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What is Machine Learning and AI?

Computer Science

Big Artificial Intelligence (AI)
Machine Learning (ML)

Deep Learning

Decision Trees

A

Blockain
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Classic AI vs Generative Al

» Supervised classic Al EEEeEee
. Data = (Features, Target) S I
e Data + Training » Model ] w:m ; %

« Model » Predictions o S ———
e > Use accurate prediction to do something better
e Generative Al

e Data = text, images, video, signals
e Model » More of same data
e > Produce more of something
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UNSUPERVISED CLASSIC AI:
CLUSTERING
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AI + HUMANS > HUMANS

The Wall Street Journal
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Al Can Make the Relative-
Valuation Process Less
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ABSTRACT

We use machine learning for relative valuation and peer firm selection. In
out-of-sample tests, our machine learning models substantially outperform
traditional models in valuation accuracy. This outperformance persists over
time and holds across different types of firms. The valuations produced by
machine learning models behave like fundamental values. Overvalued stocks
decrease in price and undervalued stocks increase in price in the following
month. Determinants of valuation multiples identified by machine learning
models are consistent with theoretical predictions derived from a discounted
cash flow approach. Profitability ratios, growth measures, and efficiency ratios
are the most important value drivers throughout our sample period. We de-
rive a novel method to express valuation multiples predicted by our machine
learning models as weighted averages of peer firm multiples. These weights
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AI-ASSISTED VALUATION ("MULTIPLES” "COMPS")
THE MAGIC: LEARNING FROM THE DATA
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AI-ASSISTED VALUATION ("MULTIPLES” "COMPS")
USING GRADIENT BOOSTING MACHINES

Tree predictions Gradient boosting machines
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AI-ASSISTED VALUATION
HIGHER ACCURACY IN "SMALL DATA”
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AI-ASSISTED VALUATION
BUILD TRUST THROUGH UNDERSTANDING: SHAP

B Explainability: SHAP values (SHapley Additive exPlanations)
B Individual SHAP values for Moderna (December 2019).

B Target: the log of the market-to-book multiple (Inm2b)
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GBM peer weight

AI-ASSISTED VALUATION

BUILD TRUST THROUGH UNDERSTANDING: PEER WEIGHTS

“Peer” is not a “Yes/No” choice anymore
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Al Can Make the Relative-
Valuation Process Less
Subjective

by Paul Geertsema, Helen Lu and Kristof Stouthuysen
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AI-ASSISTED FINANCIAL FORECASTING
THE WORKING PAPER

Projecting Financial Statements with Artificial
Intelligence

Paul Geertsema,” Helen Lu," Guang Mal

First version: 25th October 2023
This version: 8th June 2025

Abstract

We introduce a novel artificial intelligence framework for projecting financial state-
ments. Our approach integrates multi-target learning and chained learning to predict
interdependent financial statement items, capturing the intricate relationships across
income statement and balance sheet components. Leveraging gradient boosting ma-
chines (GBMs) as the base learner, the framework employs a four-step process to
optimise chaining sequences and feature sets, in order to effectively model inter-item
correlations. Empirical validation using out-of-sample predictions for a large sample of
U.S. public firms demonstrates the model’s ability to produce accurate and internally
consistent financial statement projections. Line-item analyses reveal that the incre-
mental signal gained at each stage of the chain consistently outweighs the small losses
from error propagation, so predictive information builds rather than erodes as the fore-
cast moves through the statement. This pattern proves robust across items, periods,
and alternative specifications. Furthermore, we establish the utility of these projections
for detecting financial irregularities out-of-sample. Our methodology can be adapted
to other tasks involving the prediction of complex and interdependent outputs. [168
words]

Keywords: artificial intelligence; machine learning; multi-target forecasting; chained learn-
ing; financial statement projection; restatements
JEL codes: C45; C53; G17; M41
© Vlerick Business School 13



AI-ASSISTED FINANCIAL FORECASTING
FINANCIALS HAVE INTERNAL STRUCTURE

Balance Sheet 2023 2024 Profit and Loss 2023 2024 Cash flow statement 2023
Current assets 214.93 233.17
Cash *189:22 $98.00 | Revenue 348.00 336.00 Operating activities 62.38
Debtors 15.71 15. Less: Cost of goods sold 240.00 240.00 Cashreceived from sales 332.29
Stock 10.00 20.00 108.00 96.00 Last year debtors received -
12.60 - in expenses 7.70 7.70 Cash paid for stock - 208.33 | |-
Long-term assets 179.40 179.40  Less: Salarie 25.00 25.00 Last year creditors paid - -
Fixed assets 167.40 167.40 | EBITDA 75.30 63.30 Admin expenses - 7.70 | |-
Investments 12.00 12.00 | Less: Interest expense 1.20 1.20 Salaries - 25.00 | |-
Less: Depreciation 12.60 12.60 Interest paid - 1.20 | |-
TOTAL ASSETS 394.33 412.57  Netincome before tax 6?50\49.50 Tax - 2768 | |-
Less: Tax 27.68 22.28
Current liabilities 44.67 44.67  Net profit after tax 33.83 27. Investment activities - 192.00 - 12.60
Creditors 41.67 41.67 | Less: Dividends " 1116 8.98 Net investments made - 12.00 -
Short term debt 3.00 3.00 | Retained earnings 22.66 18.24 {nvestments in fixed assets |- 180.00 | |- 12.60
Long-term liabilities 27.00 27.00 Financing activities 318.84 - 8.98
Debt 27.00| | 27.00 Capital contribution3 300.00 -
Net debt issued 30.00 -
TOTAL LIABILITIES 71.67 71.67 Dividends paid -\11.16 | |- 8.98
Equity 322.66 340.90 Net cash flow 189.22\ 8.78
Capital 300.00 300.00
Retained Earnings 22.66 40.90
TOTAL EQUITY + LIABILITIES 394.33 412.57
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AI-ASSISTED FINANCIAL FORECASTING
FINANCIALS HAVE INTERNAL STRUCTURE

Balance Sheet 2023 2024 Profit and Loss 2023 2024 Cash flow statement 2023 2024
Current assets 214.93 233.17
Cash °——"§f9\~22 $98.00 | Revenue 9348-60—— ing activities g 62.38 30.37
Debtors 4574 o= te Costofgoodssotd PAO-00 PAO-00 Castrreceivedfromrsates _dooTLv 320.83
Stock 10.00 \go.oo s profit 08.00 96.00 Last year debtors received = 15.71
12.60 - Less: in expenses +-+1208.33
Long-term assets 179.40 179.40 : Salarie > 41.67
Fixed assets *46740-1 167.40 | EBITD = 7.70
Investments 12.00 12.00 | Less: = 25.00
Less: Depreciation = 1.20
TOTAL ASSETS 394.33 412.57  Netincome 22.28
Current liabilities 44.67 tCafter tax 3%*3\l 27. Investment activities - £192.00 - ¢ 12.60
Creditors .67 1167 s: Divide f Ll.kle .98 Net investments made - ¢ 12.00 -
Short term debt -ﬁ 3 Retained®€arnings 22.66 18. {nvestments in fixed assets |- |180.00 | |- | 12.60
Long-term liabilities 27 27 FinanC tivities 318.84 - 8.98
Debt | «57-00T1>27.00 | Capita 300.00 -
Net debt issue ‘m““ -
TOTAL LIABILITIES 71.67 71.67 Dividends paid 5‘\;1.16 T~ s.98
Equity 322.66 340.90 Net cash flow ELSQ.ZZ\ 8.78
Capital 300.00 300.00
Retained Earnings 22.66 40.90
TOTAL EQUITY + LIABILITIES 394.33 412.57
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AI-ASSISTED FINANCIAL FORECASTING
CORE ITEMS ARE ALL YOU NEED

Income Statement Balance Sheet

Line Item Variable Calculation Sign
Current assets act che+rect+invt+aco —+
Cash che |l_che + retain 4 dp - (ppent - |_ppent 4+ dp) +
Line ltem Variable Calculation Sign - (rect - |_rect) - (invt - I_invt) - (a0 - |_ao) +
Sales + g:ﬂlc - II_Idlc)) —0—(_(ap —I I__a;;) -2— (ttxp -ll__t>t<p))+
CO - CcO) - (Iva - va) - (Iintan - intan) -
Less: COGS + (lo- I_lo) + (ditt - I_dItt) + (txditc - |_txditc)
Gross Profit gp sale-cogs +/- ¥ (lo- I_lo) + nei
Less: Other expenses m + Receivables rect - —+
EBITDA ebitda gp-xsga +/‘ Inventory invt +
Less: Depreciation and amortisation + Other current assets aco +
Earnings before interest and tax ebit ebitda-dp +/- Long-term assets p ppent-+iva+intan+ao +
Less: Interest expense [ xint | + Plant, property and equipment ([ ppent +
Earnings before tax ebt ebit-xint +/- Investments va +
Add: Non-operating income l +/- Intangible Assets intan ’
p & m Other long-term assets ao —+
L g
Add: SPeC'aI items P +/_ Total assets at act+talt +
Income before tax pi ebt+nopi+spi +/‘ Current liabilities lct dlct+ap+txp+lco +
Less: Tax +/- Current debt dic +
Net income before minority interest pi-txt +/- Payables ap +
Less: Minority interest +/- Income tax payable txp +
Income =ib . ibmii-mii +/_ Other curr.ent. .||.ab|||t|es Ico ] +
Less: Dividends (preference/preferred) + L(I)_"g_tetrm lladb'tl)':'es dIII:t ,dltththmcHo i
Add: Extraordinary, discontinued, other xido +/- Dc;?egrr::?axzs and ITC txditc T
Net income to shareholders niadj ib-dvp-+xido +/- Other long-term liabilities lo +
Less: Dividends to shareholders + Total liabilities T letlit +
Retained income retain niadj-dvc +/- Equity eq at-It +/-
Shareholders equity (parent) eq—mi +/-
Non-controlling interest “ +/-
. Net Equity Issuance hiﬁ +/-
CO re I te m S Other Comprehensive Income oci eq-l_eqg-retain-nei +/-

in bold
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AI-ASSISTED FINANCIAL FORECASTING
YOU CAN CALCULATE THE REST

Income Statement Balance Sheet

Line Item Variable Calculation Sign
Current assets act che+rect+invt+aco —+
Cash 7 che |_che + retain + dp - (ppent - I_ppent + dp) "+
Line ltem Variable Calculation Sign - (rect - |_rect) - (invt - I_invt) - (a0 - |_ao) +
Sales sale T E:ilc - I| Idlc)) —0—( (ap—I | a;;) -2— (ttxp —ll t)ip))—t-
CO - co wva - ]Va intan - intan
Less: COGS _coes + (lo- 1_lo) + (ditt - I_dItt) + (txdite - |_txditc)
Gross Profit gpn sale-cogs +/- T (lo-1_lo) + nei
Less: Other expenses xsga + Receivables rect - +
EBITDA ebitda gDp-Xsga +/‘ Inventory invt +
Less: Depreciation and amortisation dp + Other current assets aco +
Earnings before interest and tax “ebit ______ ebitda-dp +/- Long-term assets alt___ ppent-tivatintantac +
Less: Interest expense xint + Plant, property and equipment p'.)ent +
Earnings before tax ebt ebit-xint +/- Investments a +
Add: Non-operating income nopi +/- Igtanglble Assets intan H
e K ther long-term assets ao +
Add: SPeC'aI items Spl— +/_ Total assets at actfalt +
Income before tax Di ebt+nopi+spi +§‘ Current liabilities Ict dlc+ap+txp+lco — L
Less: Tax txt +/- Current debt dic
Net income before minority interest ibmii pi-txt +/- Payables ap Ca I C u Ia ted
Less: Minority interest mii +/- gcﬁme tax Pablfai"? TXP .
T H T ther current liabilities co
|an0|:ne . ih ibmit-mil +/_ Long-term liabilities it ditt+txditct+io Ite m S
ess: Dividends (preference/preferred) dvp + L
. . ! . ong-term debt ditt
Add: Extraordinary, discontinued, other ~ xido +/- Deferred taxes and ITC xditc T
Net income to shareholders niadj ib-dvp+xido +/- Other long-term liabilities lo +
Less: Dividends to shareholders dvc + Total liabilities Tt jctFiit 4
Retained income retain niadj-dvc +/- Equity eq at-It +/-
Shareholders equity (parent) seq | eg-mi +/-
Non-controlling interest mi +/-
Net Equity Issuance nei +/-
Other Comprehensive Income oci eq-_eg-retain-nei +/-
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nopi 33 27 31 44 33 100 -10 38 18 1 37 36 29 36 40 46 28 32 22 28 38 39 35 27 34 22

- (8]

n T - a o] ) ) < < i
¢ ¥ =2 £ &8 3 x5 F 22 s P E L L s E o 2% 8 EE % oo o
sale 100 97 75 61 b6 33 -25 K8 23 7 -1 51 72 80 54 58 36 49 45 37 85 39 70 59 36 56 25
cogs 07 100 59 48 46 27 -20 45 20 6 -0 37 65 76 44 49 28 37 37 31 85 30 58 47 30 48 22
Xsga 75 59 100 61 b2 31 -28 59 14 7 -0 b9 K7 68 b9 47 36 b4 44 38 bt 42 72 59 25 51 17
dp 61 48 61 100 74 44 -30 bh4 24 12 -2 B8 Ko 46 59 81 40 bH9 48 43 47 48 68 75 b7 62 30
xint b6 46 b2 74 100 33 -31 44 28 18 -2 B3 K7 46 B1 67 38 62 bl 47 43 39 63 90 5Hh 60 34

5

spi -2 -20 -28 -30 -31 -10 100 -7 -6 -4 2 27 -26 -21 -30 -17 -16 -3b -22 -29 -22 -16 -29 -34 -1 -32 -9
txt B8 45 KO K4 44 383 -7 100 25h 3 -0 61 B3 BHO HO B2 39 42 40 29 43 49 B8 49 41 45 21
mii 23 20 14 24 28 18 -6 25 100 2 -2 23 27 19 20 22 17 28 23 15 20 21 27 29 18 22 b7

dvp T 6 7 12 18 5 -4 3 2 -19 g8 6 6 11 6 9 10 7 7 8 7 13 5 8 8
xido -1 -0 -0 -2 -2 1 2 0 -2 -1/200 0 -1 0 -1 -1 -1 1 -1 4 -1 0 -0 -0 -0 -3 -1

—
o
o

dve 51 37 59 58 53 37 -27 61 23 9 -0 100 50 45 51 51 43 53 43 40 39 45 64 66 36 55 22

rect 72 65 57 59 b7 36 -26 53 27 8 -1 50 100 59 60 46 44 56 54 48 71 44 73 59 31 64 26

invt 80 76 68 46 46 29 -21 50 19 6 -0 45 59 100 45 42 29 39 37 34 72 39 58 48 22 44 20

aco 54 44 59 59 51 36 -30 50 20 6 -1 51 60 45 100 42 41 56 51 41 47 41 74 56 30 56 23 -39
ppent 58 49 47 81 67 40 -17 52 22 11 -1 51 46 42 42 100 35 34 42 35 43 45 54 66 74 53 29 -34
iva 36 28 36 40 38 46 -16 39 17 6 -1 43 44 29 41 35 100 29 35 38 32 34 40 42 26 39 25 -27
intan 49 37 54 59 62 28 -35 42 28 9 1 53 56 39 56 34 290 100 45 51 40 28 69 74 43 57 31 -42
ao 45 37 44 48 b1 32 -22 40 23 10 -1 43 54 37 bl 42 35 45 100 36 39 36 58 53 29 64 26 -31
dlc 37 31 38 43 47 22 -29 29 15 7 -4 40 48 34 41 35 38 51 36 100 32 25 46 49 29 46 21 -24
ap 86 85 b7 47 43 28 -22 43 20 7 -1 39 71 72 47 43 32 40 39 32 100 32 55 47 27 45 22 -34
txp 390 30 42 48 39 38 -16 49 21 8 0O 45 44 39 41 45 34 28 36 25 32 100 42 36 34 37 21 -26
lco 70 58 72 68 63 39 -20 58 27 7 -0 64 73 58 74 54 40 69 58 46 5bb 42 100 71 32 76 27 -50
dltt 50 47 59 75 90 35 -34 49 29 13 -0 66 59 48 56 66 42 74 53 49 47 36 71 100 53 63 35 -48
txdite 36 30 25 57 b5 27 -15 41 18 5 -0 36 31 22 30 74 26 43 29 29 27 34 32 53 100 31 22 -28
lo b6 48 51 62 60 34 -32 45 22 8 -3 b5 64 44 56 53 39 57 64 46 45 37 76 63 31 100 25 -35
mi 26 22 1 30 34 22 -9 21 b7 8 -1 22 26 20 23 29 25 31 206 21 22 21 27 35 22 25 100 -16
nei -45 -34 -48 -44 -38 -24 13 -b5 -19 -2 -3 -46 -39 -37 -39 -34 -27 -42 -31 -24 -34 -26 -50 -48 -28 -35 -16 100
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LEVERAGE THE INTERDEPENDENCIES:
CHAINED PREDICTIONS

mStep 1: predicting sales

B Step 2: given the predicted sales, what should
be the predicted costs of goods sold?

m...(the chaining method!)

© Vlerick Business School 19



Predict each core item iIn turn

BU
SC

With Chaining
(Use previously
predicted items
as features for the
next prediction)

| Short-term debt |

Interest expense |

}gterm debt |
‘ﬁ Accounts Receivable )
| Inventory | Accounts Payable |

COGS

S N < \‘{ =it P P&E ]
|

Start here > ?
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AI/DATA-DRIVEN + HUMAN ACCOUNTING KNOWLEDGE

ing vs parallel
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DOES "CHAINING"” MAKE A DIFFERENCE?
PERFORMANCE "GAP”

B Gap: reduction in errors moving from parallel
to chained predictions

B Matters more for difficult to predict firms (small,

distressed, loss-making, low-investment, young, high
sales=prediction error)

Quintile Size. B2M  ROE Investment Age SalesError

1 33.81 13.62 20.97 20.93 15.55 13.53
2 18.65 12.06 16.75 15.08 16.51 11.75
3 10.58 12.66 13.01 12.38 16.62 11.77
4 6.90 15.11 10.23 12.24 15.44 14.53
5 2.78 18.38 10.88 12.13  8.19 21.20

22
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CAN PREDICTED FINANCIAL STATEMENTS
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OVERVIEW OF THE PREDICTION METHODS
‘® AND @ COLLABORATION

1. Raw data 2. Prediction 3. Process 4. Variable @
method (scaling)
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CLASSIC AI (TREE-BASED MODEL) USE CASE:
EARLY-WARNING SIGNAL FOR CEO DISMISSALS

Predicting CEO dismissals using Artificial Intelligence

Henk Berkman® Helen Luf and Juebin Zeng?

9th June 2025

Abstract

This study employs Artificial Intelligence (Al) to predict performance-induced CEO
dismissals. In out-of-sample tests, our Al-based approach consistently outperforms
classic benchmark models (Bushman, Dai and Wang, 2010; Jenter and Kanaan, 2015)
across multiple metries. Using over 70 candidate predictors, we find that firm-specific
performance and risk measures account for a large portion of the model’s predictive
power, while industry-peer returns and risk measures make a limited contribution to
the prediction. Dismissals deemed unexpected by the Al model are followed by signi-
ficant negative stock price reactions, whereas those anticipated by the model do not
trigger such responses. In contrast, the predictions of classic models do not align with
market responses. CEOs that the Al predicts should be removed often remain in
position and continue to deliver subpar performance. Firms led by CEOs with high
Al-predicted dismissal probabilities experience significantly lower industry-adjusted
return-on-assets over the following year. A trading strategy based on Al-generated
signals earns abnormal returns exceeding 0.75 percentage points per month. These
effects are concentrated in well-governed firms, suggesting that investors in such firms
may underestimate frictions in the CEO labour market. [183 words]

Keywords: CEO turnovers; Corporate Governance; Artificial Intelligence; Machine Learn-
ing; Abnormal returns
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CLASSIC AI (TREE-BASED MODEL) USE CASE:
EARLY-WARNING SIGNAL FOR CEO DISMISSALS
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(OPTIONAL) CLASSIC AI USE CASE:
HOW MANY INVESTOR STRATEGIES? (CLUSTERING)
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CLASSIC AI (UNSUPERVISED) USE CASE:

HOW MANY INVESTOR STRATEGIES? (CLUSTERING) ..




(OPTIONAL) LLM USE CASE:
THE VALUE OF BEING SPECIFIC

Specifics matter:

An analysis of mutual fund ESG disclosures

Huayu Shi*, Xing Han?®, John B. Lee®, and Helen Lu"®
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Abstract

This study employs a Large Language Model to quantify the specificity
of mutual funds’ Environmental, Social, and Governance (ESG) disclos-
ures. We find that funds with more specific disclosures attract greater
investor flows, particularly among institutional-oriented funds and during
periods of heightened climate concern. Disclosure specificity is also posit-
ively associated with the ESG performance of future fund holdings. These
findings suggest that specific ESG disclosures serve as credible signals of
a fund’s ESG commitment, enabling investors to make more informed,
sustainability-conscious decisions. The results offer empirical support for
recent regulatory efforts to promote more structured and detailed ESG

reporting. [98 words|
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LLM USE CASE:
THE VALUE OF SPECIFIC ESG STRATEGIES

A specific ESG strategy

“...may invest in companies that focus on
lowering the cost of healthcare, combatting
the opioid epidemic, or offering ethically
sourced products.”

A generic ESG strategy

“"The investment team may also consider the
risks and return potential presented by
environmental, social, and governance (ESG)
factors in investment decisions.”
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SELF-SUPERVISED LEARNING: HOW DOES Al
READ AND WRITE?

mHe loves durian juice.

B He loves orange juice.

mHe loves __ juice.
Fruit Human Tropical
Orange 1 0) 0.1
Durian 1 0) 0.8
Boy 0 1 0
Mother 0 1 0




PRETRAINED LLMS: MISSION IMPOSSIBLE
BECOMES POSSIBLE
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Thank you!

helen.lu@vlerick.com

https://www.linkedin.com/i

n/helen-lu-52760a15/
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Relative Valuation with Machine
Learning
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ABSTRACT

We use machine learning for relative valuation and peer firm selection. In
out-ofssample tests, our machine learning models substantially outperform
traditional models in valuation accuracy. This outperformance persists over
time and holds across different types of firms. The valuations produced by
machine learning models behave like fundamental values. Overvalued stocks
decrease in price and undervalued stocks increase in price in the following
month. Determinants of valuation multiples identified by machine learning
models are consistent with theoretical predictions derived from a discounted
cash flow approach. Profitability ratios, growth measures, and efficiency ratios
are the most important value drivers throughout our sample period. We de-
rive a novel method to express valuation multiples predicted by our machine
learning models as weighted averages of peer firm multiples. These weights
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Al Can Make the Relative-
Valuation Process Less
Subjective

by Paul Geertsema, Helen Lu and Kristof Stouthuysen
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