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Abstract

We exploit heterogeneity in decreasing returns to scale parameters across funds to

analyze their effects on capital allocation decisions in the mutual fund market. We find

strong evidence that steeper decreasing returns to scale attenuate flow sensitivity to

performance, which has a large effect on equilibrium fund sizes. Our results are consis-

tent with a rational model for active management. We argue that an important fraction

of cross-sectional variation in fund sizes is due to investors rationally anticipating the

effects of scale on return performance.
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1 Introduction

An important question in financial economics is whether investors effi ciently allocate capital

across financial assets. Under the standard neoclassical assumptions, investors compete

with each other for positive present value opportunities, and by doing so, remove them in

equilibrium. In the case of mutual funds, the literature has argued that decreasing returns

to scale (DRS) play a key role in equilibrating the mutual fund market (Berk and Green

(2004)). Because the percentage fee that mutual funds charge changes infrequently, the bulk

of the equilibration process operates through the size (or Assets Under Management (AUM))

of the fund. When good news about a mutual fund arrives, rational Bayesian updating will

lead investors to view the fund as a positive Net Present Value (NPV) buying opportunity

at its current size. In response, flows will go to that fund. As the fund grows, the manager

of the fund finds it increasingly harder to put the new inflows to good use, leading to a

deterioration of the performance of the fund. The flows into the fund will stop when the

fund is no longer a positive NPV investment, and the fund’s abnormal return to investors

has reverted back to zero.

In this paper we investigate this equilibrating mechanism more closely. In particular,

if the above-mentioned equilibration process is at work, we should expect to find that the

degree of decreasing returns to scale (DRS) can have implications for the flow sensitivity to

performance (FSP). While there is much evidence that an active fund’s ability to outperform

its benchmark declines as its size increases,1 there is surprisingly little empirical work devoted

to whether investors account for the adverse effects of fund scale in making their capital

allocation decisions.

We address this important question by formally deriving and empirically testing what a

rational model for active management implies about the relation between returns to scale

and flow sensitivity to performance. Using a theory model similar to that of Berk and

Green (2004), we show that steeper decreasing returns to scale attenuate flow sensitivity

to performance. In the model, investors rationally interpret high performance as evidence

of the manager’s superior skill, so good performance results in an inflow of funds. More

relevant to our hypothesis, the magnitude of the capital response is primarily driven by the

extent of decreasing returns to scale. As a fund’s returns decrease in scale more steeply, the

1See, for example, Chen et al. (2004), Yan (2008), Pollet and Wilson (2008), and Zhu (2018).
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positive net alpha is competed away with a smaller amount of capital inflows, making flows

less sensitive to performance.

To test this theoretical insight, one needs a source of heterogeneity in decreasing returns

to scale. One also needs to observe investor reactions to this heterogeneity. Indeed, we

demonstrate that there is a substantial amount of heterogeneity in DRS across individual

funds,2 with correspondingly heterogeneous flow sensitivity to performance across funds.

Our approach can be interpreted as inferring how the subjective size-performance relation,

perceived by investors in real time, is incorporated into the flow-performance relation going

forward. We find that a steeper decreasing returns to scale parameter predicts a lower

sensitivity of flows to performance, consistent with the main prediction of our model.

One of the challenges in estimating the effect of decreasing returns to scale on flow

sensitivity to performance is the estimation error in fund-specific DRS. As a result, the

point estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund

regressions are likely to suffer from an errors-in-variables bias. To gauge the severity of

attenuation bias, we first adjust these simple estimates of the DRS-FSP relation for the

errors-in-variable bias, assuming that the errors are of the classical type (i.e., independent

to the actual DRS). As expected, the simple DRS-FSP relation estimates are indeed biased

toward zero.

To address this issue, we estimate the DRS-FSP relation by instrumenting for the hetero-

geneity in decreasing returns to scale with a set of fund characteristics (IV) that are plausibly

related to the scalability of the funds’investment strategies.3 In particular, by regressing the

fund-specific DRS estimates on these characteristics, we obtain fitted values that we use as a

more robust way of obtaining cross-sectional variation. Importantly, we show that while the

statistical significance of the DRS-FSP relation is unaffected by using the IV approach, the

IV estimates become substantially more negative, and their magnitudes are similar to those

implied by the classical measurement error assumption, suggesting that the IV approach

2Barras, Gagliardini, and Scaillet (2021) also provide empirical evidence that not only skill but also
scalability vary substantially across funds.

3We investigate a number of characteristics that seem relevant a priori (also from the previous literature)
for heterogeneity in returns to scale: the number of managers, volatility, expense ratios, marketing expenses,
international exposure, turnover, log fund size, as well as past flow and the loadings on the size, value,
and momentum factors. For example, we find the degree of DRS is stronger for higher-volatility funds,
sole-managed funds, small-cap funds, as well as funds that have experienced outflows in the past year.
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indeed has alleviated the errors-in-variables problem.

Next, we turn to the economic significance of our estimates. In particular, we assess

how equilibrium fund size is affected by the cross-sectional variation in decreasing returns

to scale parameters. This exercise does require model assumptions. We calibrate a rational

model in the spirit of Berk and Green (2004). After simulating data in which investors know

the DRS can vary by fund, we check how much of the simulated size can be explained by

counterfactual fund sizes computed under the assumption that the investors believe the DRS

is the same for all funds. We find that at least 34% of the cross-sectional variance of fund

sizes can be related to cross-sectional variation in decreasing returns to scale parameters.

More importantly, although we do not target the DRS-FSP relation in our calibration, our

model produces DRS-FSP relation estimates that are quantitatively very similar to those

obtained from the data. Thus, it appears that the magnitude of the DRS-FSP relation

estimates from the data is consistent with what the model predicts. This result suggests

that the model does a good job of capturing capital allocation patterns in the data.

Beyond implications for fund flows, steeper decreasing returns to scale have implications

for fund size in equilibrium. In the model, equilibrium fund size is proportional to the ratio

of perceived skill over diseconomies of scale, which predicts that, all else equal (holding the

alpha earned on the first dollar fixed), the decreasing returns to scale parameter should be

lower for larger funds. This prediction is confirmed in our empirical analysis. Moreover, if

investors update their beliefs about skill as in the model, their perception of optimal size

ought to converge to true optimal size as funds grow older. Consistent with this argument,

we find that estimates for the optimal size largely explain capital allocation across older

funds in the data. We measure (log) optimal size of a fund by the average ratio of the fund’s

net alpha (adjusted for returns to scale) to the fund’s individual DRS parameter. We show

that the sizes of older funds continue to be significantly related to the optimal sizes even

when we control for an alternative measure of optimal size that assumes fund scale has the

same effect on performance for all funds. Again, investors seem to account not only for

average decreasing returns to scale, but also for the heterogeneity of decreasing returns to

scale across funds.

Taken together, our results demonstrate that investors do account for the adverse effects

of fund scale in making their capital allocation decisions, and that the rational expectations
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equilibrium does a reasonable job of approximating the observed equilibrium in the mutual

fund market. In contrast, the previous literature has often deemed mutual fund investors

as naive return chasers because fund flows respond to past performance even though per-

formance is not persistent.4 Furthermore, many papers in the mutual fund literature have

documented that mutual fund returns show little evidence of outperformance.5 While these

findings led many researchers to question the rationality of mutual fund investors, Berk

and Green (2004) argue that they are consistent with a model of how competition between

rational investors determines the net alpha in equilibrium. We contribute to this debate

by presenting findings that are hard to reconcile with anything other than the existence of

rational fund flows.

2 Definitions and hypotheses

To formally derive our hypothesis, we use the notation and setup presented in Berk and

van Binsbergen (2016). Let qit denote assets under management (AUM) of fund i at time

t and let ai denote a parameter that describes the skill of the manager of fund i. At time

t, investors use the time t information set It to update their beliefs on ai resulting in the

distribution function gt (ai) implying that the expectation of ai at time t is:

θit ≡ E [ai |It ] =
∫
aigt (ai) dai. (1)

We assume throughout that gt (·) is not a degenerate distribution function. Let Rn
it denote

the return in excess of the risk free rate earned by investors in fund i at time t. This return

can be split up into the excess return of the manager’s benchmark, RB
it , and a deviation from

the benchmark εit:

Rn
it = RB

it + εit. (2)

Note that qit, Rn
it and R

B
it are elements of It. Let αit (q) denote investors’subjective expec-

tation of εi,t+1 when investing in fund i that has size q between time t and t + 1, and let it

4See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.
5See Malkiel (1995), Gruber (1996), Carhart (1997), Fama and French (2010), and Del Guercio and

Reuter (2013), among others.
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be equal to:

αit (q) = θit − hi (q) , (3)

where hi (q) is a strictly increasing function of q that captures the decreasing returns to scale

the manager faces, which can vary by fund. In equilibrium, the size of the fund qit adjusts to

ensure that there are no positive net present value investment opportunities so αit (qit) = 0

and

θit = hi (qit) . (4)

At time t + 1, the investor observes the manager’s return outperformance, εit+1, which is a

signal that is informative about ai. The conditional distribution function of εi,t+1 at time t,

ft (εit+1), satisfies the following condition in equilibrium:

E [εit+1 |It ] =
∫
εit+1ft (εit+1) dεit+1 = αit (qit) = 0. (5)

In other words, the manager’s return outperformance can be expressed as follows:

εit+1 = ai − hi (qit) + εit+1

= sit+1 − hi (qit) ,

where sit+1 = ai+εit+1. Our hypothesis relies on the insight that good news, that is, high sit,

implies good news about ai and bad news, low sit, implies bad news about ai. The following

lemma shows that this condition holds generally. That is, θit is a strictly increasing function

of sit.

Lemma 1 If the likelihood ratio ft (sit+1 |ai ) /ft (sit+1 |aci ) is monotone in sit+1, increasing
if ai > aci and decreasing otherwise,

∂θit+1
∂sit+1

> 0. (6)

Proof. See Milgrom (1981).

In addition, we assume that the costs that manager i faces in expanding the fund’s scale

is given by:

hi (q) = bih (q) , (7)
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where bi > 0 is a parameter that captures the cross-sectional variation in the fund’s returns to

scale technology and h (q) is a strictly increasing function of q, which essentially determines

the form of decreasing returns to scale technology that is common across all funds. Using

(7) to rewrite (4) now gives

qit = h−1
(
θit
bi

)
. (8)

The following lemma shows how the size of the fund qit depends on the information in sit or

the parameter bi.

Lemma 2
∂qit
∂sit

=
1

bih′ (qit)

∂θit
∂sit

(9)

and
∂qit
∂bi

= − h (qit)

bih′ (qit)
. (10)

Proof. See appendix.

Next, let the flow of capital into mutual fund i at time t be denoted by Fit, that is,

Fit+1 ≡ log (qit+1/qit) .

Differentiating this expression with respect to sit+1,

∂Fit+1
∂sit+1

=
1

qit+1

∂qit+1
∂sit+1

=
1

qit+1

1

bih′ (qit+1)

∂θit+1
∂sit+1

> 0,

where the second equality follows from (9) and the inequality follows from Lemma 1, so good

(bad) performance results in an inflow (outflow) of funds. This result is one of the important

insights from Berk and Green (2004).

Given the importance of returns to scale technology in determining the size of a fund, a

natural question to ask is, what is the implication of steeper decreasing returns to scale for

the flow-performance relation? We answer this question by computing the derivative of the
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flow-performance sensitivity with respect to bi:

∂

∂bi

(
∂Fit+1
∂sit+1

)
=

∂

∂bi

(
1

qit+1

1

bih′ (qit+1)

)
∂θit+1
∂sit+1

= −
qit+1h

′ (qit+1) +
∂qit+1
∂bi

(bih
′ (qit+1) + qit+1bih

′′ (qit+1))

q2it+1 (bih
′ (qit+1))

2

∂θit+1
∂sit+1

= −
qit+1h

′ (qit+1)− h (qit+1)
(
1 + qit+1h

′′(qit+1)
h′(qit+1)

)
q2it+1 (bih

′ (qit+1))
2

∂θit+1
∂sit+1

, (11)

where the first equality uses the fact that ∂
∂bi

(
∂θit+1
∂sit+1

)
= 0, since θit+1 is solely a function

of the history of realized signals and is not a function of bi, and the last equality invokes

expression (10). What (11) combined with Lemma 1 tells us is that steeper decreasing

returns to scale must lead to a smaller flow of funds response to performance if and only if

qit+1h
′ (qit+1)− h (qit+1)

(
1 +

qit+1h
′′ (qit+1)

h′ (qit+1)

)
> 0. (12)

Unfortunately, the left hand side of equation (12) is not easy to sign without further assump-

tions. To assess whether this condition holds, we rely on the second-order approximation to

the decreasing returns to scale technology:

h (q) ' h0 + h1 log (q) + h2 log (q)
2 , (13)

where hi for i = {0, 1, 2} are the coeffi cients in the second-order approximation. This approx-
imation nests exactly specifying the technology as logarithmic, most commonly considered

in empirical studies, if we set h1 > 0 and h0 = h2 = 0. Going forward, we set h0 = 0.

This assumption is without loss of generality, because we can rewrite the skill parameter as

a′i = ai − bih0, which, in turn, renders h′0 = 0. The following proposition shows that, under
approximation (13), condition (12) holds generally. That is, steeper decreasing returns to

scale lead to a weaker flow response to performance. We take this as our main hypothesis

that we will take to the data.

Proposition 3 Under approximation (13), the derivative of the flow-performance sensitivity
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with respect to the decreasing returns to scale parameter is negative, that is,

∂

∂bi

(
∂Fit+1
∂sit+1

)
< 0.

Proof. See appendix.

3 Data

Our data come from CRSP and Morningstar. We require that funds appear in both the

CRSP and Morningstar databases, which allows us to validate data accuracy across the two.

We merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then

compare assets and returns across the two sources in an effort to check the accuracy of each

match following Berk and van Binsbergen (2015) and Pástor, Stambaugh, and Taylor (2015).

We refer the readers to the data appendices of those papers for the details. Our mutual fund

data set contains 3,066 actively managed domestic equity-only mutual funds in the United

States between 1985 and 2014.

We use Morningstar Category to categorize funds into nine groups corresponding to

Morningstar’s 3×3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the
Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international

funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop

funds identified by CRSP or Morningstar as index funds, in addition to funds whose name

contains “index.”We also drop any fund observations before the fund’s (inflation-adjusted)

AUM reaches $5 million.

We now define the key variables used in our empirical analysis: fund performance, fund

size, and fund flows. Summary statistics are in Table 1.

3.1 Fund Performance

We take two approaches to measuring fund performance. First, we use the standard risk-

based approach. The recent literature finds that investors use the CAPM in making their

capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the
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CAPM. In this case the risk adjustment RCAPMit is given by:

RCAPMit = βitMKTt,

where MKTt is the realized excess return on the market portfolio and βit is the market beta

of fund i. We estimate βit by regressing the fund’s excess return to investors onto the market

portfolio over the sixty months prior to month t. Because we need historical data of suffi cient

length to produce reliable beta estimates, we require a fund to have at least two years of

track record to estimate the fund’s betas from the rolling window regressions.

Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed

index funds offered by Vanguard as the alternative investment opportunity set.6 We then

define the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let

Rj
t denote the excess return earned by investors in the j’th Vanguard index fund at time t.

Then the Vanguard benchmark return for fund i is given by:

RVanguardit =

n(t)∑
j=1

βjiR
j
t ,

where n (t) is the total number of index funds offered by Vanguard at time t and βji is obtained

from the appropriate linear projection of active mutual fund i onto the set of Vanguard index

funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the

benchmark, we ensure that this alternative investment opportunity set was marketed and

tradable at the time. Again, we require a minimum of 24 months of data to estimate βji’s

necessary for defining the Vanguard benchmark for fund i.

Our measures of fund performance are then α̂CAPMit and α̂Vanguardit , the realized return for

the fund in month t less RCAPMit and RVanguardit . The average of α̂CAPMit is +1.3 bp per month,

whereas the average α̂Vanguardit is −1.5 bp per month.
6See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark.
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3.2 Fund Size and Flows

We adjust all AUM numbers by inflation by expressing all numbers in January 1, 2000 dollars.

Adjusting AUM by inflation reflects the notion that the fund’s real (rather than nominal)

size is relevant for capturing decreasing returns to scale in active management. That is,

lagged real AUM corresponds to qit−1 in the model from Section 2. There is considerable

dispersion in real AUM: the inner-quartile range is from $45 million to $622 million, while

the 99th percentile is orders of magnitude larger at $15 billion.

Fund flows are measured in two different ways. First, as in the model, we define fund

flow F as the logarithmic change in real AUM, that is, the percentage change in fund size.

Alternatively, we calculate flows for fund i in month t as:

Fit =
AUMit − AUMit−1 (1 +Rit)

AUMit−1 (1 +Rit)
,

where AUMit is the nominal AUM of fund i at the end of month t, and Rit is the total

return of fund i in month t.7 Under this more traditional definition of F , flows represent the

percentage change in new assets. The flow of fund data contain some implausible outliers, so

we winsorize each of the two flow variables at its 1st and 99th percentiles. Mean percentage

changes (per month) in fund size and in new assets are 0.8% and 0.5%, respectively.

4 Method

Our analysis relies on a theoretical link between decreasing returns to scale and flow sensi-

tivity to returns. We discuss how we estimate each part in the following sections.

7Note that we use AUMit−1 (1 +Rit) in the denominator rather than AUMit−1, which is typically used
in much of the existing literature on fund flows. Unfortunately, this definition distorts the flow for very large
negative returns, as shown by Berk and Green (2004): for example, liquidition of a fund, i.e., AUMit = 0,
implies a flow of − (1 +Rit). Our measure of the flow of funds is equal to, and correctly so, −1 in this case.
Regardless, our findings are unaffected by using the more common definition of the flow.
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4.1 Fund-Specific Decreasing Returns to Scale (DRS)

Empirically, we assume that the net alpha that manager i generates by actively managing

money is given by:

αit = ai − bi log (qit−1) + εit, (14)

where ai is the fund fixed effect, bi captures the size effect, which can vary by fund, and qit−1
is the dollar size of the fund.8

The simple regression model in equation (14) corresponds to the model in Section 2.

This model further assumes the form of the fund’s decreasing returns to scale technology is

logarithmic, which is often used to empirically analyze the nature of returns to scale due to

severe skewness in dollar fund size.

We depart frommuch of the literature by allowing for heterogeneity in the size-performance

relation across funds. Indeed, the effect of scale on a fund’s performance is unlikely to be

constant across funds. For example, a fund’s returns should be decreasing in scale more

steeply for those that have to invest in small and illiquid stocks.

Given that it is not clear a priori why and how the size-performance relation depends

on which fund characteristics, we prefer to estimate fund-specific ai and bi parameters in

our main analysis. For each fund i at time t, we run the time-series regression of αiτ on

log (qiτ−1) using sixty months of its data before time t.9 Estimating bi fund-by-fund leads to

imprecise estimates especially for funds with short track records, so we require at least three

years of data to estimate fund-specific returns to scale of a mutual fund.

The estimate of bi, b̂mit , is obtained from (14) using sixty months of the data for fund i

prior to time t, where the alpha can be estimated under model m ∈ {CAPM,Vanguard}.
Intuitively, these estimates represent, for investors who use model m in making capital

allocation decisions, their perception of the effect of size on performance for fund i at time

8To the extent that fee changes are significant, it is possible that our results going forward might be
sensitive to whether we use the net alpha or the gross alpha in equation (14). We report the former set of
results but find that the latter results lead to the same conclusions. In fact, our results are stronger in the
unreported results using the gross alpha in equation (14). This robustness is consistent with the evidence in
the existing literature: fee changes are rare, so they are unlikely to play an important role in equilibrating
the mutual fund market.

9This is consistent with Pástor, Stambaugh, and Taylor (2015) and Zhu (2018), who also run simple OLS
regressions when examining returns to scale fund by fund.
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t based on information prior to time t.

Panel A of Figure 1 shows how the cross-sectional distribution of b̂it using the CAPM

alpha varies over time. For each month in 1991 through 2014, the figure plots the average as

well as the percentiles of the estimated fund-specific b parameters across all funds operating

in that month. The plot shows considerable heterogeneity in decreasing returns to scale

across funds. For example, the interquartile range is more than 3 times larger than the

estimates’ cross-sectional median in a typical month; in fact, this ratio can be almost as

large as 22 in some months. We find that, for the average fund, one percent increase in fund

size is typically associated with a sizeable decrease in fund performance of about 0.8 basis

points (bp) per month. This evidence suggests that the subjective size-performance relation,

perceived by investors in real time, provides identifying variation in the extent of decreasing

returns to scale.

Panel B of Figure 1 shows the time evolution of b̂it when we take Vanguard index funds

as the alternative investment opportunity set. Similar to our main measure in Panel A,

the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds,

though these estimates typically indicate milder decreasing returns to scale.

4.2 Fund-Specific Flow Sensitivity to Performance (FSP)

We estimate the fund-specific flow sensitivities to past performance by estimating the fol-

lowing regression fund by fund:

Fit = ci + γiPit−1 + υit, (15)

where Pit−1 is annual alpha for the year leading to month t− 1, computed by compounding
the monthly alphas as follows:

Pit−1 =
t−1∏

s=t−12

(
1 +Rn

is −RB
is

)
− 1.

This regression is consistent with empirical evidence that investors do not respond immedi-

ately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016)

show that flows respond to recent returns, as well as distant returns. Parameter γi > 0
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captures the positive time-series relation between performance and fund flows, which can

vary by fund.

At time t, we calculate the fund’s flow sensitivity to performance by estimating (15)

using its data over the subsequent 5 years. For fund i, let F̂SP
m

it be the estimated flow-

performance regression coeffi cient of that model, where the performance can be estimated

under model m ∈ {CAPM,Vanguard}. To avoid using imprecise estimates, we require these
coeffi cient estimates to be obtained from at least three years of data. For the average fund,

we observe that an increase of 1% in the monthly CAPM alpha is associated with an increase

of 1.3% in monthly flows next month.

Figures 2 and 3 display the evolution of the distributions of F̂SP it by plotting the average

as well as the percentiles of the estimated flow sensitivities to performance at each point of

time. In Figure 2, we estimate the FSP’s using the change in fund size to capture flows; in

Figure 3, we estimate the FSP’s using the change in new assets to define F . Panel A in each

figure shows the distribution using the CAPM alpha, and Panel B shows the distribution

when net alpha is computed using Vanguard index funds as benchmark portfolios. Note that

the results are very similar across the two figures, manifesting considerable heterogeneities

in the flow-performance relation across funds. More importantly, these figures show that

while the average F̂SP it for both versions of the flow variable do not exhibit any obvious

trend, they are certainly time varying. As the red dashed lines in the figures make clear, the

distributions remain roughly the same over our sample period, conditional on the median.

5 Results

5.1 DRS and Flow Sensitivity to Performance

To investigate whether fund-specific decreasing returns to scale parameters are related to

capital allocation decisions, we run panel regressions of fund i’s flow sensitivity to perfor-

mance going forward in month t, F̂SP it, on the fund’s returns to scale estimated as of the

previous month-end, b̂it. We test the null hypothesis that the slope on b̂it is zero.10 We

10Surely, not only the independent variable, but the dependent variable are measured imprecisely. The
measurement error in b̂it will bias the OLS estimator toward zero. While the measurement error in F̂SP it
will not induce bias in the OLS coeffi cients, it will render their variance larger. For now, we do not worry,
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report the results in Tables 2 and 3.11 In Panel A, we report the results using the change in

fund size to capture flows; in Panel B, we examine their robustness using the change in new

assets to define F . The first two columns in each panel use the CAPM as the benchmark,

while the last two columns use Vanguard index funds as the benchmark.

We show results based on raw estimates in Table 2. We focus on variation coming from the

market equilibrating mechanism beyond differences in sensitivity across funds and over time

by including month and fund fixed effects. The fund fixed effects absorb the cross-sectional

variation in flow/performance sensitivity, for example, due to differences in investor clientele

across funds, while the time fixed effects soak up variation in flow/performance sensitivity

due to factors such as investor attention allocation over time. Indeed, there is evidence of

clientele differences because some investors tend to update faster than others,12 and Figures

2 and 3 show how the average as well as the median of flow-performance dynamics vary

considerably over time.13

In the odd columns, we only include month and fund fixed effects. The results in Panel

A are consistent with the main prediction of our model: the estimated coeffi cients on b̂it are

negative and highly significant, with t-statistics of −5.6 in column 1 and −4.9 in column
3. These findings are unaffected by including a host of controls in the even columns, where

we add proxies for participation costs, as considered by Huang, Wei, and Yan (2007),14 as

well as performance volatility and fund age.15 The slopes on b̂it remain negative and highly

significant, with t-statistics of −6.4 in column 2 and −4.8 in column 4, and their magnitudes
are larger compared to odd columns where controls are excluded.

as the errors-in-variables problem will work against us from finding a statistically significant relation that
the model predicts.
11Tables 2 and 3 report the double clustered (by fund and time) standard errors.
12See Berk and Tonks (2007).
13Ferreira et al. (2012) discuss the role of economic, financial, and mutual fund industry development in

determining the flow-performance relation across countries, while Franzoni and Schmalz (2017) document
that mutual funds’flow-performance sensitivity depends on aggregate risk-factor realizations in a hump-
shaped way. Note that our fixed-effect approach already controls for these factors, since time fixed effects
subsume any potential time-series variation in FSP due to different stages of development in the US and/or
across market states.
14Specifically, we use marketing expenses, star family affi liation, family size, as well as fund size, to proxy

for the variation in investors’information costs across funds.
15Huang, Wei, and Yan (2012) find that the flow-performance sensitivity is weaker for funds with more

volatile past performance and longer track records.
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In Panel B, the same conclusions continue to hold when we consider F̂SP it estimated

using the more traditional definition of F : the percentage change in new assets. Just like

in Panel A, the coeffi cients on b̂it are significantly negative, and they increase in magnitude

when we include a host of controls. While these negative slope coeffi cients are smaller in

magnitude than their counterparts in the first panel, we suggest that they are also more

affected by the attenuation bias, resulting from the measurement error in b̂it, when we

address the estimation error in scale effects in the next section.

Table 3 repeats this exercise with percentile ranks in each month based on b̂it and F̂SP it.

In this case, we do not use month fixed effects, as percentile ranks already soak up any time

variation in the flow-performance relation. In each column, the estimated coeffi cient on b̂it
is significantly negative at the 1% confidence level. Again, the addition of other potential

determinants of the flow-performance relationship makes the slope coeffi cients on b̂it even

more negative (compare columns 1 and 3 against 2 and 4 in each panel, respectively).

To summarize, we find a strong negative relation between decreasing returns to scale and

flow sensitivity to performance. This relation, which is statistically significant, is consistent

with the presence of investors rationally accounting for the adverse effects of fund scale in

making their capital allocation decisions. Unfortunately, these coeffi cient values are likely

to be biased toward zero because of the measurement error in b̂it. In Section 5.1.1, we first

gauge the severity of attenuation bias under the classical measurement error assumption.

In Sections 5.1.2 and 5.1.3, we then exploit the implications of fund characteristics for het-

erogeneity in DRS parameters across funds to address the attenuation bias associated with

estimating the DRS-FSP relation in two distinct, but related, approaches. Finally, in Section

5.1.4, we propose a way of assessing the economic magnitude of these estimated coeffi cients

by computing counterfactual fund sizes.

5.1.1 DRS-FSP Relation Under the Classical Measurement Error Assumption

We have estimated fund-specific bi parameters based on a rolling estimation window. As

noted earlier, estimating bi fund by fund leads to imprecise estimates especially for funds

with short track records. To gauge the severity of attenuation bias, we adjust the estimated

coeffi cients on b̂it in Table 2 for the errors-in-variable (EIV) problem, assuming that the errors

are of the classical type: they are purely random, have mean zero, and are uncorrelated with
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the regressors, including the actual bi, and with the regression errors. Using the standard

errors of b̂it to estimate the variance of measurement error in bi, we can calculate the EIV-

adjusted coeffi cients, reported in the last row of each panel.

As expected, the simple estimates of the DRS-FSP relation tend to be too small in

magnitude. For example, when the DRS-FSP relation is esimated based on the CAPM to

measure fund performance and on the change in fund size to capture flows controlling for

other potential determinants of the flow-performance relationship (i.e., column 2 in Panel

A), the coeffi cient becomes substantially more negative with the EIV adjustment: −7.80,
compared to −1.17 without this adjustment. Bias is even more severe for estimates based
on the Vanguard benchmark than those based on the CAPM. When the DRS-FSP relation

is estimated using the Vanguard benchmark, the EIV-adjusted coeffi cients are 7 to 10 times

larger than their simple-estimate counterparts (see the last two columns of Table 2). Of

course, these results are only true if the errors are indeed of the classical type, but they

illustrate that our estimates of the DRS-FSP relation are likely to be severely biased against

confirming our model prediction.16 Thus, the fact that we find a strong relation between

DRS and FSP despite this counterveiling effect of measurement error further strengthens

the support for the model.

5.1.2 DRS-FSP Relation Using the Characteristic Component of DRS

In this section, we explore which fund characteristics are correlated with the observed hetero-

geneity in returns to scale. Based on this analysis, we obtain an economically interpretable

component of b̂i based on fund characteristics, using which we re-estimate the DRS-FSP

relation. The characteristic-based approach taken here exploits many fund characteristics

that are relevant for identifying variation in DRS. The prior evidence of fund-level DRS de-

pending on fund characteristics suggests that this method is likely to deliver a more accurate

measure of bi and thus is a reasonable way to mitigate the errors-in-variable problem. Indeed,

when we conduct the analysis using the characteristic component of DRS, the estimates of

the DRS-FSP relation become substantially more negative than in Table 2 and they are

comparable in magnitude to those implied by the classical measurement error assumption.

16Barras, Gagliardini, and Scaillet (2021) make a closely related observation that the error-in-variable bias
can have significant impact on the cross-sectional distribution of scale coeffi cient bi.
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Determinants of Fund-Level DRS We investigate a number of characteristics that seem

relevant a priori (also from the previous literature) for heterogeneity in returns to scale: the

number of managers, volatility, expense ratios, marketing expenses, an international exposure

indicator, turnover, and log fund size. In analyzing the dependence of returns to scale on

fund characteristics, we control for the contributions of net flow,17 as well as the loadings on

the size, value, and momentum factors to capture fund style and risk.18

The first characteristic, NMgr, is the number of managers managing the fund. About

59% of our funds are multi-manager funds. The second characteristic, Std (Alpha), is the

standard deviation of a fund’s alphas over the prior 1 year. The next two characteristics

we examine are the fund’s expense ratios and marketing expenses. The fifth characteristic,

1 (IntExp), is an indicator for funds with a high degree of international exposure, defined

as follows. We test the null hypothesis that the coeffi cients on three Vanguard international

index funds are 0.19 For any given fund, the international exposure dummy is equal to one

if we reject the null hypothesis at the 5% confidence level. Although we focus our attention

on domestic funds, about 24% of them are highly exposed to international shocks. The sixth

characteristic is the fund’s average annual turnover (from CRSP).20 Median turnover is 64%

per year. We also examine whether the fund’s log real AUM matters for its DRS technology.

We examine how these characteristics affect the impact of a fund’s scale on its perfor-

mance by running panel regressions of fund i’s DRS parameter using only its observations

prior to month t, b̂it, on the fund’s characteristics at the end of the previous month. Ta-

ble 4 shows the estimation results.21 Panel A reports the results using the CAPM as the

benchmark; Panel B uses Vanguard index funds as the benchmark.

In both panels, we find significant relations between b̂ and three characteristics: the

number of managers, volatility, and expense ratios (see the first three columns of Table

4). On the other hand, we find a statistically insignificant relation between returns to

17We calculate this flow measure as the % growth of new assets over the prior 1 year. The flow of fund
data contain very large outliers, so we winsorize the flow variable at the 1st and 99th percentiles.
18We estimate these risk exposures by regressing the fund’s return on the four Fama-French-Carhart (FFC)

factors over the prior sixty months.
19Recall that we use a set of eleven Vanguard index funds to calculate the Vanguard benchmark. Three of

these index funds are international: European Stock Index, Pacific Stock Index, and Small-Cap Value Index.
20We winsorize turnover at the 1st and 99th percentiles.
21Standard errors of these regressions are two-way clustered by fund and time.
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scale and marketing expenses (column 4) of mixed signs. While the slope on international

exposure (column 5) and the slope on fund size (column 7) are consistently negative, they are

insignificant. Finally, we find that the relation between returns to scale and turnover (column

6) is positive. This result is statistically significant for the CAPM, but it is insignificant using

the Vanguard benchmark.

When all seven fund characteristics are added at the same time, the estimated slopes

on the number of managers, volatility, and expense ratios are robust, indicating steeper de-

creasing returns to scale for sole-manager funds, higher-volatility funds, and funds charging

higher expense ratios. Marketing expenses now enter with a consistently significantly neg-

ative slope, indicating that decreasing returns to scale are less pronounced for funds with

higher marketing expenses. The relation between returns to scale and international exposure

remains statistically insignificantly negative. Finally, the slopes on turnover and on fund size

flip to negative and positive, respectively, but they are now insignificant regardless of how

one defines the benchmark. Therefore, we focus on the results when the four statistically

significant fund characteristics are added at the same time (see column 8 of Table 4).

While we leave the task of deriving these relations between fund characteristics and

diseconomies of scale in an equilibrium model for future research, these results are consistent

with the following interpretations. The division of labor within a fund might alleviate the

negative impact of size on performance, so it is the fund’s assets under management on a

per-manager basis that matters for capturing decreasing returns to scale. If so, a multi-

manager fund would be able to deploy capital more easily and, consequently, exhibit milder

decreasing returns to scale. Pástor, Stambaugh, and Taylor (2015) offer a narrative for why

higher-volatility funds might also exhibit steeper decreasing returns to scale, while steeper

decreasing returns to scale for funds charging higher expense ratios are consistent with the

model of Stambaugh (2020). Finally, gradual decreasing returns to scale for funds with high-

marketing expenses are consistent with funds marketing to attract more flows only if they

can manage the performance erosion associated with growing fund size.

Implications for DRS-FSP Relation Instead of using the coeffi cient estimates b̂i as

before, we now use the estimates from column 8 of Table 4 to obtain an economically inter-

pretable component of b̂i based on fund characteristics. This implementation choice assumes

that all the funds with the same fund characteristics share the same b value. While ignoring
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variation might potentially lead to inaccuracy in quantifying fund-specific b, this method ac-

tually seems to increase the accuracy of the bi estimate by dramatically reducing estimation

errors. While about 28% of the funds in our sample end up with negative b̂i, less than 2% of

their predicted values based on fund characteristics, denoted by b̂Chari , are negative. These

results seem sensible since, theoretically, all mutual funds must face decreasing returns to

scale in equilibrium.

To address the attenuation bias associated with estimating the DRS-FSP relation, we

replace b̂i by b̂Chari and rerun the regressions in Table 2, whose results are tabulated in

Table 5. When we rerun our analysis in Table 2 with characteristic-based DRS, we obtain

similar and even stronger results indicating that steeper decreasing returns to scale attenuate

flow sensitivity. Table 5 shows that b̂Chari has significantly negative slopes throughout, but

the coeffi cients’estimated values become substantially more negative than in Table 2. For

example, the estimated coeffi cients are typically more than 6 times larger when we use the

change in fund size to capture flows (compare Panel A of Tables 2 and 5).

In summary, when we conduct the analysis using cleaner measures of decreasing returns

to scale, our conclusions on the effects of decreasing returns to scale on capital allocation only

become stronger. These estimates of the DRS-FSP relation are comparable in magnitude to

those implied by the classical measurement error assumption.

5.1.3 DRS-FSP Relation Under the Instrumental Variables Approach

Yet another reasonable way to mitigate the errors-in-variable problem is by using the in-

strumental variables (IV) approach. Similar to the approach in the previous section, we

can implement our IV estimator via two-stage least squares. We first regress b̂it on fund

characteristic (i.e., the instruments), and then we regress F̂SP it on the fitted values from

the first-stage regression. Different from the approach in the previous section, the first-stage

regression should include all regressors of the second-stage regression other than b̂it (i.e.,

exogenous regressors). Specifically, both regressions include fund and month fixed effects, as

well as the controls in Table 2. This difference constrains our search for valid instruments

among the fund characteristics that were identified earlier, in Section 5.1.2, as mattering

for heterogeneity in returns to scale: the number of managers, volatility, expense ratios,

marketing expenses, past flow, and the loadings on the size, value, and momentum factors.
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Note that performance volatility and marketing expenses do not qualify as instruments

since they are already included among the exogenous regressors. Mutual funds show rela-

tively little variations in their number of managers and their expense ratios through time and

across funds such that the slopes on these variables are rendered insignificant (and the slope

on expense ratios even flips to negative) with fund and month fixed effects. Fortunately, past

flow and the loadings on the size, value, and momentum factors, continue to be significantly

related to b̂it, as detailed below. In turn, we discuss their validity as instruments for b̂it,

which suggests that they satisfy the relevance condition and are likely to satisfy the exclu-

sion condition, and thus they are reliable instruments for bi. Indeed, when we conduct the

analysis using them as the instruments, the IV estimates of the DRS-FSP relation become

substantially more negative than in Table 2 and they are comparable in magnitude to those

implied by the classical measurement error assumption and those in Table 5.

Table 6 shows the results from the IV procedure. These regressions are most comparable

to our estimates in columns 2 and 4 of Table 2.

Validity of Our Instruments The relevance condition requires that b̂it be significantly

related to the instruments in the first-stage regression. While there are many potentially

relevant determinants of a fund’s decreasing returns to scale technology, the fund’s load-

ings on the commonly-used risk factors have natural a priori relevance to the extent that

they are informative about stock characteristics and thus liquidity of the fund’s holdings.

Lower liquidity of a fund’s assets is likely to make the fund’s returns decrease in scale more

steeply because it faces larger total price impact costs. This logic suggests that, for example,

small-cap funds would exhibit steeper decreasing returns to scale. Returns should also be

decreasing less steeply for funds with higher cash inflows: prior studies find that such funds

trade less and hold more-liquid stocks to mitigate the performance erosion due to growing

fund size.22

Indeed, b̂it is significantly positively related to the fund’s size exposure as well as being

significantly negatively related to both its momentum exposure and its past flow, regardless

of the benchmark choice. The negative relation between b̂it and momentum exposure is

consistent with the evidence of Avramov, Cheng, and Hameed (2016) who find that winners

22See, for example, Pollet and Wilson (2008), Pástor, Stambaugh, and Taylor (2020), and Busse et al.
(2021).
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tend to be liquid and losers tend to be illiquid. In contrast, the sign of the estimated slope

on the fund’s value exposure flips depending on the benchmark choice. This makes sense

because value exposure does not have any obvious implications for liquidity, suggesting that

value exposure might not be a strong instrument for b̂it. Even so, the first-stage F -statistics

on the excluded instruments are well above 10,23 which we also report in Table 6.24

The exclusion condition requires that the instruments should be unrelated to the inno-

vation in the dependent variable, i.e., the future flow-performance sensitivity for each fund.

First consider the fund’s loadings on the commonly-used risk factors. To the extent that a

fund’s outperformance relative to another factor model contains information about manage-

rial ability not also contained in its outperformance relative to the CAPM or the Vanguard

benchmark, the fund’s risk exposures to factors in that factor model can affect the posterior

beliefs about its managerial skill and, consequently, can be correlated with the innovation in

its flow-performance relation. Following Berk and van Binsbergen (2016), we will make the

key identifying assumption that rules out this possibility: any risk model other than that

investors use cannot have additional explanatory power for capital allocation decisions.25

Next, it is easily verified that the exclusion condition holds for the fund’s past flow

within the model because this variable is a function only of returns and fund sizes, the two

key variables in our model. Specifically, under the null of the model, the only other way

for past flow to be related to the innovation in a fund’s flow-performance relation is by

containing information about the posterior beliefs about the fund’s managerial skill not also

contained in the regressors that include its DRS, bi, and its lagged size, log (qit−1). Note that

θit−1 = bih (qit−1) is an element of the regressors’information set. Using (1), the posterior

expectation of managerial ability θiT can be written as

θiT = θit−1 +

T∑
s=t

πis,

where {πis}s≥t are belief innovations independent of information prior to time t that includes
the earlier history of the fund {αis, qis−1}s<t. Since the fund’s past flow is a function only of
23Specifically, the first-stage F -statistics on the excluded instruments are 27 or greater.
24The IV results excluding value exposure from the list of instruments for b̂it are very similar; they are

not reported here.
25See Berk and van Binsbergen (2016, p. 6) for a further discussion of this assumption.
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{ris, qis−1}s<t, it cannot contain information about θiT not also contained in the regressors.
Of course, while investors react to new information immediately under the null of the model,

there is evidence that investors do not respond immediately in reality. Busse and Irvine

(2006) find evidence of very short-term persistence (at the quarterly frequency), suggesting

that capital does not move instantaneously. Thus, in addition to instrumenting for b̂it by

the fund’s risk exposures and past flow from t− 13 to t− 1 in the odd columns of Table 6,
we also show the results from a robustness check, in which we use the fund’s risk exposures

and past flow from t− 16 to t− 4 as instruments (see the even columns of Table 6).

Implications for DRS-FSP Relation Consistent with the presence of severe attenua-

tion bias, the IV estimates of the relation between F̂SP it and b̂it are substantially more

negative than those in columns 2 and 4 in Table 2, and the relation continues to be highly

statistically significant: the estimates based on the CAPM (Vanguard benchmark) are signif-

icantly negative at the 1% (5%) confidence level, except in the last column of Panel B, where

it is still significantly negative at the 10% confidence level.26 The IV estimates are more

than 4 times larger than the OLS estimates using the change in fund size to capture flows,

and their magnitudes are comparable to those implied by the classical measurement error

assumption and those using the characteristic component of DRS. Using the change in new

assets to define F , the IV estimates’magnitudes are between those implied by the classical

measurement error assumption and those using the characteristic component of DRS.

5.1.4 Simulated DRS-FSP Relation

In this section, we use our model to ask how much capital is allocated the way it is because

of these differences in decreasing returns to scale. Specifically, we compute counterfactual

fund sizes by assuming the investors believe a priori that returns are decreasing in scale at

the same (average) rate for all funds.

Two factors fully determine the magnitude of capital response to performance in a rational

model – the degree of decreasing returns to scale, and the prior and posterior beliefs about

managerial skill. This means that, for a given value of b in equation (14), the prior uncertainty

about a, σ0, can be inferred from the flow-performance relation, as long as investors update

26Table 6 reports the double clustered (by fund and time) standard errors.
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their posteriors with the history of returns as Bayesians.

We simulate benchmark-adjusted fund returns from equation (14). It is straightforward

to show that the mean of investors’posteriors will satisfy the following recursion:

θit = θit−1 +
σ2i0

σ2 + tσ2i0
αit,

where θi0 is the mean of the initial prior. Using (8), we compute fund size as follows:

qit = exp

(
θit
bi

)
.

We begin by tying down the model parameters that can be set directly. Following Berk

and Green (2004), we set Std(ε) = 20% per year, or 5.77% per month. Investors’prior on

a fund’s ability is that ai is normally distributed with mean θ0 and standard deviation σ0.

Since investors are assumed to have rational expectations, this is also the distribution from

which we draw each fund’s skill. We shall also assume that funds shut down the first time

θit < θ, where we set θ = 0.27 These parameter values are summarized in Panel A of Table

7. It is straightforward to see that the only remaining parameters that we need to set for

simulating data are b, θ0 and σ0.

The empirical distribution of b is approximated by a generalized Pareto (GP) distribution,

from which we draw b randomly.28 In that case, assuming that θ0 is independent of b gives

rise to distributions of fund size considerably more disperse than in our actual sample.

Specifically, the simulated fund sizes tend to be too big for funds whose returns decrease

in scale more gradually, while the simulated fund sizes tend to be too small for those that

exhibit steeper decreasing returns to scale. In turn, we model the prior mean as a linear

function of b, θ0 (b). Our approach is to fit the parameters governing this function such that

the simulated mean and standard deviation of log fund size essentially match the empirical

27Intuitively, managers incur fixed costs of operation each period. These costs can be, for example,
overhead, back-offi ce expenses, and the opportunity cost of the manager’s time. Managers will optimally
choose to exit when they cannot cover their fixed costs.
28Specifically, we fit the parameters for the GP distribution such that the mean, variance, and skewness

of the simulated bi are close to those of the fitted values of b̂it from the first-stage regression under the IV
approach in the previous section (see the first column of Panel A of Table 6).
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benchmark values of 5.12 and 1.89, respectively.29

We set the prior uncertainty (σ0) to match the average flow-performance relation in the

data. To this end, we construct 2, 500 samples of simulated panel data for 10, 000 funds over

100 months. We simulate a given sample by first drawing each fund’s DRS bi randomly from

a GP distribution consistent with the distribution of fund-specific b estimates, while drawing

the fund’s skill ai from a normal distribution with mean θ0 (bi) and standard deviation σ0.

Next, we draw the random values of εit, building up the panel data of rit and qit. For each

fund in the sample, we run the following regression using data for just that fund to estimate

its flow-performance sensitivity:

log (qit/qit−1) = ci + γirit + υit.

Given all other parameters, we set σ0 so that the mean of the average γ̂i across simulated

samples matches the average F̂SP it in our actual sample. Panel B of Table 7 shows the value

of σ0 that resulted from this process. It also contains the values of the parameters governing

the GP distribution of DRS and those of the parameters governing the prior mean that we

use in our simulation analysis. The last three columns of Panel B report all the moments

that we target in our calibration, as well as their values in both the actual and simulated

data. Note that the simulated moments in the model closely match the target moments.

Thus far, we have provided empirical evidence that steeper decreasing returns to scale

imply less flow sensitivity to performance. For example, as shown in column 1 of Panel A of

Table 6, the IV estimate of the DRS-FSP relation is −7.816. To assess the economic magni-
tude of such estimates, we estimate the DRS-FSP relation in each of the simulated samples.

Panel A of Table 8 shows summary statistics of these estimates across simulated samples

from the calibrated model. The DRS-FSP relation estimates in the calibrated model tend to

be slightly smaller in magnitude compared to column 1 of Panel A of Table 6. But impor-

tantly, the IV estimate of the DRS-FSP relation lies comfortably within the 95% confidence

interval for simulated DRS-FSP relation estimates and vice versa. Thus, it appears that

29Note that there generally exist multiple ways prior mean as a function of b for which the simulated
mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single
function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b.
This constraint is motivated by empirical evidence presented later in Section 5.2: steeper decreasing returns
to scale shrink fund size.
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the magnitude of the DRS-FSP relation estimates from the data is consistent with what the

model predicts. This result suggests that the calibrated model does a good job of capturing

capital allocation patterns in the data.

To quantitatively assess the role of heterogeneity in returns to scale in capital allocation,

we must construct a counterfactual. We construct the counterfactual by assuming investors

learn about skill based on distorted beliefs that the fund exhibits average decreasing returns

to scale. Specifically, the counterfactual investors assume that bi = 0.0106 for all funds.30

Then, updating investors’beliefs with the history of its returns under the counterfactual

assumption, we compute what the size of the fund would have been.

Again, we construct 2, 500 samples of simulated panel data for 10, 000 funds over 100

months. To simulate a given sample, we first draw each fund’s DRS bi randomly from a GP

distribution consistent with the distribution of fund-specific b estimates, while we draw the

fund’s skill ai from a normal distribution with mean θ0 (bi) and standard deviation σ0. Next,

we draw the random values of εit, building up the panel data of rit and qit. For every i and t,

we compute the fund’s size under the counterfactual, qCit , as detailed above. Finally, for each

sample, we calculate the R2 from a regression of log (qit) on log(qCit ) to check the goodness of

fit by the counterfactual. Here, 1 minus the R2 can be interpreted as the fraction of capital

allocation explained by individual heterogeneity in decreasing returns to scale.

We report the results from counterfactual simulations in Panel B of Table 8. The first

two rows show summary statistics of the coeffi cient estimates from the regression of log (qit)

on log
(
qCit
)
across simulated samples; the last row shows summary statistics of the R2 from

this regression across simulated samples.

The counterfactually computed fund sizes explain about 66% of the variation of simu-

lated fund sizes. While counterfactual sizes are positively related to actual sizes, they are

considerably larger than actual sizes and their distributions are substantially tighter than

those of actual sizes. On one hand, since the size of a fund is inversely proportional to DRS

and, in turn, strictly convex in DRS, Jensen’s inequality implies that the counterfactual

investors naturally overestimate the average fund size. On the other hand, since differences

30Note that the counterfactual investors have rational expectations about the skill level, i.e., they know
the true θ0 (bi) for each fund’s DRS parameter bi. So this assumption ensures that differences between the
simulated outcomes and the counterfactual sizes are not driven by distorted beliefs about the skill level.
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in DRS across funds is a major source of the cross-sectional variation in fund size, these

counterfactual investors naturally underestimate the true dispersion in fund size. Thus, the

counterfactuals ignoring heterogeneity in DRS are very different than the actual size. In

this sense, we can interpret 1 minus the R2 as a lower bound on the role of heterogeneity

in returns to scale on capital allocation: at least 34% of the cross-sectional variance of fund

sizes can be related to cross-sectional variation in decreasing returns to scale parameters,

which is economically significant.

To summarize, Table 8 shows that a significant fraction of equilibrium capital allocation

can be plausibly explained by investor response to differences in decreasing returns to scale.

Not only are fund sizes in the data quantitatively consistent with what our simple model pre-

dicts they should be, the magnitude of empirical DRS-FSP relation estimates are consistent

with what our simple model would predict.

5.2 DRS and Fund Size in Equilibrium

While the main implication of our model is that steeper decreasing returns to scale attenuate

flow sensitivity to performance, another immediate implication is that steeper decreasing

returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the

ratio of perceived skill over diseconomies of scale (see equation (8)). This implies that large

funds either earn a high gross alpha on the first dollar and/or implement strategies that

are highly scalable. We now investigate the importance of the latter effect, while explicitly

controlling for the former effect, as well as for fund style and fund age. Table 9 presents the

results of this exercise.

To control for the effect of perceived skill, we first form quintile groups sorted on fund

fixed effects estimated as of month t − 1, âit. Then, within each âit quintile, we sort funds
into five groups based on fund-specific returns to scale estimated as of month t−1, b̂it. Both
âit and b̂it are computed from estimating (14) using sixty months of the data for fund i prior

to time t. We conduct double sorts of funds belonging to the same Morningstar category

and to the same age category.31 After forming the 5× 5 âit and b̂it groups, we average fund
sizes, as measured by log real AUM in month t, of each b̂it quintile over the five âit groups.

This characteristic control procedure creates a set of quintile b̂it groups with similar levels of

31Specifically, we assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years.
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perceived skill, and with near-identical distributions of fund style and fund age. Thus, these

quintile b̂it groups control for differences in skill, as well as fund style and fund age.

Panel A of Table 9 reports average fund sizes of the 25 âit × b̂it groups using the CAPM
as the benchmark. The column labeled “Average”reports the average month-end fund sizes

of the b̂it quintiles, controlling for âit, fund style and fund age. The row labeled “High-low”

reports the differences in average sizes between the first and fifth quintile b̂it groups within

each âit quintile.32 The difference in average sizes in the bottom right entry of Panel A

indicates that the sizes of funds that are perceived to face steepest decreasing returns to

scale tend to be 80% smaller than those of funds that are perceived to be relatively immune

to the adverse scale effects. This difference has a robust t-statistic around −20. Hence,
steeper decreasing returns to scale shrink fund size, consistent with the above prediction of

our model. Importantly, this effect is not only statistically but also economically significant.

The patterns within each âit quintile moving from low b̂it to high b̂it funds (reading down

each column) are very similar, except for the first âit quintile, in which the sizes of funds with

steeper perceived DRS are larger than those of funds with milder perceived DRS. But this

difference is both economically and statistically insignificant.33 Panel B of Table 9 repeats

the same exercise as Panel A, except we use Vanguard index funds as the benchmark. We

find the same qualitative patterns.

In summary, steeper decreasing returns to scale shrink fund size in the data. This relation,

which is not only statistically but also economically significant, is consistent with the presence

of investors rationally accounting for the adverse effects of fund scale in making their capital

allocation decisions. Less important but also noteworthy is that the sizes of funds with higher

perceived skill tend to be larger than those of funds with lower perceived skill (reading from

left to right in each panel), again consistent with our model.

32To adjust for the strong persistence in fund size, we report standard errors of these differences in average
fund sizes between quintile portfolio 5 (high b̂it) and quintile portfolio 1 (low b̂it) using 60 Newey-West lags.
33The reason for this pattern is as follows. In the first âit quintile, we find that the funds’estimates of

both ai and bi are typically negative. To the extent that all funds must face decreasing returns to scale in
equilibrium, these funds’perceived DRS are likely to be close to zero as well as close to each other. Hence,
the cross-sectional variation in b̂it is mostly driven by random noise in this âit quintile, so fund sizes do not
meaningfully differ based on differences in b̂it within this sample.
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5.2.1 DRS and Optimal Fund Size

Thus far, we have used heterogeneity in decreasing returns to scale across funds and over

time to test whether investors respond to the adverse effects of fund scale in making their

capital allocation decisions. If investors update their beliefs about skill as in the model, their

perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This

implies that the sizes of older funds should be more closely related to their optimal sizes

based on the model than those of younger funds. In this section, we test this prediction and

find empirical support for it.

We have estimated fund-specific bi parameters based on a rolling estimation window. As

noted earlier, estimating bi fund by fund leads to imprecise estimates. In particular, about

28% of the funds in our sample end up with negative b̂i. While this is not an issue when

focusing only on the relative steepness of the DRS technology as in the rest of the paper, it is

a problem for computing the optimal fund size, which requires that bi > 0 since, theoretically,

all mutual funds must face decreasing returns to scale in equilibrium. A straightforward way

to deal with this econometric shortcoming is to “shrink”the OLS estimates toward their prior

mean, i.e., the average fund-level DRS parameter in our sample, denoted by bRD2, which we

estimate using the recursive demeaning procedure of Zhu (2018).34 Measuring performance

using the CAPM, b̂RD2 is statistically significant, indicating that an 1% increase in fund

size is associated with a decrease in the fund’s CAPM alpha of 0.42 bp per month.35 All

of the resulting fund-specific DRS values, denoted by b̂shrunki , are positive. Then, the skill

parameter a for fund i can be estimated as:

âi =
1

Ti

Ti∑
t=1

(
α̂it + b̂shrunkit log (qit−1)

)
, (16)

where α̂it is the net alpha, and Ti is the number of observations for fund i. We employ the

average value of the ratios âi/b̂shrunkit over a fund’s lifetime to get an estimate for the optimal

34Pástor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive
demeaning procedure. They find coeffi cients indicative of decreasing returns to scale both at the fund level
and at the industry level, though only the latter is statistically significant. Zhu (2018) improves upon the
empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence
of fund-level diseconomies of scale.
35Using Vanguard index funds as benchmarks, the coeffi cient estimate is again statistically significant,

indicating a decrease in fund performance of 0.0013% per month for an 1% increase in fund size.
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fund size, log (q̂∗i ).
36 However, this measure of optimal fund size can be different than what

investors believe to be optimal (ex-post) if they do not account for individual heterogeneity

in decreasing returns to scale. In this case, the valid proxy for the optimal size, perceived

by investors, would be the optimal size estimated assuming that the fund size has the same

effect on performance across all funds. We can then estimate the parameter a for fund i as:

âRD2i =
1

Ti

Ti∑
t=1

(
α̂it + b̂RD2 log (qit−1)

)
. (17)

The alternative measure of optimal fund size log
(
q̂∗RD2i

)
is calculated as âRD2i /b̂RD2.

To test the above prediction, we examine how the relation between log real AUM and

our measure of optimal fund size depends on fund age. Specifically, we assign funds to one

of three samples based on fund age: [0, 5], (5, 10], and > 10 years. In each age sample, we

run panel regressions of fund i’s log real AUM in month t on the fund’s log optimal fund size

estimate, log (q̂∗i ). We report the results in the first three columns of Table 10.
37 In Panel

A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard

index funds as the benchmark.

Across all three age groups, the estimated coeffi cients on log (q̂∗i ) are positive and highly

statistically significant. More importantly, the coeffi cient values increase over a typical fund’s

lifetime, indicating that this positive relation between the fund’s size and its optimal size is

stronger for older funds. As the fund ages, investors learn about its optimal size, implying

that the equilibrium size is closer to this optimal size measure. In addition, the R2 of the

regressions confirm this insight. The R2 in the > 10 age sample is the highest and the R2

decreases monotonically as we move to the samples of ages (5, 10] and [0, 5] funds.

Next, we split our measure of optimal fund size into two components: (i) that explained

by log
(
q̂∗RD2i

)
, and (ii) that unexplained by log

(
q̂∗RD2i

)
. In columns 4 through 6, we run the

multiple regression of log (qit) on both components of log (q̂∗i ) in all three age-sorted samples.

We find that the slope on the component of log (q̂∗i ) explained by log
(
q̂∗RD2i

)
is positive and

36Note that the optimal fund size here is the size at which the benchmark-adjusted net return is expected
to be zero. This is different than, but related to, the optimal amount the manager chooses to actively manage
(Berk and van Binsbergen (2015)).
37Table 10 reports the double clustered (by fund and time) standard errors.
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significant across all age-sorted samples. The slope on the component of log (q̂∗i ) unexplained

by log
(
q̂∗RD2i

)
is positive and significant in the > 10 sample, but it is negative in samples of

younger funds.

The significantly positive coeffi cient on the component of log (q̂∗i ) unexplained by log
(
q̂∗RD2i

)
in the multiple regression using the > 10 sample, whose R2 remains about the same as in

column 3, reveals that investors do account for the fund heterogeneity in decreasing returns

to scale when allocating their capital to older funds. On the other hand, negative coeffi cients

on the component of log (q̂∗i ) unexplained by log
(
q̂∗RD2i

)
in the multiple regressions using

samples of younger funds suggest that investors allocate their money to younger funds based

on the simpe version of optimal size. Our results offer the following narrative. Investors

want to account for heterogeneity in decreasing returns to scale, but need to learn about

fund-specific values. Given that such fund-specific information is not yet available for young

funds, investors use the sample-wide b instead. In particular, the investors only use the q̂∗i
estimate in making their capital allocation decisions when a fund grows old enough such

that the remaining Bayesian uncertainty on fund-specific b is relatively modest. Thus, it

appears that investors in the data might be learning not only about skill but also about

decreasing returns to scale.38 We leave the task of examining the capital allocation impli-

cations of learning about fund heterogeneity in decreasing returns to scale technology for

future research.

In short, the estimates of optimal size largely explains capital allocation to older funds.

Both measures of optimal fund size matter, which is consistent with our narrative that in-

vestors account for not only the presence of decreasing returns to scale, but the heterogeneity

of decreasing returns to scale across funds.

6 Conclusion

The main contribution of this paper is to provide and verify predictions unique to a rational

model for active management: the role of decreasing returns to scale in equilibrating the

market for mutual funds. Not only do we find that steeper decreasing returns to scale

38For formal models that relate capital allocation to learning about returns to scale, see Pástor and
Stambaugh (2012) and Kim (2017).

30

Electronic copy available at: https://ssrn.com/abstract=3462749



attenuate flow sensitivity to performance, we also find that differences in decreasing returns to

scale across funds are quantitatively important for explaining capital allocation in the market

for mutual funds. Interestingly, the magnitude of empirical DRS-FSP relation estimates are

consistent with what our simple model predicts. This result suggests that the rational model

for active management does a good job of capturing capital allocation patterns in the data.

Overall, our results support that, as a group, investors in the mutual fund market are not

naive.
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Appendix

A Proofs

A.1 Proof of Lemma 2

First, note that εit does not contain information about managerial ability that is not already

contained in sit. Because rescaling the fund’s returns to scale technology (i.e., changing the

parameter bi) does not change the signal sit, we can conclude that

∂θit
∂bi

= 0. (18)

Now differentiating (8) with respect to sit, using the Inverse Function Theorem, and using

the fact that these signals are independent of bi (i.e., ∂bi/∂sit = 0), gives

∂qit
∂sit

=
1

h′ (qit)

∂ (θit/bi)

∂sit
=

1

bih′ (qit)

∂θit
∂sit

,

Similarly, differentiate (8) with respect to bi, use the Inverse Function Theorem, and use

(18) to substitute for ∂θit/∂bi in this expression. This gives (10).

A.2 Proof of Proposition 3

Under approximation (13), the left-hand side of (12) is then given by:

h1 + 2h2 log (qit+1)−
(
h1 log (qit+1) + h2 log (qit+1)

2)(1 + 2h2−(h1+2h2 log(qit+1))
qit+1

h1+2h2 log(qit+1)
qit+1

)

= h1 + 2h2 log (qit+1)−
(
h1 log (qit+1) + h2 log (qit+1)

2) 2h2
h1 + 2h2 log (qit+1)

=
(h1 + 2h2 log (qit+1))

2 − 2
(
h1 log (qit+1) + h2 log (qit+1)

2)h2
h1 + 2h2 log (qit+1)

=
(h1 + h2 log (qit+1))

2 + h22 log (qit+1)
2

h1 + 2h2 log (qit+1)
.
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The numerator of this expression is the sum of two squares, so it is positive. Note that

the denominator can be rewritten as the product of qit+1 and h′ (qit+1) under the given

approximation. Recall that h (q) is a strictly increasing function of q, reflecting the fact that

all mutual funds must face decreasing returns to scale in equilibrium. Requiring that, under

the approximation, h′ (qit+1) > 0 is also ensured, this means that the denominator is positive

as well. It then follows immediately that condition (12) holds, which completes the proof.
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Table 1: Summary Statistics

This table shows summary statistics for our sample of active equity mutual funds from 1985—2014. The unit

of observation is the fund/month. All returns are in units of fraction per month. Net return is the return

received by investors. Net alpha equals net return minus the return on benchmark portfolio, calculated using

the CAPM or using a set of Vanguard index funds. Fund size is the fund’s total AUM aggregated across

share classes, adjusted by inflation. The numbers are reported in Y2000 $ millions per month. The first

version of Flows is the logarithmic change in real AUM (i.e., the percentage change in fund size); the second

version of Flows is the monthly change in the fund’s net assets not attributable to its return gains or losses.

β̂
�
it are fund i’s estimated risk exposures from the regression of the fund’s return on the four FFC factors

over the sixty months prior to month t. % net flow (t − 13 to t − 1) is equal to the fund’s fractional net
flow over the prior 1 year. # of managers is the number of managers managing the fund in a given month.

Volatility is the standard deviation of a fund’s alphas, calculated over the prior 1 year. All expenses are in

units of fraction per year. Marketing expenses is a fund’s total fee ratio, defined as the annual expense ratio

plus one-seventh of the up-front load fees. Fund age is the number of years since the fund’s first offer date

(from CRSP or, if missing, from Morningstar). b̂it is the fund’s decreasing returns to scale estimated as of

the previous month-end. F̂SP it is the fund’s flow sensitivity to performance going forward.
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Panel A: Fund-Level Variables

Percentiles
# of obs. Mean Stdev. 25% 50% 75%

Net return 412, 943 0.0077 0.0497 −0.0194 0.0123 0.0385
Net alpha (CAPMRisk Adj.) 346, 885 0.0001 0.0209 −0.0105 −0.0002 0.0103
Net alpha (Vanguard BM) 408, 313 −0.0001 0.0153 −0.0083 −0.0002 0.0079
Fund size (in 2000 $millions) 410, 052 1012 4062 45 165 622
Flows (v.1) 410, 048 0.0078 0.0734 −0.0274 0.0077 0.0439
Flows (v.2) 410, 048 0.0049 0.0520 −0.0139 −0.0020 0.0142

β̂
mkt

it 346, 885 0.9602 0.1462 0.8815 0.9661 1.0444

β̂
smb

it 346, 885 0.2080 0.3377 −0.0660 0.1229 0.4646

β̂
hml

it 346, 885 −0.0148 0.3158 −0.2310 −0.0096 0.1945

β̂
mom

it 346, 885 0.0130 0.1384 −0.0625 0.0051 0.0771
% net flow (t− 13 to t− 1) 375, 999 0.1568 0.7042 −0.1482 −0.0313 0.1840
# of managers 397, 741 2.38 2.13 1 2 3
Volatility (CAPM Risk Adj.) 317, 350 0.0188 0.0115 0.0105 0.0157 0.0238
Volatility (Vanguard BM) 377, 572 0.0140 0.0081 0.0085 0.0121 0.0174
Expense ratio 410, 068 0.0124 0.0043 0.0096 0.0119 0.0148
Marketing expenses 245, 941 0.0183 0.0061 0.0148 0.0196 0.0218
Fund age 412, 249 13.20 13.27 4.50 9.08 16.50

Panel B: Estimated DRS and FSP

Percentiles
# of obs. Mean Stdev. 25% 50% 75%

b̂ (CAPM Risk Adj.) 264, 879 0.0082 0.0166 −0.0004 0.0051 0.0136

b̂ (Vanguard BM) 315, 066 0.0045 0.0112 −0.0008 0.0028 0.0082

F̂SP (CAPM Risk Adj., v.1) 283, 339 0.0559 0.2715 −0.0822 0.0426 0.1873

F̂SP (Vanguard BM, v.1) 312, 487 0.0971 0.3852 −0.0942 0.0897 0.2879

F̂SP (CAPM Risk Adj., v.2) 283, 339 0.1048 0.1893 0.0143 0.0764 0.1697

F̂SP (Vanguard BM, v.2) 312, 487 0.1443 0.2848 0.0142 0.1057 0.2441
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Table 2: Relation Between DRS and Flow Sensitivity to Performance

The dependent variable in each regression model is F̂SP it, the fund’s flow sensitivity to performance going

forward, where flow is defined as the % change in fund size in Panel A and as the % change in new assets

in Panel B. b̂it is the fund’s decreasing returns to scale estimated as of the previous month-end. In the odd
columns, we only include month and fund fixed effects; in the even columns, we add proxies for participation

costs, as well as performance volatility and fund age. Standard errors, two-way clustered by fund and by

month, are in parentheses. We report the EIV-adjusted coeffi cients in the last row of each panel.

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂it −0.826
(0.148)

−1.172
(0.184)

−1.289
(0.264)

−1.486
(0.310)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 676 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −4.866 −7.802 −9.321 −14.146

Panel B: Flow as % Change in New Assets

F̂SP it

b̂it −0.279
(0.090)

−0.428
(0.124)

−0.375
(0.167)

−0.576
(0.179)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 676 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −1.642 −2.850 −2.712 −5.488
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Table 3: Relation Between DRS and FSP Based on Their Percentile Ranks
This table is the same as Table 2 but, instead of using the coeffi cient estimates b̂it and F̂SP it, uses their

percentile ranks in each month.

Panel A: Flow as % Change in Fund Size

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.1023
(0.0116)

−0.1148
(0.0134)

−0.0836
(0.0096)

−0.0906
(0.0117)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 676 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.0765
(0.0099)

−0.0826
(0.0122)

−0.0572
(0.0086)

−0.0657
(0.0108)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 676 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Table 5: DRS-FSP Relation Using the Characteristic Component of DRS

This table is the same as Table 2 but, instead of using the coeffi cient estimate b̂it as before, uses its charac-
teristic component estimated from the specification in column 8 of Table 4, denoted by b̂Charit .

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂Charit −5.296
(1.146)

−9.720
(1.619)

−5.739
(2.209)

−9.860
(2.922)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 964 112, 060 134, 106 132, 791
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

F̂SP it

b̂Charit −3.328
(0.756)

−6.310
(1.120)

−3.861
(1.530)

−9.708
(2.035)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 964 112, 060 134, 106 132, 791
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Table 6: DRS-FSP Relation Under the Instrumental Variables Approach

The dependent variable in each regression model is F̂SP it, the fund’s flow sensitivity to performance going

forward, where flow is defined as the % change in fund size in Panel A and as the % change in new assets

in Panel B. b̂it is the fund’s decreasing returns to scale estimated as of the previous month-end. In the
odd columns, we instrument for b̂it by the fund’s risk exposures and past flow from t − 13 to t − 1; in
the even columns, we we use the fund’s risk exposures and past flow from t− 16 to t− 4 as instruments.
We first regress b̂it on these fund-level variables, and then we regress F̂SP it on the fitted values from the

first-stage regression. Both regressions include fund and month fixed effects, as well as the controls in Table

2. Standard errors, two-way clustered by fund and by month, are in parentheses.

Panel A: Flow as % Change in Fund Size

First-Stage Regressions
b̂it

Size exposure (β̂
smb

it ) 0.01194
(0.00265)

0.01206
(0.00265)

0.00949
(0.00189)

0.00952
(0.00189)

Value exposure (β̂
hml

it ) 0.00411
(0.00215)

0.00417
(0.00215)

−0.00260
(0.00127)

−0.00260
(0.00127)

Momentum exposure (β̂
mom

it ) −0.01604
(0.00294)

−0.01599
(0.00294)

−0.00871
(0.00215)

−0.00873
(0.00215)

% net flow (t− 13 to t− 1) −0.00307
(0.00033)

−0.00145
(0.00017)

% net flow (t− 16 to t− 4) −0.00302
(0.00030)

−0.00140
(0.00016)

Second-Stage Regressions
F̂SP it

Predicted b̂it −7.816
(1.464)

−7.001
(1.412)

−7.590
(2.636)

−6.203
(2.581)

Fund FE & Month FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Observations 114, 612 114, 609 136, 354 136, 351
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Compare to Table 2 Panel A, Column 2 Panel A, Column 4
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Panel B: Flow as % Change in New Assets

First-Stage Regressions
b̂it

Size exposure (β̂
smb

it ) 0.01194
(0.00265)

0.01206
(0.00265)

0.00949
(0.00189)

−0.00952
(0.00189)

Value exposure (β̂
hml

it ) 0.00411
(0.00215)

0.00417
(0.00215)

−0.00260
(0.00127)

−0.00260
(0.00127)

Momentum exposure (β̂
mom

it ) −0.01604
(0.00294)

−0.01599
(0.00294)

−0.00871
(0.00215)

−0.00873
(0.00215)

% net flow (t− 13 to t− 1) −0.00307
(0.00033)

−0.00145
(0.00017)

% net flow (t− 16 to t− 4) −0.00302
(0.00030)

−0.00140
(0.00016)

Second-Stage Regressions
F̂SP it

Predicted b̂it −4.405
(0.997)

−3.449
(0.914)

−4.621
(1.795)

−3.044
(1.705)

Fund FE & Month FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Observations 114, 612 114, 609 136, 354 136, 351
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Compare to Table 2 Panel B, Column 2 Panel B, Column 4

45

Electronic copy available at: https://ssrn.com/abstract=3462749



Table 7: Parameter Values Used for Simulations
Panel A summarizes the model parameters that we set directly and their parameter values. The empirical

distribution of b is approximated by a generalized Pareto (GP) distribution, from which we draw b randomly.
In that case, assuming that θ0 is independent of b gives rise to distributions of fund size considerably
more disperse than in our actual sample. Therefore, we model the prior mean as a linear function of b,
θ0 (b) = θ0a + θ0bb. Our approach is to fit the parameters θ0a and θ0b by essentially matching the
simulated mean and standard deviation of log fund size to their empirical counterparts. We set the prior

uncertainty (σ0) to match the average flow-performance relation in the data. Panel B shows the value of σ0
that resulted from this process. It also contains the values of the parameters governing the GP distribution

of DRS and those of the parameters governing the prior mean that we use in our simulation analysis. The

last three columns of Panel B report all the moments that we target in our calibration, as well as their values

in both the actual and simulated data.

Panel A: Parameters Set Directly

Variable Symbol Value

Return standard deviation σ 5.77%

Exit mean θ 0%

Panel B: Calibrated Parameters

Variable Symbol Value Target Emp. Value Sim. Value

f (bi |µb, σb, ξb ) =
(
1
σb

)(
1 + ξb

(bi−µb)
σb

)−1− 1
ξb

Threshold (location) µb 0.0000 Mean of bi 0.0092 0.0106
Scale σb 0.0138 Std dev of bi 0.0101 0.0083
Tail index (shape) ξb −0.3025 Skewness of bi 0.9235 0.9264

θ0 (bi) = θ0a + θ0bbi

Prior mean for CRS funds θ0a 0.06% Mean of log (qit) 5.12 5.12
Prior mean slope on DRS θ0b 4.821 Std dev of log (qit) 1.89 1.89

Prior uncertainty σ0 0.06% Mean of γ̂i 0.543 0.549
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Table 8: Simulated DRS-FSP Relation
We construct 2, 500 samples of simulated panel data for 10, 000 funds over 100 months. We simulate
a given sample by first drawing each fund’s DRS bi randomly from a GP distribution consistent with the

distribution of fund-specific b estimates, while drawing the fund’s skill ai from a normal distribution with

mean θ0 (bi) and standard deviation σ0. Next, we draw the random values of εit, building up the panel
data of rit and qit. For each fund in the sample, we run the following regression using data for just that
fund to estimate its FSP:

log (qit/qit−1) = ci + γirit + υit.

We then estimate the DRS-FSP relation in each of the simulated samples. Panel A shows summary statistics

of these estimates across simulated samples from the calibrated model. To quantitatively assess the role of

heterogeneity in returns to scale in capital allocation, we construct a counterfactual by assuming investors

learn about skill based on distorted beliefs that bi = 0.0105 for all funds. Then, updating investors’beliefs
with the history of its returns under the counterfactual assumption, we compute the fund’s size under the

counterfactual, qCit , for every i and t. For each sample, we calculate the R
2 from a regression of log (qit)

on log(qCit ) to check the goodness of fit by the counterfactual. We report the results from counterfactual

simulations in Panel B. The first two rows show summary statistics of the coeffi cient estimates from the

regression of log (qit) on log
(
qCit
)
across simulated samples; the last row shows summary statistics of the

R2 from this regression across simulated samples.

Panel A: Simulated DRS-FSP Relation

γ̂i = k + λbi + ui

Percentiles
Mean Stdev. 1% 5% 10% 50% 90% 95% 99%

λ̂ −6.85 0.505 −8.15 −7.72 −7.50 −6.83 −6.23 −6.07 −5.78

Data −7.816

Panel B: Capital Allocation Explained by Counterfactual

log (qit) = π0 + π1 log
(
qCit
)
+ vit

Percentiles
Mean Stdev. 1% 5% 10% 50% 90% 95% 99%

π̂0 −620 22.4 −659 −650 −645 −624 −590 −577 −555
π̂1 128 4.60 115 119 122 129 133 134 136

R2 0.660 0.023 0.591 0.617 0.630 0.664 0.686 0.691 0.701
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Table 9: Relation Between DRS and Fund Size
We first form quintile groups sorted on fund fixed effects estimated as of month t − 1, âit. Then, within
each âit quintile, we sort funds into five groups based on fund-specific DRS estimated as of month t − 1,
b̂it. We conduct double sorts of funds belonging to the same Morningstar category and to the same age
category. After forming the 5×5 âit and b̂it groups, we average fund sizes, as measured by log real AUM in

month t, of each b̂it quintile over the five âit groups. Panel A reports average fund sizes of the 25 âit × b̂it
groups using the CAPM as the benchmark; Panel B repeats the same exercise, except we use Vanguard index

funds as the benchmark. The column labeled “Average”reports the average month-end fund sizes of the b̂it
quintiles, controlling for âit, fund style and fund age. The row labeled “High-low” reports the differences
in average sizes between the first and fifth quintile b̂it groups within each âit quintile. We report standard
errors of these differences between quintile 5 (high b̂it) and quintile 1 (low b̂it) using 60 Newey-West lags.

Panel A: Performance Relative to the CAPM

âit Quintiles
Group 1 Low 2 3 4 5 Average

1 Low b̂it 5.454 5.684 6.889 7.379 7.462 6.547
2 5.677 5.977 6.403 6.593 6.644 6.248
3 5.808 5.931 5.955 6.080 6.232 5.996
4 5.939 5.717 5.398 5.543 6.022 5.725

5 High b̂it 5.637 4.755 4.326 4.466 5.527 4.947

High-low 0.183
(0.134)

−0.929
(0.167)

−2.563
(0.161)

−2.913
(0.179)

−1.935
(0.132)

−1.600
(0.080)

Panel B: Performance Relative to the Vanguard BM

âit Quintiles
Group 1 Low 2 3 4 5 Average

1 Low b̂it 5.381 5.369 6.721 7.186 7.232 6.353
2 5.482 5.727 6.248 6.400 6.370 6.032
3 5.554 5.786 5.806 5.863 5.939 5.782
4 5.748 5.610 5.348 5.346 5.650 5.542

5 High b̂it 5.575 4.683 4.248 4.258 5.205 4.797

High-low 0.194
(0.132)

−0.685
(0.151)

−2.473
(0.159)

−2.928
(0.183)

−2.027
(0.146)

−1.555
(0.070)
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Table 10: Relation Between Optimal Size and Fund Size

The dependent variable in each regression model is the fund’s log real AUM in $ millions (base year is 2000).

A fund’s optimal size, log (q̂∗i ), is the average ratio of its net alpha (adjusted for returns to scale) to its
individual DRS parameter (see equation (16)); the alternative measure of a fund’s optimal size, log

(
q̂∗RD2i

)
,

is calculated assuming that the effect of scale on performance is the same for all funds (see equation (17)).

We decompose log (q̂∗i ) into two components– that explained by log
(
q̂∗RD2i

)
and that remain unexplained.

In Panel A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard index

funds as the benchmark. The double clustered (by fund and time) standard errors are in parentheses.

Panel A: Performance Relative to the CAPM

Dependent Variable: Log Real AUM

log (q̂∗i ) 0.310
(0.033)

0.573
(0.048)

0.845
(0.050)

explained by log
(
q̂∗RD2i

)
0.458
(0.014)

0.741
(0.012)

0.939
(0.008)

unexplained by log
(
q̂∗RD2i

)
−0.371
(0.040)

−0.182
(0.036)

0.633
(0.054)

R2 0.19 0.52 0.78 0.34 0.67 0.83

Observations 64, 752 105, 347 196, 364 64, 752 105, 347 196, 364
Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr.

Panel B: Performance Relative to the Vanguard BM

Dependent Variable: Log Real AUM

log (q̂∗i ) 0.160
(0.014)

0.388
(0.011)

0.658
(0.024)

explained by log
(
q̂∗RD2i

)
0.273
(0.010)

0.473
(0.010)

0.694
(0.012)

unexplained by log
(
q̂∗RD2i

)
−0.067
(0.019)

−0.049
(0.025)

0.380
(0.047)

R2 0.14 0.41 0.68 0.25 0.51 0.71

Observations 75, 990 110, 319 196, 598 75, 990 110, 319 196, 598
Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr.
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Figure 1: Distribution of individual decreasing returns to scale (DRS) parameters
over time: The figure plots each month’s mean and percentiles of estimated size effect on
performance across all funds operating during that month. Panel A estimates DRS when we
calculate outperformance relative to the CAPM. Panel B estimates DRS when we calculate
outperformance relative to the Vanguard benchmark.
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Figure 2: Distribution of individual flow sensitivity to performance (FSP, v.1)
over time: The figure plots each month’s mean and percentiles of estimated % change
in real AUM due to performance across all funds operating during that month. Panel A
estimates FSP when we calculate outperformance relative to the CAPM. Panel B estimates
FSP when we calculate outperformance relative to the Vanguard benchmark.
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Figure 3: Distribution of individual flow sensitivity to performance (FSP, v.2)
over time: The figure plots each month’s mean and percentiles of estimated % change
in new assets due to performance across all funds operating during that month. Panel A
estimates FSP when we calculate outperformance relative to the CAPM. Panel B estimates
FSP when we calculate outperformance relative to the Vanguard benchmark.

52

Electronic copy available at: https://ssrn.com/abstract=3462749


