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VIX and SKEW Indices for SPX and VIX Options 

ABSTRACT 
 

The CBOE “SKEW” and “VVIX” indices respectively measure the implied 
volatility skew of SPX options and the implied volatility of VIX options (the 
volatility of volatility). We compute intraday values of the SKEW index for SPX 
(SKEWSPX) and VIX options (SKEWVIX) as well as the VVIX, and then 
determine the empirical characteristics of these factors during the Fall 2008 
financial crisis. After testing for unit roots and cointegration, we determine that 
changes in the VIX possess a bidirectional Granger causality with changes in the 
SKEWSPX; moreover, changes in the SKEWSPX leads changes in the 
SKEWVIX, and the SKEWVIX leads changes in the VVIX. We also confirm the 
positive relation between changes in the VIX and VVIX, document strong 
asymmetric GARCH effects for the VVIX and SKEWSPX, and symmetric 
GARCH effects for the SKEWVIX. Overall, we find evidence supporting the 
bidirectional information flow between SPX and VIX options markets.  
 

 During the past decade the CBOE has added a substantial number of new volatility based 

indices and tradable products to improve our knowledge of the behavior and characteristics of 

volatility. The most recent developments in this implied volatility information escalation are the 

addition of the SKEW index in 2011 and the VVIX index in 2012. The SKEW provides an 

indirect measure of the “slope” of the implied volatility curve, showing to what extent farther-

out-of-the-money (put) options affect the value of the VIX as well as provide evidence of the 

fear of major downward potential movements in the S&P500 index. Thus, the SKEW (modeled 

after Bakshi, Kapadia, and Madan’s (2003) concept of measuring the implied volatility curve) 

can be viewed as the market’s estimate of a Black Swan (tail risk) event. The VVIX index, the 

VIX index for VIX options, provides a measure of the “fear of fear” in the market, another type 

of tail risk. The existence of the SKEW and VVIX indices provide information not previously 

available to examine how the market views future risk and tail events.  

 The VVIX and SKEW indices can help us understand market behavior during the 
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financial crisis of 2008. In particular, the effect of the sub-prime crisis in late 2008 highlighted 

the importance of hedging against tail risk, as measured by the skewness and kurtosis of the 

market. Thus, understanding the behavior of the stochastic volatility of volatility and the implied 

volatility surface is essential to the pricing and hedging of VIX options and futures, in the same 

way as the implied volatility surface is essential to understanding SPX options. In fact, most 

dealers and traders use implied volatility surfaces to price and trade options. Therefore, an in-

depth empirical analysis of the risk-neutral measures derived from SPX and VIX options can 

help uncover the information flow between these two markets. Furthermore, the understanding of 

the volatility surfaces of the SPX and VIX can lead to better models to price SPX and VIX 

derivatives jointly, which has been the focus of the recent literature (Cont and Kokholm 2013; 

Lin and Chang, 2010).  

 The literature has yet to show a dedicated interest in examining the issues of the volatility 

of volatility and the implied skewness of the S&P500 option series, especially in terms of 

intraday data.1 Corsi et al. (2008) is an exception to the paucity of research in this area, as they 

employ the typical five-minute intraday time interval to determine and model the daily realized 

volatility of volatility for underlying cash assets. They use a GARCH-based realized vol of vol to 

show that realized vol of vol is time-varying and clusters on the daily interval.  

 This paper examines the characteristics and econometric relations among the VIX, VVIX, 

the SKEW index for the SPX (henceforth “SKEWSPX”), and the SKEW for VIX options 

(henceforth “SKEWVIX”). Our results provide a new perspective on the information provided 

1 Whereas little research exists on the vol of vol, especially using intraday data, a great deal of research does exist 
for high-frequency volatility data for equity data. For example, the “realized” volatility research typically involves 
using five-minute data to examine the behavior of intraday volatility or daily volatility measured from intraday data: 
See Andersen, Bollerslev, Diebold and Labys (2003); Barndorff-Nielsen and Shephard, (2002); Meddahi, (2002); 
Aït-Sahalia, Mykland and Zhang (2005), among others. 
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by index option prices. In particular, we concentrate on the Fall 2008 financial crisis period and 

compute the VVIX, SKEWSPX, and SKEWVIX indices at the 15-minute interval for our 

empirical analysis, using the CBOE methodology (or equivalently the theoretical approach 

developed by Bakshi et al. 2003).   

 We first investigate the Granger causality among the VIX, VVIX, SKEWSPX and 

SKEWVIX, using both pair-wise vector autoregression (VAR) and system-wide vector error 

correction (VECM) models. The following chain is found: ∆VIX  ∆SKEWSPX  

∆SKEWVIX  ∆VVIX. We then study the factors that affect the VVIX, SKEWSPX and 

SKEWVIX using ordinary regression with EGARCH effect in the residuals, and quantile 

regressions to account for the potential bias in the Ordinary Least Squares (OLS) estimate. We 

document strong volatility clustering in the change in the VVIX, SKEWSPX and SKEWVIX, 

and an asymmetric response of their conditional volatilities to the shocks: a positive shock 

increases volatility more than a negative shock. We also find the change in the VIX has a 

dominating and positive effect on the change in the VVIX, linking “fear” in a positive relation to 

the “fear of fear.” Alternatively, most of the changes in the SKEWSPX and the SKEWVIX are 

explained by their own lags. The overarching evidence regarding the information flow between 

the SPX and VIX options markets supports the value of the existence of the VIX options market.         

 Our research contributes to the literature in three areas. First, the intraday analysis of 

implied volatility of volatility adds to the existing literature of the volatility of realized volatility, 

alternatively referred to as quadratic variation (Corsi et al. 2008; Bollerslev et al. 2009). Second, 

Granger causality is established using two different VAR models, which relates to potential 

arbitrage between SPX and VIX options. Lastly, we provide new evidence for price discovery 

between the SPX and VIX option markets.      
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 The paper is organized as follows. Section I provides background information on our 

measures of volatility of volatility and implied skewness. Section II discusses data and the main 

hypotheses regarding VIX, VVIX, SKEWSPX and SKEWVIX. Section III provides empirical 

results and tests the hypothesis. Section IV concludes with a direction for future research.   

 

I. Volatility of Volatility and Implied Skewness 

 We employ a non-parametrical measure of realized and implied volatility of volatility and 

implied skewness of SPX and VIX options at each 15-minute interval to examine the time series 

behavior of these measures. The realized volatility of volatility is computed as a 30-day standard 

deviation of the VIX futures. In order to make this calculation we first compute the volatilities of 

the nearby and first deferred VIX futures separately, as follows: 

,
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where VIXFt,T is the closing value for the VIX futures expiring at the future time T and 

calculated for each 15-minute interval t. The nearby (T=T1) and deferred volatilities (T=T2) are 

then linearly interpolated to obtain a fixed 30-day realized volatility of the VIX futures, 

calculated as follows: 
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where 30N , 
1TN , 

2TN  are time intervals of 30 days, the nearby expiration, and the first deferred 

expiration. 

 The 30-day implied volatility of volatility is defined as the VIX of the VIX options at the 

15-minute interval, or the VVIX per the CBOE. The 30-day VVIX that matches the time frame 
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of the realized volatility of volatility has the following form:  

2 1

1 2

2 1 2 1
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− −

= +
− −

               (3) 

where 
1TIVAR  and

2TIVAR are implied variances of the nearby and the first deferred VIX options. 

The detailed calculation procedure for TIVAR  can be found in the CBOE white paper for the 

VIX index.2 

 The implied skewness is obtained by applying the methodology developed by Bakshi et 

al. (2003) and adapted by the CBOE for the SPX options (abbreviated as “SKEWSPX”), and 

determined separately here to the VIX options (abbreviated as “SKEWVIX”). The 30-day 

implied skewness that shares the same time frame with the realized and implied volatility of 

volatility has the following form: 

2 1

2 1 2 1

30 30
1 2100 10* T T

T T T T

N N N N
SKEW S S

N N N N
 − −

= − +  − − 
            (4) 

where 1S  and 2S are the implied skewness of the nearby and the first deferred SPX or VIX 

options. The calculation procedure for 1S  and 2S  can be found in the CBOE white paper for the 

SKEW index.3 

 

II. Data and Hypotheses 

 In order to investigate the behavior of the volatility of volatility during the 2008 crisis 

period we employ the intraday S&P500 index options, the cash VIX index, and the VIX futures 

and options instruments from September 2008 to December 2008. We also include the VIX 

2 http://www.cboe.com/micro/vix/vixwhite.pdf 

3 http://www.cboe.com/micro/skew/documents/SKEWwhitepaperjan2011.pdf 
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options in 2007 and the first eight months of 2008 as the “benchmark” normal period for 

comparison purposes relative to the financial crisis period of 2008. The minute-by-minute cash 

VIX and VIX futures values are obtained from TradeStation and the CQG DataFactory, 

respectively. The quote data for the SPX options and VIX options are from a direct feed from 

OPRA. The daily interest rate is obtained from the Federal Reserve of St. Louis website.  

A. Summary Statistics 

 Figure I introduces our data by showing the level of both the VIX and SKEWSPX indices 

during the 1990-2013 time period. The mean and standard deviation for the VIX (SKEWSPX) 

are 20.2 (117.1) and 9.1(5.5), respectively. Both series show significant randomness as well as 

the mean reversion characteristic of volatility.    

 Table I reports the summary statistics for three groups of variables during the 2008 

financial crisis. Group I is the cash VIX and its changes, which provides a benchmark for 

comparison; Group II covers measures of the volatility of volatility, including the realized 

volatility of the VIX futures (RVVIX) and the implied volatility of volatility using the VIX 

options (VVIX); Group III covers the SKEWSPX and SKEWVIX. For Groups I and II in Table I 

two pairs of values (VIX vs. VVIX) and (RVVIX vs. VVIX) provide interesting results. First, on 

average, the VVIX is almost twice as large as the VIX itself (see the top panel of Figure 2 for 

details). Second, on average VVIX is lower than RVVIX during the last quarter of 2008, 

showing a positive volatility for the volatility risk premium during the financial crisis period.4 As 

shown in the middle panel of Figure 2, VVIX is significantly smaller than the realized volatility 

of VIX futures from September through mid-October, although the pattern is reversed in 

November. This same phenomenon during the financial crisis is documented for the S&P 500 

4 The volatility of volatility risk premium is defined as the (ex-post) realized volatility of VIX futures minus the (ex-
ante) implied volatility of the VIX options during the same period.  
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index by Zhou (2009). This result contrasts with the more common negative volatility risk 

premium between the implied volatility (VIX) over the realized volatility of the S&P 500 index 

for both normal and crisis periods (See Bakshi and Kapadia (2003a, 2003b), Carr and Wu (2008), 

Todorov (2009), and Zhou (2009)). 

 For Group III we compare SKEWSPX with SKEWVIX based on Table 1 and the bottom 

panel of Figure 2. SKEWSPX has a minimum value of 104.61 and an average of 134.28 for the 

Fall of 2008. The SKEW index for the SPX options is consistently above 100, which is 

consistent with a negative skewness for the S&P 500 return distribution. For our results the 

SKEWVIX has an average of 96.50 for the Fall of 2008. This value is almost exclusively below 

100, which shows a positive skewness for the VIX futures return distribution.  

 Finally, we compare the implied volatility and SKEW indices for the SPX and VIX 

option series. Table I shows that VVIX and SKEWSPX are the most and the least volatile, 

respectively. This finding is related to Bollen and Whaley (2004), who document that the level of 

implied volatility varies more than the slope of the implied volatility skew.5  

B. Unit Root and Cointegration Tests 

 The presence of a unit root has important implications for econometric modeling of 

volatility and SKEW. Table II reports the unit root test results for VIX, VVIX, SKEWSPX, 

SKEWVIX and the first difference of these four variables. Five tests are included, namely the 

Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Ng-Perron (NP), Elliott-Rothenberg-

5 The difference between our results and those in Bollen and Whaley arises from the definition of implied volatility 
skew (IV slope). Their skew (slope) is based on the volatility difference between two arbitrary moneyness categories 
(OTM and ATM), whereas the SKEW index emphasized here is a weighted average of OTM (including deep OTM) 
and ATM options based on the CBOE/Bakshi, Kapadia and Madan (2003) method. Therefore, the Bollen and 
Whaley measure of the skew is somewhat ad-hoc due to their use of only two options to determine the skew value. 
Bollen and Whaley define the level of the implied volatility as the average implied volatility of near-the-money 
(NTM) options, with the absolute value of the delta of the options falling into the range of [0.375, 0.625]. The slope 
of the implied volatility curve is defined as the percentage difference between the average implied volatility of OTM 
options (with the absolute value of delta falling in the range of [0.125, 0.375]) and the average implied volatility of 
NTM options. 
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Stock (ERS), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. All tests show strong 

evidence of a unit root for the VIX and VVIX. However, there is mixed evidence for the 

SKEWSPX and SKEWVIX. More specifically, all tests except the KPSS test show stationarity 

for the SKEWSPX; the ADF, PP and ERS tests show stationarity for SKEWVIX whereas the NP 

and KPSS tests support the existence of unit root. Nonetheless, differencing these four variables 

is sufficient to make them stationarity. Therefore, our intraday unit root test results for VIX and 

SKEWSPX are largely consistently with Neumann and Skiadopoulos’ (2012) and Shu and 

Zhang’s (2012) daily results, although the evidence for SKEWSPX is weaker in our sample. 

 The Johansen cointegration tests, based on trace and maximum eigenvalue methodologies, 

show that cointegration of rank 2 exists among all four of VIX, VVIX, SKEWSPX and 

SKEWVIX when examined simultaneously.  However, six pair-wise tests of each two variable 

combination show cointegration only between VVIX and SKEWSPX and between VVIX and 

SKEWVIX. Both types of tests are needed because of our subsequent examination of univarite, 

bivariate and multivariate models in the results section. Therefore, the above evidence of 

potential cointegration relations among the four variables calls for a cointegrated Vector 

Autoregression (VAR) model such as the Vector Error Correction Model (VECM).  

C. Hypothesis Development 

 Prices of VIX futures and options are based on the implied volatilities from SPX options. 

Such a theoretical pricing connection naturally drives the integration of the SPX and VIX options 

markets, especially after the growth in VIX futures and options volume heading into the 2008 

financial crisis. Alternatively, we hypothesize that the SPX and VIX options markets are still 

separately dominated by SPX and VIX traders. We further contend that the VIX and SKEWSPX 

indices are related to each other more closely than are the VVIX and SKEWVIX indices, since 

the former (latter) two are determined in the SPX (VIX) options market. Based on the above 
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associations, we formulate seven hypotheses regarding the relations among VIX, VVIX, 

SKEWSPX and SKEWVIX and then briefly explain the basis for each hypothesis. 

 Since the VIX is based on SPX options, and since the price of the SPX options changes 

as volatility changes, we hypothesize that the information flow between SPX options and VIX 

options is bidirectional.  

Hypothesis I: Bidirectional causality exists among the pairs of VIX, VVIX, SKEWSPX and 

SKEWVIX. 

 Corsi et al. (2008), and Bollerslev et al. (2009) document empirical evidence for the 

ARCH effect in realized volatility. We posit that a similar effect exists in the volatility of 

volatility and skewness variables examined here since volatility and skewness are computed with 

the same underlying data (SPX options and VIX options), as stated in Hypothesis II. 

Hypothesis II: An ARCH effect exists in the residuals of the ΔVVIX, ΔSKEWSPX and 

ΔSKEWVIX regressions.  

 Price discovery in the VIX (SPX) options market determines the VVIX (VIX) and 

SKEWVIX (SKEWSPX). The VVIX and SKEWVIX are strongly linked through the prices of 

the VIX options, whereas the VIX and SKEWSPX are strongly linked through the prices of the 

SPX options. Consequently, the former essentially measure the characteristics of the VIX options 

market, whereas the latter measure the characteristics of the SPX options market. Although an 

influence exists from the SPX options market to the VIX options, we contend that the inter-

market link is of secondary order in determining the VVIX and SKEWVIX relative to the intra-

market link, and vice-versa.    

Hypothesis III.1: A change in the SKEWVIX relates more closely to changes in the VVIX than 

to changes in the VIX and SKEWSPX.  

Hypothesis III.2: A change in the VIX (VVIX) relates more closely to changes in the 
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SKEWSPX (SKEWVIX), than to changes in the VVIX (VIX) and SKEWVIX (SKEWSPX). 

 Barndorff-Nielsen and Shephard (2005) and Corsi, Mittnik, Pigorsch and Pigorsch (2008) 

support the concept that the volatility of (realized) volatility is positively associated with realized 

volatility for high-frequency returns. We therefore hypothesize that a positive relation holds for 

the changes under the risk-neutral measures investigated in this paper, as given in Hypothesis IV. 

Hypothesis IV: After controlling for skewness via SKEWSPX and SKEWVIX, a positive 

relation exists between the changes in the VIX and the changes in VVIX.  

 The VIX and SKEWSPX are measured in terms of the SPX options, whereas the VVIX 

and SKEWVIX are measured in terms of VIX options. As with Hypothesis I, we conjecture that 

the two options markets are interconnected, with the associated information flow forming a 

bidirectional flow of information. We further hypothesize that lagged volatility and the lagged 

SKEW index measured in one option market help to explain current volatility and the SKEW 

index measured in another option market. More specifically:      

Hypothesis V: Past changes in the VIX and SKEWSPX (representing the SPX options market) 

contribute to the changes in the VVIX and SKEWVIX (representing the VIX options market), 

and changes in the VVIX and SKEWVIX contribute to changes in the VIX and SKDWSPX . 

 Any increase in the (upward call dominated) implied volatility skew of VIX options that 

is driven by the excess demand for out-of-the-money (OTM) call options can also drive a higher 

level of uncertainty in the VVIX. The opposite is true for SPX options since they possess a put 

dominated downward implied volatility skew driven by excess demand for OTM puts. Note that 

the SKEWSPX increases when the skewness of the S&P 500 returns become more negative, 

whereas the SKEWVIX increases when the skewness of the VIX becomes more positive. Thus, 

we posit a positive relation between changes in the SKEWVIX and changes in the VVIX, and a 
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negative relation between the changes in the SKEWSPX and changes in the VVIX. 

Hypothesis VI:  The changes in the SKEWVIX (SKEWSPX) are positively (negatively) 

associated with changes in the VVIX. 

 The 2008 financial crisis caused dramatic spikes in volatility and led the macro economy 

into the so-called Great Recession. The “outliers” in economic variables during the crisis can 

cause the linear relations among the VIX, VVIX, SKEWSPX and SKEWVIX to behave 

differently across the quantiles of their distribution. For example, the effect of the SKEWSPX on 

the VIX could be different on the right tail of the VIX distribution (a high level of fear) 

compared to the left tail (a low level of fear). A more complete view can be obtained through 

quantile regressions (i.e. absolute value regressions, Koenker and Hallock 2001; Badshah 2013), 

which we shall describe in Section III.B.     

Hypothesis VII: Financial crises pose uneven responses from explanatory variables to 

dependent variables (such as volatility and skew indices) across the quantiles of the distribution 

of the dependent variable. 

 

III. What Determines the VIX, VVIX, SKEWSPX and SKEWVIX? 

 The VIX and SKEWSPX represent proxies for two of the important statistical moments 

of the S&P500 return risk-neutral distribution. Correspondingly, the VVIX and SKEWVIX are 

proxies for the VIX futures return distribution. These proxy measures are crucial for 

characterizing SPX and VIX options. In particular, Poon and Granger (2003) show the 

importance of examining the volatility of volatility as a component in pricing derivatives on 

volatility. As the SPX and VIX options markets become more integrated (Cont and Kokholm, 

2013; Lin and Chang, 2010), it is essential to understand how the risk-neutral moments relate to 

the other moments. Thus, in this section, we first examine the Granger causality among the VIX, 
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SKEWSPX, VVIX and SKEWVIX indices. We then employ the ordinary mean-based regression 

analysis to investigate the factors associated with the VIX, VVIX, SKEWSPX and SKEWVIX, 

both individually and jointly. We further augment our analysis with a quantile regression in order 

to determine the impact of outliers during the financial crisis.  

A. Least Squares Regression 

 We test the seven hypotheses proposed in Section II.C. The first hypothesis is to test for Granger-

causality among VIX, VVIX, SKEWSPX and SKEWVIX indices via Model 1. Hypotheses II through VI 

examine the factors that affect the last three indices via Models 2 and 3. Similarly, Hypothesis VII 

examines the asymmetric impact on all four indices due to the financial crisis via Model 4.6  

A.1 Granger-causality 

 Among the six pairs of indices, we are mostly interested in the relation between the 

changes in the level and slope of the volatility smile (∆VIXt, ∆SKEWSPXt), between the changes 

in the level of volatility and the vol of vol (∆VIXt, ∆VVIXt), between the change in the level of 

volatility and the change in the slope of the volatility smile (∆VVIXt, ∆SKEWVIXt), and 

between the changes in the skews (∆SKEWSPXt, ∆SKEWVIXt). The changes are used due to the 

existence of unit roots.  The Granger causality relations are tested using the Vector 

Autoregressions (VAR) of Models 1.1 through 1.8, respectively.  

Model 1 

(M1.1)  ∆VIXt  = C11 +
1

1
1

p

j
jφ

=
∑ ∆VIXt-j + 1

1
1

p

j
j

θ
=

∑ ∆SKEWSPXt-j + 1
1tò            (5a) 

(M1.2)  ∆SKEWSPXt = C12+
1

1
2

p

j
jφ

=
∑ ∆SKEWSPXt-j + 1

2
1

p

j
j

θ
=

∑ ∆VIXt-j + 1
2tò          (5b) 

6 All statistically significant values in this section are significant at the .05 level, unless specified otherwise. 
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(M1.3)  ∆VIXt    = C21 +
1

2
1

p

j
jφ

=
∑ ∆VIXt-j + 2

1
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j
j

θ
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∑ ∆VVIXt-j  + 2
1tò            (5c) 

(M1.4) ∆VVIXt = C22+
1

2
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∑ ∆VVIXt-j + 2

2
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θ
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∑ ∆VIXt-j + 2
2tò            (5d) 

(M1.5)   ∆VVIXt = C31 + 
1

3
1
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jφ

=
∑ ∆VVIXt-j + 3

1
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p
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θ
=

∑ ∆SKEWVIXt-1  

                           + 11Π  VVIXt-1 + 12Π  SKEWVIXt-1 + 3
1tò           (5e) 

(M1.6)   ∆SKEWVIXt = C31+
1

3
2
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jφ

=
∑ ∆SKEWVIXt-j + 3

2
1

p

j
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θ
=

∑ ∆VVIXt-j  

                           + 21Π  VVIXt-1 + 22Π  SKEWVIXt-1 + 3
2tò            (5f) 

(M1.7)  ∆SKEWSPXt = C12+ 4
1

1

p

j
j

φ
=

∑ ∆SKEWSPXt-j + 4
1

1

p

j
j

θ
=

∑ ∆SKEWVIXt-j + 1
2tò         (5g) 

(M1.8)  ∆SKEWVIXt = C12+ 4
2

1

p

j
j

φ
=

∑ ∆SKEWVIXt-j + 4
2

1

p

j
j

θ
=

∑ ∆SKEWSPXt-j + 1
2tò         (5h) 

It is worth to note that only the last two equations have additional terms of VVIX and 

SKEWVIX to correct for the cointegration relationship. Two lags of the independent variables 

are chosen, based on the lowest AIC (Akaike Information Criterion) and SBC (Schwarz 

Bayesian Criterion) values for the data examined.  

 The results for the six individual regressions and the Granger-causality tests are reported 

in Table III. Here we restrict our discussion of causality to the three pairs of variables noted 

above, as examined in (5a) to (5h). First, we choose Models 1.1 and 1.2 to investigate the 

causality between ΔVIX and ΔSKEWSPX. The Wald test statistic supports Granger-causality 

from the ∆SKEWSPX to the ∆VIX at the 0.05 level of significance. Consequently, changes in 

the SKEW index affect future changes in the VIX. Conversely, when we test for Granger 

causality from ∆VIX to ∆SKEWSPX we reject the null hypothesis of no causality at the 0.10 

level. Therefore, the Granger-causality between ∆VIX and ∆SKEWSPX are bidirectional 
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supporting Hypothesis I.  

 Second, we use Models 1.3 and 1.4 to investigate the causality between ∆VIX and 

∆VVIX. We cannot reject the null hypothesis of no causality from ∆VVIX to ∆VIX, neither can 

we reject the null hypothesis of no causality from ∆VIX to ∆VVIX. Therefore, no Granger-

causality exists between ∆VIX and ∆VVIX, therefore this result rejects Hypothesis I. 

 Third, we employ Models 1.5 and 1.6 to examine the ∆VVIX and the ∆SKEWVIX 

relation, while simultaneously considering the cointegration between them. Using an error 

correction model, we reject the null hypothesis of no causality from ∆SKEWVIX to ∆VVIX, but 

not the null hypothesis of no causality from ∆VVIX to ∆SKEWVIX. Thus, the results show that 

a uni-directional causality exists from ∆SKEWVIX to ∆VVIX. One possible strategy to profit 

from this lead-lag relation is to long (short) a variance swap on VIX futures when the VIX 

implied volatility skew is more (less) upwardly sloped.  

 Lastly, we use Models 1.7 and 1.8 to investigate the causality between ∆SKEWSPX and 

∆SKEWVIX. We cannot reject the null hypothesis of no causality from ∆SKEWVIX to 

∆SKEWSPX, but can reject the null hypothesis of no causality from ∆SKEWSPX to 

∆SKEWVIX. Therefore, there is a uni-directional causality from ∆SKEWSPX to ∆SKEWVIX. 

In order to profit from this causality one can long (short) the bull spread in VIX call options 

when the SPX implied volatility skew is more (less) downwardly sloped.  

 To summarize, we find the following Granger-causality chain:  

∆VIX  ∆SKEWSPX  ∆SKEWVIX  ∆VVIX, where bold arrows show stronger links.  

The economic implication of the chain effect is that price discovery in the SPX options market 

lead price discovery in the VIX options market. The feedback from VIX options market to the 

SPX options market appears to be weak, at least statistically. It is conceivable that option traders 
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tend to respond first in the SPX options and then in the VIX options market, given that the latter 

is still a relatively new market for hedging volatility risk. 

A.2 Determination of the Change in VVIX 

 Here we test Hypotheses II through VI to examine the factors associated with the change 

in the VVIX by using the benchmark Model 2, as follows: 

Model 2 

∆VVIXt =α + 1β ∆SKEWVIXt + 2β ∆SKEWVIXt-1+ 3β ∆SKEWSPXt+ 4β ∆SKEWSPXt-1  

             + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆VVIXt-1++ 7β ∆VVIXt-2+ tò            (6) 

We estimate the complete specification and five reduced versions of Model 2, labeled as Models 

2.1 to 2.6. In order to test for the explanatory power of ∆SKEWVIX, ∆SKEWSPX, ∆VIX, and 

past ∆VVIX, we sequentially remove from the regression each of the following four pairs of 

variables: (∆SKEWVIXt, ∆SKEWVIXt-1), (∆SKEWSPXt, ∆SKEWSPXt-1), (∆VIX t, ∆VIX t-1),  

and lastly ∆VVIXt-1, to obtain Models 2.2 to 2.5 respectively. Estimation results are reported in 

Table IV. Associated hypotheses are reproduced and discussed below. 

 Regarding Hypothesis II, we test for the ARCH effect in the regression Model 2 for 

ΔVVIX. The Lagrange Multiplier (LM) test strongly supports the existence of an ARCH effect 

in the regression residual for ΔVVIX. We employ an EGARCH(1,1) model to account for 

potential asymmetric response of conditional variance to shocks in the residual. We augment 

equation (6) with the following conditional variance equation: 

0 1 1 1 1 1 1( ) ( | | (| |) ( )t t t t tln h a a e e E e b ln hθ − − − −= + + − +              (7)  

where t t th z=ò  and ~ . . . (0,1)tz i i d N .  

The GARCH parameters  0 1 1, ,a a b   are statistically significant at the 0.05 level, showing volatility 

clustering in the change of VVIX and accepting the first part of Hypothesis II. This finding is an 

16 
 
 



addition to the recent literature on realized volatility (Corsi et al. 2008, Bollerslev et al. 2009) in 

that the GARCH effect here is on (implied) volatility of (implied) volatility as opposed to 

realized volatility, i.e. volatility of volatility of volatility (vol3) vs. volatility of realized volatility 

(vol2).  Furthermore, we find asymmetric response of vol2 to vol3, as evidenced by a positive and 

significant θ =0.21. The asymmetry lies in that positive shocks to vol2 increase vol3 more than do 

negative shocks.   

 Regarding Hypothesis III.1, we compare the R2s of Models 2.1 to 2.5, as shown in Table 

IV. We find that the fit of the equation drops the most (and is significant) from an R2 of 23.2% to 

8.9% if we omit ∆VIX. Removing other variables from the equation impacts the R2 of the 

equation, but with far less significance. Although the effect of removing ∆SKEWVIX and 

∆SKEWSPX are of secondary order, removing the former causes more decrease in R2 than does 

removing the latter. This means that the ∆VIX (measuring fear) contributes the most to the 

determination of the ∆VVIX (the fear of fear), rejecting Hypothesis III. The result further 

motivates the test of Hypothesis IV. 

 Regarding Hypothesis IV, we examine the coefficient of the ∆VIX in the regression for 

the ∆VVIX (Model 2). The coefficient of the ∆VIX is positive and significant, supporting the 

notion of the inverse leverage effect between contemporaneous changes of VIX and VVIX. More 

specifically, one percentage point increase in ∆VIX is associated with 0.23 percentage point 

increase in ∆VVIX. Our finding with risk-neutral measure of volatilities is consistent with 

empirical evidence found in the literature of volatility of realized volatility (Corsi et al. 2008; 

Bollerslev et al. 2009). 

 Regarding Hypothesis V, we examine the statistical significance of past changes in the 

VIX and SKEWSPX in the regression for ∆VVIX (Model 2). We note that Hypothesis V is 
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along the same line with the Granger-causality test in Hypothesis I, but is examined using a 

standalone regression with ARCH effect, instead of a pair-wise VAR model.  Table IV shows 

that only the coefficient for the lagged change in SKEWVIX is significantly negative, consistent 

with the Granger-causality test. The lagged changes in VIX and SKEWSPX (measured in SPX 

options market) do not cause significant impact on the change in VVIX (measured in VIX 

options market). Therefore, we reject the hypothesis that SPX options market leads VIX options 

market. 

 Regarding Hypothesis VI, we investigate the sign and significance of the coefficients for 

ΔSKEWSPX and ΔSKEWVIX in the regression examining ∆VVIX in Models 2.1, and 2.3-2.5. 

As reported in Table IV, the coefficients for ΔSKEWVIX are all significantly negative, whereas 

the coefficients for SKEWSPX are all significantly positive. However, the size of the former 

(0.37) is significantly larger than that of the latter (-0.02). We deem the primary effect on VVIX 

is still originated within VIX options market. Therefore, we accept Hypothesis V.   

A.3 Determination of the Change in SKEWSPX and SKEWVIX 

 We employ Models 3a and 3b to test Hypotheses II, III.2 and V concerning SKEWSPX 

and SKEWVIX. The structure of both models follows that of Model 2 for VVIX. The estimation 

results are reported in Table V. 

Model 3a: ∆SKEWSPXt =α + 1β ∆SKEWVIXt + 2β ∆SKEWVIXt-1+ 3β ∆VVIXt + 4β ∆VVIXt-1 
         + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆SKEWSPXt-1 + 8β ∆SKEWSPXt-2 + tò                 (8a) 
Model 3b: ∆SKEWVIXt =α + 1β ∆SKEWSPXt + 2β ∆SKEWSPXt-1+ 3β ∆VVIXt + 4β ∆VVIXt-1 
         + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆SKEWVIXt-1 + 8β ∆SKEWVIXt-2 + tò                (8b) 
 

 Regarding Hypothesis II, we test for the ARCH effect in the regression Models 3a and 3b 

for ΔSKEWSPX and ΔSKEWVIX, respectively. The LM tests strongly support the existence of 

the ARCH effect in the residuals of ΔSKEWSPX and ΔSKEWVIX regression. Using the same 
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EGARCH model in Equation (7), we quantify volatility clustering and asymmetry in the two 

SKEW indices, reported in Table V. The GARCH parameters  0 1 1, ,a a b   are statistically 

significant at the 0.05 level, indicating volatility clustering in ΔSKEWSPX and ΔSKEWVIX and 

accepting the second part of Hypothesis II. 

 The volatility asymmetric effect is found in ΔSKEWSPX, but not in ΔSKEWVIX. 

Positive shocks to ΔSKEWSPX increase its volatility more than negative shocks. The difference 

in the SKEWVIX may be due to the lack of depth in the VIX options market for traders to 

respond differently for positive vs. negative shocks.    

 Regarding Hypothesis III.2, we compare the R2s of Models 3a.1 through 3a.5 and 3b.1 

through 3b.5, as shown in Table V. First of all, ΔSKEWSPX and ΔSKEWVIX do not correlate 

to each other in Model 3a and 3b, after conditioning on the lags of the respective variables.  

Additionally, we find negative and significant coefficients for contemporaneous ΔVIX and 

ΔVVIX in explaining ΔSKEWSPX. We further perform an F test for the equality between the 

two coefficients. We cannot reject the null of the equal effect between the ΔVIX and ΔVVIX (p 

value =0.25). Dropping ΔVIX from the regression (Model 3a.3) can hardly be distinguished from 

dropping ΔVVIX (Model 3a.4) in terms of R2. Therefore, we reject Hypothesis III.2 regarding 

SKEWSPX on the basis that the ΔVIX and ΔVVIX possess an equal impact on the ΔSKEWSPX.  

 Similarly regarding ΔSKEWVIX, we find positive and significant coefficients for 

contemporaneous ΔVIX and ΔVVIX. The F test shows a stronger effect of ΔVVIX than ΔVIX (p 

value < 0.01). There is a noticeably more decrease in R2 when dropping ΔVVIX (Model 3b.3) 

than dropping ΔVIX (Model 3b.4). Therefore, we accept Hypothesis III.2 regarding SKEWVIX. 

 Regarding Hypothesis V, we examine the statistical significance of past changes in the 

VVIX and SKEWVIX in the regression explaining ∆SKEWSPX, as well as the changes on VIX 
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and SKEWSPX for the regression explaining ∆SKEWVIX (Models 3a and 3b). Table V shows 

that neither the coefficient of lagged ∆VVIX nor the coefficient of lagged ∆SKEWVIX is 

statistically significant in explaining ∆SKEWSPX. The same conclusion holds for ∆SKEWSPX 

— neither the coefficient of lagged ∆VIX or lagged ∆SKEWSPX is statistically significant in 

explaining ∆SKEWVIX. Thus, we reject Hypothesis V for the two SKEW indices. Further 

investigation of R2 shows that the SKEW indices are mostly explained by their own lags.  

A.4 Joint Determination of VIX, VVIX, SKEWSPX, and SKEWVIX 

 As a robustness check for the Granger-causality and the determination of each variable, 

we cast VIX, VVIX, SKEWSPX and SKEWVIX in a vector autoregression with error correction 

model (VECM), accounting for potential cointegration. Denote Yt as the four-variable vector 

(VIXt, VVIXt, SKEWSPXt, SKEWVIXt). The following VECM model (Model 4) is employed to 

examine the correlation across the four variables: 

∆Yt = C + 
1

1

p

i

−

=

Φ∑ Yt-i + Π Yt-1 + tò                  (9) 

where C, Φ  and Π  are the intercept, the vector autoregressive and error-correction coefficients, 

respectively. Estimation results are reported in Table VI. 

 We find that lagged ∆SKEWVIX explains ∆VVIX, lagged ∆SKEWSPX explains 

∆SKEWVIX and ∆VIX, which is consistent with the earlier Granger causality results based on 

the pair-wise VAR. The only difference in the VECM model is the lack of explanatory power of 

∆VIX for ∆SKEWSPX (as opposed to the 9.3% significance in the pair-wise VAR model). We 

contend that the remaining linkage between ∆VIX and ∆SKEWSPX is weakened once we 

account for the long-run cointegration effect.  

 We also find the statistical significance and sign of the explanatory variables are largely 

shared by the standard-alone regression model with EGARCH effect and the VECM model, 
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although the model specifications are not exactly the same. The similarity in the results points to 

the consistency between the two models.    

B. Quantile Regressions 

 The large kurtosis in Table I for ∆VIX, ∆VVIX, ∆SKEWSPX and ∆SKEWVIX (50, 26.2, 

16.7 and 23.5, respectively) cause concern that extreme values can potentially bias the OLS 

regression results due to the squaring of the error terms, which motivates Hypothesis VII. In 

order to obtain a complete view of its impact on parameter estimate, we run a simple quantile 

regression of VIX, VVIX, SKEWSPX and SKEWVIX from 5% to 95% quantile incremented by 

5%, where quantile regression employs an absolute value procedure. The three ordinary 

regression models (2.1, 3a.1 and 3b.1) are estimated under the quantile regression framework.  In 

the interest of space, we report in Figures 3a and 3b the quantile plots for variables that are 

statistically significant in the ordinary regressions.7  

 A general observation is made about the difference between the ordinary and quantile 

regressions before we delve into the variation of each parameter estimate across quantiles. The 

signs of the coefficients of our interest remain the same under both regressions. In Figure 3a 

(∆VVIX), we include ∆SKEWVIXt, ∆SKEWVIXt-1, ∆SKEWSPXt, ∆VIXt, ∆VVIXt-1, and 

∆VVIXt-2. The most significant variation across quantiles exists in ∆SKEWSPXt and ∆VIXt. 

∆SKEWSPXt responds more negatively to ∆VVIX in extreme quantiles. However, ∆VIXt 

responds more positively to ∆VVIX in extreme quantiles.  In the left panel of Figure 3b 

(∆SKEWSPX), we include ∆VVIXt, ∆VIXt, ∆SKEWSPXt-1, and ∆SKEWSPXt-2. The most 

significant variation across quantiles is also found in ∆VIXt and ∆SKEWSPXt-1. ∆VIXt and 

∆SKEWSPXt-1 respond more negatively to ∆SKEWSPX in extreme and in median quantiles, 

7 The detailed estimates for the quantile regression are available upon request. 
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respectively. In the right panel of Figure 3b (∆SKEWVIX), we include ∆VVIXt, ∆VIXt, 

∆SKEWVIXt-1, and ∆SKEWVIXt-2. The most significant variation across quantiles is found in 

∆VIXt, which responds more positively to ∆SKEWVIX in extreme quantiles. 

 In sum, ∆VIXt and ∆SKEWSPXt tend to show more impact at extreme and median values. 

The results may be associated with the fact that the former has the highest kurtosis while the 

latter has the lowest kurtosis.        

  

IV. Conclusions 

 We examine the characteristics of the VIX index for VIX options (VVIX), as well as 

analyze the new SKEW index that determines a value of the slope of the implied volatility curve 

of the S&P500 (SKEWSPX) and VIX options (SKEWVIX). These measures are applied to the 

Fall of 2008 financial crisis data. We also investigate the Granger-causality among VIX, VVIX, 

SKEWSPX and SKEWVIX. Lastly we analyze the factors that determine the changes in VVIX, 

SKEWSPX and SKEWVIX. To the best of our knowledge, studying the intraday behavior of 

these four variables is new to the literature. The main conclusions are summarized below. 

 Granger causality: the following chain effect is found ∆VIX  ∆SKEWSPX  

∆SKEWVIX  ∆VVIX. The relation is robust under the pair-wise VAR model and the system-

wide VECM model. The economic implication is the slope of change in the volatility smile 

forecasts (at least predates) the change in implied volatility at the intraday level. The results 

apply in both SPX and VIX options markets. Option traders can design strategy to capture the 

lead-lag relation.  

 Volatility Clustering: we document the GARCH effect in the change of volatility of 

volatility (VVIX) and the SKEW indices (SKEWSPX and SKEWVIX). Conditional volatility of 
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VVIX (volatility-cubed) and SKEWSPX respond asymmetrically to the shocks to the change in 

VVIX and SKEWSPX: positive shock increases the conditional volatility more than negative 

shocks.  

 Explanatory Power: the change in VIX is positively related to and has the most 

explanatory power to the change in VVIX, whereas its own lags explain most of the change in 

SKEWSPX and SKEWVIX. The former result is termed “inverse leverage effect” that can be 

intuitively interpreted as “fear” moves in the same direction as “fear of fear”. The latter result 

indicates more independence of the risk-neutral skewness dynamics at the intraday level.  

 Information flow: after 4 (2) years of development of VIX futures (options) prior to the 

2008 financial crisis, most evidence points to the influence of the mature SPX options market on 

the burgeoning VIX options market. There is some evidence that the latter provides additional 

price discovery information, for instance from VVIX to SKEWSPX.       

 The examination of the SKEW index and the volatility of volatility provided here is a 

starting point for analyzing the characteristics and relations associated with these variables. The 

results and comments in this paper suggest a number of directions for future research. One 

avenue is to examine the behavior and stochastic process of the SKEW index and the vol of vol 

(using both implied and realized values of this variable). A second avenue is to determine how 

the SKEW and the VIX of VIX can be employed to price VIX options, especially given the poor 

performance of the current VIX option pricing models (Wang and Daigler, 2011). A third, more 

practical, use of the SKEW and VIX of VIX is to determine if and how they can be used to help 

forecast market movements or option prices. Finally, one can develop strategies and pricing 

models for a volatility derivative on the SKEW index. Overall, the forecast for volatility 

derivative research seems to have a bright future. 
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FIGURES AND TABLES 

 

Figure 1 Daily VIX vs. SKEW for the S&P500 Options for 1990-2013 
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Figure 2 Intraday 15-minute VIX, VVIX, SKEWSPX and SKEWVIX for Fall 2008   
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Figure 3a Quantile Plots for the Regressions of ∆VVIX  
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Figure 3b Quantile Plots for the Regressions of ∆SKEWSPX (left) and ∆SKEWVIX (right) 
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Table I   Summary Statistics for Intraday Volatility and SKEW Indices (Fall of 2008) 

Table I presents summary statistics for three groups of implied volatility variables using 15-
minute data for the last quarter of 2008. Group I includes the VIX and the change in the VIX 
(ΔVIX); Group II includes the realized volatility of the VIX futures (RVVIX), the implied 
volatility of volatility (VVIX) and the change in the VVIX (∆VVIX); Group III includes the 
SKEWSPX, the change in SKEWSPX (∆SKEWSPX), the SKEWVIX, and the change in 
SKEWVIX (∆SKEWVIX). 

Group Variable N Mean Std Dev Median Skewness Kurtosis Min. Max. 
I VIX 2212 51.54 15.71 55.57 -0.31 -0.92 20.58 85.46 
I ΔVIX 2211 0.01 1.04 0.00 2.62 50.00 -6.81 17.66 
II RVVIX 2212 103.67 17.26 94.46 0.35 -1.52 81.85 131.63 
II VVIX 2212 96.37 18.04 91.66 0.24 -1.20 66.95 134.86 
II ∆VVIX 2211 0.01 0.87 -0.01 1.41 26.22 -7.38 11.99 
III SKEWSPX 2212 115.01 4.68 113.99 1.02 1.29 104.61 134.28 
III ∆SKEWSPX 2211 0.00 1.18 0.01 -0.26 16.68 -10.39 9.35 
III SKEWVIX 2212 96.50 2.64 97.28 -0.92 0.04 88.65 101.83 
III ∆SKEWVIX 2211 0.00 0.56 0.01 -0.09 23.52 -6.12 6.50 

 

Table II Unit Root Tests 

Table II reports the unit root test results for VIX, VVIX, SKEWSPX and SKEWVIX. The tests 
included are Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Ng-Perron (NP), Elliott-
Rothenberg- Stock (ERS), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. All tests are 
based on optimal lags that provides the lowest modified AIC for the ADF regression. *, ** and 
*** show the existence of unit root can be rejected at the 0.10, 0.05 and 0.01 significance levels, 
respectively. Otherwise “x” is marked as existence of unit root. 

Variable ADF PP NP ERS KPSS 
VIX x x x x x 
ΔVIX *** *** *** *** *** 
VVIX x x x x x 

∆VVIX *** *** *** *** *** 
SKEWSPX * *** ** *** x 

∆SKEWSPX *** *** *** *** *** 
SKEWVIX * *** x * x 

∆SKEWVIX *** *** *** *** *** 
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Table III Pair-wsie Granger Causality Tests (*, ** and *** show significance at the 0.10, 0.05 and 0.01 levels, respectively.) 
Model Variable Estimate Std. Err. Model Variable Estimate Std. Err. 
∆VIX Constant 0.009 0.022 ∆SKEWSPX Constant 0.000 0.024 
(1a) ∆VIX(t-1) 0 0.021 (1b) ∆VIX(t-1) -0.042* 0.023 

 
∆SKEWSPX(t-1) -0.053*** 0.020   ∆SKEWSPX(t-1) -0.28*** 0.021 

 
∆VIX(t-2) -0.033 0.021   ∆VIX(t-2) 0.029 0.023 

 
∆SKEWSPX(t-2) -0.016 0.020   ∆SKEWSPX(t-2) -0.091*** 0.022 

H0: ∆SKEWSPX does not Granger cause ∆VIX. H0: ∆VIX does not Granger cause ∆SKEWSPX. 
Wald Test 7.40** P value 0.02 Wald Test 4.76* P value 0.09 
∆VIX Constant 0.009 0.022 ∆VVIX Constant 0.008 0.018 
(1c) ∆VIX(t-1) -0.006 0.024 (1d) ∆VIX(t-1) 0.013 0.020 

 
∆VVIX(t-1) 0.028 0.028   ∆VVIX(t-1) -0.034 0.024 

 
∆VIX(t-2) -0.032 0.024   ∆VIX(t-2) 0.011 0.020 

 
∆VVIX(t-2) 0.003 0.028   ∆VVIX(t-2) 0.010 0.024 

H0: ∆VVIX does not Granger cause ∆VIX. H0: ∆VIX does not Granger cause ∆VVIX.  
Wald Test 0.97 P value 0.61 Wald Test 0.75 P value 0.69 
∆VVIX Constant 1.25* 0.7 ∆SKEWVIX Constant 1.77*** 0.43 
(1e) VVIX(t-1) 0.000 0.000 (1f) VVIX(t-1) 0.001 0.000 

 
SKEWVIX(t-1) -0.013 0.007   SKEWVIX(t-1) -0.019 0.005 

 
∆VVIX(t-1) -0.016 0.022   ∆VVIX(t-1) 0.013 0.014 

 
∆SKEWVIX(t-1) -0.062* 0.035   ∆SKEWVIX(t-1) -0.29*** 0.021 

H0: ∆SKEWVIX does not Granger cause ∆VVIX. H0: ∆VVIX does not Granger cause ∆SKEWVIX. 
Wald Test 6.32 P value 0.043** Wald Test 2.13 P value 0.35 
∆SKEWSPX Constant 0.000 0.024 ∆SKEWVIX Constant 0.003 0.011 
(1g) ∆SKEWSPX(t-1) -0.27*** 0.021 (1h) ∆SKEWSPX(t-1) -0.012 0.009 

 
∆SKEWVIX(t-1) -0.005 0.046   ∆SKEWVIX(t-1) -0.34*** 0.021 

 
∆SKEWSPX(t-2) -0.09*** 0.022   ∆SKEWSPX(t-2) 0.019* 0.010 

 
∆SKEWVIX(t-2) -0.004 0.046   ∆SKEWVIX(t-2) -0.16*** 0.021 

H0: ∆SKEWVIX does not Granger cause ∆SKEWSPX. H0: ∆SKEWSPX does not Granger cause ∆SKEWVIX. 
Wald Test 0.02 P value 0.99 Wald Test 6.5** P value 0.0387 
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Table IV Regression Results for the Determination of ∆VVIX 

This table reports the estimates and standard errors (in parenthesis) of the regression coefficients from Model 2. Estimates that are 
statistically significant at the 5% level are shown in bold. 
Model 2: ∆VVIXt =α + 1β ∆SKEWVIXt + 2β ∆SKEWVIXt-1+ 3β ∆SKEWSPXt + 4β ∆SKEWSPXt-1 
                             + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆VVIXt-1 + 8β ∆VVIXt-2  + tò  
The conditional variance is specified by the EGARCH(1,1) equation 0 1 1 1 1 1 1( ) ( | | (| |) ( )t t t t tln h a a e e E e b ln hθ − − − −= + + − + . 

Model α  1β  2β  3β  4β  5β  6β  7β  8β  0a  1a  1b  θ  2R (%) 
2.1 0.006 0.365 0.129 -0.017 -0.013 0.234 0.015 -0.148 0.042 -0.023 0.448 0.865 0.211 23.2 

 
(0.012) (0.017) (0.025) (0.008) (0.009) (0.007) (0.012) (0.024) (0.017) (0.007) (0.025) (0.008) (0.034) 

 2.2 0.004 
  

-0.013 -0.012 0.273 0.002 -0.114 0.016 -0.024 0.427 0.843 0.226 19.0 

 
(0.013) 0.000  0.000  (0.007) (0.010) (0.008) (0.014) (0.025) (0.018) (0.007) (0.024) (0.009) (0.036) 

 2.3 0.000 0.338 0.121 
  

0.233 0.011 -0.144 0.027 -0.022 0.446 0.866 0.208 22.8 

 
(0.013) (0.015) (0.025) 0.000  0.000  (0.007) (0.012) (0.023) (0.017) (0.007) (0.025) (0.007) (0.034) 

 2.4 0.013 0.454 0.107 -0.023 -0.020 
  

-0.076 0.042 0.004 0.472 0.864 0.115 8.9 

 
(0.012) (0.013) (0.028) (0.008) (0.010) 0.000  0.000  (0.020) (0.019) (0.006) (0.023) (0.009) (0.023) 

 2.5 0.012 0.366 0.049 -0.019 -0.011 0.233 -0.029 
  

-0.028 0.419 0.859 0.213 23.1 

 
(0.012) (0.013) (0.031) (0.008) (0.010) (0.008) (0.009) 0.000  0.000  (0.007) (0.024) (0.008) (0.037) 
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Table V Regression Results for the Determination of ∆SKEWSPX and ∆SKEWVIX 

Table V reports the estimates and standard errors (in parenthesis) for the coefficients in Models 3a (Panel A) and 3b (Panel B), along 
with their R2s. Estimates that are statistically significant at the 5% level are marked in bold. 
Model 3a: ∆SKEWSPXt =α + 1β ∆SKEWVIXt + 2β ∆SKEWVIXt-1+ 3β ∆VVIXt + 4β ∆VVIXt-1 
                             + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆SKEWSPXt-1 + 8β ∆SKEWSPXt-2 + tò  
Model 3b: ∆SKEWVIXt =α + 1β ∆SKEWSPXt + 2β ∆SKEWSPXt-1+ 3β ∆VVIXt + 4β ∆VVIXt-1 
                             + 5β  ∆VIXt + 6β ∆VIXt-1+ 7β ∆SKEWVIXt-1 + 8β ∆SKEWVIXt-2 + tò  

The conditional variance is specified by the EGARCH(1,1) equation 0 1 1 1 1 1 1( ) ( | | (| |) ( )t t t t tln h a a e e E e b ln hθ − − − −= + + − + . 

Model α  1β  2β  3β  4β  5β  6β  7β  8β  0a  1a  1b  θ  2R  (%) 
3a.1 0.001 0.021 -0.001 -0.079 -0.035 -0.105 -0.018 -0.384 -0.248 0.060 0.301 0.842 0.086 7.9 

 
(0.013) (0.035) (0.046) (0.015) (0.027) (0.011) (0.018) (0.025) (0.025) (0.007) (0.018) (0.010) (0.038) 

 3a.2 0.001 
  

-0.074 -0.034 -0.104 -0.020 -0.386 -0.249 0.059 0.297 0.844 0.089 7.9 

 
(0.013) 0.000  0.000  (0.015) (0.026) (0.011) (0.018) (0.025) (0.024) (0.007) (0.018) (0.010) (0.038) 

 3a.3 0.002 -0.005 -0.001 
  

-0.133 -0.035 -0.383 -0.252 0.058 0.285 0.849 0.096 7.4 

 
(0.013) (0.037) (0.043) 0.000  0.000  (0.009) (0.014) (0.025) (0.025) (0.007) (0.017) (0.009) (0.039) 

 3a.4 -0.006 0.025 0.004 -0.114 -0.047 
  

-0.371 -0.245 0.054 0.291 0.856 0.108 7.7 

 
(0.014) (0.036) (0.045) (0.013) (0.023) 0.000  0.000  (0.024) (0.025) (0.006) (0.017) (0.009) (0.039) 

 3a.5 0.001 0.015 -0.008 -0.082 0.033 -0.107 0.036 
  

0.060 0.294 0.845 0.095 0.8 
  (0.009) (0.036) (0.042) (0.015) (0.026) (0.012) (0.019) 0.000  0.000  (0.007) (0.017) (0.009) (0.040)   
3b.1 0.005 -0.003 0.001 0.102 -0.001 0.056 0.007 -0.321 -0.147 -0.012 0.198 0.983 0.042 18.7 

 
(0.007) (0.006) (0.005) (0.005) (0.010) (0.006) (0.007) (0.020) (0.052) (0.006) (0.010) (0.003) (0.038) 

 3b.2 0.005 
  

0.103 0.000 0.055 0.007 -0.321 -0.146 -0.012 0.197 0.983 0.042 18.7 

 
(0.006) 0.000  0.000  (0.005) (0.010) (0.006) (0.007) (0.020) (0.051) (0.005) (0.010) (0.003) (0.038) 

 3b.3 0.003 -0.003 -0.003 
  

0.090 0.007 -0.329 -0.099 -0.001 0.161 0.990 -0.046 14.4 

 
(0.006) (0.005) (0.005) 0.000  0.000  (0.006) (0.007) (0.020) (0.057) (0.004) (0.009) (0.002) (0.035) 

 3b.4 0.006 -0.002 -0.002 0.145 0.003 
  

-0.310 -0.196 -0.021 0.214 0.977 0.109 18.2 

 
(0.007) (0.006) (0.005) (0.005) (0.010) 0.000  0.000  (0.019) (0.022) (0.007) (0.012) (0.004) (0.042) 

 3b.5 0.003 -0.002 0.004 0.104 -0.047 0.056 -0.008 
  

-0.013 0.202 0.982 0.041 8.8 
  (0.004) (0.006) (0.005) (0.005) (0.009) (0.006) (0.007) 0.000  0.000  (0.006) (0.010) (0.003) (0.038)   
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Table VI Vector Autoregression with Error Correction 

Table VI reports the estimates and standard errors for coefficients in Model 4. Estimates that are statistically significant at the 1%, 5% 
and 10% level are marked in ***, ** and *, respectively.  

Model 4: ∆Yt = C + 
1

1

p

i

−

=

Φ∑ ∆Yt-i + Π Yt-1 + tò  

where Yt = (VIXt, VVIXt, SKEWSPXt, SKEWVIXt). 
 

Equation C VVIXt-1 

 
SKEW 
VIXt-1 VIXt-1 

SKEW 
SPXt-1 ∆VVIXt-1 

∆SKEW 
VIXt-1 ∆VIXt-1 

∆SKEW 
SPXt-1 

VVIX 0.971 -0.001 -0.011 0.002 0.001 -0.025 -0.064* 0.015 -0.024 

 
(1.004) (0.001) (0.010) (0.002) (0.005) (0.024) (0.035) (0.020) (0.016) 

SKEWVIX 2.614 -0.003 -0.031 0.006 0.004 0.013 -0.285*** 0.001 -0.017* 

 
(0.611) (0.001) (0.006) (0.001) (0.003) (0.015) (0.021) (0.012) (0.010) 

VIX -1.180 0.001 0.014 -0.003 -0.001 0.026 -0.031 -0.005 -0.047** 

 
(1.203) (0.002) (0.012) (0.002) (0.006) (0.029) (0.042) (0.024) (0.019) 

SKEWSPX 3.075** 0.009 0.013 -0.003 -0.044 -0.027 0.016 -0.032 -0.233*** 

 
(1.311) (0.002) (0.013) (0.002) (0.007) (0.032) (0.046) (0.026) (0.021) 
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