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Abstract 

 

A latent-factor model based on the Instrumented Principal Component Analysis (IPCA) 

methodology of Kelly et al. (2019) outperforms existing factor models in explaining cross-

sectional variations in commodity futures returns. The model allows for observed commodity 

futures characteristics to work as instruments for unobservable dynamic factor loadings. We 

find that the relationship between characteristics and commodity futures returns is driven by 

compensation for exposure to latent risk factors (beta) rather than compensation for exposure 

to mispricing (alpha). Three latent factors deliver more powerful explanations than any number 

of observable factors. Among a collection of twenty characteristics, only three are significantly 

related to latent factor betas. These three characteristics are momentum, expected shortfall, and 

idiosyncratic volatility. 
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1. Introduction 

 A large body of literature has established that commodity futures investment strategies 

based on fundamental commodity characteristics such as momentum, value, basis, basis 

momentum, hedging pressure, idiosyncratic volatility, and skewness earn significantly higher 

returns relative to commodity market indices (De Roon et al., 2000; Miffre and Rallis, 2007; 

Asness et al., 2013; Yang, 2013; Bianchi et al., 2015; Fernandez-Perez et al., 2018; Bakshi et 

al., 2019; Boons and Prado, 2019).1 Typically, these studies sort commodity futures contracts 

based on one fundamental characteristic to generate hedge portfolio returns and then evaluate 

those hedge portfolio returns against alternative benchmarks. Significant alphas are interpreted 

as risk-adjusted abnormal returns. Bianchi et al. (2015) study trading strategies that jointly 

exploit momentum and contrarian returns in commodity futures. Fuertes et al. (2015) design a 

triple-screen trading strategy based on three signals: momentum, term-structure (roll yields), 

and idiosyncratic volatility. Fernandez-Perez et al. (2019) and Fuertes and Zhao (2023) 

investigate the issue of style integration, combining multiple characteristics to form a portfolio 

with simultaneous exposure to many styles including momentum, value, carry (roll yields), 

liquidity, skewness, and basis momentum. 

The commodity risk premia literature, so far, has not addressed the sources of these 

abnormal returns, i.e., whether abnormal returns are due to alphas or betas related to sorting 

characteristics. This alpha versus beta debate has been a long-standing issue for the equity 

market since the work of Fama and French (1993). Daniel and Titman (1997) attempt to address 

this issue using portfolio sorting based on lagged beta estimates and firm characteristics. They 

find significant characteristic-based returns controlling for betas but not beta-based returns 

controlling for characteristics. However, the double-sorting approach can only handle one 

characteristic at a time. In addition, there exist some statistical issues (Ferson and Harvey, 1997; 

Berk, 2000; Kim et al., 2021).  

 Kelly et al. (2019) address the alpha versus beta issue by developing an instrumented 

principal component analysis (IPCA) methodology. Kelly et al.’s (2019) model assumes that 

the relationship between either alpha or beta and characteristics is constant over the full sample 

period (or full estimation period). They conclude that firm characteristics can predict the cross-

section of stock returns because betas, rather than alphas, are related to these characteristics.  

                                                            
1 Miffre (2016) provides a comprehensive review of various investment strategies in the commodity futures 

market. See also Sakkas and Tessaromatis (2020) for a brief summary. 
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 This study attempts to disentangle the alpha versus beta effect in generating abnormal 

returns for commodity futures. We follow the IPCA approach of Kelly et al. (2019). The IPCA 

approach is suitable to study the commodities market for the following three reasons. First, the 

IPCA model allows characteristics to have short-term dynamics, i.e., characteristics change on 

a monthly basis. This is the case for commodity futures. All commodity futures characteristics, 

such as momentum, basis, hedging pressure, speculative pressure, and basis momentum, can 

be measured monthly. 2  Second, the IPCA approach can simultaneously include multiple 

traditional observable risk factors or pre-specified risk factors within an IPCA specification. 

This makes it easy to test the incremental contribution of each observable risk factor in the 

presence of latent risk factors. Third, the IPCA approach allows us to test for the significance 

of each individual characteristic after controlling for other characteristics in a complete 

multivariate analysis.  

  Our dataset covers 34 commodity futures contracts that fall into the following five 

categories: energy, grains and oilseeds, livestock, metals, and softs. Coverage is similar to that 

used in earlier studies. We consider a total of 20 commodity futures characteristics widely used 

in the literature: 3-month momentum, 12-month momentum, 18-month contrarian return, 36-

month contrarian return, 52-week high, idiosyncratic volatility, skewness, maximum daily 

return, expected shortfall, basis, hedging pressure, speculative pressure, 3-month basis 

momentum, 12-month basis momentum, commodity market beta, U.S. dollar index beta, 

inflation beta, trading volume, open interest, and the Amihud liquidity measure. We also 

construct seven observable risk factors related to market, momentum, basis, hedging pressure 

and speculative pressure, basis momentum, idiosyncratic volatility, and skewness (CMKT, 

CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW).  

Our major findings can be summarized as follows. First, the impact of characteristics 

is negligible in the alphas of latent factors. With three latent factors, we cannot reject the null 

hypothesis that alpha is zero. In other words, commodity futures characteristics do not generate 

abnormal returns through the mispricing channel. Among 20 characteristics, only three make 

a substantial contribution to explaining betas in latent factor models. When controlling for 

                                                            
2  Alternatively, Kim et al. (2021) propose a projected principal component analysis (PPCA) approach to 

investigate the alpha versus beta debate. The PPCA rolling-window approach uses a set of characteristics that is 

fixed at the beginning of the estimation window (12 months, for example). Then the PPCA approach projects the 

monthly returns of N stocks during the 12-month period onto the set of characteristics. This requires a balanced 

panel of return data. The PPCA next extracts the eigenvectors from the projected returns. The consistency of the 

PPCA approach is established based on a large number of cross-sectional stocks (N) and other stationarity 

assumptions. The rolling-window approach is appropriate when characteristics include annual accounting ratios 

that are constant over the 12-month estimation period.   
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momentum, expected short fall, and idiosyncratic volatility, none of the remaining 

characteristics deliver significant contribution in explaining betas of latent factors. The three 

significant characteristics in the betas of latent factors remain robust even when we 

simultaneously control for observable factors in the IPCA model and allow betas of observable 

factors to be dependent on the same three characteristics. Therefore, the strong abnormal 

returns associated with momentum and idiosyncratic volatility are driven by time-varying betas 

related to these characteristics rather than by mispricing in alphas related to these 

characteristics. 

Second, a standard feature of commodities markets is that they are somewhat 

segmented from stock and bond markets as well as from each other. Earlier empirical evidence 

reports low correlations of commodity returns with stock and bond returns and low correlations 

among commodity returns themselves (Gorton and Rouwenhorst, 2006; Erb and Harvey, 2006). 

This has changed dramatically in the past 20 years. The phenomenon has been referred to as 

the financialization of commodity markets (Tang and Xiong, 2012; Cheng and Xiong, 2014; 

Henderson et al., 2015; Brogaard et al., 2019). In the financialization process, there is a 

significant inflow of investment funds into commodity futures contracts. As a result, the price 

dynamics of commodity futures contract returns also change. In particular, commodity prices 

tend to be more synchronous. Commodity prices share a common boom and bust cycle. These 

new developments justify the use of latent factor models for commodity markets.  

To examine whether this financialization process impact our results, we split the sample 

period into two sub-samples. The first sub-sample covers January 1981 to December 2002. The 

second sub-sample covers January 2003 to June 2022. Indeed, we find that the performance of 

IPCA latent factor models is much better in the second sub-sample. R2’s from the IPCA models 

are much larger in the second sub-sample than in the first sub-sample. 

Then we move on to test for the significance of 20 individual commodity futures 

contract characteristics. The results are generally consistent with the evidence from the full 

sample, with a few exceptions. The sub-sample IPCA results indicate that in addition to 

momentum, expected shortfall, and idiosyncratic volatility, 12-month basis momentum has 

become significant in the first sub-sample. An indicator variable for 52-week high has become 

significant in the second sub-sample.  

 Third, when we compare the performance of standard models with observable risk 

factors with latent factor models, we find that the largest R2 is 0.378 in a model that employs 

seven observable factors and seven commodity futures contract characteristics to instrument 
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betas to these observable risk factors. In contrast, R2’s are 0.393 and 0.410, respectively, in the 

three-factor IPCA model with four and seven contract characteristics, but without any 

observable factors. Our evidence suggests that IPCA models dominate observable factor 

models in all model specifications.  

 Fourth, we find that some observable risk factors such as the momentum factor, the 

hedging pressure and speculative pressure factor, and the idiosyncratic volatility factor provide 

additional benefits in explaining commodity futures returns beyond the baseline IPCA model 

with the three latent factors. We also show that the momentum factor, the hedging pressure and 

speculative pressure factor, and the skewness factor are not fully spanned by the three latent 

factors when we implement the spanning test, as in Barillas and Shanken (2017) and Fama and 

French (2018).  

 Fifth, consistent with the above results, we further show that a three latent factor IPCA 

model together with seven observable factors can generate Sharpe ratios of 0.737 and 0.703, 

respectively, using four and seven futures characteristics to instrument betas of both observable 

and latent risk factors. These Sharpe ratios are higher than the Sharpe ratio of 0.668 from the 

Fama and French (2015) five-factor model plus the momentum factor for the U.S. equity 

market. 

 The rest of the paper proceeds as follows. Section 2 provides a brief review of the 

related literature. Section 3 introduces the IPCA procedure. Section 4 describes data sources 

and variable definitions. Section 5 reports summary statistics. Section 6 presents the main 

empirical results, including standard hedge portfolio returns sorted on commodity futures 

characteristics, the estimation of the baseline IPCA model, the significance of individual 

characteristics, the IPCA model with observable risk factors, spanning tests, and Sharpe ratios. 

Section 7 offers some additional discussion. Section 8 concludes the paper. 

 

2. Literature Review 

2.1 Studies on Commodity Futures Returns 

There is growing evidence that long-short strategies based on exposure to commodity 

futures characteristics earn significant risk premiums. The literature has documented 

anomalous returns generated by sorting on commodity futures characteristics. Miffre (2016) 

provides a comprehensive review of various investment strategies in the commodity futures 

market. The widely-used sorting variables include (a) momentum (Miffre and Rallis, 2007; 

Fuertes et al., 2010, 2015; Narayan et al., 2014; Bianchi et al., 2015; Bakshi et al., 2019); (b) 

contrarian strategies (Asness et al., 2013; Bakshi et al., 2019); (c) 52-week high and low returns 
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(Bianchi et al., 2016); (d) volatility measured as the coefficient of variation or sum of squared 

daily returns (Gorton et al., 2013; Szymanowska et al., 2014); (e) idiosyncratic volatility 

(Fuertes et al., 2015); (f) skewness (Fernandez-Perez et al., 2018); (g) basis (Gorton et al., 2013; 

Yang, 2013; Szymanowska et al., 2014); (h) hedging pressure (De Roon et al., 2000; Basu and 

Miffre, 2013; Dewally et al., 2013); (i) basis momentum (Boons and Prado, 2019); (j) 

commodity market beta, USD beta, and inflation beta (Erb and Harvey, 2006; Gorton and 

Rouwenhorst, 2006); (k) open interest (Hong and Yogo, 2012); and (l) liquidity (Szymanowska 

et al., 2014).   

Bianchi et al. (2015) study trading strategies that jointly exploit momentum and 

contrarian strategies in commodity futures returns. The strongest abnormal returns come from 

a 12-month momentum together with an 18-month contrarian strategy. Fuertes et al. (2015) 

design a triple-screen trading strategy based on the three signals from momentum, term-

structure (roll yields), and idiosyncratic volatility. Fernandez-Perez et al. (2019) compare the 

naïve equal-weight integration with six other more sophisticated style-integration approaches. 

They conclude that portfolios adopting the naïve equal-weight integration are unsurpassed by 

portfolios adopting other style-integration methods in terms of reward-to-risk profile. Fuertes 

and Zhao (2023) propose a Bayesian optimized style-integration strategy and show that this 

strategy achieves better Sharpe ratios and certainty equivalent returns.  

 Several papers examine the predictability of returns on commodity futures and test 

various versions of asset pricing models. These studies typically use macroeconomic or 

financial variables to test the predictability of either commodity market indices or individual 

commodity futures contracts (Bessembinder and Chan, 1992; Gargano and Timmermann, 2014; 

Ahmed and Tsvetanov, 2016; Daskalaki et al., 2014; Gao and Nardari, 2018; Koijen et al., 

2018; and Baba Yara et al., 2019). Sakkas and Tessaromatis (2020) examine the performance 

of volatility timing strategies applied to a multi-factor commodity futures portfolio.  

 

2.2 Firm Characteristics and Latent Factor Models 

The asset pricing literature has identified many variables that can predict the cross-

section of stock returns (Fama and French, 1993; Haugen and Baker, 1996; Subrahmanyam, 

2010; Hou et al., 2015; Harvey et al., 2016). The literature has also investigated the source of 

these predictable patterns. Predictability can arise from either the ability to predict the cross-

section of systematic risk (beta) or the ability to predict asset mispricing (alpha).  
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Daniel and Titman (1997) attempt to disentangle the alpha versus beta effect by double-

sorting on lagged beta estimates and firm characteristics. Kim et al. (2021) argue that estimates 

of lagged beta are imprecise and stale. In addition, the double-sorting approach cannot handle 

two or more characteristics simultaneously. They extend the projected principal component 

analysis (PPCA) of Fan et al. (2016) to address the problems with the double-sorting approach. 

Latent factor betas are obtained from projected demeaned returns via standard principal 

component analysis (PCA). As a consequence, the obtained latent factors, as well as associated 

estimates of alphas and betas, depend on firm characteristics.  

Kelly et al. (2019) propose an alternative latent factor model that also allows alpha and 

beta to be dependent on firm characteristics. Their instrumented principal component analysis 

(IPCA) considers alpha and beta to be linear functions of firm characteristics. The model allows 

the characteristics to change month by month, but the cross-sectional relationship between 

characteristics and either alpha or beta is constant over the full sample period. In contrast, the 

model of Kim et al. (2021) estimates beta using a rolling-window approach. As such, the cross-

sectional relationship between either alpha or beta and characteristics varies over time. The 

Kim et al. (2021) model tends to perform better when the relationship between characteristics 

and either alpha or beta changes over time. For example, this happens when momentum itself 

is arbitraged away after its discovery (McLean and Pontiff, 2016). 

 

2.3 Risk Factors 

A number of earlier studies identify several commodity market risk factors that are 

priced. Szymanowska et al. (2014) examine the single basis factor. Yang (2013) considers a 

two-factor model with both the average commodity factor and the basis factor included. The 

average commodity factor is formed from an equal-weighted portfolio of all commodities. 

Boons and Prado’s (2019) version of a two-factor model includes the average commodity factor 

and the basis momentum factor. Bakshi et al. (2019) mainly investigate a three-factor model 

that includes the average commodity factor, the basis (carry) factor, and the momentum factor.3 

They also include two additional factors: the value factor and the volatility factor. Boons and 

Prado (2019) test the performance of a four-factor model that includes the basis momentum 

                                                            
3 Bakshi et al. (2019) construct a basis (carry) factor as the return on a portfolio that is long commodities that are 

the most backwardated (i.e., the lowest ln(yt) < 0) and short the ones that are the most in contango (i.e., the highest 

ln(yt) > 0), where 
2 1/t t ty F F  is the basis or slope of the futures curve and 

1

tF  and 
2

tF  are the first- and 

second-nearby futures contract prices. 
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factor in addition to the average commodity, basis, and momentum factors. Sakkas and 

Tessaromatis (2020) find evidence that a six-factor model contains all economically relevant 

pricing information. The six-factor model augments the four-factor model with two additional 

factors: the hedging pressure factor and the value factor. 

  

3. The IPCA Model 

3.1 Estimation of the IPCA Model 

 We present a brief overview of the IPCA estimation in this section. Kelly et al. (2019, 

2020) provide a detailed analysis of the IPCA model.4 This model supposes that there exist N 

commodity futures contracts for T  periods. We specify the excess return on a commodity 

futures contract ri,t+1 in the general IPCA framework as: 

  

                         
, 1 , , 1 , 1i t i t i t t i tr f       ,                     (1) 

and 

                        
'

, , , ,i t i t i tz v     , 
'

, , , ,i t i t i tz v     ,               (2) 

 

where ft+1 is a K×1 vector of latent factors, αi,t measures possible mispricing not captured by 

factors, and βi,t is a 1×K vector of betas to latent factors. Both αi,t and βi,t depend on observable 

commodity characteristics in the L×1 instrument vector zi,t.  

 The L×K matrix Γβ maps the potentially large number of characteristics to a small 

number of risk factor exposures. It allows us to condition the systematic risk estimates on 

lagged values of commodity futures characteristics. In doing so, the model can handle many 

characteristics simultaneously through the estimation of the matrix Γβ. The residual νβ,i,t 

captures any dynamic factor loading behavior which is orthogonal to characteristics. The L×1 

vector   maps characteristics to any mispricing related to characteristics. The residual να,i,t 

captures any mispricing that is orthogonal to characteristics. By using a vector form and 

combining Equations (1) and (2), we have: 

 

                          
1 1 1t t t t tr Z Z f         ,                        (3) 

 

                                                            
4 The data and codes used in our study are available upon request. 
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where rt+1 is a N×1 vector of individual commodity futures returns at t, Zt is a N×L matrix of 

commodity futures characteristics, and εt+1 is a N×1 vector of composite errors, including error 

terms in both alphas and betas. We consider two alternative cases for the specification of Γα. 

The first is the restricted version in which characteristics do not proxy for alpha, i.e., Γα = 0. 

The second is the unrestricted version in which characteristics do proxy for alpha, i.e., Γα ≠ 0.  

 Under the restricted specification Γα = 0, the efficient estimators for Γβ and ft+1 are 

obtained by minimizing the sum of squared compound errors: 

 

                          
1

1
'

1 1 1 1
,

1

min
t

T

t t t t t t
f

t

r Z f r Z f


 




   




    .                (4) 

 

Kelly et al. (2019) show that the values of Γβ and ft+1 that minimize Equation (4) satisfy the 

following two first-order conditions: 

 

                        
1' '

' '

11 t t t tt
f Z Z Z r  




    , t                   (5) 

and 

 

                       

1 '1 1' ' '
'

11 1 1

1 1

( )
T T

t t t tt t t

t t

vec Z Z f f Z f r


 

  

 

               
  .      (6) 

 

Under the unrestricted specification Γα ≠ 0, we simply augment the factor specification to 

include a constant, 
'

11
[1, ]'tt

f f 
 , with the corresponding parameter matrix of [ , ]     . 

We then use the same procedure to estimate the parameters. Replacing 1tf   with 1t
f

 , we 

derive the similar first-order condition for   as in Equation (6): 

  

                       

1
1 1 '

' ' ''

11 1 1

1 1

( )
T T

t t t tt t t

t t

vec Z Z f f Z f r


 

  

 

               
  .      (7)    

                

The first order condition for 1tf   in Equation (5) changes slightly to: 

 

                       
1

' ' ' '

11
( )t t t t tt

f Z Z Z r Z   




      , t .              (8) 
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It is possible to nest observable factors such as commodity market-wide returns 

(CMKT), commodity market momentum (CMOM12), basis risk (CBASIS), hedging pressure 

and speculative pressure (CHP), basis momentum (CBASM12), idiosyncratic volatility 

(CIVOL), and skewness (CSKEW) into the IPCA framework. The encompassing model is:  

 

                         
, 1 , 1 , 1 , 1i t i t t i t t i tr f g        ,              (9) 

 

where βi,t is specified as in Equation (1), δi,t is a 1×M vector of betas to observable factors, and 

gt+1 is a M×1 vector of observable factors which describes the portion of returns in addition to 

the IPCA latent factors ft+1. Using a vector form, Equation (9) becomes: 

 

                        
1 1 1 1t t t t t tr Z f Z g          .                      (10) 

 

Notice, in Equation (10), we impose the zero-alpha restriction Γα = 0 to focus on exposure to 

systematic risks Γβ and Γδ. Now we can specify 
' '

1 11
[ , ]'t tt

f f g 
  with the corresponding risk 

matrix [ , ]     . The estimation for   is the same as in Equation (7). The estimation for 

1t
f

  in Equation (8) now becomes: 

 

                         
1

' ' ' '

1 11
( )t t t t t tt

f Z Z Z r Z g   



 
      , t .        (11) 

    

3.2 Hypothesis Tests in the IPCA Model 

 Equation (3) specifies the IPCA model with latent factors only. We carry out hypothesis 

tests after obtaining the estimates for the latent risk factors and key parameter matrix Γα and 

Γβ. Our empirical analysis mainly focuses on three hypothesis tests. The first distinguishes 

between the unrestricted and restricted versions of the IPCA model, i.e. the zero alpha condition. 

The second tests for the significance of an individual characteristic, such as basis, while 

simultaneously controlling for all other characteristics. The third tests for whether each 

observed factor has incremental explanatory power. For example, we can test whether the basis 

momentum risk factor can also significantly contribute to the IPCA model when it is included.  



 

10 
 

 The first hypothesis test aims to answer the question of whether commodity futures 

characteristics capture the difference in average returns that are unrelated to exposure to latent 

factors. In other words, the intercept in the latent factor model tZ   is unrelated to Zt. 

Specifically, we test the following null hypothesis:  

 

0 1: 0LH     

against the alternative hypothesis 

1: 0A LH    . 

 

Using actual commodity futures return data, we construct a Wald-like statistic for the distance 

between alpha estimates from the unrestricted model and the restricted model (0L×1) as the sum 

of squared elements in the   vector: 

 

                                  
'

W      .                 

 

We follow Kelly et al. (2019) to construct the Wald statistic with bootstrapped data. A detailed 

discussion of each step in the bootstrapping process is provided in Appendix C. The basic idea 

is to sample residuals of characteristic-weighted portfolio returns from the unrestricted model. 

Then we impose the restriction to obtain predicted values of characteristic-weighted portfolio 

returns. The sum of the two components becomes the bootstrapped characteristic-weighted 

portfolio return, which we use to again estimate the unrestricted model to obtain bootstrapped 

estimates of Гα, 
boot

 . We repeat the bootstrapping process 1,000 times. The percentage of 

   
'boot boot

bootW       larger than 
'

W       is the p-value for testing the null hypothesis. 

As argued in Kelly et al. (2019), the advantage of the bootstrap process is that we only resample 

residuals of characteristic-weighted portfolio returns from the unrestricted model. We do not 

need to resample contract level residuals. 

The second test we implement is to evaluate the significance of an individual 

characteristic while simultaneously controlling for all other characteristics. We investigate 

whether a given characteristic significantly contributes to βi,t. Consider the mapping matrix 

from characteristics to latent factors 
,1 ,[ ,..., ]'L     , where 

,l  is a 1K   vector that 



 

11 
 

maps the lth element of characteristic vector zi,t to loadings on the K  factors. The null and 

alternative hypotheses can be specified as follows: 

 

0 ,1 , 1 1 , 1 ,: [ ,..., ,0 , ,..., ]'l K l LH            , 

 

                    
,1 , 1 , , , 1 ,: [ ,..., , , ,..., ]'A l l l LH             . 

 

Under the null hypothesis, the entire lth row of Гβ is zero. The alternative hypothesis allows for 

a non-zero contribution from the lth characteristic. If the null is rejected, the distance between 

the estimate of ,l  under the alternative and the estimate of ,l  imposed to be 0 under the 

null should be statistically large. The Wald-like statistic from using actual commodity futures 

return data is constructed as: 

 

                               
'

, ,, l llW     .         

 

The inference of this test is to sample residuals of characteristic-weighted portfolio returns 

from the unrestricted model. Then we impose the restriction to obtain predicted values of 

characteristic-weighted portfolio returns. The sum of the two components becomes the 

bootstrapped characteristic-weighted portfolio return that we again use to estimate the 

unrestricted model to obtain the bootstrapped Wald-like statistic    
'

, ,,

boot boot
boot

l llW     . 

The third test we implement is to examine whether a particular observable factor has 

incremental explanatory power after controlling for latent factors in the IPCA model and other 

observable factors. The hypotheses for this test are:  

 

0 ,1 , 1 1 , 1 ,: [ ,..., ,0 , ,..., ]'m L m MH            , 

 

,1 , 1 , , 1 ,: [ ,..., , , ,..., ]'A m m m MH             . 

 

Similarly, the Wald-like statistic from using actual commodity futures return data is 

constructed as:  
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'

, ,, m mmW     .   

 

Using a similar bootstrapping procedure, we obtain the bootstrapped Wald-like statistic

   
'

, ,,

boot boot
boot

m mmW     . If Wδ,m is large relative to ,

boot

mW  for more than 950 of the 1,000 

bootstraps, we can conclude that, at a significance level of 5%, the mth observable factor of gt+1 

has incremental explanatory power for individual commodity futures returns beyond the latent 

factors in the IPCA model and other observable factors 

 

4. Data Sources, Commodity Futures Contracts, and Variable Definitions 

4.1 Data Sources 

Our main data source is Refinitive Eikon. We collect the S&P Goldman Sachs 

commodity total return indices (GSCI) on individual commodity futures contracts. The S&P 

GSCI is a widely used benchmark for investments in commodity futures. Earlier studies use 

GSCI individual commodity futures index data (Wang and Yu, 2004; Miffre and Rallis, 2007; 

Marshall et al., 2008; Bianchi et al., 2015, 2016). In addition, we use continuous commodity 

futures price series that are pre-constructed by the data vendor. This also follows the earlier 

literature. 

When compiling continuous time-series futures returns, earlier studies use an 

immediate roll approach. All positions in the expiring futures contract are closed out on the 

same day as new positions are opened in nearby or distant contracts. S&P GSCI data compile 

individual commodities time-series prices by gradually rolling all futures positions over a pre-

defined five-day period in each month. The approach is more practical for investors because 

rolling large positions on a single day may create an adverse price impact.5 Gao and Nardari 

(2018) suggest that the GSCI Total Return Index measures a fully collateralized commodity 

futures investment. Its characteristics make it fully investable without any trading in physical 

commodities.6 

The S&P GSCI futures data from Refinitive Eikon go back to 1974, but data are only 

available on a small number of futures contracts in the early years. We implement our empirical 

                                                            
5 Please see Footnote 10 of Bianchi et al. (2016) for an example of an S&P GSCI gradual roll approach to 

construct the continuous time-series price data. 

6 Gao and Nardari (2018) also suggest that GSCI is by far the leading fully collateralized investable commodity 

index followed by exchange-traded products. It has the longest data history.  
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analysis starting in 1981 to guarantee that there are at least 10 commodities per month. 

Therefore, our sample of monthly GSCI indices covers the period of January 1981 to June 2022.  

We also obtain daily settlement prices on first-nearby and second-nearby contracts from 

Refinitive Eikon. These daily data are used to construct the basis of commodity futures. The 

hedge and speculation positions are downloaded from the Commodity and Futures Trading 

Commission webpage. The trade weighted USD index returns and producer price index are 

from the Federal Reserve Bank at St. Louis’s webpage. 

Our dataset covers 34 commodity futures contracts that fall into the following five 

major categories: energy, grains and oilseeds, livestock, metals, and softs. The coverage is 

similar to that used by Hong and Yogo (2012), Gorton et al. (2013), Szymanowska et al. (2014), 

Bakshi et al. (2019), and Sakkas and Tessaromatis (2020). Some commodity futures contracts 

used in these earlier studies are not included in our sample because some data items are not 

available. For example, prices for the second-nearest futures contract to expiration are not 

available for propane, pork belly, rough rice, and milk and, therefore, the basis cannot be 

constructed. Similarly, the GSCI individual futures contract index for ethanol only starts in 

2019 and is too short for empirical analysis. 

We consider a total of 20 commodity futures characteristics. All characteristics are 

measured over a period prior to the prediction month t. For example, 12-month momentum 

return (MOM12) is measured as the cumulative return over prior months t-12 to t-1. As 

commodity spot markets are known to be illiquid, we use the nearest to-maturity (first-nearby) 

futures price as the spot price, similar to Szymanowska et al. (2014) and most other studies on 

commodity futures. Daily basis is measured as the second-nearby futures contract daily price 

divided by the first-nearby futures contract daily price minus one. The detailed procedure for 

measuring these characteristics is provided in Appendix A.  

Following Kelly et al. (2019), we transform these original measures of characteristics 

period by period into relative ranking in the cross-section then implement the IPCA estimation. 

Specifically, we first rank commodities on each characteristic, then rescale the rank by dividing 

it by the number of non-missing observations and subtracting 0.5. The procedure transforms 

the raw data on each characteristic into [-0.5, +0.5] intervals and focuses on their ordering 

rather than their magnitude. These standardized ranks should be insensitive to outliers. 

We also construct a total of seven observable commodity market risk factors. These 

include the market-wide risk factor (CMKT), the 12-month momentum risk factor (CMOM12), 

the basis risk factor (CBASIS), the hedging pressure and speculative pressure risk factor (CHP), 
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the basis momentum risk factor (CBASM12), the idiosyncratic volatility risk factor (CIVOL), 

and the skewness risk factor (CSKEW). The CMKT risk factor is measured as the monthly 

return on the GSCI overall commodity market index. For the CMOM12, CBASIS, CBASM12, 

CIVOL, and CSKEW risk factors, each is based on the rankings of commodity futures 

characteristics i.e., MOM12, BASIS, BASM12, IVOL, and SKEWNESS, respectively, in month 

t-1 prior to the month t when we form equal weighted portfolio returns. The cutoff points for 

the high and low measures on commodity futures contract characteristics are top 30% and 

bottom 30% in each month t-1. The CHP risk factor is constructed from double-sorting on two 

variables HPHE and HPSP, respectively, where HPHE is hedging pressure and HPSP is 

speculative pressure. As in Fernandez-Perez et al. (2018), the long position consists of futures 

contracts with the highest HPSP (top 70%) and lowest HPHE (bottom 30%). The short position 

consists of futures contracts with the lowest HPSP (bottom 30%) and highest HPHE (top 

70%).7 

 

5. Summary Statistics 

 Table 1 reports summary statistics for our sample of 34 commodity futures contracts. 

The last three rows provide summary statistics for the commodity market index return, USD 

index return, and commodity produce price index (PPI) return. The complete time-series 

sample covers 498 months from January 1981 to June 2022. The commodity market index has 

an annual return of 3.8% with an annual standard deviation of 20.5%. The annualized Sharpe 

ratio is 0.071, similar to that reported in Gao and Nardari (2018). The three commodities that 

deliver the highest Sharpe ratios over the sample period are RBOB gasoline, soybean meal, 

and palladium, with corresponding Sharpe ratios of 0.327, 0.274, and 0.267, respectively. 

Panels A1 and A2 of Table 2 provide summary statistics for 20 commodity futures 

characteristics. Panel A1 of Table 2 shows that the mean value of 12-month momentum 

measure (MOM12) is 0.030, or 3.0% per month. 12-month momentum is the cumulative return 

over prior months from t-12 to t-1. The mean value of expected shortfall (ES) is -0.036, or -

3.6% per month. Expected shortfall is a commonly used measure of the tail risk of financial 

                                                            
7 The contrarian (i.e., value) strategy suggests that a portfolio of contracts with high measures of CTR36 or CTR60 

should have low returns, where CTR36 and CTR60 are 36- and 60-month cumulative returns from t-1 to t-36 and 

from t-1 to t-60, respectively. The long-short portfolio return should be negative. However, the results are opposite 

when we use CTR60. In addition, adding or deleting a few additional years of data surrounding our sample period 

from January 1981 to June 2022 does not generate significant long-short portfolio returns either. The evidence 

indicates the value effect is weak and, therefore, we do not include the value factor in the empirical analysis.  
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assets and is calculated as the average of the worst 5% returns. Here we measure the expected 

shortfall of individual futures contracts using the worst 5% of daily returns during prior months 

from t-12 to t-1. Idiosyncratic volatility (IVOL) is measured as the standard deviation of the 

residuals from a regression of daily returns on commodity market index daily returns over prior 

months from t-12 to t-1. The mean value of IVOL is 0.014 from our pooled time-series and 

cross-sectional sample.8 

Panel A2 of Table 2 reports the pairwise correlations among 20 commodity futures 

contract characteristics. The 12-month momentum return (MOM12) is highly significantly 

correlated with 18-month contrarian return (CTR18), 36-month contrarian return (CTR36), and 

a measure of 52-week high based on relative price ratio (R52WH), with correlations of 0.82, 

0.52, and 0.68, respectively. The correlation between idiosyncratic volatility (IVOL) and 

maximum daily return (MAX) is positive and highly significant at 0.73, while the correlation 

between idiosyncratic volatility (IVOL) and expected shortfall (ES) is negative and highly 

significant at -0.70. Hedging pressure (HPHE) has a negative and highly significant correlation 

of -0.75 with speculative pressure (HPSP). There is a negative correlation of -0.32 between 

basis (BASIS) and 12-month basis momentum (BASM12). The correlation between trading 

volume and the Amihud liquidity (Amihud, 2002) measure is significantly negative at -0.03.  

Panel B1 of Table 2 provides summary statistics for the seven observable risk factors 

CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, and CSKEW. The mean values of these 

risk factors are 3.8%, 10.7%, 6.2%, 7.8%, 5.4%, 9.3%, and 6.8% per annum, respectively. 

Long-short portfolio returns sorted on BASIS, IVOL, and SKEWNESS are negative. For these 

three characteristics, we add a negative sign to form the CBASIS, CIVOL, and CSKEW risk 

factors. As a result, all seven risk factors have positive mean returns.  

Panel B2 of Table 2 tabulates the pairwise correlations between these seven risk factors. 

In general, the correlations are low. The highest correlation is 0.47 between CBASIS and 

CBASM12.  

 

6.  Empirical Results 

6.1 One-way Sorted Commodity Futures Hedge Portfolio Returns 

                                                            
8 We compute alternative measures of tail risk such as value-at-risk of daily returns on the GSCI individual 

commodity futures contract index at the 5% level. We also compute the summation of squared daily returns on 

the GSCI individual commodity futures contract index. But the IPCA model estimation using these two 

characteristics fails to converge. 
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We begin our empirical analysis with standard one-way sorted long-short portfolio 

returns. For each of the 20 commodity futures characteristics, Table 3 reports the mean returns 

on the long position, the mean returns on the short position, the mean returns on the hedge 

portfolios (long – short), t-statistics, and number of monthly observations. Among the 20 

characteristics, we find 12 generate significant long-short portfolio returns at the 5% level: 

MOM3, MOM12, R25WH, IVOL, SKEWNESS, MAX, BASIS, HPHE, HPSP, VOLM, OPNI, 

and ALIQ. All 12 characteristics have expected signs based on the earlier literature.  

The magnitude of monthly returns from these 12 hedge portfolios is large, ranging from 

-5.60% per annum to 11.40% per annum with corresponding t-statistics of -2.05 to 4.28, 

respectively. The 12-month momentum strategy (MOM12) generates an annual return of 10.70% 

with a t-statistic of 3.75. The strong momentum effect is consistent with those reported in 

earlier studies (Miffre and Rallis, 2007; Fuertes et al., 2010, 2015; Asness et al. 2013; Bianchi 

et al., 2015, 2016; and Bakshi et al., 2019).  

McLean and Pontiff (2016) study post-publication return predictability of 97 variables 

shown to predict cross-sectional stock returns in the U.S. equity market.9 They report an 

average predictor’s long-short return shrinks 58% post-publication with a lower bound on the 

publication effect of about 32%. They reject both the hypothesis that return predictability 

disappears entirely and the hypothesis that post-publication return predictability does not 

change. We explore the same issue for commodity futures returns. For example, our results in 

Table 3 indicate that the long-short portfolio sorted on expected shortfall (ES) yields an annual 

return of 3.70% with a t-statistic of 1.36. But if we shorten our sample period from January 

1981 to December 1998, the long-short portfolio generates an annual return of 8.90% with a 

highly significant t-statistic of 1.95. 

The characteristic that deserves more discussion is the volatility measure. Some earlier 

studies use different measures of total volatility (Szymanowska et al., 2014) or explore the 

contemporaneous relation between total volatility and hedge portfolio returns (Gorton et al., 

2013). We study the effect of idiosyncratic volatility measured at t-1, or one-month lag.  

Our results in Table 3 show that trading futures contracts based on idiosyncratic 

volatility generates an annual return of -9.30% with a t-statistic of -3.37. Commodity futures 

with higher idiosyncratic volatility have a lower return than commodity futures with a lower 

                                                            
9 McLean and Pontiff (2016) compare the return predictability of firm characteristics over three distinct periods: 

(i) the original study’s sample; (ii) after the original sample but before publication; and (iii) post-publication. They 

attempt to differentiate between alternative explanations for the return predictability such as statistical biases, 

rational pricing, and mispricing.  
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idiosyncratic volatility. The results remain robust when we use a longer sample from January 

1973 to December 2022, for a total of 594 months. The long-short portfolio sorted on IVOL 

generates an annual return of -8.26% with a t-statistic of -2.92. Our results are also consistent 

with those from Fuertes et al. (2015). 

In an earlier study, Gorton et al. (2013) report a positive long-short hedge portfolio 

return sorting on contemporaneous volatility measured in month t.10 Specifically, they demean 

volatility by the time-series mean of volatility, where volatility is calculated as the square root 

of the average squared daily excess returns of the month over which the excess return is 

calculated. Szymanowska et al. (2014) study the relationship between commodity futures 

returns on two trading strategies (i.e., short-roll returns, and excess holding returns) and 

volatility measured as a coefficient of variation (i.e., standard deviation divided by mean).11 

They report a positive relationship between volatility and short-roll returns and a negative 

relationship between volatility and excess holding returns.12  

We also calculate the sum of daily squared returns from month t-12 to month t-1. This 

is a measure of total volatility. The hedge portfolio sorted on total volatility yields an annual 

return of -4.88% with a t-statistic of -1.86. If we use a longer sample from January 1973 to 

June 2022, for a total of 594 months, the hedge portfolio sorted on total volatility yields an 

annual return of -6.47% with a t-statistic of -2.29. The abnormal return from sorting on total 

volatility is in the same direction as the abnormal return from sorting on idiosyncratic 

volatility.13  

Our conclusion regarding idiosyncratic volatility remains valid if we use a sample 

period from January 1973 to December 2010 which is close to the sample period of Gorton et 

al. (2013), a sample period from March 1986 to December 2010 that matches the sample period 

of Szymanowska et al. (2014), or a sample period from January 1979 to August 2011 that 

matches the sample period of Fuertes et al. (2015). 

 

6.2 The Basic IPCA Model 

                                                            
10 See Panel A in Table 9 of Gorton et al. (2013). 

11 A short-roll strategy invests in one-period futures contracts for n consecutive periods, that is, rolling them over 

each period. A holding strategy buys an n-period futures contract at time t and holds it until the maturity date t + 

n. The difference between holding period return and short-roll return is the excess holding return. 

 
12 See Panel C in Table 3 of Szymanowska et al. (2014). 

13 The correlation between total volatility and idiosyncratic volatility is high at 0.755 and 0.753, respectively, 

during the January 1973 to June 2022 and January 1981 to June 2022 periods.  
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 The first item we need to determine is the number of latent factors in the IPCA model.  

Then we test whether we can restrict the intercept Гα in the IPCA model to be zero, in which 

case only betas to latent factors depend on commodity futures characteristics. In the 

unrestricted model Гα ≠ 0, both alphas and betas to latent factors depend on futures 

characteristics. Therefore, futures characteristics affect both mispricing and risk loadings and 

consequently affect realized returns. To test the null hypothesis of Гα = 0 versus the alternative 

hypothesis Гα ≠ 0, we construct p-values by counting the percentage of the 1,000 bootstrapped 

Wald statistics    
'boot boot

bootW       that are larger than the Wald statistics 
'

W       

calculated using the actual data. 

 We estimate the IPCA model with different numbers of latent factors, i.e., K = 1, 2, and 

3. There is a constraint in the IPCA model on how many characteristics can be included. We 

cannot include too many characteristics in the model because the number of contracts is small, 

i.e., fewer than 10, in the early years of our January 1981 to June 2022 sample period. Therefore, 

in the baseline model, we only include four characteristics (L=4), i.e., Z = (MOM12, CTR36, 

ES, IVOL). We also consider seven characteristics (L=7) in the IPCA model, i.e., Z = (MOM12, 

CTR36, ES, IVOL, BASIS, BASM12, ALIQ). Our results are robust to alternative choices of four 

or seven characteristics in the baseline model.  

 Table 4 summarizes our results for the baseline IPCA model. Panel A reports R2’s from 

restricted and unrestricted models for K = 1, 2, and 3 with four characteristics (L=4). The 

unrestricted models yield R2’s of 0.257, 0.340, and 0.394 for K = 1, 2, and 3, higher than R2’s 

from the restricted models. The Wald test rejects the null that Гα = 0 with a p-value of 0.005 

and 0.027 for K = 1 and 2. The Wald test fails to reject the null that Гα = 0 with p-values of 

0.806 for K = 3. Panel B of Table 4 reports the results for the IPCA model with seven 

characteristics (L=7). More characteristics do provide more information for explaining 

commodity futures returns with higher R2’s across different model specifications. The Wald 

test also fails to reject the null hypothesis that Гα = 0 at the 5% level when K = 3. The 

corresponding p-value is 0.647. 

 Overall, the results in Table 4 indicate that with three latent risk factors, i.e., K = 3, IPCA 

essentially explains a significant portion of the variation in commodity futures returns (e.g., R2 

is 39.3% in a three-latent factor model with four characteristics). For IPCA models with an 

intercept, the incremental R2 from adding the second latent factor is 8.5%. The incremental R2 

from adding the third latent factor is 5.4%. Our unreported results indicate that the incremental 
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R2 from adding the fourth latent factor is 4.3%. The incremental R2 from adding the fifth latent 

factor is 3.4%.  

 The null hypothesis that Гα = 0 cannot be rejected at the 5% level when K = 3. Therefore, 

the impact of characteristics is negligible in the alphas of the latent factor models. For our 

subsequent analysis, we focus on the IPCA model with three latent factors and restrict alpha to 

zero. 

 

6.3 The Significance of Individual Commodity Futures Characteristics 

 In this section, we test for the significance of individual characteristics. We have a total 

of 20 commodity futures characteristics. As mentioned earlier, we cannot include too many 

characteristics in the model because the number of contracts is small in the early years of our 

sample period. Therefore, the baseline model only contains four characteristics. We then add 

each of the remaining 16 characteristics, one at a time, and test for its significance. In the 

augmented model, we first include seven characteristics and then add each of the remaining 13 

characteristics, one at a time, and test for its significance. We also experiment with alternative 

choices of characteristics in the baseline and the augmented model. Our conclusions regarding 

the significance of each of the 20 characteristics are robust. The significance of each 

characteristic is tested via the bootstrap method described in Kelly et al. (2019) and Appendix 

C. In both the baseline and the augmented model, we choose the restricted IPCA model with 

Гα = 0 and the three latent factors, i.e. 3K  , based on the results from Table 4.  

 The first row in Panel A of Table 5 presents the bootstrapped p-value for each individual 

characteristic in the baseline IPCA model with four characteristics (L=4). Following the 

procedure outlined in Section 3.2 and Appendix C, p-values are constructed by counting how 

many of the 1,000 bootstrapped Wald statistics    
'

, ,,

boot boot
boot

l llW      are larger than the Wald 

statistics 
'

, ,, l llW      calculated using the actual data. The results indicate that three of the 

four characteristics are consistently significant: MOM12, ES, and IVOL. The corresponding p-

values are 0.000, 0.003, and 0.000, respectively. The exception is CTR36, with a bootstrapped 

p-value of 0.742. Then we add each of the 16 remaining characteristics, one at a time, into the 

IPCA model. The last column in Panel A shows that 15 out of these 16 characteristics are not 

significant. The only exception is MOM3. This is not surprising as it has a highly significant 

correlation of 0.52 with MOM12. 
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 Next, we test the augmented IPCA model with seven characteristics (L=7) and then add 

additional characteristics, one at a time, in subsequent tests. The first row in Panel B indicates 

a similar pattern. Those three significant characteristics in the baseline model, i.e., MOM12, 

ES, and IVOL, retain their significance in the augmented model. The corresponding p-values 

are 0.000, 0.031, and 0.003, respectively. The corresponding p-values for CTR36, BASIS, 

BASM12, and ALIQ are 0.796, 0.555, 0.870, and 0.437, respectively. Then we add each of the 

13 remaining characteristics, one at a time, into the IPCA model. The last column in Panel B 

suggests that none of these 13 characteristics is significant, including MOM3. 

 These results in Table 5 show that among the 20 characteristics, only a few make a 

substantial contribution to explaining the betas in the latent factor model. Controlling for 

MOM12, ES, and IVOL, none of the remaining characteristics deliver even a significantly 

marginal contribution. This result is similar to what Kelly et al. (2019) find for the U.S. equity 

market. They report that of the 36 characteristics, only ten are significant at the 1% level. 

Among the ten significant characteristics, only two stand out for the magnitude of their 

marginal contribution to the model.  

  

6.4 The Significance of Observable Risk Factors 

 Now we turn to estimate the IPCA model, including seven observable factors in the 

commodity futures market. We test for the significance of these observable factors. Just like 

the latent factors, the betas of these observable factors are also instrumented with futures 

characteristics, i.e., the betas of these observable risk factors depend on characteristics. We 

consider the market (CMKT), momentum (CMOM12), basis (CBASIS), hedging pressure and 

speculative pressure (CHP), basis momentum (CBASM12), idiosyncratic volatility risk 

(CIVOL), and skewness (CSKEW) factors in the commodity futures market. These popular 

commodity market risk factors have been used in a number of earlier studies (Yang 2013; 

Szymanowska et al., 2014; Bakshi et al., 2019; Boons and Prado, 2019; Sakkas and 

Tessaromatis, 2020).  

 Table 6 summarizes R2’s from the alternative model specifications. The sample covers 

the period from January 1987 to June 2022, for a total of 426 months. The sample period is 

shorter than our full sample period from January 1981 to June 2022. The reason is that the 

earliest CFTC long and short hedger and speculator positions are only available after January 

1986. The construction of the hedging pressure and speculative pressure factor (CHP) requires 

the availability of long and short positions from hedgers and speculators. The number of latent 
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factors ranges from one to three. We also restrict the intercept to be zero (Гα = 0). Panel A 

employs four commodity futures characteristics: Z=(MOM12, CTR36, ES, IVOL). Panel B 

employs seven commodity futures contract characteristics: Z=(MOM12, CTR36, ES, IVOL,  

BASM, BASM12, ALIQ).  

 We first report the estimation results using four characteristics in the IPCA model. The 

first part of Panel A of Table 6 shows that the inclusion of observable risk factors strengthens 

the explanatory power. With a single latent factor, IPCA alone can explain 0.254 of total 

variation in commodity futures returns. The inclusion of seven observable risk factors raises 

𝑅2 to 0.390, making a marginal contribution of 0.136 (0.390 – 0.254) in 𝑅2. As the number 

of latent factors increases, the marginal contribution from observable factors shrinks. With two 

latent factors, the increase in R2 is 0.079. With three latent factors, the increase in 𝑅2 is 0.045. 

These results show that observable risk factors do provide some benefits in explaining 

commodity futures returns, yet their explanatory power is much weaker than that from the 

IPCA latent factors. More importantly, as the number of latent factors increases, the additional 

explanatory power from observable factors decreases. Latent factors from the IPCA model 

extract useful information explaining individual futures returns more efficiently than 

observable risk factors. 

 The second part of Panel A of Table 6 tests for the significance of each of these seven 

observable factors. As shown in Section 3.2 and Appendix C, the p-value is constructed 

comparing the 1,000 bootstrapped Wald statistics    
'

, ,,

boot boot
boot

m mmW      with the Wald 

statistics 
'

, ,, m mmW      obtained from the actual data. The empirical evidence indicates that 

with one latent factor we can easily reject the null hypothesis that the individual observable 

factor does not provide additional explanation for six out of seven observable factors. With two 

latent factors, we can reject the null for five out of seven observable factors. With three latent 

factors, we can reject the null for three out of seven observable factors.  

 Panel B of Table 6 repeats the procedure including seven characteristics in the IPCA 

model. Overall, R2’s increase across all model specifications with seven characteristics relative 

to four characteristics, including models with latent factors only and models with both latent 

factors and observable factors. With one latent factor, we can reject the null for five out of 

seven observable factors. With two latent factors, we can reject the null for six out of seven 

observable factors. With three latent factors, we can reject the null for five out of seven 

observable factors.  
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 There are some significant differences between the U.S. equity market and commodity 

futures markets. Kelly et al. (2019) conclude that observable factors start to become redundant 

with more IPCA factors. At K = 5, none of the Fama and French (2015) factors plus the 

momentum factor are statistically significant at the 1% level after controlling for IPCA factors. 

For the commodity futures market, we find that more observable factors are significant even 

controlling for latent factors. What contributes to these differences requires more exploration. 

 

6.5 Significance of Individual Characteristics When Observable Factors Are Also in the IPCA 

Model 

 In Section 6.3, we test for the significance of individual characteristics and find that 

only three characteristics, i.e., MOM12, ES, and IVOL, are significant instruments for the betas 

of the latent factors in the IPCA model. The model in Section 6.3 excludes observable factors 

in implementing the tests. Once again, we test the significance of these three characteristics in 

the IPCA model. However, the difference is that now we also include the seven observable 

factors, i.e., CMKT, CMOM12, CBASIS, CHP, CBASIS, CIVOL, and CSKEW, in the IPCA 

model. In addition, the betas of these observable factors are also instrumented by MOM12, ES, 

and IVOL in the same way as the betas of the three latent factors are instrumented.  

 The bootstrapping procedure for obtaining p-values is similar to that used in Section 

6.3, with some minor modifications. Essentially, we obtain the residuals of the characteristic- 

based portfolio returns under the alternative hypothesis. Then we construct the predicted value 

of the characteristic-based portfolio returns under the null hypothesis by imposing the 

restriction that the entire lth row of   or ,l  is zero. These two components add up to the 

bootstrapped returns. We estimate the IPCA model with observable factors again using these 

bootstrapped returns. Notice here the betas of observable factors still depend on the lth 

characteristic, i.e., the entire lth row of   is not restricted to be zero. 

 Table 7 summarizes the bootstrapped p-values. We only report the results for the case 

of three latent factors, K=3, in the IPCA specification. There are a total of eight alternative 

combinations of observable factors in Models 1 to 8. In Model 1, for example, CMKT is the 

only observable factor included in the IPCA estimation. But the beta of CMKT is also 

instrumented by MOM12, ES, and IVOL. In this case, all three characteristics that are used to 

instrument betas of the three latent factors remain highly significant. Models 2 to 5 include 2, 

3, 4, and 5 observable factors, respectively. Now MOM12 becomes insignificant. But ES and 

IVOL remain highly significant. Notice Models 2 to 5 include the observable momentum factor 
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CMOM12. This addition significantly reduces the impact of characteristic MOM12 in the betas 

of latent factors. When observable factor CMOM12 is excluded in Model 6, the characteristic 

MOM12 again becomes highly significant. Finally, Models 7 and 8 include six and seven 

observable factors, respectively. The last two rows in Table 7 indicate that all three 

characteristics remain highly statistically significant. 

 

6.6 Financialization of Commodities Futures Market and Sub-Sample IPCA Estimation 

The commodity futures market has experienced some significant changes over the past 

20 years as more alternative investment managers have taken positions in commodity futures 

markets as a proxy for the cash market. This process is often referred to as the financialization 

of commodity markets (Tang and Xiong, 2012; Cheng and Xiong, 2014; Henderson et al., 2015; 

Brogaard et al., 2019). There exist a number of features to the process. First, there is a significant 

inflow of investment funds into commodity futures contracts. Portfolio managers have started 

to treat commodity futures as a standard separate asset class such as stocks and bonds. Second, 

commodity futures price dynamics have changed substantially. The correlations of commodity 

prices with prices in other asset classes such U.S. and emerging market equity rose significantly 

after 2003. In earlier years, commodity prices had little co-movement with stocks (Gorton and 

Rowenhorst, 2006) or each other (Erb and Harvey, 2006). Third, following the significant 

inflow of investment capital from commodity index traders, both gross and net positions in 

futures markets grew dramatically after 2003.  

To examine whether this financialization process impacts our results, we split the 

sample period into two sub-samples. The first sub-sample covers January 1981 to December 

2002. The second sub-sample covers January 2003 to June 2022. The first sub-sample contains 

264 months. The second sub-sample contains 234 months. Panel A in Table 8 shows that the 

performance of the IPCA model is much better in the second sub-sample. R2’s from IPCA 

models with K = 1, 2, and 3 latent factors are much larger in the second sub-sample than in the 

first sub-sample. This is consistent with the financialization of commodity futures markets in 

the second sub-sample when individual commodity futures contract returns tend to be more 

synchronous.  

In addition, Panels B and C in Table 8 test for the significance of individual futures 

contract characteristics. Both panels only include four characteristics in the model. The first 

three characteristics are MOM12, ES, and IVOL. The fourth characteristic is one of the 

remaining 20 - 3 = 17 characteristics. The results are similar to the full sample with a few 
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exceptions. The results indicate that in addition to MOM12, ES, and IVOL, MOM3 and 

BASM12 are significant in the first sub-sample. MOM3 and R52WH are significant in the 

second sub-sample.  

 

6.7 Comparing Alternative Asset Pricing Models 

 Previous sections focus on the estimation and significance tests of the IPCA model with 

and without observable factors. In this section, we compare the performance of these models 

in explaining cross-sectional variation of commodity futures returns. For that purpose, we first 

specify the IPCA models with betas being instrumented by four commodity futures 

characteristics (L=4) with and without observable risk factors. We then allow the IPCA models 

with betas being instrumented by seven commodity futures contract characteristics (L=7) with 

and without observable risk factors. 

 Panel A of Table 9 summarizes R2’s from the two sets of IPCA models. We report the 

results for the number of latent factors to be one, two or three, i.e., K = 1, 2, and 3, but our 

discussion focuses on the case when K = 3, (i.e., the last column in Panel A). When there are 

four characteristics used as instruments (L=4), the IPCA model generates an R2 of 0.393 when 

no observable factors are involved. IPCA models instrumented with four characteristics and 

the inclusion of three, four, five, six, and seven observable factors generate R2’s of 0.425, 0.427, 

0.427, 0.438, and 0.438, respectively. When there are seven characteristics used as instruments 

(L=7), IPCA models generate an R2 of 0.410 when no observable factors are involved. IPCA 

models instrumented with seven characteristics and the inclusion of three, four, five, six, and 

seven observable factors generate R2’s of 0.466, 0.469, 0.485, 0.491, and 0.491, respectively. 

These results indicate that IPCA models with observable factors outperform IPCA models 

without observable factors.  

 Panel B of Table 9 summarizes R2’s from three sets of observable factor models. We 

first consider the first set of observable factor models when betas are constant. The three, four, 

five, six, and seven-factor models generate R2’s of 0.143, 0.148, 0.149, 0.169, and 0.169, 

respectively. In the second set of observable risk factor models, we allow betas of these 

observable factors to be dependent on commodity futures characteristics. When there are four 

characteristics (L=4) in the model, the three, four, five, six, and seven-factor models generate 
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R2’s of 0.260, 0.268, 0.270, 0.322, and 0.325, respectively. The improvement over constant 

beta models is obvious.14  

 Now we allow seven characteristics (L=7) to instrument the betas in observable factor 

models. We require all seven characteristics be available. In the third set of observable factor 

models when betas are also constant, the three, four, five, six, and seven-factor models generate 

R2’s of 0.150, 0.154, 0.156, 0.174, and 0.175, respectively. In the fourth set of observable risk 

factor models when betas vary with contract characteristics, the three, four, five, six, and seven-

factor models generate R2’s of 0.299, 0.307, 0.330, 0.376, and 0.378, respectively. The 

improvement over constant beta models is, again, obvious.  

 Overall, the largest R2 from Panel B is 0.378 in the seven-factor model with L=7. R2’s 

from Panel A are 0.393 and 0.410, respectively, in the IPCA model with four and seven contract 

characteristics, but without any observable factors. Clearly, IPCA models dominate observable 

factor models in all specifications. These results confirm the overwhelming advantage IPCA 

models plus observable factors have relative to models with observable risk factors only.  

 

6.8 Spanning Tests and Sharpe Ratios 

6.8.1 Spanning Tests 

 Barillas and Shanken (2017) and Fama and French (2018) use spanning regression 

analysis to assess the benefits from adding a factor to an existing factor model. The 

methodology regresses a candidate factor on the model’s other factors. A nonzero intercept 

indicates the candidate factor is not spanned by other factors and makes a marginal contribution 

to the existing model. We explore whether latent factors are spanned by observable factors and 

vice versa. Specifically, we first regress each of the three latent factors FAC1, FAC2, and FAC3 

from the IPCA model on seven observable factors, i.e., CMKT, CMOM12, CBASIS, CHP, 

CBASM12, CIVOL, and CSKEW. By doing so, we test whether each latent factor can be 

spanned by the seven observable factors. Next, we re-run the spanning regression by switching 

the independent and dependent variables. We set the three latent factors as independent 

variables and regress each observable factor CMKT, CMOM12, CBASIS, CHP, CBASM12, 

CIVOL, and CSKEW on the three latent factors FAC1, FAC2, and FAC3. This allows us to test 

whether each observable factor can be spanned by the three latent factors. Finally, we compare 

                                                            
14 We test whether each of the 20 commodity futures characteristics affects the betas of the seven observable 

factors. The null hypothesis can be firmly rejected for each of the four characteristics (MOM12, CTR36, ES, and 

IVOL) at the 5% significance level. The null hypothesis can also be firmly rejected at the 5% significance level 

for 14 out of 16 remaining characteristics. 
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the annualized Sharpe ratios for various portfolios formed from latent factors, observable 

factors, and a combination of latent and observable factors, respectively. 

 Panels A1 and A2 of Table 10 show that the intercepts in the spanning regressions for 

each of the three latent factors are not significant at the 5% level. All three latent factors are 

actually well-spanned by the seven observable factors.  

 Panel A1 also indicates that the first latent factor (FAC1) is mostly related to market-

wide movement and idiosyncratic volatility in commodity futures contracts. The estimated 

coefficient on CMKT is 1.355 with a t-statistic of 11.52. The estimated coefficient on CIVOL 

is 1.497 with a t-statistic of 12.07. The second latent factor (FAC2) is mostly related to the 

momentum factor. The estimated coefficient (t-statistic) on CMOM12 is 1.216 (18.75). These 

two strong patterns remain robust in Panel A2 when we add more characteristics as instruments.  

 In Panels B1 and B2 of Table 10, we repeat the spanning regression tests by switching 

the independent and dependent variables. From Panel B1, we find that CMKT, CHP and 

CSKEW are not fully spanned by the three latent factors from the model when we use four 

characteristics to instrument betas of the latent factors. From Panel B2, we find that 

CMMOM12, CBASIS, CHP, and CSKEW are not fully spanned by the three latent factors from 

the model when we use seven characteristics to instrument betas of latent factors.  

  In addition, the empirical evidence from Panels B1 and B2 also confirms that FAC1 

captures movement in the market risk factor (CMKT) and idiosyncratic volatility factor 

(CIVOL). At the same time, FAC2 captures movement in CMOM12. From Panels B1 and B2, 

the t-statistics associated with FAC1 are around 15.00 when the dependent variable is CMKT. 

The t-statistics associated with FAC1 exceed 11.00 when the dependent variable is CIVOL. The 

t-statistics associated with FAC2 exceed 16.00 when the dependent variable is CMOM12. 

 

6.8.2 Sharpe Ratios 

 The Sharpe ratio provides a summary statistic for the trade-off between risk and return.  

This section compares Sharpe ratios from investment opportunities constructed using varying 

combinations of latent factors, observable factors, and both latent and observable factors in the 

commodity futures market. In addition, we provide Sharpe ratios from various combinations 

of risk factors from the Fama and French (1993, 2015) model. This gives us some sense of the 

difference in risk-return trade-offs from the U.S. equity market and the commodity futures 

market.  
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 From Panel C of Table 10, we find that the three latent factors with four characteristics 

generate an annualized Sharpe ratio of 0.565, while the three latent factors with seven 

characteristics produce an annualized Sharpe ratio of 0.464. Moving to observable factors, 

three observable factors (CMKT, CMOM12, and CBASIS) generate an annualized Sharpe ratio 

of 0.439 while four observable factors (CMKT, CMOM12, CBASIS, and CHP) generate an 

annualized Sharpe ratio of 0.482. When all seven observable risk factors are employed, the 

Sharpe ratio reaches a value of 0. 649. In general, we find that a commodity portfolio based on 

the IPCA based latent factors generates a risk return trade-off slightly below that of a 

commodity portfolio based on observable factors (0.565 versus 0.649). Combining the three 

latent factors with seven observable factors generates an annualized Sharpe ratio of 0.737 and 

0.703, respectively, when we use four and seven characteristics as instruments for betas to 

latent factors. 

 Finally, Panel C summarizes Sharpe ratios using various observable risk factors in the 

U.S. equity market. The Fama and French (1993) three factors, EXMRET, SMB, and HML, 

yields an annualized Sharpe ratio of 0.379. The Fama and French (2015) five factors, EXMRET, 

SMB, HML, RMW, and CMA, generates an annualized Shape ratio of 0.574. If we add the 

momentum factor (MOM) to the Fama and French (2015) five factors, the annualized Sharpe 

ratio becomes 0.668. Therefore, with latent factors and observable factors, commodity futures 

can offer a better risk-return trade-off than that from the U.S. equity market. 

 To provide a visual effect of risk and return trade-off from latent factors, observable 

factors, and U.S. equity market factors, Figure 1 plots the efficient frontiers constructed from 

the following combinations of assets: (i) CMKT, CMOM12, and CBASIS; (ii) CMKT, CMOM12, 

CBASIS, and CHP ; (iii) CMKT, CMOM12, CBASIS, CHP, and CBASM12; (iv) CMKT, 

CMOM12, CBASIS, CHP, CBASM12, and CIVOL; (v) CMKT, CMOM12, CBASIS, CHP, 

CBASM12, CIVOL, and CSKEW;  (vi) FAC1, FAC2, and FAC3 (L=4); (vii) FAC1, FAC2, 

and FAC3 (L=7); and (viii) FF5 (EXMRET, SMB, HML, RMW, CMA) plus MOM.  

 Two strong patterns appear in Figure 1. First, the volatility of the efficient frontier from 

the three latent factors (FAC1, FAC2, and FAC3) is higher than the volatility of the efficient 

frontier from seven observable factors (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, 

and CSKEW), as with the mean returns. Second, commodity futures market contracts exhibit a 

much higher volatility than the U.S. equity market, as with the mean returns. However, the 

Sharpe ratio from the U.S. equity market is 0.668, slightly lower than ratios of 0.737 and 0.703 
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from combining the three latent factors and seven observable factors, respectively, in the 

commodity futures market. 

 

7. Additional Discussion 

7.1 Using Contract Characteristics to Predict Both Returns and Betas 

There is general agreement in the existing asset pricing literature that asset 

characteristics can predict future asset returns. The controversial issue is whether this 

relationship is driven by asset characteristics per se or driven by betas that are related to these 

characteristics. In Panel A of Appendix D, we run panel regressions of commodity futures 

contract monthly returns on contract characteristics using pooled time-series and cross-

sectional data. The returns are measured in month t while characteristics are measured from 

month t-12 to month t-1. The results indicate that 11 out of 20 contract characteristics are 

significant. The evidence is consistent with that from Table 3 using a portfolio approach.  

In Panel B of Appendix D, we run the same panel regressions, but the dependent 

variable is the estimated market beta using only 12 observations from month t+1 to t+12. This 

follows Kelly et al. (2023). The purpose is to examine whether the same set of 20 contract 

characteristics can also predict market betas of futures contract returns. Market betas are 

estimated with respect to returns on the GSCI commodity market index. Now 9 out of 20 

contract characteristics are highly significant. In particular, the estimated coefficients on 

MOM12, ES, and IVOL are stable and highly significant in different model specifications. 

MOM12 is positively related to market beta. ES and IVOL are negatively related to market beta. 

R2’s from the panel regressions are also high, ranging from 0.234 to 0.299. Kelly et al. (2023) 

report an R2 of 0.166 for a similar panel regression in the bond market. 

Our evidence from Appendix D indicates that contract characteristics can predict both 

risk and returns of commodity futures contracts. However, the evidence in Appendix D cannot 

tell us how much of the return predictability is caused by the fact that contract characteristics 

can also predict market betas. The IPCA approach resolves this issue. It allows data to identify 

the most important latent factors and test whether these characteristics are, in fact, related to 

alphas or betas of latent factors.  

In the IPCA estimation, we consider a total of 20 commodity futures contract 

characteristics. We find that only three are significantly related to betas. However, our evidence 

should be interpreted with care. The test for the significance of contract characteristics is a joint 

test for the model specification and the null hypothesis that the contract characteristic is not 
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related to betas of latent factors. In the IPCA framework, the relation between beta and contract 

characteristics is linear. In addition, the linear relation is fixed for the entire sample period or 

estimation period. These restrictions are strong because existing evidence shows that the 

predictive power of characteristics changes over time (McLean and Pontiff, 2016; Kim et al., 

2021). The consistency of IPCA estimates requires a large time-series sample. A rolling 

window estimation can accommodate variation in the predictability of characteristics, but it 

cannot be implemented in the IPCA framework.  

In short, the fact that the rest of the 20 contract characteristics are not significant could 

be due to model misspecification or to the fact that the predictive power of these characteristics 

changes over time and the current version of the IPCA model cannot pick that up. This is 

supported by our empirical evidence that 12-month basis momentum is not significant in the 

full sample but is highly significant in the first sub-sample. We also have Fama-MacBeth cross-

sectional regression results showing that only a small number of contract characteristics are 

significant over the full sample period. We use an alternative combination of a small set of 

contract characteristics in the cross-sectional regressions to take into account the small number 

(34) of commodity futures contracts available. This is in contrast to our results from Table 3 

where 12 characteristics generate significant long-short returns. 

 

7.2 Practical implications 

The objective of asset pricing models is to identify pervasive risk factors, obtain 

estimates for betas, and construct expected returns. The estimated risk factors and expected 

returns are important inputs to asset allocation, performance evaluation, and corporate finance 

decisions. 

Our evidence suggests that the performance of IPCA based models with latent risk 

factors is much better than the performance of traditional models with observable risk factors 

over the entire sample period from January 1981 to June 2022. Moreover, the performance of 

IPCA based latent factor models is much better during the second half of our sample period 

than during the first half of our sample period. The second half of our sample period 

corresponds to the post-financialization period of the commodity futures markets. Commodity 

futures returns have become much more correlated among themselves. However, some 

observable risk factors such as risk factors related to momentum, hedging pressure and 

speculative pressure, basis momentum, and idiosyncratic volatility still play significant roles 

in explaining cross-sectional variation in individual commodity futures contract returns. In 
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practical applications, investors should take into account both latent factors and observable risk 

factors.  

 

7.3 Risk-Based versus Behavior-Based Explanations 

Prior studies tend to conclude that the observed profitability of momentum strategies in 

commodity futures markets cannot be explained by standard risk-factor models (Miffre and 

Rallis, 2007; Fuertes et al., 2010; Bianchi et al., 2015). Behavior-based explanations such as 

investor overreaction play at least a partial role (Shen et al., 2007; Bianchi et al., 2016).  

Fuertes et al. (2015) conclude that profitability of trading strategies based on 

momentum, term structure (roll yields), and idiosyncratic volatility cannot be fully explained 

by a standard risk-factor model that includes both market and liquidity risk. They also conclude 

that behavioral explanations based on overreaction and subsequent mean reversion are unlikely 

to account for the performance of portfolio returns sorted on idiosyncratic volatility. 

Fernandez-Perez et al. (2016) find a significantly negative pricing relationship of idiosyncratic 

volatility in the commodity futures market. However, the pricing relationship vanishes when 

the fundamentals of backwardation and contango are suitably factored in the pricing model. 

These earlier studies typically employ observable risk factors. They also do not allow 

betas to vary with contract characteristics. Our evidence from IPCA based latent factor models, 

on the other hand, suggests a strong role of risk-based explanation for both the momentum and 

idiosyncratic volatility effects. But we cannot rule out the role of behavior-based explanation 

as we do not carry out a formal test within the IPCA framework. It will be interesting to further 

explore these alternative explanations with the development of new statistical methods.  

 

8. Conclusions 

 We introduce a dynamic factor-based asset pricing model in the commodity futures 

market. This is achieved by implementing the instrumented principal component analysis 

(IPCA). By estimating latent factors as functions of commodity futures characteristics, we 

show that a low-dimension factor model can successfully describe riskiness in commodity 

returns by explaining cross-sectional variations in average returns. Based on R2’s, our latent 

factor model outperforms a number of models using observable commodity risk factors, 

including models that also allow betas of observable factors to be dependent on commodity 

futures contract characteristics. We consider a total of seven widely-used risk factors in the 

commodity market related to market, momentum, basis, hedging pressure and speculative 

pressure, basis moment, idiosyncratic volatility, and skewness.  
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 Only a small subset of commodity characteristics in the sample are responsible for 

IPCA’s empirical success. Out of 20 commodity characteristics employed in the empirical 

analysis, an IPCA model with three characteristics is sufficient to describe returns. The three 

significant commodity market futures characteristics are momentum, expected shortfall, and 

idiosyncratic volatility. The tests show that these characteristics significantly contribute to the 

model by identifying latent factor loadings but show no statistical evidence of generating alphas. 

Therefore, the abnormal returns sorted on these variables are driven by compensation for higher 

exposures to latent factors rather than by mispricing not captured by latent factors. In addition, 

the three characteristics remain highly significant even when we allow seven observable factors 

to enter the IPCA model. 

 The key to the success of the model is incorporating information from commodity 

characteristics into the estimation of factor loadings. In the IPCA framework, risk loadings 

depend on observable commodity characteristics, which are treated as instrumental variables 

for estimating dynamic loadings on latent factors. The methodology improves the approach in 

the traditional dimension-reduction techniques, such as PCA, by allowing information beyond 

just returns into the estimation of factor loadings and alphas. Since factor loadings are dynamic 

and significant, we find strong evidence in favor of time-varying factor loadings and risk 

premiums in commodity futures returns. 
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Table 1 Summary Statistics 

 

The sample covers the period from January 1981 to June 2022. The table lists the 34 commodity futures included in this study. All commodity futures are classified into the following 

categories: energy, grains and oilseeds, livestock, industrial metals, and softs. The table reports summary statistics, including the starting month of each commodity futures contract, 

number of observations, mean, median, 5th percentile, 95th percentile, and standard deviation of annualized monthly returns. The last column reports the t-statistics to test the null 

hypothesis that the mean return is zero. Summary statistics are annualized. The last three rows provide summary statistics for the commodity market index return, the USD index 

return, and commodity produce price index (PPI) return. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

 

Category Category Sample 

Starts 

Sample 

Ends 

Obs Mean 

 

5% 

 

Median 

 

95% 

 

Std Dev. 

 

Sharpe 

Ratio 
T-stat. 

Energy Brent Crude Oil 198702 202206 425 0.045 -1.914 0.166 1.767 0.374 0.057 0.72 

 Gas Oil 199101 202206 378 0.063 -1.888 0.129 1.696 0.310 0.125 1.14 

 RBOB Gasoline 199802 202206 293 0.125 -1.689 0.264 1.646 0.308 0.327 2.00** 

 Natural Gas 199007 202206 384 -0.108 -2.640 -0.123 2.336 0.440 -0.301 -1.39 

 Heating Oil 198302 202206 473 0.075 -1.821 0.088 1.771 0.323 0.157 1.45 

 WTI Crude Oil 199007 202206 384 0.075 -1.775 0.150 1.706 0.349 0.146 1.22 

            

Grains and Oilseeds Canola 199802 202206 293 0.035 -1.199 0.046 1.269 0.230 0.050 0.76 

 Corn 198101 202206 498 -0.033 -1.521 -0.063 1.365 0.249 -0.228 -0.85 

 Oats 199802 202206 293 0.057 -1.605 0.096 1.919 0.298 0.109 0.94 

 Soybean Meal 199007 202206 384 0.091 -1.246 0.045 1.521 0.244 0.274 2.11** 

 Soybean Oil 199007 202206 384 0.026 -1.297 -0.011 1.375 0.238 0.010 0.62 

 Soybeans 198101 202206 498 0.043 -1.263 0.000 1.344 0.226 0.085 1.23 

 Chicago Wheat 198101 202206 498 -0.043 -1.336 -0.018 1.397 0.258 -0.262 -1.08 

 Kansas Wheat 199102 202206 377 -0.007 -1.519 -0.031 1.566 0.275 -0.114 -0.15 

            

Livestock Feeder Cattle 199101 202206 378 0.028 -0.817 0.072 0.853 0.148 0.024 1.05 

 Lean Hogs 198101 202206 498 -0.027 -1.444 0.021 1.273 0.256 -0.199 -0.68 

 Live Cattle 198101 202206 498 0.045 -0.820 0.054 0.822 0.144 0.144 2.00** 

            

Metals Aluminum 199102 202206 377 -0.013 -1.053 -0.051 1.141 0.191 -0.194 -0.38 

 Copper 198101 202206 498 0.087 -1.180 0.074 1.532 0.251 0.252 2.24** 

 Gold 198101 202206 498 0.024 -0.802 -0.003 0.925 0.162 0.002 0.97 
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 Palladium 199801 202206 294 0.120 -2.050 0.239 1.866 0.360 0.267 1.65 

 Platinum 198401 202206 462 0.049 -1.179 0.055 1.155 0.223 0.110 1.35 

 Silver 198101 202206 498 -0.003 -1.468 -0.050 1.668 0.285 -0.093 -0.06 

 Lead 199101 202206 378 0.041 -1.332 0.087 1.620 0.264 0.065 0.87 

 Nickel 199007 202206 384 0.060 -1.673 0.035 1.842 0.328 0.109 1.03 

 Tin 199101 202206 378 0.079 -1.268 0.049 1.461 0.227 0.243 1.96 

 Zinc 199102 202206 377 0.019 -1.201 -0.014 1.427 0.248 -0.022 0.42 

            

Softs Cocoa 198402 202206 461 -0.034 -1.527 -0.061 1.533 0.278 -0.209 -0.76 

 Coffee 198102 202206 497 -0.010 -1.718 -0.103 2.072 0.348 -0.097 -0.18 

 Cotton 198101 202206 498 0.025 -1.419 0.058 1.519 0.245 0.002 0.65 

 Lumber 199802 202206 293 -0.013 -1.720 -0.077 1.981 0.338 -0.110 -0.19 

 Orange Juice 199101 202206 378 -0.027 -1.808 -0.061 1.754 0.305 -0.167 -0.50 

 Sugar 198101 202206 498 -0.036 -1.839 -0.017 1.768 0.345 -0.173 -0.67 

 Rubber 199808 202206 287 -0.034 -1.722 -0.066 1.765 0.307 -0.190 -0.55 

            

Commodity Market  Index Return 198101 202206 498 0.038 -1.207 0.069 1.078 0.205 0.071 1.21 

USD  Index Return 198101 202206 498 0.031 -0.198 0.031 0.287 0.045 0.155 4.45*** 

Commodity PPI Index Return 198101 202206 498 0.026 -0.154 0.024 0.215 0.034 0.070 5.03*** 

 
 

 

 

 



 

38 
 

Table 2 Commodity Futures Characteristics and Commodity Futures Market Observable Risk Factors 

The sample covers the period from January 1981 to June 2022. Panel A1 reports the portfolio returns sorted on the following 20 commodity futures contract 

characteristics: MOM3, MOM12, CTR18, CTR36, R52WH, IVOL, SKEWNESS, MAX, ES, BASIS, HPHE, HPSP, BASM3, BASM12, BETACMKT, BETAINF, BETAUSD, 

VOLM, OPNI, and ALIQ. All characteristics are measured prior to month t when equally weighted portfolio returns are constructed. The summary statistics include 

the definition of each characteristic, mean, 5th percentile, median, 95th percentile, standard deviation, and number of observations. The summary statistics are calculated 

from pooled time-series and cross-sectional observations. The details of the construction of the sorting variables are provided in Appendix A. Panel A2 reports the 

pair-wise correlations among 20 commodity futures contract characteristics. Panel B1 reports the annualized summary statistics for commodity market observable risk 

factors CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, and CSKEW. Panel B2 reports the corresponding pairwise correlations among the seven observable risk 

factors. The number of observations in calculating pair-wise correlations can vary depending on the two variables under consideration *, **, and *** indicate 

significance at the 10%, 5%, and 1% levels, respectively. 

 
Panel A1: Summary Statistics for Commodity Futures Characteristics 

 
Definition Mean 5% Median 95% 

Standard 

Deviation 

Number of 

Observations 

        
MOM3 3-month momentum return 0.007 -0.215 0.001 0.247 0.145 13944 

MOM12 12-month momentum return 0.030 -0.426 -0.011 0.630 0.324 13800 

CTR18 18-month contrarian return  0.043 -0.494 -0.023 0.805 0.411 13632 

CTR36 36-month contrarian return  0.057 -0.596 -0.061 1.089 0.558 13416 

R52WH 52-week high 0.853 0.560 0.889 1.000 0.147 13704 

IVOL Idiosyncratic volatility 0.014 0.006 0.013 0.024 0.007 13715 

SKEWNESS Skewness -0.090 -0.882 -0.056 0.551 0.566 13715 

MAX Maximum daily in the past 12 months 0.058 0.024 0.051 0.109 0.051 13715 

ES Expected shortfall -0.036 -0.064 -0.033 -0.018 0.016 13715 

BASIS Basis 0.005 -0.045 0.004 0.055 0.053 12617 

HPHE Hedging Pressure from Hedgers -0.130 -0.521 -0.104 0.158 0.194 10088 

HPSP Hedging Pressure from Speculators 0.241 -0.246 0.255 0.683 0.294 10088 

BASM3 3-month basis momentum -0.000 -0.065 0.000 0.063 0.052 12589 

BASM12 12-month basis momentum -0.003 -0.070 -0.000 0.060 0.060 12505 

BETACMKT Commodity market beta 0.460 -0.011 0.288 1.518 0.482 13715 

BETAINF Inflation beta 0.839 -2.236 0.724 4.780 2.254 13128 

BETAUSD USD index beta -1.074 -3.968 -0.808 1.110 1.595 13128 

VOLM Average Daily Trading volume (million $) 2633.357 1.973 244.522 12281.384 8784.775 11452 

OPNI Average Daily Open interest (million $) 7190.182 3.239 1158.025 31209.133 18206.473 11556 
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ALIQ Amihud liquidity measure 0.013 0.000 0.000 0.051 0.119 11427 

 

Panel A2: Pairwise Correlations among Commodity Futures Contract Characteristics 

             
 MOM3 MOM12 CTR18 CTR36 R52WH IVOL SKEWNESSS

S 

MAX ES BASIS HPHE HPSP 
MOM3             
MOM12 0.52***            
CTR18 0.40*** 0.82***           
CTR36 0.26*** 0.52*** 0.66***          
R52WH 0.59*** 0.68*** 0.52*** 0.32***         
IVOL -0.01 -0.04*** -0.03*** -0.03*** -0.31***        
SKEWNESS 0.02** -0.06*** -0.15*** -0.14*** 0.03*** 0.02**       
MAX 0.02** -0.03*** -0.04*** -0.03*** -0.19*** 0.73*** 0.11***      
ES 0.04*** 0.10*** 0.05*** 0.01 0.49*** -0.70*** 0.27*** -0.60***     
BASIS -0.13*** -0.23*** -0.27*** -0.26*** -0.17*** 0.02* 0.06*** 0.01 -0.02*    
HPHE -0.11*** -0.29*** -0.30*** -0.20*** -0.20*** -0.08*** 0.19*** -0.03*** 0.08*** 0.09***   
HPSP 0.14*** 0.40*** 0.41*** 0.23*** 0.27*** -0.02** -0.19*** -0.03** -0.03*** -0.12*** -0.75***  
BASM3 0.15*** 0.04*** 0.04*** 0.01 0.06*** -0.01 0.00 -0.01 0.01 -0.30*** -0.02** 0.03** 
BASM12 0.11*** 0.16*** 0.08*** 0.00 0.14*** -0.05*** 0.01 -0.04*** 0.08*** -0.32*** -0.05*** 0.08*** 

BETACMKT 0.01 0.04*** 0.06*** 0.06*** -0.17*** -0.15*** -0.17*** 0.11*** -0.41*** -0.01 0.01 0.07*** 

BETAINF -0.02** -0.07*** -0.09*** -0.13*** -0.17*** -0.08*** -0.09*** 0.11*** -0.24*** 0.05*** 0.04*** -0.04*** 

BETAUSD 0.01 0.04*** 0.06*** 0.13*** 0.19*** -0.08*** 0.12*** -0.16*** 0.35*** 0.06*** 0.09*** -0.14*** 

VOLM 0.03*** 0.03*** 0.01 -0.07*** -0.02** -0.17*** -0.09*** 0.10*** -0.14*** -0.01 0.01 0.07*** 

OPNI 0.04*** 0.03*** 0.00 -0.08*** -0.03*** -0.12*** -0.07*** 0.12*** -0.16*** -0.01 0.05*** 0.04*** 
ALIQ -0.05*** -0.04*** -0.04*** -0.03*** -0.08*** -0.02** -0.03*** 0.05*** -0.07*** 0.10*** -0.04*** 0.00 
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 BASM3 BASM12 BETACMKT BETAINF BETAUSD VOLM OPNI ALIQ 
MOM3         

MOM12         

CTR18         

CTR36         

R52WH         

IVOL         

SKEWNESS         

MAX         

ES         

BASIS         

HPHE         

HPSP         

BASM3         
BASM12 0.33***        
BETACMKT 0.00 -0.01       

BETAINF 0.01 -0.01 0.44***      

BETAUSD -0.01 0.00 -0.37*** -0.35***     
VOLM 0.01 0.01 0.35*** 0.21*** -0.29***    
OPNI 0.01 0.01 0.35*** 0.20*** -0.26*** 0.85***   

ALIQ 0.00 0.01 0.07*** 0.06*** -0.09*** -0.03*** -0.04***  
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Panel B1: Summary Statistics for Commodity Futures Market Observable Risk Factors 

 
Definition Mean 5% Median 95% 

Standard 

Deviation 

Sharpe 

Ratio 

Number of 

Observatio

ns 
         
CMKT Commodity market-wide risk factor 0.038 -1.207 0.069 1.078 0.205 0.071 498 

CMOM12 Momentum risk factor 0.107 -1.009 0.091 1.157 0.183 0.452 498 

CBASIS Basis risk factor 0.062 -0.980 0.083 1.010 0.177 0.215 498 

CHP Hedging pressure risk factor 0.078 -1.012 0.090 1.095 0.187 0.288 426 

CBAS12 Basis momentum risk factor 0.054 -0.902 0.035 1.050 0.180 0.167 498 

CIVOL Idiosyncratic volatility risk factor 0.093 -0.862 0.083 1.056 0.178 0.389 498 

CSKEW Skewness risk factor 0.068 -0.850 0.066 0.986 0.161 0.275 498 

 

Panel B2: Pairwise Correlations between Commodity Futures Market Observable Risk Factors 

           
 CMKT CMOM12 CBASIS   CHP CBASM12 CIVOL     

CMOM12 0.11**          

CBASIS 0.21*** 0.29***         

CHP 0.00 0.22*** 0.06        

CBASM12 0.03 0.25*** 0.47*** 0.07       

CIVOL 0.28*** 0.15*** 0.22*** -0.14*** 0.10**      

CSKEW 0.09** 0.06 0.17*** 0.23*** 0.03 -0.03     
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Table 3 Hedge Portfolio Returns Sorted on Commodity Futures Characteristics 

The sample covers the period from January 1981 to June 2022. The table reports the portfolio returns sorted on the following 20 commodity futures characteristics: 

MOM3, MOM12, CTR18, CTR36, R52WH, IVOL, SKEWNESS, MAX, ES, BASIS, HPHE, HPSP, BASM3, BASM12, BETACMKT, BETAINF, BETAUSD, VOLM, OPNI, 

and ALIQ. All characteristics are measured prior to month t when equally weighted portfolio returns are constructed. The sorting is based on the 30% and 70% value 

of each characteristic in each month t-1. The summary statistics include the mean returns on the long position, the mean returns on the short position, the returns on 

the hedge portfolios (long – short), t-statistics, and number of monthly observations. The reported returns on long, short, and long-short positions are annualized. The 

t-statistic tests for the null hypothesis that the mean return from the long-short portfolio is zero. The details of the construction of the sorting variables are provided in 

Appendix A. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.  
 

 

 

Sorting Characteristic 
     Long      Short    Long - Short     t-statistic   Number of Months 

      
MOM3 0.083 -0.016 0.099 3.25*** 498 

MOM12 0.078 -0.029 0.107 3.75*** 498 

CTR18 0.039 -0.011 0.050 1.80* 498 

CTR36 0.012 0.009 0.003 0.11 498 

R52WH 0.077 -0.037 0.114 4.28*** 498 

IVOL -0.030 0.063 -0.093 -3.37*** 498 

SKEWNESS -0.027 0.041 -0.068 -2.73*** 498 

MAX -0.033 0.043 -0.076 -2.68*** 498 

ES 0.044 0.008 0.037 1.36 498 

BASIS -0.004 0.058 -0.062 -2.26** 498 

HPHE 0.004 0.060 -0.056 -2.05** 426 

HPSP 0.054 -0.011 0.065 2.41** 426 

BASM3 0.013 0.040 -0.027 -1.00 498 

BASM12 0.050 -0.004 0.054 1.94* 498 

BETACMKT 0.021 0.024 -0.003 -0.11 498 

BETAINF 0.025 0.032 -0.007 -0.24 498 

BETAUSD 0.007 0.006 0.001 0.03 498 

VOLM -0.036 0.027 -0.063 -2.56** 498 

OPNI -0.034 0.044 -0.079 -3.54*** 498 

ALIQ 0.040 -0.018 0.058 2.51** 498 
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Table 4 Estimate of the Basic IPCA Model With and Without the Intercept 

 

The table estimates the IPCA model using monthly returns from 34 commodity futures contracts. The number of latent factors (K) is equal to 1, 2, and 3. The estimation 

in Panel A employs four commodity futures characteristics: Z=(MOM12, CTR36, ES, IVOL). The sample covers the period from January 1981 to June 2022, for a 

total of 498 months. The estimation in Panel B employs seven commodity futures characteristics: Z=(MOM12, CTR36, ES, IVOL, BASIS, BASM12, ALIQ). The sample 

covers the period from February 1984 to June 2022, for a total of 461 months. All characteristics are measured in month t-1 prior to month t when commodity futures 

returns are measured. The details of the construction of the commodity futures contract characteristics are provided in Appendix A. The table reports the R2’s in 

percentages for the restricted model when alpha is equal to 0 (Гα
 = 0) and the unrestricted model when alpha is not equal to 0 (Гα ≠ 0). The table also reports 

the bootstrapped p-values for testing the null hypothesis that Гα
 = 0 under the unrestricted model. *, **, and *** indicate significance at the 10%, 5%, and 1% 

levels, respectively. 
 

Panel A: Number of commodity futures contract characteristics L = 4 

  1 2 3 

R2     

 Гα
 = 0 0.254 0.339 0.393 

 Гα ≠ 0 0.257 0.340 0.394 

     

Wα p-value for testing Гα
 = 0  0.005*** 0.027** 0.806 

     

 

Panel B: Number of commodity futures contract characteristics L = 7 

  1 2 3 

R2     

 Гα
 = 0 0.262 0.346 0.410 

 Гα ≠ 0 0.266 0.348 0.411 

     

Wα p-value for testing Гα
 ≠0  0.004*** 0.004*** 0.647 
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Table 5 The Significance of Commodity Futures Characteristics in the IPCA Model 

 

The table estimates the IPCA model using monthly returns from 34 commodity futures contracts. The number of latent factors (K) is equal to 3. The baseline IPCA 

model in Panel A employs four commodity futures characteristics (L = 4): Z = (MOM12, CTR36, ES, IVOL). Then Panel A estimates the IPCA model by adding 

each of the remaining 16 characteristics, one at a time. The sample covers the period from January 1981 to June 2022, for a total of 498 months. The baseline IPCA 

model in Panel B employs seven commodity futures characteristics (L = 7): Z = (MOM12, CTR36, ES, IVOL, BASIS, BASM12, ALIQ). Then Panel B estimates the 

IPCA model by adding each of the remaining 13 characteristics, one at a time. The sample covers the period from February 1984 to June 2022, for a total of 461 

months. All characteristics are measured in month t-1 prior to month t when commodity futures returns are measured. The details of the construction of commodity 

futures contract characteristics are provided in Appendix A. The IPCA models are restricted when alpha is equal to 0 (Гα
 = 0). The table reports the bootstrapped 

p-values for testing the null hypothesis when the coefficient associated with the particular characteristic in question is zero. In all model specifications, betas 

of all latent factors are instrumented with commodity futures characteristics. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Panel A: IPCA Model with K=3 and L=4 

First 4 Characteristics 5th Characteristics 

MOM12 CTR36 ES IVOL   

0.000*** 0.742 0.003*** 0.000***   

0.718 0.767 0.010*** 0.000*** MOM3 0.002*** 

0.000*** 0.883 0.007*** 0.000*** CTR18 0.599 

0.097* 0.547 0.006*** 0.000*** R52WH 0.695 

0.000*** 0.716 0.017** 0.000*** SKEWNESS 0.743 

0.000*** 0.714 0.060* 0.000*** MAX 0.195 

0.000*** 0.840 0.000*** 0.000*** HPHE 0.672 

0.000*** 0.854 0.002*** 0.000*** HPSP 0.847 

0.000*** 0.939 0.015** 0.000*** BASIS 0.649 

0.000*** 0.897 0.022** 0.002*** BASM3 0.980 

0.000*** 0.913 0.007*** 0.000*** BASM12 0.942 

0.000*** 0.785 0.126 0.003*** BETACMKT 0.128 

0.000*** 0.605 0.026** 0.000*** BETAINF 0.778 

0.000*** 0.691 0.021** 0.001*** BETAUSD 0.691 

0.000*** 0.853 0.021** 0.000*** VOLM 0.251 

0.000*** 0.851 0.022** 0.001*** OPNI 0.257 

0.000*** 0.860 0.021** 0.000*** ALIQ 0.557 
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Panel B: IPCA Model with K=3 and L=7 

First 7 Characteristics 8th Characteristic 

MOM12 CTR36 ES IVOL BASIS BASM12 ALIQ   

0.000*** 0.796 0.031** 0.003*** 0.555 0.870 0.437   

0.177 0.769 0.011** 0.001*** 0.677 0.962 0.393 MOM3    0.157 

0.000*** 0.825 0.007*** 0.003*** 0.485 0.831 0.455 CTR18    0.815 

0.000*** 0.690 0.007*** 0.004*** 0.403 0.848 0.388 R52WH    0.862 

0.000*** 0.745 0.014** 0.013** 0.567 0.870 0.609 SKEWNESS    0.827 

0.000*** 0.624    0.126 0.001*** 0.501 0.831 0.492 MAX    0.416 

0.000*** 0.748 0.029** 0.003*** 0.625 0.901 0.524 HPHE    0.582 

0.000*** 0.726 0.025** 0.003*** 0.625 0.915 0.701 HPSP    0.872 

0.000*** 0.770 0.008*** 0.005*** 0.557 0.927 0.477 BASM3    0.920 

0.000*** 0.801 0.237 0.002*** 0.508 0.860 0.976 BETACMKT    0.330 

0.000*** 0.762 0.035** 0.000*** 0.527 0.868 0.439 BETAINF    0.736 

0.004*** 0.740 0.039** 0.000*** 0.508 0.850 0.375 BETAUSD    0.589 

0.000*** 0.761 0.019** 0.009*** 0.495 0.865 0.486 VOLM    0.502 

0.000*** 0.645 0.010*** 0.004*** 0.499 0.851 0.271 OPNI    0.262 
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Table 6 The IPCA Models with Observable Factors 

 

The table estimates the IPCA model using 34 commodity futures contracts, controlling for seven observable risk factors in the commodities markets. These include 

risk factors related to market (CMKT), momentum (CMOM12), basis (CBASIS), hedging-speculative pressure (CHP), basis momentum (CBASM12), idiosyncratic 

volatility (CIVOL), and skewness (CSKEW) in the commodities markets. The table summarizes R2’s from alternative model specifications. The number of latent 

factors (K) is equal to 1, 2, and 3. The sample covers the period from January 1987 to June 2022, for a total of 426 months. Panel A employs four commodity futures 

characteristics (L=4): Z=(MOM12, CTR36, ES, IVOL). Panel B employs seven commodity futures contract characteristics (L=7): Z=(MOM12, CTR36, ES, IVOL, 

BASIS, BASM12, ALIQ). All characteristics are measured in month t-1 prior to month t when commodity futures returns are measured. The details of the construction 

of commodity futures contract characteristics are provided in Appendix A. The IPCA models are restricted when alpha is equal to 0 ((Гα
 = 0). The table also reports 

the bootstrapped p-values for testing the null hypothesis when the coefficients associated with each of the observable risk factors are zero. In all model 

specifications, both betas to latent and observable factors are instrumented with commodity futures characteristics. *, **, and *** indicate significance at the 

10%, 5%, and 1% levels, respectively. 
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Panel A: Number of commodity futures contract characteristics L = 4 

 
 Number of Latent 

Factors K 

 

 1 2 3 

IPCA + 7 Observable Factors    

R2    

 Latent factors only 0.254 0.339 0.393 

 Latent factors + CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW 0.390 0.418 0.438 

    

Bootstrapped p-value    

 CMKT 0.010*** 0.000*** 0.261 

 CMOM12 0.000*** 0.000*** 0.000*** 

 CBASIS 0.000*** 0.392 0.211 

 CHP 0.002*** 0.000*** 0.000*** 

 CBASM12 0.000*** 0.952 0.709 

 CIVOL 0.010*** 0.000*** 0.000*** 

 CSKEW 0.051* 0.046** 0.243 
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Panel B: Number of commodity futures contract characteristics L = 7 

 
 Number of Latent 

Factors K 

 

 1 2 3 

IPCA + 7 Observable Factors    

R2    

 Latent factors only 0.262 0.346 0.410 

 Latent factors + CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW 0.437 0.469 0.491 

    

Bootstrapped p-value    

 CMKT 0.001*** 0.000*** 0.000*** 

 CMOM12 0.000*** 0.000*** 0.659 

 CBASIS 0.000*** 0.000*** 0.000*** 

 CHP 0.001*** 0.004*** 0.000*** 

 CBASM12 0.000*** 0.000*** 0.000*** 

 CIVOL 0.069* 0.000*** 0.000*** 

 CSKEW 0.200 0.071* 0.524 
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Table 7 Observable Factors and the Significance of Commodity Futures Characteristics 

 

The sample covers the period from January 1987 to June 2022, for a total of 426 months. The table tests for the significance of commodity futures characteristics 

when observable factors are also included in the IPCA model. The table estimates the IPCA model using monthly returns from 34 commodity futures contracts. The 

number of latent factors is equal to three, i.e., K=3. In all model specifications, betas of all latent factors are instrumented with three commodity futures 

characteristics (L=3): Z=(MOM12, ES, IVOL). The table estimates the IPCA model, adding varying combinations of observable risk factors CMKT, CMOM12, 

CBASIS, CHP, CBASM12, CIVOL, and CSKEW. All characteristics are measured in month t-1 prior to month t when commodity futures returns are measured. The 

details of the construction of commodity futures contract characteristics are provided in Appendix A. The IPCA models are restricted when alpha is equal to 0 

((Гα
 = 0). The table reports the bootstrapped p-values for testing the null hypothesis when the coefficient associated with a particular characteristic is zero. *, 

**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 
 

IPCA Model with K=3, L=3 and Observable Factors 

Model      MOM12      ES      IVOL Observable Factors Included in the IPCA Model 

1 0.000*** 0.000*** 0.000***            CMKT 

2 0.271 0.000*** 0.000***            CMKT, CMOM12 

3 0.282 0.000*** 0.000***            CMKT, CMOM12, CBASIS 

4 0.476 0.000*** 0.000***            CMKT, CMOM12, CBASIS, CHP 

5 0.461 0.000*** 0.000***            CMKT, CMOM12, CBASIS, CHP, CBASM12 

6 0.000*** 0.000*** 0.018**            CMKT,          CBASIS, CHP, CBASM12, CIVOL 

7 0.000*** 0.000*** 0.006***            CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL 

8 0.000*** 0.000*** 0.008***            CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW 
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Table 8 Sub-Sample IPCA Estimation Results 

 

The table estimates the IPCA model using monthly returns from 34 commodity futures contracts. The full sample is divided into two sub-samples. The first sub-

sample covers the period from January 1981 to December 2002, for a total of 264 months. The second sub-sample covers the period from January 2003 to June 2022, 

for a total of 234 months. The baseline IPCA model in Panel A employs three commodity futures characteristics (L = 3): Z = (MOM12, ES, IVOL). Panel A compares 

R2’s from IPCA models with K = 1, 2, and 3, respectively. Panel B tests for the significance of individual contract characteristics for the first sub-sample. Panel C 

tests for the significance of individual contract characteristics for the second sub-sample. The number of latent factors in Panels B and C is equal to three (K = 3). 

All characteristics are measured in month t-1 prior to month t when commodity futures returns are measured. The details of the construction of commodity futures 

contract characteristics are provided in Appendix A. The IPCA models are restricted when alpha is equal to 0 (Гα
 = 0). The table reports the bootstrapped p-

values for testing the null hypothesis when the coefficient associated with the particular characteristic in question is zero. In all model specifications, betas of 

all latent factors are instrumented with commodity futures characteristics. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Panel A: The Performance of the IPCA Model during Two Sub-Samples 

 
Number of 

Observations 

 R2  

  K=1 K=2 K=3 

First half sub-sample from January 1981 to December 2002     

  IPCA with Z only 5,759 0.180 0.267 0.335 

     

Second half sub-sample from January 2003 to June 2022     

  IPCA with Z only 7,956 0.300 0.381 0.421 
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Panel B: Significance of Individual Characteristics, First Half Sub-Sample from January 1981 to December 2002 

 First 3 Characteristics  4th Characteristics 

MOM12 ES IVOL   

0.000*** 0.001*** 0.000***   

0.981 0.002*** 0.005*** MOM3 0.000*** 

0.000*** 0.002*** 0.001*** CTR18 0.556 

0.004*** 0.000*** 0.000*** CTR36 0.504 

0.000*** 0.007*** 0.002*** R52WH 0.885 

0.000*** 0.001*** 0.000*** SKEWNESS 0.867 

0.000*** 0.005*** 0.000*** MAX 0.329 

0.000*** 0.000*** 0.000*** HPHE 0.611 

0.000*** 0.000*** 0.000*** HPSP 0.815 

0.000*** 0.013** 0.001*** BASIS 0.727 

0.000*** 0.010** 0.033** BASM3 0.075* 

0.000*** 0.015** 0.038** BASM12 0.000*** 

0.000*** 0.010** 0.001*** BETACMKT 0.029** 

0.000*** 0.002*** 0.000*** BETAINF 0.930 

0.000*** 0.004*** 0.002*** BETAUSD 0.760 

0.000*** 0.046** 0.001*** VOLM 0.313 

0.000*** 0.026** 0.001*** OPNI 0.301 

0.000*** 0.022** 0.000*** ALIQ 0.638 

 

 

 

 

 

 

 

 

 

 

 

 

Panel C: Significance of Individual Characteristics, Second Half Sub-Sample from January 2003 to June 2022 
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 First 3 Characteristics  4th Characteristics 

MOM12 ES IVOL   

0.000*** 0.002*** 0.000***   

0.661 0.003*** 0.000*** MOM3 0.000*** 

0.000*** 0.014** 0.000*** CTR18 0.170 

0.000*** 0.021** 0.000*** CTR36 0.195 

0.927 0.001*** 0.000*** R52WH 0.000*** 

0.000*** 0.008*** 0.000*** SKEWNESS 0.787 

0.000*** 0.078* 0.000*** MAX 0.168 

0.000*** 0.003*** 0.000*** HPHE 0.946 

0.000*** 0.004*** 0.000*** HPSP 0.666 

0.000*** 0.010** 0.000*** BASIS 0.287 

0.000*** 0.002*** 0.000*** BASM3 0.753 

0.000*** 0.004*** 0.000*** BASM12 0.687 

0.000*** 0.102 0.001*** BETACMKT 0.136 

0.000*** 0.016** 0.000*** BETAINF 0.705 

0.000*** 0.105 0.000*** BETAUSD 0.744 

0.000*** 0.001*** 0.000*** VOLM 0.381 

0.000*** 0.004*** 0.000*** OPNI 0.471 

0.000*** 0.004*** 0.000*** ALIQ 0.475 
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Table 9 Compare Alternative Asset Pricing Models  

 

The table compares R2’s from alternative asset pricing models using 34 commodity market futures contracts. The sample period is from January 1987 to June 2022. Panel A 

summarizes R2’s from (a) latent factor models from IPCA with betas instrumented by four commodity futures contract characteristics (L=4), with and without observable risk 

factors; and (b) latent factor models from IPCA with betas instrumented by seven commodity futures contract characteristics (L=7), with and without observable risk factors. 

The four commodity futures contract characteristics are MOM12, CTR36, ES, and IVOL. The seven commodity futures contract characteristics are MOM12, CTR36, ES, IVOL, 

BASIS, BASM12, and ALIQ. The number of latent factors (K) is equal to 1, 2, and 3. Panel B reports R2 from (a) observable risk factor models, with and without beta being 

instrumented by four commodity futures contract characteristics (L=4); and (b) observable risk factor models, with and without beta being instrumented by seven commodity 

futures contract characteristics (L=7). The three-factor model includes the market, momentum, and basis factors (CMKT, CMOM12, and CBASIS). The four-factor model 

includes the market, momentum, basis, and hedging-speculative pressure factors (CMKT, CMOM12, CBASIS, and CHP). The five-factor model includes the market, momentum, 

basis, hedging-speculative pressure, and basis momentum factors (CMKT, CMOM12, CBASIS, CHP, and CBASM12). The six-factor model includes the market, momentum, 

basis, hedging-speculative pressure, basis momentum, and idiosyncratic volatility (CMKT, CMOM12, CBASIS, CHP, CBASM12, and CIVOL). The seven-factor model includes 

the market, momentum, basis, hedging and speculative pressure, basis momentum, idiosyncratic volatility, and skewness factors (CMKT, CMOM12, CBASIS, CHP, CBASM12, 

CIVOL, and CSKEW. All characteristics are measured in month t-1 prior to month t when commodity futures contract returns are measured. The details of the construction of 

commodity futures contract characteristics are provided in Appendix A. 
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Panel A: R2’s from IPCA Models 

 
Number of 

Observations 

 R2  

  K=1 K=2 K=3 

L = 4     

  IPCA with Z only 12,603 0.254 0.339 0.393 

  IPCA with Z and 3-factor model (CMKT, CMOM12, CBASIS) with Z 12,603 0.363 0.397 0.425 

  IPCA with Z and 4-factor model (CMKT, CMOM12, CBASIS, CHP) with Z 12,603 0.365 0.399 0.427 

  IPCA with Z and 5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) with Z 12,603 0.367 0.399 0.427 

  IPCA with Z and 6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) with Z 12,603 0.388 0.417 0.438 

  IPCA with Z and 7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) with Z 12,603 0.390 0.418 0.438 

     

L = 7     

  IPCA with Z only 10,150 0.262 0.346 0.410 

  IPCA with Z and 3-factor model (CMKT, CMOM12, CBASIS) with Z 10,150 0.395 0.433 0.466 

  IPCA with Z and 4-factor model (CMKT, CMOM12, CBASIS, CHP) with Z 10,150 0.399 0.435 0.469 

  IPCA with Z and 5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) with Z 10,150 0.419 0.453 0.485 

  IPCA with Z and 6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) with Z 10,150 0.435 0.468 0.491 

  IPCA with Z and 7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) with Z 10,150 0.437 0.469 0.491 
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Panel B: R2’s from Models Based on Observable Risk Factors 

 Number of Observations R2 

L= 4   

 Observable factors without Z   

  3-factor model (CMKT, CMOM12, CBASIS) 12,603 0.143 

  4-factor model (CMKT, CMOM12, CBASIS, CHP) 12,603 0.148 

  5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) 12,603 0.149 

  6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) 12,603 0.169 

  7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) 12,603 0.169 

   

 Observable factors with Z   

  3-factor model (CMKT, CMOM12, CBASIS) 12,603 0.260 

  4-factor model (CMKT, CMOM12, CBASIS, CHP) 12,603 0.268 

  5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) 12,603 0.270 

  6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) 12,603 0.322 

  7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) 12,603 0.325 

   

L= 7   

 Observable factors without Z   

  3-factor model (CMKT, CMOM12, CBASIS) 10,150 0.150 

  4-factor model (CMKT, CMOM12, CBASIS, CHP) 10,150 0.154 

  5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) 10,150 0.156 

  6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) 10,150 0.174 

  7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) 10,150 0.175 

   

 Observable factors with Z   

  3-factor model (CMKT, CMOM12, CBASIS) 10,150 0.299 

  4-factor model (CMKT, CMOM12, CBASIS, CHP) 10,150 0.307 

  5-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12) 10,150 0.330 

  6-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL) 10,150 0.376 

  7-factor model (CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW) 10,150 0.378 
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Table 10 Spanning Tests and Sharpe Ratios 

 

The sample covers the period from January 1987 to June 2022. The table constructs latent factors FAC1, FAC2, and FAC3 from the IPCA model using 34 

commodity futures contracts. The number of commodity futures contract characteristics are four (L=4) and seven (L=7), respectively. The number of latent 

factors (K) is equal to 3. Panels A1 and A2 implement spanning tests when the dependent variables are IPCA latent factors FAC1, FAC2, and FAC3, 

respectively. The independent variables are observable risk factors CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, and CSKEW. Panels B1 and B2 

implement spanning tests when the dependent variables are observable risk factors CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, and CSKEW, 

respectively. The independent variables are IPCA latent factors FAC1, FAC2, and FAC3. Panel C reports the annualized Sharpe ratios for individual risk 

factors and annualized Sharpe ratios for tangent portfolios, including tangent portfolios from the IPCA latent factors, commodity market observable risk 

factors, and Fama and French (2015) equity market risk factors EXMRET, SMB, HML, RMW, and CMA plus the momentum factor MOM. The risk-free rate 

is 2.4% per annum. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Panel A1: The Dependent Variables are Latent Factors (L=4) 

 CONST CMKT CMOM12 CBASIS CHP CBASM CIVOL CSKEW R2 Obs. 

FAC1 0.257 1.355*** -0.426*** 0.150 -0.179 -0.008 1.497*** 0.534***   

 (0.55) (11.52) (-3.32) (1.05) (-1.61) (-0.05) (12.07) (4.23) 0.652 426 

FAC2 0.219 0.054 1.216*** -0.305*** 0.217*** 0.133 0.274*** -0.173**   

 (0.85) (1.06) (18.75) (-4.06) (3.80) (1.46) (4.32) (-2.58) 0.640 426 

FAC3 0.198* 0.625*** -0.053* -0.044 0.105*** 0.058** -0.475*** -0.023   

 (1.70) (21.22) (-1.80) (-1.23) (3.83) (2.07) (-15.74) (-0.73) 0.727 426 

 

 

Panel A2: The Dependent Variables are Latent Factors (L=7) 

 CONST CMKT CMOM12 CBASIS CHP CBASM CIVOL CSKEW R2 Obs. 

FAC1 0.146 1.231*** -0.312** 0.072 0.019 0.411** 1.352*** 0.539***   

 (0.29) (13.87) (-2.50) (0.40) (0.13) (2.13) (10.11) (4.49) 0.597 426 

FAC2 -0.012 -0.075 1.320*** -0.429*** 0.251*** 0.242** -0.001 -0.250***   

 (-0.04) (-1.25) (16.04) (-4.36) (3.93) (2.09) (-0.02) (-3.12) 0.569 426 

FAC3 -0.139 -0.641*** 0.057* 0.088** -0.102*** -0.046 0.521*** 0.048   

 (-1.04) (-22.26) (1.71) (2.02) (-3.44) (-1.29) (16.35) (1.48) 0.686 426 
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Panel B1: The Dependent Variables are Pre-specified Factors (L=4) 

 CONST FAC1 FAC2 FAC3 R2 Obs. 

CMKT -0.302** 0.231*** 0.109*** 0.856***   

 (-2.57) (14.79) (5.30) (21.06) 0.843 426 

CMOM12 0.205 0.002 0.470*** 0.025   

 (1.20) (0.14) (19.46) (0.60) 0.578 426 

CBASIS 0.341 0.069*** 0.067* 0.047   

 (1.57) (3.44) (1.93) (0.80) 0.072 426 

CHP 0.480* -0.043* 0.161*** 0.230***   

 (1.82) (-1.81) (4.71) (3.10) 0.113 426 

CBASM12 0.297 0.008 0.140*** 0.008   

 (1.48) (0.41) (3.58) (0.16) 0.068 426 

CIVOL 0.175 0.187*** 0.114*** -0.311***   

 (1.10) (11.29) (4.55) (-6.34) 0.502 426 

CSKEW 0.748*** 0.039** 0.003 0.047   

 (3.39) (2.03) (0.10) (0.73) 0.024 426 

 

Panel B2: The Dependent Variables are Pre-specified Factors (L=7) 

 CONST FAC1 FAC2 FAC3 R2 Obs. 

CMKT -0.138 0.246*** 0.036 -0.801***   

 (-0.95) (15.75) (1.60) (-20.67) 0.777 426 

CMOM12 0.399** 0.043** 0.386*** -0.024   

 (2.21) (2.24) (16.69) (-0.64) 0.506 426 

CBASIS 0.373* 0.085*** 0.025 0.003   

 (1.71) (3.98) (0.79) (0.05) 0.077 426 

CHP 0.520** -0.004 0.154*** -0.192***   

 (2.01) (-0.17) (4.62) (-2.89) 0.101 426 

CBASM12 0.286 0.050*** 0.131*** 0.025   

 (1.41) (2.80) (3.81) (0.55) 0.096 426 

CIVOL 0.249 0.179*** 0.019 0.274***   

 (1.49) (11.41) (0.72) (6.81) 0.416 426 

CSKEW 0.742*** 0.049** -0.008 -0.018   

 (3.37) (2.55) (-0.30) (-0.31) 0.031 426 
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Panel C: Sharpe Ratios of Individual Portfolios and Tangent Portfolios 

 L=4 L=7   

FAC1 0.310 0.358   

FAC2 0.457 0.250   

FAC3 -0.042 -0.157   

FAC1, FAC2 0.565 0.464   

FAC1, FAC2, FAC3 0.565 0.464   

     

CMKT   0.081  

CMOM12   0.419  

CBASIS   0.249  

CHP   0.288  

CBASM12   0.226  

CIVOL   0.250  

CSKEW   0.435  

CMKT, CMOM12   0.421  

CMKT, CMOM12, CBASIS   0.439  

CMKT, CMOM12, CBASIS, CHP   0.482  

CMKT, CMOM12, CBASIS, CHP, CBASM12   0.485  

CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL   0.541  

CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW   0.649  

     

FAC1, FAC2, FAC3, CMKT, CMOM12, CBASIS 0.583 0.542   

FAC1, FAC2, FAC3, CMKT, CMOM12, CBASIS, CHP 0.618 0.583   

FAC1, FAC2, FAC3, CMKT, CMOM12, CBASIS, CHP, CBASM12 0.620 0.584   

FAC1, FAC2, FAC3, CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL 0.622 0.597   

FAC1, FAC2, FAC3, CMKT, CMOM12, CBASIS, CHP, CBASM12, CIVOL, CSKEW 0.737 0.703   

     

EXMRET    0.377 

SMB    -0.129 

HML    -0.047 

RMW    0.234 

CMA    0.102 

MOM    0.219 
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EXMRET, SMB, HML    0.379 

EXMRET, SMB, HML, MOM    0.503 

EXMRET, SMB, HML, RMW, CMA    0.574 

EXMRET, SMB, HML, RMW, CMA, MOM    0.668 
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Figure 1: Efficient Frontiers 

 

Panel A of the figure plots the efficient frontier constructed from the following assets: (i) CMKT, 

CMOM12, and CBASIS; (ii) CMKT, CMOM12, CBASIS, and CHP ; (iii) CMKT, CMOM12, CBASIS, 

CHP, and CBASM12; (iv) CMKT, CMOM12, CBASIS, CHP, CBASM12, and CIVOL; (v) CMKT, 

CMOM12, CBASIS, CHP, CBASM12, CIVOL, and CSKEW; (vi) FAC1, FAC2, and FAC3 (L=4); (vii) 

FAC1, FAC2, and FAC3 (L=7); and (viii) FF5 (EXMRET, SMB, HML, RMW, and CMA) plus MOM. 

The mean and standard deviations of the returns from these assets are computed for the period January 

1987 to June 2022.  
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Appendix A: Construction of 20 Commodity Futures Contract Characteristics 

 

Appendix A provides details of the construction of 20 characteristics of commodity futures contracts: MOM3, 

MOM12, CTR18, CTR36, R52WH, IVOL, SKEWNESS, MAX, ES, BASIS, HPHE, HPSP, BASM3, BASM12, 

BETACMKT, BETAINF, BETAUSD, VOLM, OPNI, and ALIQ. All characteristics are measured in month t-1 prior 

to month t when equal weighted portfolio returns are constructed. 

 

Variable Names Details of Construction 

  

  

3-month momentum measure (MOM3) 

 

MOM3 = cumulative return over prior months t-3 to t-1 

 

  

12-month momentum measure (MOM12) 

 

MOM12 = cumulative return over prior months t-12 to t-1 

 

  

18-month contrarian measure (CTR18) CTR18 = cumulative return over month t-18 to month t-1 

 

  

36-month contrarian measure (CTR36) CTR36 = cumulative return over month t-36 to month t-1 

 

  

52-week high (R52WH) The ratio of highest price in the past 12 months to the 

monthly price in the past 12 months. The price is 

computed by cumulative monthly returns of commodity 

futures contracts from t-12 to t-1. 

 

  

Idiosyncratic volatility (IVOL) 

 

Residual standard deviation from the following regression:  

, 0 1 , , ,i t m t i tr r      

where ri,t is daily individual futures contract returns over 

prior months t-12 to t-1 and rm, t is the corresponding daily 

return on the GSCI commodity futures contract market  

return index.  

  

Skewness (SKEWNEWS) SKEWNESS = skewness of daily returns over months t-12 

to t-1 

 

  

Maximum daily return (MAX) MAX = maximum daily futures contract returns over prior 

months t-12 to t-1 

 

  

Expected shortfall (ES) Individual futures contract returns expected shortfall 

measure at the 5% level over the prior months t-12 to t-1. 

  

BASIS (BASIS) Daily BASISt = second-nearby futures contract daily 

price/first-nearby futures contract daily price – 1.0   

          = 2 1/ 1
T T

t tF F  ,  

where 1T

tF  is the end-of-month price of the first-nearby 

futures contract and 2T

tF  is the end-of-month price of the 

second-nearby futures contract. 
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Monthly basis equals average of daily basis in prior month 

t-1. 

 

  

Hedging pressure (HPHE) The average of weekly hedging pressure ratio over prior 

months t-12 to t-1: 

 

, ,

, ,

hedgers week hedgers week

week

hedgers week hedgers week

LONG SHORT
HPHE

LONG SHORT





 

 

where i denotes hedgers. This follows Equation (1) of Fan 

et al. (2020). 

 

  

Speculative pressure (HPSP) The average of weekly speculative pressure ratios over 

prior months t-12 to t-1: 

 

, ,

, ,

speculators week speculators week

week

speculators week speculators week

LONG SHORT
HPSP

LONG SHORT





. 

 
where i denotes speculators. This follows Equation (1) of 

Fan et al. (2020). 

 

  

3-month basis momentum (BASM3) 3-month basis momentum BASM3 for month t is measured 

as 

 

1 2

3 3

1 1

3 (1 ) (1 )
T T

t t j t j

j j

BASM R R 

 

    , 

 

where 1 1 1

1/ 1.0,
T T T

t j t j t jR F      2 2 2

1/ 1.0,
T T T

t t j t jR F     1T

tF  

is the end-of-month price of the first-nearby futures 

contract, and 2T

tF  is the end-of-month price of the 

second-nearby futures contract. 

 

  

12-month basis momentum (BASM12) 12-month basis momentum BASM12 for month t is 

measured as 

 

1 2

12 12

1 1

12 (1 ) (1 )
T T

t t j t j

j j

BASM R R 

 

     

 

where 1 1 1

1/ 1.0,
T T T

t j t j t jR F      2 2 2

1/ 1.0,
T T T

t j t j t jR F    

1T

tF  is the end-of-month price of the first-nearby futures 

contract, and 2T

tF  is the end-of-month price of the 

second-nearby futures contract. 
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Beta with respect to the return on 

commodity market index (βCMKT) 

βCMKT is the slope coefficient from the following 

regression: 

 

,,,0, titcmktcmktti rr    

 

where ri,t is daily individual futures contract returns over 

prior months t-36 to t-1 and rcmkt, t is the corresponding 

daily return on the commodity market index. 

 

Beta with respect to the return on the 

inflation index (βINF) 

βINF is the slope coefficient from the following regression: 

 

,,t,0, tiINFINFti rr    

 

where ri,t is daily individual futures contract returns over 

prior months t-36 to t-1 and rINF, t is the corresponding 

daily change on the commodity market producer price 

index. 

  

Beta with respect to the return on USD 

index (βUSD) 

βUSD is the slope coefficient from the following regression: 

 

,,,0, titUSDUSDti rr    

 

where ri,t is daily individual futures contract returns over 

prior months t-36 to t-1 and rUSD, t is the corresponding 

daily change on the USD index. 

  

Futures contract trading volume in 

US$ terms (VOLM) 

Average of daily trading volume of individual futures 

contracts in USD terms over prior months t-12 to t-1 

  

Futures contract open interest in 

US$ terms (OPNI) 

Average of daily open interest of individual futures 

contracts in USD terms over prior months t-12 to t-1 

  

Amihud liquidity measure (ALIQ) Daily Amihud measure 

  = absolute value of daily futures contract  

    return/daily trading volume×1,000,000  

  = |RET|/VOLM×1,000,000, 

ALIQ = average of daily measures over  

       prior months t-12 to t-1 
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Appendix B: The Definitions of Hedging Pressure and Speculative Pressure 

 

In constructing the CHP risk factor, we consider the following three measures of hedging pressure 

and speculative pressure from hedgers and speculators, respectively. The first definition follows 

Fernandez-Perez et al. (2018): 

 

,1

, ,

hedgers t

t

hedgers t hedgers t

LONG
HPHE

LONG SHORT



, 

 

    
,1

, ,

speculators t

t

speculators t speculators t

LONG
HPSP

LONG SHORT



, 

 

where t refers to calendar month. LONG and SHORT denote long and short positions, respectively. 

The second definition follows Fan et al. (2020): 

 

, ,2

, ,

hedgers t hedgers t

t

hedgers t hedgers t

LONG SHORT
HPHE

LONG SHORT





, 

 

    
, ,2

, ,

speculators t speculators t

t

speculators t speculators t

LONG SHORT
HPSP

LONG SHORT





. 

 

The third definition follows Kang et al. (2020):  

 

, ,3

,

hedgers t hedgers t

t

hedgers t

LONG SHORT
HPHE

OPNI


 , 

 

   
, ,3

,

speculators t speculators t

t

speculators t

LONG SHORT
HPSP

OPNI


 , 

 

where OPNI refers to open interest. As in these earlier studies, we use the average weekly positions 

from CFTC reports over the past 12 months to calculate hedging pressure and speculative pressure. 

The following table summarizes the pair-wise correlations among three versions of hedging 

pressure and speculative pressure, respectively, from pooled time-series and cross-sectional 

observations (after taking the average in the past 12 months from t-12 to t-1): 
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we construct two-way sorted CHP risk factor as in Fernandez-Perez et al. (2018). For example, the 

long position consists of futures contracts with highest 
1

tHPSP  (top 70%) and lowest 
1

tHPHE  

(bottom 30%). The short position consists of futures contracts with lowest 
1

tHPSP  (bottom 30%) 

and highest 
1

tHPHE  (top 70%). Then we form equal-weighted portfolio returns for month t to 

construct the CHP factor. We repeat the same procedure for the other two definitions of HPHE and 

HPSP. The three versions of CHP risk factors generate similar results.  
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Appendix C: Bootstrapping Procedures  

Testing the null hypothesis that alpha does not depend on characteristics, Гα = 0L×1.   

(1) Estimate the following model, 

 

                         
1 1 1t t t t tr Z Z f         .                      (B1) 

 

We obtain  ,  , 1tf
  and 1t  , t=0,...,T-1. The IPCA estimation of Equation (B1) requires 

'

tZ

tZ  and 
'

1t tZ r 
 only. It does not require the use of N-dimension stock return rt+1 directly. 

 

(2) Calculate the following residuals, 1td  , t=0,…,T-1, by multiplying 
'

tZ  with fitted residuals 1t   

from Equation (B1): 

 

                         
' ' ' '

1 1 1 1
[( ) ( ) ]t tt t t t t t t td Z Z r Z Z Z Z f    

      .    (B2) 

 

(3) Let boot denote the number of bootstraps performed, boot = 1,…,1000. Obtain the sample of 

characteristic-weighted (Zt-weighted) portfolio returns 
1

boot

tx 
 (

'

1

boot

t tZ r
) in the bootth step as 

 

                         
' '

11 1 1( )
boot

boot boot
tt t t t t tx Z r Z Z f d       ,               (B3) 

 

where 1

boot

td   is the bootth random draw from 1td  , t=0,…,T-1. In actual implementation, 1

boot

td   is 

multiplied by a student-t random variable with unit variance and five degrees of freedom. It is important 

to note in Equation (B3), we set   = 0 as required under the null hypothesis. Equation (B3) indicates 

that 
1

boot

tx 
 is constructed using residuals from the unrestricted model in Equation (B1), but the fitted 

value of return 1tr   (i.e., bootstrapped return 
1

boot

tr 
) in Equation (B3) excludes tZ   because we 

now set   = 0. Therefore, characteristic-weighted returns 
'

1

boot

t tZ r
 drop out the impact of tZ  . 

This is the null hypothesis that Гα = 0L×1. We bootstrap characteristic-weighted returns under the null 

that characteristics do not impact alpha. 

 

(4) Use the bootstrapped sample of characteristic-weighted portfolio returns 
1

boot

tx 
 in the bootth step to 

estimate the unrestricted model in Equation (B1) again and obtain 
boot

 . The estimation only requires 

characteristic-weighted returns 
1

boot

tx 
. The estimation does not require N-dimension stock returns 

1

boot

tr 
. 

 

(5) Calculate the Wald-like statistic from the bootth step bootstrap as ( ) '( )
boot boot

bootW      . The 

original Wald-like statistic from the unrestricted model in Equation (B1) is                              

( ) '( )W      . 

 

(6) Calculate the p-value for testing the null hypothesis that Гα = 0L×1 as the percentage of 
bootW  

statistics that are larger than W  statistics.
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Testing the null hypothesis that the lth characteristic has no impact on the betas of all K latent factors, 

γβ,l = 01×K. 

 

(1) Estimate the following restricted model after we cannot reject the null hypothesis that Гα = 0L×1, 

 

                           
1 1 1t t t tr Z f      .                            (B4) 

 

(2) Calculate the following residuals, 1td  , t=0,…,T-1, by multiplying 
'

tZ  with fitted residuals 1t   

from Equation (B4): 

 

                           
' ' '

1 1 1 1
( )t tt t t t t td Z Z r Z Z f   

    .              (B5) 

 

(3) Let boot denote the number of bootstraps performed, boot = 1,…,1000. Obtain the sample of 

characteristic-weighted (Zt-weighted) portfolio returns 
1

boot

tx 
 (

'

1

boot

t tZ r
) in the bootth step as 

 

                           
' '

11 1 1( )
reset boot

boot boot
tt t t t t tx Z r Z Z f d       ,             (B6) 

 

where 1

boot

td   is the bootth random draw from 1td  , t=0,…,T-1. In actual implementation, 1

boot

td   is 

multiplied by a student-t random variable with unit variance and five degrees of freedom. 

 

Notice here the lth row of 
reset

 is set to be 01×K. Let ,

reset

l  be the lth row of 
reset

 . We impose the 

condition that , 10
reset

l K   under the null hypothesis. This implies that the lth characteristic has no 

impact on the beta of all latent factors. Then we estimate the model in Equation (B4) again using 

bootstrapped 
1

boot

tx 
 to obtain 

boot

 , where ,

boot

l  is the lth row of 
boot

  

 

(4) Calculate the Wald-like statistic from each bootstrap as ,, ,( ) '( )
boot boot

boot

ll lW    . The Wald-like 

statistic using the actual return data from the model in Equation (B4) is calculated as 
'

, ,, l llW     . 

 

(5) Calculate the p-value for testing the null hypothesis that γβ,l = 01×K as the percentage of ,

boot

lW  

statistics that are larger than 
,lW  statistics. 
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Testing the null hypothesis that the mth observable risk factor has no incremental explanatory power, 

γδ,m = 0M×1. 

 

(1) Estimate the following restricted model after we cannot reject the null hypothesis that Гα = 0L×1, 

 

                    
1 1 1 1t t t t t tr Z f Z g          .                           (B7) 

 

(2) Calculate the following residuals 1td  , t=0,…,T-1, by multiplying 
'

tZ  with fitted residuals 1t   

from Equation (B7): 

 

                    
' ' ' '

1 1 1 1 1
( ) ( )t tt t t t t t tt td Z Z r Z Z f Z Z g     

      .         (B8) 

 

(3) Let boot denote the number of bootstraps performed, boot = 1,…,1000. Obtain the sample of 

characteristic-weighted (Zt-weighted) portfolio returns 
1

boot

tx 
 (

'

1

boot

t tZ r
) in the bootth step as 

  

                    
' ' '

11 1 1 1( ) ( )
reset boot

boot boot
tt t t t t t tt tx Z r Z Z f Z Z g d           ,        (B9) 

 

where 1

boot

td   is the bootth random draw from 1td  , t=0,…,T-1. In actual implementation, 1

boot

td   is 

multiplied by a student-t random variable with unit variance and five degrees of freedom. 

 

Note here the mth column of 
reset

  is set to be 0M×1. Let ,

reset

m  be the mth column of 
reset

 . We impose 

the condition that , 10
reset

m M   under the null hypothesis. This implies that the mth observable risk 

factor has no incremental explanatory power. Then we estimate the model in Equation (B7) again using 

bootstrapped 
1

boot

tx 
 to obtain 

boot

 , where ,

boot

m  is the mth column of 
boot

 . 

 

(4) Calculate the Wald-like statistic from each bootstrap as ,, ,( ) '( )
boot boot

boot

mm mW    . The Wald-like 

statistic using the actual return data from the model in Equation (B7) is calculated as 
'

, ,, m mmW     . 

 

(5) Calculate the p-value for testing the null hypothesis that γδ,m = 0M×1 as the percentage of 
,

boot

mW
 

statistics that are larger than 
,mW  statistics. 
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Appendix D: Panel Regressions of Futures Contract Monthly Returns and Market Betas BETACMKT on Futures Contract Characteristics 

 

The sample covers the period from January 1981 to June 2022. Panel A reports the panel regressions of monthly returns on individual commodity futures 

contracts on different combinations of contract characteristics. The benchmark model in the first row includes three characteristics, MOM12, ES, and IVOL. 

Then the panel regressions add in each of the remaining 17 characteristics, one at a time. The 20 commodity futures contract characteristics include MOM3, 

MOM12, CTR18, CTR36, R52WH, IVOL, SKEWNESS, MAX, ES, BASIS, HPHE, HPSP, BASM3, BASM12, BETACMKT, BETAINF, BETAUSD, VOLM, OPNI, 

and ALIQ. All characteristics are measured prior to month t when equally weighted portfolio returns are constructed. The details of the construction of the 

sorting variables are provided in Appendix A. Panel B reports the panel regressions of estimated market betas (BETACMKT) on individual commodity futures 

contracts on different combinations of contract characteristics. Market betas are estimated from months t+1 to t+12. BETACMKT is estimated with respect to 

returns on the commodity market index. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Panel A: The Dependent Variable is Monthly Returns of Individual Futures Contracts from t+1 

First 3 Characteristics 4th Characteristic R2 

MOM12 ES IVOL    

0.010*** -0.005 -0.010*   0.002   

0.008*** -0.005 -0.010* MOM3 0.004 0.002   

0.019*** -0.005 -0.011*** CTR18 -0.012*** 0.003   

0.014*** -0.005 -0.010* CTR36 -0.008*** 0.003   

0.005 -0.007 -0.010* R52WH 0.007* 0.002   

0.009*** -0.002 -0.007 SKEWNESS -0.009*** 0.003   

0.010*** -0.012*** -0.008 MAX -0.010*** 0.003   

0.005 -0.003 -0.010 HPHE -0.008*** 0.002   

0.005 -0.003 -0.009 HPSP 0.005 0.002   

0.009*** -0.004 -0.007 BASIS -0.002 0.002   

0.010*** -0.003 -0.007 BASM3 -0.007 0.002   

0.009*** -0.004 -0.007 BASM12 0.003 0.002   

0.010*** -0.008 -0.012*** BETACMKT -0.003 0.002   

0.009*** -0.007 -0.012*** BETAINF -0.005* 0.002   

0.009*** -0.004 -0.009* BETAUSD -0.000 0.002   

0.008*** -0.005 -0.011* VOLM -0.008*** 0.002   

0.008*** -0.004 -0.009* OPNI -0.007*** 0.002   

0.008*** -0.004 -0.011* ALIQ 0.007*** 0.002   
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Panel B: The Dependent Variable is Estimated Betas from months t+1 to t+12 

First 3 Characteristics 4th Characteristic R2 

MOM12 ES IVOL    

0.220*** -1.510*** -1.337***   0.262   

0.199*** -1.510*** -1.336*** MOM3 0.044 0.262   

0.179*** -1.508*** -1.327*** CTR18 0.059 0.262   

0.216*** -1.503*** -1.309*** CTR36 0.051 0.264   

0.249*** -1.499*** -1.337*** R52WH -0.042 0.262   

0.232*** -1.577*** -1.388*** SKEWNESS 0.160*** 0.266   

0.210*** -1.336*** -1.380*** MAX 0.263*** 0.267   

0.326*** -1.529*** -1.289*** HPHE 0.133 0.279   

0.343*** -1.531*** -1.306*** HPSP -0.145 0.279   

0.236*** -1.439*** -1.261*** BASIS -0.009 0.236   

0.238*** -1.440*** -1.261*** BASM3 0.007 0.235   

0.246*** -1.440*** -1.262*** BASM12 -0.040 0.234   

0.192*** -1.074*** -1.021*** BETACMKT 0.546*** 0.299   

0.232*** -1.372*** -1.189*** BETAINF 0.213*** 0.269   

0.220*** -1.451*** -1.276*** BETAUSD -0.073 0.262   

0.242*** -1.348*** -1.195*** VOLM 0.223*** 0.245   

0.242*** -1.382*** -1.237*** OPNI 0.161 0.239   

0.244*** -1.380*** -1.205*** ALIQ -0.182*** 0.242   
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