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Abstract. We apply a range of out-of-sample specification tests to more than
forty competing stochastic volatility models to address how model complexity af-
fects out-of-sample performance. Using daily S&P 500 index returns, model con-
fidence set estimations provide strong evidence that the most important model
feature is the non-affinity of the variance process. Despite testing alternative
specifications during the turbulent market regime of the global financial crisis
of 2008, we find no evidence that either finite- or infinite-activity jump mod-
els or other previously proposed model extensions improve the out-of-sample
performance further. Applications to Value-at-Risk demonstrate the economic
significance of our results. Furthermore, the out-of-sample results suggest that
standard jump diffusion models are misspecified.

Key Words: Out-of-sample specification tests; jump-diffusion models; Lévy-
jump models; non-affine variance models; forecasting

JEL Classifications: G12; G15; C53

1 Introduction

In this paper, we analyze continuous-time and discrete-time models for S&P 500 index re-

turns to study the relationship between model complexity and out-of-sample performance.

The study of time-series dynamics of major stock market indices, such as the S&P 500,

has previously attracted a large number of empirical studies, see e.g. Eraker et al. (2003),

Christoffersen et al. (2010), Bates (2012), or Kou et al. (2013). One hotly debated topic,

for instance, is the statistical and economic role of sudden price jumps, as the accurate

modeling of tail events is of the utmost importance for many risk management and option

pricing applications. To this end, Bates (2012) studies the crash risk in the US stock mar-

ket using daily S&P 500 index returns from 1929 until 2010. Other model features have

been highlighted in the literature, and applied research today is faced with the challenge

of selecting model dynamics from a huge number of alternative specifications, including

non-affine variance processes, multi-factor variance specifications, finite or infinite activity
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jump processes in discrete or continuous-time modeling frameworks.

Despite the importance of this research area, most papers in the continuous-time lit-

erature focus on in-sample specification tests or assess model performance by studying

option price data. In this paper, we diverge from this approach and provide a range of dif-

ferent out-of-sample performance tests. In-sample studies are very helpful to learn about

the structural building blocks required to produce stylized facts in the data. However,

eventually the out-of-sample performance of a model is crucial for market participants

using such a model in finance applications that are affected by uncertain future market

scenarios. Our main aim is to understand to what extent the superior performance of

sophisticated stochastic models prevails when they are applied outside their estimation

period. To this end, we first estimate more than forty different stochastic models and

encompass the most widely used model features in the continuous-time literature. Var-

ious model specification tests are then applied to an out-of-sample period of S&P 500

index returns, including the turbulent market regime during the onset of the financial

market crisis in 2008. To the best of our knowledge, this paper is the first to provide

comprehensive out-of-sample evidence for a large set of stochastic models.1

The estimation of continuous-time models is challenging, and a range of different es-

timation and filtering techniques has been developed.2 At least partly driven by the

differences in estimation methodology, there appears to be no standard in the continuous-

time literature as far as model evaluation criteria are concerned. Eraker et al. (2003) use

Bayes Factors and in-sample QQ plots to assess the in-sample fit and provide evidence

of the impact of several model features on the shape of implied volatility smiles. Bates

(2012) also uses in-sample QQ plots and a comparison of in-sample unconditional distri-
1Few papers consider the out-of-sample performance of continuous-time models. Yun (2014) conducts

a range of density forecasting tests using affine one-factor jump-diffusion models, Shackleton et al. (2010)
use similar model specifications. This paper differs substantially from the aforementioned papers as we
focus on a much broader number of models and specification tests.

2A range of alternative estimation procedures have been proposed, including simulated methods of
moments approaches, approximate maximum likelihood estimation, efficient methods of moments and
Bayesian MCMC estimation algorithms (see Andersen et al., 2002, Eraker et al., 2003, Bates, 2006 or
Johannes et al., 2009).
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butions, in addition to implications for option pricing. Andersen et al. (2002) provide

in-sample specification tests as well as option pricing implications. Kaeck (2013) and

Ignatieva et al. (2015) rely on the deviance information criterion, an in-sample Bayesian

fit statistic developed in Spiegelhalter et al. (2002). Christoffersen et al. (2010) provide

(in-sample) QQ plots as well scatter plots of variance level changes, and conclude that

affine variance processes are rejected by the data. Li et al. (2008) apply (in-sample) kernel

density plots, QQ plots and Kolmogorov-Smirnov (KS) tests to in-sample model residu-

als. Kou et al. (2013) also use KS tests and QQ plots in addition to comparing model

autocorrelation functions to those observed in the data. Szerszen (2009) provides QQ

plots and Value-at-Risk (VaR) specification tests based on in-sample parameters.

Our approach differs from the aforementioned studies in that the focal point of our

paper is the out-of-sample performance. Since we are dealing with a very large number of

model specifications, we employ the model confidence set estimation procedure of Hansen

et al. (2011). We separate out subsets of models that have a statistically indistinguishable

performance according to various different out-of-sample loss functions. In doing so, we

accept that one single best performing model might not exist but rather that different

modeling approaches may be equally successful. First, we compare likelihood-based out-

of-sample fit statistics, including sequential likelihoods as proposed by Johannes et al.

(2009). This allows us to detect the time-periods during which particular specifications

out- or underperform. Secondly, we follow Gneiting and Ranjan (2011) in comparing

models using the continuous ranked probability score (CRPS), a criterion that can be

used to compare the out-of-sample forecasting performance. CRPS has the advantage

that weighted versions of the statistic retain propriety, which is essential for comparing

the performance in various areas of the forecasting distributions. It is often argued that

jump models in particular provide a better fit to the tails of the return distribution, and

weighted CRPS fit statistics are employed to study model performance in the tails as well

as the center of the return distribution. Thirdly, we test the economic significance of our

results by applying the VaR loss function of González-Rivera et al. (2004). And fourthly,
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we use a range of absolute model tests suggested by Berkowitz (2001) and others.

We use daily return observations such as in Eraker et al. (2003), Bates (2012) and

others, although there are other data sources for extracting information about the data-

generating process. The VIX and VXO is used as a proxy of variance in Bakshi et al.

(2006), Chourdakis and Dotsis (2011), and Mijatovic and Schneider (2014) to learn about

structures of pure stochastic volatility models. Market prices of derivatives, for example,

such as S&P 500 index options or VIX options, have been used in several papers (see

Bakshi et al., 1997 or Bardgett et al., 2015). The study of option markets can provide

valuable insights into the dynamics of latent state variables, but at the cost of requiring

further assumptions about the dynamics of the stochastic discount factor. In addition,

option pricing applications are more restrictive in terms of the data-generating processes

as very few tractable models exist outside the standard affine model class (see Duffie

et al., 2000). Our goal is to study asset price dynamics via the a priori imposition of

as few restrictions as possible, and hence we focus in this paper on the dynamics under

the physical rather than the risk-neutral measure. A second interesting data source is

high-frequency returns (see Abhyankar et al., 1997). To compare our results to findings

in the literature, we use daily index returns rather than high frequency data. Data-

generating processes for high frequency data are substantially more complex because such

models are required to cope with intradaily trading patterns such as seasonality or other

market microstructure effects. Stroud and Johannes (2014) provide sophisticated model

specifications that can deal with intradaily returns.

To provide reliable evidence, we include a large number of alternative specifications.

Starting from the continuous-time benchmark model proposed by Heston (1993), many

extensions have been proposed in the literature. One area of research has focused on

Poisson jump models, such as Bates (1996), or extensions to double-jumps as in Duffie

et al. (2000) and Eraker et al. (2003). Intuitively, such models allow for occasional spikes

in the data (for instance the market crash of October 1987), which are captured by a

finite-activity jump process. Variations of these models alter the jump size distribution or
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introduce time-varying jump intensities (see Kou, 2002, Pan, 2002 or Kaeck, 2013). More

recently, a number of studies have introduced models based on infinite-activity Lévy

processes. Li et al. (2008), Szerszen (2009), Bates (2012) and Ornthanalai (2014) provide

evidence that suggests that such a modeling approach can be advantageous.3 Another

strand of the literature studies multifactor variance specifications, as these support more

erratic variance movements (see Chernov et al., 2003 or Kaeck and Alexander, 2012). The

literature also presents convincing evidence in favor of non-affine variance dynamics (see

Jones, 2003, Christoffersen et al., 2010, Mijatovic and Schneider, 2014, or Ignatieva et al.,

2015), albeit often at the cost of tractability as these models do not allow for closed-form

characteristic functions. Finally, discrete-time GARCH models as well as discrete-time

stochastic volatility specifications provide alternative modeling frameworks; for recent

surveys, we refer to Bauwens et al. (2006) and Andersen et al. (2009). In this paper, we

rely on features that have previously been proposed in the literature: affine vs non-affine

models, single-factor vs multi-factor specifications, diffusion models vs jump models, finite

activity vs infinite activity, discrete-time vs continuous-time models. The combination of

these building blocks leads to a very comprehensive set of competing models. Although

not the focus of this paper, we also study some new model specifications such as non-affine

time-changed Lévy models.

Our empirical tests provide two main results. First, we find that no model is able to

produce out-of-sample predictions in line with the true data-generating process. Using

the test statistics developed in Berkowitz (2001) we find that all models analyzed are

rejected when tested on the entire out-of-sample period. Second, we find that in terms

of relative model performance more parsimonious stochastic volatility models outperform

models that include a jump component. This is a surprising result, since numerous papers

find that jump models outperform continuous stochastic volatility models in-sample (see

Eraker et al. (2003), Eraker (2004) or Ignatieva et al. (2015)).
3Lee and Hannig (2010) and Aït-Sahalia and Jacod (2011) propose statistical tests to distinguish

between finite and infinite-activity jumps in high-frequency data.
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There are two possible explanations why jump models are outperformed. First, one

may interpret this result as evidence for misspecification of the jump component (despite

the fact that we use quite sophisticated jump modeling) and not as evidence against

the importance of modeling jumps in equity returns. Our results may be driven by the

fact that jumps are difficult to estimate and jump distributions and intensities may vary

strongly over time. For instance, jump parameters may be very different during periods

of crisis and this may cause model misspecification. This finding is related to results in

Santa-Clara and Yan (2010) who find a weak connection between variance and the jump

intensity when both processes are estimated independently.

Second, and more important, our results may provide useful insights of how the global

financial crisis unfolded. High returns may either be driven by jumps or stochastic volatil-

ity. Jumps are crucial to explain a number of rare events such as the market crash of

1987 (see the discussion in Eraker et al. (2003)). On the contrary, periods of high market

volatility may render jumps obsolete as stochastic volatility is sufficient to generate a

sequence of large returns in times of prolonged high market volatility. The result of pure

stochastic volatility models outperforming jump models implies that an increasing level of

market volatility during our out-of-sample period was sufficient to model financial crisis

returns from 2007 to 2009. The distinction between how shocks are created is important

for many applications in finance as rare event models may have very different implications

compared to models driven by stochastic volatility. This finding is related to Stroud and

Johannes (2014) who draw similar conclusions using high frequency returns.

To study these findings in more detail, we separate the out-of-sample period into

two sub-samples to investigate whether jumps have a more pronounced effect during

the onset of the financial market crisis from 2007 until 2009. Surprisingly, the main

driver of model performance during this period is the non-affine variance process and

model confidence sets include all continuous-time GARCH models, whereas affine models

perform particularly poorly. Among the non-affine specifications, the simplest diffusive

variance model of Heston (1993) performs best and we conclude that the specification of
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the variance process is far more important than the inclusion (or the distribution) of the

jump process. Model simplicity also pays off during the second, calmer sub-sample from

2010 until 2014, for which simple affine and non-affine diffusions are the only models in the

10% model confidence set. Given these strong results, we investigate whether jump models

at least provide superior performance in modeling the left tail of the return distribution.

Using CRPS with additional weight on the left tail shows that jump models improve their

relative performance, but for this loss function the model confidence set consists of all

tested specifications, and none of the jump models provides superior performance. Jumps

have previously been highlighted to provide a useful modeling tool for asset returns (see

for instance Eraker et al., 2003), our results do not imply that jumps do not exist in the

data, rather we find that they are less important for out-of-sample forecasting exercises.

Applications to Value at Risk confirm that for modeling the left tail, discrete-time GARCH

models as well as simple stochastic volatility models without jumps are most successful.

2 Model Specifications

For the first model category, we assume that the log asset price st = lnSt follows a

jump-diffusion process with stochastic variance and a stochastic mean reversion level as

proposed by Duffie et al. (2000), Egloff et al. (2010) and others:

dst =
(
µc − 1

2vt − λtk̄
)
dt+ ρv

√
vtdW

v
t +

√
1− ρ2

v

√
vt dW

s
t + ξtdNt (1)

dvt = κv (mt − vt) dt+ σvv
γ
t dW

v
t (2)

dmt = κm (θm −mt) dt+ σmm
γ
t dW

m
t , (3)

where µc is the drift and vt denotes the stochastic variance process with speed of mean

reversion κv and volatility parameter σv. The stochastic mean-reversion level mt is gov-

erned by the speed of mean reversion κm, the long-term mean-reversion level θm and
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the diffusion parameter σm. All three Brownian motion processes W v, W s and Wm are

uncorrelated, and as a consequence ρv determines the correlation between variance inno-

vations and returns. The parameter γ identifies the dependence of the diffusion functions

on the level of variance and long-term variance, respectively.4 For γ = 1
2 we obtain an

extension of the standard affine specification of Heston (1993) (labeled A); for γ = 1 we

have a continuous-time GARCH (henceforth CGARCH, see Nelson, 1990) process (G);

and finally, if the parameter may take any value between one half and three halves, we

obtain a general CEV variance model (C). Jump events occur at random times whenever

increments in the Poisson counting process are equal to one, i.e. dNt = 1. We assume

that N has a state-dependent intensity λt = λc + λvvt, where λc is the time-independent

part of the jump intensity and λv measures the dependence of the jump probability on

the current variance level. The iid jump size ξt is normally distributed with mean µs and

standard deviation σs. Furthermore, we follow the standard convention that jump sizes

are independent of all other stochastic variables. The jump compensator of this model is

given by k̄ = exp
[
µs + 1

2σ
2
s

]
− 1.

For alternative jump specifications, we follow Bates (2012) and focus on jump models

driven by CMGY model dynamics (see Carr et al., 2002) and assume that the log asset

price dynamics in Equation (1) are replaced by

dst =
(
µc − 1

2vt
)
dt+ ρv

√
vtdW

v
t +

√
1− ρ2

v

√
vt dLt (4)

where dLt is the increment of a compensated Lévy process. The logarithm of the charac-

teristic function ΨCMGY (u, t) = E

[
exp

{
uLCMGY

t

}]
of the generalized CGMY process of

Carr et al. (2003) is given by

ln ΨCMGY (u, t) = (µ− ω)ut+ tV

[
wn

(G+ u)Yn −GYn

Yn(Yn − 1)GYn−2 + (1− wn)(M − u)Yp −MYp

Yp(Yp − 1)MYp−2

]
4For simplicity, we use the same CEV parameter γ for both the variance and the long-term variance

process.
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where ω is a normalizing constant, V is the variance per unit time and wn determines the

fraction of downward jumps. We further define

Cn = wnV

Γ (2− Yn)GYn−2 and Cp = (1− wn)V
Γ (2− Yp)MYp−2 ,

where Γ(z) denotes the gamma function. With this definition, the parameter range is

restricted to Cn, Cp, G,M > 0 and Yp, Yn < 2. For Yp, Yn < 0 the process has finite

activity, for Yp, Yn < 1 the process has finite variation. The model with Lt = LCMGY
t

nests a wide range of models used in the finance literature; we follow Bates (2012) in

using the parameter restrictions Yn = Yp = 1 for the double exponential (DEXP) jump

model of Kou (2002), and Yn = Yp = 0 for the variance gamma (VG) model of Madan

and Seneta (1990) for which a non time-changed version has been estimated in Li et al.

(2008). The full CMGY is labeled YY whereas an extension to

ln ΨY Y D(u, t) = (1− fjump)1
2(u2 − u)t+ fjump ln ΨCMGY (u, t)

for fjump ∈ [0, 1] is called YYD, where D indicates an additional diffusive component. For

further details such as Lévy densities or normalizing constants we refer to Bates (2012).

The asset price specifications introduced in this section allow us to distinguish between

a wide range of models previously employed in the literature. The main model categories

as far as the jump dynamics are concerned distinguish between either no jumps (such as

in Heston, 1993), finite-activity jumps (Bates, 1996 or Duffie et al., 2000) and infinite-

activity jumps (Madan and Seneta, 1990, Carr et al., 2002). The variance dynamics

are subdivided into affine, GARCH and general non-affine CEV dynamics (Nelson, 1990,

Jones, 2003 or Christoffersen et al., 2010) for both one and two-factor variance models

(Egloff et al., 2010 or Bates, 2012). Our model setup differs substantially from previous

research which has often focused on comparing models along a single-dimension. We also

compare continuous-time specifications with popular discrete-time GARCH (henceforth

DGARCH) models and introduce these in the robustness section for expositional ease.
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We provide an overview of the one-factor continuous-time models used in this paper in

Table 1, two-factor versions of the models have an additional identifier MF.

[Table 1 about here.]

3 Econometric Methodology

3.1 Model Estimation

Our econometric methodology builds on the maximum likelihood estimation proposed

by Bates (2006). Under affine model specifications, let the ∆-step ahead conditional

characteristic function of the asset return rt+∆ = st+∆ − st and latent state variables be

given by

ΨGt (u1, u2, u3) ≡ E

[
eu1 rt+∆+u2 vt+∆+u3mt+∆

∣∣∣Gt]
= exp {A(u1, u2, u3,∆) + B(u1, u2, u3,∆) vt + C(u1, u2, u3,∆)mt}

where Gt = σ ({Sτ , vτ ,mτ} : τ ≤ t) is the σ-algebra (information) generated by both the

asset price and the latent state variables and u1, u2, u3 ∈ C (as long as well-defined). The

functional form of the complex-valued functions A, B and C follows from Duffie et al.

(2000). These functions satisfy ODEs that can be solved explicitly for one-factor affine

variance specifications.5 For two-factor models, we use the numerical algorithm developed

in Bates (2012) to solve for A, B and C. This approach yields approximations that are

highly accurate for applications such as ours.

To describe the filtering algorithm, the joint characteristic function of the latent state
5We refer to Heston (1993), Bates (1996), Pan (2002) or Bates (2012) for the exact functional form of

these functions.
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variables (given the information generated by the asset returns) is defined as

Λt(u2, u3) ≡ E
[
eu2vt+u3mt

∣∣∣Yt]

where Yt = σ ({Sτ} : τ ≤ t) is the information generated by observing the asset price only.

By the law of iterated conditioning, it follows that

ΨYt (u1, u2, u3) ≡ E

[
eu1rt+∆+u2vt+∆+u3mt+∆

∣∣∣Yt]
= eA(u1,u2,u3,∆) Λt(B(u1, u2, u3,∆), C(u1, u2, u3,∆)).

As a result, standard Fourier inversion methods provide the probability of a return ob-

servation conditional on all past returns:

p (rt+∆| Yt) = 1
2π

∫
R

eıurt+∆ ΨYt (ıu, 0, 0) du, (5)

where ı is the imaginary unit. We apply this numerical procedure to calculate the log-

likelihood for the different model specifications. The last step in the filtering algorithm

provides the update of Λt, and is given by6

Λt+∆(u2, u3) = 1
2π p (rt+∆| Yt)

∫
R

eıurt+∆+A(ıu,u2,u3,∆) Λt(B(ıu, u2, u3,∆), C(ıu, u2, u3,∆)) du.

To start the procedure Λ0(u2, u3) is set to the unconditional characteristic function.7

Non-affine model specifications lack closed-form characteristic functions and hence the

method described above cannot be directly applied. We estimate non-affine models by

locally approximating them with an affine model specification. More specifically, we ap-

proximate the one-day ahead characteristic function by plugging σav = σvE
[
vγ−0.5
t

∣∣∣Yt]
into the respective affine characteristic function. Compared to the standard Euler dis-

6We use this characteristic function to implement a moment-matching procedure, see Bates (1996).
7As suggested in Bates (2006) the numerical stability of the integrals is improved by calculating

the Fourier transform of a "shifted" density and then numerically invert this function. We refer to the
appendix of Bates (2006) for more details on this procedure.
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cretization applied in the literature (see Eraker et al., 2003), such approximation is likely

to be negligible over small time-steps because compared to an Euler discretization (which

works well in practice, see Eraker et al., 2003 or Li et al., 2008), only part of the variance

dynamics are kept constant. In Appendix A we provide simulation evidence to substan-

tiate this claim and show that our estimation routine can accurately estimate affine and

non-affine model parameters.

3.2 Model Confidence Sets

Our empirical results include a large number of models and hence pairwise model com-

parisons provide only limited insight. To allow for multiple comparisons, we employ the

Model Confidence Set (MCS) procedure proposed by Hansen et al. (2011). A MCS is

defined as a set that contains the best model(s) from a collection of competing models,

sayM0, with a user-specified level of confidence (1−α), where α denotes the significance

level (typically 10% and 25%).8 The best models are identified based on a user-specified

criterion that quantifies the relative performance of the models. Various such criteria are

introduced below. A desirable property of the MCS procedure is that it acknowledges

the informativeness of the data. Whereas informative data lead to the MCS containing

only a few models (or even just one model), less informative data result in the MCS

containing more or potentially even all models. The MCS procedure does not make a

statement about which model is the true model, as performance is assessed relative to

other competing models.

To fix notation, let the competing models inM0 be indexed by i = 1, . . . ,m0, with m0

denoting the number of models in M0. A user-specified loss function Li,t measures the

performance of each model i at time t, and the relative performance between model i and

j is defined as dij,t ≡ Li,t − Lj,t for all i, j ∈ M0. The expected loss of model i is defined
8This interpretation is analogous to that of a classical confidence interval, hence the MCS contains

the best models with a chosen confidence level. This procedure does not necessarily thereby identify one
best model, as the MCS might consist of several models that are not statistically superior to one another.
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as µij ≡ E(dij,t) according to which models are ranked, hence model i is preferred to j if

µij < 0. The set of superior models is defined asM∗ ≡ {i ∈M0 : µij ≤ 0 ∀j ∈M0}.

The objective of the MCS procedure is to determineM∗. To estimateM∗, candidate

models are evaluated using an equivalence test δM and inferior models are subsequently

removed from the initial model set based on the elimination rule eM. That is, a series of

iterative hypothesis tests is performed, testing at each step the hypothesis

H0,M : µij = 0 ∀i, j ∈M, (6)

whereM⊂M0 and the alternative hypothesis, HA,M, is given by µij 6= 0 for some i, j ∈

M. The equivalence test δM is used to test H0,M for all M ⊂ M0. As long as the

hypothesis is rejected, the elimination rule eM is applied to determine the most inferior

model of M which is then eliminated from M and by this means a sequence of sets

M0 =M1 ⊃M2 ⊃ · · · ⊃ Mm0 is defined, whereMi = {eMi
, . . . , eMm0

}. The procedure

is repeated until H0,M cannot be rejected any more. We call the set of all surviving models

M̂∗
1−α, the model confidence set with confidence level (1− α).

Analogous to classical statistical inference, MCS p-values are defined as follows: PH0,Mi

denotes the p-value related to hypothesis H0,Mi
. The p-value PH0,Mi

is calculated as

1 − Fi(ti) for Fi(ti) being the cdf of the i-th test statistic ti. A large value for the test

statistic leads to small values for PH0,Mi
with the interpretation that the hypothesis H0,Mi

,

that all models inMi are equal, is likely to be statistically rejected. The MCS p-value for

the model determined by elimination rule eMj
is calculated using p̂eMj

= maxi≤j PH0,Mi
.

This makes it easy to determine whether a model belongs to M̂∗ or not, as model i is an

element of M̂∗
1−α for a given significance level α if p̂eMj

≥ α. Therefore, the MCS-p-value

is interpreted such that a model with a small p-value being unlikely to be a member of

M∗.

Specifying equivalence tests and elimination rules requires the choice of a loss function

by which model performance is assessed. We use several different loss functions which
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are defined in Section 3.3 below. To test the performance of model i against alternative

model specifications, Hansen et al. (2011) propose using a multiple t-statistics approach

based on the test statistic TR,M = maxi,j∈M |tij|, with tij = d̄ij/
√
v̂ar(d̄ij) and with

d̄ij = T−1∑T
t=1 dij,t. Since the distribution of the test statistic is non-standard, a bootstrap

algorithm is used to estimate the MCS p-values (see appendix of Hansen et al., 2011).

The natural elimination rule is then given as eR,M = maxi∈M supj∈M |tij|, i.e., in case of

rejection of the null hypothesis, the rule eliminates the model that contributes most to

the test statistic.

3.3 Loss Functions

3.3.1 Predictive Likelihood

The first loss function employed in this paper uses the predictive log-likelihood to compute

the loss Li,t (see Amisano and Giacomini, 2007, Bao et al., 2007 or Wilhelmsson, 2013).

Let fi,t denote the predictive density of model i from time t − ∆ to t. The relative

performance between two models over time is then given by d̄ij = T−1∑
t− ln (fi,t/fj,t),

where T denotes the number of observations. The minus sign in front of the logarithm

converts the log-likelihoods into a loss function, hence model i is preferred over model j

if d̄ij is negative.

3.3.2 Continuous-Ranked Probability Score

We use further loss functions proposed in Gneiting and Ranjan (2011), and in particular

we focus on the continuous-ranked probability score (CRPS) which is defined as

CRPS(f, y) =
∫
R

(F (z)− 1{y ≤ z})2 dz,
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where f is the forecasting density, F its corresponding cumulative distribution function

and y denotes the realized outcome (the S&P 500 index return in our case).9 Intuitively,

this loss function measures the difference between the forecasting distribution of a model

and the optimal forecast that would have resulted from perfect foresight. As shown by

Laio and Tamea (2006), an equivalent representation of CRPS can be obtained as an

integral over quantiles and is given by

CRPS(f, y) = 2
∫ 1

0

(
1

{
y ≤ F−1(α)

}
− α

) (
F−1(α)− y

)
dα,

where F−1(α) is the α-quantile of the forecasting distribution.

The advantage of CRPS over other scoring rules (such as the predictive likelihood)

is that this loss function can be extended such that particular areas of the distribution

function are weighted more heavily while ensuring propriety of the scoring rule. Gneiting

and Ranjan (2011) propose weighted versions of CRPS defined as

CRPSw(f, y) = 2
∫ 1

0

(
1

{
y ≤ F−1(α)

}
− α

) (
F−1(α)− y

)
w(α) dα,

where w(α) is a non-negative weight function on the unit interval. We follow Gneiting

and Ranjan (2011) and, in addition to the un-weighted CRPS, use the following weight

functions : w(α) = α(1−α) (center), w(α) = (2α− 1)2 (tails), w(α) = α2 (right tail) and

w(α) = (1− α)2 (left tail).

To fix the notation, the average CRSP of model i is defined as

CRPSw,i = 1
T

∑
t

CRPSw(fi,t, rt).

Forecasts from densities fi,t are preferred over forecasts from densities fj,t if CRPSw,i <

CRPSw,j. With dij,t = CRPSw(fi,t, rt) − CRPSw(fj,t, rt) and σ̂2
ij = 1

T

∑
t d

2
ij,t it can be

9We use the standard notation 1{A} for the indicator function which takes the value 1 if A is true
and zero otherwise.
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shown that under the null hypothesis of vanishing expected scores, the test statistic

tT =
√
T
(
CRPSw,i − CRPSw,j

)
σ̂−1
ij

asymptotically follows a standard normal distribution (assuming suitable regularity con-

ditions for which we refer to Gneiting and Ranjan, 2011). To use the CRPS loss function

for calculation of model confidence sets, the average relative performance between model

i and j is defined as d̄ij = CRPSw,i − CRPSw,j.

3.3.3 Asymmetric Value-at-Risk Loss Function

The third loss function we employ is proposed by González-Rivera et al. (2004) and has

been designed specifically for testing the predictive power of models in the context of VaR

estimation. The proposed loss function is given by

LV aRi,t = (rt − VaRα
i,t)×

(
α− 1

{
rt < VaRα

i,t

})

where VaRα
i,t is the Value at Risk at significance level α for model i estimated at time

t − ∆ for a return horizon of ∆. The functional form of the loss function implies that

deviations from VaR are weighted more heavily if rt < VaRα
i,t, which is in line with the

goal of avoiding large losses. The relative performance of two models i and j is given by

d̄ij = T−1∑
t

(
LV aRi,t − LV aRj,t

)
.

4 Data

We employ daily log returns of the S&P 500 index for a period from January 2, 1987 until

December 31, 2014. This data set overlaps with many previous studies such as Andersen

et al. (2002) and Eraker et al. (2003). We separate the sample into an in-sample period
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from 1987 until 2006 and an out-of-sample period from 2007 until 2014. With tranquil

and turbulent market regimes in both sub-samples, we have an ideal testing ground for

the existence of jumps and the performance of alternative volatility specifications and

their relative merits for out-of-sample forecasting. We report all parameters on a yearly

basis and set ∆ = 1
252 . Table 2 provides summary statistics for the whole sample period,

as well as various sub-samples used in this paper.

[Table 2 about here.]

5 Empirical Results

In this section, we present in- and out-of-sample results for the one-factor jump-diffusion

and Lévy-jump models. We focus on these models first for expositional ease, and discuss

multi-factor variance models as well as discrete-time specifications in Section 6.

5.1 Parameter Estimates and In-Sample Performance

[Table 3 about here.]

[Table 4 about here.]

We report parameter estimates for the one-factor jump-diffusion models in Table 3. As

most models have been extensively discussed in the literature, we provide only a short in-

terpretation of our estimation results. For the standard Heston model (SV-A) we estimate

a long-term variance of 0.029 (which translates into a yearly volatility level of 17.03%) and

a vol-of-vol σv of 0.435. Eraker et al. (2003) for instance find 14.37% for the long-term

volatility and 0.3614 for the volatility diffusion parameter in their less turbulent sample

which ends before the dot-com bubble bursts. Our correlation estimate of -0.681 and the

speed of mean reversion (5.449) are also in line with previous findings. The CGARCH
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and CEV model parameter estimates portray two patterns: first, a higher γ value leads

to a lower speed of mean reversion and secondly, a slightly increased estimate of θv. Inter-

estingly, for all model classes, the CEV parameter γ is statistically indistinguishable from

the CGARCH specification (γ = 1). Jumps across all different model specifications occur

less than once a year in the time-homogeneous jump specifications, but can occur slightly

more frequently when the jump probability depends on the prevailing volatility regime.

The jump parameter λc in all SVSJJ models is estimated to be to zero, and hence our

results indicate that time-varying jump probabilities are an important feature of S&P 500

index returns. These results confirm earlier evidence in Bates (2006) and Christoffersen

et al. (2012). Jump sizes are relatively stable across different specifications with average

means of -3% and a standard deviation between 5% and 6%.

The likelihood values at the optimal parameter set indicate that jump models sub-

stantially improve the in-sample performance, for instance we find that the log-likelihood

increases by a value of between 30 to 40 from SV to SVJ. Time-varying jump proba-

bilities provide further improvements of the log-likelihood, especially in the affine model

specification. Consistent with the low parameter estimates for λc we find little evidence

of an improvement of SVSJJ over SVSJ. The second very consistent result is that the

CGARCH models clearly outperform affine models, whereas a free CEV parameter has

only a minor effect on the performance measure.

We report the parameter estimates for the one-factor Lévy-jump models in Table 4.

For the parameters that govern the stochastic variance process we find similar patterns

to those for the one-factor jump-diffusion models. Long-term volatility estimates are

quite stable and vary between 17 to 20%. Correlation estimates vary between -0.632 and

-0.729 and are increasing slightly with an increasing γ. Estimates for κv and θv have

a similar order of magnitude, and decrease and increase respectively with an increasing

γ parameter. All affine versions of the one-factor Lévy-jump models (SVYY, SVDEXP,

SVVG, SVYYD with γ = 0.5) are also estimated in Bates (2012) and the reported variance

parameters are in line with our estimates: long-term volatility (
√
θv) varies between 15.3
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and 17.4%, mean-reversion speed (κ) varies between 3.961 and 8.318, and correlation

(ρ) varies between -0.541 and -0.674. Also the parameter estimates for the Lévy-jump

models given in Bates (2012) are of the same order of magnitude as ours and show the

same structural behavior across model specification. Differences in the estimates can be

explained by the different sample periods used in the papers. The weighting parameter

wn varies between 0.49 and 0.88, and our estimates vary between 0.32 and 0.83. The

parameter fjump which gives the proportion of variance that is driven by the Levy-jump

part varies from 0.253 to 0.436, whereas we find values between 0.289 and 0.338. For the

SVYYD model we find that fjump is close to the boundary value 1, which implies that

the SVYYD model reduces to SVYY. Therefore, our data does not support an additional

diffusion component for this model specification. This finding is confirmed by the log-

likelihood values for the SVYYD and the SVYY model, which remain very close even for

the different γ specifications.10

In terms of in-sample log-likelihood values, we obtain similar model rankings to those

in Bates (2012). In particular, we find that the performance of DEXP models is similar

to SVVG models and these are outperformed by SVYY model. The additional distri-

bution component in the SVYYD model does not lead to further fit improvements, as

log-likelihood values remain very close to the SVYY model.

We briefly discuss the in-sample performance of the models. Let LmtT be the log-

likelihood of model m between time t and T . Then Rm
h = (h − t)−1

(
Lmth − Lbth

)
for h =

t, . . . , T defines the sequential normalized difference between the log-likelihood function

of model m and the benchmark model b between t and h > t. In Figure 1 we compare

these relative likelihood sequences over the in-sample period as suggested by Johannes

et al. (2009), with SV-A as our benchmark. From the sequential likelihood ratios it is

evident that the severe market shock of 1987 plays a crucial role in distinguishing different
10We have first estimated all Lévy models as in Bates (2012). Since our shorter sample period has

significantly fewer large positive return outliers we found M to be unstable in the estimation and fixed
the value to estimates in Bates (2012). All empirical results are robust as to whether M is fixed or
estimated.



Model Complexity and Out-of-Sample Performance 20

specifications, indeed all models cope with the large -23% return observed on October 19,

1987 far better than the affine SV-A model (see also the discussion in Eraker et al., 2003).

Jump models are slightly more successful during this extended period of market turmoil;

simple non-linear variance models however also fare relatively well.

[Figure 1 about here.]

Overall jumps improve the likelihood ratios substantially and for the in-sample period,

accounting for these is more important then the choice of variance dynamics. This is

evident from the fact that affine jump models out-perform non-affine pure stochastic

volatility models. Levy models provide further improvements over jump-diffusion specifi-

cations, and roughly half of the difference between jump vs non-jump models results from

the October 1987 period.

5.2 Out-of-Sample Forecasting Performance – Log-Likelihood

In Figure 2, we present sequential likelihood ratios for the out-of-sample period which

are calculated using Equation (5), fixing structural parameters to those estimated during

the estimation window (as in Eraker, 2004). Interestingly, this figure highlights a striking

difference from our in-sample results, as the simple SV-G model outperforms all other

specifications by roughly two log-likelihood points per year.

[Figure 2 about here.]

Jump models, although performing well in-sample, do not exhibit major improvements

even over the simple affine stochastic volatility model SV-A. In addition, we find that

the underperformance of jump models is gradually accumulated over the out-of-sample

period rather than being the result of a single outlier. By contrast, the excess likelihood

of non-linear variance models is accumulated predominantly during the outbreak of the

financial crisis in 2008. We return to this finding further below.

[Table 5 about here.]



Model Complexity and Out-of-Sample Performance 21

To add statistical rigor to our graphical results, in Table 5 we report model confidence

set estimations using the out-of-sample negative log-likelihood as a loss function. We

focus on affine and CGARCH models, and remove models of the CEV and SVSJJ class

as their parameters (and out-of-sample results) are indistinguishable from other model

specifications.11 For the model confidence set estimation, we choose the block length

of the bootstrap as follows. For each model, we estimate simple autoregressive (AR)

models and determine the optimal lag length according to AIC and BIC fit criteria. We

then select the bootstrap block length equal to the maximum lag length of all models

in M0. It is evident from these results that the difference in out-of-sample likelihood

between SV-G and all other specifications is statistically significant. We find that the

MCS consists solely of SV-G at the 25% level, which provides strong evidence in favor

of the simple non-affine stochastic volatility model. The first models eliminated from the

initial model set are affine jump specifications. After this, jump models with CGARCH

variance dynamics are excluded, and interestingly we find virtually no difference between

the performance of finite and infinite-activity jump models. The final exclusion is SV-A

which, although dominated by the SV-G model, performs much better than all affine

jump models. Our results confirm statistically the superiority of the simple CGARCH

volatility specification and the fact that the MCS is a singleton can be interpreted as

strong evidence that the out-of-sample period is informative with regard to the different

model features. These findings also provide the first evidence that the choice of volatility

dynamics is more important than modeling jumps.

[Table 6 about here.]

The graphical analysis in Figure 2 indicates that there may be two distinct regimes

during the out-of-sample period: a first turbulent regime during the international finan-

cial crisis (2007-2009), and a second more stable regime until the end of the sample period

(2010-2014). As it appears that most of the outperformance of the SV-G model stems

from the credit crisis period, we rerun the model confidence set estimation for both sub-
11Results for these models are available from the authors upon request.
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periods separately to understand how the model ranking is affected by different market

environments. Results in Panel A of Table 6 confirm that the CGARCH model class

performs significantly better during the crisis period, and the model confidence set at

the 25% level consists of all CGARCH specifications (with or without jumps), whereas

all affine models perform weakly. This confirms the graphical findings that the variance

dynamics are very important for adequately modeling market crashes. In Panel B, we

focus on the calmer sub-period and find that the model confidence set at the 10% level

consists only of the two stochastic volatility models, with insignificant performance dif-

ferences between SV-A and SV-G. Taken together, the out-of-sample log-likelihood tests

provide evidence that simple stochastic volatility models outperform more advanced jump

specifications and that the dynamics of the variance process matter, particularly during

turbulent market regimes.

5.3 Out-of-Sample Forecasting Performance – Continuous Ranked Probability Score

We now provide out-of-sample results for a loss function that focuses on the forecasting

performance of alternative models. In addition, we aim to test whether jump specifications

provide superior performance in forecasting tail events, as one advantage of jump models

is that they provide additional flexibility to fit the tails of the return distribution. To this

end, we follow the framework of Gneiting and Ranjan (2011) and base our assessment

of the forecasting performance on the continuous ranked probability score (for formal

definitions, see Section 3.3).

[Table 7 about here.]

We report empirical results for the unweighted CRPS tests in Table 7.12 The best

performing model is SV-G, in line with the empirical results for the log-likelihood loss

function above. In pairwise comparisons, this specification outperforms all other compet-
12For expositional ease we do not report the result for SVDEXP and SVSJ in these tables as they do

not provide additional insights. We nevertheless include them in the model confidence set estimations
below to ensure all empirical results are based on the same initial model setM0.
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ing models at all conventional significance levels. The lowest absolute pairwise t-statistic

results from the comparison with SV-A (with a t-statistic of -2.39). Given the large num-

ber of alternative models, this finding presents very strong support for non-linear variance

dynamics. Furthermore, we find that diffusion models significantly outperform their jump

extensions out-of-sample. In the affine model class the simple SV-A model outperforms

all affine jump extensions, with the lowest significance level arising for a t-statistic of -3.28

for the comparison with the variance-gamma jump model. The same finding can be seen

for the CGARCH model class where the smallest significance level results from the com-

parison between SV-G and SVJ-G (with a t-statistic of -2.50). Overall, CGARCH models

offer a significant and very consistent improvement over affine models, with t-statistics

ranging from 2.39 to 2.89 when comparing the same jump specification with either an

affine or CGARCH-type variance process.

[Table 8 about here.]

We restrict the detailed discussion of CRPS results for alternative weight functions to

the left tail of the return distribution as this part of the distribution is most interesting

for financial applications such as VaR. In addition, the left tail of the distribution of S&P

500 index returns benefits the most from the addition of jumps and hence weighting the

left tail more heavily may uncover potential shortcomings of simple SV specifications.

Our test results in Table 8 show that the model ranking is surprisingly little changed

after altering the weight function. In particular, SV-G is still the overall best performing

model and dominates all other specifications in pairwise model comparisons. However,

jump models close the gap to simple SV models, and pairwise CRPS t-tests now indicate

no statistically significant differences between the forecasting ability of competing model

specifications. The empirical results for the forecasting tests with center, tails and right

tail weight functions are available upon request, while for ease of exposition we restrict

the discussion of these additional weight functions to the model confidence set estimation

below.13

13Results for these tests, similar to Table 8, are available upon request.
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[Table 9 about here.]

We extend our previous findings and add MCS estimations to the pairwise model com-

parisons (see Table 9). Results for the different weight functions are in general supportive

of the model rankings presented above and provide further strong evidence in favor of

SV-G. Unsurprisingly, given the strong pairwise outperformance in Table 7, for all test

statistics except for the left tail discussed above, SV-G is the only model in the 10%

confidence set and it is also the best performing specification for all five test statistics.

SV-G is particularly successful in the center and the right tail of the return distribution.

It is also notable that the SV-A model provides a poorer performance compared to the

log-likelihood loss function, where it was included in the MCS. Confirming our earlier

findings, the model confidence set for the left tail includes all models, hence we are not

able to distinguish between the forecasting performance in the left tail, at least as far as

our out-of-sample period is concerned. Nevertheless, the SV-G model still performs best

in this category, albeit at no conventional significance level.

[Table 10 about here.]

In Table 10, we report model confidence set results for the two distinct out-of-sample

regimes (January 2007 to December 2009 and January 2010 to December 2014). The

(unweighted) Gneiting-Ranjan tests confirm that during the financial crisis period models

with CGARCH variance dynamics outperform affine specifications, whereas the addition

of jumps does not lead to further improvements. The best-performing affine model is, as

before, the simple diffusion specification, and this is the only affine model in the 25% model

confidence set. By contrast, the second calmer period (January 2010 to December 2014)

provides strong evidence that the SV-G and SV-A models dominate jump specifications

(they are the only two models in the MCS at the 25% level) and SVJ-G also provides

acceptable forecasting performance with a p-value of 0.1077. The results in Panel A and

B of Table 10 provide supporting evidence that the forecasting performance in the left

tail of the distribution is not improved with jumps of either finite or infinite activity as
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model confidence sets include all initial models M0. For completeness, we also report

model confidence sets for alternative weight functions.

5.4 Out-of-Sample and Forecasting Performance – Berkowitz

Berkowitz (2001) proposes an alternative method for testing the forecasting performance,

building on work from Diebold et al. (1998) and others. It is assumed that a forecasting

model with density f is employed, whereas the true (unknown) density is given by p. It

can be shown that the density of the integral transform z, defined as

z =
∫ y

−∞
f(z) dz = F (y),

is given by p(F−1(z))/f(F−1(z)). Therefore, under the null hypothesis that the forecasting

model is equal to the true data-generating process, the variable z is uniformly distributed

and z̃ = Φ−1(z) follows a standard normal distribution (Φ−1 denotes the inverse cumu-

lative distribution function of a standard normal random variable). Furthermore, it can

be shown that in a time-series framework, the realizations z̃t need to be iid. Berkowitz

(2001) proposes to test this hypothesis using z̃t − µ = ρ(z̃t−1 − µ) + εt and the corre-

sponding log-likelihood function L(µ, σ, ρ). This implies three possible tests, one for iid,

one for independence and one for the joint hypothesis. The likelihood ratio test statistics

are given by LRind = −2 [L(µ̂, σ̂, 0)− L(µ̂, σ̂, ρ̂)], LRiid = −2 [L(0, 1, 0)− L(µ̂, σ̂, 0)] and

LR = −2 [L(0, 1, 0)− L(µ̂, σ̂, ρ̂)]. The main advantage of this test procedure is that it

provides an absolute test of the forecasting performance.

[Table 11 about here.]

Table 11 presents results for the LR statistic as this provides the most general analy-

sis.14 The overall results are further divided into out-of-sample tests for each individual

year in the out-of-sample period. Overall, we find that all models are rejected by the
14Results for other statistics are available upon request.
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data. This is unsurprising as most models struggle with explaining the returns during the

onset of the financial crisis in 2008, a year for which the null hypothesis is rejected by all

models. Similar to our findings for the relative forecasting performance, we find that the

statistics for CGARCH models are, however, more than half of the value for affine models

and hence provide additional confirmation of the superiority of CGARCH models during

the financial crisis period. Interestingly, during all years following 2008, for all of the

models, the null hypothesis cannot be rejected at the 5% level. Modeling differences are

merely relevant during the crisis period, a finding that reinforces the conclusions above.

6 Further Results

In this section, we extend our analysis in various directions and discuss the performance

of two-factor jump diffusion models (introduced in Section 2) as well as simple DGARCH

models. To focus on our main findings, we report model comparisons with a representa-

tive subset of one-factor models, namely SV-A, SV-G, SVSJ-A, SVSJ-G, SVYYD-A and

SVYYD-G.

6.1 Multi-factor Variance Models

[Table 12 about here.]

Parameter estimates for two-factor jump-diffusion models are based on the same in-

sample period from January 2, 1987 until December 29, 2006 and are reported in Table

12. Our main results can be summarized as follows. First, the stochastic process mt is

slowly mean-reverting (estimates for κm range between 0.516 and 1.408) and it exhibits

a relatively low diffusive volatility parameter σm. Secondly, the addition of the time-

varying mean reversion level significantly alters the dynamics of stochastic variance. The

process vt is now much faster mean-reverting to mt than it is in one-factor models and
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it is also significantly more volatile. In the SV-A model class, for instance, the mean

reversion speed κv for one- and two-factor models is 5.449 and 26.928 respectively, whereas

estimates for σv increase from 0.435 to 0.633. A high value for κv implies that vt varies

erratically around the long-term variance mt. Thirdly, we find that the estimate for γ is

slightly higher than in one-factor models with values of between 1.057 and 1.176. This is

likely due to the fact that variance itself moves more violently around mt and a higher

CEV parameter facilitates such fast-moving behavior. Jump parameter estimates are

comparable to the one-factor specifications discussed above. Given our previous findings

regarding the minor importance of jumps for out-of-sample forecasting, we refrain from

extending the analysis to Lévy-jump models and restrict our results to jump-diffusions to

capture jump-like behavior.

[Figure 3 about here.]

The left part of Figure 3 shows in-sample sequential likelihood ratios for all two-factor

jump-diffusion models (using SV-A as benchmark model). The overall evolution of these

statistics is comparable to that for one-factor models; in particular, we find that jump

models out-perform simple diffusion specifications and non-affine stochastic variance mod-

els also provide further improvements. The right-hand graph in Figure 3 documents

out-of-sample sequential likelihood ratios. It is evident that the start of the global fi-

nancial crisis in 2008 is an important time period for distinguishing the performance of

alternative models, and non-affine specifications perform substantially better than affine

models during this market regime. Interestingly, affine multi-factor models are particu-

larly unsuccessful at explaining S&P 500 index returns during the crisis period. A possible

explanation for this finding is that while the variance process in affine two-factor models is

more erratic, its rapid mean-reverting behavior forcesmt to drive the overall variance level.

Since vt in one-factor models is more volatile than mt it is possible that affine two-factor

models are less successful at modeling more substantial variance changes. Unreported

results confirm that in the affine models, the spot variance of one-factor models exceeds

the variance levels of two-factor models during the peak of the financial market crisis in
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2008. CGARCH and general CEV models appear to suffer less from this shortcoming.

[Table 13 about here.]

Table 13 presents out-of-sample model confidence set estimates for the negative predic-

tive log likelihood loss function. These results complement the graphical results presented

earlier and further compare the model performance of the two-factor specifications with

the most successful specification of each model class of Section 5. The MCS estimates

confirm that SV-A and SV-G are the best performing one-factor models, and there are

only two additional two-factor models in the 25%-level confidence set, namely MF-SV-G

and MF-SVSJJ-G. The best performing model is MF-SV-G, followed by SV-G which ex-

hibits a MCS p-value of 0.9147. Although slightly less extreme than in the case of the

one-factor specifications, two-factor models do not benefit from adding additional jumps

to capture large outliers either, and it is more important to account for non-linear vari-

ance dynamics as affine multi-factor models perform particularly poorly. These findings

suggest that using a multi-factor model with non-affine variance dynamics provides a sim-

ilar performance to a simpler one-factor non-affine specification. We therefore conclude

that two-factor models do not add significant gains for our out-of-sample data set. How-

ever, we do not find any evidence that more complex models lead to a deterioration in

performance either.

[Table 14 about here.]

Table 14 provides further out-of-sample results, using the Gneiting and Ranjan (2011)

test procedure with weighted CRPS test statistics as our loss function. The results for an

unweighted objective function, similarly to the predictive likelihood results, suggest that

non-affine model dynamics are important and that non-affine two-factor models provide

similar out-of-sample performance to simple SV-G and SV-A models. As before, there

is substantially less evidence in multi-factor models that jumps have a negative effect on

the forecasting performance, and all non-affine MF models are included in the 25% model

confidence set. As before, it proves very difficult to distinguish between the forecasting
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performances in the left tail of the return distribution, where all models but MF-SV-A are

included in the MCS. Non-affine models are superior at forecasting the right tail, where

affine models perform poorly. While most of the attention in the literature is devoted

to the left tail of the return distribution, the right tail may be of particular interest to

investors with short positions.

6.2 Discrete-Time GARCH Models

In order to compare our results to simpler DGARCH models, we estimate further spec-

ifications that have been found to perform well in the discrete-time literature.15 Our

benchmark model is given by a multi-factor GJR-GARCH model (see Glosten et al.,

1993), written in a form that explicitly highlights the long-term variance level:

rt+1 = µ+ εt+1 = µ+
√
ht+1zt+1 + It+1ξt+1 − λµj (7)

ht+1 = qt+1 −
(
αh + 1

2γh
)

(qt + ψ) + βh (ht − qt) + (αh + γh1εt<0) ε2
t (8)

qt+1 = qq −
(
αq + 1

2γq
)

(qq + ψ) + βq (qt − qq) + (αq + γq1εt<0) ε2
t (9)

where ht is the diffusive variance, qt is the long-term variance level, αh and βh are model

parameters determining the speed of mean reversion and how quickly the variance changes

in response to a return shock, and γh determines the leverage effect. The long-term

variance itself follows a GJR specification with parameters qq, βq, αq and γq. Jumps in the

asset price process are driven by iid Bernoulli variables It with probability P (It = 1) = λ

and ξt is normally distributed with mean µj and standard deviation σj. The variance of

the jump component is given by ψ = Var(Itξt) = λ
(
µ2
j + σ2

j

)
− λ2µ2

j . The error term

zt is iid with zero mean and unit variance, driven by either a normal distribution or a

standardized Student-t distribution with degree of freedom parameter η.

The choice of this general discrete-time model is driven by several considerations. First,
15See, e.g., Bauwens et al. (2006) and Engle and Ng (1993).
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the model in its unrestricted form includes all the features studied for continuous-time

models, namely a two-factor variance process, jumps and fat-tailed (non-Gaussian) error

term distributions. And secondly, the model allows us to study nested, more parsimonious

model specifications to test which features of discrete-time models are important in out-

of-sample exercises. We label the single factor models GJR-N and GJR-t, depending on

the distribution of the error term. For these two specifications, we apply the restriction

λ = 0 and qt = q̄ where q̄ is a constant. The corresponding two-factor DGARCH models

are labeled MF-GJR-N and MF-GJR-t. For models with Gaussian error terms we also

include models with normally distributed jumps, and we add an additional J-identifier

for these jump specifications.

[Table 15 about here.]

Table 15 reports parameter estimates for the single- and two-factor DGARCH mod-

els. Following the discrete-time literature, parameters are estimated on daily percentage

returns rpt+∆ = 100× (st+∆ − st) during the in-sample period from January 2, 1987 until

December 29, 2006. For ease of comparison, we scale the log-likelihood at the optimal

parameter set to be comparable with previously reported continuous-time models. For the

sake of brevity, we do not discuss parameter estimates in detail; they are consistent overall

with earlier results and values reported in the literature. Models with t-distributed error

terms notably perform best in-sample, with large log-likelihood improvements over Gaus-

sian models. Interestingly, single- and multi-factor models with normally distributed error

terms and jumps are also outperformed by simpler models with fat-tailed error terms.

[Table 16 about here.]

[Table 17 about here.]

In Tables 16 and 17 we compare the DGARCHmodel performance to various continuous-

time benchmark models. For the predictive log-likelihood loss function in Table 16, model

confidence sets at both the 10% and 25% level are not affected by the addition of DGARCH
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models, and the outperformance of SV-G is still significant. This highlights the superiority

of continuous-time specifications over sophisticated DGARCH models. The best models

from the DGARCH model class are GJR-t and MF-GJR-t models, and hence our results

imply that the most important out-of-sample feature to consider is a fat-tailed error term.

The Gneiting-Ranjan tests are summarized in Table 17 and also add further support to

earlier findings. SV-G outperforms all other specifications and the 10% model confidence

set is a singleton for three of the five weight functions (no weight, center, right tail). For

modeling the left tail of the return distribution, we find that the 10% model confidence

set includes all models, whereas the 25% set includes all but the MF-GJR-N specification.

Driven by this finding, the results for the tail weight function provide evidence in favor of

SV-G, with simple one-factor GJR models also providing adequate performance. To shed

further light on the model ranking within the DGARCH class, we run a separate set of

model confidence set estimations (unreported). These results confirm that GJR-t is the

most successful discrete-time specification, being the only model in the 25% confidence

set for the unweighted, center, right-tail and left-tail loss function.

7 Implications for Value at Risk

In this section, we provide out-of-sample tests using a VaR-based loss function. Our

aim is to understand the role of complex models for a standard application in financial

risk management. To this end, we base out-of-sample tests on the asymmetric VaR loss

function of González-Rivera et al. (2004). This function penalizes return observations

below VaR more than return observations that are above VaR. For the details see Section

3.3.

[Table 18 about here.]

We first present MCS estimations for a VaR loss function with a significance level

α = 1%, as this is the most common level used for financial applications. We report esti-
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mation results for all model classes in Table 18. The 25% model confidence set consists of

five models, DGARCH models with fat-tailed error terms (GJR-t, MF-GJR-t, GJR-N-J)

and two simple stochastic volatility models (SV-A, SV-G). All remaining models are con-

tained in the 10% model confidence set. These findings can be interpreted as follows. First,

complex continuous-time models do not provide any improvement over simpler DGARCH

specifications as far as VaR estimations are concerned. Interestingly, simple DGARCH

specifications (in particular GJR-t) outperform all jump-augmented continuous-time spec-

ifications. Secondly, the best-performing continuous-time models are SV-A and SV-G, a

finding that supports earlier evidence in favor of these two specifications.

In order to test these results for robustness, we rerun the analysis for two further

significance levels α = 0.5% and α = 2% (unreported).16 Interestingly, the smaller the

significance level, the more significant is the outperformance of the DGARCH specifi-

cations. For α = 0.5%, the 25% model confidence set consists of GJR-t, MF-GJR-t

and GJR-N-J and the only additional model in the 10% model confidence set is GJR-N.

Therefore for small significance levels, we find that simple DGARCH models significantly

outperform continuous-time models. For higher α-levels, the choice of model is less im-

portant, as for α = 2%, we find that all but two models (MF-GJR-N-J, MF-SV-A) are

included in the 25% MCS. Overall, this finding suggests that while continuous-time mod-

els provide significant improvements when the loss function takes into account the whole

density (such as the predictive log-likelihood or the unweighted CRPS statistic), simple

DGARCH models with fat error terms are superior for applications that focus on the

performance of the left tail only.
16Detailed results for these tests are available upon request.
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8 Conclusion

This paper studies the out-of-sample performance of several popular time-series models

for S&P 500 index returns. We use an in-sample data set from 1987 to 2006 for model

estimation and test how well alternative models fare in explaining index returns during

an out-of-sample period starting in 2007. We test a plethora of models, including finite-

and infinite-activity jumps, non-affine variance and multi-factor variance specifications, in

discrete- and continuous-time. Model specification tests include likelihood-based statistics

and weighted and unweighted continuous-ranked probability scores which are combined

with the model confidence set procedure of Hansen et al. (2011).

We find that despite the highly turbulent out-of-sample market regime, simple stochas-

tic volatility diffusions outperform more advanced jump specifications. The most impor-

tant model feature is the non-affinity of the variance process; other model features are

found to provide no further improvement during the out-of-sample period of this paper.

Furthermore, we find that jump-diffusion models with a constant intensity parameter are

misspecified for out-of-sample prediction. Our results in combination with findings in

Santa-Clara and Yan (2010) suggest that improving the modeling of the time-variation in

jump distributions and jump intensities are promising directions for future research.
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A Simulation Study

We test the ability of the approximate maximum likelihood method to estimate the pa-

rameters of affine and non-affine specifications. This procedure extends simulation results

in Bates (2006). We focus on a sample size of 4000 daily returns and simulate processes

with 100 intra-daily time steps with an Euler discretization as in Eraker et al. (2003). We

provide results for the standard stochastic volatility specification and an extension with

state-depended jump probabilities.

Tables 19 and 20 report results for a small Monte Carol study with 100 random sample

paths. The results indicate that the maximum likelihood method of Bates (2006) very

accurately identifies the parameters of the stochastic variance and jump specifications.

The local approximation to non-affine specifications leads to a minor loss in the preci-

sion of estimated parameters but the estimation methodology is still able to identify the

parameters accurately.

[Table 19 about here.]

[Table 20 about here.]
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Table 1: One-Factor Continuous-Time Models
This table provides an overview of the one-factor continuous-time models used in this paper.
Panel A lists all jump-diffusion models, whereas Panel B provides specifications built from the
CGMY process of Carr et al. (2002). Column 1 provides the model number, column 2 the
acronym used throughout the paper and column 3 provides a short description of the main
model features.

Number Model Features

Panel A: One-factor jump diffusion models. Models 1 to 12 are nested in the following
SDEs (where λt is the intensity of N):

dst =
(
µc − 1

2vt − λtk̄
)
dt+ ρv

√
vtdW

v
t +

√
1− ρ2

v

√
vt dW

s
t + ξtdNt

dvt = κv (θv − vt) dt+ σvv
γ
t dW

v
t .

1 SV-A Stochastic volatility model of Heston (1993), λt = 0 for all t, γ = 1
2

2 SV-G Continuous-time GARCH model with λt = 0 for all t, γ = 1
3 SV-C CEV stochastic volatility model with with λt = 0 for all t, γ ∈ [0.5, 1.5]
4 SVJ-A As model 1 with jump intensity λt = λc, normally distributed jump size ξt
5 SVJ-G As model 2 with λt = λc, normally distributed jump size ξt
6 SVJ-C As model 3 with λt = λc, normally distributed jump size ξt
7 SVSJ-A As model 1 with λt = λvvt, normally distributed jump size ξt
8 SVSJ-G As model 2 with λt = λvvt, normally distributed jump size ξt
9 SVSJ-C As model 3 with λt = λvvt, normally distributed jump size ξt
10 SVSJJ-A As model 1 with λt = λc + λvvt normally distributed jump size ξt
11 SVSJJ-G As model 2 with λt = λc + λvvt, normally distributed jump size ξt
12 SVSJJ-C As model 3 with λt = λc + λvvt, normally distributed jump size ξt

Panel B: One-factor Levy-jump models. Models 13 to 24 are described by the following
SDEs:

dst =
(
µc − 1

2vt
)
dt+ ρv

√
vtdW

v
t +

√
1− ρ2

v

√
vt dLt

dvt = κv (θv − vt) dt+ σvv
γ
t dW

v
t .

13 SVYY-A Lt driven by CGMY process of Carr et al. (2003), γ = 1
2

14 SVYY-G Lt driven by CGMY process of Carr et al. (2003), γ = 1
15 SVYY-C Lt driven by CGMY process of Carr et al. (2003), γ ∈ [0.5, 1.5]
16 SVDEXP-A Lt driven by double exponential jumps as in Kou (2002), γ = 1

2
17 SVDEXP-G Lt driven by double exponential jumps as in Kou (2002), γ = 1
18 SVDEXP-C Lt driven by double exponential jumps as in Kou (2002), γ ∈ [0.5, 1.5]
19 SVVG-A Lt driven by VG process of Madan and Seneta (1990), γ = 1

2
20 SVVG-G Lt driven by VG process of Madan and Seneta (1990), γ = 1
21 SVVG-C Lt driven by VG process of Madan and Seneta (1990), γ ∈ [0.5, 1.5]
22 SVYYD-A As model 13 with additional diffusive component in Lt
23 SVYYD-G As model 14 with additional diffusive component in Lt
24 SVYYD-C As model 15 with additional diffusive component in Lt
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Table 2: Data Statistics
This table provides summary statistics for daily log returns of the S&P 500 index for the whole sample
period from January 2, 1987 to December 31, 2014 as well as various sub-samples. In particular the
sample in column 4 (with sample start 1987*) excludes the observation on October 16, 1987, a market
crash with a log return of -22.9%.

Sample start 1987 1987 1987* 2007 2006 2010
Sample end 2014 2006 2006 2014 2009 2014

Observations 7057 5043 5042 2014 757 1257
Mean 0.0003 0.0003 0.0004 0.0002 -0.0003 0.0005
Standard deviation 0.0118 0.0108 0.0103 0.0140 0.0189 0.0101
Skewness -1.2943 -2.0918 -0.2124 -0.3180 -0.1737 -0.4771
Kurtosis 31.0345 48.3124 8.9613 12.3626 9.0731 7.6493

Percentile 0.5% -0.0426 -0.0330 -0.0321 -0.0542 -0.0764 -0.0355
Percentile 1% -0.0315 -0.0273 -0.0272 -0.0453 -0.0588 -0.0292
Percentile 2% -0.0251 -0.0226 -0.0226 -0.0323 -0.0479 -0.0238
Percentile 5% -0.0175 -0.0161 -0.0161 -0.0223 -0.0300 -0.0163
Percentile 50% 0.0006 0.0005 0.0005 0.0008 0.0009 0.0007
Percentile 95% 0.0167 0.0158 0.0158 0.0193 0.0263 0.0153
Percentile 98% 0.0240 0.0223 0.0223 0.0292 0.0400 0.0217
Percentile 99% 0.0317 0.0276 0.0276 0.0396 0.0526 0.0288
Percentile 99.5% 0.0392 0.0347 0.0347 0.0464 0.0657 0.0336
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Table 5: Model Confidence Set p-Values and Model Ranking
Full Out-of-sample Period Using Predictive Likelihood

This table shows model confidence set results for the full out-of-sample period January 3, 2007 to Decem-
ber 31, 2014 using predictive likelihood as the ranking criteria. For details regarding notation, see Section
3.2 and Section 3.3. The first column indicates the number of the iterative elimination step for models
running from i = 1 to total number of models (m0 = 14). The second column shows the p-values for the
hypotheses H0,Mi

and the third column presents the MCS p-value p̂eMi
for the model that is removed

in the respective elimination step. The fourth column shows the model eliminated in each iterative step
by the elimination rule and thereby presents the model ranking according the MCS criteria, with the
worst model ranked at the top and the best model at the bottom of the table, respectively. For a given
significance level α any model for which holds p̂eMi

≥ α is included in the MCS M̂∗1−α.

Elimination Rule p-Value for H0,Mi MCS p-Value p̂eMi
Eliminated Model

eM1 0.0111 0.0111 SVYYD-A
eM2 0.0104 0.0111 SVYY-A
eM3 0.0092 0.0111 SVDEXP-A
eM4 0.0085 0.0111 SVSJ-A
eM5 0.0083 0.0111 SVVG-A
eM6 0.0081 0.0111 SVJ-A
eM7 0.0070 0.0111 SVSJ-G
eM8 0.0084 0.0111 SVYY-G
eM9 0.0090 0.0111 SVYYD-G
eM10 0.0100 0.0111 SVDEXP-G
eM11 0.0200 0.0200 SVVG-G
eM12 0.0681 0.0681 SVJ-G
eM13 0.2308 0.2308 SV-A
eM14 1.0000 1.0000 SV-G
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Table 6: Model Confidence Set p-Values and Model Ranking
First Part and Second Part of Out-of-sample Using Predictive Likelihood

This table shows model confidence set results for the first part of the out-of-sample period January 3,
2007 to December 31, 2009 in the upper panel and the second part of the out-of-sample period January
4, 2010 to December 31, 2014 in the lower panel using predictive likelihood as the ranking criteria. For
details regarding notation, see Section 3.2 and Section 3.3. The first column indicates the number of
the iterative elimination step for models running from i = 1 to total number of models (m0 = 14). The
second column shows the p-values for the hypotheses H0,Mi

and the third column presents the MCS p-
value p̂eMi

for the model that is removed in the respective elimination step. The fourth column shows the
model eliminated in each iterative step by the elimination rule and thereby presents the model ranking
according the MCS criteria, with the worst model ranked at the top and the best model at the bottom
of the table, respectively. For a given significance level α any model for which holds p̂eMi

≥ α is included
in the MCS M̂∗1−α.

Panel A: January 2007 to December 2009

Elimination Rule p-Value for H0,Mi
MCS p-Value p̂eMi

Eliminated Model
eM1 0.1504 0.1504 SVYYD-A
eM2 0.1499 0.1504 SVYY-A
eM3 0.1504 0.1504 SVSJ-A
eM4 0.1497 0.1504 SVDEXP-A
eM5 0.1499 0.1504 SVVG-A
eM6 0.1535 0.1535 SVJ-A
eM7 0.1937 0.1937 SV-A
eM8 0.5746 0.5746 SVSJ-G
eM9 0.5490 0.5746 SVYY-G
eM10 0.7044 0.7044 SVYYD-G
eM11 0.7812 0.7812 SVDEXP-G
eM12 0.7846 0.7846 SVVG-G
eM13 0.9958 0.9958 SVJ-G
eM14 1.0000 1.0000 SV-G

Panel B: January 2010 to December 2014

Elimination Rule p-Value for H0,Mk
MCS p-Value Eliminated Model

eM1 0.0033 0.0033 SVYYD-A
eM2 0.0026 0.0033 SVYY-G
eM3 0.0034 0.0034 SVDEXP-A
eM4 0.0028 0.0034 SVVG-G
eM5 0.0041 0.0041 SVVG-A
eM6 0.0033 0.0041 SVSJ-G
eM7 0.0061 0.0061 SVYYD-G
eM8 0.0066 0.0066 SVSJ-A
eM9 0.0082 0.0082 SVDEXP-G
eM10 0.0095 0.0095 SVJ-A
eM11 0.0211 0.0211 SVYY-A
eM12 0.0029 0.0211 SVJ-G
eM13 0.9490 0.9490 SV-G
eM14 1.0000 1.0000 SV-A
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Table 7: Gneiting-Ranjan Tests
Full Out-of-sample Dataset (No weighting).

This table reports the Gneiting and Ranjan (2011) test statistics tn =
√
n
(
CRPS

f

w − CRPS
g

w

)
σ̂−1
n

for several model pairs with CRPS denoting continuous ranked probability score and f and g denoting
forecasting densities of the models to be tested against each other. The test statistic follows asymptotically
a standard normal distribution. For details of calculation, see Section 3.3. The models in rows refer to
forecasting density f and the models in columns to forecasting density g, respectively. A positive statistic
therefore indicates that the model in the row is out-performed by the model in the column and vice versa.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SV-A (1) – 2.39 -3.34 1.84 -3.76 1.31 -3.28 1.51 -3.74 1.34
SV-G (2) -2.39 – -3.09 -2.50 -3.25 -3.10 -3.14 -2.80 -3.26 -3.10
SVJ-A (3) 3.34 3.09 – 2.89 -1.45 2.50 -0.27 2.63 -1.55 2.51
SVJ-G (4) -1.84 2.50 -2.89 – -3.04 -2.99 -2.92 -2.03 -3.06 -2.92
SVYY-A (5) 3.76 3.25 1.45 3.04 – 2.73 2.50 2.83 -0.86 2.74
SVYY-G (6) -1.31 3.10 -2.50 2.99 -2.73 – -2.58 2.80 -2.75 2.14
SVVG-A (7) 3.28 3.14 0.27 2.92 -2.50 2.58 – 2.70 -3.04 2.59
SVVG-G (8) -1.51 2.80 -2.63 2.03 -2.83 -2.80 -2.70 – -2.86 -2.54
SVYYD-A (9) 3.74 3.26 1.55 3.06 0.86 2.75 3.04 2.86 – 2.76
SVYYD-G (10) -1.34 3.10 -2.51 2.92 -2.74 -2.14 -2.59 2.54 -2.76 –
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Table 8: Gneiting-Ranjan Tests
Full Out-of-sample Dataset Dataset (left tail weighting).

This table reports the Gneiting and Ranjan (2011) test statistics tn =
√
n
(
CRPS

f

w − CRPS
g

w

)
σ̂−1
n

for several model pairs with CRPS denoting continuous ranked probability score with weight function
w(α) = (1−α)2 and f and g denoting forecasting densities of the models to be tested against each other.
The test statistic follows asymptotically a standard normal distribution. For details of calculation see
Section 3.3. The models in rows refer to forecasting density f and the models in columns to forecasting
density g, respectively. A positive statistic therefore indicates that the model in the row is out-performed
by the model in the column and vice versa.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

SV-A (1) – 1.11 -1.83 1.01 -2.03 0.78 -1.77 0.90 -2.03 0.80
SV-G (2) -1.11 – -1.52 -0.64 -1.59 -1.07 -1.50 -0.84 -1.59 -1.04
SVJ-A (3) 1.83 1.52 – 1.56 -0.77 1.43 0.13 1.51 -0.81 1.44
SVJ-G (4) -1.01 0.64 -1.56 – -1.63 -1.47 -1.53 -0.96 -1.63 -1.43
SVYY-A (5) 2.03 1.59 0.77 1.63 – 1.53 1.74 1.60 -0.26 1.54
SVYY-G (6) -0.78 1.07 -1.43 1.47 -1.53 – -1.41 1.68 -1.53 1.25
SVVG-A (7) 1.77 1.50 -0.13 1.53 -1.74 1.41 – 1.49 -1.92 1.42
SVVG-G (8) -0.90 0.84 -1.51 0.96 -1.60 -1.68 -1.49 – -1.60 -1.52
SVYYD-A (9) 2.03 1.59 0.81 1.63 0.26 1.53 1.92 1.60 – 1.54
SVYYD-G (10) -0.80 1.04 -1.44 1.43 -1.54 -1.25 -1.42 1.52 -1.54 –
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Table 9: Model Confidence Set p-Values and Model Ranking
Full Out-of-sample Period Using CRPS

This table shows model confidence set results for the full out-of-sample period from January 3, 2007 to
December 31, 2014 using continuous ranked probability score (CRPS) as the ranking criteria. For details
of notation and calculation see Sections 3.2 and 3.3. The first column provides model specifications, the
second column provides results for the non-weighted CRPS statistic. Columns 3 to 6 refer to the results
for the weighted CRPS statistics. The weighting scheme “Center” applies more weight to the center of
the predictive density when calculating CRPS and the weighting schemes “Tails”, “Right Tail”, and “Left
Tail” work accordingly. For a given significance level α models for which p̂eMi

≥ α are included in the
MCS M̂∗1−α. We use ∗ (∗∗) to indicate that the model belongs to the 10% (25%) MCS.

Model Name No Weight Center Tails Right Tail Left Tail
SV-A 0.0444 0.0286 0.0928 0.0156 0.5016**
SV-G 1.0000** 1.0000** 1.0000** 1.0000** 1.0000**
SVJ-A 0.0427 0.0286 0.0928 0.0156 0.3975**
SVJ-G 0.0500 0.0393 0.0928 0.0156 0.5527**
SVSJ-A 0.0427 0.0286 0.0928 0.0156 0.3657**
SVSJ-G 0.0500 0.0393 0.0928 0.0156 0.5016**
SVYY-A 0.0427 0.0286 0.0928 0.0156 0.3368**
SVYY-G 0.0444 0.0291 0.0928 0.0156 0.5016**
SVDEXP-A 0.0427 0.0286 0.0928 0.0156 0.3657**
SVDEXP-G 0.0500 0.0393 0.0928 0.0156 0.5527**
SVVG-A 0.0427 0.0286 0.0928 0.0156 0.3691**
SVVG-G 0.0500 0.0393 0.0928 0.0156 0.5527**
SVYYD-A 0.0427 0.0286 0.0928 0.0156 0.3359**
SVYYD-G 0.0444 0.0291 0.0928 0.0156 0.5016**
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Table 10: Model Confidence Set p-Values and Model Ranking
First Part and Second Part of Out-of-sample Using CRPS

This table provides model confidence set results for the first part of out-of-sample period from January 3,
2007 to December 31, 2009 in panel A and the second part of the out-of-sample period January 4, 2010
to December 31, 2014 in Panel B. The loss function is given by the continuous ranked probability score
(CRPS). For details of notation and calculation see Sections 3.2 and 3.3. The first column provides model
specifications, the second column provides results for the non-weighted CRPS statistic. Columns 3 to 6
refer to the results for the weighted CRPS statistics. The weighting scheme “Center” applies more weight
to the center of the predictive density when calculating CRPS and the weighting schemes “Tails”, “Right
Tail”, and “Left Tail” work accordingly. For a given significance level α models for which p̂eMi

≥ α are
included in the MCS M̂∗1−α. We use ∗ (∗∗) to indicate that the model belongs to the 10% (25%) MCS.

Panel A: January 2007 to December 2009

Model Name No Weight Center Tails Right Tail Left Tail
SV-A 0.2565** 0.2746** 0.1739* 0.0868 0.3329**
SV-G 1.0000** 1.0000** 1.0000** 1.0000** 0.9565**
SVJ-A 0.1392* 0.1437* 0.1489* 0.0629 0.3329**
SVJ-G 0.4570** 0.4730** 0.2869** 0.1175* 1.0000**
SVSJ-A 0.1676* 0.1707* 0.1489* 0.0629 0.3329**
SVSJ-G 0.4399** 0.4730** 0.2869** 0.1175* 0.8719**
SVYY-A 0.1284* 0.1437* 0.1370* 0.0629 0.3292**
SVYY-G 0.2565** 0.4730** 0.2285* 0.0974 0.7440**
SVDEXP-A 0.1473* 0.1464* 0.1489* 0.0629 0.3329**
SVDEXP-G 0.4570** 0.4730** 0.2869** 0.1175* 0.9565**
SVVG-A 0.1529* 0.1437* 0.1489* 0.0629 0.3394**
SVVG-G 0.4570** 0.4730** 0.2869** 0.0974 0.9003**
SVYYD-A 0.1301* 0.1437* 0.1370* 0.0629 0.3329**
SVYYD-G 0.2565** 0.4730** 0.2285* 0.0868 0.8047**

Panel B: January 2010 to December 2014

Model Name No Weight Center Tails Right Tail Left Tail
SV-A 0.2627** 0.1042* 0.5905** 0.0788 1.0000**
SV-G 1.0000** 1.0000** 1.0000** 1.0000** 0.8145**
SVJ-A 0.0889 0.0227 0.1891* 0.0706 0.5458**
SVJ-G 0.1077* 0.0298 0.1891* 0.0706 0.5458**
SVSJ-A 0.0889 0.0273 0.1490* 0.0706 0.5189**
SVSJ-G 0.0889 0.0298 0.1700* 0.0706 0.5458**
SVYY-A 0.0889 0.0227 0.1490* 0.0706 0.4789**
SVYY-G 0.0889 0.0298 0.1490* 0.0706 0.5189**
SVDEXP-A 0.0889 0.0227 0.1273* 0.0706 0.3945**
SVDEXP-G 0.0889 0.0298 0.1700* 0.0706 0.5458**
SVVG-A 0.0889 0.0225 0.1142* 0.0706 0.4321**
SVVG-G 0.0889 0.0298 0.1490* 0.0706 0.5458**
SVYYD-A 0.0889 0.0221 0.1078* 0.0698 0.3710**
SVYYD-G 0.0889 0.0298 0.1490* 0.0706 0.5458**
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Table 11: Likelihood Ratio Tests (Sub-Sample Analysis).
H0: µ = ρ = 0 and σ = 1

This table reports the likelihood ratios (LR) for the likelihood ratio test proposed in Berkowitz (2001)
as described in Section (5.4). Based on the estimated optimal parameters sets for time period 1987 to
end of 2006, LRs are calculated for the full out-of-sample period from start of 2007 until end of 2014 and
for each of the out-of-sample years separately. The LR is calculated as LR = −2[L(0, 1, 0)−L(µ̂, σ̂2, ρ̂)],
which serve as test statistics for the null hypothesis H0: (µ = 0, σ2 = 1, ρ = 0), jointly testing the
probability integral transforms for independence and mean and variance equal to (0, 1). The test statistic
is distributed χ2(3) with critical values given by: 99% level – χ2(3) = 11.34 (***), 95% level: χ2(3) = 9.210
(**), and 90% level: χ2(3) = 6.635 (*).

Model All 2007 2008 2009 2010 2011 2012 2013 2014

SV-A 25.18*** 5.36 34.61*** 5.11 3.12 7.39* 0.79 6.70* 1.01
SV-G 24.83*** 7.40* 13.65*** 3.01 5.93 7.29* 0.27 6.85* 0.77
SVJ-A 24.24*** 6.45 33.17*** 2.38 2.48 6.60 0.91 6.09 0.45
SVJ-G 23.35*** 8.08* 13.89*** 2.05 4.33 6.03 0.14 6.25 1.24
SVSJ-A 22.37*** 6.39 26.01*** 2.22 2.38 6.89* 0.75 6.13 0.42
SVSJ-G 22.31*** 8.13* 12.65*** 1.65 4.07 6.24 0.16 6.47 1.50
SVYY-A 27.02*** 7.09* 30.83*** 2.66 2.80 8.99* 0.78 5.94 0.45
SVYY-G 25.60*** 9.00* 13.73*** 1.76 4.56 7.84* 0.15 6.37 1.75
SVDEXP-A 22.73*** 6.51 26.43*** 2.17 2.36 7.27* 0.80 6.09 0.43
SVDEXP-G 22.87*** 8.26* 12.80*** 1.68 4.11 6.51 0.16 6.51 1.55
SVVG-A 22.67*** 6.56 26.09*** 2.14 2.39 7.29* 0.83 6.19 0.44
SVVG-G 22.77*** 8.29* 12.86*** 1.68 4.09 6.57 0.16 6.55 1.51
SVYYD-A 26.80*** 7.05* 30.76*** 2.54 2.75 8.97* 0.77 5.93 0.44
SVYYD-G 25.55*** 8.96* 13.69*** 1.78 4.60 7.78* 0.15 6.38 1.74



Model Complexity and Out-of-Sample Performance 52

T
ab

le
12
:
In
-s
am

pl
e
pa

ra
m
et
er

es
ti
m
at
io
n
re
su
lt
s
(M

ul
ti
-f
ac
to
r
ju
m
p
di
ffu

si
on

s)
.

T
hi
s
ta
bl
e

re
po

rt
s
th
e

pa
ra
m
et
er

es
tim

at
io
n

re
su
lts

fo
r
th
e

tw
o-
fa
ct
or

ju
m
p-
di
ffu

sio
n

m
od

el
s.

T
he

es
tim

at
io
n

pe
rio

d
is

fr
om

2
Ja

nu
ar
y

19
87

to
29

D
ec
em

be
r
20
06
.

T
he

es
tim

at
io
n

is
pe

rf
or
m
ed

us
in
g
an

ex
te
ns
io
n

of
th
e
m
ax

im
um

lik
el
ih
oo

d
m
et
ho

d
pr
op

os
ed

in
B
at
es

(2
00
6)
.

Fo
r
ea
ch

pa
-

ra
m
et
er
,w

e
re
po

rt
th
e
m
ax

im
um

lik
el
ih
oo

d
es
tim

at
es

an
d
th
e
st
an

da
rd

er
ro
rs

in
pa

re
nt
he
sis

.
Lo

g-
lik

el
ih
oo

d
va
lu
es

fo
re

ac
h
m
od

el
ar
e
gi
ve
n
in

th
e
la
st

ro
w
.

Pa
ra
m
et
er
s

SV
m
od

el
s

SV
J
m
od

el
s

SV
SJ

m
od

el
s

SV
SJ

J
m
od

el
s

γ
0.
50
0

1.
00
0

1.
17
5

0.
50
0

1.
00
0

1.
17
6

0.
50
0

1.
00
0

1.
05
7

0.
50
0

1.
00
0

1.
12
7

(0
.0
35
)

(0
.0
41
)

(0
.0
40
)

(0
.0
75
)

µ
c

0.
04
5

0.
03
8

0.
06
0

0.
03
8

0.
04
7

0.
05
9

0.
04
6

0.
04
8

0.
05
1

0.
04
6

0.
04
8

0.
05
3

(0
.0
02
)

(0
.0
27
)

(0
.0
26
)

(0
.0
21
)

(0
.0
28
)

(0
.0
26
)

(0
.0
24
)

(0
.0
22
)

(0
.0
24
)

(0
.0
27
)

(0
.0
27
)

(0
.0
21
)

κ
v

26
.9
28

16
.0
78

11
.4
02

8.
01
7

9.
05
2

8.
40
0

8.
54
4

9.
36
6

9.
28
7

8.
45
1

9.
46
7

9.
28
5

(2
.7
93
)

(1
.8
20
)

(1
.5
21
)

(1
.4
19
)

(1
.4
86
)

(1
.5
88
)

(1
.4
86
)

(1
.4
66
)

(1
.5
39
)

(1
.3
91
)

(1
.5
08
)

(1
.5
47
)

σ
v

0.
63
3

4.
18
6

6.
67
0

0.
34
9

2.
85
6

5.
50
1

0.
34
8

2.
80
2

3.
48
8

0.
34
5

2.
82
9

4.
54
7

(0
.0
28
)

(0
.1
52
)

(0
.7
24
)

(0
.0
27
)

(0
.1
98
)

(0
.7
15
)

(0
.0
27
)

(0
.2
02
)

(0
.5
86
)

(0
.0
27
)

(0
.2
05
)

(1
.3
07
)

κ
m

1.
40
8

1.
02
2

0.
94
6

0.
57
4

0.
53
4

0.
51
6

0.
60
2

0.
59
3

0.
58
6

0.
62
8

0.
60
1

0.
57
0

(0
.1
71
)

(0
.1
17
)

(0
.1
25
)

(0
.2
21
)

(0
.1
82
)

(0
.1
97
)

(0
.2
10
)

(0
.1
61
)

(0
.1
88
)

(0
.1
70
)

(0
.2
05
)

(0
.2
02
)

θ m
0.
01
8

0.
01
6

0.
01
4

0.
01
9

0.
01
7

0.
01
6

0.
01
8

0.
01
6

0.
01
6

0.
01
8

0.
01
6

0.
01
6

(0
.0
02
)

(0
.0
02
)

(0
.0
02
)

(0
.0
04
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

(0
.0
03
)

σ
m

0.
22
8

1.
72
7

3.
76
5

0.
19
4

1.
79
4

4.
15
6

0.
19
0

1.
82
1

2.
35
8

0.
19
6

1.
82
1

3.
21
0

(0
.0
28
)

(0
.2
47
)

(0
.7
98
)

(0
.0
52
)

(0
.4
13
)

(1
.4
31
)

(0
.0
45
)

(0
.3
48
)

(0
.6
09
)

(0
.0
34
)

(0
.4
26
)

(1
.3
50
)

ρ
v

-0
.6
51

-0
.8
32

-0
.8
57

-0
.7
44

-0
.8
61

-0
.9
06

-0
.7
47

-0
.8
65

-0
.8
80

-0
.7
47

-0
.8
64

-0
.8
91

(0
.0
34
)

(0
.0
23
)

(0
.0
22
)

(0
.0
36
)

(0
.0
27
)

(0
.0
26
)

(0
.0
36
)

(0
.0
27
)

(0
.0
27
)

(0
.0
37
)

(0
.0
27
)

(0
.0
27
)

λ
c

0.
97
6

0.
85
2

1.
38
5

0.
01
2

0.
01
1

0.
04
8

(0
.2
85
)

(0
.2
99
)

(0
.4
61
)

(0
.4
40
)

(0
.0
10
)

(0
.3
03
)

λ
v

56
.3
81

51
.7
51

52
.2
39

57
.0
74

50
.2
58

49
.5
14

(1
7.
27
5)

(1
6.
97
7)

(1
6.
88
6)

(2
5.
77
1)

(1
7.
42
6)

(2
0.
48
3)

µ
s

-0
.0
28

-0
.0
24

-0
.0
08

-0
.0
27

-0
.0
26

-0
.0
25

-0
.0
26

-0
.0
27

-0
.0
25

(0
.0
12
)

(0
.0
20
)

(0
.0
07
)

(0
.0
12
)

(0
.0
01
)

(0
.0
11
)

(0
.0
04
)

(0
.0
02
)

(0
.0
02
)

σ
s

0.
06
2

0.
06
2

0.
04
1

0.
05
9

0.
05
4

0.
05
3

0.
06
0

0.
05
4

0.
05
3

(0
.0
02
)

(0
.0
07
)

(0
.0
02
)

(0
.0
07
)

(0
.0
07
)

(0
.0
07
)

(0
.0
07
)

(0
.0
07
)

(0
.0
08
)

LL
16
72
2

16
78
1

16
78
9

16
77
1

16
81
2

16
81
6

16
77
7

16
81
6

16
81
8

16
77
7

16
81
6

16
82
0



Model Complexity and Out-of-Sample Performance 53

Table 13: Model Confidence Set p-Values and Model Ranking
Multi-factor Models for Full Out-of-sample Period using Predictive

Likelihood
This table shows model confidence set results for the full out-of-sample period January 3, 2007 to Decem-
ber 31, 2014 using predictive likelihood as the ranking criteria. For details of notation and calculation
see Section 3.2 and Section 3.3. Multi-factor models are tested against SV-A, SV-G, SVSJJ-A, SVSJJ-G,
SVYYD-A, and SVYYD-G. The first column indicates the number of the iterative elimination step for
models running from i = 1 to total number of models (m0 = 17). The second column shows the p-values
for the hypotheses H0,Mi

and the third column presents the MCS p-value p̂eMi
for the model that is

removed in the respective elimination step. The fourth column shows the model eliminated in each iter-
ative step by the elimination rule and thereby presents the model ranking according to the MCS criteria,
with the worst model ranked at the top and the best model at the bottom of the table respectively. For
a given significance level α any model for which holds p̂eMi

≥ α is included in the MCS M̂∗1−α.

Elimination Rule p-Value for H0,Mk
MCS p-Value Eliminated Model

eM1 0.0205 0.0205 MF-SVSJJ-A
eM2 0.0242 0.0242 MF-SVSJ-A
eM3 0.0302 0.0302 SVYYD-A
eM4 0.0301 0.0302 MF-SVJ-A
eM5 0.0410 0.0410 SVSJJ-A
eM6 0.0439 0.0439 MF-SV-A
eM7 0.1958 0.1958 SVYYD-G
eM8 0.1955 0.1958 SVSJJ-G
eM9 0.1958 0.1958 MF-SVSJJ-C
eM10 0.2057 0.2057 MF-SVJ-C
eM11 0.2261 0.2261 MF-SVSJ-G
eM12 0.2280 0.2280 MF-SVJ-G
eM13 0.2353 0.2353 MF-SV-C
eM14 0.4827 0.4827 SV-A
eM15 0.2439 0.4827 MF-SVSJJ-G
eM16 0.9147 0.9147 SV-G
eM17 1.0000 1.0000 MF-SV-G
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Table 14: Model Confidence Set p-Values and Model Ranking
Multi-factor Models for Full Out-of-sample Period Using CRPS

This table shows model confidence set results for the full out-of-sample period January 3, 2007 to De-
cember 31, 2014 using continuous ranked probability score (CRPS) as the ranking criteria. For details of
notation and calculation see Sections 3.2 and Section 3.3. Multi-factor models are tested against SV-A,
SV-G, SVSJJ-A, SVSJJ-G, SVYYD-A, and SVYYD-G. First column gives models tested listed from least
complex model at the top to most complex model at the bottom of table. Column 2 gives results of the
non-weighted CRPS version. Columns 3 to 6 refer to the results of the weighted CRPS versions. The
weighting scheme “Center” puts more weight on the center of the predictive density when calculating
CRPS and the weighting schemes “Tails”, “Right Tail”, and “Left Tail” work accordingly. For a given
significance level α any model for which holds p̂eMi

≥ α is included in the MCS M̂∗1−α. One ∗ indicates
the model belongs to the 10% MCS and two ∗∗ indicate model belongs to the 25% MCS.

Model Name No Weight Center Tails Right Tail Left Tail
MF-SV-A 0.0221 0.1337* 0.0477 0.0400 0.2438*
MF-SV-G 0.6180** 0.6506** 0.6586** 0.2857** 0.5211**
MF-SV-C 0.6180** 0.6506** 0.6586** 1.0000** 0.4998**
MF-SVJ-A 0.0196 0.0150 0.1073* 0.0124 0.4129**
MF-SVJ-G 0.4500** 0.4851** 0.5362** 0.2842** 0.5211**
MF-SVJ-C 0.6180** 0.5607** 0.6586** 0.2857** 0.4998**
MF-SVSJ-A 0.1077* 0.1160* 0.0646 0.0909 0.3662**
MF-SVSJ-G 0.5195** 0.4851** 0.5919** 0.2842** 0.5211**
MF-SVSJ-C 0.6180** 0.6506** 0.6586** 0.2857** 0.5211**
MF-SVSJJ-A 0.0221 0.0186 0.0513 0.0208 0.2872**
MF-SVSJJ-G 0.5195** 0.5607** 0.5919** 0.2857** 0.5211**
MF-SVSJJ-C 0.6180** 0.6506** 0.6586** 0.2857** 0.5211**
SV-A 0.3884** 0.4017** 0.4911** 0.1110* 0.5211**
SV-G 1.0000** 1.0000** 1.0000** 0.2857** 1.0000**
SVSJ-A 0.1532* 0.0424 0.3063** 0.0118 0.5211**
SVSJ-G 0.5195** 0.5607** 0.5919** 0.1110* 0.5211**
SVYYD-A 0.0508 0.0146 0.2290* 0.0106 0.4998**
SVYYD-G 0.4500** 0.4851** 0.5362** 0.0909 0.5211**
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Table 15: In-sample parameter estimation results (Discrete-time GARCH
Models).

This table reports the parameter estimation results for discrete-time GARCH models. The estimation
period is from January 2, 1987 to December 29, 2006. The estimation is performed using maximum
likelihood method. For each parameter, we report the maximum likelihood estimates and the standard
errors in parenthesis. Log-likelihood values for each model are given in the last row. For exact model
definitions see Section (6.2).

GJR-N MF-GJR-N GJR-N-J MF-GJR-
N-J GJR-t MF-GJR-t

µ 0.0318 0.0393 0.0285 0.0287 0.0467 0.0472
(0.0116) (0.0113) (0.0124) (0.0132) (0.0106) (0.0105)

q̄ 1.0918 1.0396 0.9571
(0.1093) (0.1412) (0.1896)

αh 0.0136 0.0005 0.0196 0.0147 0.0178 0.0001
(0.0058) (0.0194) (0.0067) (0.0094) (0.0089) (0.0269)

βh 0.9040 0.6100 0.8943 0.9212 0.9124 0.7552
(0.0041) (0.0494) (0.0075) (0.0174) (0.0076) (0.0705)

γh 0.1308 0.2122 0.1211 0.0900 0.1110 0.1233
(0.0067) (0.0212) (0.0112) (0.0232) (0.0132) (0.0373)

qq 1.0810 0.5825 1.4592
(0.1773) (0.0581) (0.8374)

αq 0.0250 0.0008 0.0332
(0.0076) (0.0155) (0.0144)

βq 0.9519 0.8714 0.9487
(0.0046) (0.3938) (0.0076)

γq 0.0289 -0.0002 0.0266
(0.0123) (0.0288) (0.0244)

λb 0.0114 0.0065
(0.0035) (0.0024)

µr -1.6804 -2.6934
(0.8805) (1.7811)

σr 2.8360 3.6652
(0.2697) (0.4840)

η 6.8810 6.8291
(0.5240) (0.5641)

LL 16623 16663 16741 16748 16774 16785
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Table 16: Model Confidence Set p-Values and Model Ranking
Discrete-time GARCH Models for Full Out-of-sample Period using

Predictive Likelihood
This table shows model confidence set results for the full out-of-sample period January 3, 2007 to Decem-
ber 31, 2014 using predictive likelihood as the ranking criteria. For details of notation and calculation
see Section 3.2 and Section 3.3. Discrete-time models are tested against SV-A, SV-G, SVSJ-A, SVSJ-G,
SVYYD-A, and SVYYD-G. The first column indicates the number of the iterative elimination steps for
models running from i = 1 to total number of models (m0 = 12). Second column shows the p-values for
the hypotheses H0,Mi

and third column presents MCS p-Value p̂eMi
for the model that is going to be

eliminated in the respective elimination step. Fourth column shows the model eliminated in each iterative
step by the elimination rule and thereby presents the model ranking according the MCS criteria, with
the worst model ranked at the top and the best model at the bottom of the table, respectively. For a
given significance level α any model for which holds p̂eMi

≥ α is included in the MCS M̂∗1−α.

Elimination Rule p-Value for H0,Mi MCS p-Value p̂eMi
Eliminated Model

eM1 0.0000 0.0000 MF-GJR-N
eM2 0.0001 0.0001 MF-GJR-N-J
eM3 0.0001 0.0001 GJR-N
eM4 0.0012 0.0012 GJR-N-J
eM5 0.0038 0.0038 SVYYD-A
eM6 0.0023 0.0038 SVSJ-A
eM7 0.0016 0.0038 MF-GJR-t
eM8 0.0027 0.0038 SVYYD-G
eM9 0.0055 0.0055 GJR-t
eM10 0.0320 0.0320 SVSJ-G
eM11 0.2308 0.2308 SV-A
eM12 1.0000 1.0000 SV-G
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Table 17: Model Confidence Set p-Values and Model Ranking
Discrete-time Models for Full Out-of-sample Period Using CRPS

This table shows model confidence set results for the full out-of-sample period January 3, 2007 to De-
cember 31, 2014 using continuous ranked probability score (CRPS) as the ranking criteria. For details of
notation and calculation see Sections 3.2 and Section 3.3. The first column provides model specifications,
the second column provides results for the non-weighted CRPS statistic. Columns 3 to 6 refer to the
results for the weighted CRPS statistics. The weighting scheme “Center” applies more weight to the
center of the predictive density when calculating CRPS and the weighting schemes “Tails”, “Right Tail”,
and “Left Tail” work accordingly. For a given significance level α models for which p̂eMi

≥ α are included
in the MCS M̂∗1−α. We use ∗ (∗∗) to indicate that the model belongs to the 10% (25%) MCS.

Model Name No Weight Center Tails Right Tail Left Tail
GJR-N 0.0090 0.0045 0.2849** 0.0022 0.5315**
MF-GJR-N 0.0044 0.0016 0.0220 0.0022 0.1777*
GJR-N-J 0.0090 0.0045 0.0555 0.0022 0.3470**
MF-GJR-N-J 0.0090 0.0045 0.0220 0.0022 0.2795**
GJR-t 0.0634 0.0088 0.2849** 0.0022 1.0000**
MF-GJR-t 0.0090 0.0088 0.0220 0.0022 0.5315**
SV-A 0.0090 0.0088 0.0220 0.0022 0.3470**
SV-G 1.0000** 1.0000** 1.0000** 1.0000** 0.6755**
SVSJ-A 0.0090 0.0045 0.0220 0.0022 0.2795**
SVSJ-G 0.0090 0.0167 0.0555 0.0056 0.5315**
SVYYD-A 0.0090 0.0045 0.0220 0.0022 0.2795**
SVYYD-G 0.0090 0.0088 0.0220 0.0022 0.5315**
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Table 18: VaR Specification Tests 1% (Full sample)
This table shows model confidence set results for the full out-of-sample period January 3, 2007 to De-
cember 31, 2014 using the asymmetric VaR loss function proposed by González-Rivera et al. (2004).
For details of notation and calculation see Section 3.2 and Section 3.3. A subset of the most relevant
models representing each of the model classes analyzed in this paper are tested against each other. The
first column indicates the number of the iterative elimination step for models running from i = 1 to
total number of models (m0 = 18). Second column shows the p-values for the hypotheses H0,Mi

and
third column presents MCS p-Value p̂eMi

for the model that is going to be eliminated in the respective
elimination step. Fourth column shows the model eliminated in each iterative step by the elimination
rule and thereby presents the model ranking according the MCS criteria, with the worst model ranked
at the top and the best model at the bottom of the table, respectively. For a given significance level α
any model for which holds p̂eMi

≥ α is included in the MCS M̂∗1−α.

Elimination Rule p-Value for H0,Mi
MCS p-Value p̂eMi

Eliminated Model

eM1 0.1195 0.1195 MF-SV-A
eM2 0.1217 0.1217 MF-GJR-N-J
eM3 0.1629 0.1629 MF-SVJ-A
eM4 0.1474 0.1629 MF-GJR-N
eM5 0.1500 0.1629 MF-SVJ-G
eM6 0.1415 0.1629 SVYYD-A
eM7 0.1267 0.1629 MF-SV-G
eM8 0.1227 0.1629 MF-SVSJJ-A
eM9 0.0993 0.1629 SVYYD-G
eM10 0.1271 0.1629 SVSJ-G
eM11 0.1954 0.1954 SVSJ-A
eM12 0.1942 0.1954 MF-SVSJJ-G
eM13 0.2171 0.2171 GJR-N
eM14 0.3186 0.3186 SV-A
eM15 0.1507 0.3186 SV-G
eM16 0.1836 0.3186 GJR-N-J
eM17 0.2529 0.3186 MF-GJR-t
eM18 1.0000 1.0000 GJR-t
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Table 19: Simulation study: SV model.
This table reports the parameter estimation results from a Monte Carlo study where 100 sample paths
with 4000 daily returns are simulated from the true model with parameters shown as simulated. The
simulation is performed using an Euler discretization with 100 time steps per day. The average estimated
parameter of these simulated paths are reported in line estimated. RMSE and standard errors (std error)
are also reported.

Parameter µ κ θ σv ρv γ

simulated 0.050 3.500 0.025 0.400 -0.650 0.500
estimated 0.041 3.796 0.025 0.399 -0.663
RMSE 0.026 0.681 0.004 0.026 0.040
standard
error

0.003 0.068 0.000 0.003 0.004

simulated 0.050 3.500 0.025 2.530 -0.650 1.000
estimated 0.043 4.381 0.023 2.404 -0.683
RMSE 0.033 0.988 0.003 0.178 0.051
standard
error

0.003 0.099 0.000 0.018 0.005

simulated 0.050 3.500 0.025 1.006 -0.650 0.750
estimated 0.042 3.850 0.024 1.051 -0.678 0.761
RMSE 0.032 0.830 0.004 0.308 0.046 0.073
standard
error

0.003 0.083 0.000 0.031 0.005 0.007

simulated 0.050 3.500 0.025 3.658 -0.650 1.100
estimated 0.044 4.780 0.022 3.252 -0.683 1.070
RMSE 0.033 1.139 0.003 1.086 0.053 0.082
standard
error

0.003 0.114 0.000 0.109 0.005 0.008
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Table 20: Simulation study: SV model.
This table reports the parameter estimation results from a Monte Carlo study where 100 sample paths
with 4000 daily returns are simulated from the true model with parameters shown as simulated. The
simulation is performed using an Euler discretization with 100 time steps per day. The average estimated
parameter of these simulated paths are reported in line estimated. RMSE and standard errors (std error)
are also reported.

Parameter µ κ θ σv ρv λc λv µs σs γ

sim 0.050 3.500 0.025 0.400 -0.650 0.500 30.000 -0.020 0.050 0.500
est 0.046 3.765 0.025 0.400 -0.657 0.546 34.957 -0.024 0.043
RMSE 0.026 0.722 0.004 0.028 0.044 0.439 26.084 0.024 0.014
std err 0.003 0.072 0.000 0.003 0.004 0.044 2.608 0.002 0.001

sim 0.050 3.500 0.025 2.530 -0.650 0.500 30.000 -0.020 0.050 1.000
est 0.051 4.440 0.023 2.415 -0.676 0.417 44.148 -0.024 0.044
RMSE 0.029 1.049 0.003 0.218 0.057 0.382 35.525 0.020 0.014
std err 0.003 0.105 0.000 0.022 0.006 0.038 3.552 0.002 0.001

sim 0.050 3.500 0.025 1.006 -0.650 0.500 30.000 -0.020 0.050 0.750
est 0.050 3.862 0.024 1.052 -0.672 0.509 37.628 -0.023 0.044 0.761
RMSE 0.027 0.840 0.004 0.325 0.050 0.470 29.295 0.020 0.013 0.072
std err 0.003 0.084 0.000 0.032 0.005 0.047 2.929 0.002 0.001 0.007

sim 0.050 3.500 0.025 3.658 -0.650 0.500 30.000 -0.020 0.050 1.100
est 0.052 4.853 0.022 3.334 -0.680 0.424 42.383 -0.023 0.044 1.073
RMSE 0.032 1.343 0.003 1.232 0.072 0.429 32.784 0.025 0.015 0.091
std err 0.003 0.134 0.000 0.123 0.007 0.043 3.278 0.002 0.001 0.009
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Jump-diffusion Models
In-sample

Lévy-jump Models
In-sample

Figure 1: In-sample Sequential Likelihood Ratios.
These graphs show S&P 500 index returns in the upper part of the graphs and sequential likelihood ratios
in the lower part of the graphs for the in-sample time period from January 2, 1987 to December 29, 2006.
The left graph shows results for single factor jump-diffusion models and the right graph for the Lévy-
jump models, respectively. Sequential likelihoods are calculated as a byproduct of the filtering procedure
proposed by Bates (2006). All sequential likelihood ratios are calculated relative to the benchmark model
SV-A.
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Jump-diffusion Models
Out-of-sample

Lévy-jump Models
Out-of-sample

Figure 2: Out-of-sample Sequential Likelihood Ratios.
These graphs show S&P 500 index returns in the upper part of the graphs and sequential likelihood ratios
in the lower part of the graphs for the out-of-sample time period from January 3, 2007 to December 31,
2014. The left graph shows results for the estimated single factor jump-diffusion models and the right
graph for the Lévy-jump models, respectively. Sequential likelihoods are calculated as a byproduct of the
employed estimation procedure proposed by Bates (2006). All sequential likelihood ratios are calculated
relative to the benchmark model SV-A.
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Multi-factor Jump-diffusion Models
In-sample

Multi-factor Jump-diffusion Models
Out-of-sample

Figure 3: In-sample and Out-of-sample Sequential Likelihood Ratios for
multi-factor jump-diffusion models.

The graphs show S&P 500 index returns in the upper part of the graphs and sequential likelihood ratios
for the estimated multi-factor jump-diffusion models in the lower part of the graphs. The left graph shows
the sequential likelihood ratios for the in-sample time period from January 2, 1987 until December 29,
2006 and the right graph for the Lévy-jump models for the out-of-sample time period January 3, 2007
until December 31, 2014.
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