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Abstract

We examine the economic drivers of illiquidity in cryptocurrency options
markets and its effect on crypto option returns. Using transaction-level data
for bitcoin (BTC) options on Deribit from January 2020 to July 2024, we
compute intraday measures of option illiquidity. Our results show that when
market makers hold net-long positions, they demand a positive illiquidity
premium to compensate for hedging and rebalancing costs associated with
their risk exposure. Our regression results show that one standard devia-
tion increase in option illiquidity increases the daily delta-hedged returns
by about 0.07% for calls and 0.06% for puts. We estimate a factor model
based on latent instruments derived from option characteristics and show
that illiquidity is a distinct pricing factor in the cross-section of option re-
turns. These findings highlight the importance of market liquidity, offering
valuable insights for traders and market makers in nascent financial markets.
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1. Introduction

Cryptocurrencies offer new ways to transfer value, invest, and raise capital
outside the traditional financial system. Many of these decentralized assets
have become important innovations with values tied to their utility and the
problems they solve.2 In May 2024, the global cryptocurrency market crossed
the $2.5 trillion threshold, with daily trading volumes surpassing $90 billion.
The crypto derivatives markets have also gained momentum. As early as De-
cember 2017, the Chicago Board Options Exchange (CBOE) and the Chicago
Mercantile Exchange (CME) introduced bitcoin (BTC) futures contracts (see
Halle et al., 2018). While unregulated exchanges such as Deribit, Binance,
and OKX have offered cryptocurrency options trading for several years, the
introduction of BTC futures options by the CME in January 2020 marked
a significant development as the CME is the only U.S.-regulated platform
focused on institutional investors.3

Using detailed transaction-level data from Deribit for European BTC op-
tions between January 2020 and July 2024, this paper examines how the
illiquidity of crypto options affects their returns. Deribit has established it-
self as a leading platform in cryptocurrency derivatives, especially in Bitcoin
and Ethereum options, offering contracts with diverse strike prices and ex-
piration dates. By May 2024, Deribit’s monthly trading volume exceeded
US$50 billion—over sixteen times greater than that of the regulated CME.
Deribit’s appeal is further strengthened by offering higher leverage (up to
1:20), smaller contract sizes (BTC 1), and a lower minimum order size (0.1
contracts) compared to CME’s 5 BTC-sized futures options that do not per-
mit fractional trading. For these reasons, Deribit has successfully developed
deeper and more liquid trading, attracting a broader scope of market partici-
pants, including retail and institutional clients. The exchange operates 24/7,
specializing in options while also offering perpetual and calendar futures,

2Crypto assets form a diverse universe with varied features and economic roles. Cryp-
tocurrencies like Ethereum derive value from powering DApps and smart contracts. Some
coins are used for fundraising, while social trends and influential figures drive meme coins
like Dogecoin and Shiba Inu.

3Additionally, Nasdaq has recently filed with the SEC to list and trade bitcoin index
options. The planned Nasdaq Bitcoin Index Options (XBTX) will be based on the CME
CF Bitcoin Real-Time Index.
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primarily used for delta hedging.

Markets with a positive net supply, like bonds and stocks, are typically associ-
ated with a positive illiquidity premium (see Amihud and Mendelson, 1986,
and subsequent studies). However, Christoffersen et al. (2017) argue that
in zero net supply derivatives markets, where market makers balance buy-
ing and selling pressures, the direction of the illiquidity premium—whether
positive or negative—depends on net demand. Market makers hedge these
positions, and these hedging costs and risks affect illiquidity measures and,
therefore, the cross-section of expected option returns.

Using intraday option trades, we construct measures of option illiquidity. Our
findings show that when the net demand pressure in crypto option markets
like Deribit is negative, implying that market makers hold a net long position,
a positive illiquidity premium is required for the risks and costs of making a
market for these options.

Figures 1 to 3 depict the dynamics of net order imbalances for both call and
put options traded on Deribit. In general, both call and put options exhibit
positive net order imbalances. However, there is considerable heterogeneity,
with DOTM calls and puts, as well as call options involving small trades
(less than one BTC), showing negative net order imbalances. Additionally,
significant time variation is observed, corresponding to movements in the
BTC price. This finding aligns with previous research suggesting that the
BTC options market is influenced by crypto market sentiment.

We examine the economic drivers of options trading spreads. We follow
Christoffersen et al. (2017) and analyze observable proxies for the illiquidity
risks and costs that the market makers face when trading these assets. We
show that proxies for hedging and rebalancing costs explain almost 60% of
the spread variation. We also show that proxies for asymmetric information
and inventory risk are important determinants of option illiquidity.

We also estimate panel OLS regression of daily delta-hedged returns. When
we split option contracts by their net order imbalance, our results show that
the illiquid options with negative order imbalances exhibit a higher return. In
particular, one standard deviation increase in option illiquidity corresponds
to an approximate 0.07% increase in the daily delta-hedged return for calls
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and 0.06% for puts. This is economically very large when compared to the
daily average delta-hedged return of 0.24%.

Our regression analysis is also based on a factor pricing model for crypto
delta-hedged option returns. The factor structure in the cryptocurrency op-
tions market is not well understood. In this context, using a factor model can
shed light on what drives option return predictability in the cryptocurrency
markets. Building on Büchner and Kelly (2022) work, we estimate an Instru-
mented Principal Component Analysis (IPCA) model for portfolios of options
sorted by their illiquidity. This factor model prices option contracts in terms
of their relevant characteristics via time-varying latent factor loadings. Our
empirical findings indicate that a model with three latent factors prices the
cross-section of option returns and explains most of the variation in a panel
of daily BTC option returns. The daily risk-adjusted returns (alpha) of call
option contracts is 0.17% (illiquidity premium), which is economically large
and statistically significant, indicating that illiquidity is a distinct pricing
factor.

Understanding the factors that account for differences in asset returns across
various securities is crucial in asset pricing research. Previous studies have
proposed various factor models for stock returns, such as the five-factor model
by Fama and French (2015), the q-factor model by Hou et al. (2014), the
mispricing factors by Stambaugh and Yuan (2016), and the behavioral factors
by Daniel et al. (2019). Recent research has extended these factor models
to other asset classes, including currencies (Lustig et al., 2011), commodity
futures (Szymanowska et al., 2014), and cryptocurrencies (Liu et al., 2022).4

A new line of research has also applied factor models to explain the cross-
section of equity option returns. Unlike equity markets, options markets
are characterized by informed trading, volatility-related trading, speculation,
and hedging. Delta-hedged option positions, which have minimal exposure

4Several studies examine if stock pricing factors apply to cryptocurrency. Liu
et al. (2022) find that a three-factor model—cryptocurrency market, size, and momen-
tum—explains expected returns well. However, recent studies highlight the importance of
news and investor sentiment. Sockin and Xiong (2023) emphasize sentiment’s role in price
appreciation, while Canayaz et al. (2023) show social media sentiment predicts crypto
returns, unlike news media sentiment.
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to stock market movements, further differentiate options markets. Many
studies challenge Black and Scholes (1973) notion that options are redun-
dant assets. For instance, Goyal and Saretto (2009), Cao and Han (2013),
An et al. (2014), and Zhan et al. (2021) show that options provide valuable
information for predicting returns. Building on these findings, Bali et al.
(2023) and Büchner and Kelly (2022) demonstrate that option-specific infor-
mation, such as implied volatility and option Greeks, significantly influences
option returns.

Factors such as illiquidity and momentum, well-studied in equity markets,
also play a role in pricing equity options (see Christoffersen et al., 2017; He-
ston and Li, 2020). Other important predictors include embedded leverage,
the structure of volatility term, and volatility of volatility (Vasquez, 2017;
Cao et al., 2022). Bally et al. (2022), for example, propose a five-factor
model to explain option returns, which includes factors such as option illiq-
uidity, option price, option-implied kurtosis, the difference between realized
and option-implied volatility, and the general option market factor.

More directly relevant to our work, Wang et al. (2022) highlight liquidity
challenges and the impact of high-frequency trading in cryptocurrency mar-
kets. These challenges stem from comparatively low market capitalization,
concentrated ownership structures, and a fragmented, multi-platform mar-
ket setup. Makarov and Schoar (2021) argue that these characteristics often
render cryptocurrency markets less liquid than traditional asset classes. In
addition, papers that document significant mispricings and arbitrage oppor-
tunities, implying that there is excess volatility not explicable by usual con-
structs of “fundamentals” (e.g., Borri and Shakhnov, 2018; Hautsch et al.,
2018; Makarov and Schoar, 2020). For example, Biais et al. (2023) show that
measures of transactional costs and benefits (proxies for “fundamentals” in
their model) explain only 5% of the variation in bitcoin return.

Our paper contributes to several strands of the literature. First, we add to
the growing literature on cryptocurrencies and cryptocurrency options. At
the time of this writing, research on Bitcoin options remains limited. Siu and
Elliott (2021), Akanksha Jalan and Urquhart (2021), and Chen and Huang
(2024) explore empirical applications of stochastic volatility pricing models,
though none delve into the hedging performance of these models. Hou et al.
(2020) examine various stochastic volatility models to price bitcoin options,
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emphasizing the significance of jumps and proposing stochastic volatility with
a correlated jump (SVCJ) model, particularly useful for pricing exotic options
like cliquet or ratchet options.

Alexander et al. (2022) investigate the implied volatility smiles of bitcoin
options to discern whether demand pressures on market makers stem from
directional or volatility traders. Matic et al. (2023) present one of the few de-
tailed studies on hedging bitcoin options, employing a distinct methodology.
They utilize implied volatilities quoted by the Deribit exchange to calibrate
a parametric stochastic-volatility-inspired implied volatility surface, compar-
ing hedging performance across different stochastic volatility jump-diffusion
models.

In a related study, Alexander et al. (2023) assess the valuation of crypto in-
verse options in the Black-Scholes model, while Alexander et al. (2023) and
Matic et al. (2023) analyze the hedging of Bitcoin inverse options, employ-
ing various stochastic volatility and jump models. Sepp and Lucic (2024)
offer critical insights into the valuation and delta-hedging of inverse options,
clarifying misconceptions presented in previous working papers. Moreover,
the cryptocurrency investment landscape is delineated between USD-focused
and crypto-focused investors, necessitating distinct accounting rules for P&L
of systematic option strategies. Sepp and Lucic (2024) introduce USD and
Coin-based accounting rules to address this dichotomy and contribute to em-
pirical studies on volatility risk-premia observed in options on Bitcoin and
Ethereum.

Our paper also relates to the existing literature that empirically studies illiq-
uidity premia in equity option markets. The existing empirical evidence on
illiquidity premia and discounts in derivatives markets is limited. Li and
Zhang (2011) find that buying pressure and illiquidity result in price premi-
ums for more liquid warrants than illiquid options on the Hang Seng index.
Deuskar et al. (2011) identify a liquidity price discount in the market for
interest rate caps and floors, where market makers hold net short positions.
Brenner et al. (2001) report a 21% illiquidity discount for non-tradable cen-
tral bank-issued options compared to exchange-traded ones. Christoffersen
et al. (2017) show that selling pressures and illiquidity in equity options on
S&P 500 stocks create a positive illiquidity premium in expected returns.
Market makers, who absorb net negative demand from end-users, hold long
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positions and demand higher compensation for illiquid options, leading to
lower current prices and higher expected returns.

Our paper also adds to the growing literature on option predictability. Sev-
eral key findings from related research highlight different aspects of option
predictability. Goyal and Saretto (2009) find that options with high implied
volatility relative to historical volatility earn lower returns. Bali and Murray
(2013) observe a strong negative relationship between risk-neutral skewness
and the skewness of asset returns constructed from a pair of options and a
position in the underlying stock. Karakaya (2013) reports that selling op-
tions with high embedded leverage yields lower returns than selling those
with low embedded leverage after controlling for moneyness-maturity. Cao
and Han (2013) show that the idiosyncratic volatility of the underlying stock
negatively predicts the cross-section of delta-hedged option returns. Vasquez
(2017) finds a positive relationship between the slope of the implied volatility
term structure and straddle returns in the cross-section. Büchner and Kelly
(2022) identify option characteristics such as implied volatility and option
Greeks as most relevant for capturing option returns under the instrumented
principal component analysis framework. Ramachandran and Tayal (2021)
report a monotonic relationship between various measures of short-sale con-
straints and delta-hedged returns of put options on overpriced stocks. Zhan
et al. (2021) uncover the predictability of delta-hedged option returns using
stock characteristics such as cash flow variance, analyst forecast dispersion,
and profitability.

The structure of this paper is as follows. Section 2 details the data, outlines
the construction of variables for our empirical analysis, and reviews key sum-
mary statistics. Section 3 covers our research methodology, with Subsection
3.1 exploring the economic factors influencing BTC options trading spreads,
and Subsection 3.2 introducing the return OLS regressions and IPCA factor
model. Section 4 presents the model estimations and discusses the results
of various tests. Section 5 concludes the paper and suggests directions for
future research.
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2. Data, Variables and Summary Statistics

2.1. Deribit Exchange and the Sample Data

Over the past few years, options on crypto assets have seen significant growth,
expanding across traditional exchanges like the CME and centralized (CEX)
and decentralized (DEX) exchanges.5 Among the centralized exchanges
(CEX) offering digital asset options, Deribit has over 80% of the volume
of BTC options and around 90% share of BTC options open interest.6 Apart
from regulatory oversight, the main factor that differentiates the centralized
crypto derivatives platforms is the type of products that they offer. For
example, CME and Robinhood run order books in standard European put
and calls with a contract size in BTC or ETH, and all contracts margined
and settled in USD. Deribit, on the other hand, only runs order books in
so-called inverse options. An inverse option contract is quoted and traded
in the units of the underlying cryptocurrency. The main economic reason
for the popularity of inverse contracts in crypto exchanges such as Deribit
is that inverse contracts enable traders to operate without maintaining fiat
cash accounts. Sepp and Lucic (2024) show that inverse options are just
regular vanilla options considered under the martingale measure using the
forward of the underlying as the numeraire, thus requiring an adjustment to
the option delta.

Alexander et al. (2023) point out that the unregulated and less mature bit-
coin options market differs from the well-established S&P 500 Index options
market in three key ways. First, the bitcoin options market predominantly
trades short-term options (less than seven days), which carry higher market
risk and are more sensitive to volatility than longer-term options. More-
over, the call–put ratio for bitcoin options is approximately 9:7, in contrast
to about 4:6 for S&P 500 options. Second, bitcoin options exhibit a more

5The most common type of platform for trading exchange-rate crypto pairs is the
order book of an off-chain centralized exchange such as Binance or OKX. By contrast,
most asset-swap crypto pairs are traded in liquidity pools of an on-chain decentralized
exchange, such as Uniswap or Pancakeswap. Most crypto–crypto asset swaps are traded
in on-chain liquidity pools. Trading volumes in all these markets have exploded over recent
years.

6According to https://www.theblock.co/data/crypto-markets/options
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symmetric volatility smile, and the bitcoin volatility risk premium (implied
minus realized volatility) is consistently negative and significantly larger than
that of S&P 500 options. This indicates that bitcoin options market makers
face greater challenges in hedging their inventory risk due to price jump risk
and lower liquidity, leading them to charge a higher risk premium.

We collect tick-level trade data on options from the Debirit platform from Jan
2018 to July 2024. The exchange lists a wide variety of standard European
calls and puts with expiry dates ranging from one-day and 2-day options,
as well as 1-week, 2-week, and (more recently) 3-week options to a maxi-
mum of 12 months. All listed options are of European style. The nominal
value of each option is 1 BTC, and settlement is at 8:00 UTC time (coor-
dinated universal time). Each trade (observation) contains a trading price,
amount, timestamp, and direction. Deribit also provides options greeks, im-
plied volatility, underlying index price, and options mark price. The under-
lying index price is calculated from eight BTC exchanges, including Bitfinex,
Bitstamp, Bittrex, Coinbase, Gemini, ItBit, Kraken, and LMAX Digital. It
serves as a reference price to calculate option moneyness. The mark price is
typically computed as the average of the best bid and best ask price.7 Options
of different strikes and maturities are classified by their Black–Scholes deltas.

These are calculated as ∆C
t = Φ

[
ln(Ft/K)+0.5σ2τ

σ
√
τ

]
, where Φ is the standard

cumulative normal distribution function, Bt is the underlying price (USD),
Ft = Btexp(rτ) is the forward price (USD), K is the strike price (USD), σ is
the annualized volatility, τ is the residual time to maturity in years. Deribit
also has a proprietary model to fit implied Black-Scholes volatilities from
bid-ask prices of inverse options using V USD

t = FM
t V BTC

t , where FM
t is the

marked price of the underlying futures to convert their prices to prices of
regular options and to compute the deltas.

We applied several filters to refine our dataset. First, we excluded all observa-
tions with missing values for transaction prices, mark prices, and order sizes.
We keep only observations with positive implied volatility, ensuring the op-
tion price adheres to basic no-arbitrage conditions. We exclude observations
with extreme embedded leverage following Karakaya (2013) and Buchner and

7According to https://www.deribit.com/kb/options, the mark price is the option’s cur-
rent “fair” value as calculated by the Deribit risk management system.

9



Kelly (2022). The embedded leverage is defined as Ω =
∣∣∆× B

CT

∣∣, where B
is the underlying BTC price, C is the call price and Ω is the embedded lever-
age. We drop option observations with extreme embedded leverage, removing
observations in the 1% tail quantile.

Further, we filtered out sell transactions where the trade price exceeded the
mid-point and buy transactions where the trade price fell below the mid-
point. We retained only those options with more than seven days to expira-
tion, a minimum of three trading days, and at least ten 10-minute trading
intervals per day. This filtering process ensures we can accurately compute
the intraday volatility of order imbalances.8

2.2. Variables Construction

2.2.1. Option returns

Deribit lists only inverse options, which feature a contract size of one bitcoin
and follow the USD value of the coin. Even though these contracts are
margined and settled in BTC, their strike prices are in USD. An inverse
contract specifies a notional number N of coins multiplied by a so-called
“point value” to obtain a payoff expressed as a number of coins. Currently,
all exchanges that list inverse options use a notional of exactly one coin.
That is, the payoff is in the coin units, and the terminal payoff is transferred
to the trader in cryptocurrency (not in USD). The payoff can be written as:

V B
T = N

(B$
T −K$)+

B$
T

where the second term is a dimensionless quantity called the point value.

For a USD-denominated trader, the payoff can be converted into USD by mul-
tiplying V B

T by the price of the underlying asset at the time of settlement,
B̃T . It is important to note that this price is distinct from the settlement

8Unlike equity options, where the most liquid maturity is typically one month, Deribit’s
most traded instruments have significantly shorter maturities, so we cannot follow previous
studies and remove options with less than 30 days to expiration.
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price, which is the average price over the 30 minutes preceding the settlement
time. Given the extreme volatility in crypto markets, there can be a signifi-
cant difference between these prices. Therefore, we can express the payoff to
a USD-denominated trader as follows:

V $
T = B̃TV

B
T = B̃T

(B$
T −K$)+

B$
T

≈ (B$
T −K$)+

This shows that the inverse option payoff is equivalent to a standard FX
option, except that the payoff is denominated in crypto rather than foreign
fiat currency (see Lucic, 2022 for more details). There is a large body of
academic research on FX options, their pricing, hedging, volatility dynamics,
and so forth, see Levy (1992), Carr and Wu (2007), Demeterfi (1998), and
many others.

We can use Coval and Shumway (2001) derivation for the expected instan-
taneous return on an option E[RC ], given by:

E[RC ] =

(
r + (E[RB]− r)

B

C

∂C

∂B

)
dt

where E[RB] is the expected return from BTC and the sensitivity of the call
price to the underlying BTC price (the option delta) is ∂C

∂B
or ∆. Crucially,

this simple pricing approach relies on the assumptions that both markets
denominated in USD and in BTC are complete, and there are no restrictions
on exchanging wealth from one to the other.9

The presence of E[RB] and ∆ on the righthand side of the option expected
return equation shows how important it is to control for the return of the
underlying when regressing option returns on illiquidity measures. To dis-
entangle the effect of the underlying price movements, we do not use option
returns in our empirical analysis but instead, compute the daily returns to

9Most decentralized and centralized crypto exchanges (such as Deribit) assume a zero
discount rate when valuing their listed options. In our context, r represents a low-risk
opportunity cost available in DeFi, accounting for the risk of blockchain technology hacks,
where deposited and staked assets could be lost. Currently, staking high-quality stable-
coins in leading DeFi protocols yields 1% to 2%, significantly lower than the 4% to 5%
rates offered by short-term government bonds in traditional markets.
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delta-neutral call strategy according to common practice (e.g., see Büchner
and Kelly, 2022).

Rdelta−hedged
i,t+1 =

(
C$

i,t+1 − C$
it

)
−∆it(Bt+1 −Bit)

C$
it −∆it ×Bit

where C$
i,t+1 − C$

it is the raw profit or loss (P&L) of the option trade from
time t to t+1 and ∆it(Bt+1 −Bit) is the P&L of the underlying in the same
time period that adjusts for the delta-hedging. The denominator measures
the cost of the initial investment.

2.2.2. Illiquidity Measures

Deribit relies entirely on third-party market makers, as it does not have an
internal trading desk. A downside of non-regulated exchanges is the potential
for opaque practices, where specific traders or desks might gain undue advan-
tages. Market makers might secure customized fee arrangements and setup
assistance depending on their trading volume. In exchange, they must com-
ply with regulations such as maintaining a minimum quoting time, covering
specific instruments, adhering to maximum bid/ask spreads, and ensuring
minimum quote sizes. Notably, Deribit market makers are not privy to in-
sider information, do not benefit from preferential order queuing, and lack
access to exclusive features. The market makers on Deribit include QCP
Capital, Magpie Capital, and XBTO, all of which are crypto trading firms,
with QCP also managing an OTC desk handling spot, forwards, and options.
Market makers continuously post buy (bid) and sell (ask) quotes on the or-
der book for various options contracts with different sizes. Deribit provides
several protections for market makers, including strict margin requirements,
partial liquidation processes, and an insurance fund to cover potential losses
from counterparty defaults. Additionally, market makers benefit from re-
duced trading fees, advanced order types, and priority in order matching, all
of which help them manage risk and maintain liquidity efficiently.

Our main measure of option illiquidity is the daily volume weighted relative
option spread defined as:

Spreadit =
1

V ol$it

#trades∑
n=1

2×
∣∣CM

in,t − CT
in,t

∣∣× V ol$in,t
CM

in,t
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where Spreadit is the day t relative spread of option contract i, CM
in,t and

CT
in,t are the mark price and the transaction price for trade n for contract i

on day t whereas V ol$in,t is the dollar value of transaction n for instrument i
on day t.10

In a series of robustness tests, we also construct a transaction-based Amihud’s
illiquidity measure (see Amihud, 2002; Acharya and Pedersen, 2005) and use
it to replicate all our regression analysis. Our results remain qualitatively
the same.11 The Amihud measure is computed as follows:

Amihudit =
1

#trades− 1

#trades∑
n=1

∣∣RC
in,t

∣∣
V ol$in,t

where Amihudit is the adjusted Amihud’s percentage illiquidity measure for
contract i on day t and

∣∣RC
in,t

∣∣ is the absolute return of the option i on day t
between trades n− 1 and n.

2.2.3. Illiquidity Determinants

Bid-ask spreads in the options market are closely tied to the costs of market
making, originating from three main sources: fixed costs, inventory holding,
and information asymmetry. Previous research (e.g., Cao and Wei 2010; Wei
and Zheng 2010; Engle and Neri 2010; Goyenko, Ornthanalai, and Tang 2015;
Huh, Lin, and Melon 2015; Christoffersen, Goyenko, Jacobs, Karoui 2018)
have examined their effects on spreads within the equity options market.
However, the literature on the microstructure of the crypto options market
is limited due to the nascent nature of the underlying asset.

In our regression analysis, we examine several economic drivers of illiquidity.
We begin by computing measures of the (fixed) costs of trading. We measure
the initial delta hedging cost (DHC) following Cho and Engle (1999). The
hedging cost is simply the dollar volume-weighted embedded leverage for

10Mark price is an exchange metric estimate of the fair value of the option. All user
positions are valued against it to calculate their equity and to check if any open positions
are at risk of possible liquidation.

11These results are available from the authors on request.
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instrument i on day t and can be calculated as:

Hedging Costit =
1

V ol$it

#trades∑
n=1

|∆in,t| ×
Bnt

C$
in,t

× V ol$in,t

where ∆it is the dollar volume-weighted delta of option i on day t.

We compute rebalancing costs proposed by Leland (1985) and scale them by
option price following Goyenko, Ornthanalai ,and Tang 2015. The percentage
rebalancing cost is defined as:

Rebalancing Costit = vegait ×
SpreadB

t

C$
i,t

where vegait is the option i dollar volume-weighted vega on day t. SpreadBt is
the daily spread of BTC calculated by the average of spread data on Bitfinex,
Bitstamp, and Gemini, which are brokers with the fewest non-missing data
points.

Next, we turn to our measures of inventory risk and asymmetric information.
The net position of the market maker is inferred from the opposite of the
order imbalance from liquidity-taking investors (net demand pressure from
end users). For a specific instrument i, order imbalance on day t is calculated
as follows:

Imbalanceit =

∑#trades
n=1 Buyin,t|∆in,t| −

∑#trades
n=1 Sellin,t|∆in,t|∑#trades

n=1 Buyin,t +
∑#trades

n=1 Sellin,t

where Buyin,t denotes the number of contracts with the nth buy order, and
Sellin,t is the number of contracts with the nth sell order for instrument i
on the day t. Using the index reference price, we also compute the dollar
volume of the notional amount where contracts are converted from BTC
coins to a dollar value. We aggregate delta-weighted order imbalances for
all instruments traded on day t to construct a measure for market-wide the
order imbalance.

Bogousslavsky and Collin-Dufresne (2023) argue that much of the literature
focusing on daily and lower-frequency order imbalance to measure adverse
selection risk is overlooking a key aspect. They suggest that high-frequency
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order imbalance volatility (HFOIV) is more likely to capture inventory risk.
Longer-horizon imbalances, on the other hand, reflect different factors, offer-
ing complementary insights. For example, suppose an asset sees increased
buy imbalances in the morning and sell imbalances in the afternoon. In
that case, the daily imbalance remains unchanged, but HFOIV reflects the
heightened inventory risk for liquidity providers, such as high-frequency mar-
ket makers, throughout the trading day.

Following Bogousslavsky and Collin-Dufresne (2023), we compute a high-
frequency measure of order imbalance volatility to approximate the inven-
tory risk faced by liquidity providers. This measure, HFOIV, is defined as
the standard deviation of the ten-minute option imbalance. However, using
same-day order imbalance can introduce bias due to endogeneity and the
presence of informed trading (Shleifer 1986). The authors also suggest that
asymmetric information may influence liquidity through the idiosyncratic
component of volume and order imbalance volatility. To address this, we
regress an option’s ten-minute order imbalance on the market-wide share im-
balance, weighted by dollar trading volume. To minimize estimation errors,
we require that an option have at least ten ten-minute trading intervals. The
standard deviation of the residuals from this regression serves as a proxy for
adverse selection costs.

In addition to the idiosyncratic component of HFOIB, we propose the pro-
portion of the delta-weighted amount of large orders as another proxy, which
is calculated as:

% of Large Amountit =

∑#trades
1 |∆int|Iint{large trade = 1} × Sizein,t∑#trades

n=1 Sizein,t

where a large trade is defined as a trade with a transaction size bigger than
one option contract. The intuition for including this proxy for asymmetric
information is that investors who trade in large amounts may be more sophis-
ticated, and those who trade in tiny amounts are likely to be retail investors.
This notion is further supported in Figure 3, which shows the distinct trading
patterns observed between orders smaller than one and those greater than
one option contracts.
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2.3. Descriptive Statistics

This subsection provides descriptive statistics for our sample data, focusing
on the number of transactions, trading volume (in BTC and USD), and
total order imbalance (OIB). Table 1 summarizes the activity for call and
put options traded on Deribit between January 1, 2020, and July 31, 2024.
For call options, the average transaction size is 1.86 BTC, with significant
variability as indicated by a standard deviation of 4.78 BTC. The average
trading volume in USD is $36,170, with order imbalances averaging -0.21%.
On average, call options are traded over 24.77 days with an average time
to maturity (TTM) of 93.23 days and a delta of 0.2547. Put options, in
comparison, have an average transaction size of 1.80 BTC and a USD trading
volume of $28,243. The average OIB for put options is at -1.41%. These
options typically trade over 23.48 days with an average TTM of 80.21 days
and a delta of -0.2320.

Table 2 further details the distribution of trades based on moneyness, time
to maturity, and trade size. Call options are more actively traded, especially
in deep out-of-the-money (DOTM), out-of-the-money (OTM), and at-the-
money (ATM) categories, with larger trades dominating the market despite
their smaller numbers. When examining trades by time to maturity, short-
term options (less than 14 days) account for the majority of activity but
exhibit high OIB compared to longer-term options, which have lower OIB
values. Additionally, the data show that smaller trades tend to have a nega-
tive OIB, while larger trades are characterized by positive OIB, suggesting a
general buy-side bias in the informed flow and sell-side bias in the uninformed
flow.

Table 3 provides summary statistics for call and put option contracts for
illiquidity analysis, along with the performance of the underlying BTC mar-
ket. Panel A presents the results for the call options in our sample. The
average relative spread for call options is 5.52%, with considerable variabil-
ity (SD = 6.26%). Embedded leverage averages 11.57, while rebalancing
costs are 6.90% on average. The High-Frequency Order Imbalance Volatility
(HFOIV) calculated under two methods shows mean values of 11.63% for the
systematic and 21.45% for the idiosyncratic component. Large orders con-
stitute 20.73% of the trading volume, and the log of dollar volume averages
10.51.
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Panel B of Table 3 shows the results for the put options in our sample. For
put options, the average relative spread is slightly higher at 5.94%, with em-
bedded leverage averaging 11.41. Rebalancing costs are 6.65% on average.
HFOIV values are 11.28% and 19.23% for the systematic and idiosyncratic
components, respectively. Large orders make up 18.85% of the trading vol-
ume, and the log of dollar volume averages 10.32.

Finally Panel C shows the summary statistics for the BTC Market Perfor-
mance. The underlying BTC market shows an average daily return of 0.17%,
with a standard deviation of 2.75%. The daily realized volatility, calculated
from 10-minute index price movements, averages 2.60%, reflecting the mar-
ket’s overall price fluctuations during the sample period.

3. Research Design

3.1. Model Specifications for Option Spreads

If illiquidity significantly impacts expected returns, identifying its underlying
determinants is essential for understanding its role in asset pricing. Market
makers, who absorb the order imbalances resulting from investors trading,
incur fixed costs primarily due to the need to hedge inventory risks. These
fixed costs include expenses related to initial hedging (Cho and Engle, 1999)
and subsequent position rebalancing (Leland, 1985; Boyle and Vorst, 1992;
Kaul, Nimalendran, and Zhang, 2004). Engle and Neri (2010) find that
initial hedging and rebalancing costs are key determinants of option spreads,
suggesting that market makers take these costs into account when setting
bid and ask quotes.

In practice, market makers cannot fully hedge or replicate options through
trading in the underlying assets, which leads to inventory risks when their
positions deviate from optimal levels. Garleanu et al. (2009) demonstrated
that a net demand shock increases option prices proportionally with the
unhedged portion. Similarly, Muravyev (2015) found that inventory risks
significantly affect option prices, indicating that a demand shock can widen
spreads even after accounting for the fixed costs of hedging.

17



Beyond inventory management, option market makers must also consider the
risks posed by informed traders. To mitigate potential losses from trading
with these informed investors, market makers set spreads wide enough to
absorb the risks. Huh, Lin, and Mello (2015) developed a sequential trading
model to explore the impact of adverse selection in the options market, con-
firming that wider call spreads are closely associated with hedging activities
driven by information risks.

Drawing on theoretical models and empirical evidence, we test whether fixed
costs, inventory shocks, and information risks influence relative bid-ask spreads
in crypto option markets.

To examine the impact of the illiquidity determinants discussed in the pre-
vious section on the option spreads, we use the Fama-MacBeth (1973) cross-
sectional regression approach. The Fama-MacBeth procedure involves run-
ning a series of cross-sectional regressions at a daily frequency, where each
day’s cross-section includes all options that meet our data requirements.
Specifically, we estimate the following regression model:

Spreadi = a0 + a1DHCi + a2RBCi + a3HFOIBC
i + a4HFOIBI

i

+ a5% of Large Orderi + V olumei

where Spreadi is the mean spread for option contract i, DHCi and RBCi

are the mean delta-hedging and rebalancing costs associated with contract i.
HFOIBC

i and HFOIBI
i are the systematic and idiosyncratic components of

the high-frequency measure of the volatility of order imbalances for option
contract i.

3.2. Model Specification for Option Returns

Having documented the illiquid nature of bitcoin options, the next step is
to examine how such friction affects the bitcoin options pricing and return.
In Table 3, we reported summary statistics for the daily delta-hedged op-
tions returns. The delta-hedged return averages are small and positive for
call options and negative for put options. We test whether illiquidity influ-
ences subsequent delta-hedged returns by estimating the following OLS panel
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regression:

ri,t+1 =a0 + a1Spreadit + a2DHCit +RBCit + Controls

where ri,t+1 is the daily delta-hedged return for option contract i on day t+.
The rest of the explanatory variables are the same as in the spread model
specification. The vector of control variables includes the number of days to
expiration, delta, and log dollar volume.

To investigate the effect of illiquidity on the cross-section of option returns,
we also follow Bruckner and Kelly (2022) and estimate a factor model specif-
ically tailored to explain the cross-section of option returns. Their model
addresses the unique characteristics of options markets, where traditional as-
set pricing models often fall short. By incorporating factors from the options
market, their approach captures the dynamics that drive option returns. The
model incorporates option-specific factors, providing a more comprehensive
explanation of option return dynamics. Bruckner and Kelly use an instru-
mented principle component model (IPCA) of Kelly et al. (2019) to estimate
the factor loadings and returns. The IPCA approach accounts for the high-
dimensional nature of options data, efficiently extracting the factors that
drive the cross-section of returns.

The model for excess delta-hedge option returns is:

ri,t+1 =αit + βitft+1 + ϵi,t+1

αit =z′itΓα + να,it, and βit = z′itΓβ + νβ,it

where the system is estimated over a total of N option contracts and T
periods. The loadings, βit, are time-varying and partially depend on an
L × 1 vector of (option) characteristics zit. We assume that zit includes a
constant. The vector of factors, ft+1, is dimension K × 1, i.e the number of
factors. Following Kelly et al. (2019), the IPCA model can be estimated
by means of an alternating least squares procedure that iterates between the
first order conditions of Γ and ft+1.

We analyze a set of option-level variables, including BMS delta (delta), time-
to-maturity (ttm), embedded leverage (embedlev), BMS implied volatility
(impvol), BMS theta (theta), BMS gamma (gamma), and BMS vega (vega).

19



These variables are crucial in capturing the option-specific characteristics
that might influence returns.

We employ a standard panel regression framework to analyze the option
span, using delta-adjusted returns as the dependent variable and the option
characteristics as predictors. Recognizing the potential influence of unob-
served factors and temporal dynamics, we incorporate time-fixed effects into
the model for robustness. This approach helps control for variations that
may occur over calendar time, ensuring that our results are not driven by
temporal anomalies.

We do not include contract-specific fixed effects for several reasons. Options,
particularly in cryptocurrency markets, tend to have short lifespans. Includ-
ing a fixed intercept for each option could lead to overfitting, compromising
the generalizability of the model. Introducing option-specific fixed effects
may also absorb much of the variation between contracts, making it difficult
to interpret the results meaningfully. The absorption of differences could ob-
scure the actual effects of the variables of interest. The next section discusses
the results of our empirical analysis.

4. Empirical Results

4.1. Illiquidity Drivers

Before testing the effect of illiquidity on option returns, we first examine the
factors that determine illiquidity. We present the results of cross-sectional
Fama-MacBeth regressions conducted on 7,720 option contracts from Jan-
uary 1, 2020, to July 31, 2024. These options are traded for at least ten
10-min interval per day for high frequency imbalance estimation. Relative
spread greater than 0.4 are excluded to rule out the effect of outliers. The
analysis distinguishes between call and put options, with the dependent vari-
able being the daily relative spread.

The results show that Embedded Leverage has a positive and highly signifi-
cant impact on relative spreads across all specifications. Options with higher
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embedded leverage tend to have wider relative spreads. Specifically, the co-
efficient for embedded leverage is 0.0033 for call options and increases to
0.0058 for put options in the basic model, indicating both strong statistical
and economic significance.

The Rebalancing Costs variable also exhibits a significant positive relation-
ship with relative spreads. The coefficient is 1.1745 for call options and
0.9532 for put options in the base model. When additional factors are in-
cluded, these coefficients rise to 1.9250 for call options and 1.3124 for put
options, further confirming the significant association between higher rebal-
ancing costs and wider spreads.

Regarding Inventory Risks, the variable HFOIV(c) is included in models (2)
and (4) for both call and put options. The results indicate a positive and
significant effect on relative spreads, with coefficients of 0.0334 for calls and
0.0305 for puts, both of which are statistically significant.

The Information Risks category includes HFOIV(i) and the percentage of
large orders. HFOIV(i) is significant only for call options in model (2), with
a coefficient of 0.0663 and a highly significant p-value. However, this vari-
able does not show significance for put options. The percentage of large
orders is significant for both call and put options in models (2) and (4), with
coefficients of 0.0668 for call options and 0.0377 for put options.

Finally, the control variable Volume was included to account for trading
activity. The coefficient for volume is positive but not statistically significant
in model (2) for call options, and it is nearly zero for put options in model
(4), suggesting that trading volume does not substantially impact relative
spreads within this sample.

Overall, these results indicate that hedging costs, inventory risks, and infor-
mation risks are significant determinants of option relative spreads. These
findings are consistent across both call and put options, with the impact
of these factors being particularly pronounced for embedded leverage and
rebalancing costs.
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4.2. Option Returns

After studying the determinants of illiquidity, we now turn to the effect of
illiquidity on option returns. We further filter the sample by requiring each
option to have at least three days with a one-day ahead delta hedged return.
We present the results of Panel OLS regressions conducted on 2,984 option
contracts from January 1, 2020, to July 31, 2024. We run the regression
with the whole sample as well as sub-sample with positive or negative order
imbalance for calls and puts.

Table 5 presents the results from panel OLS regressions analyzing the deter-
minants of delta-hedged returns for 1,650 call and 1,334 put option contracts
over the period from January 1, 2020, to July 31, 2024. The dependent vari-
able in each regression is the daily option relative spread, and the models
include factors such as delta-hedging costs, rebalancing costs, days to matu-
rity (DtM), delta, and trading volume. For call options, the relative spread
is significant only in the subset with negative order imbalance (OIB), show-
ing a positive coefficient. Delta-hedging costs consistently exhibit a negative
and highly significant relationship with delta-hedged returns across all spec-
ifications, while rebalancing costs also have a significant negative impact on
returns. The control variables, including DtM, Delta, and Volume, generally
show expected relationships, with DtM and Delta both having significant
negative coefficients, and Volume showing a small but significant negative
effect in the overall sample and the subset with negative OIB. The adjusted
R-squared values for call options are modest, ranging from 2.7% to 3.4%,
indicating that the included factors explain a small portion of the variation
in delta-hedged returns.

For put options, the relative spread is generally not significant but does
show a positive and significant coefficient in the subset with negative OIB.
Delta-hedging costs, similar to call options, have a consistent and significant
positive impact on returns. Rebalancing costs show a strong positive effect
on delta-hedged returns across all subsets, indicating that higher rebalanc-
ing costs are associated with higher returns. The control variables for put
options also follow expected patterns: DtM has a positive and significant
relationship with returns, Delta has a negative and significant effect, and
Volume is positively correlated with returns across all specifications, sug-
gesting that higher trading activity is associated with higher delta-hedged
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returns for puts. The adjusted R-squared values for put options are slightly
higher than those for calls, ranging from 3.6% to 3.8%, suggesting that the
model explains a slightly larger portion of the variation in put option returns.
Overall, the results indicate that delta-hedging costs and rebalancing costs
are significant determinants of delta-hedged returns, though they explain
only a small portion of the variability, highlighting the potential influence of
other factors or market dynamics.

Table 6 presents the results for the coefficient estimates from Instrumented
Principal Component Analysis (IPCA) three-factor models for portfolios
sorted on Illiquidity, Level, Maturity, Delta, and Implied Leverage. The
Illiquidity factor is constructed by long options with spread greater than
5% and short options with spread less than 1%. The Level factor is an
equally-weighted portfolio with ATM options, and captures fluctuations in
the overall level of the implied volatility surface. The Maturity slope factor
is constructed by longing options with maturities greater than 90 days and
shorting options with less than 14 days. The Delta factor is constructed by
longing DOTM options and shorting ATM options. The Implied Leverage
factor is constructed by longing options with implied leverage greater than
15 and shorting options with implied leverage smaller than 5. Each portfolio
contains at least 10 options to average out the measurement errors.

The analysis focus on a panel data that have least 30 call and put options
per day respectively with each instruments traded for at least 5 days, which
would facilitate the convergence when estimating IPCA factors .This sample
covers 1,660 call and 918 put option contracts over the period from January
1, 2020, to July 31, 2024. The dependent variable is the factor generated by
daily delta-hedged return from sorted portfolios.

The IPCA results for call options show that the intercept (alpha) is positive
and statistically significant across all factors. This suggests that the sorted
portfolios consistently generate excess returns that are not fully explained by
the included factors. The intercepts range from 0.0008 for Level to 0.0042 for
Maturity, all significant at either the 1% or 5% level. Most importantly, illiq-
uidity factor have a much smaller adjusted R-square compared with other
factors, indicating that the risks associated with illiquidity are least effec-
tively captured by IPCA factor model. Therefore, illiquidity factor should
be a distinct factor other than option characteristics.
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For put options, the results show greater variability and somewhat differ-
ent dynamics compared to call options. The Illiquidity factor is less consis-
tently significant for put options. It is marginally significant for the intercept
(0.0018). For Bitcoin (BTC) options, put options generally do not yield sig-
nificant positive returns due to their limited upside potential, higher costs
associated with volatility and risk aversion, and a positive bias in Bitcoin’s
price trend over time. The payoff structure of BTC puts, where potential
gains are capped, combined with high premiums for protection, reduces their
ability to generate strong returns consistently. Additionally, the relatively
low number of put contracts in our sample and the BTC options market fur-
ther diminish the precision of the estimates in the IPCA factor estimation.

5. Conclusions

The Bitcoin options market remains notably illiquid, with significant impli-
cations for pricing and expected returns. Our analysis reveals that investors,
on average, tend to sell options, though this net sell imbalance has lessened
with the growing participation of small retail investors. This illiquid market
structure leads to a notable illiquidity premium, where higher illiquidity is
associated with increased subsequent delta-hedged returns. Using both panel
OLS and IPCA factor models, we find a robust and significantly positive re-
lationship between illiquidity and expected option returns, consistent across
various illiquidity proxies and model specifications.

The economic rationale behind these findings suggests that the illiquidity
premium compensates market makers for the risks and costs associated with
market making. Regression analyses indicate that option relative spreads
are influenced by delta-hedging and rebalancing costs, inventory costs, and
asymmetric information. Importantly, relative spreads remain a significant
determinant of expected returns, particularly for options with negative or-
der imbalances, and delta-hedging costs impact returns across the board,
implying the presence of additional contributing factors.

Time-series regression results for the Illiquidity factors based on the IPCA
three-factor model further substantiate the illiquidity effect, highlighting its
role as a distinct factor separate from option characteristics, given its signif-

24



icant alpha and relatively low adjusted R-square.

These findings carry important policy implications, particularly in enhancing
market transparency and regulatory frameworks. Regulators could mandate
more detailed trade data reporting, including order imbalance and order book
depth. Real-time data would allow investors to gauge liquidity conditions
better and adjust their strategies accordingly.

Future research could explore the effects of exogenous shocks on liquidity, the
behavior of other options like Ethereum, and the impact of changes in the
regulatory environment, such as the transition from proof of work to proof
of stake.
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Table 1: Summary Statistics: BTC Options Characteristics

The table presents summary statistics for daily data computed from 4,230,878 transactions
on 5555 call and 5009 put option contracts on BTC option traded contracts on Deribit
from January 1, 2020 to July 31, 2024. Panel A shows the characteristics of the call option
contracts in our sample, whereas Panel B reports descriptive statistics for the sample of
BTC put options. Variable definitions are in Table A1 in the Appendix.

Panel A: Call Options

Mean Std dev Median p5 p25 p75 p95

Option Trading Characteristics

Transaction sizeint 1.86 4.78 0.3 0.1 0.1 1.2 9.9
Trading volume (BTC)it 1.0276 2.4014 0.2547 0.0040 0.0494 1.0229 4.4356
Trading volume ($USD)it $36,170 $89,622 $7,865 $103 $1,444 $33,192 $161,257
Notional value ($USD)it $ 1,090,256 $ 2,328,860 $ 312,127 $ 5,808 $ 66,163 $ 1,110,318 $ 4,709,604
#contractsit 31.88 61.97 10.2 0.2 2.1 34.6 135.0
Order imbalanceit -0.21% 0.2406 -0.21% -44.48% -11.65% 10.71% 45.27%
# of trading daysi 24.77 39.41 12 1.7 6 16 100
Total # of tradesi 424.53 680.60 185 5 56 476 1871.2

Option Contract Characteristics

TTM (days)it 93.23 94.71 56.15 8.78 18.08 144.77 302.01
Deltait 0.2547 0.1816 0.2181 0.0290 0.0880 0.4078 0.5754
Gammait 0.000050 0.000066 0.000029 0.000005 0.000014 0.000059 0.000171
vegait 44.27 43.58 29.41 4.02 13.27 60.44 134.30
thetait -103.27 106.22 -65.98 -330.64 -133.85 -32.19 -13.35
Embedded leverageit 8.88 6.89 6.96 2.62 4.16 11.93 21.09
Implied volatilityit 71.93% 0.21 69.08% 44.26% 57.82% 82.40% 109.24%

Panel B: Put Options

Option Trading Characteristics

Transaction sizeint 1.80 4.73 0.2 0.1 0.1 1.1 9.1
Trading volume (BTC)it 0.8549 2.3504 0.2033 0.0033 0.0384 0.8107 3.6196
Trading volume ($USD)it $28,243 $79,730 $6,410 $105 $1,223 $25,764 $122,218
Notional value ($USD)it $ 937,615 $ 2,163,265 $ 270,018 $ 5,608 $ 58,638 $ 940,984 $ 3,970,409
#contractsit 28.60 60.26 8.5 0.1 1.9 30.1 121.4
Order imbalanceit -1.41% 0.2226 -1.11% -41.44% -12.31% 8.32% 40.04%
# of trading daysi 23.48 34.18 13 2 7 16 88
Total # of tradesi 373.84 580.91 184 5 66 414 1487.6

Option Contract Characteristics

TTM (days)it 80.21 85.85 46.15 8.58 16.72 111.61 277.18
Deltait -0.2320 0.1685 -0.1943 -0.5417 -0.3661 -0.0801 -0.0280
Gammait 0.000051 0.000067 0.000029 0.000004 0.000013 0.000060 0.000175
vegait 39.78 38.36 27.16 3.73 12.25 54.88 116.70
thetait -108.68 107.741 -71.05 -341.85 -141.35 -35.88 -15.08
Embedded leverageit 8.69 6.15 7.03 2.04 4.01 11.80 21.00
Implied volatilityit 73.65% 0.23 70.14% 44.33% 57.56% 85.27% 115.28%
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Table 2: Distribution of Call and Put Trades

The table presents summary statistics for the distribution of call and put option contracts
and their number of trades, volume, and order imbalance (OIB). Our initial sample consists
of 2,358,291 transactions for 5,555 call and 1,872,587 transactions for 5,008 put contracts.
Panel A reports the distribution of calls and puts trades by moneyness. Panel B presents
the number of trades, volume, and OIB by time to maturity (TTM), whereas Panel C
splits the call and put option contracts by trade size. DOTM, OTM, ATM are deep-out-
the-money, out-the-money, at-the-money, respectively. Trading volume is the total dollar
trading amount in billion USD$ . Notional is the dollar amount of the underlying exposure
in billion USD$. Variable definitions are in Table A1 in the Appendix.

Call Put

# Trades Total Trading Vol Notional OIB # Trades Total Trading Vol Notional OIB
Moneyness
DOTM 661,676 $0.33 $42.23 -0.12% 593,514 $0.29 $36.84 0.19%
OTM 1,034,129 $2.15 $74.18 0.64% 850,323 $1.70 $53.68 -0.89%
ATM 662,486 $2.50 $33.63 2.76% 428,750 $1.32 $19.75 -0.71%

TTM

(7, 14] 675,920 $0.78 $42.94 1.28% 589,750 $0.64 $37.31 -0.16%
(14, 30] 654,981 $1.10 $44.63 0.55% 549,688 $0.83 $35.11 -0.72%
greater than 30 1,027,390 $3.10 $62.45% 0.86 733,149 $1.85 $37.85 -0.60%
Transaction Size
(BTC)
(0, 1] 1,746,356 $0.73 $18.76 -1.70% 1,397,660 $0.56 $14.65 -1.08%
(1, 10] 516,078 $2.52 $73.31 1.34% 402,765 $1.66 $52.59 0.19%
greater than 10 95,857 $1.73 $57.97 1.12% 72,162 $1.10 $43.02 -1.03%
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Table 3: Summary Statistics: Illiquidity, Returns and Their Determinants

The table presents summary statistics for the filtered dataset for 4,021 call and 3,699
put contracts on BTC option traded contracts on Deribit from January 1, 2020, to July
31, 2024. Panel A shows the characteristics of the call option contracts in our database,
whereas Panel B reports descriptive statistics for the sample of BTC put options. Panel
C reports summary statistics for the performance of the underlying BTC. Return is the
daily percentage of index price. Realized volatility is the daily volatility calculated from
10-min index price movement. Variable definitions are in Table A1 in the Appendix.

Panel A: Call Options

Mean Std dev Median p5 p25 p75 p95

Relative spread 5.52% 0.0626 3.64% 0.86% 1.99% 6.81% 15.99%
Embedded leverage 11.57 5.85 10.59 3.79 7.00 15.16 22.79
Rebalancing costs 6.90% 0.0566 5.40% 1.81% 3.39% 8.73% 16.69%
HFOIVc 11.63% 0.0877 8.77% 0.42% 3.14% 17.92% 31.92%
HFOIVi 21.45% 0.1261 19.80% 3.93% 10.94% 30.78% 43.81%
% of large order 20.73% 0.1315 19.04% 2.34% 9.85% 30.35% 44.49%
Log dollar volume 10.51 1.4299 10.61 8.02 9.61 11.51 12.67
Delta-hedged return 0.24% 0.0164 0.38% -2.83% -0.36% 1.07% 2.60%

Panel B: Put Options

Relative spread 5.94% 0.0718 3.82% 0.93% 2.06% 7.31% 17.36%
Embedded leverage 11.41 5.80 10.42 3.70 6.99 14.79 22.87
Rebalancing costs 6.65% 0.0435 5.58% 1.96% 3.59% 8.61% 14.70%
HFOIVc 11.28% 0.0994 8.54% 0.36% 2.92% 17.57% 30.85%
HFOIVi 19.23% 0.1159 17.53% 3.32% 9.60% 27.86% 39.92%
% of large order 18.85% 0.1208 17.29% 2.05% 8.85% 27.68% 40.43%
Log dollar volume 10.32 1.3798 10.43 7.92 9.44 11.30 12.41
Delta-hedged return -0.06% 0.0140 -0.21% -1.93% -0.78% 0.46% 2.56%

Panel C: BTC Market

Return 0.17% 0.0275 0.14% -4.05% -1.08% 1.35% 4.64%
Realized volatility 2.60% 0.0172 2.23% 0.85% 1.61% 3.14% 5.42%
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Table 4: Determinants of Relative Spreads

The table presents coefficient estimates from cross-sectional Fama-Macbeth regres-
sions for 4,021 call and 3,699 put option contracts from January 1, 2020 to July
31, 2024. The dependent variable is the daily option relative spread. Variable
definitions are in Table A1 in the Appendix. t-statistics of coefficient mean based
on robust standard errors are in brackets. ***,**,* represent 1%, 5% and 10%
significance levels.

Option effective spread regressions

call options put options

(1) (2) (3) (4)
Hedging Costs
Embedded leverage 0.0033∗∗∗ 0.0036∗∗∗ 0.0058∗∗∗ 0.0057∗∗∗

[14.41] [13.24] [9.25] [8.80]
Rebalancing costs 1.1745∗∗∗ 1.9250∗∗∗ 0.9532∗∗∗ 1.3124∗∗∗

[31.41] [24.33] [20.88] [11.00]
Inventory Risks
HFOIVc 0.0334∗∗∗ 0.0305∗∗∗

[5.70] [2.93]
Information Risks
HFOIVi 0.0663∗∗∗ 0.0019

[8.41] [0.10]
% of Large Order 0.0668∗∗∗ 0.0377∗∗∗

[7.92] [3.33]
Control
Volume 0.0010 -0.0000

[1.44] [-0.02]

# of days 258 258 149 149
Average Observations 47.60 47.60 53.20 53.20
Adjusted R-squared 58.50% 61.38% 53.20% 55.55%
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Table 5: Determinants of Delta Hedged Returns

The table presents coefficient estimates from panel OLS regressions for 1,650 call
and 1,334 put option contracts from January 1, 2020 to July 31, 2024. The depen-
dent variable is the daily option relative spread. Variable definitions are in Table
A1 in the Appendix. t-statistics based on robust standard errors are in brackets.
***,**,* represent 1%, 5% and 10% significance levels.

Option delta hedged returns regressions

call options put options

All -OIB +OIB All -OIB +OIB
Relative spread -0.0011 0.0171∗∗∗ -0.0091 0.0056 0.0151∗∗ 0.0016

[-0.21] [2.60] [-1.26] [1.51] [2.00] [0.35]
Delta-hedging costs -0.0007∗∗∗ -0.0009∗∗∗ -0.0006∗∗∗ 0.0006∗∗∗ 0.0006∗∗∗ 0.0005∗∗∗

[-17.59] [-14.83] [-10.78] [14.53] [11.41] [9.12]
Rebalancing costs -0.0252∗∗∗ -0.0250∗∗∗ -0.0264∗∗∗ 0.0609∗∗∗ 0.0590∗∗∗ 0.0591∗∗∗

[-5.01] [-3.80] [-3.56] [8.31] [5.89] [6.61]
Control
DtM -0.0056∗∗∗ -0.0054∗∗∗ -0.0055∗∗∗ 0.0047∗∗∗ 0.0049∗∗∗ 0.0046∗∗∗

[-17.93] [-12.51] [-13.12] [15.82] [12.12] [10.60]
Delta -0.0124∗∗∗ -0.0105∗∗∗ -0.0126∗∗∗ -0.0115∗∗∗ -0.0125∗∗∗ -0.0102∗∗∗

[-9.73] [-12.51] [-6.82] [-7.56] [-5.97] [-4.82]
Volume -0.0003∗∗ -0.0003∗ -0.0002 0.0008∗∗∗ 0.0007∗∗∗ 0.0008∗∗∗

[-2.38] [-1.80] [-0.88] [6.08] [3.96] [4.45]

Observations 16534 8309 8225 12054 6195 5859
Adjusted R-squared 2.9% 3.4% 2.7% 3.8% 3.8% 3.6%
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Table 6: IPCA Factors v.s. Option Return Factors

The table presents coefficient estimates from time-series regressions for factors generated
from 1,660 call and 918 put option contracts from January 1, 2020 to July 31, 2024. The
dependent variable is the factors measured by daily portfolio returns. Variable definitions
are in Table A1 in the Appendix. Panel A shows the coefficients of the call option char-
acteristic factors in our sample, whereas Panel B reports those for put options factors.
Variable definitions are in Table A1 in the Appendix. t-statistics based on robust stan-
dard errors are in brackets. ***,**,* represent 1%, 5% and 10% significance levels.

Panel A: Call Options

Illiquidity Level Maturity Delta Implied leverage

α 0.0017∗∗∗ 0.0008∗∗ 0.0042∗∗∗ 0.0017∗∗∗ 0.0033∗∗∗

[3.52] [2.14] [5.52] [4.97] [4.47]
F1 -0.0185∗∗∗ 0.0215∗∗∗ -0.0066 -0.0268∗∗∗ -0.440∗∗∗

[-4.39] [5.91] [-0.88] [-8.85] [-5.49]
F2 -0.0507∗∗∗ -0.0209∗∗∗ -0.1811∗∗∗ -0.0382∗∗∗ -0.2486∗∗∗

[-5.45] [-3.29] [-13.12] [-6.31] [-13.55]
F3 0.2008∗∗∗ 0.2393∗∗∗ -0.1123∗∗∗ 0.2973∗∗∗ 0.0113

[9.71] [16.56] [-3.68] [20.57] [0.31]

# of days 447 309 292 520 261
Adjusted R-squared 26.4% 49.7% 38.4% 53.1% 41.2%

Panel B: Put Options

Illiquidity Level Maturity Delta Implied leverage

α -0.0018∗ -0.0054∗∗∗ 0.0004 -0.0039∗∗∗ 0.0002
[-1.91] [-7.51] [0.17] [-6.57] [0.11]

F1 0.0111 0.0115∗ 0.0952∗∗∗ 0.0521∗∗∗ -0.0034
[1.26] [1.74] [-0.88] [9.50] [-0.25]

F2 0.1410∗∗∗ 0.1531∗∗∗ -0.0209 0.1411∗∗∗ 0.1538∗∗∗

[6.89] [7.87] [-0.40] [12.19] [3.38]
F3 -0.2122∗∗∗ 0.0174 0.2179∗∗∗ -1.950∗∗∗ -0.3190∗∗∗

[-8.34] [0.90] [4.14] [-12.27] [-5.36]

# of days 198 99 76 268 72
Adjusted R-squared 52.6% 38.5% 36.1% 67.4% 48.8%
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Figure 1: Call Option Order Imbalances by Moneyness

Weekly order imbalances (OIB) are calculated as the delta-weighted buy volume (number
of contracts) minus delta-weighted sell volume as a percentage of total volume. The data
covers BTC options traded on Deribit and BTC index reference price. The sample period
is January 2020 to July 2024. 32



 

 

 

 

Figure 2: Put Option Order Imbalances by Moneyness
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Figure 3: Call and Put Option Order Imbalances by Size
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Appendix A1: Variable definitions

Variable Definition

Panel A: Option Characteristics

Delta For a call option is given by: ∆call = Φ(d1) and for a put option is ∆put = Φ(d1)− 1

Gamma For call and put options is given by: Γ = ϕ(d1)

Bσ
√
T

Vega For call and put options is given by: ν = Bϕ(d1)
√
T

Theta For a calls is given by: Θcall = −Bϕ(d1)σ

2
√
T

− rKe−rTΦ(d2) for a puts: Θput = −Bϕ(d1)σ

2
√
T

+ rKe−rTΦ(−d2)

Implied volatility Metric reported by Deribit, computed from their proprietary model

Embedded leverage ∆×B/C

Panel B: Illiquidity Measures and Its Determinants

Relative spread Given by the volume weighted transaction spread: 2×
∣∣CM

in,t − CT
in,t

∣∣ /CM
in,t

Hedging costs The dollar volume-weighted embedded leverage

Rebalancing costs Given by: vegait × SpreadBt /C
$
i,t

HFOIV C The systematic component of the high-frequency order imbalance volatility

HFOIV I The idiosyncratic component of the high-frequency order imbalance volatility

Large Amount The proportion of large trades given by: Iint{large trade = 1} × Sizein,t

Panel C: Delta Hedge Returns

Daily delta-hedged returns The daily return from long call (put) option and |delta units short (long) of the underlying asset
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