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I. Introduction

It is well known that recessions are marked by high equity risk premium, low invest-
ment rate, and a low output. The great recession of 2007-2008 emphasized the impor-
tance that the financial intermediaries play in propagating shocks to the real economy.
Since then, there has been a growing literature with the leverage of intermediaries as
a key factor in moving the asset prices and the real economy.1 Figure (1) shows the
evolution of investment rate, the equity risk premium, and the leverage of bank holding
companies (BHC) in the United States. Recessions that feature a sharp decrease (in-
crease) in the investment rate (risk premium) also feature a sharp increase in the leverage
of BHCs.2 While the intermediaries take a central role in the recent macro-finance liter-
ature, the financial constraints that they face are of particular importance (see, example,
Brunnermeier and Sannikov (2014) (BS2014 henceforth), He and Krishnamurthy (2013),
Di Tella (2017) etc.). In these models, the financial constraints bind only in certain times
which lead to non-linearity in the asset prices. In normal times, the financial markets
facilitate capital allocation to the most productive agents. In such states, the intermedi-
aries are sufficiently capitalized and the premium on the risky asset is low. In bad times,
the financial constraints bind and capital gets misallocated to the less productive agents,
who do not value capital as much. This leads to a deterioration of intermediary balance
sheet and pushes the system into the crisis region where the premium on the risky asset
shoots up. While these models explain a high risk premium in the crisis periods, the
contribution has largely been qualitative with the exception of He and Krishnamurthy
(2019) (HK2019 henceforth), and Krishnamurthy and Li (2020).

The contribution of this paper is two-fold. First, I build an overlapping-generation
incomplete-market asset pricing model with stochastic productivity and regime-dependent
exit of the intermediaries that occasionally generates capital misallocation and fire-sales.
I solve the model using a novel deep learning based numerical method that encodes the
economic information as regularizers.3 This methodology, as shown in the companion
paper Gopalakrishna (2021), is scalable and can be applied to similar high dimensional
problems. Second, I show that a simpler model with constant productivity and no exit
of intermediaries, which reduces to Brunnermeier and Sannikov (2016) (BS2016 hence-
forth) with recursive preferences, suffers from a tension between the amplification and
the persistence of financial crises. In particular, there is a trade-off between the condi-
tional risk premium and the duration of crisis.4 During bad times, premium on the risky
asset shoots up due to capital misallocation and fire-sale. The leveraged experts earn the
higher conditional risk premium allowing them to rebuild sufficient wealth and recover

1See, for example, Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), Di Tella (2017), Adrian,
Etula and Muir (2014), Phelan (2016), Moreira and Savov (2017), etc.

2Leverage is computed from Federal flow of funds data. The risk premium is computed from the regression Re
t+1 =

a+β ∗Dt/Pt +βrec ∗1Rec ∗Dt/Pt +β f in ∗1 f in ∗Dt/Pt + εt where Re
t+1 is the one-year ahead excess return on S&P 500,

Dt/Pt denotes dividend yield on S&P 500, and the dummy variables are flag for recessionary and financial crises periods.
The shaded region in the graph correspond to the NBER recessionary periods.

3Regularizer is a commonly used tool in machine learning to reduce overfitting. See Glorot and Bengio (2010) for
details.

4Another interesting trade-off that emerges from this simpler model is between the unconditional risk premium and
the probability of crisis. This is explored in detail in Section III.
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Figure 1. : The red line (leverage) corresponds to right axis and the remaining lines
(investment rate, risk premium, and GDP growth) correspond to the left axis.

quickly from the crisis. Such a fast rebound is at odds with the data since recessions are
empirically long lasting. Auxiliary features of the model that generate longer crises nec-
essarily attenuate the conditional risk premium (i.e., amplification gets dampened). This
is because crises tend to be long when the experts recapitalize slowly, which can only
happen when the risk premium that the experts earn is low in the model. To give a con-
crete example, when the simpler model is calibrated to generate a realistic 18 month du-
ration of crisis, the model implied conditional risk premium is 2%, which is much lower
than the empirically observed premium of 25%.5 On the other hand, when the model
is calibrated to generate a realistic conditional risk premium of 25%, the model implied
average duration of crises is 5 months, well short of 18 month crisis duration observed
in the data. The model with stochastic productivity and regime-dependent intermediary
exit rate resolves this tension and provides reasonable crisis dynamics and a better match
to the empirical asset pricing moments. More specifically, my model simultaneously
generates a realistic unconditional risk premium, conditional risk premium, probability
of crisis, and the duration of crisis without compromising on the other dimensions such

5See Table (3) in Section III for the estimated conditional risk premium. The average contraction period from
NBER website is around 18 months. Source: https://www.nber.org/cycles.html. This is a conservative measure
compared to around 3 years peak to trough period reported in Muir (2017).

https://www.nber.org/cycles.html
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as the GDP growth rate, and the intermediary leverage patterns. In addition to the fi-
nancial amplification channel, there are two other key forces in my model that helps in
resolving the tension found in the simpler model. When the economy is in crisis, the
rate at which the intermediaries exit and become households is large. This force pushes
the system deeper into the crisis since the proportion of the agents who manage capital
more productively drops. Moreover, the productivity of the experts is also lower in crises
since it is subjected to shocks that are positively correlated with the shocks to the capi-
tal. The only way to recover from crisis is for the productivity of the remaining experts,
who are in smaller proportions than in normal times, to shoot up again. The productivity
mean reverts slowly, forcing the system to spend a long amount of time in distress before
the increase in productivity pulls it out of the crisis. The twin forces that emerge from
stochastic productivity and regime-dependent exit rate helps generate realistic asset price
and crisis dynamics, and brings the model closer to the data.

The literature on incomplete market macro-finance models, following BS2014 and
BS2016, assumes a higher productivity rate of experts relative to households, but it is
constant throughout the state space. I depart from this assumption and consider a time
varying productivity rate of experts. A negative shock that hits the capital and reduces
the net worth of the experts and also pushes down the productivity rate. The reduction in
productivity captures the diminishing comparative advantage that the experts hold over
the households due to loss in economies of scale. In addition, I assume an exogenous
regime-dependent exit rate of experts which can be thought of as a parsimonious way of
capturing bank defaults. The data from Federal Deposit Insurance Corporation (FDIC)
shows that a total of 297 banks failed in the period 2009-2010 in the United States, which
is a strikingly large number compared to 25 bank failures in the 7 years that preceded the
crisis, and 23 bank failures between 2015-2020.6 Similarly, when measured by default
volume, around 80% of the Moody’s rated issuers defaults in the year 2008 came from
the financial institutions.7 Figure (2) shows the evolution of bank failures from 2001 till
2020. Both in terms of the count and the default volume, bank failures during the Great
recession were far greater than the other years.8 While a lot of non-financial institutions
failed too during the Great recession, the fact that 80% of Moody’s issuer default in terms
of volume came from financial institutions alone indicates that the intermediaries default
to a large extent particularly during financial crises. I capture this empirical phenomenon
in reduced form through an exogenous regime-dependent intermediary exit rate. While
the crisis point is endogenously determined in my model, once the system enters the
crisis state, a higher fraction of the experts retire and become households than when the
system is in the normal region.

The model with two state variables- wealth share of the experts, and productivity of
the experts, is solved using a deep learning based numerical algorithm that takes advan-
tage of the universal approximation theorem by Hornik, Stinchcombe and White (1989),

6Source: https://www.fdic.gov/bank/historical/bank/.
7Source: Moody’s Corporate Default and Recovery Rates, 1920-2008. Financial institutions include Bank holding

companies, Real estate and insurance companies.
8The list of banks include only those that are insured by the FDIC. Failure of investment banks such as Lehman

Brothers in 2008 are not included. Source: Federal Deposit Insurance Corporation.

https://www.fdic.gov/bank/historical/bank/
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Figure 2. : Bank failures from 2001 till 2020.

Note: The solid line indicates the number of bank failures and the dashed line indicates the default volume. The shaded
region represent the NBER recessionary period. Source: Federal Deposit Insurance Corporation.

which states that a neural network with one hidden layer can approximate any Borel
measurable function. This method is scalable since it alleviates the curse of dimension-
ality that plagues the finite-difference schemes in higher dimensions. The main difficulty
that arises from the grid-based solutions such as finite-difference schemes is the com-
bination of an explosion in the number of grid points and the need for a reduced time
step size as the dimensions grow large. My solution side-steps these limitations since it
is mesh-free. I rely on Tensor-flow, a deep learning library developed by Google Brain,
that computes the numerical derivatives efficiently. This algorithm dominates the finite-
difference method used in BS2016, Hansen, Khorrami and Tourre (2018), etc., since it
has the advantage of being easier in scaling to higher dimensions.9 The companion paper
? discusses the algorithm in detail and applies it to similar problems with the number of
dimensions as high as five.

In the absence of a stochastic productivity and intermediary exit, the model reduces to
BS2016 augmented with OLG and recursive preferences. The assumption of OLG offers
a non-degenerate stationary distribution of the state variable10 (similar to Gârleanu and
Panageas (2015)), while recursive preference helps with obtaining realistic asset pricing
moments. I quantify this benchmark model, similar in spirit to HK2019 and Krishna-
murthy and Li (2020) but with notable differences. The model that I consider has both
the households and the experts consuming by solving an infinite horizon optimization

9Appendix B.B4 shows that the solution obtained from this algorithm matches the solution from the finite difference
method when applied to a simpler model with one state variable. I also demonstrate how one can modify a few lines of
code and jump from a solving a low to a high dimensional state space problem.

10The OLG assumption provides a non-degenerate distribution even when there is no discount rate heterogeneity.
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problem, whereas, in HK2019 the experts do not consume and solve a myopic optimiza-
tion problem. Both models feature non-linear asset prices arising due to occasionally
binding financial intermediary constraints. However, the transition from the normal to
the crisis state is smooth in HK2019. On the contrary, the model that I consider, similar to
BS2016, features an endogenous jump in the risk prices that reflects the fact that periods
prior to financial crises are typically calm with an exceedingly low risk premium (Baron
and Xiong (2017)) and rises dramatically once the crisis period begins. The endogenous
jump in the model is caused by the fire-sale effect where the experts sell capital to the
households who have a lower valuation of the capital due to their lower productivity rate.
The effect of fire sales on the asset markets is crucial in times of distress, as is emphasized
in Kiyotaki and Moore (1997), Shleifer and Vishny (2011), and Kurlat (2018). Impor-
tantly, due to the endogenous jump, the point in the state space at which the financial
crisis occurs is well-defined. In models where the transition is smooth, one has to rely
on an exogenously defined threshold at which the system enters the crisis region. Kr-
ishnamurthy and Li (2020) considers the model with an endogenous jump similar to this
paper but focuses on matching credit spreads across several financial crisis episodes with
an emphasis on the pre-crisis froth in credit markets. While the agents in their model
have log utility with the capital subjected to Brownian and Poisson shocks, I consider
a recursive utility function and focus on matching a broader set of macroeconomic and
asset pricing moments such as the intermediary leverage patterns, the risk-free rate, the
equity risk premium, the investment rate, the GDP growth rate, the probability and du-
ration of crisis among others. Recursive utility has the advantage of separating the risk
aversion from the IES (Bansal and Yaron (2004)) and also helps with obtaining better
asset pricing moments. Maxted (2020) analyzes a quantitative model of financial inter-
mediation and sentiment, similar to Krishnamurthy and Li (2020) where intermediaries
do not consume and have mean-variance preferences over their reputation.

Models of intermediary asset pricing highlight the persistence and the amplification
of shocks caused by the leveraged agents. A measure of persistence and amplification
is the duration of crisis and conditional risk premium, respectively. The quantification
of the benchmark model reveals two key trade-offs. First, there is a tension between the
unconditional risk premium and probability of crisis. A high level of risk aversion means
that the experts earn a large risk premium in the stochastic steady state. Small negative
shocks to the capital do not cause enough deterioration in their net worth to hit the crisis
boundary, thereby diminishing the probability of crisis. Second, conditional on being in
crisis, there is a tension between the risk premium and duration of crisis. This is because
risk premium spikes as soon as the system enters crisis state, enabling the experts to gain
wealth quickly and revert to the normal regime leading to fast recovery. With larger val-
ues of risk aversion, the experts build wealth even faster through a higher risk premium,
resulting in a quicker reversion to the normal state. This poses a direct challenge to
the heterogeneous agent models with leveraged agents that are calibrated with high risk
aversion, since the higher the risk aversion, the lower the model implied probability and
duration of crises.11 The benchmark model has its strengths in capturing non-linearity

11It is common in asset pricing literature to assume a high risk aversion. See, for example Gârleanu and Panageas
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of the asset prices, the output growth, and the leverage patterns of intermediaries. The
biggest weaknesses are the inability to jointly generate a realistic duration of crisis and
risk premium, and sufficient variation in the investment rate. Since the q-theory result
tightly ties the investment rate to the capital price, a low model implied volatility of price
translates to a low variation in the investment rate too. The richer model with stochastic
productivity and regime-dependent exit rate of the experts resolves these tensions and
generates reasonable asset pricing moments. First, negative shocks in the economy not
only reduces the level of capital but also the ability of the experts to manage the capi-
tal. This reduced ability increases the likelihood of crisis and generates realistic crises
episodes even when experts have high risk aversion and earn a large premium at the
steady state. Second, once the economy enters crisis state, experts earn a larger premium
and rebuild their wealth, similar to the benchmark model, but at the same time face a
higher transition rate. The latter effect dominates and pushes the economy deeper into
recession. The only way to recover from crisis is for the expert productivity to shoot up
again. However, the productivity mean revers slowly, forcing the system to spend a long
amount of time before eventually returning to normal state. Moreover, the time varying
productivity of the experts helps to produce realistic volatility of the risk premium, the
investment rate, and the risk free rate. Embedding the two features of stochastic produc-
tivity and regime dependent exit rate that have empirical support brings the model closer
to the data in important aspects.

RELATED LITERATURE

This paper relates to several strands of the literature. On the modeling front, it is
most closely related to BS2016 who introduce a continuous time macro-finance model
based on capital misallocation and fire-sales. It fits within a large body of intermediary
based asset pricing models such as BS2014, He and Krishnamurthy (2013), Di Tella
(2017), Adrian and Boyarchenko (2012), Moreira and Savov (2017), etc. While BS2014
assume risk neutral agents with an exogenous interest rate, the agents in BS2016 are
risk averse with CRRA utility function, and the risk free rate is endogenous. The capital
misallocation in BS2016 occurs due to bad shocks and the subsequent fire-sale effect.
Moll (2014) analyses a model where the inability of the productive agents to lever up
due to collateral constraints causes the capital misallocation.

The empirical evidence for intermediary-based asset pricing highlights the role that
the banks and the hedge funds play in pricing assets (He, Kelly and Manela (2017), and
Adrian, Etula and Muir (2014)). While these papers provide a theory based on the in-
termediary leverage as a motivation for empirical findings, the literature that tightly tests
the ability of general equilibrium asset pricing models with financial frictions to match
the data is sparse. Two related papers that attempt to fill the gap are Muir (2017), and
HK2019. However, the experts in their model do not consume and solve a myopic opti-
mization problem, whereas, in my model both the households and the experts consume
a fraction of the total output by solving an infinite horizon optimization problem. While

(2015), who set risk aversion of leveraged agents equal to 10.
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HK2019 focus on matching the non-linearity of their model with the data and consider
an exogenously defined probability of crisis, the goal of this paper goes beyond match-
ing just the non-linearity, and deals with an endogenous crisis boundary- a slightly more
daunting task since there is one less degree of freedom. In this regard, this paper comes
closer to Krishnamurthy and Li (2020) who attempt to match the pre-crisis froth in the
credit market through a Bayesian learning model. Muir (2017) analyses risk premia dur-
ing downturns for a large panel of countries and finds that financial crises are crucial in
understanding the variation in risk premium. Also, the intermediary based asset pricing
model is shown to fare better compared to the consumption based representative agent
models with long run risk (Bansal and Yaron (2004)), habit (Campbell and Cochrane
(1999)), and rare disaster (Barro (2006)) features. This paper also relates to Khorrami
(2016), who shows that the implied cost of entry to participate in the stock market is as
large as 90% of the wealth of the agents. Another interpretation of this result is that the
costs of risk concentration is unreasonably large to match the empirically observed level
of risk premium. While he focuses on a limited asset market participation model with
costly entry, my model features capital misallocation with stochastic productivity that is
calibrated to match both the amplification as well as the duration of crises in the data.

Hansen, Khorrami and Tourre (2018) provide a framework that nests several models
based on financial frictions. Even though the frictions prevent the economy from achiev-
ing a first-best outcome, their model features a dynamically complete market since the
households can hedge their risk exposures through the derivative market. Their contri-
bution is largely to provide qualitative insights by comparing different nested models,
whereas, this paper is guided by quantitative analysis. While they consider a multi-
dimensional problem with auxiliary shocks to the volatility and the long run growth, my
model has stochastic productivity and exit rate of experts. More importantly, I conduct
extensive simulations to test the model performance in matching a broader set of the
macroeconomic and the asset pricing moments. My model assumes that the productiv-
ity of experts is a function of its size (wealth share of experts) which holds empirical
relevance (Hughes, Mester and Moon (2001), Feng and Serletis (2010), and Berger and
Mester (1997)). I consider a parsimonious way to capture bank defaults through an ex-
ogenous exit rate of experts which complements a large literature on the endogenous
bank runs and defaults (Gorton and Ordoñez (2014), Gertler, Kiyotaki and Prestipino
(2020), Li (2020)).

Lastly, this paper also relates to the literature on global solution methods for hetero-
geneous agent models using continuous time machinery (see Achdou et al. (2014b) for
an overview). The assumption that the agents can consume and invest continuously in
response to their instantaneous change in wealth not only greatly simplifies the computa-
tion, it also reflects the reality that people do not take these decisions only at the end of a
quarter. Another advantage of the continuous-time method is the analytical tractability of
equilibrium prices up-to a coupled or decoupled system of partial differential equations.
Achdou et al. (2014a), BS2016, and Fernández-Villaverde, Hurtado and Nuno (2020)
offer a solution technique involving implicit scheme with up-winding to solve the PDEs
that ensures faster convergence. D’Avernas and Vandeweyer (2019) document that finite
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difference methods are difficult to implement in higher dimensions not only because of
the curse of dimensionality but also due to the difficulty in preserving the monotonicity of
the finite difference scheme. They offer a solution method based on Bonnans, Ottenwael-
ter and Zidani (2004) that involves rotating the state space and finding the right direction
to approximate the cross partial derivatives such that the monotonicity of the scheme
is preserved. With the advancements in machine learning, recent papers have turned to
neural network to solve equilibrium models. Duarte (2017) considers a method based on
deep learning to solve asset pricing problems in high dimensions. Fernández-Villaverde,
Hurtado and Nuno (2020) solves for the high dimensional law of motion of households
using a deep neural network.12 The algorithm proposed in this paper is similar in spirit
but also incorporates prior information from the crisis boundary as regularizers and is
particularly geared towards solving heterogeneous agent incomplete market problems
with capital misallocation and endogenous jump in prices. It also seeks inspiration from
active machine learning where the algorithm learns to sample points from the state space
in an informed manner. To the best of my knowledge, this is the first paper to apply a
deep learning based algorithm to solve such type of a model.

The paper is organized as follows. Section II introduces the model. Section III
presents the benchmark model and quantifies it to shed light on the tension between
the amplification and the persistence of crises. Section IV shows that the model with
stochastic productivity and exit rate of experts resolves the tension and brings the model
closer to the data. Section V concludes. The proofs and details on numerical methodol-
ogy can be found in Online Appendix A.

II. Model

In this section, I present a heterogeneous agent model with stochastic productivity and
regime-dependent exit rate of the experts. There is an infinite horizon economy with
a continuum of agents, who are of two types: Household (H) and Expert (E). The
aggregate capital in the economy is denoted by Kt , where t ∈ [0,∞) denotes time. Within
each group, the agents are identical and hence we can index the representative household
and the expert by h∈H and e∈E respectively.13 The experts can issue risk-free debt, and
obtain a higher return to holding capital as they are more productive than the households.
The friction is such that the experts have to retain at least some amount of equity on their
balance sheet. In the absence of this friction, it is desirable for the experts to hold all
capital as they are more productive users. Also, the agents are precluded from shorting
the risky capital. The production technology can be written as

(1) y j,t = a j,tk j,t j ∈ {e,h}

12There is a substantial literature on the deep-learning techniques to solve PDEs in Applied Mathematics, which I
cover in the companion paper ?. For the application of deep learning techniques to solve discrete time DSGE models, see
Azinovic, Gaegauf and Scheidegger (2019).

13This is also due to the homogeneity of preferences of agents within each group as explained later.
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where the capital evolves as14

(2)
dk j,t

k j,t
= (Φ(ι j,t)−δ )dt +σdZk

t

with ι j,t as the investment rate, and {Zt ∈ R;Ft ,Ω} is the standard Brownian motions
representing the aggregate uncertainty in (Ω,P,F ). The parameter σ denotes the exoge-
nous volatility of capital process. The investment function Φ(·) is concave and captures
the decreasing returns to scale, and δ is the depreciation rate of capital. As in BS2016,
Φ(·) captures the technological illiquidity. The depreciation rate is the same for both the
households and the experts. I assume that the investment cost function takes the loga-
rithmic form15 Φ(ι) = log(κι+1)

κ
where κ is the adjustment cost parameter that controls

the elasticity of the investment technology. I assume that the productivity of the experts
is governed by the following stochastic differential equation

(3) dae,t = π(âe−ae,t)dt +ν (ae−ae,t)(ae,t −ae)︸ ︷︷ ︸
σae,t

dZa
t

where the Brownian shock dZa
t has a correlation ϕdt with the Brownian shock dZk

t with
ϕ > 0. That is, the expert productivity follows an Ornstein–Uhlenbeck process with
stochastic volatility such that it moves between a lower level ae and an upper level āe with
a persistence parameter π and mean âe ∈ (ae, āe). Since ah < ae < āe, the productivity of
the experts is always higher than that of the households even though it fluctuates between
ae and āe.16 The capital prices qt follows

dqt

qt
= µ

q
t dt +σ

q,k
t dZk

t +σ
q,a
t dZa

t

The return process for each type of agent is given by dR j,t =
d(qt k j,t)

qt k j,t
+

(a j,t−ι j,t)k j,t
qt k j,t

dt where
the first component on the R.H.S is capital gain, and the second component is dividend
yield. Note that the dividends are agent specific due to different productivity rate, and
possibly due to different investment rate.17 Applying Ito’s lemma, we get
(4)

dR j,t =

(
µ

q
t +Φ(ι j,t)−δ +σσ

q,k
t +ϕσσ

q,a
t +

a j,t − ι j,t

qt︸ ︷︷ ︸
µR

j,t

)
dt+(σq,k

t +σ)dZk
t +σ

q,a
t dZa

t

14Note that k j,t is the capital held by agent j.
15This is a valid investment cost function since Φ(0) = 0, Φ′ > 0, and Φ′′ ≤ 0.
16I denote (a j,t ; j ∈ {e,h}) to have concise notation but it is to be understood that ah,t is just a constant ah, whereas

ae,t follows equation (3).
17It turns out that the optimal investment rate is the same for both types of agent since it depends on the capital price

and the adjustment cost parameter κ . For now, I assume that the investment rate is agent specific and show later in (13)
that it is the same for all agents.
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The aggregate output in the economy is given by yt = AtKt , where Kt =
∫
E∪H k j,td j, and

At is the aggregate dividend that satisfies

At =
∫
E∪H

a j,t
k j,t

Kt
d j

Let the capital share held by the expert sector be denoted by

ψt :=
∫
E k j,td j∫

H∪E k j,td j

The experts and the households trade capital and the experts face a skin-in-the-game
constraint that forces them to retain at least a fraction χ ∈ [0,1] of the equity on their
balance sheet. The agents can also trade in the risk free security that pays a return rt that
is determined in the equilibrium. The stochastic discount factor (SDF) process for each
type of agent is given by

dξ j,t

ξ j,t
=−rtdt−ζ

k
j,tdZk

t −ζ
a
j,tdZa

t(5)

where ζ k
j,t and ζ a

j,t are the prices of risk for the shocks dZk
t and dZa

t respectively.

PREFERENCES AND EQUILIBRIUM

I assume that the agents have recursive utility with IES=1. That is, the utility is given
by

U j,t = Et

[∫
∞

t
f (c j,s,U j,s)ds

]
with

(6) f (c j,t ,U j,t) = (1− γ)ρU j,t

(
log(c j,t)−

1
1− γ

log
(
(1− γ)U j,t

))

where γ and ρ are the risk aversion and the discount rate coefficients respectively. Fol-
lowing Gârleanu and Panageas (2015), I assume that some agents are born and die at
each time instant with a probability λd . Let z̄ and 1− z̄ denote the proportion of the
experts and the households that are born at each instant respectively. The death risk is
not measurable under the filtration generated by the Brownian process Ft and the agents
do not have bequest motives. Hence, once the agents die, the wealth is pooled and dis-
tributed on a pro-rata basis. As a result of the death risk, the rate of time preference
parameter ρ can be thought of as inclusive of the death rate λd . I abstract away from
the insurance markets to hedge the death risk, similar to Hansen, Khorrami and Tourre
(2018) for simplicity. I assume that at each time instant dt, a fraction τtdt of the experts
become households. I allow the exit rate to be regime-dependent such that τt is larger in
the crisis region. These changes will be taken into account in the optimization problem of
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the agents.18 This assumption is a parsimonious way to capture bank failures, which are
particularly high during financial crises as seen in Figure (2). The experts optimize by
maximizing their utility functions, subject to the wealth constraints19 starting from some
initial wealth we,0. Let τ ′ denote the time that the experts exit and become households,
that is exponentially distributed with the rate τt . They solve

Ue,t = sup
ce,t ,ke,t ,χe,t

Et

[∫
τ ′

t
f (ce,s,Ue,s)ds+Uh,τ ′

]
(7)

s.t.
dwe,t

we,t
=
(
rt −

ce,t

we,t
+

qtke,t

we,t
(µR

e,t − rt − (1−χe,t)εh,t)
)
dt

+σwe,t
(
(σ +σ

q,k
t )dZk

t +σ
q,a
t dZa

t
)

where qt ke,t
we,t

and χe,t denote the fraction of wealth invested in capital, and the experts’
inside equity share respectively. The experts obtain a continuation utility of Uh,τ ′ start-
ing from the time of transition into households. While the experts obtain an expected
excess return of µR

e,t − rt by investing in the risky asset, they have to pay the outside
equity investors (1− χe,t)εh,t , where εh,t is the premium demanded by the households
defined in equation (12). Thus, the latter component is netted out from the total ex-
pected return from the capital investment. The skin-in-the game constraint implies that
the experts choose χe,t ∈ [χ,1]. On the other hand, the households do not issue outside
equity implying that χh,t = 1 always. I write χe,t simply as χt for notational convenience
henceforth. The households solve

Uh,t = sup
ch,t ,kh,t

Et

[∫
∞

t
f (ch,s,Uh,s)ds

]
(8)

s.t.
dwh,t

wh,t
=
(
rt −

ch,t

wh,t
+

qtkh,t

wh,t
(µR

h,t − rt)
)
dt +σwh,t

(
(σ +σ

q,k
t )dZk

t +σ
q,a
t dZa

t
)

The diffusion terms of the wealth equation are given by

σwe,t =
qtke,t

we,t
χt(9)

σwh,t =
qtkh,t

wh,t
+(1−χt)

qtke,t

wh,t
(10)

The experts retain a fraction χt of risk in their balance sheet and hence the fraction
of capital invested in the diffusion terms are multiplied by this quantity. The households
receive the remaining risk that enters in the second part of equation (10). The households

18Gomez (2019) uses a similar assumption that applies to the leveraged wealthy households, and in Di Tella (2017),
a similar exit rate is applied to the intermediaries to generate a non-degenerate stationary distribution.

19Note that since all agents within the same group are identical, the wealth equation is presented for the aggregated
agents. For wealth dynamics of individual agent within the group, see Appendix A.A1.
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face a no-shorting constraint kh,t ≥ 0. I define

εe,t := ζ
k
e,t(σ +σ

q,k
t )+ζ

a
e,tσ

q,a
t +ϕ(ζ a

e,t(σ +σ
q,k
t )+ζ

k
e,tσ

q,a
t )(11)

εh,t := ζ
k
h,t(σ +σ

q,k
t )+ζ

a
h,tσ

q,a
t +ϕ(ζ a

h,t(σ +σ
q,k
t )+ζ

k
h,tσ

q,a
t )(12)

There are two prices of risk for each type of the agent: ζ k
j,t and ζ a

j,t , corresponding to
the capital shock and the productivity shock respectively. That is, by borrowing in the
risk free market at a rate rt and investing in the risky capital, they obtain the prices of
risk ζ k

j,t and ζ a
j,t . The exit rate of experts do not enter in the individual wealth equation,

but it appears in the evolution of aggregated experts wealth as shown in Appendix A.A1.
There are in fact an infinite number of agents in the economy but each individual in type
E and H are identical, hence they have the same preferences. Therefore, one can seek
an equilibrium in which all agents in the same group take the same policy decisions. For
completeness, I present the full version of the equilibrium first.

Definition II.1. A competitive equilibrium is a set of aggregate stochastic processes
adapted to the filtration generated by the Brownian motions Zk

t and Za
t . Given an ini-

tial distribution of wealth between the experts and households, the processes are prices
(qt ,rt), policy functions (c j,t , ι j,t ,ψt ; j ∈ {e,h}) and net worth (w j,t ; j ∈ {e,h}), such that

• Capital market clears:
∫
H(1−ψt)Ktd j+

∫
E ψtKtd j =

∫
H∪E k j,td j ∀t

• Goods market clear:
∫
H∪E c j,td j =

∫
H∪E(a j,t − ι j,t)k j,td j ∀t

•
∫
H∪E w j,td j =

∫
H∪E qtk j,td j ∀t

ASSET PRICING CONDITIONS

The equilibrium conditions map the optimal consumption, the investment, the capital
share, and the capital price to the history of Brownian shocks Zk

t and Za
t through the state

variables (zt ,ae,t). The agents choose the optimal investment rate by maximizing their
return to holding the capital. That is, ι j,t solves20

max
ι j,t

Φ(ι j,t)−
ι j,t

qt

The optimal investment rate is obtained as

(13) ι
∗
j,t =

qt −1
κ

The investment rate is the same for both types of the agents since it depends only on qt .
This is a standard ‘q-theory’ result which implies a tight relation between the price of
capital and the investment rate. Thus, the growth rate of the economy is endogenously

20Note that the only component in the expected return that contains investment rate is Φ(ι j,t)−
ι j,t
qt

.
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determined by the investment rate through the capital price. A higher price increases the
investment rate, and causes a hike in the growth rate of output (since Φ′(·) > 0). The
asset pricing relationship for the experts is given by21

(14)
ae,t − ιt

qt
+Φ(ιt)−δ +µ

q
t +σσ

q,k
t +ϕσσ

q,a
t − rt = χtεe,t +(1−χt)εh,t

where ε j,t is defined in (11) and (12). The experts will issue maximum allowed equity χ

if the premium demanded by them is higher than that demanded by the households. The
pricing condition of the households is given by

(15)
ah− ιt

qt
+Φ(ιt)−δ +µ

q
t +σσ

q,k
t +ϕσσ

q,a
t − rt ≤ εh,t

where the equality holds if ψt < 1. We can combine (14) and (15) and write the asset
pricing condition as

ae,t −ah

qt
≥ χt(εe,t − εh,t)(16)

min{χt −χ, εe,t − εh,t}= 0(17)

Equation (16) holds with equality if ψt < 1. Equation (17) states that whenever the risk
premium of the experts is larger than that of the households, the experts issue maxi-
mum outside equity (i.e., χt = χ). When the experts are wealthy enough such that the
constraint is no longer binding, the risk premium becomes equal. I solve for the decen-
tralized Markov equilibrium by summarizing the system in terms of two state variables:
wealth share of the experts denoted by zt , and the productivity of the experts ae,t .22 The
wealth share is defined as

zt =
We,t

qtKt
∈ (0,1)

where We,t =
∫
E w j,td j. Moving forward, I write Xh,t and Xe,t to denote the aggregated

quantities
∫
H x j,td j and

∫
E x j,td j respectively and characterize the model with a represen-

tative household and expert.23

Proposition 1. The law of motion of the wealth share of experts is given by

(18)
dzt

zt
= µ

z
t dt +σ

z,k
t dZk

t +σ
z,a
t dZa

t

21This can be shown using a Martingale argument. See Appendix A.A1 for the proof.
22All relevant objects scale with the capital Kt and hence we can summarize the economy in just two state variables.
23That is, since each agent within their respective group are identical, solving for the aggregate agent policies are

enough.
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where

µ
z
t =

ae,t − ιt

qt
− Ce,t

We,t
+

(
χtψt

zt
−1
)(

(σ +σ
q,k
t )(ζ̂ 1

e,t − (σ +σ
q,k
t ))+σ

q,a
t (ζ̂ 2

e,t −σ
q,a
t )−2ϕ(σ +σ

q,k
t )σq,a

t
)

+(1−χt)
(
(σ +σ

q,k
t )(ζ̂ 1

e,t − ζ̂
1
h,t)+σ

q,a
t (ζ̂ 2

e,t − ζ̂
2
h,t)
)
+

λd

zt
(z̄− zt)− τt

ˆ
ζ 1

j,t = ζ
k
j,t +ϕζ

a
j,t ; j ∈ {e,h}

ˆ
ζ 2

j,t = ζ
a
j,t +ϕζ

k
j,t ; j ∈ {e,h}

σ
z,k
t =

(
χtψt

zt
−1
)
(σ +σ

q,k
t )

σ
z,a
t =

(
χtψt

zt
−1
)

σ
q,a
t

Proof: See Appendix A.A1.

The parameters λd and z̄ denote the death rate and mean proportion of experts in the
economy respectively at each time instant. The exit rate τt enters the drift of the wealth
share.

A. Model solution

The solution method is reminiscent of the value function iteration with an inner static
loop to solve for the equilibrium quantities (χt ,ψt ,qt ,σ

q,k
t ,σq,a

t ) using a Newton-Raphson
method, and an outer static loop to solve for the value functions J j,t using a deep neural
network architecture. The first step starts from a time T and solves for the equilibrium
policies from the value function that is set to take an arbitrary value. This is analogous
to ‘policy improvement’ in the reinforcement learning literature. In the second step, the
neural network solves for the value function taking the policies computed in first step as
given, which is then used to update the policies in the subsequent step. This corresponds
to the ‘policy evaluation’ in the language of reinforcement learning.24 The two-step pro-
cedure is performed repeatedly until the value function converges. I present and discuss
the equilibrium policies and relegate the methodological details to Appendix B.

Static decisions and HJB equations: The value function is given by U j,t and the HJB
for optimization problem (7) can be written as

(19) sup
C j,t ,K j,t

f (C j,t ,U j,t)+E[dU j,t ] = 0

24While there are similarities between the value function iteration and reinforcement learning, the state space in my
model is known ahead. A large part of the reinforcement learning deals with exploring new state space which is not
relevant for the setup considered in this paper.
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Homothetic preferences imply that the value function is of the form

U j,t =
(J j,t(zt ,ae,t)Kt)

1−γ

1− γ

with the process for the stochastic opportunity set defined as

(20)
dJ j,t

J j,t
= µ

J
j,tdt +σ

J,k
j,t dZk

t +σ
J,a
j,t dZa

t

The HJB equation is written as25

ρ[log
C j,t

Wj,t
− logJ j,t + log(qtz j,t)]+(Φ(ι)−δ )− γ

2
σ

2 +µ
J
j,t(21)

− γ

2
((σ J,k

j,t )
2 +(σ J,a

j,t )
2 +2ϕσ

J,k
j,t σ

J,a
j,t )+(1− γ)(σσ

J,k
j,t +ϕσσ

J,a
j,t )

+1 j∈E
τt

1− γ

((
J j′,t

J j,t

)1−γ

−1
)
= 0

where the last term on the left hand side is due to exit.26

Proposition 2. The optimal consumption policy, and prices of risk are given by

Ĉ j,t = ρ(22)

ζ
k
e,t =−(1− γ)σ J,k

e,t +σ
z,k
t +σ

q,k
t + γσ(23)

ζ
a
e,t =−(1− γ)σ J,a

e,t +σ
z,a
t +σ

q,a
t(24)

ζ
k
h,t =−(1− γ)σ J,k

h,t −
zt

1− zt
σ

z,k
t +σ

q,k
t + γσ(25)

ζ
a
h,t =−(1− γ)σ J,a

h,t −
zt

1− zt
σ

z,a
t +σ

q,a
t(26)

Proof: See Appendix A.A1.

The consumption-wealth ratio Ĉ j,t is constant and is equal to the discount rate be-
cause IES=1. The optimal policies are given in terms of the other equilibrium quantities
(J j,t ,χt ,ψt ,qt) which are found by solving for a Markov equilibrium in the state space
(zt ∈ (0,1),ae,t ∈ (ae, āe)).

Definition II.2. A Markov equilibrium in (zt ∈ (0,1),ae,t ∈ (ae, āe)) is a set of adapted
processes q(zt ,ae,t),r(zt ,ae,t),Je(zt ,ae,t),Jh(zt ,ae,t), policy functions Ĉe(zt ,ae,t),Ĉh(zt ,ae,t),
ψ(zt ,ae,t),χt(zt ,ae,t), ιt(zt ,ae,t), and state variables {zt ,ae,t} such that

25The value function is conjectured to be a function of aggregate capital, instead of the wealth using the relation
zt =

We,t
qt Kt

. Hence, the capital share does not enter the HJB equation directly. See Appendix A.A1 for further details.
26The index j′ refers to the other type of agent. That is, for the case of experts, j′ refers to the households. Note that

z j,t equals zt in the case of experts and 1− zt in the case of households.
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• J j,t solves the HJB equation and corresponding policy functions Ĉ j,t ,ψt

• Markets clear

(Ĉe,tzt +Ĉh,t(1− zt))qt = ψt(ae,t − ιt)+(1−ψt)(ah− ιt)(27)
qtKe,t

We,t
zt+

qtKh,t

Wh,t
(1− zt) = 1(28)

• zt and ae,t satisfy (18) and (3) respectively

Similar to BS2016, there are three regions in the state space that describe the mecha-
nisms of risk-sharing. In the first region, where zt is low, the risk premium of experts is
high enough such that condition (16) holds with equality. In this region, the experts issue
maximum allowed equity χ to the households since their risk premium is high. In the
second region, the experts hold all capital in the economy. This corresponds to the case
when ψ = 1 but the risk premium of experts is still larger than that of households. As a
result, they allow maximum allowed equity χt . In the third reigon, the experts still hold
all capital (i.e.,ψ = 1) as before, but they now issue outside equity such that εe,t = εh,t .
This is the region where the experts are wealthy enough such that the skin-in-the game
constraint is no longer binding, and the risk premium of the experts and the households
are equal.

Proposition 3. The total return variance is given by

(29) ||σR
t ||2 := (σ +σ

q,k
t )2 +(σq,a

t )2 =
σ2 +

(σ2
ae,t
qt

∂qt
∂ae,t

)2(
1− 1

qt

∂qt
∂ zt

zt
(

ψt χt
zt
−1
))2

Proof. See Appendix A.A1.
The first term in the numerator on the R.H.S of equation (29) reflects the fundamental
volatility while the second term captures the contribution of productivity shocks. There
are two effects that drive the total volatility: (a) Since ∂qt

∂ zt
> 0, and ψt χt

zt
≥ 1 in equilib-

rium27 in the crisis region, the denominator contributes towards a higher return volatility
than the fundamental volatility σ (b) Since ∂qt

∂ae,t
> 0, the second part in the numerator

adds to the amplification caused by (a). The equations (27), (29), and (16) are used to
solve for (qt ,σ

q,k
t ,σq,a

t ,χt ,ψt). The remaining equilibrium objects can be obtained from
these quantities. Appendix B explains the solution steps in detail.

B. Calibration

RBC parameters: The main parameter that governs the evolution of capital is the
volatility. While BS2016 uses a value of 10%, the exogenous volatility of stock market

27The quantity ψt χt
zt

is the experts exposure to the investment in risky capital. This quantity is larger than 1 whenever
the expected return of experts is greater than that of households, which is the case in crisis region.
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dividends is empirically observed to be lower. In fact, the consumption volatility from
1975 till 2015 is found to be just 1.24% (HK2019). I choose a value of 6% so as to
obtain a non-negligible time variation in the prices. The productivity of the experts and
the households, and the investment cost parameter are chosen to match the average output
growth rate of 1-3% and the investment rate of 5-8%. A lower investment cost parameter
increases the investment rate but also pushes up the output.

Preferences and demographics: The discount rates are chosen to match a low average
risk free rate to reflect the current environment.28 Although the discount rates are the
same as in BS2016, they are inclusive of the death rate which is chosen to be 3% meaning
that experts live on average for 37 years.29 The fraction of newborns designated to be
the experts is taken as 10% from Hansen, Khorrami and Tourre (2018). I assume that
the risk aversion parameter for the households and experts are same and equal to 5.
The assumption of unitary IES greatly simplifies the numerical computation since the
consumption-wealth ratio becomes constant.

Other parameters: Finally, the equity retention threshold is set to be 0.65. This is
comparable to the value of 0.5 used in BS2016 and Hansen, Khorrami and Tourre (2018).
The exit rate of the experts is chosen to be 6.5% in the normal regime and 52% in the
crisis regime reflecting the empirical evidence of numerous bank failures during financial
crises.

Table 1—: Calibrated parameters in the model. All values are annualized.

Description Symbol Value

Technology/Preferences

Volatility of output σ 0.06
Discount rate (experts) ρ 0.05
Depreciation rate of capital δ 0.05
Investment cost κ 5
Productivity (experts) {ae, âe, āe } {0.1,0.15,0.2}
Productivity (experts) {π,ν} {0.01,4.16}
Productivity (households) ah 0.02
Correlation of shocks ϕ 0.9

Utility Recursive utility γ, IES [5,1]

Demographics
Mean proportion of experts z̄ 0.10
Turnover λd 0.03
Experts exit rate {τnormal,τcrisis} {0.065,0.52}

Friction Equity retention χ 0.65

Figure (3) presents the equilibrium quantities obtained from the numerical solution.

28The 3-month T-bill rate is 0.1% in October 2020, for exmaple.
29Gârleanu and Panageas (2015), and Hansen, Khorrami and Tourre (2018) use a value of 2% which is comparable

to the value of 3% used in this paper.
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The productivity level has a large effect on the capital price. A lower level of expert
productivity implies a lower capital price throughout the state space. The presence of
productivity shocks allow the return volatility to be higher than the fundamental volatil-
ity even in the normal regime. When the wealth share of the more productive experts is
higher, capital is fully held by them. They always operate with leverage in equilibrium
and therefore, when a negative shock hits the capital, their net worth decreases dispro-
portionately more than that of the households resulting in a deterioration of their wealth
share. When it falls below a threshold {z∗(ae)}, the system endogenously enters into
the crisis region featuring depressed asset prices, and higher asset volatility. The jump
in prices occurs due to the fire sales. In the crisis region, experts start selling capital to
the households who always value it less. Hence, the capital price has to fall enough for
households to purchase it and clear the market. The fall in capital price is an inefficiency
caused by failure to internalize the pecuniary externality by the agents. This is because
each individual in the economy takes prices as given in their respective decision making
process. To be more concrete, whenever experts choose not to hold capital, they fail to
take into account the fact that the households will be forced to hold it by market clearing.
Since the households value capital less, they will demand a higher premium resulting
in a fall in the capital price. This feeds-back into the experts balance sheet since they
are leveraged, and causes further inefficiency and misallocation of resources. There is a
second externality that the experts do not take into consideration, which is the increase
in exit rate when the system enters the crisis region. The pricing dynamics is different
from the heterogeneous risk aversion literature in complete markets (see Gârleanu and
Panageas (2015), for example). With homogeneous productivity and heterogeneous risk
aversion, experts will sell capital to household during periods of distress who will de-
mand a higher premium (and lower price) due to their higher risk aversion. Although
both models feature a drop in prices during the crisis, the change will be gradual in the
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latter.

Figure 3. : Equilibrium values as functions of the state variable wealth share (zt) for
different values of expert productivity (ae,t).

The jump in prices due to fire-sale effect can only be explained from the differences in
productivity rates in an incomplete market setting and no-shorting constraint. There will
be a state space where the experts hold all capital since the risk premium of households
is lower than that of the experts. In such states, the households would desire to hold a
negative quantity of capital but since shorting is disallowed, they will hold no capital at
all. In contrast, if the productivity of households is the same as experts, they will face
the same risk premium as experts. Therefore, even if their risk aversion is smaller, they
would desire to hold some positive quantity of capital. This makes the transition from
the normal to crisis regime smoother.30

30This dynamics is present in Gârleanu and Panageas (2015). Hansen, Khorrami and Tourre (2018) offer additional
insights for the case of heterogeneous productivity vs heterogeneous risk aversion.
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III. Quantitative analysis

In this section, I consider a simpler model without stochastic productivity and exit
rate of the experts that will serve as a benchmark model for the quantitative analysis.
Through simulation studies, I show that there is a trade-off between the amplification and
the persistence of financial crises in this simpler model. While there are many channels
that generate this tension, I focus on the risk aversion channel.31

A. Benchmark model

I assume that the productivity rate of both the experts and the households is constant
such that ae > ah holds. I also set the exit rate of the experts to zero in both the nor-
mal and the crisis regime. With these two simplifications, the model reduces to BS2016
augmented with recursive preference and OLG elements. While the agents have CRRA
utility function in BS2016, I assume that they have recursive preference so as to disen-
tangle the risk aversion and the inter-temporal elasticity of substitution. The rest of the
assumptions carry over from the stochastic productivity model in Section II. That is, the
output is given by AK technology as in (1), with ae and ah as the productivity rates of the
experts and the households respectively. The evolution of capital is governed by (2) as
before. Appendix B.B1 presents the model in detail along with the numerical procedure
and the solution.

COMPARATIVE STATICS

Figure (4) shows the risk premium for the experts along with the stationary density of
expert wealth share in the benchmark model.32 The static comparison from the left hand
side figure in (4) reveals that as the risk aversion increases, the premium on the risky
capital rises for the experts. The other equilibrium objects such as capital price, return
volatility, capital share of experts, drift of wealth share, and volatility of wealth share are
shown in Figure (B3) in Appendix B.B1. Even though the price volatility is lower for
higher risk aversion, there is a region in the parameter space where it is much higher than
the case of lower risk aversion. That is, with lower risk aversion levels, the endogenous
risk is higher but displays a smaller crisis region. Lastly, changes in the market price
of risk induced by varying risk aversion translate to vast differences in the drift of the
wealth share. This has a direct impact on how the system transitions in and out of the
crisis region.

While Figure (4a) gives us a qualitative description of the economy, the stationary
distribution of the wealth share is required to confront the model with the data. The sta-
tionary distribution represents the average location of the state variable zt in the interval
[0,1] as t → ∞ for any given starting point z0. I obtain this distribution by numerically
simulating the model for 5000 years at monthly frequency. The simulation maps the
Brownian shocks Zk

t to state variable zt which is governed by the law of motion given by

31See Appendix B.B3 for details on the skin-in-the-game constraint generating a similar trade-off.
32The parameters used for calibration are shown in Table (B2) in Appendix B.B1.
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equation (B23) in Appendix B.B1. I repeat the procedure 1000 times and ignore the first
1000 years so that the distribution is not sensitive to the arbitrarily chosen initial value
z0. I annualize the result and repeat the procedure for different initial values to ensure
that the economy has converged. I explain the numerical procedure in detail in Appendix
B.B2. Figure (4b) plots the stationary distribution of the wealth share for three different
risk aversion levels. As the risk aversion increases, the mass of wealth share that lies in
the crisis zone diminishes. In fact, it shrinks rather quickly and this result also holds if
I allow for heterogeneous risk aversion with the experts being less risk averse. The sta-
tionary distribution gives us additional insights that one cannot obtain from studying the
comparative static plots. Looking at Figure (4a), it appears as if increasing risk aversion
will not have a drastic impact on the frequency of a crisis since the boundary z∗ moves
only slightly to the right.33 However, higher risk aversion increases the drift of wealth
share a lot and pushes the stationary distribution away from the crisis region to a greater
extent. Since the experts operate with leverage, a higher price of risk will have a positive
effect on their wealth share. From figure (B4) in Appendix B.B1 that plots the stationary
distributions along with the crisis boundary, we can see that the boundary z∗ is far from
the stochastic steady state ẑ for higher levels of risk aversion.34 This means that a much
longer sequence of negative shocks are required to push the system into the crisis region.

Figure 4. : Left panel (a): static comparison of experts risk premium for three different
levels of risk aversion. Right panel (b): stationary distribution of the wealth share of
experts for the three levels of risk aversion.

COMPARISON TO DATA

While the crisis point is well defined and endogenously determined in the model, defin-
ing the crisis episodes in the data is a challenge. Reinhart and Rogoff (2009) determine
the frequency of crisis states to be around 7% for the advanced economy. This figure
is much lower than the 29% percentage NBER recessionary periods from year 1874
till today.35 The stark difference in the frequency between Reinhart and Rogoff (2009)

33The point z∗ denotes the point at which the experts start fire selling the capital to the households, and is defined to
be the crisis boundary. Formally, z∗ = sup{zt | ψt < 1} where ψt is the share of capital held by the experts.

34The stochastic steady state can be defined as {zt : µ
z
t (zt) = 0}.

35The percentage of NBER recessionary periods since the beginning of Federal Reserve (1914) is around 20%.
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and NBER data is due to the fact that in the former, recessionary periods need to fea-
ture severe banking panic to qualify as financial crises. This relates to the findings by
Muir (2017) and Gorton and Ordoñez (2020) that not all recessions are financial crisis
episodes. Muir (2017) finds that the risk premium is higher during financial crises than
recessions, where a financial crisis occurs when the wealth share of intermediaries de-
teriorate sufficiently, just like in the model considered in this paper. HK2019 argue that
the past decade in the US featured roughly three financial crisis periods. I take the prob-
ability of being in the crisis period as 7% for the purpose of quantitative calibration. For
each zt simulated from the discretized version of its dynamics, the equilibrium quanti-
ties are computed using the mapping given by the equilibrium functions.36 Following
this, various model-implied moments are computed and compared to the data as will be
explained. Since the empirical risk premium is not observed, I estimate its mean and
volatility using return forecasting regression (30).

(30) Re
t+1 = a+β ∗Dt/Pt +βrec ∗1Rec ∗Dt/Pt +β f in ∗1 f in ∗Dt/Pt + εt

I split the NBER recessionary periods into crisis (financial recession) and non-crisis
(non-financial recession) periods based on the definition of Reinhart and Rogoff (2009).
I then run predictive regressions with dividend yield (Dt/Pt) as the regressor and 1-
year ahead stock returns as the dependent variable. Regression (I) in Table (2) uses just
the dividend yield as regressor and the regressions (II), and (III) include a dummy for
non-financial recession and financial crisis respectively. The dividend yield and stock
return data are from Robert Shiller’s website. I use monthly frequency from years 1945
till 2018. The indicator functions 1Rec, and 1 f in take a value 1 in months of NBER
non-financial recession and financial recession respectively. The dummy variable cor-
responding to the financial crisis is positive and statistically significant as seen in Table
(2).37 The R-squared value is also higher controlling for recession and financial crises in-
dicating a better predictive power. This confirms the finding in Muir (2017) that the risk
premium is much higher during financial crises and the predictive power is improved by
conditioning on the recessionary periods. I take the fitted value from regression (III) in
Table (2) and compute the standard deviation to obtain the volatility of the risk premium.

B. Tension between amplification and persistence of crises

A trade-off between the amplification and the persistence of financial crises arises in
the benchmark model. One such channel that generates this trade-off is the risk aversion
of the agents. The level of amplification required to match the empirical asset pricing
moments leads to two related problems. First, the probability of a crisis implied by the
model with high risk aversion becomes too small to reconcile with the data. Second, and
more importantly, higher the amplification, less persistent the crises episodes implied by
the model. I first explain the trade-off between the risk premium and the probability of

36See Appendix B.B2 for details.
37This finding is robust to using different time periods such as 1871-2018 (time since Shiller’s data is available), and

1914-2018 (since the start of Federal Reserve).
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Table 2—: Risk premium estimation regression results.

(I) (II) (III)

const -0.01 0.00 0.00
(0.02) (0.02) (0.02)

Dt/Pt 2.70*** 1.76** 1.75**
(0.47) (0.53) (0.53)

1Rec 2.12*** 1.77***
(0.42) (0.45)

1 f in 2.02***
(0.69)

N 876 876 876
R2 0.06 0.10 0.11

Note: Model I sets both dummy variables to zero. Model II sets financial crisis dummy to zero. Model III uses both
dummy variables.

crisis, and then explain how a higher amplification (conditional risk premium) can be
attained only at the cost of a lower persistence.

Figure (5) plots the unconditional risk premium, the volatility of risk premium, and the
probability of crisis. With a risk aversion equal to 1, the parameters in Table (B2) lead to
7.8% probability of crisis. The unconditional mean risk premium is around 1.7%. One
way to obtain even higher risk premium is by pumping up the risk aversion. However,
increasing the risk aversion leads to the probability of crisis declining rapidly. As the
values in Table (3) suggest, to obtain an empirically observed unconditional risk premium
of 7.5%, the risk aversion has to be around 20. For this high level of risk aversion,
the economy almost never enters into the crisis state. The reason is that a higher risk
premium increases the wealth share of experts in the stochastic steady state and therefore,
a series of large negative shocks is required for the wealth share to diminish enough and
push the system into the crisis zone. The model implied standard deviation of the risk
premium is 2.8% (see column 5 of Table (3)) which occurs solely due to the non-linearity
in the model between the normal and the crisis regime. Since empirically estimating the
risk premium in the crises episodes is a challenge, the calibration is performed to match
the unconditional risk premium moments. The point is that while the comparative static
plots in Figure (4) feature large risk premium in some regions of the state space, if the
dynamics of the model is such that these regions are barely reached, then the model
cannot match the high risk premium in the data.

The persistence of financial crises is as much an important empirical phenomenon as
the amplification. A direct measure of persistence is the duration. Fixing the model
implied frequency of crisis at 7%, the average length of the crisis that the model can
generate is around 6 months, which is much shorter than observed in the data. While
there is disagreement regarding the empirical length of crises in the literature, the con-
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Figure 5. : Trade off between the unconditional asset pricing moments and the probability
of crisis for different risk aversion parameters (RA).

Note: The dashed line represents Expected risk premium (see left axis). The full line represents standard deviation of risk
premium (see right axis). Risk aversion decreases from left to right.

Table 3—: Risk premium moments and probability of crisis.

Data
Benchmark Model

(RA=1)
Benchmark Model

(RA = 20)

All Recession Crisis All Crisis All Crisis

E(Risk premium) 7.5 16.6 25.0 1.7 13.4 7.3 -
Std(Risk premium) 5.1 6.5 7.4 2.8 1.3 0 -

Prob. of Crisis 7 7.8 0

sensus is that it is larger than eight months.38 Figure (6) plots the frequency distribution
of the crisis length observed in the model. Most of the mass lies in periods less than 5
months and a crisis length of more than 10 months is probabilistically very small. The
reason for this is that the only shocks in the model are Brownian, whose increments are
i.i.d normal. Hence, a negative shock that impairs the intermediary wealth share is on
average followed by a positive shock that restores the lost wealth quickly. This is the
case despite the model featuring leveraged experts. To be more concrete, imagine that
the system has just entered the crisis period following a series of negative shocks. The

38See He and Krishnamurthy (2013), Muir (2017) for example.
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capital price and investment are lower and put a downward pressure on the net worth of
intermediaries. However, the risk premium is higher and as the intermediaries operate
with leverage, they earn more since they hold a larger proportion of risky capital. The
latter effect is larger than the former and makes the drift of the wealth share high enough
to push the system back to the normal regime. When risk aversion is higher, the risk
premium effect is even larger resulting in the average length of the crisis to fall even
more. In other words, a larger risk aversion creates higher amplification but dampens
the persistence. Figure (6) shows the average length of crisis for different values of risk
aversion. As the risk aversion increases, the mass of crisis length that lies in the range
1-2 months increases. As for the mass of crisis length that lies above 2 months, the op-
posite is true. This indicates that crises periods are far too infrequent in the model when
the agents are more risk averse. The dynamics explained above corroborates with this
observation. This tension between the persistence and the amplification is robust to the

Figure 6. : Frequency distribution of average crisis duration for different values of Risk
aversion (RA).

Note: The graph shows only till months 10 since the frequency for months larger than 10 is negligible.

choices of any parameter values and utility functions. In the case of CRRA utility, and
recursive utility with non-unitary IES, the consumption-wealth ratio is time varying and
affects the drift of the wealth share in addition to the risk premium, capital price, and
investment. However, the effect of the risk premium highly dominates the other effects
and hence this tension is pervasive for more general preferences as well.39 There are
also other channels through which this tension becomes evident. In Appendix B.B3, I
show that decreasing the skin-in-the-game constraint leads to a more amplified crisis,

39I experiment with log, CRRA, recursive utility with IES=1, and recursive utility with IES different from 1. Ap-
pendix B.B1 solves the benchmark model with these utility functions using the finite difference up-winding scheme. The
results from simulation studies for the case of all utility functions are not included in the paper but they display the same
tension between the persistence and the amplification that is explained in the paper.
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but reduces the persistence. When the experts are constrained to keep a larger (smaller)
fraction of the equity on their balance sheet, the risk premium becomes larger (smaller)
in the crisis state, which increases (decreases) the wealth share of the experts leading to
a quick (late) recovery. This indicates that the tension observed is not a matter of cali-
bration. Regardless of how one calibrates the model to generate a high amplification to
the extent that is observed in the data, the high risk premium in the amplified crisis state
causes the experts to repair their balance sheets by quickly building sufficient capital,
thereby failing to match the prolonged crisis that we see in the data.

Other moments: The benchmark model delivers an unconditional average GDP growth
rate of around 2.3% and an investment rate of 6%. Recall that the calibration is done to
match the unconditional moments. Therefore, one measure of success of the model is to
see how well it captures the non-linearity in the data. The GDP growth rate conditional
on being in the crisis region is around -8%. The empirical annualized GDP growth
rate during the third quarter of 2008 was -8.2%. In this respect, the model captures the
non-linearity quite well. However, the drop in investment rate implied by the model
during the crisis is not sufficient to reconcile with the data. The private investment rate
fell by 8% during the third quarter of 2008 whereas the model implied investment rate
conditional on being in the crisis is 4%. Note that even though the output of experts
and households individually move in sync with the capital due to the assumption of AK
technology, the aggregate output depends on the aggregate dividend, which is a function
of the capital share. During the crisis period, less productive households hold capital and
hence the aggregate dividend drops to a large extent, and this causes the output to drop
a lot as well. On the other hand, the investment rate is determined by the capital prices
alone. The drop in capital price during the crisis period is not large enough to generate
the observed drop in investment rate.40 The volatility of investment rate implied by the
model is close to zero. Overall, while the model captures the non-linearity in output
growth, it misses out on the non-linearity in mean and volatility of investment rate. This
result is similar to HK2019 who obtain a realistic consumption volatility but too low an
investment volatility. This calls for future work to match both output and investment
dynamics. The mean leverage of intermediary sector implied by the model with unitary
risk aversion is 3.23, comparable to the empirical leverage of 3.77.41 The model also
features a counter-cyclical leverage. Even though the experts fire sell the assets to the
households in periods of distress, the price of capital also drops, which depresses the
experts’ equity. Since the experts operate with leverage in equilibrium, the drop in expert
equity is more than the drop in assets, which results in a rising leverage. Table (B3)
shows that the correlation between the shock and the leverage ranges from -19% to -
22% for different risk aversion levels. This matches the empirical correlation of -18%
quite well. However, as risk aversion increases, the level of leverage falls. With a risk
aversion level as high as 10, the leverage is 1.43, well short of the empirical leverage of
3.77. Overall, for lower risk aversion levels, the model seems to do well in matching

40The result is not much quantitatively different if one assumes a quadratic functional form instead of logarithmic for
the capital adjustment costs Φ(·).

41This number is taken from HK2019.
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the leverage patterns. Lastly, the model does not generate excess asset return volatility
(Shiller (1981)). The unconditional return volatility is more or less the same as the
exogenous fundamental volatility of 6%, even though it shoots up in the crisis state. This
is because the endogenous risk σ

q
t becomes zero in the normal regime. The conditional

volatility, albeit high, is not large enough to make the unconditional one match the data.
Table (4) summarizes the ability of the benchmark model to succeed in different as-

pects. By far, matching the intermediary leverage pattern and the non-linearity in output
growth seem to be the strongest suit of the model. The model cannot resolve the tension
between unconditional risk premium, conditional risk premium, and persistence of crisis
for any reasonable parameters in calibration. The focus of the next section is to provide
a resolution to this problem.

Table 4—: Model success summary.

Quantity of interest Success level Comments

Macroeconomic GDP/Output growth High
Investment rate Low Low variation and

not enough drop in
crisis

Intermediary Leverage High
Cyclicality of leverage High

Crises Probability of crises Moderate Matching prob. of
crisis attenuates
crisis dynamics

Duration of crises Low Matching duration
attenuates crisis
dynamics

Asset price

Conditional risk premium High
Unconditional risk pre-
mium

Low Matching uncondi-
tional risk premium
attenuates prob. of
crisis

Std. of risk premium Moderate -
Conditional volatility High
Unconditional volatility Low Shiller puzzle

IV. Resolution of the tension between amplification and persistence of crises

In this section, I quantify the model with stochastic productivity and exit rate of experts
and show that it resolves the tension between the persistence and the amplification of
financial crises, and provides reasonable time variation in the prices. Figure (7) shows
a simulated sample path for the expert productivity. I assume a low mean reversion rate
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(π = 1%) to generate paths that resemble a regime switching process. Positive shocks
will push the productivity towards the upper level of 0.20, whereas a series of negative
shocks pushes it towards a lower level of 0.10. The mean productivity rate is assumed to
be 0.15. Due to the low mean reversion rate, it takes a long time for the process to switch
towards the other level. I assume that the system is in the crisis state whenever the wealth
share is below the endogenous crisis threshold z∗, the point at which the experts fire-sell
capital to the households.42 The right panel of Figure (7) plots the stationary marginal
distribution of the wealth share obtained through simulation.43

Figure 7. : Left panel: Sample path of expert productivity. Right panel: Stationary
distribution of wealth share.

Table (5) presents the average duration of the crisis in the benchmark model and the
stochastic productivity model and compares it against the data. There is a substantial con-
troversy in the literature regarding the duration of crises (Reinhart and Rogoff (2009)).
The NBER reports that the Great Recession started at December 2007 and ended at June
2009, indicating an 18 month duration.44 To facilitate comparisons, I adjust the param-
eters to generate a comparable probability of the crisis in the range of 7-8% across the
the benchmark and my model. The numbers in Table (5) can be thought of as the abil-
ity of the models to generate the stated duration for a reasonable crisis probability of
7-8%. Both of the benchmark models deliver a duration of crisis that is much lower than
observed in the data. The mean duration from my model matches the data quite well
although the 10th and 50th percentile values are lower. The parameters used for calibrat-
ing my model are shown in Table (1). Figure (8) plots the frequency distribution of the
wealth share during the time the system spends in the crisis region. In the benchmark
model (left panel), a lot of the mass lies near the crisis boundary of 0.11. The reason
for this is that the benchmark model has only one i.i.d Brownian shock. After a series
of negative shock hits the economy, the system enters the crisis leading to a sharp in-
crease in the risk premium. Since the experts are always leveraged in equilibrium, the
larger risk premium loads positively on the drift of the wealth share of experts. More-

42The simulation results show that the system enters the crisis region mostly when the productivity is well below its
mean. This can also be verified by inspecting the joint density shown in Figure (9).

43The simulation method is similar to the benchmark model except that the equilibrium objects are two-dimensional.
44The average duration of recession in the past 33 cycles from year 1854 to 2009 is 17.5 months. Source: https:

//www.nber.org/cycles.html.

https://www.nber.org/cycles.html
https://www.nber.org/cycles.html
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Table 5—: The model implied duration (in months) across models.

Data
(NBER)

Benchmark model
(RA=1, IES = 1)

Benchmark model
(RA=2, IES = 1.5)

My model
(RA=5, IES=1)

10th percentile 8.0 1.0 1.0 1.0
50th percentile 13.5 2.0 2.0 3.0
90th percentile 31.2 13.0 16.0 49.0
Mean 17.5 5.8 6.5 18.5

over, the assumption of i.i.d Brownian shock implies that a series of negative shock is
often followed by a positive shock. Thus, the experts recapitalize quickly by capturing
the high risk premium leading to short lived crises. Comparatively, the frequency distri-
bution of the wealth share in the crisis region in my model, as shown in the right panel
in Figure (8), features fatter tails. The economic mechanisms that generate this result
rests on three forces. Firstly, negative shocks to the capital impairs the net worth of the
experts just like in the benchmark model. This is the financial amplification channel that
is widely covered in the literature. The second force comes from stochastic productivity.
Since the shock to the productivity of the experts is positively correlated with the capital
shock, the productivity of experts is lower during financial crises. The key comparative
advantage of the experts in my model is that they have a higher productivity rate of op-
erating capital. During bad times, this comparative advantage diminishes. Note that the
experts are always more productive than the households but they are only slightly bet-
ter during crises. The fact that the crisis zone features both a lower wealth share and a
lower productivity of experts can be seen in the right panel of Figure (9). The stochas-
tic productivity helps achieve realistic probability of crisis even for higher risk aversion
levels. If the productivity is constant like in the baseline model, the risk averse experts
will always remain wealthy by earning a large premium. Negative shocks to the capital
in the stochastic steady state will not be enough to generate realistic crises events. In
my model, negative shocks to the capital also pushes the experts productivity down that
negatively impacts the risk premium. Hence, a series of negative shocks reduces the
premium earned in the normal region and will put a downward pressure on the drift of
the wealth share, eventually causing sufficient deterioration in the net worth of experts to
generate crises events.

The third force is the exit rate of experts that is larger during bad times. While the
overlapping generations capture the demographic changes relating to natural birth and
death of agents, the exit rate captures the retirement of the experts. In normal times, the
experts retire at a rate of 6.5%. When they retire, they don’t consume all of their wealth
immediately. Instead they transition into households until death. While the crisis is
endogenously determined in my model, as soon as the crisis boundary is hit, the exit rate
shoots up from 6.5% to 52%. A higher exit rate during the crises periods can be thought
of as an increased difficulty in continuing to operate as experts. This parsimoniously
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captures the strikingly large number of bank failures during financial crises as evident
in figure (2). The fact that a large fraction of the experts retire and become households
means that the proportion of the agents who operate capital more productively is lower
than in the normal regime. This pushes the economy deeper into the crisis since the
exit rate loads negatively on the drift of the experts wealth share. The only way for the
economy to break out of the crisis is for the remaining smaller proportion of the experts to
be more productive again since higher productivity pushes up the risk premium enabling
the experts to rebuild their wealth.45 However, the rate at which the expert productivity
reverts to its mean is low, and this sluggish reversion causes delayed recovery out of the
crisis. Once the system is back to the normal regime, all capital in the economy is held
by the experts, and the financial amplification is shut down.

Figure 8. : Left panel: Tail of experts wealth share distribution from the benchmark
model. Right panel: Tail of experts wealth share distribution from the model with
stochastic productivity.

Table (6) compares the moments of key asset pricing and macroeconomic variables be-
tween my model and the benchmark model. The unconditional risk premium of 6.7%
is comparable to the empirical value of 7.5%, whereas, the benchmark model generates
a mere 1.7% premium. Importantly, my model allows for reasonable crises dynamics
by simultaneously generating a high conditional risk premium of 17.5% and long dura-
tion of crisis of 18.5 months, without compromising on the other dimensions. That is,
the unconditional mean leverage, capital price, return volatility, GDP growth rate, and
correlation between expert leverage and capital shock are comparable to the benchmark
model. Note that the 18 month crisis duration that I target is a conservative measure and
is lower than the full peak-to-peak NBER cycle of 54 months, and a 30 month half-life
of credit spread recovery reported in Krishnamurthy and Li (2020). In the unreported
results, I find that my model can also generate a 30 month duration of crisis without
quantitatively changing the other model implied moments. This is because, in contrast
to the benchmark model, my model is endowed with additional exit rate parameters that
can be fine tuned to particularly target the crisis duration moment, giving more flexibility

45The consumption-wealth ratio of the agents is constant due to the assumption of a unitary IES. For a non-unitary
IES, the consumption-wealth ratio may also also increase due to increased productivity of the experts and contribute
positively towards the wealth share of experts.
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to match the data.
My model generates a larger drop in the investment rate in the crisis period but still

falls short of negative investment rate observed in the data. During the last quarter of
2008, the private domestic investments in the United States fell by 10%. The q-theory
result in the model ties the investment rate tightly to the capital price. Hence, the capital
price needs to fall drastically to generate fall in investment rate to the extent that is
observed in the data. My model is certainly an improvement over the benchmark in this
regard, but more work needs to be done in jointly matching the investment and output
dynamics.46 Lastly, the variation in investment rate and risk free rate is higher in my
model compared to the benchmark model due to time varying experts productivity. Also,
the model implied unconditional volatility of the risk premium is 5.3%, well in line with
the empirical value of 5.1% reported in Table (3). Overall, my model does a good job of
balancing the persistence and the amplification, and delivers a reasonable time variation
in the prices.

Figure 9. : Left panel: Joint density of wealth share and productivity of experts along
with respective marginals. Right panel: Joint density of wealth share and productivity of
experts along with respective marginals in crisis region.

V. Conclusion

Financial recessions are typically characterized with high risk premium and slow re-
vival. I have built a macro-finance asset pricing model with intermediaries facing pro-
ductivity shocks and regime-dependent exit rate. A sequence of bad shocks to the capital
also lowers the productivity rate of experts, reflecting the diminishing comparative ad-
vantage that the experts have over the households in terms of productivity differential. A

46Note that I have assumed a simple logarithmic form to model technological illiquidity following Brunnermeier and
Sannikov (2016). Using other functional forms, for example as found in Di Tella (2017) also fail to generate a large drop
in investment during crises periods.
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Table 6—: Summary of key moments.

My model Benchmark model
All Crisis Normal All Crisis Normal

E[leverage] 2.80 4.79 2.62 3.23 5.50 3.10
E[inv. rate] 7.70% 2.80% 8.20% 6.00% 5.00% 6.00%
E[risk free rate] 0.90% -7.20% 1.70% 4.80% 0.00% 5.00%
E[risk premia] 6.70% 17.50% 5.70% 1.70% 13.40% 1.00%
E[price] 1.39 1.14 1.41 1.42 1.34 1.42
E[return volatility] 7.14% 11.63% 6.83% 6.20% 15.80% 5.70%
E[GDP growth rate] 1.20% -8.00% 1.90% 2.30% -7.90% 2.70%
Std[inv. rate] 3.18% 1.31% 2.91% 0.36% 1.09% 0.11%
Std[risk premia] 5.35% 1.57% 4.45% 2.82% 1.31% 0.18%
Std[risk free rate] 3.98% 1.64% 3.21% 1.19% 0.42% 0.28%
Std[GDP growth rate] 11.40% 21.00% 9.59% 7.17% 19.63% 5.15%
Corr(leverage,shock) -0.25 -0.17 -0.30 -0.28 -0.05 -0.25
Corr(price return, risk free rate) 0.16 -0.25 0.18 0.20 0.01 -0.23
Corr(risk premia, volatility) 0.98 0.76 0.96 0.98 -0.34 0.57
Probability of crisis 7.0% 7.80%
Duration of crisis (months) 18.5 6

simpler model with constant intermediary productivity and no exit rate cannot simulta-
neously generate amplified and persistent financial crises. There is a trade-off between
the risk premium and the probability and duration of crises. I show that auxiliary model
features that improve the financial amplification channel dampens the persistence of cri-
sis. The model is however successful in capturing the non-linearity in output and the
intermediary leverage patterns.

The richer model with stochastic productivity and exit rate of the intermediaries can
resolve this tension and quantitatively generate a high risk premium, a large drop in out-
put, decreased financial intermediation, counter-cyclical leverage, and prolonged distress
periods. The twin forces of regime dependent exit and stochastic productivity are at the
core of improved dynamics in my model. In particular, a higher exit rate and lower pro-
ductivity of experts in bad times forces the economy to dip deeper into recession, which
revives eventually once productivity mean reverts. The model also generates a large time
variation in the investment rate due to the stochastic nature of expert productivity, which
is absent in the benchmark model. An interesting avenue for future research is to build a
model that endogenously causes variation in the expert productivity and exit rate, which
are exogenous forces in my model. I have utilized a novel method of solving the model
based on active machine learning that encodes the economic information as regularizers
in a deep neural network. The algorithm is scalable and has the potential to solve high
dimensional problems with less effort in the numerical setup, opening up new avenues
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to model asset pricing with frictions in potentially large dimensions.
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Bonnans, J. Frédéric, Élisabeth Ottenwaelter, and Housnaa Zidani. 2004. “A fast
algorithm for the two dimensional HJB equation of stochastic control.” Mathematical
Modelling and Numerical Analysis, 38(4): 723–735.

Brunnermeier, Markus K., and Yuliy Sannikov. 2014. “A macroeconomic model with
a financial sector.” American Economic Review, 104(2): 379–421.

Brunnermeier, M. K., and Y. Sannikov. 2016. “Macro, Money, and Finance: A
Continuous-Time Approach.” In Handbook of Macroeconomics.

Campbell, John Y., and John H. Cochrane. 1999. “By force of habit: A consumption-
based explanation of aggregate stock market behavior.” Journal of Political Economy,
107(2): 205–251.

Chen, Luyang, Markus Pelger, and Jason Zhu. 2019. “Deep Learning in Asset Pric-
ing.” SSRN Electronic Journal.



35

D’Avernas, Adrien, and Quentin Vandeweyer. 2019. “A Solution Method for
Continuous-Time Models.” 1–33.

Di Tella, Sebastian. 2017. “Uncertainty shocks and balance sheet recessions.” Journal
of Political Economy, 125(6): 2038–2081.

Duarte, Victor. 2017. “Machine Learning for Continuous-Time Economics.”

Feng, Guohua, and Apostolos Serletis. 2010. “Efficiency, technical change, and returns
to scale in large US banks: Panel data evidence from an output distance function
satisfying theoretical regularity.” Journal of Banking and Finance, 34(1): 127–138.
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Gorton, Gary, and Guillermo Ordoñez. 2014. “Collateral Crises.” American Economic
Review, 104(2): 343–78.
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APPENDIX

A1. Model with stochastic productivity

PROOF OF THE ASSET PRICING CONDITIONS

The expected return that the experts earn from investing in the capital is given by

drv
t = (µR

e,t − (1−χt)εh,t)dt +χt(σ
q,k
t +σ)dZk

t +χtσ
q,a
t dZa

t

where εh,t = ζ k
h,t(σ

q,k
t +σ)+ζ a

h,tσ
q,a
t +ϕ(ζ a

h,t(σ +σ
q,a
t )+σ

q,a
t ζ k

h,t). That is, (1−χt)εh,t
is the part of the expected excess return that is paid by the experts to the outside equity
holders, which is netted out. Since the experts hold a fraction χt of the inside equity, the
volatility terms are multiplied by this quantity. Consider a trading strategy of investing
$1 into the capital at time 0. Let vt be the value of this investment strategy at time t.
Then, we have dvt

vt
= drv

t , and

d(ξevt)

ξevt
= (−rt +µ

R
e,t − (1−χt)εh,t −χtεe,t)dt +diffusion terms

where εe,t = ζ k
e,t(σ +σ

q,k
t )+ζ a

e,tσ
q,a
t +ϕ(ζ a

e,t(σ +σ
q,k
t )+ζ k

e,tσ
q,a
t ), and ξe,t follows the

process in (5). Since ξevt is a martingale, the drift equals to zero, which implies

µ
R
e,t − rt = χtεe,t +(1−χt)εh,t

The households do not issue outside equity but are exposed to the risk from experts
through the equity issuance of the latter. Following similar steps, we get the asset pricing
condition for the households as

µ
R
h,t − rt = εh,t

where εh,t = ζ k
h,t(σ +σ

q,t
t )+ζ a

h,tσ
q,a
t +ϕ(ζ a

e,t(σ +σ
q,k
t )+ζ k

h,tσ
q,a
t ) �

PROOF OF PROPOSITION 1

The law of motion of wealth for the experts and the households are given in the opti-
mization problems (7) and (8) respectively. Using the law of large numbers to aggregate
the wealth of individual household and expert, we get

dWh,t

Wh,t
=

(
rt −ρh−λd +θh,t(µ

R
h,t − rt)+

(1− z̄)λd

1− zt
+ τt

We,t

Wh,t

)
dt +θh,t(σ +σ

q
t )dZk

t +θh,tσ
a
t dZa

t

dWe,t

We,t
=

(
rt −ρe−λd +θe,tεe,t +

z̄λd

zt
− τt

)
dt +θe,t(σ +σ

q,k
t )dZk

t +θe,tσ
q,a
t dZa

t
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where Wh,t =
∫

j∈H w j,td j and We,t =
∫

j∈E w j,td j denotes aggregated wealth among re-

spective group, zt =
We,t

Wh,t+We,t
=

We,t
qt Kt

, and θe,t := χt ψt
zt

,θh,t := 1−χt ψt
1−zt

from the capital market

clearing condition.47 The terms containing λd and z̄ are due to the overlapping genera-
tions assumption, and the terms with τt is due to the retirement of the experts. By Ito’s
lemma, the dynamics of the wealth share becomes

dzt

zt
=

dWe,t

We,t
− d(qtKt)

qtKt
+

d〈qtKt ,qtKt〉
(qtKt)2 − d〈qtKt ,We,t〉

(qtKtWe,t)

where48

dKt

Kt
= (φ(ιt)−δ )dt +σdZk

t

Applying Ito’s lemma, we get

d(qtKt)

qtKt
= (εe,t(σ +σ

q
t )−

(ae,t − ιt)

qt
+ rt)dt +(σ +σ

q,k
t )dZk

t +σ
q,a
t dZa

t

d〈qtKt ,qtKt〉
(qtKt)2 = ((σq,k

t +σ)2 +(σq,a
t )2 +2ϕ(σq,k

t +σ)σq,a
t )dt

d〈qtKt ,We,t〉
qtKtWe,t

=
(
θe,t(σ

q,k
t +σ)2 +θe,t(σ

q,a
t )2 +2ϕ(σq,k

t +σ)σq,a
t
)
dt

and the result follows from here after some algebra. �

Note that we can write θe,tεe,t = θe,t χ
−1
t (µR

e,t− rt− (1−χt)εh,t) from the asset pricing
condition in A.A1, which allows us to write the experts wealth dynamics after aggregat-
ing the optimal policies and using law of large numbers as

dWe,t

We,t
=
(
rt −ρ−λd +

ψt

zt
(µR

e,t − rt)− (1−χt)
ψt

zt
εh,t +

z̄λd

zt
− τt

)
dt

+
χtψt

zt
(σ +σ

q,k
t )dZk

t +
χtψt

zt
σ

q,a
t dZa

t

47Note that zt =
We,t
qt Kt

and ψt =
Ke,t
Kt

. Moreover, σwe ,t(σ +σ
q
t )zt +σwh ,t(σ +σ

q
t )(1− zt) = (σ +σ

q
t ) and similarly for

σ
q,a
t . Using these, we can relate σw j ,t to θ j,t .

48Since the investment rate is the same for all agents, the evolution of the aggregate capital Kt is the same as the
evolution of k j,t . To see this, write dKt

Kt
=

dKe,t
Kt

+
dKh,t

Kt
= ψt

dKe,t
Ke,t

+(1−ψt)
dKh,t
Kh,t

and the rest follows from (2).
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PROOF OF PROPOSITION 2

The value function conjecture is

U j,t =
(J j,t(zt ,ae,t)Kt)

1−γ

1− γ

where J j,t follows the stochastic differential equation dJ j,t
J j,t

= µJ
j,tdt +σ

J,k
j,t dZk

t +σ
J,a
j,t dZa

t

whose drift and volatility needs to be determined in the equilibrium. The HJB equation
is given by

(A1) sup
C,K

f (C j,t ,U j,t)+E[dU j,t ] = 0

where f (C j,tU j,t) = (1− γ)ρU j,t

(
logC j,t − 1

1−γ
log
(
(1− γ)U j,t

))
. The HJB equation is

derived directly in terms of the aggregate capital Kt instead of the wealth share zt . For
ease of notation, I will denote the wealth share of the experts and households as ze,t
and zh,t respectively but it is to be understood that ze,t = zt and zh,t = 1− zt . The value
function derivatives are

∂U j,t

∂J j,t
= K1−γ

t J−γ

j,t ;
∂U j,t

∂Kt
= J1−γ

j,t K−γ

t

(A2)

∂ 2U j,t

∂J2
j,t

=−γK1−γ

t J−γ−1
j,t ;

∂ 2U j,t

∂K2
t

=−γJ1−γ

j,t K−(1+γ)
j,t ;

∂ 2U j,t

∂J j,t∂Kt
= (1− γ)(KtJ j,t)

−γ

Applying Ito’s lemma to U j,t and using HJB equation (A1), we get

sup
C

ρ(J j,tKt)
1−γ [log

C j,t

Wj,t
− logJ j,t + log(qtz j,t)]+(J j,tKt)

1−γ(Φ(ι)−δ )

(A3)

− γ

2
(J j,tKt)

1−γ
σ

2 +(J j,tKt)
1−γ

µ
J
j,t − (J j,tKt)

1−γ γ

2
((σ J,k

j,t )
2 +(σ J,a

j,t )
2 +2ϕσ

J,k
j,t σ

J,a
j,t )

+(1− γ)(J j,tKt)
1−γ(σσ

J,k
j,t +ϕσσ

J,a
j,t )+ τt(Uh,t −Ue,t) = 0

Writing the value function expression in terms of the wealth, we have

(A4) U j,t =
(J̃ j,tWj,t)

1−γ

1− γ
; f (C j,t ,U j,t) = (1− γ)ρU j,t(log

C j,t

Wj,t
− J̃ j,t)
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where J̃ j,t =
J j,t

qt z j,t
and z j,t =

Wj,t
qt Kt

are used to obtain (A4). At the optimum, the marginal
utilities of wealth and consumption become equal. Therefore,

∂U j,t

∂Wj,t
=

∂ f j,t

∂C j,t

J̃1−γ

j,t W−γ

j,t = (1− γ)ρ
U j,t

C j,t
=⇒

C j,t

Wj,t
= ρ

This proves the optimal consumption policy. The stochastic discount factor for recursive
utility is given by

ξ j,t = exp
(∫ t

0

∂ f (C j,s,U j,s)

∂U
ds
)

∂U j,t

∂Wj,t

From (A4), we get

ξ j,t = (1− γ)exp
(∫ t

0

[
(1− γ)ρ

(
logρ− J̃ j,t

)]
ds
)

U j,t

Wj,t

This implies that σ(ξ j,t) = σ

(
U j,t
Wj,t

)
. To compute the R.H.S., we have to obtain d

(
U j,t
Wj,t

)
.

Let v(J j,t ,z j,t ,qt ,Kt) := U j,t
W j,t

. Using the derivatives

1
v

∂v
∂J j,t

=
1− γ

J j,t
;

1
v

∂v
∂ z j,t

=− 1
z j,t

1
v

∂v
∂qt

=− 1
qt

;
1
v

∂v
∂Kt

=
1− γ

Kt

and applying Ito’s lemma, we get

dv
v

= [. . . . . . ]︸ ︷︷ ︸
drift term

dt +(1− γ)(σ J,k
j,t dZk

t +σ
J,a
j,t dZa

t )− (σ z,k
j,t dZk

t +σ
z,a
j,t dZa

t )(A5)

− ((σ +σ
q,k
t )dZk

t +σ
q,a
t dZa

t )+(1− γ)σdZk
t

Applying Ito’s lemma to J j,t(zt ,ae,t), we have

dJ j,t =
∂J j,t

∂ zt
dzt +

∂J j,t

∂ae,t
dae,t +

1
2

∂ 2J j,t

∂ z2
t

d〈z,z〉t +
1
2

∂J j,t

∂a2
e,t

d〈ae,ae〉t

= (drift terms)+
∂J j,t

∂ zt
zt
(
σ

z,k
t dZk

t +σ
z,a
t dZa

t
)
+

∂J j,t

∂ae,t
σaedZa

t
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Comparing with the SDE (20) and matching the diffusion coefficients, we have

σ
J,k
j,t J j,t =

∂J j,t

∂ zt
ztσ

z,k
t =

∂J j,t

∂ zt
zt

(
χtψt

zt
−1
)
(σ +σ

q,k
t )

σ
J,a
j,t J j,t =

∂J j,t

∂ae,t
σae +

∂J j,t

∂ zt
ztσ

z,a
t =

∂J j,t

∂ae,t
σae +

∂J j,t

∂ zt
zt

(
χtψt

zt
−1
)

σ
q,a
t

Collecting the diffusion terms, using σ
z,i
e,t = σ

z,i
t ,σ z,i

h,t = −
zt

1−zt
σ

z,i
t ; i ∈ {k,a} in equation

(A5), and comparing it to the SDF equation

dξ j,t

ξ j,t
=−rtdt−ζ

k
j,tdZk

t −ζ
a
j,tdZa

t

we get the desired result. �
Plugging in the optimal consumption-wealth ratio into the HJB equation (A3), we obtain
the expressions for µJ

j,t

µ
J
e,t = (γ−1)(σσ

J,k
e,t +ϕσσ

J,a
e,t )− (Φ(ιt)−δ )−ρ

(
logρ− logJe,t + log(ztqt)

)(A6)

+
γ

2

(
(σ J,k

e,t )
2 +(σ J,a

e,t )
2 +2ϕσ

J,k
e,t σ

J,a
e,t +σ

2
)
− τt

1− γ

((
Jh,t

Je,t

)1−γ

−1
)

µ
J
h,t = (γ−1)(σσ

J,k
h,t +ϕσσ

J,a
h,t )− (Φ(ιt)−δ )−ρ

(
logρ− logJh,t + log((1− zt)qt)

)(A7)

+
γ

2

(
(σ J,k

h,t )
2 +(σ J,a

h,t )
2 +2ϕσ

J,k
h,t σ

J,a
h,t +σ

2
)

PROOF OF PROPOSITION 3

Applying Ito’s lemma to q(zt ,ae,t), we have

dqt =
∂qt

∂ zt
dzt +

∂qt

∂ae,t
dae,t +

1
2

∂ 2qt

∂ z2
t

d〈zt ,zt〉+
1
2

∂ 2qt

∂a2
e,t

d〈ae,t ,ae,t〉+
∂ 2qt

∂ zt∂ae,t
d〈zt ,ae,t〉
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Matching the drift and the volatility terms, we get

µq,t =
∂qt

∂ zt

1
qt

µ
z
t +

∂qt

∂ae,t
µae,t +

1
2

∂ 2qt

∂ z2
t

(
(σ z,k

t )2 +(σ z,a
t )2 +2ϕσ

z,k
t σ

z,a
t
)

+
1
2

∂ 2qt

∂a2
e,t

σ
2
ae,t +

∂ 2qt

∂ zt∂ae,t

(
ϕσ

z,k
t σae,t +σ

z,a
t σae,t

)
σ

q,k
t =

∂qt

∂ zt

1
qt

σ
z,k
t

σ
q,a
t =

∂qt

∂ zt

1
qt

σ
z,a
t +

∂qt

∂ae,t

1
qt

σae,t

where σae,t = ν(āe− ae,t)(ae,t − at) and µae,t = π(âe− ae,t) Plugging in the expression
for σ

z,k
t and σ

z,a
t from the dynamics of wealth share (18) in the above equation and

rearranging, we get the result. �
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APPENDIX: FOR ONLINE PUBLICATION

NUMERICAL SOLUTION

Static step: We need to solve for the equilibrium quantities {ψt ,(σ +σ
q,k
t ),σq,a

t ,qt}.
The other equilibrium quantities θe,t ,θh,t ,ζ

k
e,t ,ζ

a
e,t ,ζ

k
h,t ,ζ

a
h,t ,rt ,µ

R
e,t ,µ

R
h,t , ιt can be derived

from the goods market clearing and the HJB first order conditions. To solve for these
four quantities, four equations are required. The first equation is given by subtracting the
expected return of each type of the agent. That is, we have

χt(εe,t − εh,t) = µ
R
e,t −µ

R
h,t

The experts will issue maximum outside equity χ whenever their risk premium is larger
than that of households. Thus, we can replace χt by χ whenever ψ < 1. Plugging in the
expression for the return processes from (4), and using (12), (11), and Proposition 2, we
get

ae,t −ah

qt
= χ

(
(χψt − zt)

(
(σq,k

t +σ)2 +(σq,a
t )2 +2ϕ(σ +σ

q,k
t )
)

(B1)

×
(
(1− γ)

(
∂Jh,t

∂ zt

1
Jh,t
− ∂Je,t

∂ zt

1
Je,t

)
+

1
zt(1− zt)

)
+(1− γ)

(
∂Jh,t

∂ah,t

1
Jh,t
− ∂Je,t

∂ae,t

1
Je,t

)
σae,t(σ

q,a
t +ϕ(σ +σ

q,k
t ))

)
The second condition comes from the goods market clearing

(B2) ρqt = ψt(ae,t − ιt)+(1−ψt)(ah− ιt)

The third and fourth conditions are the return variance components

σ
q,k
t +σ =

σ

1− 1
qt

∂qt
∂ zt

(χψt − zt)
(B3)

σ
q,a
t =

1
qt

∂qt
∂ae,t

σae,t

1− 1
qt

∂qt
∂ zt

(χψt − zt)
(B4)

which are partial differential equations solved using a Newton-Raphson scheme. The
algorithm is as follows. Consider tensor grids of size Nz and Na with step size ∆i, and ∆ j

where {i}Nz
1 ,{ j}Na

1 denote the dimensions for the wealth share and the expert productivity
respectively. There are three following regions in the state space

• ψt < 1 and χt = χ

• ψ = 1 and χt = χ

• ψ = 1 and χt > χ
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In the first region, the households also hold capital and hence equation (15) holds with
equality. In this case, the equations (B1), (B2), (B3),and (B4) are used to solve for
ψt , qt , (σ +σ

q,k
t ), and σ

q,a
t . In the second region, the households do not hold capital

and hence the equation (15) holds with an inequality. In this case, set ψt = 1, and use
(B1),(B3), (B4), and (B2) to solve for χt ,qt , (σ +σ

q,k
t ), and σ

q,a
t . If χt < χ , then set

χt = χ , otherwise the third region is entered.

• For the first iteration on the wealth share {i = 1,∀ j}, set ψt = 0, and take the
limiting case of the goods market clearing condition to get qt . That is

(B5) inf
z→0+

qt =
ahκ +1
ρκ +1

• For iterations i > 1,∀ j, use the discretized versions of the equations (B3) and (B4)

(σq,k +σ)i, j = σ

(
1− 1

qi, j

(qi, j−qi−1, j

∆i
zi(

ψi, j

zi
−1)

))−1
(B6)

(σq,a)i, j =
(qi, j−qi, j−1

∆ j
σae, j

)(
1− 1

qi, j

(qi, j−qi−1, j

∆i
zi(

ψi, j

zi
−1)

))−1

(B7)

along with the equations (B1), and (B2) to solve for qi, j,ψi, j,(σ +σq)i, j,(σ
q,a)i, j.49

Note that in this region, χt = χ since the risk premium of experts is larger than
that of households. The set of non-linear equations is solved using the Newton-
Raphson method. Repeat this procedure until ψt = 1, in which case the sys-
tem enters the second region. Then, use (B1), (B2), (B6), and (B7) to solve
for χi, j, qi, j, (σ +σq,k)i, j and (σq,a)i, j. If χi, j < χ , set χ∗i, j = χ , otherwise set
χ∗i, j = χi, j. When χi, j > χ , the system is in the third region where all capital is
held by the experts (ψi, j = 1), and risk is perfectly shared between the experts
and the households by setting εe,t = εh,t . The value of χ∗t is obtained such that
χ∗t = argsolve

χ

εe,t − εh,t = 0. Since the premiums εe,t ,εh,t depend on the χt , I

iterate between these two quantities until |χnew
t − χold

t | < tol for some tolerance
level.

Time step: Applying Ito’s lemma to J j,t(zt ,ae,t), matching the drift terms, and aug-

49For j = 1, set ∂qt
∂ae,t

= 0 since ae,t ∈ [ae, āe]. That is, the lower and the upper boundaries ae and āe respectively act
as reflecting barriers forcing the derivative of the price to be zero.
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menting the resulting coupled PDEs with a time step (falst-transient method), we get

µ
J
j,tJ j,t =

∂J j,t

∂ t
+

∂J j,t

∂ zt
µ

z
t +

∂J j,t

∂ae,t
µ

a
t +

1
2

∂ 2J j,t

∂ z2
t

(
(σ z,k

j,t )
2 +(σ z,a

j,t )
2 +2ϕσ

z,k
j,t σ

z,a
j,t

)
+

1
2

∂ 2J j,t

∂a2
e,t

σ
2
ae,t

(B8)

+
∂ 2J j,t

∂ zt∂aa,e

(
ztσ

z,k
j,t σae,tϕ +σaσ

z,a
j,t

)
The coefficients µ

z
t and σ

z
t can be computed from the equilibrium quantities in the static

step and µJ
j,t is computed from the equations in (A6). The PDEs are solved using the

neural network method explained in Section B. Using the updated function J j,t , the static
step is performed again. The procedure is repeated until the function J j,t converges upto
a pre-specified tolerance level.

NEURAL NETWORK SOLUTION METHOD

The outer loop involves solving for a de-coupled system of quasi-linear PDEs- one for
the households and one for the experts, taking as given the equilibrium quantities that
are determined from the static loop. The PDE obtained at kth time iteration by applying
Ito’s lemma to J j,t(zt ,ae,t) and using the HJB equation (21) is50

µ
JJ =

∂J
∂ t

+
∂J
∂ z

µ
z +

∂J
∂a

µ
a +

1
2

∂ 2J
∂ z2

(
(σ z,k)2 +(σ z,a)2 +2ϕσ

z,k
σ

z,a
)
+

1
2

∂ 2J
∂a2 σ

2
a

(B9)

+
∂ 2J

∂ zt∂a

(
zσ

z,k
σaϕ +σaσ

z,a); ∀(t,z,a) ∈ [T −∆t,T − (k−1)∆t]×Ω

with the boundary conditions

J(z,a, t) = J̃; ∀(t,z,a) ∈ (T − (k−1)∆t)×Ω(B10)
∂J(0,a, t)

∂ zt
=

∂J(1,a, t)
∂ zt

= 0; ∀(t,a) ∈ (T − (k−1)∆t)×∂Ωa

∂J(z,ae, t)
∂ae,t

=
∂J(z, āe, t)

∂ae,t
= 0; ∀(t,z) ∈ (T − (k−1)∆t)×∂Ωz

where Ωz and Ωa are the domains of state variables z and ae respectively, and Ω =
Ωz ×Ωa. I take advantage of the universal approximation theorem that states that a
neural network with at least one hidden layer can approximate any Borel measurable
function, and solve for the function J(z,a,T − k∆t) that is governed by the PDE (B9).
Starting from an arbitrary terminal value at time T, the task is to solve for J(z,a,T −∆t)
in the first time iteration. More generally, in kth time iteration, the function J(z,a,T −

50I ignore the time and agent indices in order to avoid cluttering of notations. The productivity of the expert ae,t , and
the volatility σae,t are denoted as a and σa for simplicity in the PDEs.
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k∆t) is found such that it respects (B9) satisfying the given boundary conditions at time
T − (k−1)∆t. Equivalently, we can start from J(z,a, t +∆t) for some time period t, and
solve for J(z,a, t). In this case, the initial condition J̃ denotes the value from the previous
time step J(z,a, t +∆t). The PDE coefficients and the terminal value are in the form of a
grid but not all grid points are required in the algorithm as will be explained. While the
space of admissible solutions to the function given the sample data from terminal value
and other boundary conditions is potentially large, I use the residuals from PDE and
the boundary conditions as regularizers that constrain the space to a manageable size.
This encoding of prior information into the learning algorithm amplifies the information
content from the economic problem and makes it possible for the deep neural network
to head towards the correct solution even with the limited training sample. Consider the
PDE residual from (B9)

f :=
∂J
∂ t

+
∂J
∂ z

µ
z +

∂J
∂a

µ
a +

1
2

∂ 2J
∂ z2

(
(σ z,k)2 +(σ z,a)2 +2ϕσ

z,k
σ

z,a
)
+

1
2

∂ 2J
∂a2 σ

2
a(B11)

+
∂ 2J

∂ z∂a

(
zσ

z,k
σaϕ +σaσ

z,a)−µ
JJ

Starting from a neural network Ĵ(z,a, t;Θ) parameterized by an arbitrary Θ, the optimal
parameter Θ∗ that ensures that Ĵ(z,a, t;Θ) is close to J is obtained by mimimizing the
following loss function

(B12) L = λ f L f +λ jL j +λbLb +λ
1
c L 1

c +λ
2
c L 2

c

where51

PDE loss L f =
1

N f

N f

∑
i=1
| f (zi

f ,a
i
f , t

i
f )|2(B13)

Bounding loss-1 L j =
1

N j

N j

∑
i=1
|Ĵ(zi

j,a
i
j, t

i
j)− J̃i|2(B14)

Bounding loss-2 Lb =
1

Nb

Nb

∑
i=1
|∇Ĵ(zi

b,a
i
b, t

i
b)|2(B15)

Crisis loss-1 L 1
c =

1
N1

c

N1
c

∑
i=1
|Ĵ(zi

c,a
i
c, t

i
c)− J̃i|2(B16)

Crisis loss-2 L 2
c =

1
N2

c

N2
c

∑
i=1
| f (zi

c,a
i
c, t

i
c)|2(B17)

The parameters (λ f ,λ j,λb,λc) are weights attached to the corresponding losses, (zi
j,a

i
j, t

i
j, J̃

i)
N j
i=1

51I write ∇Ĵ to denote
[

∂ Ĵ
∂ z

∂ Ĵ
∂a

]T

.
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and (zi
b,a

i
b, t

i
b)

Nb
i=1 denote the boundary training data, and (zi

f ,a
i
f , t

i
f )

N f
i=1 denote the col-

location points for the PDE residual f (z,a, t). The crisis boundary collocation points
(zi

c,a
i
c, t

i
c)

Nc
i=1 are sampled from the neighborhood of state space where fire-sale gets initi-

ated, that is endogenously determined in the static inner loop. The quantities (N f ,N j,Nb,N1
c ,N

2
c )

denote the number of points to minimize the PDE loss, the two bounding losses, and
the two crisis boundary losses respectively. By encoding the crisis boundary loss, the
neural network is forced to learn better around the crisis threshold which is where the
policy functions are highly non-linear. The sampling is done uniformly with replace-
ment in each domains. The construction of crisis loss is inspired from active machine
learning (Settles (2012)), a budding area in the artificial intelligence literature. Ac-
tive learning algorithms work by providing better training samples at each iteration to
ensure quick convergence. At every iteration, the points in the state space where cri-
sis occurs might change, and sampling more points from around this region dynami-
cally provides better training samples. I consider artificial collocation points for time
such that {t i} ∈ [t i, t i + ∆t i] are sampled uniformly so as to reduce errors in numeri-
cal derivatives with respect to the time dimension. The number of collocation points
(N j,Nb,N f ,N1

c ,N
2
c ,Nt) in total need not be large and is taken to be 10% of the total grid

size. This makes the algorithm mesh-free and scalable to higher dimensions.

Table B1—: Network architecture.

Parameters Choices

No. of hidden layers 4
Hidden units [30,30,30,30]
Activation functions Tanh (Hidden), Linear (Output)
Optimizer ADAM + L-BFGS-B
Learning rate 0.01
Loss function weights(λ f ,λ j,λb,λ

1
c ,λ

2
c ) {1,1,0.001,1,1}

Batch size Full batch

OPENING THE BLACK BOX

The success of a deep neural network model often relies on the network architecture
and the hyperparameters. The machine learning models in finance literature use ex-
tensive hyperparameter search in the tuning process to select the ‘right’ model (see ?,
Chen, Pelger and Zhu (2019), etc.). The deep learning model used in this paper does
not suffer from this problem for two reasons. First, there is no training/test/validation set
really which means that one does not have to worry about the classical overfitting prob-
lem.52 Second, and more importantly, the proposed regularization mechanism encodes

52The boundary conditions provide us with data points which can be thought of as training sample, but it does not
carry the same meaning as it does in supervised machine learning.
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Figure B1. : Neural network architecture.

Note: The quantities I and Ω denote the domain of the state space pertaining to the initial and boundary conditions
respectively. The domain Ωc refers to the crisis neighborhood and is endogenously determined in the inner static loop.

the economic problem into the learning algorithm by building a meaningful loss function
which enables a simple feed-forward network to arrive at the right solution. Using com-
plex architectures such as Convolution neural network, LSTM, etc. create a ‘black-box’
problem which limits the ability to understand what makes the algorithm succeed. On the
contrary, using a simple feed-forward network and encoding the economic information
as regularizers provides a lot more visibility on how the model steers towards the right
solution.

The proliferation of deep learning application in the past decade can be largely at-
tributed to the automatic differentiation which has enabled reduced computation time of
the derivatives of functions. In the deep learning literature, the parameters of a network
are optimized through backpropogation by taking the derivative of a loss function with
respect to the parameters. The approach presented in this paper explicitly uses automatic
differentiation to take derivatives with respect to the space and the time dimensions. In
Figure (B1), the left most part of the neural network (NN : Ĵ(z,a, t | Θ)) is the familiar
simple feed-forward architecture. The output from this network (Ĵ) is fed into the PDE,
boundary, and crisis network respectively that utilizes automatic differentiation in the
customized loss functions. The separation of fundamental neural network with a simple
architecture and the informed PDE network allows us to peek into the black-box and
witness the automatic differentiation fully in action, which is the key driver of the algo-
rithm’s learning in both low and high dimensions.

Hyperparameter choices: Table (B1) presents the chosen hyperparameters of the model.
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I use 4 hidden layers with 30 neurons each since a deep layer is empirically observed to
be better than a wide layer. While a rectified linear unit is the common choice for activa-
tion function, I use a hyperbolic tangent function based on its superior performance for
the problem at hand. The optimizers are chosen based on empirical observation. I use an
adaptive momentum (ADAM) optimizer with a learning rate of 0.01 until error is mini-
mized to the order of 1e-4 and then use a quasi-newton method called L-BFGS-B until
convergence is ensured. The network weights and biases are initialized using Xavier ini-
tialization in order to avoid the ubiquitous vanishing/exploding gradient problem in deep
learning (see Glorot and Bengio (2010)). The weights of loss functions (λ f ,λ j,λc) are
uniform to give equal importance for each of these components. I use a smaller weight
for the second bounding loss Lb. Since the training sample size is much smaller than
the full grid size, full batch is used in optimizer as opposed to mini-batches which is
common in deep learning algorithms.
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THREE-DIMENSIONAL PLOTS

Figure B2. : Equilibrium values as functions of state variables zt and at for the stochastic
productivity model.

B1. Benchmark model

The capital price per unit qt follows the process

dqt

qt
= µ

q
t dt +σ

q
t dZk

t

The terms µ
q
t , and σ

q
t are endogenously determined in the equilibrium. Note that the

productivity shocks are absent in the benchmark model. Using this dynamics for the
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price, the return process can be written as

(B18) dR j,t =

(
a j− ι j,t

qt
+Φ(ι j,t)−δ +µ

q
t +σσ

q
t

)
︸ ︷︷ ︸

µR
j,t

dt +(σ +σ
q
t )dZk

t

Let ξe,t and ξh,t denote the SDF of the experts and the households respectively that fol-
lows

(B19)
dξ j,t

ξ j,t
=−rtdt−ζ j,tdZk

t

where, ζ j,t is the market price of risk for agent j. Similar to the stochastic productivity
model, both agents invest in the risk-free asset, and hence the drift of the SDF process is
the same for all agents. The asset pricing conditions for the experts and the households
respectively take the simpler form53

(B20)
ae−ιt

qt
+Φ(ιt)−δ +µ

q
t +σσq,t − rt

σ +σq,t
= χtζe,t +(1−χt)ζh,t

(B21)
ah−ιt

qt
+Φ(ιt)−δ ++µ

q
t +σσq,t − rt

σ +σq,t
≤ ζh,t

The equality holds in (B21) if the households own some amount of capital (ψt < 1). The
optimal investment rate is the same as before and is given in (13). The agents solve

sup
c j,t ,χ j,t ,k j,t

Et

[∫
∞

t
f (c j,s,U j,s)ds

](B22)

s.t.
dw j,t

w j,t
= (rt −

c j,t

w j,t
+

qtk j,t

w j,t
(µR

j,t − rt − (1−χ j,t)(σ +σ
q
t )ζ j′,t)dt +σw j,t(σ +σ

q
t )dZk

t

where the aggregator f (c j,s,U j,s) is given in (6) and the index j′ denotes the other type of
agent. The households do not issue outside equity and hence χh,t = 1. On the other hand,
the experts issue outside equity but are constrained to hold at least a fraction χ of equity
in their balance sheet. Thus, χe,t ∈ [χ,1]. Moving forward, I denote χe,t as simply χt for
notation brevity. The expressions for σw j,t is the same as in the stochastic productivity
model given in (9) and (10). Since all agents within the group j are identical as before, I
solve for the decentralized economy with wealth share of the experts zt as the sole state

53This can be proved using the Martingale argument similar to the model with stochastic productivity. See Appendix
B.B1 for the proof.
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variable. The wealth share is defined as

zt =
We,t

We,t +Wh,t
=

We,t

qtKt

where We,t =
∫
E w j,td j and Kt =

∫
E k j,td j+

∫
H k j,td j. Moving forward, I denote Xe,t to

mean
∫
E x j,td j, and similarly for the households.

Proposition 4. The law of motion of the wealth share of experts is given by

(B23)
dzt

zt
= µ

z
t dt +σ

z
t dZk

t

where

µ
z
t =

ae− ιt

qt
− Ce,t

We,t
+
(χtψt

zt
−1
)
(σ +σq,t)(ζe,t − (σ +σ

q
t ))+(1−χt)(σ +σ

q
t )(ζe,t −ζh,t)+

λd

zt
(z̄− zt)

σ
z
t =

(χtψt

zt
−1
)
(σ +σ

q
t )

Proof: The law of motion of wealth for the households and the experts are given by
equation (B22). Using the law of large numbers to aggregate the wealth of individual
household and expert, we get

dWh,t

Wh,t
=

(
rt −

Ch,t

Wh,t
−λd +

1−χtψt

1− zt
(µR

h,t − rt)+
(1− z̄)λd

1− zt

)
dt +

1−χtψt

1− zt
(σ +σ

q
t )dZt

dWe,t

We,t
=

(
rt −

Ce,t

We,t
−λd +

χtψt

zt
ζe,t(σ +σ

q
t )+

z̄λd

zt

)
dt +

χtψt

zt
(σ +σ

q
t )dZt

where Wh,t =
∫

j∈H w j,td j and We,t =
∫

j∈E w j,td j denotes the aggregated wealth among re-
spective group. Similar to the stochastic productivity model, the volatility terms χt ψt

zt
(σ +

σ
q
t ) and 1−χt ψt

1−zt
(σ +σ

q
t ) can be derived using the definitions of zt ,ψt and the market clear-

ing condition σwe,tzt(σ +σ
q
t )+σwh,t(1− zt)(σ +σ

q
t ) = (σ +σ

q
t ). By Ito’s lemma, the

dynamics of the wealth share becomes

dzt

zt
=

dWe,t

We,t
− d(qtKt)

qtKt
+

d〈qtKt ,qtKt〉
(qtKt)2 − d〈qtKt ,We,t〉

(qtKtWe,t)

where

d(qtKt)

qtKt
= ((χtζe,t +(1−χt)ζh,t)(σ +σ

q
t )−

(ae− ιt)

qt
+ rt)dt +(σ +σ

q
t )dZt

and the result follows from here after some algebra. �
The expression for the wealth share dynamics is similar to the model with stochastic

productivity except that only the price of risk for capital shock matters, and the exit
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rate τt disappears from the drift. The solution methodology is also the same as before
where equilibrium policies are determined in the static inner step and the value function
is solved in the outer time step by solving a couple of PDEs. I use an implicit finite
difference method with up-winding to solve the PDEs. The up-winding preserves the
monotonicity of the PDEs and helps achieve convergence. In section B.B4, I show that
the solution to the PDEs obtained using the finite difference method is the same as the
solution obtained form the neural network method.

ASSET PRICING CONDITIONS

The expected return that the experts earn from investing in the capital is given by

drv
t = (µR

e,t − (1−χt)εh,t)dt +χt(σ
q,k
t +σ)dZk

t

where εh,t = ζh,t(σ
q
t +σ). That is, (1− χt)εh,t is the part of the expected excess return

that is paid by the experts to the outside equity holders, which is netted out. Consider a
trading strategy of investing $1 into the capital at time 0. Denoting vt as the value of this
investment strategy at time t, we have dvt

vt
= drv

t , and

d(ξevt)

ξevt
= (−rt +µ

R
e,t − (1−χt)εh,t −χtεe,t)dt +diffusion terms

where εe,t = ζe,t(σ +σ
q
t ), and ξe,t follows the process in (B19). Since ξevt is a martingale,

the drift equals to zero, which implies µR
e,t− rt = χtεe,t +(1−χt)εh,t It follows similarly

for the households with the difference that since they do not issue outside equity, their
asset pricing condition is µR

h,t − rt = εh,t �
While the quantitative analysis of the benchmark model in main text assumes that

agents have recursive utility and IES=1, I present and solve the model for a broader
range of preference specifications. I consider four different types of utility functions.
Let
(B24)

f (c j,s,U j,s)=



ρ j log(c j,t)−ρ jU j,t if γ j = 1,ρ j = 1
c

1−γ j
j,t

1−γ j
−ρ jU j,t if γ j = ρ

−1
j 6= 1

(1− γ j)ρ jU j,t

(
log(c j,t)− 1

1−γ j
log
(
(1− γ j)U j,t

))
if γ j 6= 1,ρ j = 1

1−γ j

1− 1
ρ j

U j,t

[(
c j,t(

(1−γ j)U j,t

)1/(1−γ j)

)1− 1
ρ j

−ρ j

]
if γ j 6= 1,ρ j 6= 1

I allow for preference heterogeneity in risk aversion and discount rate for generality.
I solve for a Markov equilibrium in the state variable zt ∈ (0,1) for a representative
household and expert by aggregating all agents within their respective group.
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Proposition 5. The optimal consumption policy and price of risk are given by

Ĉe,t =


ρe if (log or Recursive (IES=1))

J−1/γe
e,t (ztqt)

1−γe
γe if CRRA

J
1−ρ j
1−γe

e,t

(zt qt)
1−ρ j

if Recursive (IES 6= 1 )

(B25)

Ĉh,t =


ρh if (log or Recursive (IES=1))

J−1/γh
h,t ((1− zt)qt)

1−γh
γh if CRRA

J

1−ρ j
1−γh

h,t

((1−zt)qt)
1−ρ j

if Recursive (IES 6= 1 )

(B26)

ζe,t =

{
χt ψt

zt
(σ +σ

q
t ) if log

−σ J
e,t +σ

z
t +σ

q
t + γeσ if (CRRA or Recursive)

(B27)

ζh,t =

{
(1−χt ψt)

1−zt
(σ +σ

q
t ) if log

−σ J
h,t −

zt
1−zt

σ
z
t +σ

q
t + γhσ if (CRRA or Recursive)

(B28)

Proof: The HJB equation is given by

(B29) sup
c,K

f (c j,t ,U j,t)+E[dU j,t ] = 0

I consider three cases of utility functions separately.

(A) LOG UTILITY

The value function conjecture takes a logarithmic form

U j,t = logKt + J j,t(zt) = logWj,t + J̃ j,t

and where the second equality follows from zt =
We,t
qt Kt

= 1− Wh,t
qt Kt

. Also, f (C j,t ,U j,t) =

ρ jlog(C j,t)−ρ jU j,t . The value function derivatives are

∂U j,t

∂Wj,t
=

dWj,t

Wj,t
;

∂ 2U j,t

∂W 2
j,t

=−
d〈Wj,t ,Wj,t〉

W 2
j,t

;
∂U j,t

∂ J̃h,t
= 1;

∂ 2U j,t

∂ J̃2
j,t

=
∂ 2J̃ j,t

∂ J̃ j,t∂Wj,t
= 0

Applying Ito’s lemma and using the HJB, we get

sup
C,θ j,t

ρ jlogC j,t −ρ(logWj,t + J̃ j,t)+ rt −
C j,t

Wj,t
+θ j,t(σ +σ

q
t )ζ j,t −

1
2

θ
2
j,t(σ +σ

q
t )

2 +µ
J̃
t = 0
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where θe,t =
χt ψt

zt
and θh,t =

1−χt ψt
1−zt

. Taking the first order conditions, we get the following
result for log utility.

ĉ j,t = ρ j(B30)

ζe,t =
χtψt

zt
(σ +σ

q
t )(B31)

ζh,t =
1−χtψt

1− zt
(σ +σ

q
t )(B32)

(B) CRRA UTILITY

The value function conjecture is

U j,t = J j,t(zt)
K1−γ j

t

1− γ j

where J j,t follows the stochastic differential equation dJ j,t
J j,t

= µJ
j,tdt +σ J

j,tdZt whose drift
and volatility needs to be determined in the equilibrium. The HJB equation is derived
directly in terms of the capital kt instead of the wealth share zt . The value function
derivatives are

∂U j,t

∂J j,t
=

K1−γ j
t

1− γ j
;

∂U j,t

∂Kt
= J j,tK

−γ j
t(B33)

∂ 2U j,t

∂J2
j,t

= 0;
∂ 2U j,t

∂K2
t

=−γ jJ j,tK
−(1+γ j)
t ;

∂ 2U j,t

∂J j,t∂Kt
= K−γ j

t

Applying Ito’s lemma and using HJB, we get

sup
C,K

−ρ
J j,tK

1−γ j
t

1− γ j
+

C1−γ j
t

1− γ j
+

J j,tK
1−γ j
t

1− γ j
µ

J
j,t + J j,tK

1−γ j
t (Φ(ιt)−δ )(B34)

−σ
2 γ j

2
J j,tK

1−γ j
t + J j,tK

1−γ j
t σσ

J
j,t = 0

At the optimum, the marginal utilities of consumption and wealth become equal. Rewrit-
ing the value function in terms of the wealth and using the mapping qtkt =

We,t
zt

=
Wh,t
1−zt

,
we get the equilibrium consumption-wealth ratio

(B35)
Ce,t

We,t
=

(ztqt)
1−γe

γe

J
1
γe
e,t

;
Ch,t

Wh,t
=

((1− zt)qt)
1−γh

γh

J
1
γh
h,t
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The risk premium of the experts and the households can be derived from the stochastic
discount factor which is given by

ξ j,t = ξ j,0e−ρ jt
(

C j,t

C j,0

)−γ j

This gives a relationship between the volatility of SDF and consumption: σ
ξ

j,t =−γ jσ
c
j,t .

The consumption-capital ratio for the households and the experts is given by Ch,t
Kt

=
((1−zt)qt)

1/γh

J
1/γh
h,t

and Ce,t
Kt

= (zt qt)
1/γe

J1/γe
e,t

. Combining this with the differential equation for SDF

dξ j,t

ξ j,t
=−rtdt−ζ j,tdZt

we get
(B36)

ζe,t = γeσ
c
e,t =−σ

J
e,t +σ

z
t +σ

q
t + γeσ ; ζh,t = γhσ

c
h,t =−σ

J
h,t −

zt

1− zt
σ

z
t +σ

q
t + γhσ

Plugging in the optimal consumption-wealth ratio from (B35) into HJB equation (B34),
we get the expressions for µJ

j,t

µ
J
e,t = ρe−

(ztqt)
1−γe

γe

J1/γe
e,t

− (1− γe)
(
Φ(ιt)−δ − γe

2
σ

2 +σ
J
e,tσ
)

(B37)

µ
J
h,t = ρe−

((1− zt)qt)
1−γh

γh

J1/γh
h,t

− (1− γh)
(
Φ(ιt)−δ − γh

2
σ

2 +σ
J
h,tσ
)

(B38)

(C) RECURSIVE UTILITY (IES=1)

The value function conjecture is the same as that of CRRA utility, and f (C j,tU j,t) =

(1− γ j)ρ jU j,t

(
logC j,t − 1

1−γ j
log
(
(1− γ j)U j,t

))
. Plugging in the conjecture for value

function in HJB equation (A1) and applying Ito’s lemma54, we get

sup
C,K

ρJ j,tK
1−γ j
t [log

C j,t

Wj,t
− 1

1− γ j
logJ j,t + log(qtzt)]+ J j,t

K1−γ j
t

1− γ j
µ

J
j,t(B39)

+ J j,tK
1−γ j
t (Φ(ιt)−δ )− J j,tK

1−γ j
t

1
2

γ jσ
2 + J j,tK

1−γ j
t σσ

J
j,t = 0

54The value function derivatives are the same as in the CRRA case given by (B33).
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As before, at the optimum, the marginal utilities of the wealth and the consumption
become equal. Using the value function expression in terms of wealth, we have

∂U j,t

∂Wj,t
=

∂ f
∂C j,t

J̃ j,tW
−γ j
j,t = (1− γ j)ρ j

U j,t

C j,t
=⇒

C j,t

Wj,t
= ρ j

The stochastic discount factor for recursive utility is given by

ξ j,t = exp
(∫ t

0

∂ f (C j,s,U j,s)

∂U
ds
)

∂U j,t

∂Wj,t

Writing the value function conjecture in terms of the wealth instead of the capital, we
have

U j,t = J̃ j,t
W 1−γ j

j,t

1− γ j
; f (C j,t ,U j,t) = (1− γ j)ρ jU j,t

(
logρ j−

1
1− γ j

J̃ j,t
)

where J̃ j,t =
J j,t

(qt zt)
1−γ j

. The SDF then becomes

ξ j,t = (1− γ j)exp
(∫ t

0

[
ρ j
(
(1− γ j)logC j,s− log

(
(1− γ j)U j,s

)
−1
]
ds
)

U j,t

Wj,t

This implies that σ(ξ j,t) = σ

(
U j,t
Wj,t

)
. Computing the R.H.S and using

dξ j,t

ξ j,t
=−rtdt−ζ j,tdZt

we get the desired result. Plugging in the consumption-wealth ratio and the market price
of risk into the HJB equation (B39), we obtain the expressions for µJ

j,t

µ
J
e,t = (γe−1)

(
ρe logρe + log(qtzt)

)
+ρelogJe,t − (1− γe)(Φ(ιt)−δ − γe

2
σ

2 +σσ
J
e,t)

(B40)

µ
J
h,t = (γh−1)

(
ρh logρh + log(qt(1− zt))

)
+ρhlogJh,t − (1− γh)(Φ(ιt)−δ − γh

2
σ

2 +σσ
J
h,t)

(B41)

(D) RECURSIVE UTILITY (IES DIFFERENT FROM UNITY)

The optimization problem is

sup
C j,t .θ j,t ,ιt

f (C j,t ,U j,t)+E[dU j,t ] = 0
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where

f (c j,t ,U j,t) =
1− γ j

1− 1
ρ j

U j,t

[(
C j,t(

(1− γ j)U j,t
)1/(1−γ j)

)1− 1
ρ j

−ρ j

]
where ρ j denotes the IES parameter. The conjecture for the value function is

U j,t = J j,t(zt)
K1−γ j

t

1− γ j

where J j,t follows the stochastic differential equation dJ j,t
J j,t

= µJ
j,tdt +σ J

j,tdZt whose drift

and volatility needs to be determined in the equilibrium.55

As before, the HJB equation is derived directly in terms of the capital Kt instead of the
wealth share zt . Applying Ito’s lemma and using the HJB, we get

sup
c,K

1
1− 1

ρ j

(
C

1− 1
ρ j

j,t

J

1− 1
ρ j

1−γ j
j,t K

1− 1
ρ j

t

−ρ j

)
J j,tK

1−γ j
t +

J j,tK
1−γ j
t

1− γ
µ

J
j,t + J j,tK

1−γ j
t (Φ(ιt)−δ )

(B42)

−σ
2 γ j

2
J j,tK

1−γ j
t + J j,tK

1−γ j
t σσ

J
j,t = 0

At the optimum, the marginal utilities of the consumption and the wealth become equal.
Rewriting the value function in terms of the wealth and using the mapping qtKt =

We,t
zt

=
Wh,t
1−zt

, we have

∂ fe,t

∂Ce,t
=C

− 1
ρe

e,t J
1

ρe −γe
1−γe

e,t (ztqt)
γ j− 1

ρe

∂ fh,t

∂Ch,t
=C

− 1
ρh

h,t J

1
ρh
−γh

1−γh
h,t ((1− zt)qt)

γ j− 1
ρh

∂Ue,t

∂We,t
=

Je,t

(ztqt)1−γe
W 1−γe

e,t

∂Uh,t

∂Wh,t
=

Jh,t

((1− zt)qt)1−γh
W 1−γh

h,t

Equating the marginal values, we get the respective optimal consumption-wealth ratios

(B43)
Ce,t

We,t
=

J
1−ρe
1−γe

e,t

(ztqt)1−ρe
;

Ch,t

Wh,t
=

J
1−ρh
1−γh

h,t

((1− zt)qt)1−ρh

55Since the value function conjecture is the same as in CRRA case, the value function derivatives are given by (B33).
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The stochastic discount factor for recursive utility is given by

ξ j,t = exp
(∫ t

0

∂ f (C j,s,U j,s)ds
∂U

)
∂U j,t

∂w j,t

Writing the value function conjecture in terms of the wealth instead of the capital, we
have

U j,t = J̃ j,t
W 1−γ j

j,t

1− γ j
; f (C j,t ,U j,t) =

J̃ j,tW
1−γ j
j,t

1− 1
ρ j

[(
C j,t

Wj,t

)1− 1
ρ j

J̃

1− 1
ρ j

γ j−1

j,t −ρ j

]

where J̃ j,t =
J j,t

(qt zt)
1−γ j

. Plugging in the above expression in the stochastic discount factor,

we notice that σ(ξ j,t) = σ
(U j,t

W j,t

)
. Computing the R.H.S and using

dξ j,t

ξ j,t
=−r f dt−ζ j,tdZt

we get the following result.

ζe,t =−σ
J
e,t +σ

z
t +σ

q
t + γeσ(B44)

ζh,t =−σ
J
h,t −

zt

1− zt
σ

z
t +σ

q
t + γhσ(B45)

Substituting the consumption-wealth ratio into the HJB equation (B42), we the expres-
sion for µJ

j,t

µ
J
e,t =

(γe−1)
1− 1

ρe

(
(qtzt)

ρe−1J
1−ρe
1−γe

e,t −ρe

)
− (1− γe)(Φ(ιt)−δ − γe

2
σ

2 +σσ
J
e,t)

(B46)

µ
J
h,t =

(γh−1)
1− 1

ρh

(
(qt(1− zt))

ρh−1J
1−ρh
1−γh

h,t −ρh

)
− (1− γh)(Φ(ιt)−δ − γh

2
σ

2 +σσ
J
h,t)

This proves the proposition. �

B2. Numerical solution method

MODEL SOLUTION: LOG UTILITY

I rely on the solution technique from BS2016 and Hansen, Khorrami and Tourre
(2018) that solves the partial differential equations using an up-winding finite difference
scheme. The method involves a static inner loop that solves for the equilibrium quantities
{ψt ,(σq,t +σ),qt}, and an outer loop that updates the value function from J j,t+∆t to J j,t
using a finite difference method, similar to the model with stochastic productivity.
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Static step: To solve for the quantities in inner loop, three equations are required.
The first equation is given by subtracting the portfolio choices of the households and the
experts. That is, we have

(θe,t −θh,t)(σ
q
t +σ)2 = µ

R
e,t − (µR

h,t)

Plugging in the expressions for µR
e,t ,µ

R
h,t from the return process (B18), and using θe,t =

χt ψt
zt

as well as from the capital market clearing condition θh,t =
1−χt ψt

1−zt
, we get

(B47)
χψt − zt

zt(1− zt)
(σq

t +σ)2 =
ae−ah

qt

Note that χ is used in place of χt because of similar reasoning as in the model of stochas-
tic productivity. When the wealth share zt is low, the experts issue maximum equity
possible to the households since their expected rate of return is much higher than that of
households. The second equation comes from the goods market clearing condition

(B48) (zt ĉe,t +(1− zt)ĉh,t)qt = ψt(ae− ιt)+(1−ψt)(ah− ιt)

where ιt =
qt−1

κ
. For the third equation, apply Ito’s lemma to q(zt) and match the drift

and the volatility terms to get σ
q
t = ∂qt

∂ zt

1
q σ

z
t . Combining this with the volatility of wealth

share, we get

(B49) σ
q
t +σ =

σ

1− ∂qt
∂ zt

1
q(

χt ψt
zt
−1)

Equations (B47), (B48), and (B49) are solved using the Newton-Raphson method56 yield-
ing {ψt ,(σq,t +σ),qt}. Similar to Brunnermeier and Sannikov (2016), there are three
regions in the state space. In the first region, the risk premium of the households is
lower than that of the experts and hence the experts issue maximum outside equity (i.e.,
χt = χt). In the second region, the experts hold all capital (ψt = 1) but their risk pre-
mium is still larger than that of households and hence χt = χ . In the third region, perfect
risk sharing is achieved between the experts and households by setting χt = zt . In the
case of log utility, the static step is enough to compute the equilibrium policies since
the consumption-wealth share is equal to the discount rate and the capital share is not
dependent on J j,t .

56BS2016 and Hansen, Khorrami and Tourre (2018) provide details of the algorithm. The state space is segmented
into the crisis region and the normal region. The static step is solved for iteratively until the system enters the crisis region
in which case the capital share ψ is set to 1 and the remaining quantities (qt ,σ

q
t ) are solved for using equations (B48)

and (B49).
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MODEL SOLUTION: CRRA AND RECURSIVE UTILITY

The portfolio choice in the case of CRRA and recursive utility includes the hedging
demand that needs to be taken into account. From equations (B20) and (B21), we get

ae−ah

qt(σ +σ
q
t )
≥ χ(ζe,t −ζh,t)

with equality if ψt = 1. Plugging in the expressions for ζe,t and ζh,t from proposition (5),
we have

ae−ah

qt
= χ

(
1

Jh,t

∂Jh,t

∂ zt
− 1

Je,t

∂Je,t

∂ zt
+

1
zt(1− zt)

)
(χψt − zt)(σ +σ

q
t )

2

ae−ah

qt
= χ

(
σ

J
h,t −σ

J
e,t +

σ
z
t

1− zt

)
(σ +σ

q
t )

where the second expression comes from using the dynamics of the wealth share (B23).57

The goods market clearing condition (B48) and return volatility (B49) remain the same.
Similar to the case of log utility, the Newton-Raphson method is used to solve for the
{ψt ,qt ,(σ +σ

q
t )}. Given these equilibrium functions, J j,t needs to be solved for, which

is done in the dynamic time step.

Time step: Applying Ito’s lemma to J j,t(zt), matching the drift terms, and augmenting
the resulting coupled PDEs with a time step (falst-transient method), we get

µ
J
h,tJh,t =

∂Jh,t

∂ zt
µ

z
t +

1
2

∂ 2Jh,t

∂ z2
t
(σ z

t )
2(B50)

µ
J
e,tJe,t =

∂Je,t

∂ zt
µ

z
t +

1
2

∂ 2Je,t

∂ z2
t
(σ z

t )
2(B51)

The coefficients µ
z
t and σ

z
t can be computed from the equilibrium quantities in the static

step and µJ
j,t is computed from the equations in (B40). The PDEs are solved using an

implicit method with an up-winding scheme explained in the next part.

57Note that by Ito’s lemma, we have σ j,t =
1

J j,t

∂J j,t
∂ zt

σ
z
t = 1

J j,t

∂J j,t
∂ zt

(θe,t −1)(σ +σ
q
t )

2
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UP-WINDING SCHEME

The PDEs (B50) are solved by considering artificial time-derivatives. To be specific,
the modified system

0 =
∂Jh,t

∂ t
−µ

J
h,tJh,t +

∂Jh,t

∂ zt
µ

z
t +

1
2

∂ 2Jh,t

∂ z2
t
(σ z

t )
2(B52)

0 =
∂Je,t

∂ t
−µ

J
e,tJe,t +

∂Je,t

∂ zt
µ

z
t +

1
2

∂ 2Je,t

∂ z2
t
(σ z

t )
2(B53)

is solved backwards in time with the corresponding terminal conditions (Jh,T ,Je,T ). Con-
sider a general quasi-linear PDE of the form

A
(

z,g,
∂g
∂ z

)
+ tr

[
B
(

z,g,
∂g
∂ z

)
∂ 2g
∂ z2 B

(
z,g,

∂g
∂ z

)′]
+

∂g
∂ t

= 0

Consider a two-dimensional grid of size Nz and Nt with step sizes ∆i and ∆ j respectively
where {i}Nz

1 ,{ j}Nt
1 denote the dimensions for space and time respectively. The function

g(zt , t) evaluated at (i, j) is denoted as gi, j. The derivatives of the function are discretized
as

∂̂gi, j

∂̂ z
= (µz

j)
+ gi+1, j−gi, j

∆i
+(µz

j)
− gi, j−gi−1, j

∆i

∂̂ 2gi, j

∂̂ z2
=

gi+1, j−2gi, j +gi−1, j

∆2
i

∂̂gi, j

∂̂ t
=

gi, j+1−gi, j

∆ j

where (µz
j)
+ =

{
µ

z
t if µ

z
t > 0

0 if otherwise
(µz

j)
− =

{
µ

z
t if µ

z
t < 0

0 if otherwise
Discretizing the derivatives at j+1 and applying it to the PDE, we get

gi, j+1 = gi, j+∆ j

{
A
(

z,gi, j+1,
∂̂gi, j+1

∂̂ z

)
+tr

[
B
(

z,gi, j+1,
∂̂gi, j+1

∂̂ z

)
∂̂ 2gi, j+1

∂̂ z2
B
(

z,gi, j+1,
∂̂gi, j+1

∂̂ z

)′]}
Solving for gi, j+1 requires solving a linear system of equations which can be done using
a standard procedure such as the Richardson method. The up-winding scheme ensures
monotonicity of the numerical scheme (see D’Avernas and Vandeweyer (2019)). Since
the method is implicit, a large time step can be set which considerably reduces the com-
putation time.
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Description Symbol Value

Technology/Preferences

Volatility of output σ 0.06
Discount rate (experts) ρe 0.06
Discount rate (households) ρh 0.04
Depreciation rate of capital δ 0.02
Investment cost κ 10
Productivity (experts) ae 0.11
Productivity (households) ah 0.03

Utility CRRA utility γe,γh [1,15]
Recursive utility γe,γh [1,15]

Demographics Mean proportion of experts z̄ 0.10
Turnover λd 0.03

Friction Equity retention χ 0.5

Table B2—: Calibrated parameters for the benchmark model. All values are annualized.

EQUILIBRIUM POLICIES

The equilibrium plots for the benchmark model is given in Figure (B3).

Figure B3. : Equilibrium values as functions of state variable zt . The recursive utility
plots have IES equal to 1. Log utility has RA=1 by construction.
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NUMERICAL SIMULATION

The state variable in the model is zt whose law of motion is governed by the equation
(B23). Once the mapping between zt and (µz

t , σ
z
t ) are determined numerically from the

previous section, we can simulate zt using an Euler-Maruyama scheme. Specifically, the
task is to simulate

dzt = µ
z
t dt +σ

z
t dZt

where the shock dZt is the standard Brownian motion. The law of motion is discretized
as

zt+∆t = zt +µz(zt)∆t +σ
z
t (zt)∗

√
∆tZ

where Z ∼ N(0,1). The steps are as follows

1) Set z0 to an arbitrary initial value, say 0.5.

2) Simulate Z from the standard normal distribution and compute zt+∆t using the
discretized equation for ∆ = 1/12. The mapping between zt and (µz

t ,σ
z
t ) is in a

grid since it is solved for numerically and hence I use a spline interpolation to
obtain the intermediate values.

3) Repeat the procedure for z1,z2, ... and obtain {zt}60,000
1 . That is, the simulation is

done for 5000 years at monthly frequency.

The first 1000 years are eliminated so as to reduce the dependency on the initial condi-
tion. I experiment with different initial values to make sure that the obtained distribution
is indeed stationary. The procedure is repeated for 1000 times and Figure (B4) plots the
resulting distributions.
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Figure B4. : Stationary distribution of wealth share.

Note: Plots (a), (b), (c), and (d) represent benchmark model with risk aversion parameter set to 1, 5, 10, and 20 respec-
tively. The vertical blue line and the vertical dotted line represent the endogenous crisis boundary z∗ and the steady state
ẑ of the wealth share respectively.

COMPARISON WITH FOKKER-PLANCK EQUATION

The density of the wealth share g(zt , t) can be expressed in the form of Fokker-Planck
(or Kolmogorov Forward Equation) equation

∂g(zt , t)
∂ t

=− ∂

∂ zt
(µz

t g(zt , t))+
1
2

∂ 2

∂ z2
t
((σ z

t )
2g(zt , t))

We have lim
zt→0+,zt→1−

σ
z
t = 0 by construction and ( lim

zt→0+
µ

z
t > 0, lim

zt→1−
µ

z
t < 0) due to the

overlapping generations assumption. This forces the distribution to be non-degenerate.
Also, a stationary density implies that ∂g

∂ t = 0. Thus, we can integrate the Fokker-Planck
equation to obtain

0 = constant− (µz
t g(zt))+

1
2

∂

∂ zt
((σ z

t )
2)g(zt)

I solve this equation numerically using an explicit finite difference scheme and compare
it with the stationary distribution obtained through the simulation. Figure (B5) shows that
the density obtained from the simulation is a good approximation for the theoretical den-
sity dictated by the Focker-Planck equation. The simulated wealth share is annualized so
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as to make the comparison with the empirical data. The proportion of annualized wealth
share that fall below the theoretically obtained crisis boundary z∗ is taken to be the prob-
ability of crisis implied by the model. Table (B3) presents the moments of equilibrium
quantites obtained using the annualized wealth share

Figure B5. : Comparison of the stationary density obtained from Focker-Planck equation
and the simulation for the benchmark model with RA=1.

B3. Other trade-offs in the benhmark model

One key quantity that governs the time spent in the crisis region is the drift of the
wealth share. The parameter λd controls the death rate of experts which is necessary to
ensure model stationarity. As the death rate increases, all else equal, the system stays
in the crisis region longer. A similar effect is observed when the mean proportion of
experts z is decreased. Figure (B6) presents the static comparison of the drift of the
wealth share for different values of λd and z. A higher death rate pushes the system
into the crisis region by making the drift of wealth share more negative in the normal
regime. However, there is only a minimal effect on the drift once the system enters the
crisis region. The second panel varies the mean population share of experts by keeping
the death rate fixed. As the population share decreases, the drift becomes more negative
making the crisis more likely. Once the system enters the crisis region, the drift becomes
less positive pushing the system back into the normal regime at a slower rate. Both of
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these effects work towards increasing the frequency of crisis.

Figure B6. : Left panel shows the drift of wealth share for two different values of death
rate λd for z fixed at 0.1. The second panel shows the drift of wealth share for two
different values of mean expert population for λd fixed at 0.02. The risk aversion is set
to 2 for both the plots.

Figure (B7) shows the probability of crisis for several values of λd and z for the recur-
sive utility model with IES=1 and risk aversion equal to 2. To obtain a 7% probability
of crisis, the population share of experts have to be less than 10%, with a death rate of
3%. Since the discount rate assumed in the model is inclusive of death rate, a 3% death
rate means that the households do not discount at all. The second panel of Figure (B7)
reveals that changing the OLG parameters doesn’t affect unconditional risk premium
much. While it is possible to achieve a realistic probability of crisis and unconditional
risk premium simultaneously, this comes at the cost of extremely high death risk, and
more importantly, it still does not generate persistent recessions. This is because the du-
ration of the crisis is unaffected by a high death risk and thus leads to a quick recovery.

Figure B7. : Left panel shows the drift of wealth share for two different values of exit
rate λd for z fixed at 0.1. The right panel shows the drift of wealth share for two different
values of mean expert population for λd fixed at 0.02. Both plots are from recursive
utility model with risk aversion equal 2 and IES=1.

Tightening financial constraint: One of the key assumptions of the model is the inability
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of experts to fully issue outside equity. The parameter χ governs how much equity the
experts are forced to retain and hence it is of interest to study the model by varying this
parameter. As the financial constraint tightens, the probability of crisis increases. The
left panel of Figure (B8) plots the risk premium of experts for three different values of
the skin-in-the-game constraint. As the constraint increases, the crisis boundary shifts
to the right but the unconditional risk premium is lower. This effect can be seen in the
simulation result on the right panel of Figure (B8). While a higher value of χ leads to a
higher probability of the crisis, the conditional risk premium drops drastically leading to
only a marginal increase in the unconditional premium.

Figure B8.

Note: Left panel: Static comparison of the risk premium by changing the skin-in-the game constraint for the baseline
model with RA=1 and IES=1. Right panel: Trade off between the conditional risk premium and the probability of crisis
by varying the skin-in-the-game constraint. The parameter χ increases from left to right. Left (dashed line) and right
(blue line) axes correspond to the unconditional and the conditional risk premium respectively.

B4. Deep learning methodology

ONE-DIMENSIONAL MODEL

I first present the solution to the benchmark model using deep learning method and
then demonstrate how and why it is easy to scale to higher dimensions by presenting the
solution to richer model with two state variables. I consider the case of recursive utility
with IES=1 and RA=2 for demonstration.58 The PDE that needs to be solved is given in
(B52). Construct a neural network Ĵ(z, t |Θ) and define the PDE residual to be

f :=
∂ Ĵ
∂ t

+
∂ Ĵ
∂ z

µ
z +

1
2

∂ 2Ĵ
∂ z2 (σ

z)2−µ
J Ĵ

The network architecture is given in Figure (B10) with the hyperparameters in Table
(B1).59 Figure (B9) plots the full grid and the training sample. The inner static loop

58The deep learning algorithm works for any type of utility function. For larger risk aversion values, it takes longer
to achieve convergence due to the highly non-linear value function near the boundaries.

59The algorithm works even for 2 hidden layers with 30 neurons each instead of 4 hidden layers but may be prone to
instabilities for some extreme parameter values such as setting χ = 0.1. It is recommended to have four layers to capture
the non-linearity well.
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uses a grid size of 1000 points in space dimension while the neural network only uses
300 points for training. In the case of a single space dimensional model, sampling one-
third of the grid points is enough to find the right solution. In higher dimensions, the
proportion of grid points required as training sample can be set much lower than one-
third.

Figure B9. : Grid used in numerical procedure: 1D model.

Figure B10. : Network architecture: benchmark model.

I illustrate the simplicity of coding the neural network solution using code snippets
that uses Tensorflow library. The first step is to construct a neural network Ĵ using the
space and time dimensions as training data, and weights and biases as parameters ini-
tialized arbitrarily.60 This is illustrated in the code snippet (1) and it corresponds to the
left most feed-forward neural network (NN : Ĵ(z, t | Θ)) in Figure (B10). The next step

60I use Xavier initialization to avoid the vanishing gradient problem.
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is to construct the regularizers using PDE residual as given in code snippet (2). This
forms the PDE network in Figure (B10). The PDE coefficients (advection, diffusion, and
linear terms) are taken as given and form part of the training sample. The automatic dif-
ferentiation in Tensorflow (t f .gradients) enables fast computation of derivatives in the
regularizers which guides the parameterized neural network Ĵ towards the right solution
even when the training sample is small. In addition to the PDE bounding loss, one can
easily set up the boundary loss and crisis region loss in a similar fashion.

1 def J(z,t):
2 J = neural_net(tf.concat ([z,t],1),weights ,biases)
3 return J
4

Listing 1: Approximating J using a neural network: 1D model

1 def f(z,t):
2 J = J(z,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_zz = tf.gradients(J_z ,z)[0]
6 f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
7 return f

Listing 2: Constructing regularizer: 1D model

Since the analytical solution to the benchmark model is not available, I compare the
neural network solution with the those obtained from the finite difference method ex-
plained in Appendix (B.B2). Figure (B11) shows the comparison. They are not only
qualitatively similar, they are quantitatively the same up to the order of 1e-4.

Figure B11. : Comparison of equilibrium quantities using finite difference and neural
network in one-dimensional benchmark model.
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TWO-DIMENSIONAL MODEL

The PDE that needs to be solved in the two-dimensional model is given in (B9). As
in the case of one-dimensional model, construct the neural network Ĵ(z,a, t |Θ) with the
PDE residual taking the form

f :=
∂ Ĵ
∂ t

+
∂ Ĵ
∂ z

µ
z +

∂ Ĵ
∂ z

µ
a +

1
2

∂ 2Ĵ
∂ z2

(
(σ z,k)2 +(σ z,a)2 +2ϕσ

z,k
σ

z,a
)
+

1
2

∂ 2Ĵ
∂a2

a
σ

2
a

+
∂ 2Ĵ

∂ zt∂a

(
zσ

z,k
σaϕ +σaσ

z,a)−µ
J Ĵ

The network architecture and hyperparameters are given in Figure (B1) and (B1) re-
spectively. The grid size becomes larger compared to the one-dimensional model but
the chosen training sample size is 3000 which is much smaller than the full grid size of
30,000 as is illustrated in Figure (B12). To appreciate the simplicity involved in scaling
to higher dimensions, I present the code snippets for the 2D model in (3) and (4). Simi-
lar to the 1D model, the neural network J is parameterized the same way except that the
network takes three inputs- two space dimensions (z,a) and one time dimension (t). This
corresponds to the leftmost feed-forward neural network in Figure (B1) where three neu-
rons enter the network instead of two as in Figure (B10). The construction of regularizer
as shown in code snippet (4) simply adds new derivative terms to the PDE network taking
as given the coefficients (advection, diffusion, linear, and cross terms). Moving from one
to two dimensions in an implicit finite difference method is not trivial since one has to set
up the system of linear equations to be solved numerically. In even higher dimensions, as
demonstrated in ?, the PDE network simply adds further derivative terms. This is easier
to do in comparison with setting up the system of equations. In dimensions more than
two with correlated state variables, preserving monotonicity of the numerical schemes
adds further complications, which the neural network method sidesteps. The literature
has used advanced C++ tools like Paradiso (see Hansen, Khorrami and Tourre (2018))
which requires much more effort than simply augmenting the PDE network. Since most
of the heavy lifting is done by the automatic differentiation in the regularizers, learning
in high dimensions is accomplished effectively through a few lines of coding.
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Figure B12. : Grid used in numerical procedure: 2D model. The full grid contains 30,000
points and the training sample contains 3000 points.

1 def J(z,a,t):
2 J = neural_net(tf.concat ([z,a,t],1),weights ,biases)
3 return J
4

Listing 3: Approximating J using a neural network: 2D model

1 def f(z,a,t):
2 J = J(z,a,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_a = tf.gradients(J,a)[0]
6 J_zz = tf.gradients(J_z ,z)[0]
7 J_aa = tf.gradients(J_a ,a)[0]
8 J_az = tf.gradients(J_a ,z)[0]
9 f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

10 diffusion_a * J_aa + crossTerm * J_az - linearTerm * J
11 return f

Listing 4: Constructing regularizer: 2D model
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ADDITIONAL ONLINE APPENDIX

C1. Benchmark model

Solving the incomplete market capital misallocation model with fire-sales and en-
dogenous regimes involves numerical techniques that are non-standard from the asset
pricing literature viewpoint. In addition to the complexity involving in solving the
PDEs, the coefficients of the PDEs change with respect to the form of utility function.
Thus, comparing model solutions across different utility specifications require manual
intervention to modify the equations in static step, and the PDE coefficients. Part of
the contribution of this paper is to offer a simpler way to perform comparative valua-
tion dynamics through numerical libraries made available61 at https://github.com/
goutham-epfl/MacroFinance. The simplicity of using the library is that model can
be solved and simulated in a few lines facilitating comparative valuation. Code snippet
(5) presents an example of solving the model with different utility specifications. Code
snippet (6) shows examples of simulating different models from the general framework.

1 from model_recursive_class import model_recursive
2 from model_class import model
3 from model_general_class import model_recursive_general
4 import matplotlib.pyplot as plt
5

6 #Input parameters
7 params ={’rhoE’: 0.06, ’rhoH’: 0.03, ’aE’: 0.11, ’aH’: 0.03,
8 ’alpha’:0.5, ’kappa’:7, ’delta’:0.025 , ’zbar’:0.1,
9 ’lambda_d ’:0, ’sigma ’:0.06 , ’gammaE ’:2, ’gammaH ’:2, ’IES =1.5’}

10

11 #solve model1
12 model1 = model_recursive_general(params)
13 model1.solve()
14

15 #solve model2
16 #switch to model with unitary IES
17 params[’IES’] =1.0
18 #solve model
19 model2 = model_recursive(params)
20 model2.solve()
21

22 #plot capital price (Q) from the model1 and model2
23 plt.plot(model1.Q), plt.plot(model2.Q)

Listing 5: Solving the model using Python library

1 from model_recursive_class import model_recursive
2 from simulation_model_class import simulation_benchmark
3
4

5 #Input parameters
6 params ={’rhoE’: 0.06, ’rhoH’: 0.03, ’aE’: 0.11, ’aH’: 0.03,
7 ’alpha’:0.5, ’kappa’:7, ’delta’:0.025 , ’zbar’:0.1,
8 ’lambda_d ’:0, ’sigma ’:0.06 , ’gammaE ’:2, ’gammaH ’:2, ’IES =1.0’}
9 #set number of simulations

10 params[’nsim’] = 500
11 params[’utility ’] = ’recursive ’
12 #simulate model1
13 simulate_model1 = simulation_benchmark(params)
14 simulate_model1.compute_statistics ()
15 print(simulate_model1.stats) #print key statistics

61Advanced users can also choose among implicit and explicit finite difference schemes to solve the model, use
different interpolation methods, and modify the frequency of time used in the simulation.

https://github.com/goutham-epfl/MacroFinance
https://github.com/goutham-epfl/MacroFinance
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16 simulate_model1.write_files () #store key statistics for later use
17

18 #simulate model2
19 #change volatility
20 params[’sigma ’] =0.10
21 simulate_model2 = simulation_benchmark(params)
22 simulate_model2.compute_statistics ()
23

24 #compare stationary distribution from two models
25 plt.plot(simulate_model1.z_sim.reshape (-1))
26 plt.hist(simulate_model2.z_sim.reshape (-1))

Listing 6: Simulating the model using Python library


