They use high frequency data and the Aggregate-Shock (AS) model of Lin et al. (1994) for

spillovers. Their main findings are that daytime returns significantly influence overnight

returns in both markets and there is no spillover from the previous daytime returns of US

to the morning German market.

The previous papers analyse the return/volatility transmission of spillover effects by look-

ing at a single market/asset over different regions. With on-going globalization and the

increased speed of spillover among markets/assets, it is important to analyse the contem-

poraneous/dynamic spillover effects between different markets/assets and regions.

Martinez and Tse (2007) analyse the volatility transmission using intraday data between

bonds, foreign exchange and stock index futures markets in different regions. They find

evidence in all markets of both interregional (“meteor shower”) and intraregional (“heat

wave”) volatility effects but as Melvin and Melvin (2003) found, the latter one is more

pronounced.
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Clements et al. (2013) investigate the meteor shower and heat wave hypotheses at volatility

level using high frequency data in the US, Japan and Europe foreign exchange, equity and

bond future markets. The results show the presence of both effects, each market being

influenced by the events that occur in other markets/zones.

Both papers use high frequency future dataset which will capture more information and

help better estimate the spillover effects. But still they are not capable of estimating the

contemporaneous spillover across different regions and assets; they are not paying attention

to the overlapping periods.

Dimpfl and Jung (2012) apply a SVAR in estimating the volatility transmission in Japan,

Europe, US equity future markets. To solve the problem with overlapping periods they

apply the idea of Menkveld et al. (2007), Susmel and Engle (1994) who suggest that the

observations should be restricted only to some relevant points in time. They found evidence

of mean spillovers from US to Japan and Japan to Europe and for volatility spillovers all

markets react more intensely to the previous market. Practically using this technique

they are still avoiding analysing the contemporaneous effects and the linkages between the

different assets.
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2.3 Different estimation technique

Other studies are using a different estimation technique to estimate the contemporaneous

spillover effects. This technique allows to properly identify the contemporaneous relation-

ships by making use of the data’s heteroskedasticity. If in a simultaneous equation model,

we observe non-proportional changes in volatility over time, than we can use these changes

to identify the contemporaneous spillover effects.

Rigobon (2003) introduces a new method to examine the contemporaneous relations among

Argentina, Brazil and Mexico sovereign-bond yields and finds strong linkages across the

emerging markets. The method allows solving the identification problem when having

simultaneous equation models. Supposing structural shocks have known (zero) correlation

the problem is solved by relying on heterogeneity in the data to identify the structural

parameters that are consistent, regardless of how the heteroskedasticity is modelled.

Andersen et al. (2007) use a different approach based on heteroskedasticity to identify the

reaction of US, German and British stock, bond and foreign exchange future markets to

real-time U.S. macroeconomic news. The study is based on high frequency data, estimat-

ing first the contemporaneous relationship and then in a separate analysis the spillovers

between bonds, stocks and exchange rates. The results show that there is a direct spillover

among the equity markets and that bad news has negative/positive impact during con-

tractions/expansion. However they do not focus so much on distinguishing between the

contemporaneous and dynamic spillover effects by looking exactly at interactions across

the overlapping periods.

Ehrmann et al. (2011) estimate the transmission between money, bond and equity markets

within and between US and Europe. They use two daily returns avoiding contemporaneous

effects, a multifactor model and the identification through heteroskedasticity to estimate
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the international spillovers. The results show a spillover within asset classes but also

international cross-market spillover. For instance, there is a spillover from the US equity

market to the European money and bond market but also an opposite spillover from the

European money market to the US bond market. The US markets are explaining in

proportion of 30% the European markets movements, whereas the last one only around

6%.

Spillovers between markets affect the stability of each country and therefore these rela-

tionships need to be understood. We study the contemporaneous and dynamic spillover

effects having the stock markets across different regions at volatility level. To estimate

the spillover effects properly we combine Rigobon’s approach based on heteroskedasticity

and the high frequency dataset with daily returns split in overlapping and non-overlapping

periods. Badshah, Frijns, Tourani-Rad (2013) use a similar technique in analysing con-

temporaneous spillover among equity, gold and exchange rate implied volatility indices.

However, this paper to our knowledge is the first to examine the contemporaneous and

dynamic effects dealing with the overlapping trading period.
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3 Model

In this study, we explore the stock markets (S) in the US and the UK. We follow the

approach of Rigobon (2003) and implemented by Ehrmann et al. (2011) in assessing

volatility spillover effects among our markets.

As Mykland and Sheppard (2010, 2012) after selecting the data, we can calculate the

intraday returns for all assets based on the formula: ∆Xt = log(Xt)− log(Xt−1), where the

Xt is the intraday price. Once we have intraday returns, we construct realized variances7 as

log(RVt) = log(
∑N

t=1(∆Xt)
2). We define the global trading day by splitting each calendar

day in three periods: UK non-overlapping (UK ) , UK overlapping (UK0), US overlapping

(US0) and the US non-overlapping (US ). All times are taken to be Greenwich Mean Time

as follows:

UK
︷ ︸︸ ︷

8am ... 2 : 30pm

UK0

︷ ︸︸ ︷

2 : 30pm ... 4 : 30pm

US
︷ ︸︸ ︷

4 : 30pm ... 9pm

2 : 30pm ... 4 : 30pm
︸ ︷︷ ︸

US0

︸ ︷︷ ︸

Global Trading Day

When creating the global trading day, we account also for the Daylight Saving Time, i.e.,

the number of overlapping/non-overlapping trading hours is changing, e.g., from three

hours overlapping trading to two hours overlapping trading.

We start by assuming that the realized variances are following a structural VAR (SVAR)

process:

ARVt = c+Φ(L)RVt + εt (1)

7Andersen et al.(2003) demonstrate that by taking the logarithm of volatility the series will become
close to the normal distribution allowing us to conduct the estimation in a straightforward manner.
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where RVt is a (4 × 1) vector representing the daily stock realized variance, respectively

RVt
UK0

/RVt
US0

are the overlapping periods, i.e.,

RV t =

(

RVt
UK,S RVt

UK0,S RVt
US0,S RVt

US,S

)
′

(2)

c is a (4×1) vector of constants and Φ(L) is a (4×4) matrix polynomial in the lag operator.

The (4×4) matrixA represents the contemporaneous effects between the realized variances,

i.e

A =












1 0 0 0

α21 1 α23 0

α31 α32 1 0

α41 α42 α43 1












, (3)

where, e.g., α23 captures the contemporaneous spillover from RV US0

t to RV UK0

t and α32

captures the contemporaneous spillover from RV UK0

t to RV US0

t . The other parameters

are defined likewise. We set exclusion restrictions on matrix A according to our global

trading day, allowing for spillovers in one direction, e.g., forward. The spillovers from both

overlapping trading periods to UK as well as from the US to UK/US0 and UK to UK0 are

set to zero, i.e

α12 = α13 = α14 = α24 = α34 = 0

When analyzing the contemporaneous spillover effect between stocks in the US and UK

markets we face a problem that is present also in simultaneous equations models, i.e.

endogeneity. An initial point through the identification is to estimate the reduced-form

VAR by premultiplying the Equation (1) by A-1 :

RVt = c∗ +Φ(L)∗RVt + ut (4)

The coefficients of Equation (4) can be estimated by OLS and are related to the structural

coefficients by: c∗ = A−1c,Φ(L)∗ = A−1Φ(L), ut = A−1εt and ut ∼ N(0,Ωt) where
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Ωt = A−1Σt A
−1

′

.

However, because of simultaneity, matrixA cannot be identified from Equation (1) through

OLS of the reduced-form VAR, i.e., Equation (4). Therefore, most of the studies that

focus on long-term and lead-lag relations to identify the spillover effects between different

markets/assets and regions, are not able to capture the contemporaneous spillover effect.

Some others, use Cholesky decompositions and sign restrictions for the identification of

contemporaneous spillover effect. However, orthogonalization is an assumption on the

direction of causality. In addition, imposing a large number of restrictions is not reasonable.

Rigobon (2003) proposes a way to solve the simultaneity issue, based on identification

through heteroskedasticity, i.e., the regime-switching model. In this approach, the existence

of heteroskedastic regimes can solve the identification problem when having a simultaneous

equation model.

Practically, for the identification of the matrixA, containing the spillover effects, we have to

impose three assumptions. First, we assume that the structural shocks, εt, from Equation

(1) are uncorrelated. The variance of εt shows conditional heteroskedasticity. Namely,

εt ∼ N(0,Σt), where Σt =












σ2
1t 0 0 0

0 σ2
2t 0 0

0 0 σ2
3t 0

0 0 0 σ2
4t












is a diagonal matrix based on the first

assumption. Second, the matrix A is stable across time/regimes. Third, there must exist

at least two regimes of distinct variances Ωt. If the first assumption holds, the system is

identified by considering a change in the variance of shocks.

For example, if we observe a significant improvement in the variance of the equity shocks

in the US that will affect the covariance between equities in the US and UK, i.e., we are

able to better examine the responsiveness of the UK equity to the US equity shocks. If
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there is no significant change between variances or they shift proportionally the system is

not identified. This is the case when equations are dependent, i.e., we don’t know which

shock is better over regimes, as such we cannot explore the relationships between variables.

Specifically, following Ehrmann et al. (2011) we start by computing rolling windows vari-

ances from the reduced form residuals, ut, that contain only the contemporaneous effects.

We define five heteroskedastic regimes based on when the fifty day rolling variances are

higher than the residuals average standard deviation over the full sample times the thresh-

old value of 0.8. The first regime consist of observations where all variables show lower

than normal volatility. The other four regimes are defined likewise: a high UKS volatility

regime, a high UKS
0 regime, a high USS

0 regime and a high USS regime. The basic idea is

that in a regime where one variable has higher volatility while the others have low volatil-

ity, we achieve more information on the others variable responses to the variable with high

volatility shocks since they are more likely to occur, and vice versa.

The covariance matrices of each regime are used then in the GMM estimation of the

spillover effects coefficients.

min d′ d with d = A′ΩtA−Σt (5)

s.t. Σt is diagonal,A restrictions

where Σt is the variance of the structural shocks assumed to be uncorrelated, which we are

interested in, and Ωt is the variance-covariance matrix that we estimate in each regime t.

We rely on 1000 bootstrap replications to obtain the significance of our parameters, Φ1 and

the matrixA. For each regime, we use Cholesky decomposition to create new data with the

same covariance structure in each of the bootstrap replications. Since we excluded obser-

vations which were not sufficiently close to one of our regimes, we recursively simulate the

dependent variables and estimate the VAR again. As such, the simulation and estimation
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procedure is able to account for the gaps and lags in the data. For each draw, using our

regime-dependent VAR covariance matrices, we estimate the coefficients by GMM, which

allows us to calculate the p-values and confidence intervals for the parameter estimates.
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4 Data

We use high frequency data sampled at a 5-minute8 frequency for the US and UK stock

markets. The data are taken from Thomson Reuters Tick History and cover the period from

3 January 2007 to 31 December 2013. Days where one market is closed, as well as public

holidays are eliminated from the sample. For our analysis we employ the S&P500/FTSE

100 indices for the US/UK stocks traded on New York Stock Exchange/London Stock

Exchange.

In Figure 1, we provide a time series plot of the 5-minutes equity volatilities in each trading

periods. We notice two sharp increases in the equity markets, the first one due to global

financial crisis in October 2008 and the second one before and after October 2011, related

to the European Debt Crisis.

INSERT FIGURE 1 HERE

In Table 1, we provide summary statistics for the realized variances on stocks over all

regions. As can be seen, the highest level of volatility is in the US equity market, fol-

lowed by the US and UK overlapping trading periods. The highest mean volatility and

variability is in the US overlapping trading period, as we can notice from the maximum,

minimum and mean. Equity markets have positive skewness in all trading periods. The

positive skewness implies that positive changes in equity markets occur more often than

negative changes. The kurtosis is close to normal in all four series implying that large

changes occur not so often as in the case of normally distributed series. Running Aug-

mented Dicky Fuller (ADF) tests, we can reject the null hypothesis of a unit root, confirm-

ing stationarity with the ADF test statistic, significant at 1% level in all trading zones.

INSERT TABLE 1 HERE

8See Liu et al. (2012) that consider almost 400 realized measures, across seven different classes of
estimators, and compare them with the simple ”realized variance” (RV) estimator. They found that it is
difficult to significantly beat the 5-minute RV.
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Our objective is to analyse the contemporaneous spillover effects in financial markets.

Generally, we can measure this contemporaneous spillover by a correlation as can be seen

from Table 2.

INSERT TABLE 2 HERE

We can notice from Table 2, the existence of a positive relationship between stocks in both

UK/US trading periods. During the two overlapping trading periods, we can see the highest

positive relationship between stocks markets. The correlation matrix tell us the relationship

between stocks but does not give us the direction. Further, we are going to analyse the

relationship between variables, using the identification through heteroskedasticity approach

of Rigobon (2003).

19



5 Results

5.1 The Reduced Form VAR

We start our analysis with the estimation of the reduced form VAR using Equation (5).

Relying on Akaike Information Criterion (AIC) to select the optimal lag length, we find a

lag length of 5 days to be optimal. As such, we carry out all our analysis with a 5-day lag

length.

Further, we look at the relationships between the realized variances performing Granger

causality tests. Granger (1969) shows that if the past values of a variable/group of variables,

i are found to be helpful for predicting another variable/group of variables, j, then i is said

to Granger - cause j ; otherwise it is said to fail to Granger - cause j.

The results of the Granger causality tests for realized variances of stocks markets are

presented in Table 3 with corresponding values of F-tests. We observe a strong, significant

bidirectional causality between stocks markets in all trading periods.

INSERT TABLE 3 HERE

Overall, these results imply that in all four trading periods stock market volatility sig-

nificantly Granger causes the volatility in every trading period. Regarding the US/UK

overlapping trading periods, we notice a lot of interactions between variables. However,

the causality running from UKS
0 to USS

0 is stronger that vice versa. Another strong causal-

ity can be seen between UKS
0 / USS

0 and USS. UKS
0 Granger cause USS stronger than USS

0.

The causality tests give us information only about which variable we can use in the future

as explanatory variable, to clarify the behaviour of other variables in the VAR. As such,

we still don’t know if we have a positive or negative relationship, what is the speed, or

persistence between our variables.
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Table 4 reports the dynamic reduced form VAR effects, matrix Φ∗

1
as given in Equation

(4). We notice a spillover effect of 0.07 from RVt−1
UK0,S to the RVt

US0,S , while to the

RVt
US,S is higher with the value around 0.099. A significant and strong spillover effect

is found between the US and both overlapping periods. For instance, a 1% increase in

RVt−1
US,S leads to an increase into the next day of 0.219% in the UK overlapping period,

respectively, 0.316% in the US overlapping period. However, we cannot identify the share

of spillover due to either contemporaneous or dynamic interactions between our variables.

INSERT TABLE 4 HERE

5.2 Structural Form Results

Having already the residuals from the reduced form VAR, the next step is to estimate

matrixA containing the contemporaneous spillover effects between our variables. However,

before being able to estimate Equation (7) we need to define the regimes in such way that

at least two regimes have different variances, a necessary condition to achieve identification.

We compute 50 day rolling windows, from which we define 5 regimes and calculate their

covariance matrix that we use in the GMM estimation.

I. Contemporaneous Relationships

In Table 5, we present the contemporaneous relations, matrix A as given in Equation (7)

together with the bootstrap results. The coefficients have negative signs as matrix A is on

the left-hand side of Equation (1), as such when taken to the right-hand side the spillover

effects become positive:

RVt
UK0,S = −0.13RVt

UK,S + 0.25RVt
US0,S (6)

RVt
US0,S = 0.11RVt

UK,S + 0.17RVt
UK0,S (7)

RVt
US,S = 0.22RVt

UK,S + 0.29RVt
UK0,S + 0.36RVt

US0,S (8)
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We notice a high and positive contemporaneous spillover of 0.25 from the US overlapping

trading period to the UK overlapping trading period. The coefficient suggest that a 1%

increase in RVt
US0,S leads to a contemporaneous increase of 0.25% in the RVt

UK0,S. Vice

versa, from the RVt
UK0,S to the RVt

US0,S the spillover is smaller, approximately 0.17 in-

dicating that the opening of NYSE has a bigger impact on the LSE than the other way

around. This is inconsistent with the Granger causality findings which just consider the

lagged effects without attention paid to contemporaneous effects.

Equation (10) explains the spillover effect from RVt
UK,S, RVt

UK0,S and RVt
US0,S to RVt

US,S.

We observe the highest and most significant spillover of 0.36 from the US overlapping

trading period to the US non-overlapping trading period, which again is not evident

in the Granger causality test, i.e., Table 3. Regarding the spillover from the UK non-

overlapping/overlapping trading period on the US non-overlapping trading period, we find

that RVt
UK0,S spillover is 0.29, greater than the RVt

UK,S, with the value about 0.17, i.e., in

line with the findings of Table 3. These results imply the existence of strong contempora-

neous effects that are transmitted in the same day with risk management and international

portfolio diversification implications for both countries. A shock occurring in the US stock

market is automatically transmitted to the EU stock market in the same day. As such,

investors and risk managers who do not pay attention to the contemporaneous effects may

assess inaccurately the uncertainty exposure, i.e., the evaluation of risk is mislead. Prac-

tically, based on a traditional VAR they assume the risk transmission is with one day lag,

instead we prove that the risk is transmitted in the same day when there is simultaneous

trading. Consequently, the Granger causality tests and the dynamic reduced form VAR

effects do not capture the contemporaneous effects between our stock markets, both anal-

yse the causality/dynamics based on Φ(L)∗ which is a combination of the dynamic and

the contemporaneous effects.

INSERT TABLE 5 HERE
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II. Dynamic Relationship

Having the total spillover, i.e., matrixΦ∗

1
and understanding how much of spillover is due to

the contemporaneous interactions, i.e., matrix A, we are able to explore the dynamic link-

ages. Table 6 presents the findings for dynamic relations, matrix Φ1 as given in Equation

(1) alongside with the bootstrap results. We find there is no significant dynamic spillover

from RVt−1
US0,S to RVt

UK,S and RVt
US,S, suggesting the incorporation in the same day of

the spillover effect. There is, however, a positive dynamic spillover from RVt−1
US,S of 0.21

to the UK equity market, as well as both UK/US overlapping trading periods with the

values of 0.16/0.25. These relationships reveal the importance of taking into account the

contemporaneous spillover effects, i.e., the next day are transmitted only the effects due

to non-overlapping trading.

When comparing the dynamic SVAR effects, in Table 6 with the dynamic reduced form

VAR effects, in Table 4, we observe they lead to different conclusions. As can be seen,

a 1% increase in RVt−1
UK0,S causes an increase in RVt

US,S equal to 0.09% in the reduced

form, versus a decrease of -0.04% in the structural form. These relationships are essential

when implementing global hedging strategies. For example, knowing the previous reduced

form dynamics one would take a long position into options to reduce the risk of adverse

price movements. However, the structural form dynamics demonstrate that actually we

increase the risk, i.e., a 1% increase in UK overlapping will lead to a decrease of -0.04% in

the US. Looking at the spillover from RVt−1
US,S to both UK/US overlapping periods we

find a suggestive positive relationship of 0.21/0.31 in the reduced form VAR, respectively a

lower positive relationship of 0.16/0.25 in the structural form. Similarly, an investor would

take a options long position based on the reduced form results ending up in increasing the

risk instead of reducing it. Only by applying a SVAR to identify the contemporaneous and

dynamic effects separately we are able to reduce the risk. Therefore, the dynamic linkages

based on the reduced form VAR and the SVAR lead to various findings concerning the
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direction and magnitude of the spillover.

INSERT TABLE 6 HERE

III. Impulse response functions

Knowing matrix A containing the contemporaneous effect, we can determine the contem-

poraneous reactions of structural shocks to εt given by A−1. Therefore, Table 7 and Figure

2 presents the estimates of the SVAR impulse responses. Examining the first column of

Table 6, i.e., the long run impact of RVt
UK,S, RVt

UK0,S, RVt
US0,S and RVt

US,S to a unit

shock in RVt
UK,S we notice the impact is insignificant. Hence, there is no long-run effect

of volatility spillover from any of the realized variances to the UK stock market. When

we explore the impulse responses of the overlapping trading periods to a unit shock in

all other realized variances we observe suggestive interactions. For instance, a unit shock

in RVt
UK0,S/RVt

US0,S induces an increase in both overlapping periods of approximately

10.31/9.12 units with respect to first shock, respectively 5.70/7.96 units to the second

shock. This implies strong volatility spillover between the UK and the US stock markets

during simultaneously trading.

INSERT TABLE 7 HERE

In Figure 2, we plot the structural impulses 250-day ahead for the four series. Panel A, B,

C and D shows the responses of each series to a structural unit shock in RVt
UK,S, RVt

UK0,S,

RVt
US0,S and RVt

US,S. As can be seen most of the structural impulse responses converge

within 75 days, where they stabilize around the value zero.

INSERT FIGURE 2 HERE

IV. Variance Decomposition

Having analysed the contemporaneous relationships, dynamic effects and the long-run im-

pulse response, i.e., Table 5, 6 and 7, we turn our attention to the overall significance of each

series in the system. In essence, the share of the variance of each asset that is explained

by the structural shocks occurring in foreign markets and domestic market. Consequently,
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we compute the 250-day ahead forecast error variance decompositions which are presented

in Table 8.

INSERT TABLE 8 HERE

Each element gives the percentage contribution of the structural shocks, i.e., εt
UK,S , εt

UK0,S,

εt
US0,S and εt

US,S in clarifying the share of the total variance of each equity. Observing the

diagonal of Table 8, we notice that the highest share of variance is due to the own structural

shocks, ranging between 36% and 62%. The spillovers to the UK stock market are especially

strong: structural shocks to US overlapping/non-overlapping explain on average 33%/30%

of the UK overlapping/non-overlapping variances. A large share of the US stock movements

are due to the UK stock market, i.e., near 26%/30% of the US overlapping/non-overlapping

variances are defined by the UK overlapping shocks. The main finding is that a large share

of the interactions in the equity markets are justified by simultaneously foreign asset prices.
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6 Conclusion

In this paper, we analyze the total spillover distinguishing between the dynamic and con-

temporaneous spillover effects in the UK and the US stock markets. By using the high

frequency data split in overlapping and non-overlapping periods we are able to explain the

complexity of these relationships at volatility level.

We observe that the opening of the NYSE induces a higher contemporaneous spillover

to the UK stock market. When comparing the spillover from the UK non-overlapping/

overlapping trading period to the US stock market, we notice the last one leads to a higher

increase. The structural dynamic effects, as well as the contemporaneous effects suggest

that the information is transmitted in the same day when we have overlapping trading and

only the remaining spillover into the next day. We show the implications of our model by

comparing the structural with the reduced form dynamic effects. The results show that

the bi-directional dynamic relationships between the US and simultaneous trading periods

are overestimated in the traditional VAR. Furthermore, we show the direction of causality,

magnitude of the spillover and the overall importance by generating the structural impulse-

responses, respectively the variance decomposition.

Our results have major implications for international diversification, risk management and

hedging strategies. Investors and risk managers who do not pay attention to the con-

temporaneous effects may inadequately evaluate the risk, i.e., based on traditional VAR

the risk is transmitted with one day lag, instead we demonstrate that the transmission is

within the same day when simultaneous trading occurs. The implementation of hedging

strategies concentrating on the reduced form results carry an increase in our risk exposure.

We establish that only by identifying the contemporaneous and dynamic effects separately

we are able to reduce the risk of adverse price movements. All in all, our estimates confirm

the relevance of taking into account the simultaneous information.
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Figure 1: Realized variances
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(b) Equity in UK0
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(c) Equity in US0

0

5

10

15

x 10
−3

06
/2

00
7

11
/2

00
7

04
/2

00
8

09
/2

00
8

02
/2

00
9

07
/2

00
9

12
/2

00
9

05
/2

01
0

10
/2

01
0

03
/2

01
1

08
/2

01
1

01
/2

01
2

06
/2

01
2

11
/2

01
2

04
/2

01
3

09
/2

01
3

(d) Equity in US
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Note: This Figure shows the time series plot of the equity markets in all trading periods, over the sample
January 3, 2010 to December 31, 2013.

Table 1: Summary Statistics

Mean Max Min Std.Dev. Skew. Kurt. ADF

Vt
UK,S 0.0147 0.1874 0.0042 1.07e-04 0.0104 5.46 −6.36∗

Vt
UK0,S 0.0182 0.1215 0.0037 1.23e-04 0.0111 2.46 −5.00∗

Vt
US0,S 0.0191 0.1863 0.0043 1.69e-04 0.0130 3.49 −5.61∗

Vt
US,S 0.0159 0.1245 0.0031 1.80e-04 0.0134 3.30 −4.98∗

Note: This Table reports summary statistics for the equity volatilities in four trading periods. ADF is the
t-statistics for the Augmented Dicky-Fuller test. ∗ denote the significance at the 1% level.
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Table 2: Correlation Matrix

UKS UKS
0 USS

0 USS

UKS

UKS
0 0.8472

USS
0 0.8203 0.9088

USS 0.8160 0.8306 0.8553

Note: This Table reports the correlation between equity in UK, UK0, US0 and the US.

Table 3: Granger Causality for Realized Variances

Null Hypothesis 5 lags

F-statistics P-value

UKS
0 does not Granger Cause UKS 36.28∗∗∗ 2.E-35

UKS does not Granger Cause UKS
0 7.85∗∗∗ 3.E-07

USS
0 does not Granger Cause UKS 20.25∗∗∗ 1.E-19

UKS does not Granger Cause USS
0 6.71∗∗∗ 3.E-06

USS does not Granger Cause UKS 44.36∗∗∗ 5.E-43
UKS does not Granger Cause USS 2.92∗∗ 0.01

USS
0 does not Granger Cause UKS

0 2.29∗∗ 0.04
UKS

0 does not Granger Cause USS
0 6.55∗∗∗ 5.E-06

USS does not Granger Cause UKS
0 25.79∗∗∗ 4.E-25

UKS
0 does not Granger Cause USS 7.18∗∗∗ 1.E-06

USS does not Granger Cause USS
0 47.26∗∗∗ 94.E-46

USS
0 does not Granger Cause USS 5.07∗∗∗ 0.001

Note: This Table reports the results for the Granger causality tests on the reduced-form VAR. The reduced-
form VAR is estimated using 5 lags. We present F-statistics and their associated P-values. ∗∗∗, ∗∗, ∗ denote
significance at the 1%, 5%, 10% levels, respectively.
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Table 4: The 1storder Reduced Form Effects between Realized Variances

UKS UKS
0 USS

0 USS

UKS 0.2101 0.2225 -0.0637 0.2114
UKS

0 0.1017 0.2320 -0.0538 0.2191
USS

0 0.0087 0.0727 0.1848 0.3164
USS -0.0248 0.0996 0.0451 0.3949

Note: This Table reports the dynamic relationship, matrix Φ∗

1
as given in Equation (4). The vector of

variables is RV t =
(

RVt
UK,S

RVt
UK0,S

RVt
US0,S

RVt
US,S

)
′

.

Table 5: Contemporaneous Relationship between Realized Variances

Parameter estimates Bootstrap

Mean Confidence Intervals

α21 0.1393∗∗∗ 0.1379 [ 0.1133, 0.1583]
α23 −0.2533∗∗∗ -0.2530 [-0.2632, -0.2420]
α31 −0.1197∗∗∗ -0.1225 [-0.1479, -0.1156]
α32 −0.1796∗∗∗ -0.1805 [-0.1931, -0.1762]
α41 −0.2286∗∗∗ -0.2279 [-0.2384, -0.2137]
α42 −0.2935∗∗∗ -0.2934 [-0.3040, -0.2822]
α43 −0.3663∗∗∗ -0.3659 [-0.3754, -0.3556]

Note: This Table reports the contemporaneous relationship, matrixA as given in Equation (7). We present
coefficients together with their associated mean and 95% confidence intervals obtained in a bootstrap.
Judging through the p-value from bootstrap all coefficients are significant at the 1% level. The vector of

variables is RV t =
(

RVt
UK,S

RVt
UK0,S

RVt
US0,S

RVt
US,S

)
′

.
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Table 6: The 1storder Dynamic Effects between Realized Variances

Parameter estimates Bootstrap

Mean Confidence Intervals

Panel A: Dynamic transmission to RVt
UK,S

φ11 0.2101∗∗∗ 0.2096 [ 0.1535, 0.2671]
φ12 0.2225∗∗∗ 0.2219 [ 0.1735, 0.2676]
φ13 −0.0637∗∗ -0.0623 [- 0.1338, 0.0057]
φ14 0.2114∗∗∗ 0.2112 [ 0.1664, 0.2564]

Panel B: Dynamic transmission to RVt
UK0,S

φ21 0.1287∗∗∗ 0.1300 [ 0.0614, 0.1992]
φ22 0.2446∗∗∗ 0.2405 [ 0.1814, 0.2952]
φ23 −0.1095∗∗ -0.1071 [- 0.1885, -0.0265]
φ24 0.1684∗∗∗ 0.1682 [ 0.1154, 0.2210]

Panel C: Dynamic transmission to RVt
US0,S

φ31 −0.0348∗∗ -0.0342 [- 0.0828, 0.0167]
φ32 0.0044∗∗ 0.0050 [- 0.0362, 0.0463]
φ33 0.2021∗∗∗ 0.2009 [ 0.1372, 0.2664]
φ34 0.2517∗∗∗ 0.2511 [ 0.2114, 0.2887]
Panel D: Dynamic transmission to RVt

US,S

φ41 −0.1058∗∗∗ -0.1042 [- 0.1755, -0.0314]
φ42 −0.0460∗∗ -0.0458 [- 0.1035, 0.0153]
φ43 0.0078∗∗ 0.0083 [- 0.0868, 0.0944]
φ44 0.1664∗∗∗ 0.1645 [ 0.1088, 0.2177]

Note: This Table reports the dynamic relationship, matrix Φ1 as given in Equation (1). We present
coefficients together with their associated mean and 95% confidence intervals obtained in a bootstrap.
∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, 10% levels, respectively, judged through the p-value from

bootstrap. The vector of variables is RV t =
(

RVt
UK,S

RVt
UK0,S

RVt
US0,S

RVt
US,S

)
′

.

Table 7: Long-Run Impact Matrix

εt
UK,S εt

UK0,S εt
US0,S εt

US,S

RVt
UK,S 4.6064 9.2541 5.1448 7.7242

RVt
UK0,S 2.8408 10.3146 5.7098 7.8440

RVt
US0,S 2.8235 9.1267 7.9639 8.4564

RVt
US,S 3.6169 11.1779 8.0760 11.4418

Note: This Table reports the long-run impact matrix of structural VAR. The impacts are computed at the
250-day ahead response to a unit structural shock.
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Table 8: Variance Decomposition

εt
UK,S εt

UK0,S εt
US0,S εt

US,S

RVt
UK,S 36.24% 33.72% 8.63% 21.41%

RVt
UK0,S 3.90% 62.85% 11.70% 21.55%

RVt
US0,S 2.63% 26.15% 46.83% 24.39%

RVt
US,S 3.74% 30.14% 18.91% 47.21%

Note: This Table reports the share of the variance of each equity that is explained by the structural shocks.
The variance decomposition are computed at the 250-day ahead response to a unit structural shock.

Figure 2: Structural Form Impulse-Response
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Note: This Figure shows the equity impulse response functions of the structural VAR. Panel A, B, C

and D presents the responses to a structural unit shock in RVt
UK,S, RVt

UK
0,S, RVt

US
0,S and RVt

US,S,
respectively. The x-axis is the 250-day ahead responses and the y-axis is the non-accumulated response.
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