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variables, while most market designs, in reality, impose discrete tick 

and lot sizes. We study a firm’s trade-off between these two 

discretenesses in U.S. stock exchanges, which mandate a one-cent 

minimum tick size and a 100-share minimum lot size. A uniform tick 

size favors high prices because the bid–ask spread cannot be lower 

than one cent. A uniform lot size favors low prices because low prices 

reduce adverse selection costs for market makers when they have to 

display at least 100 shares. We predict that a firm achieves its optimal 

price when its bid–ask spread is two ticks wide, when the marginal 

contribution from discrete prices equals that from discrete lots. 

Empirically, we find that stock splits improve liquidity when they 

move the bid–ask spread towards two ticks; otherwise, they reduce 

liquidity. Liquidity improvements contribute 95 bps to the average 

total return on a split announcement of 272 bps. Optimal pricing can 

increase the median U.S. stock value by 69 bps and total U.S. market 

capitalization by $54.9 billion.  
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1. Introduction 

Price and quantity are two of the most important variables in economics. Most 

economists assume that price and quantity are continuous, but they are discrete in 

reality, even in most liquid markets like U.S. stock exchanges. No one can trade 

half a share, and a market maker generally must display a quote for one round lot 

of 100 shares; the minimum price variation (the tick size) is 1 cent for stocks priced 

above $1 per share. A U.S. firm can, therefore, choose a high price per share for a 

more continuous price but a more discrete quantity or a low price per share for a 

more discrete price but a more continuous quantity. In this paper, we show that the 

tradeoff between these seemingly small frictions plays a significant role in shaping 

the behavior of traders and listing firms.   

[Insert Figure 1 about here] 

Panel A in Figure 1 displays results implying that stocks are most liquid when 

their prices are neither too high nor too low. Panel B displays preliminary evidence 

that the trade-off between discreteness in quantity and discreteness in price drives 

this U-shaped pattern. Stocks with prices that are too low suffer from tick-size 

constraints. As the bid–ask spread cannot drop below 1 cent, the percentage bid–

ask spread decreases with share prices for stocks for which the bid–ask spread is 1 

cent, as indicated by the bottom left frontier in the figure. Stocks with prices that 

are too high suffer from lot-size constraints. Even for large firms such as Google 

and Amazon, the median depth at the National Best Bid and Offer (NBBO) and 

trade sizes are both exactly 100 shares. Once the lot size is binding, an increase in 

share prices amplifies the market maker’s obligation to maintain round lots; the 

percentage bid–ask spread tends to increase with prices because market makers lose 

more money once they are adversely selected. 

We discover a Two-Tick Rule for optimal pricing: Every firm reaches its 

optimal price when its bid–ask spread is two ticks. Intuitively, as the friction caused 

by a discrete price is one tick, a firm reaches its optimal price when the friction 
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caused by a discrete lot is also one tick, i.e. when its bid–ask spread is two ticks. 

Our empirical results agree with the two-tick prediction. Stock splits improve 

liquidity if they move the nominal spread towards two ticks, whereas those that 

move it away from two ticks reduce liquidity. We find that most stock splits move 

the nominal spread towards two ticks and that they reduce the percentage bid–ask 

spread by 15.22 bps. The liquidity gains from stock splits generate a 95 bps increase 

in share prices. We estimate that the median U.S. stock value would increase by 69 

bps if all firms were to move to their optimal prices. 

Our model includes three types of players. In the first stage, the market 

designer chooses tick and lot sizes. To reflect the reality in the U.S., we focus on 

the system that imposes uniform tick and lot sizes, in which tick and lot sizes are 

the same for all stocks, and in Section 4 we compare the effects of uniform tick and 

lot sizes with those of proportional tick and lot sizes. In the second stage, a firm 

chooses its share price to maximize its liquidity as measured by the percentage 

spread. In the third stage, a market maker posts competitive bid prices to sell and 

ask prices to buy. The market maker earns the bid–ask spread if an uninformed 

trader hits her quotes, but she loses money when an informed trader adversely select 

the stale quotes. 

We first consider cases where the market designer mandates a discrete quantity 

but keeps pricing continuous. A discrete lot size leads to the Square Rule: an 𝐻-

fold reduction in share price leads to an 𝐻2-fold reduction in the bid–ask spread. 

Therefore, a firm’s percentage spread drops 𝐻-fold after an 𝐻-for-1 split. A lower 

price increases liquidity because of traders’ interactions in the third stage. To 

minimize the loss from stale quotes, the market maker always chooses to display a 

minimum lot and then refills the lot once it is consumed. Uninformed traders also 

break their demand into a series of child orders of the minimum lot. As a 

consequence, the dollar size that a market maker has to display decreases linearly 

with the stock price. When a firm implements an 𝐻-fold reduction in its price, it 
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creates an H-fold reduction in the loss for its market maker. In turn, the market 

maker can afford a percentage spread that is 𝐻 times tighter or a bid–ask spread 

that is 𝐻2 times tighter. A discrete quantity, therefore, favors a lower price per share. 

A discrete price, however, favors a higher price per share. We first find that 

the bid–ask spread under discrete pricing is equal to the bid–ask spread under 

continuous pricing plus one tick. This result decomposes bid–ask spread 𝑠 into two 

parts: a part ∆ that is driven by a discrete price and a part 𝑠 − ∆ that is driven by a 

discrete quantity. An H-for-1 split reduces the lot-driven spread to 
𝑠−∆

𝐻2 , while the 

tick-driven spread remains at ∆. We then discover the Modified Square Rule: An 

H-for-1 split leads to a bid–ask spread of ∆ +
𝑠−∆

𝐻2 . In turn, a firm can simply choose 

H, such that ∆ +
𝑠−∆

𝐻2  is equal to 2∆, to achieve its optimal price. When ∆= 1 cent, 

the optimal 𝐻 is √𝑠 − 1. 

Our model generates three lines of predictions. First, for a given nominal price, 

the Modified Square Rule predicts a firm’s liquidity, no matter whether the firm is 

at its optimal price. Our empirical results regarding stock splits show that a 1 bps 

increase in the percentage spread predicted by the Modified Square Rule leads to a 

0.97 bps increase in the realized change in the percentage spread. In the cross-

section, the Modified Square Rule explains 83% of the variation in the bid–ask 

spread with only the three variables modeled by our paper. We find that the lot-

driven spread, which is equal to the bid–ask spread minus one tick, has the 

following relationship with the three independent variables. 1) The lot-driven 

spread decreases almost linearly with the dollar volume because doubling the dollar 

volume doubles the revenue base for market makers and cuts the lot-driven bid–ask 

spread by half. 2) The lot-driven spread increases linearly with volatility because 

the loss from stale quotes increases linearly with volatility. 3) An increase in the 

nominal price plays a role similar to that of volatility: as the nominal price doubles, 
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the loss from being adversely selected also doubles. As an increase in the nominal 

price also causes a mechanical linear increase in the bid–ask spread, we find that 

the lot-driven spread follows a quadratic relationship with the nominal price. 

Second, we predict an optimal price for each firm. The two variables in our 

model—volatility and dollar volume—explain 61% of the cross-sectional variation 

in the share price. We find that firms with higher volatility have lower prices, which 

is consistent with a finding reported in Baker, Greenwood, and Wurgler (2009), 

who find that volatile firms are more likely to split their stocks. Baker, Greenwood, 

and Wurgler (2009) characterize this result as a puzzle because volatile firms 

should have a weaker incentive to split because they have a “greater chance of 

reaching a low price anyway.” Our model provides two interpretations of their 

puzzle. The first interpretation reflects the tick constraint. Stocks with higher 

volatility face higher adverse selection risk and thereby higher percentage bid–ask 

spreads. Higher percentage bid–ask spreads then relieve tick constraints: stocks 

with higher volatility reach their optimal two-tick bid–ask spreads at lower prices. 

The second interpretation reflects the lot constraint. A rise in volatility increases 

market makers’ losses when they are adversely selected, and firms should choose 

lower prices to reduce the losses their market makers experience. Weld et al. (2009) 

use industry fixed effects to explain stock prices, and we find that the explanatory 

power of industry fixed effects is superseded by volatility. Therefore, firms in the 

same industry have similar nominal prices because they have similar volatility. Our 

model predicts that stocks with higher dollar volumes should have higher prices 

because an increase in the dollar volume reduces the percentage spread. Therefore, 

stocks with higher dollar volumes reach the optimal two-tick bid–ask spread at 

higher prices. Indeed, we find that stock prices increase with dollar volumes in our 

data. 

Third, as firms can manage their prices through stock splits, our model offers 

rationales for stock splits and returns after stock splits. The modified square rule 
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predicts that a split improves liquidity if the split moves a firm’s nominal bid–ask 

spread closer to the two-tick optimum, otherwise the split reduces liquidity. We 

find that 1,077 out of 1,183 splits move nominal prices closer to the optimum. 

Among the 106 incorrect splits, 71 make the correct decision to split, except that 

they choose a split ratio that is overly aggressive. Overall, the percentage spread 

drops by 15.22 bps after splits. The effect on liquidity is so significant that it affects 

firm value: a 1 bps reduction in the predicted percentage spread increases firm value 

by 6.25 bps. As a consequence, the correct split ratios contribute 95 bps (6.25*15.22) 

to the average return on a split announcement of 272 bps. 

Qualitatively, our empirical results indicate the stocks splits are rational 

response to tick and lot constraints.  Further, our paper provides quantitative 

estimates about two questions. 1) What is the best ratio to maximize the benefits 

from splits? 2) How large are such benefits? A firm’s optimal price depends on its 

characteristics, but managers do not need to calibrate these parameters to determine 

the optimal split ratio because a U.S. listed firm needs to know only its current 

spread 𝑠 and then split at a ratio of √𝑠 − 1. The modified square rule also offers an 

estimation of the benefit of a split that fits with the data well. For example, as of 

2019 Amazon’s stock was priced at $1,800 per share and its bid–ask spread was 60 

cents (3.3 bps), while Apple’s stock was priced at $200 per share and its bid–ask 

spread was 1.8 cents (0.9 bps). We find that the differences in nominal prices can 

explain the 3.7-times greater differences in transaction costs for two otherwise 

similar firms. If Amazon were to split 9-for-1, the modified square rule predicts 

that its nominal spread would become 
60−1

92
+ 1 = 1.73 cents, which is similar to 

Apple’s spread. Under a suboptimal price, Amazon holders paid $294 million in 

the (half) bid–ask spread in 2019, but Apple holders paid only $66 million. In fact, 

the optimal split ratio for Amazon is √59 -for-1, which would save Amazon 

shareholders more than $230 million per year in transaction costs. Also, as an 
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increase in liquidity increases share prices, Amazon’s market cap would increase 

by $1.35 billion. The market value of U.S. firms would increase by $54.9 billion. 

For firms, the tick and lot sizes are both exogenous, but regulators can change 

either of them. Our analysis of the market designer then provides insights into 1) 

the firm’s best responses to changes in tick or lot sizes, 2) the impact of changing 

tick and lot sizes on liquidity, and 3) the comparison between the effects of uniform 

and proportional tick and lot sizes. 

The following Square-Root Rule addresses the first two questions. When tick 

and lot sizes are uniform, a firm should respond to changes in tick and lot sizes in 

their square roots, and liquidity changes under such a best response account for the 

other square root. For example, in 2016 the SEC increased the tick size from one 

cent to five cents for 1,200 randomly selected firms. A firm’s optimal response is a 

√5-for-1 reverse-split, because it maintains the same marginal contribution from 

the tick size (√5) and the lot size (√5). The firm’s relative tick size and dollar lot 

size both increase by the square root √5. The Square-Root Rule leads to a spillover 

effect: a policy initiative that aims to make pricing more discrete would, in 

equilibrium, make quantity more discrete. The Two-Tick Rule still holds, but two 

ticks are now ten cents, leading to a √5 increase in the percentage spread. Thus, we 

encourage the SEC to consider reducing the tick size to improve market liquidity. 

Our model also provides support for the plan to reduce the lot size initiated by the 

Securities Information Processors committee. 

In our model, the first best is continuous tick and lot sizes. We show that, once 

both have to be discrete, uniform tick and lot sizes dominate proportional tick and 

lot sizes. The uniform system seems more like a “one-size-fits-all” solution, but it 

enables a firm to choose an optimal price to balance discrete prices and quantities. 

The proportional system, however, destroys such flexibility. For example, consider 

a liquid $300 stock and an illiquid $3 stock. Both have chosen an equilibrium two-
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cent spread, one cent from the tick and one cent from the lot. A proportional system 

based on a $30 stock will assign a ten times larger tick size and a ten times smaller 

lot size to the $300 stock, leading to a 10.1 cent spread (= 10 + 0.1). On the other 

hand, the $3 stock also loses its optimal tick-lot balance and achieves a bid–ask 

spread of 10.1 cents ( = 0.1 + 10 ). Therefore, the proportional system harms 

liquidity because it is a true one-size-fits-all system that enforces a uniform level 

of discreteness on stocks with heterogeneous characteristics. 

As the first study to examine discreteness in both price and quantity, our paper 

offers significant new insights compared with models where one variable is 

continuous. Angel (1997) argues that a fivefold increase in the tick size would have 

no economic impact because firms can perfectly neutralize such a policy change 

through a 5-for-1 reverse split. By adding discrete quantities, we find that a 5-for-

1 reverse split does not neutralize a fivefold increase in the tick size. More 

surprisingly, a 5-for-1 reverse split leads to the same outcome as doing nothing at 

all.  A 5-for-1 reverse split retains the original relative tick size, but increases the 

dollar lot size by a factor of five over the original size. As the total percentage 

spread is the sum of tick- and lot-driven components, a 5-for-1 reverse split leads 

to the same outcome as doing nothing. 

Budish, Cramton, and Shim (2015, BCS hereafter), who consider a market 

with discrete quantities but continuous pricing, find that public information leads 

to a positive percentage spread. We find that this percentage spread is a linear 

function of lot size: if the lot size decreases to one-half of a share, the percentage 

spread also decreases by one-half. Therefore, the percentage spread converges on 

zero when the lot size converges on zero. A firm can also reduce the dollar lot size, 

the loss to its market maker, and the percentage spread through aggressive stock 

splits. The economic force that counterbalances aggressive splits is discrete pricing. 

Our paper answers two main research questions in the literature on stock splits. 

1) Why do firms split their stocks? 2) What explains the positive returns after splits? 
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Our answers differ from two benchmarks: the signaling channel and the liquidity 

channel. In the signaling channel, the cost of a signal comes from reduced liquidity 

(Brennan and Copeland, 1988), yet we find an increase in liquidity in our sample. 

Also, Fama et al. (1969), Lakonishok and Lev (1987), and Asquith, Healy, and 

Palepu (1989) find that firms’ earnings, profits, and stock prices increase 

significantly before splits but not after splits. Their results do not support the 

signaling channel but do support our tick-and-lot channel. A previous increase in a 

stock price increases the lot constraint on that stock, and stock splits are the best 

response to lot constraints. In the liquidity channel (Lamoureux and Poon, 1987 

and Maloney and Mulherin, 1992), firms use stock splits to attract retail traders, 

and an increase in the number of uninformed traders increases volume and liquidity, 

yet we find that institutional holdings increase after splits in our sample. 

We provide the best fit for cross-sectional variation in liquidity to date, even 

though we use only a subset of the explanatory variables in existing benchmarks 

(Stoll 2000; Madhavan 2000). This surprising increase in the R-squared with fewer 

variables stems from two economic forces. First, our model provides a better 

functional form. Madhavan (2000) uses 𝑝𝑟𝑖𝑐𝑒−1 as the control variable while Stoll 

(2000) uses the log (price). Both of these functional forms impose a monotonic 

relationship between the nominal price and the percentage spread, but we find that 

their true relationship is U-shaped. We subtract one tick from the bid–ask spread to 

control for the tick-driven spread and then add the log of the price to control for the 

lot-driven spread.  

Second, our model helps to rule out redundant variables that have been 

included in previous specifications. For example, all existing specifications control 

for the market cap, following the intuition that large stocks are more liquid. Our 

model suggests that the market cap affects liquidity only through its impact on the 

dollar volume. Holding the share turnover rate fixed, a large-cap stock has a lower 

percentage spread because it has a greater dollar volume. A small firm with higher 
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turnover should, however, be as liquid as a large firm with lower turnover as long 

as they have the same dollar volume. Therefore, the dollar volume absorbs the 

impact of the market cap and turnover on liquidity. Our interpretation addresses a 

puzzle raised in Stoll (2000), who finds that the regression coefficient before the 

market cap is not always positive after controlling for the dollar volume. The 83% 

R-squared in our regression suggests that future empirical research may use our 

specification as benchmark against which to evaluate additional variables that can 

potentially explain stock market liquidity. 

In time series, we provide the first unified explanation of four salient facts that 

go hand in hand after trading became automated: a reduction in the bid–ask spread 

(Hendershott, Jones, and Menkveld, 2011), the decline in depth towards one lot 

(Angel, Harris, and Spatt, 2015), the dominance of trades of one lot (O’Hara, Yao, 

and Ye, 2014), and the proliferation of algorithmic traders who are not as fast as 

high-frequency traders (HFTs) (O’Hara, 2015). We are able to generate all these 

predictions in one model because we model interactions between multiple types of 

algorithmic traders, whereas most studies include at most one type of algorithmic 

trader: HFTs. Note that liquidity demanders’ execution algorithms do not need to 

execute as quickly as those of HFTs. They just need to be fast enough to slice and 

dice large latent demand into a series of child orders of one lot apiece. Along with 

the reduction in the bid–ask spread, our model also explains the depth of one lot 

and a trade size of one lot. 

 

2. A Continuous-Pricing Model 

In this section we consider the equilibrium outcome where the market designer 

mandates a discrete lot size 𝐿 ≥ 0 but the price remains continuous. 

The firm’s fundamental value 𝑣𝑡 evolves as a Poisson jump process at an arrival 

rate of 𝜆𝐽, where 𝑡 runs continuously on [0, ∞). The jump sizes are 𝜎% or −𝜎% of 
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𝑣𝑡 with equal probability. The firm decides its nominal price 𝑝𝑡: =
𝑣𝑡

ℎ𝑡
 with the aim 

of minimizing its percentage spread 𝒮𝑡
 : =

𝑠𝑡

𝑝𝑡
, where ℎ𝑡 is shares outstanding. 

Given 𝑝𝑡  and 𝐿 , the market maker set competitive bid prices to sell and 

competitive ask prices to buy. The bid-ask spread 𝑠𝑡 equalizes the revenue gain 

from uninformed traders and the loss incurred from the informed traders. 

Uninformed traders arrive at the market at Poisson intensity 𝜆𝐼. Each uninformed 

trader has an inelastic need to buy or sell the stock at equal probability. For 

simplicity, we normalize the need of each uninformed trader as 𝑣𝑡, so that 𝜆𝐼 is the 

turnover rate per unit-time, and 𝜆𝐼𝑣𝑡 is the trading volume from uninformed traders 

per unit time. We call 𝑣𝑡 the size of the parent order. As 𝑝𝑡𝐿 represents dollar lot 

size, the parent order is equal to 
𝑣𝑡

𝑝𝑡𝐿
 lots. The uninformed traders’ objective function 

is to minimize the transaction cost of the parent order by choosing the way to slice 

the parent order into a series of child orders. For example, one feasible strategy is 

to separate her demand into 
𝑣𝑡

𝑝𝑡𝐿
 child orders of one minimum lot apiece. We assume 

that 𝐿 is small enough so that the parent order is divisible to round lot orders. 1 

Informed traders aim to adversely select the market maker during value jumps. 

There are two ways to interpret adverse selection risk in our model. First, 𝑣𝑡  is 

common knowledge but the market maker may fail to cancel stale quote. In this 

case, the market maker in our model is equivalent to the liquidity-providing HFT 

in BCS, and informed traders are equivalent to the stale-quote-sniping HFTs in BCS.  

Second, 𝑣𝑡 is private information, but is revealed after each trade (Aquilina, Budish, 

and O’Neill, 2020; Baldauf and Mollner, 2020; Admati and Pfleiderer 1988). Both 

scenarios lead to the same model. For tractability, we assume that informed traders 

 
1 Institutional traders’ liquidity demand is much greater than the size of child orders and the lot size. 

For example, O’Hara (2015) finds that a volume-weighted average price (VWAP) algorithm, on 

average, turns each parent order into 55,235 child orders. 
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can adversely select the market maker only once per piece of information. Without 

this simplification, the optimization problem for the firm is not well-defined 

because the bid–ask spread, the objective that the firm aims to minimize, would be 

a nonstationary function over time.2 

 

2.1 Traders’ Choice  

We solve the model through backward induction. Proposition 1 presents the optimal 

choice of the market maker and uninformed traders given 𝑝𝑡 and 𝐿. 

Proposition 1. (Continuous-Price Bid–ask spread) With zero tick size and lot size 

L, the equilibrium percentage bid–ask spread is 𝒮𝑡
𝐿 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
: 

(i) The depth at the Best Bid and Offer (BBO) is exactly 𝐿 shares, and the 

market maker refills L shares at the BBO immediately after each trade.  

(ii) Uninformed traders slice their demand into a series of child orders. 

Each child order includes exactly 𝐿 shares. 

 

Proposition 1 shows that the market maker never displays more than the 

minimum lot at the BBO, and uninformed traders never take more than the 

minimum lot per trade. Suppose that the market maker quotes a second lot at BBO. 

Her loss during value jump doubles when she was adversely selected. Therefore, 

the market maker’s average quote for two minimum lots are worse than the quote 

for one minimum lot. In turn, uninformed traders should divide their demand into 

minimum lots and the market maker quickly refills the minimum lot at the BBO 

once it is consumed.  These two predictions match well with stylized facts. O’Hara, 

Yao, and Ye (2014) find that more than 50% of trades involve exactly 100 shares, 

 
2 Glosten and Milgrom (1985), Vayanos (1999), and Back and Baruch (2004) characterize these 

non-stationary bid–ask spreads, though their solutions are either very complicated or available only 

numerically. 
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and we find that this ratio is as high as 87.5% for stocks that are not bound by the 

tick size. As shown in Panel B of Figure 1, most stocks that are not bound by the 

tick size have a depth of exactly one lot.  

The equilibrium spread equates the revenue from the bid-ask spread and the 

cost from adverse selection. Denote 𝑉 = 𝜆𝐼𝑣𝑡 + 𝜆𝐽𝑝𝑡𝐿 as the total dollar volume 

per unit of time. 𝜆𝐼𝑣𝑡 comes from uninformed traders whereas 𝜆𝐽𝑝𝑡𝐿 comes from 

informed traders. The revenue for the market maker per unit of time is 𝑉 ∙
𝒮𝑡

𝐿

2
. The 

loss from adverse selection is 𝜎 ∙ 𝑝𝑡𝐿 ∙ 𝜆𝐽: 𝜎 is the percentage loss, 𝑝𝑡𝐿 is the base 

for the percentage loss and 𝜆𝐽 is the arrival rate of the loss. Equating the revenue 

and cost, we have 

(𝜆𝐼𝑣𝑡 + 𝜆𝐽𝑝𝑡𝐿) ∙
𝒮𝑡

𝐿

2
= 𝜎 ∙ 𝑝𝑡𝐿 ∙ 𝜆𝐽.                                     (1) 

Thus, 

𝒮𝑡
𝐿 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
.                                                  (2) 

𝒮𝑡
𝐿  decreases strictly with the dollar lot size 𝑝𝑡𝐿, because a reduction in the 

dollar lot size reduces the market maker’s loss when she is adversely selected. The 

market maker can still accommodate demand from uninformed traders with more 

trades and a small dollar lot size. 

Enjoying the benefit of slicing orders to the minimum lot, however, requires 

technology that makes it possible to slice the parent order into many child orders. 

Therefore, our model rationalizes algorithmic trading who are slower than HFTs. 3 

Brogaard et al. (2015) document the existence of “SlowColos” who co-locate at a 

stock exchange but whose speed technologies are inferior to those of HFTs. Yet it 

is unclear why they neither choose to be the fastest nor choose to be slow. We 

 
3 To the best of our knowledge, the only other interpretation has been offered in a companion paper 

(Li, Wang, and Ye 2020), which shows that slow traders use execution algorithms to choose between 

market and limit orders. 
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conjecture that those SlowColos are algorithms aiming at order executions. These 

execution algorithms need to be fast enough to slice a larger number of child orders 

in a short time, but they do not need to be the fastest to reduce adverse selection 

risk or to adversely select slow traders. 

Proposition 1 pertains to the percentage spread, while Corollary 1 shows the 

square rule that applies to the bid–ask spread. 

Corollary 1 (The Square Rule). Under continuous pricing, while controlling  for 

trading volume and volatility, the nominal bid–ask spread 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝑝𝑡
2𝐿

𝑉
 is 

proportional to the square of the nominal price. 

 

An increase in 𝑝𝑡 would increase the bid–ask spread in square after controlling 

for volume and volatility, because an increase in 𝑝𝑡 first leads to a mechanical linear 

increase in the bid–ask spread while holding the percentage spread fixed, and an 

increase in 𝑝𝑡 also increases the percentage spread linearly as a result of an increase 

in adverse selection costs. 

   

2.2 The Firm’s Choice  

When pricing is continuous, the firm’s decision is simple: it chooses 𝑝𝑡 → 0 

such that 𝒮𝑡  converges on 0. By choosing a very low price, the firm makes its 

adverse selection cost and bid–ask spread negligible. Lot constraints, therefore, 

favor low prices. When the lot size is the only friction, firms will split their stocks 

aggressively to minimize such friction. 

By considering the lot size, our paper makes two contributions relative to BCS. 

The bid–ask spread in BCS is positive because 1) the lot size is binding at “one 

share” and 2) the nominal price of the stock is equal to 𝑣𝑡
 . Our paper points out two 

alternative solutions to the BCS problem if the price is continuous. The policy 

solution is to reduce the lot size, which we will discuss in greater depth in Section 



 14 
 

4.1. The market solution is to allow a firm to reduce its nominal prices. The 

constraint that prevents the firm from choosing very low prices comes from the 

other friction: discrete pricing. We consider the tradeoff between discrete pricing 

and quantity in the next section. 

 

3. The Model with Discrete Pricing  

In this section, the market designer mandates a discrete tick size ∆ in addition to 

the discrete lot size 𝐿 , and trades and quotes occur only at the pricing grid 

{∆,2∆,3∆, . . . }. Then, a firm cannot reduce its bid–ask spread below one tick no 

matter how aggressively it splits its stock. Splits may increase the percentage spread 

if a firm’s bid–ask spread is close to one tick. The tick constraint, therefore, favors 

high prices. We solve the model through backward induction. In Subsection 3.1, 

we analyze traders’ decisions given 𝑝𝑡  and 𝐿, the main purpose of which is to 

quantify the frictions generated by the tick size. In Subsection 3.2, the firm chooses 

the optimal nominal price, which balances the frictions generated by lot and tick 

sizes. 

 

3.1. Traders’ Decisions and the Friction from the Tick Size 

In this subsection we analyze the traders’ decisions, taking 𝑝𝑡  and 𝐿  as given. 

Under discrete pricing, the market maker can no longer quote competitive prices at 

𝑝𝑡 ±
𝑠𝑡

𝐿

2
 unless those prices coincide with a tick grid. Proposition 2 shows that she 

quotes a bid price at the tick immediately below 𝑝𝑡 −
𝑠𝑡

𝐿

2
 and an ask price at the tick 

immediately above 𝑝𝑡 +
𝑠𝑡

𝐿

2
. 

Proposition 2 (Discrete Price Bid–ask spread). With a tick size ∆: 

(i) The competitive market maker quotes an ask price, 𝐴𝑡 = ⌈
𝑝𝑡+𝑠𝑡

𝐿/2

∆
⌉ ∆, 
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and a bid price , 𝐵𝑡 = ⌊
𝑝𝑡−𝑠𝑡

𝐿/2

∆
⌋ ∆ , where ⌈𝑥⌉  is the smallest integer 

larger than 𝑥, and ⌊𝑥⌋ is the largest integer smaller than 𝑥.  

(ii) The bid-ask spread is  𝑊𝑡 = 𝐵𝑡 − 𝐴𝑡 − 𝑠𝑡
𝐿 ∈ [0,2∆)  wider than the 

spread 𝑠𝑡
𝐿 under continuous pricing. 

(iii) Define 𝑧𝑡: = {
𝑝𝑡

∆
}, where {𝑥} is the fractional part of 𝑥. As long as 𝑝𝑡 ≫

∆  and with long enough evolving time 𝑡 ≫
1

𝜆𝐽
, we have  𝑧𝑡 = {

𝑝𝑡

∆
}

𝑑
→ 𝑈[0,1) and the 𝔼(𝑊𝑡) = ∆ for any initial 𝑝0. Therefore, the bid–ask 

spread under discrete pricing is one tick wider than 𝑠𝑡
∗  under 

continuous pricing: 

𝑠𝑡
𝑡𝑜𝑡 = 𝑠𝑡

𝐿 + ∆=
2𝜎𝜆𝐽𝑝𝑡

2𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
+ ∆.                                      (3) 

 

Proposition 2 shows that the tick size widens the spread unless both the bid and 

ask prices coincide with a tick grid. The tick size can widen the bid–ask spread by 

at most two ticks: one tick on the ask side and another on the bid side. The exact 

size of the widening is a random variable that depends on 𝑝𝑡 and 𝑠𝑡
𝐿. Fortunately, 

Corollary 2 shows that the expectation of the widening effect is one tick. The 

intuition behind this is that, as time goes to infinity, 𝑝𝑡 would not cluster at any sub-

tick locations. For a Poisson jump process, the residual {
𝑝𝑡

∆
} tends to uniformly 

distribute within the tick.4 Therefore, the bid–ask spread under a discrete pricing, 

𝑠𝑡
𝑡𝑜𝑡, is equal to the bid–ask spread under continuous pricing plus one tick.  

Equation (3) decomposes the bid–ask spread into a lot-driven component and a 

 
4 The only exception is when 

𝑝𝑡

∆
→ 0, i.e. when the nominal price of the stock is less than one tick. 

In this case, 𝑧𝑡 = {
𝑝𝑡

∆
} may cluster around 0. In reality, both the NYSE and NASDAQ will delist a 

stock if its price falls under $1.00 (i.e. when 𝑝𝑡 < 100∆). Therefore, 𝑝𝑡 ≫ ∆ generally holds. 
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tick-driven component. The lot-driven component, 
2𝜎𝜆𝐽𝑝𝑡

2𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
, follows the Square 

Rule. The tick-driven component is always equal to ∆ , the expectation of the 

widening effect. Therefore, an increase in 𝑝𝑡  dilutes the widening effect 

proportionately. 

 

3.2. The Firm’s Decision and the Optimal Nominal Price  

The firm chooses 𝑝𝑡 to minimize the percentage spread, given lot size 𝐿 and tick 

size ∆. By choosing 𝑝𝑡, the firm balances the friction caused by the discrete price 

as measured by the relative tick size 
∆

𝑝𝑡
, and the friction caused by the discrete 

quantity as measured by the size of the dollar lot 𝑝𝑡𝐿. To obtain the object function, 

divide both sides of Equation (3) by 𝑝𝑡: 

𝑚𝑖𝑛
𝑝𝑡

𝒮𝑡
𝑡𝑜𝑡 =

𝑆𝑡
𝑡𝑜𝑡

𝑝𝑡
=

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
+

∆

𝑝𝑡
.                                    (4) 

The first term in the objective function, 
2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
 is driven by the lot size and 

it increases with 𝑝𝑡. The second term, 
∆

𝑝𝑡
, is the relative tick size and it decreases 

with 𝑝𝑡. The first-order condition for equation (4) is: 

∂𝒮𝑡
𝑡𝑜𝑡

∂𝑃𝑡
=

2𝜎𝜆𝐽𝐿𝜆𝐼𝑣𝑡

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)2 −
∆

𝑝𝑡
2 = 0,                                     (5) 

or  

2𝜎𝜆𝐽𝐿𝜆𝐼𝑣𝑡

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)2
=

∆

𝑝𝑡
2.                                               (6) 

Equation (6) shows that the optimal nominal price for a firm, 𝑝𝑡
∗ , should 

equalize the marginal contribution from tick size 
∆

𝑝𝑡
2 to the marginal contribution of 

lot size 
2𝜎𝜆𝐽𝐿𝜆𝐼𝑣𝑡

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)2. If a firm chooses a nominal price that is higher than 𝑝𝑡
∗, a small 

decrease in 𝑝𝑡 increases the percentage spread generated by the tick size but reduces 

the percentage spread generated by the lot size by a larger amount. Therefore, a 
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firm should split its stock when its price is too high. Similarly, when 𝑝𝑡 < 𝑝𝑡
∗, the 

marginal contribution from the tick size is larger than the marginal contribution 

from the lot size. A firm should then reverse-split its stock to reduce price 

discreteness and increase quantity discreteness. 

Proposition 3 provides the solution that determines the optimal price. The 

solution becomes very intuitive when the latent demand of uninformed traders is 

much larger than the lot size, that is, 𝐿 → 0.  

Proposition 3 (Golden Rule of Two Cents). When the tick size is ∆ and the lot 

size is 𝐿, the optimal nominal price is 𝑝𝑡
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑝𝑡
 

𝒮𝑡
𝑡𝑜𝑡 = (√

2𝜎𝜆𝐽𝐿

𝜆𝐼∆𝑣𝑡
−

𝜆𝐽𝐿

𝜆𝐼𝑣𝑡
)−1 and 

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗) = ∆ + ∆/(1 − √
∆𝜆𝐽𝐿

2𝜎𝜆𝐼𝑣𝑡
) . When 𝐿 → 0 , 𝑠𝑡

𝑡𝑜𝑡 = 𝑠𝑡
𝐿 + ∆≈

2𝜎𝜆𝐽𝑝𝑡
2𝐿

𝜆𝐼𝑣𝑡
+ ∆  and 

𝒮𝑡
𝑡𝑜𝑡 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡
+

∆

𝑝𝑡
. The optimal nominal price that minimizes a firm’s percentage 

bid–ask spread is 𝑝𝑡
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑝𝑡
 

𝒮𝑡
𝑡𝑜𝑡 = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
, and 𝑠𝑡

𝑡𝑜𝑡(𝑝𝑡
∗) = 2∆. 

 

Proposition 3 offers a simple rule of thumb a firm can follow to determine its 

optimal price: a firm reaches its optimal nominal price when the nominal spread is 

two ticks. Stocks trading with a bid–ask spread that is smaller than two ticks are 

more tightly constrained by the tick size, and those firms can infer that their nominal 

prices are too low. Firms trading with a bid–ask spread wider than two ticks are 

more lot-bound and their nominal prices are too high. 

The Two-Tick rule implies heterogeneity in nominal prices. For example, an 

increase in volatility, caused either by an increase in jump size 𝜎 or an increase in 

jump frequency 𝜆𝐽, reduces the optimal nominal price. The intuition behind this is 

as follows. Holding all other things equal, an increase in volatility increases adverse 

selection risk and the percentage spread. Holding the nominal price fixed, an 

increase in the percentage bid–ask spread relieves the tick-size constraint. 
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Therefore, a firm should reduce its nominal price, increase the marginal 

contribution from the tick size, and decrease the marginal contribution from the lot 

size. A stock with a higher jump size 𝜎, a higher jump-arrival rate 𝜆𝐽, or a lower 𝜆𝐼 

tends to realize a higher percentage spread, and that stock achieves a two-tick 

nominal spread at a lower nominal price than a stock with lower 𝜎, lower 𝜆𝐽, or 

higher 𝜆𝐼. In summary, optimal pricing implies that the nominal spread is always 

two ticks, but the percentage spread under the optimal price depends on firm 

fundamentals. 

An elegant feature of our model is that a firm does not need to calibrate 𝜎, 𝜆𝐽, 

and 𝜆𝐼 to estimate its optimal price, because a firm’s current spread 𝑠𝑡
𝑡𝑜𝑡 provides 

sufficient statistics for the decision. Define 𝐻𝑡
 : =

𝑝𝑡−0

𝑝𝑡+0
 as the split ratio of a firm, i.e. 

the ratio of the nominal prices immediately before and after a split. When a firm 

splits by 𝐻𝑡
 -for-1, the tick-driven part remains unchanged at ∆ while the lot-driven 

part follows the Square Rule and changes to (𝑠𝑡
𝑡𝑜𝑡 − ∆)/𝐻𝑡

2. Then, the total spread 

after splits becomes (𝑠𝑡
𝑡𝑜𝑡 − ∆)/𝐻𝑡

2 + ∆. To achieve the optimal nominal spread of 

two ticks, a firm should choose an 𝐻𝑡
  such that  

 (𝑠𝑡
𝑡𝑜𝑡 − ∆)/𝐻𝑡

2 + ∆= 2∆.                                         (7) 

The solution for equation (7) leads to the optimal split ratio 

                                              𝐻𝑡
∗ = √𝑠𝑡

𝑡𝑜𝑡−∆

∆
.                                                 (8) 

This Modified Square Rule provides a convenient way to determine the 

split/reverse split ratio that enables a firm to reach the two-tick spread. 

Corollary 2 (The Modified Square Rule and the Optimal Split Ratio). When 

the parent order is much higher than the lot size, an 𝐻𝑡
 -for-1 split changes the 

spread from 𝑠𝑡
𝑡𝑜𝑡  to (𝑠𝑡

𝑡𝑜𝑡 − ∆)/𝐻𝑡
2 + ∆, and the percentage spread changes by 

𝑅 =
(𝑠𝑡

𝑡𝑜𝑡−∆)/𝐻𝑡
2+∆

𝑣𝑡
 /𝐻𝑡

 −
𝑠𝑡

𝑡𝑜𝑡

𝑣𝑡
 . 𝑅 reaches its minimum if and only if 𝐻𝑡

∗ = √𝑠𝑡
𝑡𝑜𝑡−∆

∆
. 
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In corollary 2, we modify the Square Rule in Corollary 1 to accommodate 

discrete pricing. The Modified Square Rule predicts the percentage spread change 

for any 𝐻𝑡
 , even if the 𝐻𝑡

  is not optimal. We test the Modified Square Rule in 

Section 5. 

 

4. Policy Implications for Tick and Lot sizes 

In this section, we allow the market designer to change tick and lot sizes and 

consider our model’s policy implications. In Subsection 4.1, we consider the firm’s 

responses to changes in tick and lot sizes. In Subsection 4.2, we show that a uniform 

tick- and lot-size system dominates a system with proportional tick and lot sizes. 

 

4.1. Changes in a Uniform Tick- and Lot-Size Regime   

Proposition 4 shows the firm’s best response to changes in tick and lot sizes as well 

as the resultant change in liquidity. 

Corollary 3. (The Square Root Rule) When the lot size is small, a firm with 𝑝𝑡
∗ =

√
𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
 should respond to tick- and lot-size changes by √∆/𝐿. The nominal spread 

under optimal pricing, 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗), equals 2∆ regardless of 𝐿 and ∆, and the smallest 

achievable percentage spread 𝒮𝑡
𝑡𝑜𝑡(𝑝𝑡

∗) =
2∆

𝑝𝑡
∗ = √

8𝜎𝜆𝐽∆𝐿

𝜆𝐼𝑣𝑡
 is proportional to √∆𝐿. 

 

Corollary 3 shows a series of responses in square roots after the market designer 

changes the tick or lot size. First, a firm’s optimal response to a change in the tick 

or lot size is the square root of the change. For example, if regulators increase the 

tick size from one cent to five cents, firms should reverse-split their stocks by √5. 

This reverse-split ratio is optimal because it equals the marginal contribution from 

the tick size and the marginal contribution from the lot size. Both the relative tick 
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size and the dollar lot size increase at the rate of the square root. 

Second, liquidity also changes at the rate of the square root. To see this, recall 

that the optimal 1-for-√5 reverse split increases the lot-driven spread to 5 (=

√5 × √5) cents, and the tick-driven spread is still 5 cents. The 1-for-√5 reverse 

split restores the two-tick optimal spread, except that the two ticks now equal ten 

cents. The optimal bid–ask spread increases fivefold and the nominal price 

increases by a factor of √5, leading to a √5-fold increase in the percentage spread. 

In summary, the Two-Tick rule always hold, but the firm’s optimal response, the 

lot-driven percentage spread, the tick-driven percentage spread, and the total 

percentage spread all change in accordance with the Square Root Rule.  

The same intuition applies to a reduction in the lot size. In 2019, the SIP 

Operating Committee solicited comments for a policy initiative designed to reduce 

the friction associated with odd-lot trades, or orders involving fewer than 100 shares. 

Stock exchanges and institutional traders proposed a more aggressive plan: reduce 

the threshold of the round lot to fewer than 100 shares.5 Proposition 4 indicates that 

a reduction in the lot size improves liquidity, and firms should reverse-split their 

stocks to take full advantage of the benefit. For example, if the SIP committee 

reduces the round lot from 100 shares to 1 share, firms should reverse-split at a ratio 

of 1-for-√100 to maximize the benefit of the lot-size reduction. Such a reduction 

in the spread also explains why broker-dealers, who often provide execution within 

the bid–ask spread against retail traders (Boehmer et al., 2020), oppose the 

reduction in the official lot size. For them, a reduction in the lot size reduces the 

reference bid–ask spread in stock exchanges and thereby forces them to offer better 

 
5  NASDAQ’s comment letter (https://www.theice.com/publicdocs/SIP_Comment_Nasdaq_ 

redacted.pdf) suggests that “high value quotations with significant price discovery information 

would be protected, even if they were less than 100 shares.” Citadel and Blackrock also support lot-

size reduction in their comment letters. However, retail broker-dealers such as TD Ameritrade 

oppose the idea because “display of unprotected quotes will cause confusion and mistrust in the 

market.” 

https://www.theice.com/publicdocs/SIP_Comment_Nasdaq_%20redacted.pdf
https://www.theice.com/publicdocs/SIP_Comment_Nasdaq_%20redacted.pdf


 21 
 

prices to retail traders. 

Corollary 3 shows that a policy initiative that aims to make pricing more 

discrete also makes quantity more discrete in equilibrium and vice versa. To the 

best of our knowledge, we are the first to identify this spillover effect. Angel (1997) 

considers only discrete pricing, and he finds that a 1-for-5 reverse split would 

neutralize a fivefold increase in the tick size. When we add discrete quantities, a 1-

for-5 reverse split no longer neutralizes the increase in the tick size nor is the best 

response, and the 1-for-5 reverse split is as bad as doing nothing at all! The intuition 

behind this is as follows. Although a 1-for-5 reverse split restores the relative tick 

size, such aggressive reverse splits cause a fivefold increase in the dollar lot size. 

In equilibrium, a fivefold increase in the dollar lot size leads to the same increase 

in the percentage spread as a fivefold increase in the tick size does. For example, 

consider a firm that currently has an optimal spread of two cents; one cent comes 

from the tick size and one cent comes from the lot size. An increase in the tick size 

from one cent to five cents raises the spread from the tick size to five cents, leading 

to a nominal spread of six cents, which is three times the previous level. After a 1-

for-5 reverse split, the tick-driven spread remains at five cents. A fivefold increase 

in the lot size raises the lot-driven spread to 52. The nominal spread now becomes 

5 + 52. After adjusting for the increase in the nominal price, the percentage bid–

ask spread still increases by a factor of three (=
25+5

2×5
). In conclusion, a reverse split 

at the same rate as the increase in the tick size is as bad as doing nothing at all. 

Compared with the optimal response under the Square Root rule, the percentage 

spread increases by 
3

√5
≈ 1.34 times. 

 

4.2 Proportional vs. Uniform Tick and Lot Sizes  

One plan for changing the lot size is to make it a function of price, such that high-
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priced stocks have smaller lot sizes.6 This plan essentially generates a proportional 

lot size, which leads to a uniform dollar lot size for all stocks. Also, in many 

European countries, Hong Kong and Japan, the tick size increases with stock prices, 

which generally leads to a proportional tick size (a uniform relative tick size). 

Corollary 4 shows that if the tick size is proportional, firms should split their stocks 

to minimize friction from the lot size. On the other hand, if the lot size is 

proportional, firms should reverse-split to minimize the tick size friction. If both 

the lot and tick size are proportional, the choice of a nominal price becomes 

irrelevant. In this case, firms lose flexibility in the tick–lot balance, and almost all 

firms face worse liquidity. 

Corollary 4. (Proportional Tick and Lot Systems) (1) With fixed ∆  and 

proportional lot size 𝕃(𝑝𝑡
 ) = 𝑘𝐿/𝑝𝑡

 , where 𝑘𝐿  is a constant, the firm’s optimal 

choice is 𝑝𝑡
∗ → ∞  and 𝒮∗ =

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 .(2) With fixed 𝐿  and proportional tick size 

𝔻(𝑝𝑡
 ) = 𝑘∆𝑝𝑡

 , where 𝑘∆  is a constant, the firm’s optimal choice is 𝑝𝑡
∗ → 0 and 

𝒮∗ = 𝑘∆ . (3) With proportional tick 𝔻(𝑝𝑡
 ) = 𝑘∆𝑝𝑡

  and lot 𝕃(𝑝𝑡
 ) = 𝑘𝐿/𝑝𝑡

 , 𝒮 ≡

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 + 𝑘∆ for any 𝑝𝑡

 . Adopting the proportional system in (3) with any reference 

price 𝑝Ω
  such that 𝑘∆ = ∆/𝑝Ω

  and 𝑘𝐿 = 𝐿𝑝Ω
  reduces liquidity for any stock with 

𝑝 ≠ 𝑝Ω
 . 

 

In Table 1 we summarize the results of our discussions of the uniform or 

proportional tick size. As either 𝑘∆ or 𝑘𝐿 can equal 0, Table 1 also provides the 

results for continuous versus discrete tick sizes. The first best in our model is 

continuous tick and lot sizes. In this case, the bid–ask spread becomes 0. If one 

 
6 For example, Blackrock (2019) “believes that a more elegant solution for the inclusion of odd lots 

would be to move from a ‘one-size-fits-all’ approach to a multi-tiered framework where round lot 

sizes are determined by the price of a security.” NASDAQ (2019) suggests “establishing a dollar 

threshold for the value of quotes to be protected, defined as price multiplied by the number of shares.” 
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variable is continuous and the other is discrete, firms would split/reverse split to 

minimize the friction from the only discrete variable. A proportional tick size leads 

firms to choose low prices, because lowering prices reduces the lot-driven 

percentage spread without increasing the tick-driven percentage spread. The 

optimal percentage spread equals the mandated proportional tick size. A 

proportional lot size leads firms to choose high prices. Firms reverse-split to 

minimize the impact a discrete pricing. The optimal percentage spread contains 

only the lot-driven component, which is the same for all stocks under proportional 

lot sizes. 

[Insert Table 1 about Here] 

The most interesting contrasts appears at the diagonal, where we compare 

uniform tick and lot sizes with proportional tick and lot sizes. Such a comparison 

depends on 𝑘∆ and 𝑘𝐿. A natural way to choose 𝑘∆ and 𝑘𝐿 is to use a representative 

stock. For example, a market designer can choose 𝑘∆  and 𝑘𝐿  such that the 

proportional tick and lot sizes for a $30 benchmark stock do not change. Corollary 

4 shows that such proportional systems would decrease liquidity for all stocks 

except the representative stock. The greater the distance between the stock price 

and the benchmark price, the greater the liquidity reduction. 

For example, a proportional system can maintain the tick and lot sizes for a 

representative stock that is trading at $30. The proportional system would impose 

a tenfold larger tick size and a 0.1-fold larger lot size on a $300 stock. If the $300 

stock was at its equilibrium with a two-cent bid–ask spread, its tick-driven spread 

increases to ten cents and its lot-driven spread reduces to 0.1 cent, leading to an 

increase of the total spread from two cents to 10.1 cents. Symmetrically, the 

proportional system would impose a 0.1-fold larger tick size and tenfold larger lot 

size for a $3 stock.  If the $3 stock currently trades with a two-cent bid–ask spread, 

its tick-driven spread would drop to 0.1 cent but its lot-driven spread would increase 

to 10 cents, leading to an increase in the total spread from two cents to 10.1 cents. 
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Under uniform tick and lot sizes, the firm choosing a $300 ($3) price is more (less) 

liquid than a firm choosing a $30 price, but adopting a proportional tick and lot 

system reduces liquidity for both the $300 and the $3 stock at the same magnitude. 

Corollary 4 implies that, if regulators want to switch from a uniform system to a 

proportional system, they should not use any existing stock as the benchmark to set 

proportional tick and lot sizes. 

The uniform system dominates the proportional system because the former is 

more flexible. The uniform system may seem less flexible because it mandates the 

same tick and lot size for stocks with varying prices. Yet the uniform system 

actually gives firms flexibility to choose the optimal balance between lot and tick 

sizes by adjusting nominal prices. More liquid stocks endogenously choose higher 

prices (i.e. higher dollar lot sizes and lower relative tick sizes), because the main 

friction comes from discrete pricing. Less liquid stocks endogenously choose lower 

prices (i.e. lower dollar lot sizes and higher relative tick sizes), because the main 

friction comes from trading large lots. Therefore, although the prefect system would 

utilize continuous tick and lot sizes, the uniform system at least offers one degree 

of freedom. The proportional system offers zero degrees of freedom because it 

mandates the same level of discreteness in price and quantity for stocks with 

heterogeneous characteristics. Other than the benchmark stock, which happens to 

fit the imposed tick and lot sizes, the proportional system reduces the liquidity of 

all other stocks. The biggest victims of the move from a uniform system to a 

proportional system would be stocks whose nominal prices (and implicitly stock 

characteristics) are most different from the benchmark stock. 

 

5. Cross-sectional Tests 

In this section, we test our model in the cross-section. In Section 5.1 we show that 

the cross-sectional variation in the bid–ask spread follows the Modified Square 

Rule quantitatively.  Section 5.2 shows that our model also explains 61% of the 
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variation in the nominal price. 

 

5.1 A three-factor empirical model of liquidity  

Formula (3) implies a three-factor model of cross-sectional variation in the bid–ask 

spread. To see that, if we multiply the denominator and numerator of the right-hand 

side of Formula (3) by 𝐿𝑝𝑡, we obtain 

𝑠𝑡
𝑡𝑜𝑡 − ∆=

2𝐿𝜎𝜆𝐽𝑝𝑡
2

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
=

2𝐿𝜎𝜆𝐽𝑝𝑡
2

𝑉
                                     (9) 

Taking the natural log on both sides, we obtain 

𝑙𝑜𝑔(𝑠𝑡
𝑡𝑜𝑡 − ∆) = 2𝑙𝑜𝑔(𝑝𝑡) − 𝑙𝑜𝑔(𝑉) + 𝑙𝑜𝑔(𝜎𝜆𝐽) + 𝑐𝑜𝑛𝑠𝑡.        (10) 

The empirical proxy for 𝑝𝑡 is the nominal price, 𝑉 is the dollar trading volume 

of the stock, and the proxy for 𝜎𝜆𝐽 is stock volatility. Writing (11) into the form of 

an OLS test: 

𝑙𝑜𝑔(𝑠𝑡
𝑡𝑜𝑡 − ∆)𝑖 = 𝛿 ∙ 𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒)𝑖 + 𝑙𝑜𝑔(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑖 + 𝑙𝑜𝑔(𝑉𝑜𝑙𝑢𝑚𝑒)𝑖 + 𝜀𝑖.(11) 

We predict that 𝛿 = 2. The null hypothesis is 𝛿 = 1: when the lot size does not 

impose a binding constraint on the bid–ask spread, 𝑠𝑡
𝑡𝑜𝑡 − ∆ should increase in one-

to-one fashion with respect to the price. 

We use daily Trade and Quote (TAQ) data for the time-weighted quoted bid–

ask spread, trading volume, and the number of trades. We use Center for Research 

in Security Prices (CRSP) data for stock prices, market capitalization, and the 

volatility of stock returns. Variables are winsorized at the 1% level. We require 

stocks to be U.S.-listed common stocks (SHRCD 10 or 11) with a standard lot size 

of 100 shares and prices higher than $1 per share. Our main sample period is the 

year 2019, the most recent period for which we have one full year of data. 

[Insert Table 2 about Here] 

Panel A of Table 2 strongly rejects the null hypothesis that 𝛿 = 1. Therefore, 

the percentage bid–ask spread depends strongly on the dollar lot size. The results 

reported in column (1) show that 𝛿 = 2.08 , which squares with our model’s 
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prediction of 𝛿 = 2 . The coefficients for volatility and trading volume are 

quantitatively close to 1. Our parsimonious three-factor model captures most of the 

cross-sectional variation in the bid–ask spread, with an R-squared as high as 0.83. 

Columns (2) – (5) show similar results prior to 2019, indicating the robustness of 

the Modified Square Rule. 

In Panel B of Table 2 we report the results of comparing the three-factor model 

with two canonical benchmarks: Madhavan (2000) and Stoll (2000).  Following 

their specifications, we normalize all dependent variables by price. The results 

reported in column (1) show that the R-squared of the three-factor model (0.84) is 

much higher than that in Madhavan (2000; see column 2, 0.61) and Stoll (2000; see 

column 3, 0.61), even though the three-factor model includes only a subset of 

variables included in previous benchmarks.  This improvement in the goodness of 

fit is surprising, because adding more explanatory variables should, at a minimum, 

mechanically increase the R-squared. In columns (4)–(8) we then report results 

indicating two explanations of this surprising outperformance. First, our model 

provides a better functional form for each variable. Second, our model enables us 

to remove redundant variables.  

Regarding the first point, Madhavan (2000) uses 𝑝𝑟𝑖𝑐𝑒−1  to control for the 

relative tick size, while Stoll (2000) uses 𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒). Both specifications imply a 

monotonic relationship between the price and the percentage spread. In reality (as 

seen in Figure 1), the relationship between price and liquidity is U-shaped. 

Therefore, these two canonical benchmarks may misspecify the relationship 

between price and liquidity, at least in recent years. Another indicator of such 

misspecification is the coefficient estimate for the price. For example, the 

Madhavan (2000) specification shows that an increase in the price or a decrease in 

the relative tick size increases the percentage spread, despite overwhelming 

evidence derived from natural experiments that the percentage spread should 

increase with the tick size (Bessembinder 2003; Albuquerque, Song, and Yao, 
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2020). Stoll’s (2000) specification shows that the price does not correlate with the 

percentage spread in our sample, although the economic reasoning in Stoll (2000) 

suggests that the price should matter. Our model provides an interpretation that 

applies to this puzzle: the price matters for liquidity; it just does not matter in a 

linear way. 

Our model indicates that a better functional form in the regression is to subtract 

one tick from the bid–ask spread to control for the tick size and use log(price) to 

control for the lot size. To obtain the results reported in columns (4) and (5), we 

change the specifications in Madhavan (2000) and Stoll (2000) in only one respect: 

we replace the dependent variable in their regressions, the percentage spread (the 

bid–ask spread divided by the price), with the log of the percentage lot-driven 

spread ((bid–ask spread – 1 cent) divided by price). This one-cent change makes a 

huge difference. The R-squared in Madhavan’s (2000) specification increases from 

0.61 to 0.71 while the R-squared in Stoll’s (2000) specification increases from 0.61 

to 0.83. Also, the coefficients for prices become statistically more significant. 

Regarding the second point, our model suggests that we can remove market cap 

in the regression. Almost all empirical tests of liquidity control for the market cap, 

reflecting the intuition that large-cap stocks should be more liquid (Stoll 2000; 

Madhavan 2000). The results reported in column (2) of Table 2 show that adding 

the market cap only marginally improves the explanatory power. Interestingly, Stoll 

(2000) documents a similar puzzle in his sample period: the market cap has very 

weak explanatory power for the percentage spread, and an increase in the market 

cap can increase the percentage bid–ask spread (Table 1, p. 1481). Our model 

provides the intuition that explains why the market cap has almost no additional 

explanatory power for the percentage spread. Madhavan (2000) and Stoll (2000) 

also control for the dollar volume, and our model suggests that the market cap 

becomes a redundant variable after we control for the dollar volume. Notice that 

we model market cap as 𝑣𝑡, and it affects liquidity only through its product with 𝜆𝐼, 
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the turnover rate. Our model predicts that a small-cap stock with high turnover is 

as liquid as a large-cap stock with low turnover if they have the same dollar volume. 

The results reported in column (6) show that adding the market cap to our three-

factor model increases the R-squared by only 0.01. The results reported in column 

(7) show that the R-squared declines from 0.84 to 0.76 if we remove the dollar 

volume but keep the market cap. In summary, although the market cap appears to 

be a universal explanatory variable in most regressions, it does not directly affect 

the market maker’s decision regarding the bid–ask spread, likely because the 

competitive market maker care more about the dollar trading volume that pays the 

bid–ask spread and less about the size of the firm per se. 

 

5.1 A two-factor empirical model of nominal prices   

Proposition 3 predicts that a firm’s optimal nominal price is 𝑝𝑡
∗ = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
. 

Taking the natural log on both sides, we obtain: 

𝑙𝑜𝑔(𝑝𝑡
∗) =

1

2
𝑙𝑜𝑔(𝜆𝐼𝑣𝑡) −

1

2
𝑙𝑜𝑔(𝜎𝜆𝐽) + 𝑐𝑜𝑛𝑠𝑡.                    (12) 

Rewriting (12) as a cross-sectional test gives us: 

𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒)𝑖 =
1

2
𝑙𝑜𝑔(𝐷𝑜𝑙𝑙𝑎𝑟 𝑉𝑜𝑙𝑢𝑚𝑒)𝑖 −

1

2
𝑙𝑜𝑔(𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑖 + 𝜀𝑖.        (14) 

 

In Panel C of Table 2 we report he cross-sectional results for nominal prices. In 

column (1) we show that the two-factor model captures 61% of the cross-sectional 

variation in stock prices. An increase in volatility decreases the nominal price. This 

result is consistent with Baker, Greenwood, and Wurgler’s (2009) finding on stock 

splits, according to which “a somewhat unexpected result is the effect of volatility, 

which suggests that volatile firms have a greater, not lesser, propensity to manage 

prices downward.” Our model rationalizes their puzzle. An increase in volatility 

increases adverse selection risk for market makers, and firms with higher volatility 



 29 
 

should choose a lower price to reduce the dollar lot size. Another way to understand 

these results is that firms with higher volatility have a higher percentage spread and 

are less tick-constrained. Therefore, these stocks can achieve their optimal 2-tick 

spreads at lower nominal prices. 

We also find that the nominal price increases with dollar volume. As stocks that 

trade in higher volumes tend to be larger stocks, we provide an interpretation for 

the observations in Baker, Greenwood, and Wurgler (2009) and Weld et al. (2009) 

that large stocks choose higher prices. An increase in the dollar volume reduces the 

percentage spread and also the tick-size constraints. Therefore, firms tend to choose 

higher prices to relieve tick-size constraints. 

Weld et al. (2009) use industry fixed effects to explain nominal prices in the 

cross-section. We reconfirm their results, as reported in columns (2) and (3). 

Starting with a univariate regression with log volume and adding industry fixed 

effects increases the R-squared from 0.46 to 0.52. When we add volatility to the 

regression, though, the industry fixed effects increase the R-squared by only 0.01, 

as reported in column (4). Therefore, volatility subsumes most of the explanatory 

power of industry fixed effects. One rational interpretation for the industry 

clustering found in Weld et al. (2009) is that firms in the same industry may be 

subject to similar volatility. 

In summary, we find that our model fits qualitatively with cross-sectional 

variations in nominal prices. The fit is less perfect than the fit for the bid–ask spread 

(0.61 vs. 0.84), and the coefficient on the estimate does not change one for one with 

model predictions. Interestingly, it is this imperfect fit that enables us to identify 

the impact of prices on the bid–ask spread. If all firms chose their prices following 

our model, log(price) would correlate almost perfectly with log(volatility) and 

log(dollar volume), leading to collinearity. There are two possible, albeit not 

mutually exclusive, interpretations of the less perfect fit of firms’ behavior than of 

traders’ behavior. First, our model overlooks other important drivers of the firm’s 
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choice but not of the traders’ choice. Second, firms respond to market structure 

frictions to a lesser extent than traders do. Therefore, firms may end up with 

suboptimal nominal prices. We cannot rule out the first interpretation, but we find 

empirical evidence consistent with the second interpretation through stock splits. 

 

6. Liquidity and Returns around Stock Splits 

In this section, we use stock splits as a laboratory to test the implications of our 

model. In Section 6.1, we describe our data and sample. In Subsection 6.2, we show 

that our model matches changes in the percentage spread after splits. In Subsection 

6.3, we show that most splits are correct because they tend to increase liquidity. In 

Subsection 6.4, we find that model-predicted changes in the percentage spread can 

explain the cross-sectional variation in announcement returns on splits. 

 

6.1 Data, Sample, and Summary Statistics  

Our sample includes all U.S. common stock–split announcements (CRSP event 

code 5523) from June 2003 through December 2019.7 We require stocks to be U.S.-

listed common stocks (the SHRCD is 10 or 11) and have pre- and post-split prices 

higher than $1 per share. We use CRSP data for stock-split ratios and 

announcement dates, split-adjusted stock returns, and market returns around 

declare dates as well as control variables. We use millisecond TAQ data to calculate 

the time-weighted quoted bid–ask spread and the quoted NBBO depth. To calculate 

cumulative abnormal returns (CARs), we obtain daily Fama-French factor returns 

and risk-free rates from Kenneth French’s data library. We also require that the 

declaration date, the ex-date, and the split ratio be neither missing nor duplicated 

from CRSP. In addition, we use COMPUSTAT data to obtain annual reported 

numbers of shareholders and we aggregate 13-F filings to calculate the institutional 

 
7 The sample period begins in the month in which the millisecond TAQ data become available. 
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holdings of a stock one quarter before and after its split announcement. Variables 

are winsorized at the 1% level. Following Grinblatt, Masulis, and Titman (1984), 

we require that stock-split ratios be greater than or equal to 1.25 (5-for-4).8 We end 

up with 1,183 stock splits. 

In Table 3 we report the descriptive statistics. We have 912 unique stocks in 

our sample. The most common splits are 2-for-1 splits (645 times) and 1.5-for-1 

splits (355 times), and the mean split ratio is 1.90. The average price before a split 

announcement is $57.97 and the average price after a split is $32.38. Also, the 

average number of trades increases from 2,718 trades per day to 4,447 per day, a 

64% increase. Yet the dollar trading volume experiences almost no change ($44.25 

million compared with $44.72 million). This supports our hypothesis that execution 

algorithms slice and dice their latent interest into smaller dollar size after stock 

splits. Also, institutional holdings increased slightly, from 57.90% to 58.04%, 

indicating that retail traders’ holdings do not change dramatically. Therefore, 

changes in the compositions of retail/institutional holdings are unlikely to drive our 

results. 

[Insert Table 3 about here] 

 

6.2. Spread Changes around Stock Splits 

In this subsection we show that changes in percentage spreads fit closely with the 

Modified Square Rule. We measure the bid–ask spread before splits as the average 

bid–ask spread 180 to 60 days before a split announcement day. 9 We define 𝑅𝑖 as 

the predicted change in the percentage spread: 

 
8 The CRSP does not record reverse-split announcement dates. Also, reverse-split announcements 

are usually mechanical and associated with bad news. For example, firms reverse-split to comply 

with an exchange’s listing requirement of a $1.00 minimum bid price (Martell and Webb 2008).  
9 Stock trades around split announcements are volatile (Ohlson and Penman, 1985). Therefore, when 

measuring the bid–ask spread we exclude 60 days around the split window and consider the spread 

difference between the two relatively calm periods before the announcement and after the ex-date. 
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𝑅𝑖 =
(𝑠𝑖

𝑏𝑒𝑓
−∆)/𝐻𝑖

2+∆

𝑝
𝑖
𝑏𝑒𝑓

/𝐻𝑖
 

−
𝑠𝑖

𝑏𝑒𝑓

𝑝
𝑖
𝑏𝑒𝑓,                                       (15) 

where 
𝑠𝑖

𝑏𝑒𝑓

𝑝
𝑖
𝑏𝑒𝑓  is the percentage spread before the split and 

(𝑠𝑖
𝑏𝑒𝑓

−∆)/𝐻𝑖
2+∆

𝑝
𝑖
𝑏𝑒𝑓

/𝐻𝑖
 

 is the 

percentage spread predicted by the Modified Square Rule (Corollary 2). 

Next, we examine whether our predicted spread change 𝑅 can explain actual 

spread changes after splits. We run the following regression: 

∆𝒮𝑖 = 𝛽 ∙ 𝑅𝑖 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 × 𝑌𝑒𝑎𝑟 𝐹𝐸𝑡 + 𝜀𝑖.              (16) 

The realized change in the percentage spread, ∆𝒮𝑖, is the difference between the 

average percentage spread 180 to 60 days before announcement days and the 

average percentage spread 60 to 180 days after ex-dates. Following Weld et al. 

(2009), our control variables include market capitalization, price, volume, and 

turnover rates. 

[Insert Table 4 about here] 

Table 4 shows that a predicted 1 bp increase in the spread leads to a 0.97 bps 

realized increase in the spread, with t-statistics as high as 4.87. Therefore, the 

Modified Square Rule strongly predicts the percentage spread after splits. 

 

6.3. Correct versus Incorrect Splits  

After showing that the changes in realized percentage spreads exhibit an almost 

one-for-one match with the Modified Square Rule, we consider whether a firm’s 

decision to split and its split ratio improve liquidity. We find that firms in general 

make the correct decisions. 

Our model predicts that a split is correct if it moves the bid–ask spread closer 

to the two-tick optimum. Mathematically, a split is correct if  𝑅𝑖 < 0 and a split is 

incorrect if 𝑅𝑖 > 0, and 𝑅𝑖 reaches its minimum if the split ratio leads to the optimal 

two-tick spread. We find that 1,077 splits are “correct” and 106 splits are “incorrect.” 
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Among the 106 incorrect splits, 73 should have split, because their bid–ask spreads 

are higher than the 2-tick optimum. However, they choose split ratios that are so 

aggressive that their new bid–ask spreads are further away from the 2-tick optimal. 

We find that 𝑅𝑖 , on average, decreases by 15.22 bps in our sample, providing 

additional evidence that splits are in general correct. 

 

6.4. Cumulative Abnormal Returns around Announcements 

Liquidity affects asset value (Amihud and Mendelson, 1986), and Figure 2 presents 

preliminary evidence that our model-predicted liquidity change affects returns on 

split announcements: firms in the group with correct splits realize an average 

announcement CAR of 2.88%, whereas those in the group with incorrect splits 

obtain an average announcement return of only 1.26%.10 

[Insert Figure 2 about Here] 

Insofar as splits are good news in general, both groups enjoy positive returns, 

but the 1.62% difference indicates that predicted liquidity changes may contribute 

to the difference in returns. To test this hypothesis, we run the following regression: 

𝐶𝐴𝑅𝑖,[𝑇−1,𝑇+1] = 𝜃 ∙ 𝑅𝑖 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑖 × 𝑌𝑒𝑎𝑟 𝐹𝐸𝑡 + 𝜀𝑖.   (24) 

Following Weld et al. (2009), our control variables include market 

capitalization, price, volume, and turnover rates. We also control for industry-year 

fixed effects to absorb any industry and time-specific shocks, where each industry 

is defined by reference to the first two digits of the NAICS classification. We also 

control for institutional holding changes and the number of investor changes 

[following Amihud, Mendelson, and Uno (1999) and Dyl and Elliott (2006)] to 

exclude the impact of investor base changes.11 

 
10 Following Grinblatt, Masulis, and Titman (1984), we consider the window of announcement 

abnormal returns as dates -1, 0, and 1. 
11 These variables are missing for more than half of the firms, so we do not require them in the 

baseline test. As the results reported in column (5)–(7) of Table 5 show, our results are robust to 

adding these controls for the reduced sample. 

http://scholar.google.com/scholar?q=Amihud+and+Mendelson&hl=en&as_sdt=0&as_vis=1&oi=scholart


 34 
 

[Insert Table 5 about here] 

The results reported in Table 5 show that our predicted spread change is 

significantly negatively associated with split-announcement abnormal returns. 

Column (1) show that a 1 bps predicted increase in the percentage spread is 

associated with −5.49  bps in announcement returns. 12 After adding control 

variables, the results reported in column (3) show that a 1 bps predicted increase in 

the percentage spread is associated with −6.25 bps in announcement returns. As 

the mean of 𝑅𝑖  is −15.22 bps, correct split ratios contribute −15.22 × −6.25 =

95  bps to the overall average split-announcement abnormal return of 272 bps. 

Therefore, a reduction in market microstructure friction provides a partial 

explanation of why stock split, a seemingly cosmetic change, lead to positive 

returns. 

The Table 5 results show that the explanatory power of the tick-and-lot channel 

is orthogonal to two existing interpretations of splits and announcement returns 

from splits. Brennan and Copeland (1988) propose that firms use splits to convey 

positive signals about firm fundamentals, and the cost of such signals is reduced 

liquidity. Brennan and Copeland (1988) predict, therefore, that a larger reduction 

in liquidity should be a stronger signal and is associated with higher returns. We 

find, however, that splits improve liquidity and a greater improvement in liquidity 

leads to a higher return. Both patterns are inconsistent with the signaling channel. 

Lamoureux and Poon (1987) and Maloney and Mulherin (1992) propose that firms 

use stock splits to attract retail traders, and an increase in uninformed traders 

increases volume and liquidity. We found in Table 3 that institutional holdings 

increased slightly after stock splits. The results reported in column (4) of Table 5 

show that the change in retail holdings, proxied by the number of shareholders and 

 
12 The economic magnitude is similar to that reported in Albuquerque, Song, and Yao (2020). Using 

a controlled experiment, they find that a 43.5 to 48.2 bps increase in the bid–ask spread led to a 175 

to 320 bps drop in asset values. 
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institutional holdings, does not affect announcement returns. 

 

7. Economic gains from better management of nominal prices  

In Sections 5 and 6, we provide evidence of the value of managing nominal prices, 

and we also show that firms on average move their nominal prices in the right 

direction during stock splits. However, the existence of pairs of stocks with similar 

fundamentals but dramatically different nominal prices suggests that one stock in 

the pair should have an incorrect price. For example, for 2019, Amazon brought an 

average price of around $1,800 and Apple brought a price of $200. Ford brought a 

price of $9 and GM brought a price of $38. 

       The Two-Tick Rule and the Modified Square Rule provide predictions as to 

which stock in each pair has an incorrect price, and the empirical evidence is 

consistent with such predictions. Amazon’s price is too high, because its bid–ask 

spread (60 cents) is further away from the 2-cent optimal than Apple’s bid–ask 

spread (1.81 cents). Indeed, Amazon’s percentage spread is 3.3 bps, whereas 

Apple’s percentage spread is only 0.9 bps. The Modified Square Rule shows that 

differences in nominal prices can almost fully explain the  fourfold dramatic 

differences in transaction costs. If Amazon implements a 9-for-1 split, it will have 

a nominal price that is similar to Apple’s, and its nominal spread, under the 

Modified Square Rule, would be 
60−1

92 + 1 = 1.73 cents. In fact, the optimal split 

ratio for Amazon is √60 − 1 = 7.68-for-1, with which Amazon would achieve the 

optimal two-tick bid–ask spread at $235, and the percentage spread further reduces 

to 0.85 basis points. The reduction in transaction costs would save Amazon 

investors $232 million per year. Amazon’s market cap would increase by $1.35 

billion based on our estimated elasticity of firm value to the percentage spread. We 

then find that the Modified Square Rule can explain why Ford’s percentage spread 

(11 bps) is four times greater than General Motors’ (2.7 bps). This is because Ford’s 
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price is too low. If Ford were to implement a 1-for-4 reverse split, its percentage 

spread would be similar to General Motors’. Ford investors would save $36 million 

per year if the company were to choose a price that is similar to GM’s.  

Figure 3 formalizes the intuition presented in the previous two anecdotes. We 

extend Figure 1 by adding three dashed lines that show the optimal percentage 

spread if all firms in the basket choose the optimal prices predicted by our model, 

that is, the nominal price that generates a two-tick bid–ask spread. The horizontal 

axis presents the current price of the stock and the vertical axis presents the 

percentage spread. A larger vertical gap between the solid and dashed lines implies 

a greater economic gain. 

 [Insert Figure 3 about here] 

For large stocks, the biggest winners would be those with low prices such as 

General Electric, Ford, Bank of America, SiriusXM, and Sprint. Almost no firms 

voluntarily split in this segment of the market: most of these stocks experienced 

very large price slides before the sample period and have not fully recovered. Their 

low prices led to binding tick sizes, and they almost always trade at a one-cent 

spread, which results in a very large percentage spread. We conjecture that such 

firms do not reverse-split because reverse splits are usually regarded as negative 

“signals,” and these firms would rather wait for (possible) price recovery to ease 

the binding tick size. We encourage these firms to ignore the negative connotations 

of reverse splits and escape the tick-binding restriction. A good example to follow 

is Citigroup, which announced a 1-for-10 reverse split on March 21, 2011, when its 

stock was trading at around $4 as a result of its 90%+ loss in market cap. In 

untabulated results, we find an increase in liquidity for Citigroup after the reverse 

splits. 

On the other side, a small firm should not choose a high price. Such a firm might 

choose a high price because people often consider a high-priced stock a prestigious 

stock (Weld et al. 2009). The cost of maintaining a minimum lot of 100 shares in 
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liquidity is, however, very high for a small stock with a price higher than $70, 

leading to a large percentage spread for these stocks. 

We find that the median optimal price for large stocks (NYSE deciles) is $53.89, 

whereas the median small stock can sustain an optimal price of only $4.05. The 

results presented in Figure 3 suggest that a small-cap stock should not choose a 

high price, whereas a large stock should not choose a low price. 

Finally, we estimate the potential liquidity improvement that can be obtained 

with optimal pricing. After adopting optimal pricing, the mean spreads will be 

reduced from 29.87 bps to 18.89 bps, a 37% reduction. For small-cap stocks, the 

spread will decrease from 87.67 bps to 49.43 bps. For medium-cap stocks, the 

spread will decrease from 14.35 bps to 9.88 bps. The spread for large-cap stocks 

will decrease from 5.26 bps to 3.71 bps. Because the sensitivity of prices to liquidity 

changes that we report in Table 4 is 6.25, we expect the value of the median U.S. 

stock to increase by (29.87-18.89) × 6.25 = 69 bps after adopting optimal pricing. 

Small stocks tend to be the biggest winners by achieving optimal nominal prices, 

and their value will increase by 239 bps if they choose their best nominal prices, 

but the median large-cap stocks can also increase their value by 9.69 bps. Summing 

up the potential gains for each stock, the total benefit of adopting optimal pricing 

is estimated to be $54.9 billion. The top benefiting firms are Alphabet ($1.89 

billion), Amazon ($1.35 billion), and Bank of America ($549 million). 

 

8. Conclusion 

Economic models often incorporate an implicit but important assumption—

continuous pricing and continuous quantities. In this paper, we offer the first 

model where both prices and quantities are discrete, and we show that these two 

seemingly small frictions can lead to significant economic impacts. Firms should 

set their nominal prices such that the friction cause by discrete pricing is equal to 
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the friction caused by discrete lots, and all firms achieve their optimal price when 

their nominal bid–ask spreads equal two ticks. Overall, we find that most stock 

splits are correct, and the resultant liquidity improvement contributes 95 bps 

points to the average split-announcement return of 272 bps. We estimate that the 

median U.S. stock value would increase by 69 bps if all firms were to move to 

their optimal prices and total market value would increase by $54.9 billion. 

Our paper focuses on pricing choices in firms, but we also provide a 

consistent interpretation of the improvement in liquidity after trading becomes 

automated. Automated trading allows market makers and liquidity demanders to 

slice their orders into a series of minimum lots. Once market makers can quote a 

minimum lot and immediately refill it once it is consumed, their exposure to 

adverse selection declines and they can quote a tighter spread at reduced depth. 

Our interpretation is the first that matches four stylized facts simultaneously: a 

reduction in the percentage bid–ask spread, a reduction in depth towards one lot, 

the dominance of trades of exactly 100 shares, and the rise of algorithmic traders 

who are slower than HFTs. 

Our parsimonious model explains 83% of the cross-sectional variation in the 

bid–ask spread. One possible driver of this goodness-of-fit success is that our 

model may capture the main drivers of the bid–ask spread. Interestingly, our 

model uses a subset of the parameters modeled in Madhavan (2000) and Stoll 

(2000). Therefore, we provide the theoretical foundations for their empirical 

model and propose a more powerful functional form. We encourage researchers 

to consider our empirical specification when they search for new explanatory 

variables related to liquidity, either in the cross-section or when they evaluate the 

impact of policy shocks. First, the dependent variable should be the bid–ask 

spread minus one tick, because the one tick comes simply from tick-size 

constraints. The log(price) should then be added as a control variable to control 

for lot-driven spreads. 
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Our paper offers two policy implications. First, we discourage the initiative 

to increase the tick size from one cent to five cents because it reduces liquidity, 

and we encourage the initiative to decrease the lot size because it improves 

liquidity. Second, we find that the move to a proportional tick-and-lot system 

reduces liquidity, if regulators choose the tick and lot size of any existing stock 

under the uniform system as the benchmark. The economic intuition behind this 

surprising result is that the uniform system is actually more flexible than the 

proportional system. The first best in our model is perfectly continuous pricing 

and quantities. A uniform system offers one degree of freedom because it allows 

firms to pursue continuous pricing more fully at the cost of more discrete 

quantities, and vice versa. A proportional system tends to reduce liquidity 

because it further removes the only degree of freedom for firms by imposing the 

same level of discreteness in pricing and quantities for all firms despite their 

heterogeneity. 
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Figure 1 (U-Shaped relationship between liquidity and prices). These figures show the 

relationship between the percentage spreads and nominal prices. Our sample includes all 

U.S.-listed common stocks that have a 1-cent tick size, a 100-share lot size, and at least a 

$1 nominal price. For Panel A, we take the average spread across price baskets and stratify 

by market caps. The square, circle, and triangle lines are small-, medium-, and large-cap 

stocks, respectively. Price baskets are selected such that each basket contains a similar 

number of stocks. In Panel B, we plot each firm as a triangle or asterisk, where larger 

shapes represent larger market-cap firms. Blue triangles represent stocks with 100 shares 

of the median national best bid/offer (NBBO) depth while red asterisks represent stocks 

with median NBBOs of more than 100 shares. The bottom-left boundary represents the 1-

cent tick size constraint. 
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Figure 2 (Split Announcement Returns). This figure shows the cumulative abnormal 

returns (CARs) around split-announcement dates. Our sample includes all U.S.-listed 

common stock splits beginning in September 2003. We require the firm to have at least a 

$1 nominal price before and after a split. We categorize stocks into two types based on 

Proposition 3. A split is “correct” if Proposition 3 predicts a decrease in the percentage 

spread and “incorrect” if Proposition 3 predicts an increase in the percentage spread. 
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Figure 3 (Economic gain from adopting optimal nominal prices). This figure shows the 

relationship between average percentage spreads and nominal prices. Our sample includes 

all U.S.-listed common stocks that have a 1-cent tick size, a 100-share lot size, and at least 

a $1 nominal price. The square, circle, and triangle lines are small-, medium-, and large-

cap stocks, respectively. Price baskets are selected such that each basket contains a similar 

number of stocks. The solid lines are observed percentage spreads for stocks within the 

same price–size basket, and dashed lines are theoretical possible minimum spreads of the 

stocks in the same baskets.  
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Table 1 

Optimal Price and Percentage spread with Fixed and Proportional Tick/Lot 

Sizes 

 

Lot Size 

Tick Size 

Fixed 𝐿 =
1

ℓ
 

Proportional 

𝕃(𝑃𝑡
 , 𝑣𝑡) = 𝑘𝐿/(𝑃𝑡

 𝑣𝑡) 

Fixed ∆ 𝑝𝑡
∗ = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
, 𝒮∗ =

2∆

𝑝𝑡
∗ 𝑝𝑡

∗ → ∞, 𝒮∗ =
2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 

Proportional  

𝔻(𝑃𝑡
 , 𝑣𝑡) = 𝑘∆𝑃𝑡

 𝑣𝑡 

𝑝𝑡
∗ → 0, 𝒮∗ = 𝑘∆ ∀𝑝𝑡

 , 𝒮∗ ≡ 𝑘∆ +
2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 

 

In this table we summarize the firm’s optimal choices regarding price 𝑝𝑡
∗  and the 

corresponding minimum percentage spread 𝒮∗ under various tick- and lot-size systems. 

Continuous pricing is a special case for the first row, where ∆= 0, and continuous quantity 

is a special case for the first column, where 𝐿 = 0. Proportional tick and lot sizes are 

summarized in the second row and column, respectively. Reads: With fixed tick and lot 

sizes, firms choose the optimal nominal price 𝑝𝑡
∗. Firms split (reverse split) to the extreme 

if the tick (lot) size is proportional to the nominal price. If both the tick and lot sizes are 

proportional, the firm’s liquidity is irrelevant to the nominal price. 
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Table 2 

Lot-driven Spread and the Square Rule 

Panel A: Three-Factor Model on Liquidity 
 (1) (2) (3) (4) (5) 

Dependent 

Variable 
Log(𝑠𝑡

𝐿) = Log(𝑠𝑡
𝑡𝑜𝑡 − ∆) 

Sample Period 2019 2018 2017 2016 2015 

Log(𝑃𝑟𝑖𝑐𝑒𝑡) 2.08*** 2.12*** 2.06*** 2.08*** 2.06*** 

 (0.02) (0.02) (0.02) (0.02) (0.02) 

Log(Volatilityt) 1.19*** 1.16*** 1.07*** 1.17*** 1.14*** 

 (0.03) (0.03) (0.03) (0.03) (0.03) 

Log(Volumet) -0.82*** -0.81*** -0.79*** -0.83*** -0.81*** 

 (0.01) (0.01) (0.01) (0.01) (0.01) 

Obs. 3652 3736 3711 3713 3850 

R2 0.8389 0.8003 0.7704 0.8095 0.8298 

Adj. R2 0.8387 0.8001 0.7702 0.8093 0.8296 

 

Panel B: Specification Horseraces for the Three-Factor Model 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent 

Variable 
Log(𝒮𝑡

𝐿) 
𝒮𝑡

𝑡𝑜𝑡

2
(bps) 

𝒮𝑡
𝑡𝑜𝑡

2
(bps) Log(𝒮𝑡

𝐿)  Log(𝒮𝑡
𝐿)  Log(𝒮𝑡

𝐿)  Log(𝒮𝑡
𝐿)  Log(𝒮𝑡

𝐿)  

Sample Period 2019 2019 2019 2019 2019 2019 2019 2019 

Log(𝑃𝑟𝑖𝑐𝑒𝑡) 1.08***  -2.31  0.31*** 1.19*** 1.24*** 1.19*** 

 (0.02)  (1.63)  (0.03) (0.03) (0.03) (0.03) 

Log(Volatilityt) 1.19***     0.99*** 0.39*** 1.01*** 

 (0.03)     (0.04) (0.04) (0.03) 

Log(Volumet) -0.82*** -32.84*** -13.91*** -0.65*** -0.90*** -0.64***   

 (0.01) (0.73) (2.12) (0.02) (0.05) (0.03)   

Log(MKTCAPt)  24.70*** 15.35*** -0.05 -0.44*** -1.35*** -1.25*** -0.98*** 

  (1.11) (1.11) (0.03) (0.02) (0.02) (0.02) (0.02) 

Log(Turnovert)        -0.67*** 

        (0.03) 

Log(#𝑇𝑟𝑎𝑑𝑒𝑠𝑡)   -13.62***  0.29***    

   (2.22)  (0.05)    

Volatilityt * 10^2  12.18***  0.19***     

  (0.47)  (0.02)     

Variancet * 10^4   0.56***  0.02***    

   (0.03)  (0.00)    

1/(𝑃𝑟𝑖𝑐𝑒𝑡)  -15.65***  -3.92***     

  (5.79)  (0.15)     

Obs. 3652 3652 3652 3652 3652 3652 3652 3652 

R2 0.8389 0.6088 0.6137 0.7053 0.8331 0.8497 0.7577 0.8536 

Adj. R2 0.8387 0.6084 0.6131 0.7050 0.8329 0.8496 0.7575 0.8535 
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Panel C: Two-Factor Model on Nominal Prices 
 (1) (2) (3) (4) 

Dependent 

Variable 
Log(𝑃𝑟𝑖𝑐𝑒)t 

Log(Volatilityt) -0.85***   -0.79*** 

 (0.02)   (0.03) 

Log(Volumet) 0.26*** 0.32*** 0.32*** 0.27*** 

 (0.01) (0.02) (0.03) (0.01) 

Industry FE N N Y Y 

Obs. 3652 3652 3652 3652 

Adj. R2 0.6087 0.4615 0.5196 0.6198 

 

In this table we report the results of testing the modified square rule on the cross-section 

of U.S. common stocks. In Panel A we report the results of regressing the log of lot-driven 

nominal spreads on the log of nominal prices, controlling for log(Volatility) and 

log(Volume). We take a snapshot of the most recent five years of U.S. listed common 

stocks as our sample, and we take the annual average of the data. We require the stocks to 

have the standard 100-share lot size, a price higher than $1 during the entire year, and at 

least 20 observations within the year. In Panel B we use the results to compare the modified 

square rule with alternative specifications. In column (1) we report the results derived with 

our baseline model, while for columns (2) and (3) we incorporate the specifications of 

Madhavan (2000) and Stoll (2000), respectively. For columns (4) and (5) we use our 

model’s dependent variable and Madhavan’s (2000) and Stoll’s (2000) independent 

variables. For columns (6)–(8) we estimate our model with alternative control variables. In 

Panel C we report the cross-sectional determinants of nominal prices. Coefficient estimates 

are shown in bold and standard errors are shown in parentheses. ***, **, and * denote 

significance at the 1%, 5%, and 10% levels, respectively. 
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Table 3 

Summary Statistics 

 
 

In this table we report the summary statistics for our stock-split sample for  September 

2003—December 2019. Institutional holdings are taken from 13-F filings for the quarters 

immediately before and after a split announcement date. The announcement and ex-date 

CARs are cumulated announcement returns during dates [T-1, T+1], following Grinblatt, 

Masulis, and Titman (1984). Shareholder numbers are taken from the years immediately 

before and after stock-split announcements, and the logs of the changes are reported 

following Amihud, Mendelson, and Uno (1999). Other pre-split variables are measured in 

the 180-day-to-60-day window before split announcement days, and post-split variables 

are measured in the 60-day-to-180-day window after split implementation days. 
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Table 4 
Predictions of Changes in Bid–ask Spreads  

 

Dependent 

Variable 

Realized 

∆𝒮𝑖 

(bps) 

  1 

𝑅𝑖 (bps) 0.97*** 

 (0.20) 

Controls Y 

Industry-Year FE Y 

Obs. 1183 

Adj. R2 0.357 

 

In this table we report the results obtained from regressing realized changes in the 

percentage spread on predicted spread changes and announced split ratios with various 

controls. 𝑅𝑖 is the model-predicted change in the percentage spread (in bps). The split ratio 

comes from the CRSP item FACSHR. Following Weld et al. (2009), our control variables 

include log(market cap), price, log(volume), and turnover rates. We also control for 

industry-year fixed effects to absorb any industry-year-specific shocks, where each 

industry is defined by reference to the first 2 digits of the NAICS classification. Coefficient 

estimates are shown in bold and standard errors are shown in parentheses. Standard errors 

are adjusted for both heteroscedasticities and within correlations clustered by firm. ***, **, 

and * denote significance at the 1%, 5%, and 10% levels, respectively. 
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Table 5 

Predicted Spread Changes and Abnormal Returns on Announcements  
Dependent 

Variable 
CARi,[T-1, T+1] (bps) 

  1 2 3 4 

𝑅𝑖 (bps) -5.49*** -4.73** -6.25*** -6.97** 
 (1.48) (1.90) (2.23) (3.35) 

Split Ratioi  0.14 0.21 0.50 

  (0.12) (0.11) (0.50) 

Log(MktCapi,t-1)  5.67*** 5.51** 8.76*** 

  (1.94) (2.25) (2.61) 

Log(Pricei,t-1) 
 

-

6.30*** -6.47*** -9.59*** 

  (1.98) (2.29) (2.55) 

Turnoveri,t-1  6.92*** 6.57*** 10.27*** 

  (1.95) (2.27) (2.58) 

Log(Volumei,t-1) 
 

-

6.18*** -5.81*** -9.14*** 

  (1.92) (2.23) (2.54) 

Log(
𝐼𝑛𝑠𝑡𝐻𝑙𝑑𝑔𝑡+1𝑄

𝐼𝑛𝑠𝑡𝐻𝑙𝑑𝑔𝑡−1𝑄
) 

   6.29 

    (3.86) 

Log(
𝑇𝑂𝑇𝑆𝐻𝑡+1𝑦𝑟

𝑇𝑂𝑇𝑆𝐻𝑡−1𝑦𝑟
) 

   -0.15 

    (0.29) 

Industry-Year FE N N Y N 

Obs. 1183 1183 1183 607 

Adj. R2 0.067 0.138 0.169 0.239 

 
In this table we report the results of regressing split-announcement CARs on predicted 

spread changes and announced split ratios with various sets of subsamples and controls. 𝑅 

is the model-predicted change in the percentage spread. The split ratio comes from the 

CRSP item FACSHR. Following Weld et al. (2009), for column (2) we control for 

log(market cap), price, log(volume), and turnover rates before the splits. Industry-year 

fixed effects are added to obtain the results reported in column (3) to absorb any industry-

year-specific shocks, where each industry is defined by reference to the first 2 digits of the 

NAICS classification. For column (4) we also control for changes in institutional holdings 

and shareholders, following Dyl and Elliott (2006) and Amihud, Mendelson, and Uno 

(1999). Institutional holdings are aggregated from quarterly 13-F filings before and after 

split announcements, and the numbers of shareholders are obtained from the 

COMPUSTAT annual item CSHR. Coefficient estimates are shown in bold and standard 

errors are shown in parentheses. Standard errors are adjusted for both heteroscedasticities 

and within correlations clustered by firm. ***, **, and * denote significance at the 1%, 5%, 

and 10% levels, respectively. 
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Appendix A. Proofs of Theoretical Results 

Proof of Proposition 1 and Corollary 1 

Uninformed traders can choose their order size distribution 𝑓(𝑞) , where 𝑞 ∈

{1,2, . . . , ℓ} in round lots. 𝐹(𝑞) is the cumulative distribution function. We aim to 

show that 𝐹(1) = 1 is necessary for minimizing the transaction cost.  

The competitive market maker quotes a liquidity schedule with ℓ layers. For 

the 𝑞𝑡ℎ  lot, the market maker can trade only with uninformed traders’ liquidity 

demanding orders that are larger or equal to 𝑞  round lots. Conditional an 

uninformed order arrival, the execution probability for the 𝑞𝑡ℎ  share is (1 −

 𝐹(𝑞 − 1)), which is a decreasing function of 𝑞 and the decrease is strict when 

𝑓(𝑞) > 0. However, the probability to be adversely selected is independent of 𝑞, 

because the informed trader would adversely select all lots in the book once she 

arrives. Therefore, the break-even spread for the 𝑞𝑡ℎ  share satisfies 𝒮𝑡
1 ≤ 𝒮𝑡

2 ≤

⋯ 𝒮𝑡
𝑞 ≤ ⋯ ≤ 𝒮𝑡

ℓ, where the 𝑞𝑡ℎ inequality is strict when 𝑓(𝑞) > 0. Two subcases 

arise: 

1. If 𝑓(1) ≠ 0, we have 𝒮𝑡
1 < 𝒮𝑡

2. Therefore, the BBO only contains one lot. 

Then, uninformed traders achieve their best execution only when 𝑓(1) =

𝐹(1) = 1 because it is suboptimal to submit larger orders that walk up in 

the book.  

2. If 𝑓(1) = 0, the market maker quotes more than one round lot at the BBO. 

This spread 𝒮𝑡
1 = 𝒮𝑡

2, however, is strictly worse than 𝒮𝑡
∗. It is because the 

arrival rate of uninformed traders in dollars is fixed and market maker 

suffers higher adverse selection risk than sustaining only one round lot of 

bids and asks.  

Therefore, 𝐹(1) = 1  is the unique optimal execution strategy. Now we 

calculate the equilibrium percentage spread 𝒮𝑡
𝐿. Uninformed traders demand 𝜆𝐼𝑣𝑡 

dollars of liquidity per unit time. Therefore, the per-unit-time profit of the market 
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maker equals the per-unit-time adverse selection loss: 

𝜆𝐼𝑣𝑡 ∙
𝒮𝑡

𝐿

2
= 𝜆𝐽 ∙ 𝑝𝑡𝐿(𝜎 −

𝒮𝑡
𝐿

2
).                             (A.1) 

𝒮𝑡
𝐿 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
.                                       (A.2) 

Recall that 𝑉: = 𝜆𝐼𝑣𝑡 + 𝜆𝐽𝑝𝑡𝐿  is the total dollar volume per unit time, we 

directly have Corollary 1 that the dollar bid-ask spread 𝑠𝑡
𝐿: = 𝒮𝑡

𝐿𝑝𝑡 =
2𝜎𝜆𝐽𝑝𝑡

2𝐿

𝑉
. ■ 

 

Proof of Proposition 2 

The quoted bid-ask spread at 𝐵𝑡 = ⌊
𝑝𝑡−𝑠𝑡

𝐿/2

∆
⌋ ∆ and 𝐴𝑡 = ⌈

𝑝𝑡+𝑠𝑡
𝐿/2

∆
⌉ ∆ is competitive 

because any quotes improving the bid and ask prices by one tick would lose money. 

In this proof, we calculate the average widening effect in two steps. First, we show 

that under our Poisson jump process, 𝑝𝑡 converges to a lognormal distribution, and 

the residual {
𝑝𝑡

∆
} tends to be uniformly distributed with in the tick. Second, we show 

that the uniform distribution lead to average widening effect of ∆, so the tick-

constrained spread is one tick higher than the continuous case. 

        First, observe the process that 𝑣0  jumps up or down by 𝜎 % following a 

Poisson process with intensity 𝜆𝐽. Then, we have  

𝑣𝑡 = 𝑣0 ∙ (1 + 𝜎)𝑢 ∙ (1 − 𝜎)𝑑,                               (A.3) 

where 𝑢~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
𝜆𝐽𝑡

2
) and 𝑑~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(

𝜆𝐽𝑡

2
). Take log on both sides, we have 

𝑙𝑜𝑔(𝑣𝑡) = 𝑙𝑜𝑔(𝑣0) + 𝑢 ∙ 𝑙𝑜𝑔(1 + 𝜎) + 𝑑 ∙ 𝑙𝑜𝑔(1 − 𝜎).           (A.4) 

       When the jump has happened for a sufficient number of times, i.e., 𝑡 ≫
1

𝜆𝐽
, we 

apply the central limit theorem on (A.4) and 𝑙𝑜𝑔(𝑣𝑡) converges in distribution to a 

normal distribution with mean 𝜇(𝑡) = 𝑙𝑜𝑔(𝑣0) +
𝜆𝐽𝑡

2
∙ 𝑙𝑜𝑔(1 + 𝜎) +

𝜆𝐽𝑡

2
∙ 𝑙𝑜𝑔(1 −
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𝜎) and variance Φ(t) = (
𝜆𝐽𝑡

2
𝑙𝑜𝑔(1 + 𝜎))2 + (

𝜆𝐽𝑡

2
𝑙𝑜𝑔(1 − 𝜎))2. Then, 𝑣𝑡  follows 

the lognormal distribution ℒ𝒩(𝜇(𝑡), Φ(t)), and 𝑝𝑡
 = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽
 follows the lognormal 

distribution ℒ𝒩(
𝜇(𝑡)

2
√

𝜆𝐼∆

2𝜎𝜆𝐽
,

Φ(t)

4

𝜆𝐼∆

2𝜎𝜆𝐽
). 

       Next, we estimate the maximum value range of the probability distribution 

function within a tick. Let 𝑔(𝑝)  be the pdf of the lognormal distribution. We 

compare 𝑔(𝑝 +
∆

2
)  and 𝑔(𝑝 −

∆

2
)  and show that for any 𝑝 ≫ ∆ , the relative 

difference |
𝑔(𝑝+

∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| is as small as in the order of 

∆

𝑝
. With this estimation, the 

residual of 𝑝 within a tick is almost uniformly distributed. 

       Since 𝑝 ≫ ∆, we have 𝑔(𝑝 +
∆

2
) − 𝑔(𝑝 −

∆

2
) ≈ ∆𝑔′(𝑝), and |

𝑔(𝑝+
∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| ≈

|
∆𝑔′(𝑝)

𝑔(𝑝)
| . Inserting the pdf of the lognormal distribution ℒ𝒩(

𝜇(𝑡)

2
√

𝜆𝐼∆

2𝜎𝜆𝐽
,

Φ(t)

4

𝜆𝐼∆

2𝜎𝜆𝐽
) 

into 𝑓(𝑝), we have: 

|
∆𝑓′(𝑝)

𝑓(𝑝)
| =

∆

𝑝
(1 +

𝑙𝑜𝑔(𝑝)−
𝜇(𝑡)

2
Φ(t)

4

𝜆𝐼∆

2𝜎𝜆𝐽

).                                (A.5) 

       When 𝑡 → ∞, Φ goes to infinity at the order of 𝑡2 , and 
𝑙𝑜𝑔(𝑝)−

𝜇(𝑡)

2
Φ(t)

4

𝜆𝐼∆

2𝜎𝜆𝐽

 becomes 

negligible. Thus, for any 𝑝 ≫ ∆, the relative difference |
𝑔(𝑝+

∆

2
)−𝑔(𝑝−

∆

2
)

𝑔(𝑝)
| is on the 

order of 
∆

𝑝
. The difference is the largest when 

𝑝

∆
 is the smallest (i.e., when 𝑝 =
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$1.005 and 𝑓($1.00)/𝑓($1.01) ≈ 10−2  if ∆= $0.01). For a median $35 stock, 

the maximum range is even smaller at 
1

3500
 and mostly negligible.13 

       The last step is to show that the widening effect is one tick with a uniformly 

distributed {
𝑝𝑡

∆
}. Intuitively, if the midpoint price 𝑝𝑡 is uniformly distributed in the 

sub-tick granularity, the bid and ask prices 𝑝𝑡 ±
𝑠𝑡

𝐿

2
 are both uniformly distributed 

in the sub-tick granularity for any 𝑠𝑡
𝐿. The problem is symmetric. Without loss of 

generality, we consider the bid side = ⌊
𝑝𝑡−𝑠𝑡

𝐿/2

∆
⌋ ∆ , where 𝑠𝑡

𝐿 can be any positive 

number and {
𝑝𝑡

∆
} ~𝑈[0,1), where {𝑥} is the fractional part of 𝑥. We have: 

𝐵𝑡 = ⌊
𝑝𝑡−𝑠𝑡

𝐿/2

∆
⌋ ∆= (

𝑝𝑡−
𝑠𝑡

𝐿

2

∆
− {

𝑝𝑡−
𝑠𝑡

𝐿

2

∆
}) ∆= 𝑝𝑡 −

𝑠𝑡
𝐿

2
− {

𝑝𝑡−
𝑠𝑡

𝐿

2

∆
} ∆              (A.6) 

       The second equality simply used the property of flooring function ⌊. ⌋. Note 

that 𝑝𝑡 −
𝑠𝑡

𝐿

2
 is exactly the bid price under continuous pricing. Therefore, the 

widening effect on the bid side, i.e. the difference between 𝐵 and 𝑝𝑡 −
𝑠𝑡

𝐿

2
, is exactly 

{
𝑝𝑡−

𝑠𝑡
𝐿

2

∆
} ∆. Let 𝑧 = {

𝑝𝑡

∆
} =

𝑝𝑡

∆
− ⌊

𝑝𝑡

∆
⌋, we have the widening effect on the bid side as 

{
𝑝𝑡−

𝑠𝑡
𝐿

2

∆
} ∆= {

𝑝𝑡

∆
−

𝑠𝑡
𝐿

2∆
} ∆= {𝑧 −

𝑠𝑡
𝐿

2∆
} ∆, where the second equality used the fact that 

⌊
𝑝𝑡

∆
⌋ is an integer and does not affect the fractional part of a number. 

       Since 𝑧~𝑈[0,1), we have 𝑧 −
𝑠𝑡

𝐿

2∆
~𝑈 [−

𝑠𝑡
𝐿

2∆
, 1 −

𝑠𝑡
𝐿

2∆
). Therefore, for any real 

 
13  In principle, any differentiable 𝑓(𝑝)  with a bounded 𝑓′(𝑝)  would lead to an approximately 

uniform distribution of 𝑧𝑡 = {
𝑝𝑡

∆
}, as long as the variation of 𝑝 is much larger than a tick so that at 

any neighborhood of a specific 𝑝, 𝑓(𝑝) does not have a huge variation or a concentrated mass. This 

is arguably the case of the U.S. stock market where the stock prices span over $1 to $1000 while the 

tick size is at most one hundredth of the stock price. 
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number 
𝑠𝑡

𝐿

2∆
, the fractional part of 𝑧 −

𝑠𝑡
𝐿

2∆
 is uniformly distributed on 𝑈[0,1). In other 

words, ∫ {𝑧 −
𝑠𝑡

𝐿

2∆
} ∆ ∙ 𝑑𝑧

1

0
=

∆

2
 holds for any real number 

𝑠𝑡
𝐿

2∆
. Therefore, the average 

widening effect on the bid side is 
∆

2
.  

       The ask side is also subject to the same average widening effect of 
∆

2
, which 

leads to a total widening effect ∆.  ■ 

 

Proof of Proposition 3 

From equation (6), we have:  

2𝜎𝜆𝐽𝐿𝜆𝐼𝑣𝑡

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)2 =
∆

𝑝𝑡
2                                                (A.7) 

Rearrange the terms, we have 

 √
2𝜎𝜆𝐽𝜆𝐼𝑣𝑡

∆𝐿
=

𝜆𝐼𝑣𝑡

𝑝𝑡𝐿
+ 𝜆𝐽                                       (A.8) 

𝑝𝑡
∗ = (√

2𝜎𝜆𝐽𝐿

𝜆𝐼𝑣𝑡∆
−

𝜆𝐽𝐿

𝜆𝐼𝑣𝑡
)−1.                                         (A.9) 

       Next, we calculate the nominal spread 𝑠𝑡
𝑡𝑜𝑡  under optimal pricing. Recall 

equation (3) that 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =
2𝜎𝜆𝐽𝑝𝑡

2𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
+ ∆=

2𝜎𝜆𝐽𝑝𝑡
𝜆𝐼𝑣𝑡
𝑝𝑡𝐿

+𝜆𝐽

+ ∆ . Substituting the first 

term’s denominator with equation (A.8) and the numerator with equation (A.9), we 

have: 

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗) = ∆/(1 − √
∆𝜆𝐽𝐿

2𝜎𝜆𝐼𝑣𝑡
) + ∆.                                (A.10) 

Since 𝐿  is small, the leading component of 𝑝𝑡
∗  is (√

2𝜎𝜆𝐽𝐿

𝜆𝐼𝑣𝑡∆
−

𝜆𝐽𝐿

𝜆𝐼𝑣𝑡
)−1 →

(√
2𝜎𝜆𝐽𝐿

𝜆𝐼∆𝑣𝑡
)−1 = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
, and 𝑠𝑡

𝑡𝑜𝑡(𝑝𝑡
∗) → 2∆ . In other words, the nominal spread is 
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two ticks when 𝑝𝑡
  is at its optimum, and the percentage spread 𝒮𝑡

𝑡𝑜𝑡  is at its 

minimum. The residual parts originate from the informed traders’ paid bid-ask 

spread to the market maker. Considering this small trunk of revenue source let the 

market maker to quote a slightly lower lot-driven spread in (A.10). The informed 

traders’ volume is proportional to the nominal price, so the lot-driven spread 

becomes less sensitive to nominal price changes. Then, the equilibrium nominal 

price moves slightly higher to further reduce from tick-driven spread in (A.9).  

Finally, we check whether 𝑝𝑡
∗ is the global minimum of 𝒮𝑡

𝑡𝑜𝑡. Recall that 𝒮𝑡
𝑡𝑜𝑡 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
+

∆

𝑝𝑡
. We have 

∂2𝒮

∂𝑝𝑡
2 =

∂

∂𝑝𝑡
 [

2𝜎𝜆𝐽𝐿𝜆𝐼𝑣𝑡

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)2 −
∆

𝑝𝑡
2] = −

4𝜎𝐿𝜆𝐽
2𝜆𝐼

(𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿)3 +
2∆

𝑝𝑡
3 . 

Therefore, 
∂2𝒮

∂𝑃𝑡
2 may turn negative when 𝑝𝑡 is large enough, hinting a possible local 

minimum of 𝒮𝑡
𝑡𝑜𝑡 when 𝑝𝑡 → ∞. However, inserting 𝑝𝑡 → ∞ into equation (4) we 

get: 

𝒮𝑡
𝑡𝑜𝑡 =

2𝜎𝜆𝐽𝑝𝑡𝐿

𝜆𝐼𝑣𝑡+𝜆𝐽𝑝𝑡𝐿
+

∆

𝑝𝑡
 → 2𝜎.                               (A.11) 

       This limit value of 𝒮𝑡
𝑡𝑜𝑡 indicates that the market maker quotes the maximum 

possible spread 𝑣𝑡 ± 𝜎𝑣𝑡, which cannot be smaller than the minimum associated 

with 𝑝𝑡 = (√
2𝜎𝜆𝐽𝐿

𝜆𝐼𝑣𝑡∆
−

𝜆𝐽𝐿

𝜆𝐼𝑣𝑡
)−1. Therefore, the 𝒮𝑡

𝑡𝑜𝑡 reaches a global minimum if and 

only if 𝑝𝑡 = (√
2𝜎𝜆𝐽𝐿

𝜆𝐼𝑣𝑡∆
−

𝜆𝐽𝐿

𝜆𝐼𝑣𝑡
)−1.14 ■ 

 

Proof of Corollary 2 

Since we have 𝑠𝑡
𝑡𝑜𝑡 =

2𝜎𝜆𝐽𝑝𝑡
2𝐿

𝜆𝐼𝑣𝑡
+ ∆ with 𝐿 → 0, a further 𝐻-for-1 split changes the 

 
14 The problem is easier when 𝐿 → 0 and 𝒮𝑡

𝑡𝑜𝑡 =
2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑝𝑡𝐿 +

∆

𝑝𝑡
. Since 

∂2𝒮

∂𝑝𝑡
2 =

∂

∂𝑝𝑡
 [−

∆

𝑝𝑡
2] =

2∆

𝑝𝑡
3 > 0, 

𝑝𝑡
∗ = √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
 must be the unique global minimum.   
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lot-driven component from 𝑠𝑡
𝐿 =

2𝜎𝜆𝐽𝑝𝑡
2𝐿

𝜆𝐼𝑣𝑡
 to 

2𝜎𝜆𝐽(𝑝𝑡
2/𝐻2)𝐿

𝜆𝐼𝑣𝑡
 but does not change the 

tick-driven component ∆. Thus, observing a nominal spread 𝑠𝑡
𝑡𝑜𝑡, its lot-driven part 

𝑠𝑡
𝐿 = (𝑠𝑡

𝑡𝑜𝑡 − ∆) will be changed to (𝑠𝑡
𝑡𝑜𝑡 − ∆)/𝐻2, and the tick-driven component 

is still ∆. Therefore, our theory predicts the ex post nominal spread is (𝑠𝑡
𝑡𝑜𝑡 −

∆)/𝐻2 + ∆.15 The nominal price also changes from 𝑝𝑡
  to 𝑝𝑡

 /𝐻, so the percentage 

spread 
𝑠𝑡

𝑡𝑜𝑡

𝑝𝑡
  will change to 

(𝑠𝑡
𝑡𝑜𝑡−∆)/𝐻2+∆

𝑝𝑡
 /𝐻

. The optimal 𝐻 that minimizes 
(𝑠𝑡

𝑡𝑜𝑡−∆)/𝐻2+∆

𝑝𝑡
 /𝐻

 

is √
𝑠𝑡

𝑡𝑜𝑡−∆

∆
, which is only dependent on the ratio of the observed spread 𝑠𝑡

𝑡𝑜𝑡 and the 

tick size ∆. ■ 

 

Proof of Corollary 3 

Let 𝐿 → 0 in equations (A.9) and (A.10), and we immediately have 𝑝𝑡
∗ → √

𝜆𝐼∆𝑣𝑡

2𝜎𝜆𝐽𝐿
 

and 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗) → 2∆ . Therefore, 𝒮(𝑝𝑡
∗) =

2∆

𝑝𝑡
∗ = √

8𝜎𝜆𝐽∆𝐿

𝜆𝐼𝑣𝑡
, which is proportional to 

√∆𝐿 .Thus, although the optimal nominal spread 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗)  is 2∆  and is not 

dependent on firm fundamentals, the optimal percentage spread does. Intuitively, 

more volatile firms (𝜎𝜆𝐽) need to choose lower prices to incentivize the market 

makers to quote the two-tick spread. On the other hand, firms with higher latent 

liquidity demand (𝜆𝐼) and larger market cap (𝑣𝑡) can choose higher nominal prices 

to reach the 2-tick nominal spread. ■ 

 

Proof of Corollary 4 

 
15 Again, we do not need to observe the firm fundamentals (𝜎, 𝑣𝑡, 𝜆𝐼, and 𝜆𝐽) to calculate the spread 

changes due to a stock split, because the observed spread, 𝑠𝑡
𝑡𝑜𝑡 , is their sufficient statistics in 

determining the split ratio.  



 60 
 

In Proposition 3, we have 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =
2𝜎𝜆𝐽𝑝𝑡

2

𝜆𝐼𝑣𝑡
𝐿 + ∆. The percentage bid-ask spread 

𝒮𝑡
𝑡𝑜𝑡 =

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 )

𝑝𝑡
 =

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝐿𝑝𝑡

 +
∆

𝑝𝑡
  depend on the firm’s choice of 𝑝𝑡

 . Inserting the 

proportional lot size 𝕃(𝑝𝑡
 ) = 𝑘𝐿/𝑝𝑡

 , we have: 

𝒮𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =
2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 +

∆

𝑝𝑡
 .                                      (A.12) 

       (A.12) indicates that the seemingly flexible proportional lot size imposed a 

unified dollar lot size 𝑘𝐿 to all stocks, and the lot-driven component is dependent 

only on 𝑘𝐿 but not on 𝑝𝑡
 . In other words, the firms can’t adjust their nominal prices 

to lower the market makers’ adverse selection costs, and their choice of nominal 

prices affect only the relative tick size. Therefore, the percentage spread 𝒮𝑡
𝑡𝑜𝑡 =

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 )

𝑝𝑡
 =

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 +

∆

𝑝𝑡
  monotonically decreases with 𝑝𝑡

 . The proportional lot size 

essentially removes one side of the tick/lot trade-off and encourages 𝑝𝑡
∗ → ∞, where 

𝒮𝑡
𝑡𝑜𝑡,∗ =

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿. 

       On the other hand, if we insert the proportional lot size 𝔻(𝑝𝑡
 ) = 𝑘∆𝑝𝑡

  into 

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =
2𝜎𝜆𝐽𝑝𝑡

2

𝜆𝐼𝑣𝑡
𝐿 + ∆, we have: 

𝒮𝑡
𝑡𝑜𝑡 =

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 )

𝑝𝑡
 =

2𝜎𝜆𝐽𝑝𝑡
 

𝜆𝐼𝑣𝑡
𝐿 + 𝑘∆.                               (A.13) 

(A.13) indicates that the proportional tick size system imposed a unified relative 

tick size 𝑘∆ to all stocks. No firms can reduce their percentage bid-ask spread lower 

than 𝑘∆. With uniform lot size and proportional tick size, the percentage spread 

𝒮𝑡
𝑡𝑜𝑡 =

𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 )

𝑝𝑡
 =

2𝜎𝜆𝐽𝑝𝑡
 

𝜆𝐼𝑣𝑡
𝐿 + 𝑘∆ monotonically increases with 𝑝𝑡

 . The proportional 

tick size essentially removes the other side of the tick/lot trade-off and encourages 

𝑝𝑡
∗ → 0, where 𝒮𝑡

𝑡𝑜𝑡,∗ = 𝑘∆.  

Similarly, when both proportional tick and lot size systems are implemented, 

we have: 
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𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =
2𝜎𝜆𝐽𝑝𝑡

 

𝜆𝐼𝑣𝑡
𝑘𝐿 + 𝑘∆𝑝𝑡

                                    (A.14) 

𝒮𝑡
𝑡𝑜𝑡 ≡

𝑠𝑡
𝑡𝑜𝑡(𝑃𝑡

 )

𝑝𝑡
 =

2𝜎𝜆𝐽

𝜆𝐼𝑣𝑡
𝑘𝐿 + 𝑘∆.                                 (A.15) 

Under the fixed ∆ and 𝐿 system, firms adjust their nominal price to choose 

their optimal dollar lot size and relative tick size. In equilibrium, the balance is 

reached with 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

∗) =
2𝜎𝜆𝐽(𝑝𝑡

∗)2

𝜆𝐼𝑣𝑡
𝐿 + ∆= ∆ + ∆= 2∆ . (A.15) shows that the 

proportional tick and lot system is one-size-fit-all: it imposes a unified dollar lot 

size and relative tick size to all stocks. Next, we show that such system harms 

liquidity provision if 𝑘𝐿 and 𝑘∆ is selected using any representative stock. 

We denote 𝜒(𝑝𝑡
 ) =

𝑝𝑡
 

𝑝Ω
  as the distance between the representative price 𝑝Ω

  and 

a stock priced at 𝑝𝑡
 . For a stock priced at 𝑝𝑡

 , its new tick size is 𝜒 times  ∆, while 

its new lot size becomes  𝜒−1 times  𝐿. Since the tick- (lot-) driven percentage 

spread is proportional to the tick (lot) size, the new nominal spread is 𝑠𝑡
𝑡𝑜𝑡(𝑝𝑡

 ) =

(𝜒−1 + 𝜒)∆. Observe that (𝜒−1 + 𝜒)∆≥ 2∆, where the equality holds only if 𝑝𝑡
 =

𝑝Ω
  (i.e., its tick and lot sizes are unchanged). The bid-ask spread widens for all 

stocks with 𝑝𝑡
 ≠ 𝑝Ω

 .■ 

 

 

 

 


