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Abstract

Covering the 8 most widespread cryptocurrencies in the world across the 16 most active trading

platforms from May 2015 to July 2018, we show that intraday extreme price movements (EPMs)

in cryptocurrencies are accompanied by a sharp increase in trading volume, spreads and depth.

This holds true whether we focus on the Bitcoin on the most active Bitfinex platform only, or

extend the analysis across several cryptocurrencies and platforms. Using the logistic regression

framework adapted to rare events, we show that the number of trades is the most consistent

driver of EPMs, as it is often the case for traditional markets. However, the probability of an

EPM varies significantly across platforms, as indicated by the high significance of time-invariant

unobservable platform fixed effects. All in all, we expect further platform consolidation but we

do not find evidence of obvious market dysfunction when prices move very sharply.
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1. Introduction

Over the last two decades, technological change in finance has been profound and the rise of

cryptocurrencies has contributed to it by allowing for a new digital form of payment. Among these

cryptocurrencies, bitcoin (BTC) is the most famous. Transaction are recorded in a register called

the blockchain and the supply is deterministically fixed. There is no central counterparty as it is the

case with a central bank that chooses the quantity of money in circulation. By solving cryptographic

problems, miners ensure the stability of the network and are rewarded with cryptocurrencies in

exchange of their service. Cryptocurrencies are traded 24/7, against other cryptocurrencies or

traditional currencies, such as USD, EUR, JPY, or CNY.

A number of derivatives were created, such as the introduction of a tracker by NASDAQ OMX

in May 2015 and two futures by CBOE and CME in December 2017. TeraExchange even proposes

forwards on bitcoins. The development of these derivatives is an important milestones on Bitcoin’s

way to legitimacy. However, there is still a vivid debate among both scholars and practitioners on

whether cryptocurrencies can reshape the financial system or even play any role as financial assets.

Shutdowns of both platforms (such as MtGox) and websites accepting bitcoins (such as Silk Road)

question the reliability of the whole system.

In that context, investors should care about both their potential capital gains and losses. Cryp-

tocurrencies can indeed lose a significant part of their value in a very short time. For example,

Bitcoin plummeted 18% on March 10 2017 following SEC’s denial to launch an ETF. According

to Thies and Molnár (2018), daily returns can vary from -48.52% to +40.14%. It is therefore of

interest to better understand what triggers these extreme price movements (EPMs) since there is

no bright future for cryptocurrencies without further market stability.
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Although the growing popularity of cryptocurrencies have attracted the attention of academics,

regulators, and central banks (Ali et al., 2014; McLeay et al., 2014), we still know close to nothing

about the liquidity and trading dynamics on these markets when conditions are extreme. To the

best of our knowledge, there is no study aiming at identifying evidence of market dysfunction when

we zoom in on EPMs.

We look for evidence of market dysfunction by looking at what happens around EPMs in terms

of liquidity and trading dynamics. We analyze how prices recover and aim to identify the drivers

of EPMs. We start our analysis with the Bitcoin traded on the Bitfinex platform. Then, we extend

the analysis by considering the 8 most widespread cryptocurrencies in the world across the 16 most

active trading platforms. We perform both an event-study and a multivariate logistic regression

analysis.

We show that EPMs in cryptocurrencies are accompanied by a sharp increase in trading volume,

spreads and depth. This holds true whether we focus on the Bitcoin on the most active Bitfinex

platform or extend the analysis to a multi-platform and a multi-cryptocurrency analysis. Using the

logistic regression framework adapted to rare events, we show that the number of trades is the most

consistent driver of EPMs, as it is often the case for traditional markets. However, the probability of

an EPM varies significantly across platforms, as indicated by the high significance of time-invariant

unobservable platform fixed effects. All in all, we expect further platform consolidation but we do

not find evidence of obvious market dysfunction when prices move very sharply.

The remainder of the paper is as follows. In the next section, we review the relevant literature.

Section 3 contains a description of our data and variables. In Section 4, we explain our methodology

and report our empirical findings. In Section 5, we carry some robustness checks. Section 6
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concludes.

2. Literature review

As far as cryptocurrencies are concerned, the financial academic literature is emerging. Still, we

can regroup most studies into some major research questions. To name a few, are cryptocurrencies

currencies or do they belong to another asset class? Do cryptocurrencies have an intrinsic value?

Can we model cryptocurrencies’ volatility? What are the consequences of adding cryptocurrencies

to a traditional portfolio? Is there any price discovery across exchanges? Can we explain cryp-

tocurrencies’ returns? Besides these major research questions, some papers also look at transaction

costs (Kim, 2017; Easley et al., 2019), the introduction of the futures (Corbet et al., 2018), the

unethical activities associated to Bitcoin (Gandal et al., 2018), the construction of a reliable index

(Trimborn and Härdle, 2018), trading strategies using machine learning algorithms (de Souza et al.,

2019; Fischer et al., 2019), the multifractality of Bitcoin1, etc.

First, it is important to determine whether Bitcoin, and cryptocurrencies in general, are curren-

cies, commodities, or a different class of asset.2 This has implications when comparing cryptocur-

rencies to other asset classes. It is generally accepted that a money should have three functions,

i.e. medium of exchange, store of value, and an unit of account (Ali et al., 2014). Glaser et al.

(2014) document that Bitcoin users are rather interested in a new speculative instrument than

in a system of payment. Rogojanu and Badea (2014) discuss the various attempts of alternative

1References include da Silva Filho et al. (2018), Fang et al. (2018), Lahmiri and Bekiros (2018) and Takaishi
(2018).

2If we consider BTC as a currency, then its relationship with traditional currencies should be seen as an exchange
rate. However, if we consider BTC as an asset or a commodity, then it has a price.
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currencies through history and how Bitcoin relates to these other currencies. Dyhrberg (2016a, p.

85) considers BTC as ‘something in between gold and the American Dollar on a scale from pure

medium of exchange advantages to pure store of value advantages’. Ali et al. (2014, p. 278) note

that ‘in contrast to commonly used forms of money such as banknotes or bank deposits, digital

currencies are not a claim on anybody. In this respect, they can therefore be thought of as a type

of commodity. But unlike physical commodities such as gold, they are also intangible assets, or

digital commodities.’ According to Baur et al. (2018), Bitcoin is a speculative instrument. To date,

this debate is still ongoing although there are more and more evidence that Bitcoin is used as a

speculative asset, without any utility as a medium of exchange.

Some authors have questioned the intrinsic value of bitcoin. Cheah and Fry (2015) document

that Bitcoin’s fundamental value is zero as they find evidence of a bubble between January and

November 2013. Donier and Bouchaud (2015, p. 2) note that ‘the absence of any compelling way

to assess the fundamental price of Bitcoins makes the behavioral hypothesis highly plausible’ to

explain market crashes. Therefore, this question is also closely related to the presence of a bubble

in cryptocurrency markets. Corbet et al. (2018) and Chaim and Laurini (2019) analyze whether

there are some bubbles. We discuss this point in Section 4.4.

A stream of literature investigates how to model cryptocurrencies’ volatility. Indeed, cryp-

tocurrencies’ volatility is high in comparison with other financial assets. Dwyer (2015) notes that

Bitcoin exhibit higher volatility than currencies on average. Bouoiyour and Selmi (2015a) analyze

Bitcoin price from December 2010 to June 2015. They use Threshold-GARCH (TGARCH) and

Exponential GARCH (EGARCH). Bouoiyour et al. (2016) study Bitcoin volatility from December

2010 to July 2016. According to these authors, although volatility decreases in the second part
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of the sample, Bitcoin is still not a mature market. They use several GARCH-related models

and discriminate among the models with information criteria. Dyhrberg (2016a) uses GARCH and

EGARCH models. To date, there is no consensus on which GARCH model best works. The sample

period and/or the sample of cryptocurrencies under scrutiny is one possible explanation for these

divergences of results.

While the analysis of cryptocurrencies’ volatility on its own is interesting, it is also worth

investigating whether this volatility translates to other asset classes. Trabelsi (2018) constructs a

spillover index to measure to what extent cryptocurrencies are related to other asset classes, and

finds that there is no spillover from cryptocurrency to other assets classes. If cryptocurrencies

are unrelated to traditional asset classes, then it makes them useful with respect to portfolio

management. Indeed, cryptocurrencies have been proposed as a new asset class to improve the risk-

return trade-off in portfolio management. Cryptocurrencies are sometimes considered, rightly or

wrongly, as the new gold (Dyhrberg, 2016a,b; Baur et al., 2018; Klein et al., 2018; Al-Yahyaee et al.,

2019). According to Dyhrberg (2016b) and Corbet et al. (2018), bitcoin exhibits low correlation

with other asset classes, which makes it attractive for portfolio management. Briere et al. (2015)

find that including Bitcoin in a diversified portfolio enhances the portfolio’s performance. However,

Bouoiyour and Selmi (2015b, p. 449) indicates that ‘there is no sign of Bitcoin being a safe

haven.’ On the contrary, the same authors in a different study mention that Bitcoin is a safe haven

because of the system anonymity, which questions the relevance of their conclusions. Looking at

the correlations across cryptocurrencies, Canh et al. (2019) show that the correlations are quite

high, implying that it is difficult to diversify a portfolio composed only with cryptocurrencies.

Cryptocurrency markets are highly fragmented. In that context, some authors study whether
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a specific platform has an informational advantage in comparison to the others. Brandvold et al.

(2015) analyze the price discovery across 7 platforms between April 2013 and February 2014 and

find that Mt.Gox and BTC-e, which had an important market share at that time, drive Bitcoin price

the most. Since Mt.Gox shut down in the meantime, it is important to look at the cross-platforms

dynamics. However, he notes that the information share strongly evolves over time. Ciaian et al.

(2018) analyse 17 cryptocurrencies and find that while in the short-run cryptocurrencies’ price are

related, this effect decreases in the long-term.

Some studies look at cryptocurrencies returns. Financial assets exhibit non-normal returns and

this stylized fact has been widely documented in the literature. The same applies to cryptocurren-

cies and this non normality is even more pronounced. Among 15 potential candidates, Chu et al.

(2015) find that the generalized hyperbolic distribution to fit Bitcoin returns is the best statisti-

cal parametric distribution, while the normal distribution performs the worst. Using a Bayesian

change point analysis, Thies and Molnár (2018) identify 48 structural breaks between September

2011 and August 2017 in Bitcoin returns. Cryptocurrency markets efficiency is assessed through

various statistical tests on the returns, most often by testing the random walk hypothesis (Brauneis

and Mestel, 2018; Aggarwal, 2019) or the adaptive market hypothesis (Khuntia and Pattanayak,

2018). Urquhart (2016) and Nadarajah and Chu (2017) disagree as to whether Bitcoin markets are

efficient, with the divergence coming from the fact that Nadarajah and Chu (2017) use a power

transformation before performing the efficiency tests. According to Al-Yahyaee et al. (2018), Bit-

coin is less efficient than other traditional assets such as stocks, currencies, or gold. According

to Tiwari et al. (2018), the market is efficient. Several studies note that inefficiency is evolving

over time, making cryptocurrencies more mature (Khuntia and Pattanayak, 2018; Vidal-Tomás and

Ibañez, 2018). Other forms of market (in)efficiency have been investigated such as price inconsis-
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tencies (Pieters and Vivanco, 2017), price clustering (Urquhart, 2017) or price bias Aloosh and

Ouzan (2019).

If markets are not efficient however, then it should be possible to find factors that consistently

allow investors to earn positive returns. Research in this area has been relatively important. Two

types of factors have been proposed in the literature, i.e. economic factors, as other financial assets,

and technological factors, that can be specific to the blockchain infrastructure. Bitcoin returns are

related to macroeconomic fundamentals such as the global financial stress index (Bouri et al., 2018),

economic policy uncertainty (Demir et al., 2018; Fang et al., 2019), CBOE VIX (Kjærland et al.,

2018; Aalborg et al., 2019), global geopolitical risk index (Aysan et al., 2019). Baek and Elbeck

(2015) and Liu et al. (2019) do not find any relationship between economic fundamentals and

Bitcoin returns. They document that these returns are therefore a consequence of participants’

activity. Among the technological factors, Kjærland et al. (2018) find that the hashrate does not

help in modeling bitcoin price. Kristoufek (2013) finds bidirectional relationships between bitcoin

price and Internet metrics, i.e. Google Trends and Wikipedia. Garcia et al. (2014) also show that

search attention (Google Trends) and the number of new bitcoin users help explain the variation

of Bitcoin price. Urquhart (2018) use volume and volatility to explain what drives the attention of

Bitcoin. Google Search volume Index (SVI) is a popular metric to gauge investors’ attention and

this proxy is used in the literature to predict cryptocurrency returns as well (Panagiotidis et al.,

2018; Aalborg et al., 2019; Bleher and Dimpfl, 2019; Eom et al., 2019). Using a LASSO framework,

Panagiotidis et al. (2018) find that, among 21 potential candidates, SVI and gold returns best

explain bitcoin returns. Aalborg et al. (2019) find no significant relationship between returns and

SVI.
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Our work is mostly related to Donier and Bouchaud (2015), Chaim and Laurini (2018) and

Chevapatrakul and Mascia (2019) as we are interested in explaining major price changes in cryp-

tocurrency markets. Chevapatrakul and Mascia (2019) find evidence of investor overreaction when

returns are in the extreme tails of their distribution. Most papers document the important returns

observed within cryptocurrency markets. For example, Chevapatrakul and Mascia (2019, p. 373)

note that ‘a daily loss of around - 26% was observed between 17th and 18th December 2013 and

a monthly gain of 171% was realised between October and November 2013’. However, we extend

these studies by providing an intraday and a cross-cryptocurrencies and cross-platforms analysis.

In this paper, we (i) analyze what are the intraday trading and liquidity dynamics around EPMs

and (ii) identify the drivers of EPMs. Several empirical studies on cryptocurrencies use daily data

based on prices and volume information only. As such, they do not bring any information on the

intraday price dynamics, neither in the orderbook dynamics. In addition, most of these studies

investigate the bitcoin only and/or over a short time period and/or before the 2017 bubble bursts.

Our study does not suffer from any of these shortcomings.

3. Data

We obtain data from Kaiko, an independent data provider that collects data directly from the

exchanges. The database is made of two distinct datasets. The first dataset records all the trades

that occurred on each platform with date and time, price, number of cryptocurrencies exchanged,

as well as a boolean variable indicating whether the trade is buyer- or seller-initiated. The second

dataset contains minute-by-minute orderbook snapshots with bid/ask prices and quantities up to

the 10th limit.
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The database includes 16 different exchanges on which BTCUSD is traded (i.e. Bitfinex, Bit-

flyer, Bitstamp, Bittrex, BTCC, BTCE, Cexio, Coinbase, Gatecoin, Gemini, Hitbtc, Huobi, Itbit,

Kraken, OkCoin, and Quoine). Although the trade dataset starts in 2010, the earliest orderbook

data provided dates back to May 2015. Therefore, we restrict our analysis to the period ranging

from May 2015 to July 2018 for which we have both trade and orderbook information.

Table 1 presents the database. It shows the period for which we have access to orderbook infor-

mation, the number of days, the number of observations, the daily average number of observations,3

the total number of trades, and the daily average of trades. In Panel A, we report statistics for all

the 16 platforms on which BTCUSD is traded. Figure 1 represents the monthly market share of

each platform for BTCUSD from July 2010 to September 2018.4 We observe that in the beginning

of the period, there was a monopolistic situation held by MtGox. However, this platform shut

down in February 2014, which resulted in a loss of more than 400 millions of dollars for its users

according to Forbes.5 At the end of our sample period, Bitfinex is the biggest platform in terms of

trading activity with more than 38,000 trades per day, followed by Coinbase, Hitbtc, Huobi, and

Bitstamp. In Panel B, we report the major cryptocurrencies traded against USD on the platform

Bitfinex, i.e. Bitcoin Cash (BCH), Bitcoin (BTC), EOS (EOS), Ethereum (ETH), Litecoin (LTC),

Stellar (XLM), Monero (XMR), and Ripple (XRP). Over the period, we have more than 260 million

trades and more than 20 million orderbook snapshots.

3We report this information as a proxy for data quality. This number should theoretically be equal to 1,440 as we
should have one observation per minute. However, technical glitches or platform upgrades may affect this number.
Some platforms may be temporarily down because of system upgrades or hacking events. At the end of the sample
period, the data provider changed its frequency to 2,880 snapshots per day.

4Market share is determined by the relative proportion of trades on each platform.
5Source: https://www.forbes.com/sites/cameronkeng/2014/02/25/bitcoins-mt-gox-shuts-down-loses-

409200000-dollars-recovery-steps-and-taking-your-tax-losses/#41ba609d5c16
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Table 1: Data - Descriptive statistics

Panel A: BTCUSD on all platforms
Exchange Start End Days Obs Daily avg obs Trades Daily avg trades

(ND) (NO) (DANO) (NT) (DANT)
bitfinex 15-May-15 21-Jul-18 1,163 1,537,507 1,322 45,133,393 38,808
bitflyer 18-Apr-18 21-Jul-18 94 239,226 2,545 109,869 1,169
bitstamp 15-May-15 20-Jul-18 1,162 1,521,183 1,309 19,608,226 16,875
bittrex 1-Jun-18 20-Jul-18 49 143,323 2,925 9,948 203
btcc 13-Feb-18 20-Jun-18 127 276,122 2,174 15,235 120
btce 15-May-15 21-Jul-18 1,163 1,397,452 1,202 16,288,069 14,005
cexio 11-Dec-17 20-Jul-18 221 442,639 2,003 2,885,221 13,055
coinbase 15-May-15 20-Jul-18 1,162 1,574,932 1,355 42,520,453 36,592
gatecoin 18-Feb-16 21-Jul-18 884 731,320 827 322,237 365
gemini 12-Oct-15 21-Jul-18 1,013 1,373,409 1,356 8,601,783 8,491
hitbtc 26-Aug-17 21-Jul-18 329 605,017 1,839 9,075,776 27,586
huobi 10-Nov-15 13-Sep-17 673 687,214 1,021 13,895,640 20,647
itbit 7-Oct-15 21-Jul-18 1,018 1,336,609 1,313 2,684,271 2,637
kraken 25-Aug-15 21-Jul-18 1,061 1,447,116 1,364 10,298,238 9,706
okcoin 15-May-15 21-Jul-18 1,163 1,566,039 1,347 10,403,684 8,946
quoine 22-Sep-16 21-Jul-18 667 948,031 1,421 2,127,941 3,190
TOTAL 15,827,139 183,979,984

Panel B: All cryptos against USD on Bitfinex
Crypto Start End Days Obs Daily avg obs Trades Daily avg trades

(ND) (NO) (DANO) (NT) (DANT)
bchusd 10-Aug-17 21-Jul-18 345 615,299 1,783 9,982,619 28,935
btcusd 15-May-15 21-Jul-18 1,163 1,537,507 1,322 45,133,393 38,808
eosusd 10-Aug-17 21-Jul-18 345 636,848 1,846 12,757,782 36,979
ethusd 28-Apr-16 21-Jul-18 814 1,048,549 1,288 24,009,056 29,495
ltcusd 14-Sep-16 21-Jul-18 675 941,654 1,395 14,194,655 21,029
xlmusd 2-May-18 21-Jul-18 80 206,667 2,583 46,179 577
xmrusd 10-Aug-17 21-Jul-18 345 633,362 1,836 2,620,766 7,596
xrpusd 10-Aug-17 21-Jul-18 345 616,421 1,787 13,484,949 39,087
TOTAL 6,236,307 123,823,971
This Table reports the start and the end of the period for which we have orderbook information, the number
of days (ND), the number of observations (NO), the daily average number of observations (DANO), the total
number of trades (NT), and the daily average of trades (DANT). In Panel A, we report all platforms on
which BTCUSD is traded, and in Panel B, we report all the cryptocurrencies traded in USD in Bitfinex.
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Figure 1: Market shares by platforms in BTCUSD trading from July 2010 to September 2018

This figure represents the platforms’ monthly market share for BTCUSD from July 2010 to September 2018.

From the trade database, we compute the number of trades (NT ), the quantities of cryptos

traded (QT ), the volume traded (V T ), the average trade size (ATS = QT/NT ), and the average

trade volume (ATV = V T/NT ). We also compute Amihud (2002)’s illiquidity measure:

Amihudt = |Rt|
V Tt

(1)

where Rt is the log-return during interval t. Cryptocurrencies are fairly new assets and these

markets are not as mature as equity or forex markets. Therefore, we compute returns based on

trade prices. While this approach may suffer from the bid-ask bounce, it better reflects the economic

reality in terms of returns. Brogaard et al. (2018, p. 258) suggest that large price movements can
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be triggered by trade imbalances. Therefore, we measure the trade imbalance (T_Imb) as:

T_Imbt = BUYt − SELLt

BUYt + SELLt
(2)

where BUYt (SELLt) is the number of buyer-initiated (seller-initiated) trades during interval t.

We do not have to use Lee and Ready (1991)’s algorithm since trades are signed in the database.

As proxies for liquidity, we compute the quoted spreads (QS), relative spreads (RS), depth at

the best quotes (DEPTH) and at the 5 best quotes (DEPTH5) in monetary volume, orderbook

imbalance at the best quotes (OB_Imb) and at the 5 best quotes (OB_Imb5), Slope (Slope) (Næs

and Skjeltorp, 2006), and Dispersion (Dispersion) (Kang and Yeo, 2008):

QS = PA1 − PB1 (3)

RS = 2 ∗ (PA1 − PB1)/(PA1 + PB1) (4)

DEPTH = (QB1 +QA1) (5)

DEPTH_DOLLAR = (PB1 ∗QB1) + (PA1 ∗QA1) (6)

DEPTH5 =
5∑

j=1
(QBj +QAj) (7)

DEPTH5_DOLLAR =
5∑

j=1
((PBj ∗QBj) + (PAj ∗QAj)) (8)

OB_Imb = QB1 −QA1
QB1 +QA1

(9)

OB_Imb5 =
∑5

j=1(QBj −QAj)∑5
j=1(QBj +QAj)

(10)

Slope = DE + SE

2 (11)

DE = 1
5

 υB
1

|PB1/p0 − 1| +
4∑

j=1

υB
j+1/υ

B
j − 1

|PBj+1/PBj − 1|

 (12)
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SE = 1
5

 υA
1

|PA1/p0 − 1| +
4∑

j=1

υA
j+1/υ

A
j − 1

|PAj+1/PAj − 1|

 (13)

υA
j = ln(QAj) (14)

υB
j = ln(QBj) (15)

p0 = PB1 + PA1
2 (16)

Dispersion = 1
2

(∑n
j=1 ω

B
i,j,tDst

B
i,j,t∑n

j=1 ω
B
i,j,t

+
∑n

j=1 ω
A
i,j,tDst

A
i,j,t∑n

j=1 ω
A
i,j,t

)
(17)

with QBj (QAj) the quantity available at limit j, DstBj = PBj−1−PBj and DstAj = PAj−PAj−1.

PB0, ωB
j (ωA

j ) weights the DstBi (DstAj ), by the depth size at the jth limit on the total depth of

the five best limits. For each hourly interval t, we compute the average and median values of these

variables for each cryptocurrency/platform.

Brogaard et al. (2018, p. 253) ground their analysis on stressful periods and define them as

‘unexpected and rapidly developing extreme price movements (EPMs) that belong to the 99.9th per-

centile of the return distribution’. We follow this approach by first computing absolute logarithmic

returns based on the last observed trade price during the interval. While Brogaard et al. (2018)

use 10-second intervals for stocks traded on NASDAQ, we take longer intervals, i.e. one hour, as

cryptocurrencies markets are not traded at the same regularity and frequency, being much more

immature than equity markets. We use the less conservative threshold of 99th percentile in order to

fix the number of EPMs to 1% in our sample. Because of the extreme volatility in cryptocurrencies’

markets, the whole set of EPMs present in the 99th percentile is large in magnitude. Brogaard et al.

(2018) analyze two years of data on NASDAQ stocks and use a frequency of 10 seconds, resulting in

more than 45 millions observations and 45,200 EPMs. In the case of BTCUSD on Bitfinex, using

Brogaard et al. (2018)’s more conservative threshold of 99.9th, we identify 27 EPMs while this
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number moves to 275 in our case. To ease notation, we refer to returns exceeding the 99th (99.9th)

percentile as EPM99 (EPM99.9). There are a few papers that look at extreme price movements in

cryptocurrencies. Vidal-Tomás et al. (2019, p. 182) define ‘extreme down (up) market as 5% of the

lower (upper) tail of the market return distribution’. Blau (2017) use the same threshold. Therefore,

our threshold of 99% should identify more extreme events than the aforementioned studies.

4. Empirical analysis

4.1. The case of BTCUSD on Bitfinex

We compute absolute log-returns over 3600 seconds at various percentiles, including the 99th and

99.9th percentiles. Consider the case of BTCUSD on the platform Bitfinex. An EPM99 (EPM99.9)

occurs when the hourly absolute return exceeds 3.57% (6.97%). We identify 275 (27) EPM99

(EPM99.9) in BTCUSD on the platform Bitfinex. Figure 2 shows the distribution of EPMs across

the day at the 99th percentile. There is no clear clear intraday pattern in the occurrence of these

EPMs over the day. We conjecture that the absence of intraday pattern is because Bitcoin markets

are open 24/7. This result is in contraction with Brogaard et al. (2018) who find more EPMs at

the beginning and at the end of the NASDAQ trading session. This is one of many stylized fact

where cryptocurrencies depart from more traditional asset classes.

Table 2 compares the full sample of hourly returns with the sample of EPM99. We report

the mean and median values of Amihud ratio (Amihud), average trade size (ATS), average trade

volume (ATV ), depth at best quotes (Depth), depth at the 5 best quotes (Depth5), number

of trades (NT ), orderbook imbalance (OB_Imb), orderbook imbalance at the 5 best quotes
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Figure 2: Intraday distribution of EPMs in BTCUSD on the platform Bitfinex

These figure represent the intraday distribution of EPMs in BTCUSD at the 99th percentile on Bitfinex. We separate the
graphs between negative EPMs (down crashes, top) and positive EPMs (up crashes, bottom).

16



(OB_Imb5), relative spread (RS), quoted spread (QS), quantities traded (QT ), absolute trade

imbalance (Abs_T_Imb)6, and volume traded (V T ). We test whether these differences are statis-

tically significant across both subsamples, using Student’s t-test on unstandardized data.

During EPMs, trading activity, measured either in number of trades, quantities traded, or

monetary volume strongly increase by a factor of 5.8, 6.7, and 7.4, respectively. Each increase is

statistically different from zero at the 1% level. While ATS does not change, ATV also strongly

increases, from 1,679.40$ to 3,350.16$. The quoted and relative spreads also increase sharply during

EPMs. While this is negative in terms of liquidity, we find that depth measures on the first limit

or for the five best limits are also increasing. In essence, the cost for immediacy increases while

many traders are present at both demand and supply side. This could mean that the traders

acting during EPMs are rather patient and do not agree to pay the increased spread induced by

the previous price rally or sell-off.

6We use trade imbalance in absolute value when EPMs are not separated between downward and upward EPMs.
When the EPM direction is taken into account, we use trade imbalance.
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Table 2: Descriptive statistics - BTCUSD on Bitfinex

Mean Median StDev. N
Panel A: Full sample
Trade-based variables
ATS 1.3684 0.94 1.19 27,257
ATV 1,679.40 1,229.77 1,295.42 27,257
Amihud 2.019E−8 4.336E−9 6.532E−7 27,158
NT 1,603.36 513.00 2,599.95 27,661
QT 1,078.69 576.79 1,498.22 27,661
V T 5,125,542.00 522,850.50 11,433,054.00 27,661
Abs_T_Imb 0.2216 0.1714 0.1880 27,661
Orderbook-based variables
Abs_OB_Imb 0.1937 0.14422 0.1824 25,069
Abs_OB_Imb5 0.1801 0.1417 0.1607 25,069
Depth 34,571.65 14,085.44 54,712.48 25,069
Depth5 107,067.50 57,031.65 119,706.10 25,069
QS 0.6105 0.2312 1.4868 25,069
RS 0.0359 0.0249 0.1872 25,069
Panel B: Extreme price movements (EPM99)
Trade-based variables
ATS 1.2570 0.5587 1.4120 275
ATV 3,350.16∗∗∗ 3,539.53 1,520.06 275
Amihud 1.046E−8 1.279E−9 4.414E−8 275
NT 9,312.30 ∗∗∗ 9,214.00 6,796.36 275
QT 7,184.26∗∗∗ 5,644.42 6,551.86 275
V T 38,008,423.00∗∗∗ 35,532,461.00 33,612,221.00 275
Abs_T_Imb 0.1402 0.1124 0.1082 275
Orderbook-based variables
Abs_OB_Imb 0.13549∗∗∗ 0.0864 0.1610 251
Abs_OB_Imb5 0.1248 0.0876 0.1080 251
Depth 60,881.66∗∗∗ 51,103.14 62,855.32 251
Depth5 215,201.80∗∗∗ 192,957.30 179,184.00 251
QS 3.2403∗∗∗ 2.4000 3.0579 251
RS 0.0724∗∗∗ 0.0465 0.0789 251
This Table reports descriptive statistics about Amihud ratio (Amihud), average trade size (AT S), average trade
volume (AT V ), depth at best quotes (Depth), depth at the 5 best quotes (Depth5), number of trades (NT ), absolute
orderbook imbalance (Abs_OB_Imb), absolute orderbook imbalance at the 5 best quotes (Abs_OB_Imb5), relative
spread (RS), quoted spread (QS), quantities traded (QT ), absolute trading imbalance (Abs_T_Imb), and volume
traded (V T ). All variables are defined in section 3. For each variable, we report the mean, median, standard
deviation, and number of observations. Using a t-test, we test for the statistical differences between Panel A and
Panel B. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

For each EPM, we analyze its percentage of recovery up to 24 hours after its occurrence. We
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report in Figure 3 the extent to which these EPMs recover over time. We distinguish between

negative EPMs and positive EPMs. We observe an important disparity in terms of recovery.

4.2. Event study

We first run an event study analysis in order to assess how market quality evolves around EPMs. To

do so, we first standardize our market quality variables by exchange and by cryptocurrency, so that

each variable has a mean of 0 and a standard deviation of 1. Our baseline analysis uses a window

of 24 hours around the event, i.e. t ∈ [−12; 12]. We filter EPMs such that there is no other EPMs

in the event window in order to prevent any contagion effect. In order to assess the significance

of the intra-window pattern, we use the non-parametric signed rank test which performs relatively

well in comparison with standard parametric tests and presents the advantage of not requiring any

particular assumption on the shapes of the distributions (Corrado, 2011, p. 213).

Figure 4 shows the dynamics of the relative spread around downward EPMs (upper chart) and

upward EPMs (lower chart). The event window includes 12 observations before the event, the

event, and 12 observations after the event. Squares (�), circles (◦), and triangles (4) indicate

rejection of the null hypothesis of the signed rank test at the 1%, 5%, and 10% confidence levels,

respectively. The results highlight a very interesting fact. At the time of a downward EPMs, the

spread increases significantly and remains significantly high for the next two hours. This suggests

that (1) liquidity demanders become aggressive and sell at the ask price or submit market order in

order to ensure that their position is closed, or that (2) liquidity providers vanish from the market

at that moment because they fear that they will trade with a better informed trader.

Similarly to Brogaard et al. (2018), we also look at the trading imbalance around EPMs. We
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Figure 3: Percentage of price recovery after an EPM in BTCUSD on the platform Bitfinex

These figures represent the percentage of recovery conditionally on time, up to 24h after an EPM in BTCUSD on the platform
Bitfinex. We represent the median value, a confidence band between the 25th and the 75th percentile and the confidence band
between the minimum and the maximum recovery. We separate the graphs between negative EPMs (down crashes, top) and
positive EPMs (up crashes, bottom).
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Figure 4: Event study - relative spread

This figure shows the dynamics of the relative spread around downward EPMs (upper chart) and upward EPMs (lower chart).
The event window includes 12 observations before the event, the event, and 12 observations after the event. Squares (�),
circles (◦), and triangles (4) indicate rejection of the null hypothesis at the 1%, 5%, and 10%, respectively.
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find that there is a strong imbalance during the interval of the EPM. Figure 5 shows the dynamics of

trading imbalance around downward EPMs (upper chart) and upward EPMs (lower chart). There

is a strong negative (positive) imbalance during down (up) crashes. This evidence highlights that

EPMs are triggered by traders’ trading activity. Accordingly, a positive (negative) imbalance, i.e.

a buying (selling) pressure drives prices up (down). Therefore, this is line with economic intuition,

and cryptocurrency markets seem to work as ‘traditional markets’ in this regard. This result is

also in line with Donier and Bouchaud (2015) who provide evidence of strong order flow imbalance

during market crashes.

4.3. Addressing the drivers of EPMs

In this section, we investigate the drivers of the occurrence of EPMs. We first build our dependent

variable, EPM99,i,j,t, as a dummy variable which equals 1 when there is an EPM at time t, and

0 otherwise. Since the dependent variable is a binary response variable, we implement a logistic

regression framework (LOGIT) in order to address the determinants of the occurrence of EPMs,

while appropriately fitting the response in [0,1]. Our model is specified as follows:

Prob(EPM99,i,j,t = 1|x′i,j,t−1β, αi, αj) =
exp(x′i,j,t−1β + αi + αj)

1 + exp(x′i,j,t−1β + αi + αj) (18)

with

x′i,j,t−1β = α0 + β1NTi,j,t−1 + β2Abs_T_Imbi,j,t−1 + β3Ri,j,t−1 + β4RSi,j,t−1 + εi,j,t−1 (19)

where EPM99,i,j,t is the occurrence of an EPM at time t for platform i and cryptocurrency j.
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Figure 5: Event study - trading imbalance

This figure shows the dynamics of the trading imbalance around downward EPMs (upper chart) and upward EPMs (lower
chart). The event window includes 12 observations before the event, the event, and 12 observations after the event. Squares
(�), circles (◦), and triangles (4) indicate rejection of the null hypothesis at the 1%, 5%, and 10%, respectively.
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The selection of explanatory variables included in the logistic regressions is based on Brogaard et al.

(2018). We include the number of trades (NT ), the absolute trading imbalance (Abs_T_Imb),

the absolute log-return (R), and the relative spread (RS), plus an intercept. All these non-dummy

variables are standardized and lagged by one period. αi and αj denote the fixed effects for platform i

and cryptocurrency j, respectively. Brogaard et al. (2018) use a measure of high frequency trading

activity, HFTNET , that is irrelevant in our setting. We replace this variable by a measure of

trading imbalance. We use the number of trades instead of the share volume. The number of

bitcoin traded is closely related to its price level, as we illustrate in Figure 6.7 The number of

trades is less impacted by this price effect since it is possible to trade fractions of cryptocurrencies.

Investigating the relationship between trades and returns, Koutmos (2018) indicates that a one-

standard shock deviation in transaction leads to an increase in return of 0.30%. We deliberately

restrict the choice of explanatory variables to market-based variables. However, Chaim and Laurini

(2018) indicate that hacking events or fork attempts may also be related to negative price jumps.

Two main sample-related issues are with this logistic specification in our specific case. First,

the nature of EPMs in our definition generates a huge disequilibrium between events and non-

events. For a LOGIT specification to be unbiased, a balanced proportion of events and non-events

is required. EPMs are on the contrary rare events. Second, the inclusion of fixed effects in the

maximum likelihood function yields inconsistent estimates. The issue that induces the bias, i.e., the

incidental parameter problem, has been extensively discussed in the literature (Neyman et al., 1948;

McFadden, 1973; Chamberlain, 1980). It comes from the fact that fixed effects do not disappear

from the differentiated likelihood function in non-linear frameworks. To address the first bias, we

7As indicated in Figure 6, both variables are strongly correlated with BTCUSD price. Over the sample period,
we measure a correlation of -0.52 (0.81) between AT S (AT V ) and price.
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Figure 6: ATS and ATV versus price

These figures represent the relationship between the daily median price (black line) and the average trade size (ATS, blue line)
(above) and between the daily median price (black line) and the average trade volume (ATV, blue line) from May 2015 to July
2018.
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rely on Firth (1993) and implement a penalized maximum likelihood estimation, which was initially

designed to deal with cases of separation.8

In the case of the above-mentioned logistic model, the different parameter estimates βk (k =

1, ..., 4) are the solutions of the partial differential score equations ∂logL/∂βk ≡ U(βk) = 0, with

log L being the loglikelihood function. Firth (1993) proposes to correct the score equations for

small sample bias, which generate quasi-complete separation, i.e., one regressor almost perfectly

categorises events and non-events.

In the case of a general logistic model, the score equation for the parameter estimate βk is

specified as:

U(βk)∗ =
n∑

i=1
[yi − πi + hi(1/2− πi)]xik = 0, (20)

where hi are the ith diagonal elements of the H matrix H = W 1/2X(XTWX)−1XTW 1/2 and

W = diagπi(1− πi) is the weighting matrix. We implement this estimation method to our logistic

regression framework.

The second issue, i.e., the presence of fixed effects, is less important in our case. This bias

is heavily influenced by the number of data points per individual. In our case, since the number

of time intervals, t, is large and the number of individuals i (j), i.e. the number of platforms

(cryptocurrencies) is small, the bias generated can be neglected (Mazza, 2019; Katz, 2001; Greene,

2004; Coupé, 2005).

We first implement the model stated in Equation 18 on one single cryptocurrency, BTCUSD,

and one single platform, Bitfinex. Table 3 presents the results. N is the total number of observations

8Interested readers should refer to Heinze and Schemper (2002) and Heinze (2006).
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while Ny=0 (Ny=1) is the number of non-events (events). The odds ratio’s (OR) are also reported.

Table 3: Bitfinex on BTCUSD

Coeff. OR P -value

α0 -5.1118 0.0060 ***
NTt−1 0.4255 1.5303 ***
Abs_T_Imbt−1 -0.5102 0.6004 ***
Rt−1 0.1950 1.2153 ***
RSt−1 0.0339 1.0344 **
N 25,175
Ny=0 24,925 99.01%
Ny=1 250 0.99%
R2 1.62%
This Table reports results of Equation 18. The dependent variable is the occurrence of an EPM at time t and the
independent variables include an intercept, the number of trades (NT ), the absolute trade imbalance (Abs_T_Imb),
the absolute return (R), and the relative spread (RS). All variables, excepting the intercept, are lagged by one period
and are standardized. We estimate a LOGIT regression with Firth (1993)’s correction and where confidence intervals
are computed based on the profile penalized log likelihood. We also report the R-squared. The odds ratio (OR) is
the exponential of the coefficient estimate. *, **, *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

We find that the 4 variables are statistically significant, at least at the 5% level. The number

of trades, return, and relative spread display a positive coefficient, implying that an increase in

these variables leads to a higher probability of an EPM occurrence. Among them, the number

of trades has the biggest coefficient, 0.4255, and therefore the strongest impact. As our variables

are standardized, we may interpret this parameter estimates as follows: a one-standard deviation

increase in the number of trades, in return, and in the relative spread, increases the odds of having

an EPM in the following period by 53.03%, 21.53%, and 3.44%, respectively. Finally, the absolute

trading imbalance displays a negative coefficient and an odds ratio of 0.6004, thereby implying that

a one-standard deviation increase in the absolute trading imbalance leads to a decrease in the odds

of having an EPM in the following period by 39.96%.

While Bitfinex is the most important platform in terms of trading activity, it represents less than
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25% of the trades for BTCUSD. As indicated in Table 1, there are 15 other platforms in our sample

where BTCUSD is exchanged. This table also shows that there are many other cryptocurrencies. To

take the dynamics across cryptocurrencies and across platforms into account, we estimate Equation

18 without restricting it to one platform and one cryptocurrency. All non-dummy variables are

standardized at the cryptocurrency-level. Results are depicted in Table 4.

Table 4: LOGIT - All platforms - All cryptocurrencies

Coeff. OR P -value Coeff. OR P -value

α0 -4.9084 0.00738 *** -4.9754 0.0069 ***
NTt−1 0.2513 1.28573 *** 0.2592 1.2959 ***
Abs_T_Imbt−1 -0.2606 0.77061 *** -0.2547 0.7751 ***
Rt−1 0.3478 1.41599 *** 0.3438 1.4103 ***
RSt−1 0.1683 1.18333 *** 0.1726 1.1885 ***
αi NO YES
αj NO YES
N 320,283 320,283
Ny=0 317,050 98.99% 317,050 98.99%
Ny=1 3,233 1.01% 3,233 1.01%
R2 1.33% 1.34%
This Table reports results of Equation 18. The dependent variable is the occurrence of an EPM at time t and
the independent variables include the number of trades (NT ), the absolute trade imbalance (T_Imb), the absolute
return (R), and the relative spread (RS), platforms- and cryptocurrencies’ fixed effects. All non-dummy variables
are standardized at the platform-cryptocurrency-level. N is the number of observations, Ny=0 (Ny=1) is the number
of non-events (events). We also report the R-squared. *, **, *** indicate statistical significance at the 10%, 5%, and
1% level, respectively.

Again, we find that the number of trades display a positive and statistically significant coefficient

at the 1% level. This result is consistent with Bouri et al. (2019) who find that trading volume

Granger causes cryptocurrencies returns, even in the extreme tail of the distribution. Trading

imbalance exhibits a negative coefficient, while return and relative spreads display positive and

statistically significant coefficients. Accordingly, there seem to exist some early warnings, both in

the orderbook and in the frequency of trades. The liquidity tends to deteriorate before, as spreads

widen. We also estimate the same model without fixed effects and the conclusions are not affected
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4.4. Pre-bubble, bubble, and post-bubble

Within its short history, Bitcoin experienced several phases of development. Bitcoin first exceeded

the $1,000 gap in January 2017 (Corbet and Katsiampa, 2019). In 2017, BTC experiences a sharpe

price increase, reaching almost 20,000$ in December 2017, before declining to approximately 3,000$

a year later. There are several empirical evidence of bubble presences in cryptocurrency markets

(Bouri et al., 2019; Chen and Hafner, 2019; Chaim and Laurini, 2019; Ji et al., 2019).

We replicate our analysis on subsample periods, i.e. pre-, bubble, and post-bubble subsample

periods, divided in accordance with Liu et al. (2019). Liu et al. (2019) use Phillips et al. (2011)

and Phillips and Yu (2011)’s methodology to date the bubble of the Bitcoin and they separate

their analysis according to the three following periods: pre-bubble (before May, 24 2017 - Panel A),

bubble (between May, 25 2017 and January, 28 2018 - Panel B), and post-bubble (after January,

28 2018 - Panel C). We estimate Equation 18 on these three subsample periods. Accordingly, we

standardize our variables with respect to these 3 periods. Results are presented in Table 5.

First, we notice a majority of EPMs, i.e. 130, occur during the bubble although this period

is much shorter. Second, the number of trades and the relative spread always display positive

and statistically significant coefficients. A one-standard deviation increase is the number of trades

(the relative spread) increase the odds of observing an EPM by 24.30% (4.31%) before the bubble,

by 80% (22.1%) during the bubble, and by 45.2% (78%) after the bubble. Third, the absolute

trading imbalance displays a negative (and statistically significant) coefficient before the bubble.

In the others subsamples, the variable is not statistically different from zero. The coefficient of the

return is first positive, then non-significant, and finally negative, which questions the stability of

this result.
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Table 5: LOGIT - Bitfinex - BTCUSD - subsamples

Panel A Panel B Panel C
Coeff. OR P -value Coeff. OR P -value Coeff. OR P -value

α0 -5.7716 0.0031 *** -4.025 0.018 *** -4.884 0.008 ***
NTt−1 0.2176 1.2430 *** 0.588 1.800 *** 0.373 1.452 ***
Abs_T_Imbt−1-0.4805 0.6185 *** -0.171 0.843 0.116 1.123
Rt−1 0.2675 1.3066 *** 0.060 1.062 -0.257 0.774 **
RSt−1 0.0422 1.0431 ** 0.200 1.221 *** 0.577 1.780 ***
N 16,312 4,713 4,149
Ny=0 16,239 99.55% 4,583 97.24% 4,102 98.87%
Ny=1 73 0.45% 130 2.76% 47 1.13%
R2 0.84% 2.98% 2.01%
This Table reports results of Equation 18. The dependent variable is the occurrence of an EPM at time t and the
independent variables include an intercept, the number of trades (NT ), the absolute trade imbalance (Abs_T_Imb),
the absolute return (R), and the relative spread (RS). All variables, excepting the intercept, are lagged by one period
and are standardized. N is the number of observations, Ny=0 (Ny=1) is the number of non-events (events). We also
report the R-squared. Panel A, B, and C are respectively subsamples before the bubble (before May, 24 2017), during
the bubble (between May, 25 2017 and January, 28 2018), and after the bubble (after January, 28 2018). *, **, ***
indicate statistical significance at the 10%, 5%, and 1% level, respectively.

5. Robustness tests

In this section, we run 3 robustness checks. First, we opt for a p-value counter methodology, i.e.

we estimate Equation 18 on each platform/cryptocurrency combination. Second, we estimate a

RELOGIT specification, to take the scarcity of event into account. Third, we extend our set of

candidate variables and use a general-to-specific approach.

5.1. "P-value counter methodology"

We estimate Equation 18 on each "platform/cryptocurrency" combination, leading to 25 estima-

tions. In Figure 7, we summarize the distribution of the obtained coefficients and in Table 6, we

report the number of positive / negative coefficients, as well as their significance level.
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Figure 7: Boxplot - estimated coefficients

This figure summarizes the distribution of the obtained coefficients from estimating Equation 18 on each combination plat-
form/cryptocurrency. The dependent variable is the occurrence of an EPM at time t and the independent variables include an
intercept, the number of trades (NT ), the absolute trade imbalance (Abs_T_Imb), the absolute return (R), and the relative
spread (RS). All variables, excepting the intercept, are lagged by one period and are standardized.
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Table 6: Pvalue counter

Variable α0 NTt−1 Abs_T_Imbt−1 Rt−1 RSt−1
Negative
1% 25 9
5% 1 3
10% 1
N.S. 1 8
Positive
1% 17 2 19 18
5% 1 2 3
10% 2 1
N.S. 3 1 4 4
This Table reports the number of positive or negative coefficient that we obtain when we estimate Equation 18 on
each combination cryptocurrency / platform. The dependent variable is the occurrence of an EPM at time t and the
independent variables include an intercept, the number of trades (NT ), the absolute trade imbalance (Abs_T_Imb),
the absolute return (R), and the relative spread (RS). All variables, excepting the intercept, are lagged by one period
and are standardized. N.S. stands for ‘not significant’.

5.2. RELOGIT

EPMs are by definition rare events and the use of a LOGIT regression may induce some biases due to

the disequilibrium between the number of events (EPM99/99.9 = 1) and non-events (EPM99/99.9 =

0). To take this imbalance into account, we extend our baseline model to a Rare Event LOGIT

(RELOGIT). According to Mazza (2019, p. 8), this correction is ‘a perfect solution for rare events.’

This method is discussed by King and Zeng (2001a,b) and by Cook et al. (2018) in the field of

political science and international conflicts. Mazza (2019) compares several logistic models and

indicates that a LOGIT with fixed effects (FELOGIT) and conditional logit (CLOGIT) are the

best alternatives when it comes to analyzing rare events, while controlling for fixed effects.

In the case of rare events, coefficients are biased and underestimated. Following Mazza (2019),
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the bias may be computed as:

β̂ − bias(β̂) = β̃

bias(β̂) = (X′WX)−1X′Wξ

ξj = 0.5Qjj [(1 + w1)π̂j − w1]

Q = X(X′WX)−1X′

W = diag[π̂j(1− π̂j)wj ]

w0 = 1− τ
1− ȳ

w1 = τ

ȳ

wj = w1Yj + w0(1− Yj)

(21)

We report results in Table 7. Even if we study rare events, we can control the scarcity of these

events by setting the return threshold. Therefore, the frequency of rare events in the data almost

matches the theoretical proportion of these events, and the correction in the RELOGIT brings little

changes with respect to the results of Table 3.
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Table 7: RELOGIT

Coeff. OR P -value

α0 -5.1266 0.0059 ***
NTt−1 0.4249 1.5295 ***
Abs_T_Imbt−1 -0.5164 0.5967 ***
Rt−1 0.1954 1.2158 ***
RSt−1 0.0274 1.0278
N 25,174
Ny=0 24,924 99.01%
Ny=1 250 0.99%
R2 1.59%
This Table reports results of Equation 18 when we apply the RELOGIT correction, as explained in Equation 21.
The dependent variable is the occurrence of an EPM at time t and the independent variables include an intercept,
the number of trades (NT ), the absolute trade imbalance (Abs_T_Imb), the absolute return (R), and the relative
spread (RS). All variables, excepting the intercept, are lagged by one period and are standardized. N is the number
of observations, Ny=0 (Ny=1) is the number of non-events (events). We also report the R-squared. *, **, *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

5.3. General to specific models

Instead of relying on Brogaard et al. (2018) for the choice of the explanatory variables, we use

a broader list of candidate variables and opt for a general-to-specific approach in order to select

the remaining variables. We use a threshold of statistical significance at 5%. All variables are

standardized and lagged by one period. The final model is presented in Table 8. The list of

candidates includes number of trades (NT ), quantity traded (QT ), volume traded (V T ), aver-

age trade size (ATS), average trade volume (ATV ), trading imbalance (T_Imb), trading imbal-

ance in quantity (Q_Imb), trading imbalance in volume (V_Imb), absolute trading imbalance

(Abs_T_Imb), absolute trading imbalance in quantity (Abs_Q_Imb), absolute trading imbal-

ance in volume (Abs_V_Imb), relative spread (RS), quoted spread (QS), median relative spread

(Median_RS), median quoted spread (Median_QS), depth dollar (DEPTH), depth dollar at

the 5 best quotes (DEPTH5), log-return (R), absolute log-return (Abs_R), amihud (Amihud),
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slope (Slope), dispersion (Dispersion), and VWAP (VWAP ). Results are presented in Table 8.

Table 8: General to specific

Coeff. OR P -value

α0 -5.4049 0.0045 ***
NTt−1 1.1656 3.2078 ***
QTt−1 0.2640 1.3021 ***
V Tt−1 -1.0537 0.3486 ***
ATVt−1 0.5448 1.7242 ***
Abs_T_Imbt−1 0.5930 1.8095 ***
QSt−1 -0.2882 0.7496 ***
Median_RSt−1 0.1122 1.1187 ***
Rt−1 -0.0958 0.9087 ***
Dispersiont−1 0.7925 2.2088 ***
VWAPt−1 -0.2821 0.7542 **
N 25,174
Ny=0 24,924 99.01%
Ny=1 250 0.99%
R2 2.28%
This Table reports the results of Equation 18. The dependent variable is the occurrence of an EPM at time t and
the list of candidate independent variables includes number of trades (NT ), quantity traded (QT ), volume traded
(V T ), average trade size (AT S), average trade volume (AT V ), trading imbalance (T_Imb), trading imbalance in
quantity (Q_Imb), trading imbalance in volume (V _Imb), absolute trading imbalance (Abs_T_Imb), absolute
trading imbalance in quantity (Abs_Q_Imb), absolute trading imbalance in volume (Abs_V _Imb), relative spread
(RS), quoted spread (QS), median relative spread (Median_RS), median quoted spread (Median_QS), depth dollar
(DEP T H), depth dollar at the 5 best quotes (DEP T H5), log-return (R), absolute log-return (Abs_R), amihud
(Amihud), slope (Slope), dispersion (Dispersion), and VWAP (V W AP ). All variables, excepting the intercept,
are lagged by one period and are standardized. N is the number of observations, Ny=0 (Ny=1) is the number of
non-events (events). We also report the R-squared. *, **, *** indicate statistical significance at the 10%, 5%, and
1% level, respectively.

6. Conclusion

In this paper, we investigate the liquidity and trading dynamics around EPMs. Based on Brogaard

et al. (2018), we identify EPMs as absolute return higher than a given threshold. We find that

during EPMs, trading volume strongly increases, while the effect on liquidity is rather mixed

as both depth and spreads increase. Next, we analyze whether these variables help explain the

occurrence of an EPM. We start by analyzing Bitcoin in the platform Bitfinex. Then, we extend
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our analysis to a multi-platforms and multi-cryptocurrencies universe. In addition to a traditional

LOGIT methodology, we also use a RELOGIT framework. Our results suggest that trading activity,

measured by the number of trades and return are useful predictors to explain the occurrence of

EPMs. As far as relative spread is concerned, the results are more mixed.
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