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Abstract 

Using non-parametric estimates with imposing inequality restrictions, we compare 

unconditional to conditional tests on green and brown portfolios constructed from fossil fuel 

and clean energy ETFs. While unconditional tests could not indicate that green portfolio 

outperform brown one, the outperformance of green portfolio is statistically significant in 

conditional tests when incorporating climate-related information such as natural disasters and 

Climate policy uncertainty (CPU). The conditional tests also show that brown portfolio is 

riskier than green one that is hidden under unconditional tests. Furthermore, we document that 

non-fundamental demands proxied by fund flows for green assets are higher than that for the 

brown only when incorporating the climate information in the inequality test. Our findings are 

robust to alternative specifications. 
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1 Introduction 

Climate risks are of increasing concern to investors. According to the survey by Krueger et al., 

(2020), institutional investors believe that climate risks have considerable impacts on their 

portfolios and the risks related to climate regulations have begun to materialize already. 

Especially, climate risks put particular pressure on the operation of fossil fuel and high-

emission firms, such as oil and coal firms, which are major drivers of climate change. For 

example, the European Investment Bank planned to stop providing loans for fossil fuel energy 

projects after 2021, and Chubb insurance company, a US insurer, has announced a plan to rule 

out investment in coal.1 In contrast, clean energy is encouraged to motivate the transition to a 

low-carbon economy.  

Therefore, green and brown assets attract much attention from researchers due to 

concerns about climate risks. Theoretically, green assets are assets hedging against climate 

risks because their values are expected to increase when climate risks are realized, while brown 

assets are supposed to depreciate (Pástor et al., 2021). There is a vast empirical literature on 

green and brown stocks performances (Chava, 2014; Baker et al., 2022; Choi et al., 2020; Ardia 

et al., 2020; Hsu et al., 2022; Pástor et al., 2022), and the empirical evidence is mixed. To shed 

light on the puzzle about the performances of green and brown investments, we present a 

rigorous study on performances green and brown assets proxied by clean energy and fossil fuel 

ETFs. Specifically, we compare unconditional and conditional performances of both green and 

brown portfolios returns. Apart from studies on portfolio returns, there is a lack of formal tests 

on risks of green and brown assets. It is quite surprising because both systematic and 

idiosyncratic risks play important roles in investor’s decision on asset allocations. Thus, our 

paper also presents formal tests on risk of green and brown portfolios under conditional 

settings, especially conditional settings that incorporate climate-related information. Our 

findings provide implications optimal portfolios allocations and hedging.  

The paper focuses on clean energy and fossil fuel ETFs as proxies for green and brown 

assets because the energy sector experiences a variety of exposures to climate risks (van 

Benthem et al., 2022). While fossil fuels face pressure under the transition to a net-zero 

economy, clean energy benefits from the transition. Importantly, energy firms provide a great 

setting to examine the effects of climate policies and better understand the interaction of 

finance and climate science (van Benthem et al., 2022). In addition, while most empirical 

 
1 https://www.washingtonpost.com/climate-environment/2021/10/26/climate-change-insurance-coal/ 

https://www.washingtonpost.com/climate-environment/2021/10/26/climate-change-insurance-coal/


3 

 

studies rely on ESG rankings to identify “green” and “brown” assets, Avramov et al. (2021) 

find that uncertainty in rankings could affect the expected return of assets. In addition, ETFs 

are used by a broad cross-section of market participants such as retail traders, large institutions, 

and hedge funds; and ETF flows provide unique information about non-fundamental demand 

for assets (Brown et al., 2021).  Therefore, we form green and brown portfolios by using clean 

energy and fossil fuel ETFs. 

We investigate whether green portfolio outperforms brown one in a conditional setting 

that climate-related information including natural disasters and climate policy uncertainty 

(CPU) is incorporated. The hypothesis is motivated by the theoretical model of Pástor et al. 

(2021) that predicts that green assets outperform brown ones in times when there are 

unexpected shifts in customers’ tastes for green products and investors’ tastes for green assets. 

The model indicates that values of green assets are expected to increase when climate risks 

materialize. Besides returns, we test on volatilities of green and brown portfolios such as 

market beta, semibetas and idiosyncratic risk. From that, we provide insights about the impact 

of climate-related information on returns and risks of green and brown assets. 

 To test hypotheses, this paper employs the conditional inequality test proposed by 

Wolak (1987, 1989) and Boudoukh et al. (1993). Specifically, we jointly test inequality 

restrictions on return (risk) differences between green and brown portfolios by using 

nonparametric approaches that do not require structural models for conditional expected 

returns. To facilitate the hypothesis testing, we construct instruments related to natural disasters 

and the Climate Policy Uncertainty index (CPU). Specifically, we generate dummy and 

magnitude-based instruments. These instruments are motivated by literature and economically 

intuitive to capture information affecting moments of green and brown portfolios. We jointly 

test inequality restrictions on returns and risks conditional on the high number of natural 

disasters and high CPU.  

We find that while unconditional returns do not provide rigorous evidence on the 

outperformance of green portfolios, conditional studies show statistical significances of green 

portfolio outperforming brown ones. Specifically, brown-minus-green mean CAPM-adjusted 

returns conditional on natural disasters and CPU are -1.433% and -3.74%, which is far lower 

than the unconditional mean return (-0.68%). Indeed, brown portfolios have unconditionally 

negative mean returns, and the mean returns are more negative when information related to 

natural disasters and CPU incorporated. Unconditionally, green returns are significantly 
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negative, but the conditional tests do not lead to rejections of green portfolios mean returns 

being nonnegative. For example, while the unconditional mean return is -0.877%, the mean 

return conditional on CPU is 1.261%. Therefore, conditional inequality tests indicate green 

portfolios have nonnegative mean returns, which verifies the predictions by the theoretical 

model of Pástor et al. (2021). 

Although green-minus-brown market beta is unconditionally positive, conditional tests 

lead to rejections of green-minus-brown market beta being nonnegative. In other words, after 

taking climate-related information into account, it is also evident that brown portfolios have 

much higher market beta than green ones. For example, while the green-minus-brown market 

beta is unconditionally 0.019, it is -0.245 associated with CPU. We also find that the brown 

portfolio has a higher semi-beta, for instance 𝛽̂𝑡,𝑖
𝑁 , the covariation between negative returns and 

negative market returns, than the green portfolio in conditional setting. The joint test statistic 

is significant at the 1% level. Specifically, green-minus-brown 𝛽̂𝑡,𝑖
𝑁  associated with CPU is -

0.104 which is far higher than the unconditional value of -0.015 which is statistically 

insignificant (p-value = 0.226). In addition, brown portfolios have higher idiosyncratic risks 

than green ones. In general, after considering climate-related information, we find that brown 

portfolios are riskier than green ones, which is hardly found in unconditional tests. 

Furthermore, we investigate the non-fundamental demand for green and brown assets. 

Following Brown et al. (2021) and Davies (2022), we use fund flow as a proxy for the non-

fundamental demand. While there is no unconditional difference in non-fundamental demand 

between green and brown portfolios, we find strong evidence that the non-fundamental demand 

for green is higher than that for brown when conditioning information related to high natural 

disasters and CPU incorporated. For example, brown-minus-green fund flow is unconditionally 

-0.038 with one-side p-value of 0.08 but brown-minus-green fund flow conditional on 

instruments is -0.032 and -0.114 and multivariate inequality test is significant at 1% level. Since 

the non-fundamental demand signals investor sentiment, our results imply investor sentiment 

in green and brown assets.  

To test whether our results are driven by particular economic conditions, we use 

cyclicality-adjusted real P/E (CAPE) ratios and NBER-designated recession periods. The 

results do not indicate that green portfolios outperform brown portfolios during economic 

recession periods. In other words, climate-related instruments are more informative about 

outperformance of green portfolios relative to brown ones than economic instruments. Indeed, 
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we still find evidence about the outperformance of green portfolios when climate-related 

instruments are incorporated during recession periods. We have conducted further robustness 

checks and  find the outperformance of green portfolios still hold when four Carhart (1997) 

factors and oil returns employed. In addition, the results are more statistically and economically 

significant when we reconstruct instruments based on the 75% quantile of the instruments 

instead of the median. Brown-minus-green return is more negative when we condition values 

above the 75% quantile of the instruments.  

This study makes two major contributions. First, it provides rigorous testing of 

inequality constraints on green and brown assets with validating predictions of Pástor et al. 

(2021). Our paper relates to a large empirical literature documenting the performances of green 

and brown assets. A set of studies show that brown assets have higher expected returns than 

green assets because they are riskier (Chava, 2014; Bolton & Kacperczyk, 2021; Hsu et al., 

2022). Other studies find that green assets outperform brown assets at certain time periods. For 

example, Choi et al. (2020) find green assets have higher returns than brown ones during 

months with high abnormal temperatures. Ardia et al. (2020) and Pástor et al. (2022) show that 

green assets outperform brown assets when media news about climate change is high. Our 

paper differs from theirs in various ways. Specifically, we use conditional tests with imposing 

restrictions on assets returns and risks, and we use the nonparametric approach that does not 

require a structural model for conditional expected returns, which is novel relative to the 

existing empirical literature. In addition, we emphasize the difference in results between 

unconditional and conditional tests. Using instruments, our paper emphasizes the state 

dependence of green and brown assets in terms of return and risk, which contributes to 

emerging literature in climate finance. From that, we shed light on the performances of green 

and brown assets. 

The second contribution of this paper is that it explores the difference in risk 

sensitivities between green and brown assets. Specifically, we conduct formal testing of the 

restrictions on the market beta and realized semibetas of green and brown portfolios. We also 

examine the difference in idiosyncratic risk between green and brown portfolios. To the best 

of our knowledge, existing studies have not performed such tests. Therefore, our paper helps 

to answer not only the controversial question of whether green assets outperform brown assets, 

but also the question of whether brown assets are riskier than green assets. 
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Most existing papers use environmental scores from ESG rankings or carbon emissions 

to define green and brown assets. We focus on energy-related industries that provides a great 

setting to understand the impact of climate change on financial markets (van Benthem et al., 

2022). Additionally, using clean energy and fossil fuel ETFs allows us to study non-

fundamental demand through ETF fund flows proposed in ETF literature (Brown et al., 2021; 

Briere & Ramelli, 2021; Davies, 2022). Therefore, we show how different non-fundamental 

demand for brown and green assets is when incorporating climate-related information. 

Our results have important implications for investors who care about hedging against 

climate risks. If investors solely consider unconditionally tests, they could conclude that there 

is no difference in return and risk between green and brown assets. Our findings show that 

accounting for climate-related information makes green and brown assets different in terms of 

return and risk. Therefore, the results affect investors in making investment decisions.   

The remainder of this study proceeds as follows. Section 2 reviews the relevant 

literature and hypotheses. Section 3 describes our data and method for testing the hypotheses. 

Sections 4 and 5 presents empirical results and robustness checks. Finally, Section 6 presents 

the conclusions. 

2 Literature review and hypotheses 

Pástor et al. (2021) derive a theoretical equilibrium model of investing based on environmental, 

social, and governance (ESG) criteria. The model predicts that green stocks have lower 

expected returns than brown stocks in the long run. However, green assets outperform brown 

assets when there are unexpected increases in customers’ tastes for green products and 

investors’ tastes for sustainable investing. For example, negative climate shocks not only 

motivate customers to tilt toward green products, but also lead the government to impose 

climate regulations which favour green firms over brown firms.  

Particularly, the unexpected returns are given by 

𝑟̃  = 𝛽𝑚𝑟̃𝑚 + 𝑔𝑓𝑔
𝑒 +  𝜉 (1) 

with an ESG factor of 

𝑓𝑔
𝑒 =  𝑧̃𝑔 +  

1

𝑎
[𝑑̅1 −  𝐸0{𝑑̅1} (2) 

Here, 𝑑̅1 denotes the average investor’s ESG taste at time 0, and 𝐸0{ } denotes the 

expectation of time 0. Eq (1) and (2) predict that green stocks (g > 0) outperform brown stocks 
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(g < 0) when ESG concerns strengthen unexpectedly, 𝑓𝑔
𝑒 > 0, through the customer channel 

( 𝑧̃𝑔 ) or the investor channel (
1

𝑎
[𝑑̅1 −  𝐸0{𝑑̅1}). Particularly, unexpected worsening of the 

climate could strengthen not only customers’ demands for green products but also investors’ 

preference for green holdings. 

Therefore, our study aims to provide a formal hypothesis testing if green assets 

outperform brown assets conditional on instruments reflecting investors’ preferences for 

sustainability and hedging against climate risks. Specifically, we jointly test the null that the 

returns of the brown (fossil) portfolios are greater than or equal to that of the green (clean 

energy) ETFs.  

H1: The Green (Clean energy) portfolio outperforms brown (fossil) portfolio conditional on 

information set about unexpected shifts in investor’s preferences toward sustainability. 

The market beta of green assets could be lower than that of brown assets when there 

are unexpected shifts in customers’ and investors’ preferences toward sustainability. For 

example, adverse climate shocks could strengthen agents’ preferences for sustainability, but 

the shocks could negatively affect the aggregate output. Indeed, Giglio et al. (2021) suggest 

that climate shocks reduce consumption but favour green assets because of their ability to 

hedge against climate risks. 

In addition, environmentally friendly firms have lower systematic risks (market betas) 

than environmentally unfriendly firms (Sharfman & Fernando, 2008; Albuquerque et al., 

2019). Therefore, we hypothesize that brown assets have higher market betas than green assets, 

conditional on instruments for agent preferences. We propose formal conditional testing of the 

inequality restriction on market betas which jointly tests the null that the market beta of the 

green (clean energy) portfolio is greater than or equal to that of the brown (fossil) portfolio. 

H2a: The market beta of the brown (fossil) portfolio is higher than that of green (clean energy) 

portfolio conditional on information set about unexpected shifts in investors’ preferences 

toward sustainability. 

We study the covariation between green (brown) portfolio returns and market returns 

further by following Bollerslev et al. (2021) and decomposing the market beta into four realized 

semibetas that depend on the signed covariation between the market and asset returns. 

Bollerslev et al. (2021) show that the semibetas that result from the negative market and 

negative asset return covariation predict significantly higher future returns. Specifically, we 
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test the null that the semibetas of the green (clean energy) portfolio are greater than or equal to 

those of the brown (fossil) portfolio, conditional on instruments. 

H2b: The brown (fossil) portfolio has higher semibetas than the green (clean energy) portfolio 

conditional on information set about unexpected shifts in investors’ preferences toward 

sustainability. 

Idiosyncratic risk is related to firm-specific risks that stem from adverse events such as 

lawsuits, strikes, brand and reputation erosion, and boycotts, which could affect a firm’s 

profitability and overall risk profile considerably. Lee & Faff (2009)find that firms with strong 

corporate social performances (CSPs) have lower idiosyncratic risks than firms with weak 

CSPs. Due to the increasing concern about climate change, fossil fuel firms are not only under 

the pressure of divestment campaigns, but also face potential lawsuits related to the damage 

caused by global warming. Therefore, we hypothesize that the brown portfolio has a higher 

idiosyncratic risk than the green portfolio. Specifically, we jointly test the null that the 

idiosyncratic risk of the green (clean energy) portfolio is greater than or equal to that of the 

brown (fossil) portfolio, conditional on instruments for investors’ preferences. 

H3: The brown (fossil energy) portfolio has a higher idiosyncratic risk (volatility) than the 

green (clean energy) portfolio conditional on unexpected shifts in investors’ preferences 

toward sustainability. 

3 Data and methodology: 

3.1  Instrumental variables 

We have collected the following instrumental variables data in our study: 

1. Natural disasters data are obtained from the National Oceanic and Atmospheric 

Administration (NOAA) from 2008 to 2020.2 These data contain the number of 

U.S. billion-dollar disaster events, the financial cost of each disaster and the number 

of deaths caused by each disaster. Theoretically, natural disasters induced by 

climate change affect aggregate wealth and asset valuations (Bansal et al., 2016). 

Some existing papers find the effect of natural disasters on market anomalies (Tsai 

& Wachter, 2016; Bai et al., 2019; Lanfear et al., 2019)  and return comovement 

(Ma et al., 2022). 

 
2 ncdc.noaa.gov/billions/events 
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2. Climate Policy Uncertainty (CPU) index proposed by Gavriilidis (2021). CPU 

captures the uncertainty related to climate policy which is likely to affect investors’ 

decisions.3 The index is constructed by extracting news about climate policy from 

major US newspapers, including the Boston Globe, Chicago Tribune, Los Angeles 

Times, Miami Herald, New York Times, Tampa Bay Times, USA Today and the 

Wall Street Journal. This follows the methodology by which Baker et al. (2016) 

constructed the Economic Policy Uncertainty (EPU) index. CPU contains 

information that could affect the expected returns of green and brown assets. In fact, 

the index reaches a peak when there are important climate events such as new 

emissions legislation, global strikes about climate change and Presidents’ 

statements about climate policy, among other developments.   

Overall, natural disasters and CPU could proxy for physical risk and transition risk due to 

climate change. These instruments are economically motivated and intuitive. We also 

economic-related instruments including cyclicality-adjusted real P/E (CAPE) ratio from 

Shiller’s website4 and NBER-based recession periods from the Federal Reserve Bank of St. 

Louis in robustness checks. We obtain four Carhart factors from Kenneth R. French website5 

and oil prices from the Federal Reserve Bank of St. Louis. 

3.2 Green and brown portfolios 

We use fossil fuel ETFs and clean energy ETFs as proxies for brown and green assets. 

Specifically, our study uses four clean energy ETFs including iShares Global Clean Energy 

ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW), Invesco Global Clean Energy 

ETF (PBD) and First Trust NASDAQ Clean Edge Green Energy Index Fund (QCLN). In 

addition, the study uses four fossil fuel energy ETFs including Energy Select Sector SPDR 

Fund (XLE), Vanguard Energy ETF (VDE), SPDR S&P Oil & Gas Exploration & Production 

ETF (XOP) and VanEck Vectors Coal ETF (KOL).  They are top ETFs based on assets under 

management. 

Since ICLN return data is available from June 2008, our sample covers from June 2008 to 

December 2020. ETFs data are obtained from the Center for Research in Security Prices 

(CRSP). we form an equally-weighted green portfolio consisting of four clean energy ETFs 

and an equally-weighted brown portfolio consisting of four fossil fuel ETFs. 

 
3 https://policyuncertainty.com/climate_uncertainty.html 
4 http://www.econ.yale.edu/~shiller/ 
5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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Panel A of Table 1 provides the correlation estimates between ETFs. We observe that three 

of the clean energy ETFs (ICLN, PBW, QCLN) are highly correlated, with estimates from 

0.873 to 0.955. Three of the fossil fuel energy ETFs (XLE, VDE and XOP) are also highly 

correlated, at well above 90%, though the correlations of these ETFs with KOL are from 61.3% 

to 71.6%. The correlation estimates between the fossil fuel ETFs and clean energy ETFs are 

also moderate.  

Panel B of Table 1 reports summary statistics of ETF returns, and the variables used to 

construct instruments from 2008 to 2020. As can be seen, all clean energy ETFs have positive 

mean returns, whereas the fossil fuel ETFs have negative mean returns except XLE (0.008). 

Also, the mean excess return of the green (clean) portfolio is 0.583%, while that of the brown 

(fossil) portfolio is −0.193%. While the standard deviations of the green and brown portfolios 

are not very different, the green portfolio is much more negatively skewed than the brown 

portfolio. In addition, we have 165 natural disasters during the sample and monthly mean and 

median numbers of natural disasters are two and one. The mean and median of the Climate 

Policy Uncertainty (CPU) index are 125 and 104.32. 

[Table 1 about here] 

3.3 Conditional testing procedures 

We validate Pástor et al. (2021)’s assertions by adopting the multivariate inequality constraints 

approach proposed by Wolak (1987, 1989), which provides a rigorous test of the validity of 

the priori signs of the parameters, where such a priori beliefs point to an inequality restriction 

rather than an equality restriction. This approach allows moments to be conditioned on 

observable information and takes the unobservability of expected returns into account by 

employing instrumental variables.  

The conditional test with multivariate inequality constraints has several attractive features, 

which have been demonstrated by Boudoukh et al. (1993). First, the test does not require a 

model for conditional expectations. This is especially important because conditional 

expectations are not modelled explicitly for many asset pricing theories. As it turns out, all that 

needs to be satisfied are the stationarity and ergodicity assumptions on the observable variables. 

Second, econometricians tend to include instrumental variables but may not know how they 

enter the model. Therefore, this approach is advantageous because it does not require an 

assumed functional form. Third, the restrictions can be tested jointly, meaning that the test will 

consider any correlations across the mean estimators.  
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We consider a model that implies the following restriction: 

𝐸𝑡[𝑅brown,𝑡+1 − 𝑅green,𝑡+1] =  𝐷𝑡 ≥ 0 ,        (3) 

under the null model, where 𝑅brown,𝑡+1  is brown (fossil) portfolio returns at time t + 1, 

𝑅green,𝑡+1  is green (clean energy) portfolio returns at time t + 1 and 𝐷𝑡  is defined as the 

difference. Eq. (3) states that the ex-ante return difference between the brown and green 

portfolios is nonnegative. 

 Following Pástor et al. (2021), portfolio returns may depend on a variety of instruments 

related to either the customer channel or the investor channel in the agent’s information sets. 

Specifically, we use information about natural disasters and climate policy uncertainty. The 

sign of the equation does not change when both sides of Eq. (3) are multiplied by nonnegative 

instruments 𝑧𝑡
+. Therefore, we obtain: 

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1) ⊗ 𝑧𝑡
+ − 𝜃𝐷𝑧+] = 0 ,        (4) 

where 

𝜃𝐷𝑧+ = 𝐸[𝐷𝑡 ⊗ 𝑧𝑡
+] ≥ 0 . (5) 

Since we have two instruments, we expand the restrictions given in Eqs. (4) and (5) as a 

system of 2-moment conditions: 

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧1𝑡
+ ] =  𝜃𝐷𝑧1

+

𝐸[(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧2𝑡
+ ] =  𝜃𝐷𝑧2

+

(6) 

 𝐻0: 𝜃𝐷𝑧𝑖
+ ≥ 0             ∀𝑖= 1, 2 

𝐻𝐴: 𝜃𝐷𝑧𝑖
+ ∈ 𝑅𝑁  

We calculate the unrestricted estimate (sample mean) and the restricted estimate 

nonnegative under the null by using non-parametric approach. Then, we test the difference 

between unrestricted and restricted estimators that under the null, the difference should be 

small. The test statistic is calculated as the Wald statistic, and the statistic is distributed as a 

weighted sum of chi-squared variables with different degrees of freedom (Wolak, 1989). The 

p-value is calculated based on 1000 draws from Monte Carlo simulations. The detailed 

procedure for conducting the multivariate inequality testing is described in the Appendix. 
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Following Boudoukh et al. (1993), we construct dummy and magnitude-based instruments. 

Specifically, we use their median as a threshold to construct nonnegative instruments. For 

dummy instruments, we define as following 

𝑧𝑖𝑡
∗ = {

1
0

 𝑖𝑓 𝑥𝑖𝑡 >  𝑥𝑖𝑡
𝑚𝑒𝑑  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7) 

where 𝑥𝑖𝑡  are number of natural disasters and CPU index in each month, whose median is 

denoted as 𝑥𝑖𝑡
𝑚𝑒𝑑. 

Since the dummy instruments may not utilize all available information up to month t, we 

also generate magnitude-based instruments to consider their magnitude. For magnitude-based 

instruments, we define as following 

𝑧𝑖𝑡
∗ = max(0, 𝑥𝑖𝑡 − 𝑥𝑖𝑡

𝑚𝑒𝑑) (8) 

The instruments are normalized as 𝑧𝑖𝑡
+  =  1/𝐸[𝑧𝑖𝑡

∗ ] if 𝑧𝑖𝑡
∗ ≠ 0, and 𝑧𝑖𝑡

+  =  0 otherwise. This 

normalization ensures that these instruments have a clear economic interpretation. For 

example, 𝜃𝐷𝑧2
+  is the sample mean of brown-minus-green returns conditional on a high CPU. 

We also apply the inequality tests for market beta, semibetas and idiosyncratic risk. 

However, regarding risk metrics, we test the null that green-minus-brown risk metrics are 

greater than or equal to zero instead of brown-minus-green as returns. We would like to 

examine whether we reject the null that green-minus-brown risk metrics being nonnegative. If 

we reject the null, we could conclude that brown portfolio is riskier than green portfolio 

conditional on instruments. 

4 Empirical findings 

4.1 Preliminary results 

We first examine the unconditional tests of portfolios returns including risk-adjusted returns 

estimated from CAPM and four Carhart factors with oil returns, the results of which are 

reported in Table 2. At first glance, we observe the insignificant of nonnegative returns of green 

and brown portfolios returns, although we can reject the null that green and brown portfolios 

returns are nonnegative for both risk-adjusted returns, namely p-values are 0.016 and 0.000 for 

“green” and “brown” portfolios, respectively. We are more interested in the brown-minus-

green portfolios, as can be seen, apart from the marginal rejection of the null that brown-minus-

green mean return is nonnegative for raw returns (p-values = 0.083), we cannot reject the null 

that brown-minus-green mean return is nonnegative for both risk-adjusted returns (p-values = 
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0.113 and 0.259). These preliminary results of unconditional tests indicate that green portfolios 

do not outperform brown ones. 

 Table 2 also reports the differences of the “green” and “brown” for their market beta, 

realized semibetas and idiosyncratic risk, respectively. In particular, we cannot reject the null 

that market beta of “green” portfolio is greater than or equal to that of “brown” portfolio. 

Regarding realized semibetas, especially 𝛽̂𝑁 , the covariance between negative portfolios 

returns and negative market returns, we cannot reject the null the 𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑁  is greater than or equal 

to 𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑁 . This is similar to  𝛽̂𝑃, the covariance between positive portfolios returns and positive 

market returns. However, we reject the null that “green” portfolio has a higher 𝛽̂𝑀−
, the 

covariance between positive portfolios returns and negative market returns, and 𝛽̂𝑀+
, the 

covariance between negative portfolio returns and positive market return, than the “brown” 

portfolio. In addition, there is a rejection of the null that idiosyncratic risk of the “green” 

portfolio is higher than or equal to that of the “brown” portfolio with p-value of 0.003. We also 

find weak evidence that fund flow to green ETFs is greater than that to brown ETFs. In general, 

unconditional tests indicate that brown portfolio is not riskier than green portfolio.  

[Insert Table 2 Here]  
 

4.2 Testing on CAPM-adjusted returns: 

We use CAPM-adjusted returns to test the first hypothesis. Table 3 reports conditional mean 

returns and test statistics. The multiple inequality restriction statistics are 1.879 (p-value = 

0.086) and 4.757 (p-value=0.014) for dummy and magnitude-based instruments. We jointly 

reject the null that brown-minus-green return is greater than or equal to zero in conditional tests 

using magnitude-based instruments at 5% level of significance. Indeed, when we change from 

dummy instruments to magnitude-based instruments, brown-minus-green mean returns are 

more negative. For example, conditional on Climate Policy Uncertainty (CPU), mean returns 

decreases from -1.562 to -3.738%.  Compared to unconditional mean return of -0.675% (p-

value=0.113), we find strong evidence about outperformance of green portfolio relative to 

brown portfolio by taking magnitude of instruments into account. The result supports 

prediction from Pástor et al. (2021)’s model.  

 Furthermore, we test whether that brown (green) portfolio return is nonnegative 

conditional on instruments. The results are reported in columns 3, 4, 6 and 7.  Regarding brown 

portfolio return, we reject the null that brown portfolio mean return is nonnegative, which is 
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consistent with unconditional test. The multiple statistics are significant at 1% level. Compared 

to unconditional mean returns which is-1.552%, incorporating instruments make the brown 

portfolio returns more negative, i.e., conditional mean returns are -2.371% and -2.477% 

associated with natural disasters and CPU, respectively. In particular, the results of  green 

portfolio returns based on our conditional tests are more persuasive. Recalling the significant 

negative green portfolio risk-adjusted returns in Table 2, our conditional tests reveal that we 

cannot  reject the green portfolio returns are nonnegative, whose p-values are0.218and 0.210 

for dummy and magnitude-based instruments, respectively. For a better illustration, the mean 

returns of brown and green portfolios are graphed in Figure 1. Compared to unconditional mean 

return,  the brown portfolio returns are more negative when conditional on instruments of 

natural disasters and CPU. The differences are much more substantial for green returns, 

compared to the unconditional return of -0.88%, the mean return conditional on CPU is 

1.261%.  

 In general, conditional tests on CAPM-adjusted returns support hypothesis 1 that the 

green portfolio return is higher than the brown portfolio one conditional on climate-related 

instruments. Our results also are consistent with predictions of Pástor et al. (2021)’s model. In 

addition, the results show the significant impact of Climate Policy Uncertainty (CPU) on green 

and brown portfolios returns. According to Krueger et al. (2020), institutional investors believe 

that regulatory risks due to climate change have begun to materialize already. Our conditional 

tests show not only the outperformance of green portfolio relative to brown one but also 

nonnegative mean return during high CPU. In addition to provide formal tests on the impact of 

climate related policies and events on the energy industry motivated by van Benthem et al. 

(2022), our findings have explicit hedge implications of green (clean energy) assets against 

climate risks, including regulatory risks.  

[Insert Table 3 Here] 

[Insert Figure 1 Here] 

4.3 Testing on market beta and semibteas 

For the second hypothesis, we begin with testing the null that the market beta of the “green” 

(clean) portfolio is greater than or equal to that of the “brown” (fossil) portfolio, whose results 

are reported in Table 4. Specifically, market betas are estimated based on CAPM with 36-

month rolling window regressions. As is shown that the multiple inequality restrictions statistic 

is 2.259 (p-value = 0.067) and 2.962 (p-value = 0.043) for dummy and magnitude-based 
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instruments, respectively. Therefore, we reject the null that the green-minus-brown market beta 

is nonnegative. While the unconditional green-minus-brown market beta is significantly 

nonnegative (0.019 from Table 2), conditional tests indicate that green-minus-brown market 

beta is negative. Similar to comparisons of return performances, the magnitude-based 

instruments conditional tests present more significant results than that of the dummy-based 

ones, and the difference of (green-minus-brown) market beta is wider when changing from 

dummy to magnitude-based instruments. For example, it decreases from 0.004 to -0.027 for 

natural disaster instrument and from -0.118 to -0.245 for CPU instrument.   

Specifically, Figure 2 shows changes in market betas when we consider instruments. 

Unconditionally, green portfolio has a slightly higher market beta than brown portfolio, namely 

1.37 and 1.35. However, when conditioning instruments related to natural disasters and 

especially CPU, the increase in market beta of brown portfolio is higher than that of green 

portfolio. For example, market beta of brown portfolio is 1.59 and market beta of green 

portfolio is 1.34 conditional on CPU.  

Overall, our results support hypothesis 2a that the brown portfolio has higher market 

betas than the green portfolio under the conditional setting. The results provide explicit 

implications on market beta hedging and reducing the overall beta of a portfolio by longing 

assets with offsetting betas. In addition, our results complement results of Ma et al. (2022) by 

showing the difference in comovement between brown and green assets under the impact of 

climate risks. 

[Insert Table 4 Here] 

[Insert Figure 2 Here] 

4.4 Testing on Semibetas 

Due to an extensive literature questioning the ability of the standard market beta explaining the 

cross-sectional variation in asset returns, we decompose market beta into four realized 

semibetas as proposed by Bollerslev et al. (2021): 

𝛽̂𝑡,𝑖  ≡  
∑ 𝑟𝑡,𝑘,𝑖𝑓𝑡,𝑘

𝑚
𝑘=1

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

=  𝛽̂𝑡,𝑖
𝑁 + 𝛽̂𝑡,𝑖

𝑃 −  𝛽̂𝑡,𝑖
𝑀+

−  𝛽̂𝑡,𝑖
𝑀−

(9) 

Let  𝑟𝑡,𝑘,𝑖 denote returns on asset 𝑖 over the 𝑘𝑡ℎ time interval within some fixed period 

𝑡, with the concurrent returns for the aggregate market denoted by 𝑓𝑡,𝑘, namely 𝑘 is a day and 

𝑡 is a month in the study. The decomposition is based on semicovariance concept of Bollerslev 
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et al. (2020). Let 𝑟 and 𝑓 denote returns on some risky assets and aggregate market portfolio, 

respectively. Specifically, 𝑁, 𝑃, 𝑀+, 𝑎𝑛𝑑 𝑀− semicovariance components refer to respective 

portions of total covariance 𝐶𝑜𝑣(𝑟, 𝑓) defined by both returns being positive (𝑃 state), both 

returns being negative (𝑁), mixed sign with positive market return (𝑀+), and mixed sign with 

negative market return (“𝑀− ”). Defined the signed intra-period asset returns by 𝑟𝑡,𝑘,𝑖
+  ≡

max (𝑟𝑡,𝑘,𝑖, 0) and 𝑟𝑡,𝑘,𝑖
−  ≡ min (𝑟𝑡,𝑘,𝑖, 0), with the signed intra-period market returns defined 

analogously. The realized semibetas are then defined by: 

𝛽̂𝑡,𝑖
𝑁  ≡  

∑ 𝑟𝑡,𝑘,𝑖
−𝑚

𝑘=1 𝑓𝑡,𝑘
−

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

, 𝛽̂𝑡,𝑖
𝑃  ≡  

∑ 𝑟𝑡,𝑘,𝑖
+𝑚

𝑘=1 𝑓𝑡,𝑘
+

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

𝛽̂𝑡,𝑖
𝑀−

≡  
− ∑ 𝑟𝑡,𝑘,𝑖

+𝑚
𝑘=1 𝑓𝑡,𝑘

−

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

, 𝛽̂𝑡,𝑖
𝑀+

≡  
− ∑ 𝑟𝑡,𝑘,𝑖

−𝑚
𝑘=1 𝑓𝑡,𝑘

+

∑ 𝑓𝑡,𝑘
2𝑚

𝑘=1

(10) 

 

where m denotes the number of higher-frequency return intervals within each time period.  

Table 5 reports the results of inequality tests on the null that green-minus-brown 

semibetas are nonnegative.  We focus on 𝛽̂𝑁 (covariance between negative portfolio returns 

and negative market returns), since investors care more about downside variations, then the 

covariation associated with positive aggregate market returns should not be priced in 

equilibrium. Subsequently, the downside beta can better explain the cross-sectional variation 

in equity returns and provides superior predictions, see relevant findings in Ang et al., (2006) 

and Bollerslev et al. (2021). As reported, the multiple inequality restrictions statistics are 6.252 

(p-value=0.006) for dummy instruments and 5.770 (p-value=0.008) for magnitude-based 

instruments. Therefore, brown portfolio has higher 𝛽̂𝑁 than green portfolio. In other words, 

when market returns go down, brown portfolio returns go down more than green ones.  

Interestingly, this has not be found in the unconditional study which does not reject 

green-minus-brown 𝛽̂𝑁   is nonnegative (Table 2). When conditioning instruments, green-

minus-brown 𝛽̂𝑁 are -0.032 and -0.104 associated with natural disasters and CPU. They are 

higher than the unconditional estimate, -0.015. Specifically, Figure 3 shows during period of 

high CPU, while brown portfolios 𝛽̂𝑁  appears to go down slightly compared to its 

unconditional 𝛽̂𝑁 from 0.65 to 0.63, brown portfolios 𝛽̂𝑁 decreases significantly from 0.63 to 

0.53. 
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 The results are supported by Giglio et al. (2021). Their argument is that climate shocks 

could negatively affect the market but favour green assets because of their ability to hedge 

climate risks. Pástor et al.(2021) also suggest that while climate shocks negatively affect the 

economy, they favour the “green” assets because of their hedging ability and shifts in investor 

preferences for sustainability. Therefore, it is plausible that conditional means of 𝛽̂𝑡,𝑖
𝑁 , the 

covariance between negative portfolio and market returns, of the “green” portfolio tend to be 

lower compared to the unconditional mean in the states of high investor’s preferences for 

“green” holding.  

Furthermore, conditional tests show that brown portfolio has higher 𝛽̂𝑁 and 𝛽̂𝑀+
 than 

green portfolio. However, brown portfolio does not have higher 𝛽̂𝑀−
 and 𝛽̂𝑃  than green 

portfolio. This implies that brown portfolio appears riskier than green portfolio during periods 

of high natural disasters and especially CPU. For example, during periods of high CPU, when 

market return goes down, brown portfolios return tends to go down more than green portfolios. 

In general, our results support conjecture that brown (fossil fuel) portfolio is riskier than green 

(clean energy) portfolio during high climate risks and particularly in the market downside 

periods. 

[Insert Table 5 Here] 

[Insert Figure 3 Here] 

 

4.5 Testing on Idiosyncratic volatility 

There is a plethora of literature linking idiosyncratic volatility to cross-sectional returns 

(Campbell, et al., 2001; Ang, et al., 2006). Next, we move our attention to idiosyncratic 

volatilities of green and brown portfolios, which are conventionally calculated as the standard 

deviation of residuals from the CAPM model. Table 6 reports the multiple inequality testing 

on the null that the idiosyncratic volatility of the “green” (clean) portfolio is higher than or 

equal to that of the “brown” (fossil) portfolio.  

Specifically, we reject the null at 1% level for dummy and magnitude-based 

instruments. Table 6 shows that the multiple inequality restriction statistics are 13.881 (p-value 

= 0.000) and 12.232 (p-value = 0.000). Compared to the unconditional volatility of -0.933, the 

conditional volatilities associated with natural disasters and CPU are -1.329 and -1.346 for 
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dummy instruments and -1.591 and -1.819 for magnitude-based instruments. This indicates 

that these instruments are informative about the volatility of clean and fossil portfolios.  

Figure 4 shows how instruments affect idiosyncratic risks of green and brown 

portfolios. Specifically, the green-minus-brown idiosyncratic risk is more negative because, 

after conditioning instruments, the brown portfolio is more volatile than the green one. For 

example, compared to the unconditional idiosyncratic risk of 4.86 %, conditional estimates are 

5.22% and 6.17% associated with natural disasters and Climate Uncertainty Policy (CPU). In 

contrast, the green portfolios volatility is less affected by instruments. Compared to 

unconditional mean volatility of 3.93%, conditional estimates are 3.63% and 4.35% associated 

with natural disasters and CPU, respectively.  

Therefore, our results support the hypothesis that the brown portfolio has a higher 

idiosyncratic risk than the green portfolio conditional on climate-related information. The high 

idiosyncratic risk of the brown portfolio is plausible because fossil fuel firms increasingly face 

lawsuits related to climate change and the effects of climate activism actions such as the Global 

Climate Strike on March 15, 2019 (Ramelli, et al., 2021).  

[Insert Table 6 Here] 

[Insert Figure 4 Here] 

5 Further Analysis and Robustness checks 

5.1 Non-fundamental demands for brown and green ETFs 

Brown et al. (2021) and Davies (2022) find that ETF fund flows signal about non-

fundamental demand for assets. Following them, we define ETF fund flows as percentage 

change in ETF shares outstanding for fund 𝑖 at time 𝑡denoted by 𝑆𝑂𝑖,𝑡 

𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =
𝑆𝑂𝑖,𝑡

𝑆𝑂𝑖,𝑡−1
− 1 (11) 

We adjust fund flows to control for factors affecting ETF fund flows. Specifically, for 

each ETF, we run time-series regression as follows 

𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =  𝑎𝑡 + 𝛾𝑡𝐶𝑡−1 +  𝜖𝑖,𝑡 (11)  

where 𝐶 denotes control variables including fund returns, fund volatilities and oil returns. We 

measure adjusted fund flows for each ETF fund as follows  

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 =  𝐸𝑇𝐹 𝐹𝑙𝑜𝑤𝑖,𝑡 − 𝛾𝑡𝐶𝑡−1 (12)   
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 We take the average of green and brown ETFs adjusted flows as measures for greens 

and brown flows. We hypothesize that the green flow is higher than brown flow conditional on 

climate-related instruments. Specifically, we test the null that brown-minus-green flow is 

nonnegative. As reported in Table 2, the brown-minus-green flow is unconditionally -0.038 

and it is significant at the 10% level. For a comparison, our conditional results reported in Table 

7 provide statistically strong evidence that the green flow is higher than the brown flow, i.e., 

the multiple test statistics are 4.753 (p-value=0.014) and 6.355 (p-value=0.006) for dummy and 

magnitude-based instruments.  

 We observe that the difference of brown and green is broader when changing from 

dummy to magnitude-based instruments, i.e., the brown-minus-green flow is more negative. 

For example, it decreases from -0.026 to -0.032 conditional on natural disasters and from -

0.063 to -0.114 conditional on CPU. Therefore, using magnitude-based instruments result in a 

strong rejection of brown-minus-green flow being nonnegative. Figure 5 shows during periods 

of a high number of natural disasters, the brown flow is negative (-0.01). Also, during periods 

of high CPU, we have a high green flow, while brown flow appears unchanged. For example, 

compared to unconditional green flow (0.05), the green flow conditional on CPU is 0.13.   

 The result of higher green flow implies that climate-related information affects non-

fundamental demand for green and brown assets,  . and the non-fundamental demand based on 

ETF flow can be used to measure investor sentiment as indicated in Davies (2022). Our 

findings provide evidence about the impact of climate-related information on investor 

sentiment for green and brown assets because the non-fundamental shocks to ETFs can be 

transmitted to the underlying assets and can propagate into underlying asset prices. In addition, 

ETF flows also provide informative signals of non-fundamental demand shocks and that 

conditioning on these signals yields return predictability. 

 

[Insert Table 7 Here] 

[Insert Figure 5 Here] 

5.2 Conditioning bad economic periods 

In this section, we use economic instruments to examine whether our results are driven 

by certain economic conditions instead of climate-related information. An argument is that the 

underperformance of brown portfolio may be due to low demand for fossil fuel energy during 

bad economic periods. Following Bansal et al. (2022), we use cyclically-adjusted real P/E 
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(CAPE) ratios and NBER-based recessions to construct nonnegative instruments related to bad 

economic periods as follows 

𝑧𝐶𝐴𝑃𝐸𝑡
∗ = {

1
0

      
𝑖𝑓 𝑥𝑖𝑡 <  𝑚𝑒𝑑𝑖𝑎𝑛 (10 𝑦𝑒𝑎𝑟 𝑟𝑜𝑙𝑙𝑖𝑛𝑔)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13) 

𝑧𝑁𝐵𝐸𝑅𝑡
∗ = {

1
0

 
    𝑖𝑓 𝑁𝐵𝐸𝑅 𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 Similar to climate instruments, we normalize economic instruments. Also, we construct 

a magnitude-based instrument for CAPE as max [0, −(𝐶𝐴𝑃𝐸𝑡 − 𝑚𝑒𝑑𝑖𝑎𝑛)]. Panel A of Table 

8 provides conditional tests based on economic cycle instruments. The multiple inequality 

statistics are 1.503 (p-value=0.109) and 1.445 (p-value=0.115) for dummy and magnitude-

based instruments. Therefore, we fail to reject the null that the brown-minus-green return is 

nonnegative in recession economic periods. In other words, there is no evidence that the green 

portfolio outperforms the brown one conditional on bad economic instruments. Although the 

brown-minus-green return is negative conditional on NBER, its standard error is high, and the 

joint test does not indicate a rejection. In contrast to results using climate instruments, we can 

not reject that null that the brown mean return is nonnegative during bad economic periods. 

Therefore, climate-related instruments are more informative about outperformance of the green 

portfolio relative to the brown one. 

Panel B of Table 8 provides conditional tests using climate-related instruments during 

NBER-based economic recessions. For example, for dummy instruments, they will take a value 

of 1 if both natural disasters (CPU) > its median and NBER-based recession = 1, and zero 

otherwise. In the same measure, we also construct magnitude-based instruments. While the test 

statistic is 1.556 (p-value=0.106) for dummy instruments, it is 3.011 (p-value=0.042) for 

magnitude-based instruments. Therefore, we find that the green portfolio outperforms the 

brown one in conditional test with magnitude-based instruments. Indeed, brown-minus-green 

returns are more negative when switching from dummy to magnitude-based instruments. For 

example, while brown-minus-green returns are -3.167% and -3.584% for dummy instruments, 

they are -6.425% and -5.689% for magnitude-based instruments. In addition, when 

conditioning instruments, green (brown) returns are positive (negative). Compared to results in 

Table 3, brown-minus-green returns are much lower. This indicates that the  outperformance 

of the green portfolio relative to the brown one is more pronounced when climate risks are high 

during economic recession periods.  

[Insert Table 8 Here] 
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5.3 Controlling for Carhart four factors and oil returns 

For a further robustness check, we use returns adjusted by four Carhart factors and oil 

returns. The results reported in Table 9 are consistent with those in Table 3. Specifically, we 

find evidence that green portfolios return is higher than brown portfolios in conditional test 

with magnitude-based instruments. For example, the test statistic is 3.050 (p-value=0.039). 

Conditional brown-minus-green returns are -0.797% and -2.801% associated with natural 

disasters and CPU. We reject the null that brown portfolio has a nonnegative mean return 

conditional on instruments. Also, conditional tests show that green portfolio has a nonnegative 

mean return. The test statistics are 0.849 (p-value=0.179) and 1.069 (p-value=0.145) for 

dummy and magnitude-based instruments.  

Similar to CAPM-adjusted returns, green and brown portfolios have unconditionally 

negative mean returns and we cannot reject the null that brown-minus-green return is 

unconditional nonnegative, which is reported in Table 2. However, when incorporating 

instruments into tests, we find evidence about outperformance of green portfolio relative to 

brown portfolio and evidence about nonnegative mean return of green portfolio. Overall, our 

main findings are still robust when we control for more factors.6 

[Insert Table 9 Here] 

5.4 Alternative instruments 

We use the cost of natural disasters to reconstruct an instrument instead of using the 

number of natural disasters each month. Specifically, we define the natural disaster instrument 

by comparing the cost caused by natural disasters in each month to median cost in the sample. 

We replicate results in Table 3 using the new instruments, which are reported in Table 10. The 

results are qualitatively similar to the main findings in Table 3. For example, we reject the null 

that brown-minus-green returns are nonnegative. The multiple statistics are 1.932 (p-

value=0.084) and 4.727 (p-value=0.014) for dummy and magnitude-based instruments. In 

addition, the magnitudes of brown-minus-green returns conditional on natural disasters and 

CPU are close to results in Table 3. Using the new instrument, we still reject the null that brown 

portfolios returns are nonnegative, i.e., p-value = 0.001, and fail to reject the null that green 

portfolio has nonnegative mean return, i.e., p-value = 0.180 and 0.416. 

Furthermore, we reconstruct instruments by using the 75% quantile as a threshold 

instead of the median. In other words, instruments capture extreme values of the number of 

 
6 Results with the raw returns are qualitatively the same, as reported in Appendix A2 (Table A2.2) 
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natural disasters and CPU. Panel B of Table 10 reports the conditional tests with the 75%-

quantile instruments. The results are more statistically significant. The test statistics are 3.979 

(p-value=0.024) and 4.994 (0.012) for dummy and magnitude-based instruments. The results 

are also more economically significant compared to those using median-based instruments. 

Regarding dummy instruments, brown-minus-green returns are -1.8 % and 4.236% associated 

with natural disasters and CPU. Regarding magnitude-based instruments, brown-minus-green 

returns are -2.089 % and 4.335% associated with natural disasters and CPU. Overall, our results 

are still robust. 7 

[Insert Table 10 Here] 

6 Conclusions 

            The evidence of green and brown assets performances is becoming intriguing in 

empirical finance in particular with debatable findings. This paper provides rigorous 

comparisons of green and brown portfolios constructed from clean and fossil energy ETFs. Our 

paper studies their returns performances differences and also the associated risk measurements 

by using multiple inequality tests.  While most papers focus on unconditional studies, we 

present novel evidence under conditional settings. Our conditional study uses variables of 

natural disasters and the Climate Policy Uncertainty (CPU) index, which are the most climate-

related instruments.  

We find that adjusted green portfolios outperform brown ones when including climate-

related information, and this outperformance is not found in unconditional tests. Our results 

also show that the brown portfolio has a higher market beta, and we further report that the 

brown portfolio’s high systematic risk is mainly due to downside covariations. We provide new 

evidence that green fund flow is higher than the brown one. For the robustness check, we have 

examined if our findings are driven by economic cycles instead of climate-related information, 

we have also demonstrated that our results are robust to Carhart’s four-factor models and 

alternative specifications of climate-related instruments. Our study contributes to the 

understanding of the difference in performances of green and brown portfolios and the 

associated risks. The results emphasize the impact of climate-related information on investment 

decisions and have important implications for investors constructing portfolio allocations 

hedging climate change risks. 

 
7 Similarly, results are more statistically and economically significant for 4FF-oil returns, market beta, semibetas, 

idiosyncratic risk and fund flows. Those are reported in Appendix A2 (Table A2.3-A2.7) 
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Figure 1. Unconditional mean and conditional portfolios mean returns in the period 2008-2020.  

Figure plots brown and green portfolios mean returns. These portfolios are formed from fossil fuel and clean 

energy ETFs. Specifically, this figure includes unconditional mean and conditional means weighted by the 

magnitude of number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure 2. Unconditional mean and conditional portfolios 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 in the period 2008-2020.  

Figure plots brown and green portfolios mean 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕. These portfolios are formed from fossil fuel and clean 

energy ETFs. Specifically, this figure includes unconditional mean and conditional mean 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 weighted by 

the magnitude of number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure 3. Unconditional mean and conditional portfolios 𝜷̂𝑵 in the period 2008-2020.  

Figure plots brown and green portfolios mean 𝜷̂𝑵. These portfolios are formed from fossil fuel and clean energy 

ETFs. Specifically, this figure includes unconditional mean and conditional mean 𝜷̂𝑵 weighted by the magnitude 

of number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure 4. Unconditional mean and conditional portfolios idiosyncratic risk in the period 2008-2020.  

Figure plots brown and green portfolios idiosyncratic risk. These portfolios are formed from fossil fuel and clean 

energy ETFs. The figure plots the unconditional and conditional idiosyncratic risk associated with magnitude-

based instruments. The idiosyncratic risk is standard deviation of residuals estimated from CAPM. The 

instruments include number of natural disasters and Climate Policy Uncertainty (CPU). 
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Figure 5. Unconditional mean and conditional portfolios fund flows in the period 2008-2020.  

Figure plots brown and green portfolios fund flows. Brown flow is average of brown ETFs fund flows and green 

flow is average of green ETFs fund flows. The figure plots the unconditional and conditional fund flows associated 

with magnitude-based instruments. Fund flows are adjusted by past fund return, fund volatility and oil return. The 

instruments include number of natural disasters and Climate Policy Uncertainty (CPU). 
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Table 1 

Descriptive statistics 

Panel A reports correlation estimates between energy ETFs, including four clean energy ETFs, i.e., iShares Global Clean Energy 

ETF (ICLN), Invesco WilderHill Clean Energy ETF (PBW), Invesco Global Clean Energy ETF (PBD) and First Trust NASDAQ 

Clean Edge Green Energy Index Fund (QCLN), and four fossil fuel energy ETFs, i.e., Energy Select Sector SPDR Fund (XLE), 

Vanguard Energy ETF (VDE), SPDR S&P Oil & Gas Exploration & Production ETF (XOP) and VanEck Vectors Coal ETF 

(KOL). Panel B reports summary statistics for ETFs returns, natural disasters and Climate Policy Uncertainty (CPU) over the 

sample period from June 2008 to December 2020.  

Panel A: Correlation 

  ICLN PBW QCLN PBD XLE VDE XOP KOL 

ICLN 1        

PBW 0.886 1       

QCLN 0.873 0.955 1      

PBD 0.935 0.933 0.932 1     

XLE 0.566 0.64 0.646 0.666 1    

VDE 0.569 0.645 0.649 0.669 0.998 1   

XOP 0.515 0.589 0.605 0.614 0.943 0.951 1  

KOL 0.648 0.622 0.635 0.716 0.664 0.666 0.613 1 

Panel B: Descriptive statistics        

Variable N Mean 25th Median 75th Std.Dev Skewness Kurtosis 

ICLN 151 0.237 -4.340 0.846 5.483 9.240 -0.906 2.687 

PBW 151 0.568 -5.106 0.733 6.273 9.858 0.147 2.974 

QCLN 151 1.099 -3.936 1.561 6.324 9.111 -0.204 1.964 

PBD 151 0.596 -4.443 1.014 5.161 8.558 -0.356 2.561 

XLE 151 0.008 -3.515 0.870 3.875 7.759 -0.118 4.042 

VDE 151 -0.043 -3.721 1.079 3.881 7.993 -0.135 4.190 

XOP 151 -0.208 -5.479 -0.104 5.813 11.696 0.787 6.889 

KOL 151 -0.362 -5.937 -0.435 5.437 10.348 -0.135 2.237 

Green portfolio 151 0.583 -4.344 0.860 5.624 8.912 -0.424 2.469 

Brown portfolio 151 -0.193 -4.635 0.310 4.737 8.694 -0.023 2.819 

Natural disaster (number) 165 1.618 1.000 1.000 2.000 1.005 1.937 6.849 

CPU 151 125.009 72.435 104.32 159.90 84.153 2.242 8.340 
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Table 2 

Unconditional tests for “Brown” and “Green” portfolios 

This table reports mean values and one-side (left-tailed) p-values of t-tests over the sample period. Specifically, 

we conduct the unconditional test on raw returns, risk-adjusted returns estimated from CAPM,  and four factor 

Carhart model with oil return, fund flows, market beta, realized semibetas proposed by Bollerslev et al. (2021) 

and idiosyncratic risks estimated from CAPM. 𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐵𝑟𝑜𝑤𝑛  is the average of brown ETFs fund flows and 

𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝑔𝑟𝑒𝑒𝑛 is the average of green ETFs fund flows. Fund flows are adjusted by past fund returns, fund 

volatilities and oil returns. Regarding realized semibetas, 𝑁, 𝑃, 𝑀+, 𝑎𝑛𝑑 𝑀− semicovariance components refer to 

respective portions of total covariance 𝐶𝑜𝑣(𝑟, 𝑓) defined by both returns being positive (𝑃 state), both returns 

being negative (𝑁), mixed sign with positive market return (𝑀+), and mixed sign with negative market return 

(“𝑀−”). The green portfolio constructed by equal-weighted four clean energy ETFs ( ICLN, PBW, QCLN and 

PBD). The brown one is the equal-weighted portfolio of four fossil fuel energy ETFs ( XLE, VDE, XOP and 

KOL).  

Variables Mean P-value 

“Green” return 0.583 0.789 

“Brown” return -0.193 0.393 

“Brown” – “Green” -0.776 0.083 

Risk-adjusted “Green” return (CAPM) -0.877 0.016 

Risk-adjusted “Brown” return (CAPM) -1.552 0.000 

Risk-adjusted “Brown” – “Green” (CAPM) -0.675 0.113 

Risk-adjusted “Green” return (4FF + oil return) -1.014 0.004 

Risk-adjusted “Brown” return (4FF + oil return) -1.363 0.001 

Risk-adjusted “Brown” – “Green” (4FF + oil return) -0.349 0.259 

𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐵𝑟𝑜𝑤𝑛 − 𝐹𝑢𝑛𝑑 𝐹𝑙𝑜𝑤𝐺𝑟𝑒𝑒𝑛  -0.038 0.079 

𝛽̂𝑚𝑎𝑟𝑘𝑒𝑡,𝑔𝑟𝑒𝑒𝑛 − 𝛽̂𝑚𝑎𝑟𝑘𝑒𝑡,𝑏𝑟𝑜𝑤𝑛 0.019 0.757 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑁 − 𝛽̂𝑏𝑟𝑜𝑤𝑛

𝑁  -0.015 0.226 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑀−

− 𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑀−

 -0.006 0.050 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑃 − 𝛽̂𝑏𝑟𝑜𝑤𝑛

𝑃  -0.023 0.140 

𝛽̂𝑔𝑟𝑒𝑒𝑛
𝑀+

− 𝛽̂𝑏𝑟𝑜𝑤𝑛
𝑀+

 -0.017 0.003 

𝐼𝑑𝑖𝑜_𝑟𝑖𝑠𝑘𝑔𝑟𝑒𝑒𝑛 −  𝐼𝑑𝑖𝑜_𝑟𝑖𝑠𝑘𝑏𝑟𝑜𝑤𝑛  -0.933 0.000 
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Table 3 

Conditional test of 𝒓𝒆𝒕𝒃𝒓𝒐𝒘𝒏 − 𝒓𝒆𝒕𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎 (CAPM-adjusted return). 

The table reports multiple inequality tests for CAPM-adjusted returns of brown and green portfolios conditional 

on Natural disasters and the Climate Policy Uncertainty index over the time period 2008-2020. The green portfolio 

includes clean energy ETFs and the brown portfolio includes fossil fuel ETFs. We test the null that brown-minus-

green return ≥ 0 with restrictions corresponding to a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  is the 

conditional mean of brown-minus-green returns in these two climate-related instruments. In addition, we test 

whether brown (green) portfolios returns are nonnegative conditional on the instruments. Also given are the 

standard errors of the conditional means. Note that high (low) is defined as being above (below) the median of 

the instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown-Green Brown Green Brown-Green Brown Green 

Natural Disaster        

Mean 𝜃̂𝐷𝑧1
+ -1.002 -1.930 -0.928 -1.433 -2.371 -0.938 

(Standard error) (1.585) (0.974) (1.191) (1.582) (0.887) (1.171) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -1.562 -1.652 -0.090 -3.738 -2.477 1.261 

(Standard error) (1.140) (0.583) (0.868) (1.714) (1.038) (1.669) 

       

Multiple inequality restriction 

statistic W 1.879 10.009 0.607 4.757 10.581 0.641 

(p-value) (0.086) (0.001) (0.218) (0.014) (0.001) (0.210) 
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Table 4 

 Conditional tests of 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕,𝒈𝒓𝒆𝒆𝒏 −  𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕,𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎. 

The table reports multiple inequality test for 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  of brown and green portfolios conditional on Natural 

disasters and the Climate Policy Uncertainty index over the time period 2008-2020. The green portfolio includes 

clean energy ETFs and the brown portfolio includes fossil fuel ETFs. We test the null that the green-minus-brown 

𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  ≥ 0 with restrictions corresponding to a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). Besides dummy instruments, the test uses the magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  is the 

conditional mean of green-minus-brown 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  in these states. Also given are the standard errors of the 

conditional means. Note that high (low) is defined as being above (below) the median of the instrumental 

variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using the method of 

Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ 0.004 -0.027 

(Standard error) (0.123) (0.116) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -0.118 -0.245 

(Standard error) (0.078) (0.143) 

   

Multiple inequality restriction statistic W 2.259 2.962 

(p-value) (0.067) (0.043) 
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Table 5 

Conditional test of 𝒔𝒆𝒎𝒊𝒃𝒆𝒕𝒂𝒈𝒓𝒆𝒆𝒏 − 𝒔𝒆𝒎𝒊𝒃𝒆𝒕𝒂𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎.   

This table provides the multiple inequality tests on the null that green-minus-brown semibetas  ≥ 0 conditional on large number of Natural disasters and high Climate Policy 

uncertainty (CPU). The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the estimate of the conditional green-minus-brown semibeta . All standard errors are 

calculated via the Newey & West (1987) heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator. Note that high (low) is defined as being above 

(below) the median of the instrumental variables. The statistic’s p-value is calculated using Monte Carlo simulations. 

  Dummy Instruments Magnitude-based Instruments 

Statistic 𝜷̂𝑵 𝜷̂𝑴−
 𝜷̂𝑷 𝜷̂𝑴+ 𝜷̂𝑵 𝜷̂𝑴−

 𝜷̂𝑷 𝜷̂𝑴+ 

Natural Disasters            
Mean 𝜃̂𝐷𝑧1

+  -0.005 -0.008 0.009 -0.029 -0.032 -0.010 0.009 -0.031 

(Standard error) (0.030) (0.007) (0.064) (0.017) (0.036) (0.009) (0.070) (0.015) 
         

Climate Policy Uncertainty         

Mean 𝜃̂𝐷𝑧2
+   -0.061 -0.009 -0.012 -0.034 -0.104 -0.004 0.053 -0.035 

(Standard error) (0.024) (0.006) (0.035) (0.013) (0.044) (0.010) (0.055) (0.022) 
         

         
Multiple inequality restriction 

statistic W 6.252 3.205 0.116 7.007 5.770 1.404 0.000 4.527 

(p-value) (0.006) (0.036) (0.365) (0.004) (0.008) (0.116) (0.500) (0.017) 
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Table 6 

 Conditional test of 𝒊𝒅𝒊𝒐_𝒓𝒊𝒔𝒌𝒈𝒓𝒆𝒆𝒏 −  𝒊𝒅𝒊𝒐_𝒓𝒊𝒔𝒌𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎. 

This table provides the multiple inequality tests on whether green-minus-brown idiosyncratic risk ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. The idiosyncratic risk is the standard 

deviation of residuals estimated from CAPM. The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is the 

estimate of conditional green-minus-brown idiosyncratic risk in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the median of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ -1.329 -1.591 

(Standard error) (0.469) (0.483) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -1.346 -1.819 

(Standard error) (0.366) (0.651) 

   

Multiple inequality restriction statistic W 13.881 12.232 

(p-value) (0.000) (0.000) 

 

Table 7 

Conditional test of 𝒇𝒖𝒏𝒅_𝒇𝒍𝒐𝒘𝒔𝒃𝒓𝒐𝒘𝒏 −  𝒇𝒖𝒏𝒅_𝒇𝒍𝒐𝒘𝒔𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎. 

This table provides the multiple inequality tests on the null that brown-minus-green fund flows ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. Fund flows are adjusted by the past 

month oil return, fund return and fund volatility. The tests use a dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is 

the estimate of conditional brown-minus-green fund flows in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the median of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean  𝜃̂𝐷𝑧1
+ -0.026 -0.032 

(Standard error) (0.014) (0.014) 

   

Climate Policy Uncertainty (CPU)   

Mean  𝜃̂𝐷𝑧2
+ -0.063 -0.114 

(Standard error) (0.053) (0.094) 

   

Multiple inequality restriction 

statistic W 4.753 6.355 

(p-value) (0.014) (0.006) 
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Table 8 

Conditional test of 𝑪𝑨𝑷𝑴_𝒓𝒆𝒕𝒃𝒓𝒐𝒘𝒏 − 𝑪𝑨𝑷𝑴_𝒓𝒆𝒕𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎 with economic instruments 

The table reports multiple inequality tests for CAPM-adjusted returns of green and brown portfolios over the 

period 2008-2020. We test the null that the brown-minus-green returns with restrictions corresponding to bad 

economic periods proxied by low CAPE and NBER recession. Besides dummy instruments, the test uses 

magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the estimate of the conditional mean of brown-minus-green returns in these 

states. In addition, we test whether brown (green) portfolios returns are nonnegative conditional on these states. 

Also given are the standard errors of the conditional means. Note that low CAPE is defined as being below the 

median of 10-year rolling window. Panel A reports the results conditional on instruments indicating bad economic 

periods, and Panel B reports the results conditional on high number of Natural disasters and high CPU during 

NBER-based recession periods. All estimates are adjusted for conditional heteroskedasticity and serial correlation 

using the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

Panel A Tests conditional on instruments indicating bad economic periods 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

CAPE       

Mean 1.627 -0.631 -2.258 1.490 0.839 -0.651 

(Standard error) (0.885) (0.571) (0.952) (0.867) (2.099) (2.561) 

       

NBER       

Mean -3.340 -1.408 1.932 -3.372 -0.985 2.387 

(Standard error) (2.724) (1.430) (3.210) (2.805) (3.311) (5.362) 

       

Multiple inequality restriction 

statistic W 
1.503 1.718 5.626 1.445 0.088 0.065 

(p-value) (0.109) (0.096) (0.009) (0.115) (0.379) (0.391) 

Panel B Tests conditional on high number of Natural disasters and high CPU during recession. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster       

Mean -3.167 -0.485 2.682 -6.425 -2.389 4.037 

(Standard error) (5.641) (2.696) (5.171) (6.266) (2.572) (7.297) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean -3.584 -0.825 2.759 -5.689 -1.292 4.398 

(Standard error) (2.873) (1.467) (3.067) (3.279) (1.916) (10.121) 

       

Multiple inequality restriction 

statistic W 
1.556 0.316 0.000 3.011 0.862 0.000 

(p-value) (0.106) (0.287) (0.502) (0.042) (0.177) (0.684) 
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Table 9 

Conditional test of 𝒓𝒆𝒕𝒖𝒓𝒏𝒃𝒓𝒐𝒘𝒏 − 𝒓𝒆𝒕𝒖𝒓𝒏𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎 (Carhart + oil returns). 

The table reports multiple inequality test for 4FF and oil-adjusted returns of brown and green portfolios 

conditional on Natural disasters and the Climate Policy Uncertainty index over the period 2008-2020. The green 

portfolio includes clean energy ETFs and the brown portfolio includes fossil fuel ETFs.  Portfolio returns are 

adjusted by the Carhart four factors and oil returns. We test the null that brown-minus-green return ≥ 0 with 

restrictions corresponding to large number of Natural disasters and high Climate Policy uncertainty (CPU). 

Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the conditional mean of brown-

minus-green returns in these states. In addition, we test whether brown (green) portfolios returns are nonnegative 

conditional on these states. Also given are the standard errors of the conditional means. Note that high (low) is 

defined as being above (below) the median of the instrumental variables. All estimates are adjusted for conditional 

heteroskedasticity and serial correlation using the method of Newey and West (1987). The statistic’s p-value is 

calculated using Monte Carlo simulations. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster       

Mean 𝜃̂𝐷𝑧1
+ -0.447 -1.500 -1.054 -0.797 -1.933 -1.136 

(Standard error) (1.541) (0.876) (1.144) (1.460) (0.831) (1.099) 

       

Climate Policy Uncertainty (CPU)       

Mean 𝜃̂𝐷𝑧2
+ -1.077 -1.532 -0.455 -2.801 -2.325 0.476 

(Standard error) (1.088) (0.542) (0.754) (1.604) (0.890) (1.298) 

       

Multiple inequality restriction 

statistic W 0.980 9.707 0.849 3.050 9.872 1.069 

(p-value) (0.163) (0.001) (0.179) (0.039) (0.001) (0.145) 
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Table 10 

Conditional test of 𝒓𝒆𝒕𝒖𝒓𝒏𝒃𝒓𝒐𝒘𝒏 −  𝒓𝒆𝒕𝒖𝒓𝒏𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎  (with alternative instruments) 

Table reports multiple inequality tests for CAPM-adjusted returns of brown and green portfolio conditional on 

Natural disasters and Climate Policy Uncertainty index over period 2008-2020. Panel A represents tests 

conditional on Natural disasters with high cost and high Climate Uncertainty Policy. Besides dummy instruments, 

the test conditions on the magnitude of cost caused by Natural disasters and Climate Policy Uncertainty. Note that 

high (low) is defined as being above (below) the median of the instrumental variables. Panel B represents tests 

with instruments based on 75%-quantile value. Instruments captures number of natural disasters and CPU above 

their 75%-quantile values. Panels report tests on the null that brown-minus-green return ≥ 0 conditional on 

dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  are brown-minus-green returns in these states. We also test 

whether brown (green) portfolios returns are nonnegative conditional on these states. All estimates are adjusted 

for conditional heteroskedasticity and serial correlation using the method of Newey and West (1987). The 

statistic’s p-value is calculated using a Monte Carlo simulation. 

Panel A: Inequality tests conditional on cost caused by natural disasters and high Climate Uncertainty Policy 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster (Cost-based)       

Mean 𝜃̂𝐷𝑧1
+ -0.217 -1.220 -1.003 -1.427 -1.678 -0.251 

(Standard error) (1.201) (0.773) (1.089) (1.575) (0.771) (1.214) 

       

Climate Policy Uncertainty (CPU)       

Mean 𝜃̂𝐷𝑧2
+ -1.562 -1.652 -0.090 -3.738 -2.477 1.261 

(Standard error) (1.124) (0.585) (0.879) (1.719) (1.026) (1.690) 

       

Multiple inequality restriction 

statistic W 1.932 8.917 0.848 4.727 9.848 0.043 

(p-value) (0.084) (0.001) (0.180) (0.014) (0.001) (0.416) 

Panel B: Inequality tests conditional on number of natural disasters and CPU above their 75%-quantile values 

Statistics Dummy instruments Magnitude-based instruments 

 Brown – Green Brown Green Brown – Green Brown Green 

Natural Disaster       

Mean 𝜃̂𝐷𝑧1
+ -1.800 -2.930 -1.130 -2.088 -3.041 -0.953 

(Standard error) (2.183) (1.246) (1.446) (1.913) (1.142) (1.416) 

       

Climate Policy Uncertainty (CPU)       

Mean 𝜃̂𝐷𝑧2
+ -4.236 -2.782 1.454 -4.335 -2.756 1.580 

(Standard error) (2.124) (1.026) (1.554) (1.964) (1.454) (2.237) 

       

Multiple inequality restriction 

statistic W 3.979 11.098 0.611 4.994 9.995 0.453 

(p-value) (0.024) (0.000) (0.211) (0.012) (0.001) (0.253) 
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Appendix A1:  

The detailed procedure for conducting the multivariate inequality testing is as follows. 

Step 1: We estimate the sample means of the product of the observable variables. In 

particular, 

𝜃𝐷𝑧𝑖
+  =  

1

𝑇
∑[

𝑇

𝑡=1

(𝑅brown,𝑡+1 − 𝑅green,𝑡+1)𝑧𝑖𝑡
+] ,              ∀𝑖= 1, 2, I. . . , 𝑁 . (A1) 

There is no restriction on the sign of the difference returns. In other words, they may 

be negative due to sampling error or the possible rejection of the null hypothesis. The vector 

𝜃𝐷𝑧+   is asymptotically normal with mean 𝜃𝐷𝑧+ and variance-covariance matrix Ω, which is 

estimated using the Newey & West (1987) approach. 

Step 2: Under the null hypothesis restriction, the parameter estimates must be 

nonnegative. Estimates are derived under the null restriction by minimizing deviations from 

the unrestricted model: 

min
𝜃𝐷𝑧+

   ( 𝜃𝐷𝑧+  −  𝜃𝐷𝑧+)′ Ω̂−1(𝜃̂𝐷𝑧+  −  𝜃𝐷𝑧+) , (A2) 

subject to  𝜃𝐷𝑧+ ≥ 0 . 

Let 𝜃𝐷𝑧+
𝑅  be the solution to this quadratic program. 

Step 3: The statistic for testing the null hypothesis is generated. The purpose is to test 

how close the restricted estimates 𝜃𝐷𝑧+
𝑅  are to the unrestricted estimates 𝜃𝐷𝑧+. Under the null, 

the difference should be small. The test statistic is then computed as: 

𝑊 ≡ 𝑇(𝜃𝐷𝑧+
𝑅 −  𝜃𝐷𝑧+)

′
 Ω̂−1(𝜃𝐷𝑧+

𝑅 −  𝜃𝐷𝑧+) .         (𝐴3) 

Wolak (1989) showed that the W statistic no longer has an asymptotic chi-squared 

distribution in the presence of inequality restrictions. Instead, the statistic is distributed as a 

weighted sum of chi-squared variables with different degrees of freedom. The asymptotic 

distribution of W is given by: 

∑ 𝑃𝑟[𝜒𝑘
2 ≥ 𝑐]𝑤 (𝑁, 𝑁 − 𝑘,

𝛺̂

𝑇
)

𝑁

𝑘=0

 ,         (𝐴4) 
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where 𝑐 ∈ 𝑅+  is the critical value for a given size, and the weight 𝑤 (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
)  is the 

probability that 𝜃𝐷𝑧+  has exactly N – k positive elements. 

Wolak (1989) indicates that calculating the weights 𝑤 (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
) can be nontrivial 

because the weights require the evaluation of N-multiple integrals, and closed forms have been 

calculated for only a small number of restrictions (𝑁 ≤  4). As an alternative, Kodde & Palm 

(1986) provide upper- and lower-bound critical values which do not require the calculation of 

the weights. These bounds are given by: 

𝛼𝑙 =
1

2
𝑃𝑟(𝜒1

2 ≥ 𝑐𝑙) (A5) 

𝛼𝑢 =
1

2
𝑃𝑟(𝜒𝑁−1

2 ≥ 𝑐𝑢)  +  
1

2
𝑃𝑟(𝜒𝑁

2 ≥ 𝑐𝑢) (A6) 

where 𝑐𝑙  and 𝑐𝑢 are the critical values of the lower and upper bounds, respectively. 

The weights need only be calculated when the test statistic value lies within these 

bounds. Wolak (1989) proposes a procedure for calculating the weights based on Monte Carlo 

simulations. Specifically, a multivariate normal distribution with mean zero and covariance 

matrix (
𝛺

𝑇
) is simulated. Given the realizations 𝜃𝐷𝑧+

∗  which denote the vector of realizations 

from each replication, we then search for the 𝜃𝐷𝑧+  which solves the minimization problem  

𝑚𝑖𝑛(𝜃𝐷𝑧+
∗ − 𝜃̃𝐷𝑧+) (

𝛺̂

𝑇
)

−1

(𝜃𝐷𝑧+
∗ − 𝜃̃𝐷𝑧+), (A7) 

subject to  𝜃̃𝐷𝑧+  ≥  0 . 

As advocated by Wolak (1989), the approximate weight 𝑤̂ (𝑁, 𝑁 − 𝑘,
𝛺̂

𝑇
) is the fraction 

of replications in which the estimated 𝜃̃𝐷𝑧+  has exactly N – k elements exceeding zero. 
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Appendix A2: 

Table A2.1 

Variable definitions 

Variable Definition Source 

ICLN iShares Global Clean Energy ETF CRSP 

PBW Invesco WilderHill Clean Energy ETF CRSP 

PBD Invesco Global Clean Energy ETF CRSP 

QCLN 
First Trust NASDAQ Clean Edge Green Energy Index 

Fund 
CRSP 

XLE Energy Select Sector SPDR Fund CRSP 

VDE Vanguard Energy ETF CRSP 

XOP SPDR S&P Oil & Gas Exploration & Production ETF CRSP 

KOL VanEck Vectors Coal ETF CRSP 

Natural disasters U.S. billion-dollar disaster events NOAA 

CPU Climate Policy Uncertainty Index Gavriilidis, K. (2021) 

SO  Shares Outstanding CRSP 

Oil price Crude Oil Prices: West Texas Intermediate (WTI) St. Louis Fed 

CAPE Cyclicality-adjusted real P/E (CAPE) ratio Shiller’s website 

NBER-based 

recession 
NBER-based recession  St. Louis Fed 

SMB  Size factor 
Kenneth French data 

library 

HML  Value factor 
Kenneth French data 

library 

MOM  Momentum factor 
Kenneth French data 

library 

MKT  Market return 
Kenneth French data 

library 
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Table A2.2 

Conditional test of 𝒓𝒆𝒕𝒃𝒓𝒐𝒘𝒏 − 𝒓𝒆𝒕𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎 (raw returns). 

The table reports multiple inequality tests for raw returns of brown and green portfolios conditional on Natural 

disasters and the Climate Policy Uncertainty index over the time period 2008-2020. The green portfolio includes 

clean energy ETFs and the brown portfolio includes fossil fuel ETFs. We test the null that brown-minus-green 

return ≥  0 with restrictions corresponding to a large number of Natural disasters and high Climate Policy 

uncertainty (CPU). Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+  is the 

conditional mean of brown-minus-green returns in these states. In addition, we test whether brown (green) 

portfolios returns are nonnegative conditional on these states. Also given are the standard errors of the conditional 

means. Panel A uses instruments that is defined as being above the median of the instrumental variables, and 

Panel B uses instruments that is defined as being above the 75%-quantile of the instrumental variables. All 

estimates are adjusted for conditional heteroskedasticity and serial correlation using the method of Newey and 

West (1987). The statistic’s p-value is calculated using Monte Carlo simulations. 

Panel A: Inequality tests conditional on instruments based on median values 

Statistics Dummy instruments Magnitude-based instruments 

 Brown-Green Brown Green Brown-Green Brown Green 

Natural Disaster        

Mean 𝜃̂𝐷𝑧1
+ -1.126 -0.261 0.865 -1.568 -0.560 1.008 

(Standard error) (1.619) (1.864) (2.235) (1.610) (1.456) (1.944) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -1.681 -0.057 1.624 -3.986 0.848 4.834 

(Standard error) (1.153) (1.199) (1.435) (1.749) (1.991) (2.754) 

       

Multiple inequality restriction 

statistic W 

2.127 0.020 0.000 5.194 0.148 0.000 

(p-value) (0.073) (0.442) (0.500) (0.011) (0.354) (0.497) 

Panel B: Inequality tests conditional on instruments based on 75%-quantile values 

Statistics Dummy instruments Magnitude-based instruments 

 Brown-Green Brown Green Brown-Green Brown Green 

Natural Disaster        

Mean 𝜃̂𝐷𝑧1
+ -1.949 -0.931 1.018 -2.239 -1.015 1.224 

(Standard error) (2.210) (1.626) (2.065) (1.934) (1.529) (2.045) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -4.411 -0.435 3.976 -4.663 1.638 6.301 

(Standard error) (2.138) (1.725) (2.129) (2.017) (2.876) (4.038) 

       

Multiple inequality restriction 

statistic W 

4.256 0.359 0.000 5.461 0.440 0.000 

(p-value) (0.020) (0.268) (0.479) (0.009) (0.255) (0.506) 
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Table A2.3 

Conditional test of 𝒓𝒆𝒕𝒖𝒓𝒏𝒃𝒓𝒐𝒘𝒏 − 𝒓𝒆𝒕𝒖𝒓𝒏𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎 (4FF + oil returns) 

(Using instruments based on 75% quantile) 

The table reports multiple inequality tests for 4FF_oil-adjusted returns of brown and green portfolios conditional 

on Natural disasters and the Climate Policy Uncertainty index over the period 2008-2020. The green portfolio 

includes clean energy ETFs and brown portfolio includes fossil fuel ETFs.  Portfolio returns are adjusted by four 

Carhart factors and oil returns. We test the null that brown-minus-green return ≥ 0 with restrictions corresponding 

to large number of Natural disasters and high Climate Policy uncertainty (CPU). Besides dummy instruments, the 

test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the conditional mean of brown-minus-green returns in these states. 

In addition, we test whether brown (green) portfolio returns are nonnegative conditional on these states. Also 

given are the standard errors of the conditional means. Note that high (low) is defined as being above (below) the 

75% quantile of the instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial 

correlation using the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo 

simulations. 

Statistics Dummy instruments Magnitude-based instruments 

 Brown-Green Brown Green Brown-Green Brown Green 

Natural Disaster        

Mean 𝜃̂𝐷𝑧1
+ -1.184 -2.545 -1.361 -1.328 -2.590 -1.261 

(Standard error) (1.905) (1.231) (1.235) (1.701) (1.161) (1.346) 

       

Climate Policy Uncertainty 

(CPU) 
      

Mean 𝜃̂𝐷𝑧2
+ -3.417 -2.490 0.927 -3.113 -2.562 0.550 

(Standard error) (1.972) (0.863) (1.387) (1.844) (1.201) (1.663) 

       

Multiple inequality restriction 

statistic W 

3.004 10.422 1.214 2.906 8.441 0.878 

(p-value) (0.040) (0.001) (0.129) (0.042) (0.002) (0.175) 

 

Table A2.4 

Conditional tests of 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕,𝒈𝒓𝒆𝒆𝒏 −  𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕,𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎. 

(Using instruments based on 75% quantile) 

The table reports multiple inequality tests for 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕  of brown and green portfolios conditional on Natural 

disasters and Climate Policy Uncertainty index over the period 2008-2020. Green portfolio includes clean energy 

ETFs and brown portfolio includes fossil fuel ETFs. We test the null that green-minus-brown 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 ≥ 0 with 

restrictions corresponding to large number of Natural disasters and high Climate Policy uncertainty (CPU). 

Besides dummy instruments, the test uses magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ is the conditional mean of green-

minus-brown 𝜷̂𝒎𝒂𝒓𝒌𝒆𝒕 in these states. Also given are the standard errors of the conditional means. Note that high 

(low) is defined as being above (below) the 75% quantile of the instrumental variables. All estimates are adjusted 

for conditional heteroskedasticity and serial correlation using the method of Newey and West (1987). The 

statistic’s p-value is calculated using Monte Carlo simulations. 

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ -0.068 -0.075 

(Standard error) (0.167) (0.122) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -0.200 -0.322 

(Standard error) (0.160) (0.165) 

   

Multiple inequality restriction statistic W 1.566 3.800 

(p-value) (0.106) (0.025) 
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Table A2.5 

Conditional test of 𝒔𝒆𝒎𝒊𝒃𝒆𝒕𝒂𝒈𝒓𝒆𝒆𝒏 − 𝒔𝒆𝒎𝒊𝒃𝒆𝒕𝒂𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎.   

(Using instruments based on 75% quantile) 

This table provides the multiple inequality tests on the null that green-minus-brown semibetas  ≥ 0 conditional on large number of Natural disasters and high Climate Policy 

uncertainty (CPU). The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+ are the estimate of the conditional green-minus-brown semibetas . All standard errors are 

calculated via the Newey & West (1987) heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator. Note that high (low) is defined as being above 

(below) 75% quantile of the instrumental variables. The statistic’s p-value is calculated using Monte Carlo simulations. 

  Dummy Instruments Magnitude-based Instruments 

Statistic 𝜷̂𝑵 𝜷̂𝑴−
 𝜷̂𝑷 𝜷̂𝑴+ 𝜷̂𝑵 𝜷̂𝑴−

 𝜷̂𝑷 𝜷̂𝑴+ 

Natural Disasters            
Mean 𝜃̂𝐷𝑧1

+  -0.058 -0.007 -0.025 -0.033 -0.074 -0.014 0.010 -0.035 

(Standard error) (0.064) (0.008) (0.116) (0.020) (0.056) (0.013) (0.082) (0.017) 
         

Climate Policy Uncertainty         

Mean 𝜃̂𝐷𝑧2
+   -0.096 -0.011 0.057 -0.046 -0.129 0.002 0.079 -0.028 

(Standard error) (0.042) (0.007) (0.062) (0.023) (0.065) (0.015) (0.066) (0.026) 
         

         
Multiple inequality restriction 

statistic W 

5.463 3.116 0.047 5.539 4.870 1.080 0.000 4.981 

(p-value) (0.010) (0.038) (0.413) (0.009) (0.013) (0.150) (0.504) (0.013) 
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Table A2.6 

Conditional test of 𝒊𝒅𝒊𝒐_𝒓𝒊𝒔𝒌𝒈𝒓𝒆𝒆𝒏 − 𝒊𝒅𝒊𝒐_𝒓𝒊𝒔𝒌𝒃𝒓𝒐𝒘𝒏  ≥ 𝟎. 

(Using instruments based on 75% quantile) 

This table provides the multiple inequality tests on whether green-minus-brown idiosyncratic risk ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. The idiosyncratic risk is standard 

deviation of residuals estimated from CAPM. The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is the 

estimate of conditional green-minus-brown idiosyncratic risk in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the 75% quantile of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean 𝜃̂𝐷𝑧1
+ -1.949 -1.989 

(Standard error) (0.717) (0.628) 

   

Climate Policy Uncertainty (CPU)   

Mean 𝜃̂𝐷𝑧2
+ -2.029 -1.924 

(Standard error) (0.640) (0.822) 

   

Multiple inequality restriction statistic W 12.457 12.637 

(p-value) (0.000) (0.000) 

 

 

Table A2.7 

 Conditional test of 𝒇𝒖𝒏𝒅_𝒇𝒍𝒐𝒘𝒔𝒃𝒓𝒐𝒘𝒏 −  𝒇𝒖𝒏𝒅_𝒇𝒍𝒐𝒘𝒔𝒈𝒓𝒆𝒆𝒏  ≥ 𝟎. 

(Using instruments based on 75% quantile) 

This table provides the multiple inequality tests on the null that brown-minus-green fund flows ≥ 0 conditional 

on a large number of Natural Disasters and high Climate Policy uncertainty. Fund flows are adjusted by the past 

month oil return, fund return and fund volatility. The tests use dummy and magnitude-based instruments. 𝜃̂𝐷𝑧𝑖
+is 

the estimate of conditional brown-minus-green fund flows in these states. Also, the table reports the standard 

errors of the conditional means. Note that high (low) is defined as being above (below) the median of the 

instrumental variables. All estimates are adjusted for conditional heteroskedasticity and serial correlation using 

the method of Newey and West (1987). The statistic’s p-value is calculated using Monte Carlo simulations.  

Statistics Dummy Magnitude-based 

Natural Disaster    

Mean  𝜃̂𝐷𝑧1
+ -0.044 -0.040 

(Standard error) (0.020) (0.018) 

   

Climate Policy Uncertainty (CPU)   

Mean  𝜃̂𝐷𝑧2
+ -0.120 -0.140 

(Standard error) (0.104) (0.110) 

   

Multiple inequality restriction statistic W 6.146 6.337 

(p-value) (0.006) (0.006) 

 


