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ABSTRACT 

We propose a measure for the convexity of an option-implied volatility curve, IV convexity, as a 

forward-looking measure of excess tail-risk contribution to the perceived variance of underlying 

equity returns. Using equity options data for individual U.S.-listed stocks during 2000-2013, we 

find that the average return differential between the lowest and highest IV convexity quintile 

portfolios exceeds 1% per month, which is both economically and statistically significant on a 

risk-adjusted basis. Our empirical findings indicate that informed options traders anticipating 

heavier tail risk proactively induce leptokurtic implied distributions of underlying stock returns 

before equity investors express their tail-risk aversion. 
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1. Introduction 

Traditional mean-variance analysis (e.g., Markowitz, 1956; Sharpe, 1964; Lintner, 1965; Black, 

1972) typically presumes a normally distributed asset return characterized solely by its mean and 

variance.1 According to Scott and Horvath (1980), however, a rational investor’s utility is also a 

function of higher moments in general, as they tend to have an aversion to negative skewness and 

high excess kurtosis in the portfolio return. The risk premium effect caused by this aversion results 

in market-implied asset returns with negatively-skewed and highly-leptokurtic distributions. In 

this context, the non-normality of stock returns has been well-documented in literature (e.g., 

Merton, 1982; Peters, 1991; Bollerslev, Chou, and Kroner, 1992) as a natural extension of the two-

moment approach to portfolio optimization. Not surprisingly, considerable research has examined 

whether the higher moments of stock returns are indeed priced in the market.2 It is noteworthy 

that this higher-moment pricing effect is embedded in equity option prices in a forward-looking 

manner.3 

Extensive research demonstrates that equity option markets provide informed traders with 

opportunities to capitalize on their information advantage. The rationale is that informed traders 

with private information about future stock values would have incentives to trade equity options 

rather than the underlying stocks. Researchers have identified several advantages of option trading 

relative to stock trading including (i) reduced trading costs (Cox and Rubenstein, 1985), (ii) the 

lack of restrictions on short selling (Diamond and Verrecchia, 1987), and (iii) greater leverage 

effects (Black, 1975; Manaster and Rendleman, 1982). Most recently, other researchers show an 

increased interest in inter-market inefficiency, leading to a proliferation of studies into the potential 

lead-lag relationship between options and stock prices. 4  An option-implied volatility curve 

                                            
1 The mean-variance approach is consistent with the maximization of expected utility if either (i) the investors' 

utility functions are quadratic, or (ii) the assets’ returns are jointly normally distributed. However, a quadratic utility 

function, by construction, exhibits increasing absolute risk aversion, consistent with investors who reduce the dollar 

amount invested in risky assets as their initial wealth increases. Accordingly, a quadratic utility formulation may be 

unrealistic for practical purposes. See Arrow (1971) for details. 
2 See Chi-Hsiou Hung, Shackleton, and Xinzhong (2004); Chung, Johnson, and Schill (2006); Dittmar (2002); 

Doan, Lin, and Zurbruegg (2010); Harvey and Siddique (2000); Kraus and Litzenberger (1976); and Smith (2007); 

among many others. 
3 Refer to Bali, Hu, and Murray (2015) and Chang, Christoffersen, and Jacobs (2013) among many others. We 

discuss this point in the main body. 
4 One stream in the related literature concerns the relationship between options trading volumes and the underlying 

stock returns, such as Anthony (1988); Stephan and Whaley (1990); Easley, O’Hara, and Srinivas (1998); Chan, 

Chung, and Fong (2002). Others, such as Manaster and Rendleman (1982); Bhattacharya (1987); Stephan and 
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expresses the degree of abnormality in the market-implied distribution of the underlying stock 

return as a measure of the deviation between the option-implied distribution and the normal 

distribution with constant volatility5 based on the standard Black and Scholes (1973) option-

pricing assumption. 6  Recent studies investigate the relationship between option-implied 

volatilities and future stock returns. 7  Yan (2011) reports a negative predictive relationship 

between the slope of the option implied volatility curve (as a proxy of the average size of the jump 

in the stock price dynamics) and the future stock return by taking the spread between the at-the-

money (ATM) call and put option-implied volatilities (IV spread) as a measure of the slope of the 

implied volatility curve. Cremers and Weinbaum (2010) argue that future stock returns can be 

predicted by the deviation from the put-call parity in the equity option market, as stocks with 

relatively expensive calls compared to otherwise identical puts earn approximately 50 basis points 

per week more in profit than the stocks with relatively expensive puts. Xing, Zhang, and Zhao 

(2010) propose an option-implied smirk (IV smirk) measure that shows its significant predictability 

for the cross-section of future equity returns. Jin, Livnat, and Zhang (2012) find that options traders 

have superior abilities to process less anticipated information relative to equity traders by 

analyzing the slope of option-implied volatility curves. This stream of research supports the 

existence of an information discovery effect from the option-implied risk-neutral skewness in 

predicting future stock returns. 

While considerable research has examined the predictive power of the option-implied skewness of 

stock returns captured by the slope of the implied volatility curve (i.e., IV smirk and IV spread, to 

name a few), whether option-implied excess kurtosis predicts the cross-section of future stock 

returns has received less attention. Our study attempts to fill this gap. Exploiting the fact that the 

shape of an option-implied volatility curve contains information about the higher-moment asset 

                                            
Whaley (1990); Chan, Chung, and Johnson (1993); and Chan, Chung, and Fong (2002) have investigated the 

relationship between stock and options prices. 
5 If the rate of return is continuously compounded, assuming a normally distributed asset return is equivalent to 

assuming that the asset price dynamics follow geometric Brownian motion through time. 
6 To better explain such a deviation originating from the positively-skewed and platokurtic preference of rational 

investors, prior studies have attempted to relax the unrealistic normality assumption to capture the negatively-

skewed and fat-tailed distribution of stock returns implied by option prices by extending the standard Black and 

Scholes (1973) model to (i) stochastic volatility models (Duan, 1995; Heston, 1993; Hull and White, 1987; Melino 

and Turnbull, 1990; 1995; Scott, 1980; Stein and Stein, 1991; Wiggins, 1987) and (ii) jump-diffusion models (Bates, 

1996; Madan and Chang, 1996; Merton, 1976). 
7 Refer to Giot (2005), Vijh (1990), and Chakravarty, Gulen, and Mayhew (2004). 
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pricing implication beyond the standard mean-variance framework,8 we propose a method to 

decompose the shape of option-implied volatility curves into the slope and convexity components 

(IV slope and IV convexity hereafter). Our approach assumes that IV slope and IV convexity contain 

distinct information about future stock returns. 

Our proposed IV convexity measure is associated with a component of variance risk premium (VRP) 

in expected stock returns.9 Carr and Wu (2009) suggest that the source of VRP can be decomposed 

into two components: (i) the correlation between the time-varying variance process and the stock 

return and (ii) the volatility of the variance. Nevertheless, most prior studies into VRP focus on 

the aggregate effect of VRP on stock returns without paying attention to the marginal contribution 

of each component. In this context, we infer that the first component is measured by IV slope, 

while the second component is captured by our proposed IV convexity measure. Specifically, under 

the stochastic volatility (SV) and stochastic-volatility jump-diffusion (SVJ) model specifications, 

we demonstrate that the IV slope measure is associated with the option-implied skewness driven 

by the correlation between the stock price and its stochastic variance as well as the average size of 

the jump in the stock price dynamics, whereas IV convexity has a positive relationship to the 

volatility of stochastic variance and the variance of jump size. Accordingly, this paper investigates 

the implications of IV slope and IV convexity on VRP in the context of Carr and Wu (2009), 

focusing on the impact of the second VRP component by analyzing the information delivered by 

our proposed IV convexity measure. 

Using equity options data for both individual U.S. listed stocks and the Standard & Poor’s 500 

(S&P500) index during 2000-2013, we study the cross-sectional predictability of the IV convexity 

measure for future equity returns across quintile portfolios ranked by the curvature of the option-

                                            
8 It is also claimed that the options-implied volatility curve is related to the net buying pressure of options traders; 

see Gârleanu, Pedersen, and Poteshman (2005), Evans, Geczy, Musto, and Reed (2005), Bollen and Whaley (2004). 

This argument reflects the stylized market fact that the shape of the option-implied volatility curve expresses the 

option market participants' expected future market situation, as the risk-averse intermediaries who cannot perfectly 

hedge their option positions in the incomplete capital market induce excess demand on options. 
9 The variance of a stock return is not a simple constant but rather a stochastic process fluctuating over time (e.g., 

Bollerslev, Engle, and Nelson, 1994; Andersen, Bollerslev, and Diebold, 2005) and rational investors certainly 

demand compensation for taking the uncertainty related to the time-varying and stochastic return variance. 

Researchers termed this premium on the variance of stock returns VRP, documented by Bakshi, Kapadia, and 

Madan (2003), Carr and Wu (2009), Bollerslev, Tauchen, and Zhou (2010), and Drechsler and Yaron (2011), among 

others. 
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implied volatility curve. Specifically, the risk-neutral excess kurtosis, captured by IV convexity, 

can be associated with the volatility of the stochastic volatility in the SV model and the jump-size 

volatility in jump-diffusion model implied by equity option prices. We find that the average return 

differential between the lowest and highest IV convexity quintile portfolios is over 1% per month, 

both economically and statistically significant on a risk-adjusted basis. The results are robust 

across different definitions of the IV convexity measure. In addition, time series and cross sectional 

tests of IV convexity as additional risk factors show that other previously known risk factors do 

not subsume the additional return on the zero-cost portfolio. All in all, the predictive power of our 

proposed IV convexity measure is significant for both the systematic and idiosyncratic components 

of IV convexity, and the results are robust even after controlling for the slope of the option-implied 

volatility curve and other known predictors based on stock characteristics. Our study provides 

strong evidence that there is a one-way information transmission from the options market to stock 

market. Moreover, our empirical finding that the negative relationship of IV convexity to future 

stock returns is consistent with earlier studies demonstrating options traders’ information 

advantage in the sense that informed options traders anticipating heavier tail risk proactively 

induce leptokurtic implied distributions of the underlying stock returns before equity investors 

express their tail-risk aversion. 

We are not the first to notice the importance of option-implied kurtosis. Bali, Hu, and Murray 

(2015) examine a set of ex-ante measures of volatility, skewness, and kurtosis derived from option-

implied volatility curves in a non-parametric way. They find that the options markets’ ex-ante view 

of a stock’s risk profile is positively related to the stock’s ex-ante expected return based on analysts’ 

price targets. However, their approach is conceptually different from ours in that they focus on the 

ex-ante expected stock returns, whereas we investigate the cross-sectional predictability of option-

implied higher moment measures for future ex-post equity returns. Although Bali, Hu, and Murray 

(2015) argue that the analysts’ price targets are widely accepted as a proxy for ex-ante expected 

return, it is questionable that their target-based measures can fully capture market participants’ 

expectations for each stock return in general. Admittedly, their finding is not directly related to 

information transmission from the options to the stock markets owing to the informational 

advantage of options traders, as their measure of expected returns based on analysts’ price targets 

is certainly dependent on a few analysts’ personal viewpoints, and subject to measurement error 
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and potential bias.10 In this regard, we claim that our framework is more appropriate to examine 

inter-market information transmission by focusing on the relationship between option-implied 

measures of higher moments and the ex-post realized stock returns. 

This paper offers several contributions to the existing literature. First, this paper examines whether 

IV convexity exhibits significant predictive power for future stock returns even after controlling 

for the effect of IV slope and other firm-specific characteristics. Although recent evidence shows 

that the option-implied volatility smirk (Xing, Zhang, and Zhao, 2010) and volatility spread 

between put and call options (Yan, 2011) predict future equity returns, our research is, to the best 

of our knowledge, the first study that makes a sharp distinction between the 3rd and 4th moments 

implied by option prices. It is also remarkable that our proposed measure of option-implied 

volatility slope and convexity measures (IV slope and IV convexity) have an advantage over Xing, 

Zhang, and Zhao’s (2010) proposed IV smirk measure, defined as the implied-volatility spread 

between an out-of-the-money (OTM) put and ATM call, is reduced to a simple average of IV slope 

and IV convexity. Namely, IV smirk contains mixed information about higher moments and cannot 

distinguish between the volatility slope and convexity components addressing higher-moment 

implications in terms of the stock return distribution. Instead, we decompose IV smirk into separate 

IV slope and IV convexity measures and empirically verify that both are independently and 

significantly priced in the cross-section of future stock returns. In addition, Yan’s (2011) proposed 

IV spread measure simply captures the effect of the average jump size but not the effect of jump-

size volatility in the SVJ model framework. We make a meaningful contribution to Yan’s (2011) 

findings by examining how IV convexity explains the cross-section of future stock returns to 

address the jump-size volatility effect. On another note, this paper overcomes the potential caveat 

of ex-post information extracted from past realized returns in the previous studies on the effect of 

skewness (e.g., Kraus and Litzenberger, 1976; Lim, 1989; Harvey and Siddique, 2000) by 

estimating an ex-ante measure of skewness (IV slope) and excess kurtosis (IV convexity) from 

option price data in a forward-looking manner.11  Finally, this paper sheds new light on the 

relationship between the higher moment information extracted from individual equity option prices 

                                            
10 We find that the option-implied kurtosis measure proposed by Bali, Hu, and Murray (2015) fails to show any 

significant predictive power in our setting; see Section 4.2 for details. 
11 Note that the ex-post skewness estimated from past returns is an unbiased estimator of the expected skewness 

only when the moments of stock returns are inter-temporally constant. 
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and the cross-section of future stock returns. Chang, Christoffersen, and Jacobs (2013) investigate 

how market-implied skewness and kurtosis affect the cross-section of stock returns by looking at 

the risk-neutral skewness and kurtosis implied by index option prices based on Bakshi, Kapadia, 

and Madan’s (2003) proposed framework model. Their approach ignores the idiosyncratic 

components of option-implied higher moments in stock returns, though Yan (2011) finds that both 

the systematic and idiosyncratic components of IV spread are priced and that the latter dominates 

the former in capturing the variation of cross-sectional stock returns in the future. In this context, 

our paper extends Chang , Christoffersen, and Jacob’s (2013) findings by employing firm-level 

equity option price data, and further decomposing IV convexity into systematic and idiosyncratic 

components to fully identify both systematic and idiosyncratic relationships between IV convexity 

and the cross-section of future stock returns. 

The rest of this paper is organized as follows. Section 2 demonstrates the asset pricing implications 

of the proposed IV convexity measure through numerical analyses to develop our main research 

questions. Section 3 describes the data and presents the empirical results for the main hypotheses. 

Section 4 provides additional tests as robustness checks and Section 5 concludes the paper. 

2. Asset Pricing Implications 

In this section, we demonstrate the asset pricing implications of our proposed IV convexity and IV 

slope measures through numerical analyses. An option-implied risk-neutral distribution of the 

underlying stock return exhibits heavier tails than the normal distribution with the same mean and 

standard deviation, in the presence of higher moments such as skewness and excess kurtosis.12 

Accordingly, information about these higher moments embedded in the various shapes of implied 

volatility curves can be examined from various perspectives. 

2.1. Higher Moments and the Shape of the Implied Volatility Curve 

Consider a geometric Lèvy process13 to model the risk-neutral dynamics of the underlying stock 

price given by 

                                            
12 Hereafter, we use kurtosis and excess kurtosis interchangeably for simplicity, despite their conceptual differences. 
13 The most well-known examples of Geometric Lèvy processes are geometric Brownian motion and jump diffusion 
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St = 𝑆0𝑒𝑋𝑡,          (1) 

where X is a Lèvy process whose increments are stationary and independent. In this context, a 

natural characterization of a probability distribution is specifying its cumulants.14 To explore the 

effects of skewness and excess kurtosis on option pricing, we can readily expand the probability 

distribution function XT, where T is the option’s maturity time via the Gram-Charlier expansion, 

a method to express a density probability distribution in terms of another (typically Gaussian) 

probability distribution function using cumulant expansions.15  

[Insert Figure 1 about here.] 

Figure 1 shows the impact of skewness and excess kurtosis on the shape of its probability 

distribution using Gram-Charlier expansions. Skewness and excess kurtosis determine the degrees 

of lean and fat tails for the probability distribution function XT , respectively. This aids in 

understanding how the skewness and kurtosis of XT affect the shape of the implied volatility 

curves. 

[Insert Figure 2 about here.] 

Figure 2 illustrates the effect of different values of skewness and excess kurtosis on the shape of 

an implied volatility curve. We can observe that a negatively skewed distribution of XT, ceteris 

paribus, leads to a steeper volatility smirk, whereas an increase in the excess kurtosis of XT makes 

the volatility curve more convex. In this context, we define the implied volatility convexity (IV 

convexity) and the implied volatility slope (IV slope) as 

𝐼𝑉 𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = 𝐼𝑉(𝑂𝑇𝑀𝑝𝑢𝑡) + 𝐼𝑉(𝐼𝑇𝑀𝑝𝑢𝑡) − 2 × 𝐼𝑉(𝐴𝑇𝑀),    (2) 

𝐼𝑉 𝑆𝑙𝑜𝑝𝑒 = 𝐼𝑉(𝑂𝑇𝑀𝑝𝑢𝑡) − 𝐼𝑉(𝐼𝑇𝑀𝑝𝑢𝑡),      (3) 

                                            
models. 
14 The nth cumulant is defined as the nth coefficient of the Taylor expansion of the cumulant generating function, the 

logarithm of the moment generating function. Intuitively, the first cumulant is the expected value, and the nth cumulant 

corresponds to the nth central moment for n=2 or n=3. For n≥4, the nth cumulant is the nth -degree polynomial in the 

first n central moments. 
15 See Tanaka, Yamada, and Watanabe (2010) for details. 
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where I𝑉(⋅) denotes the implied volatility as a function of the option’s moneyness.16 Intuitively, 

IV convexity captures the degree of curvature of the implied volatility curve, whereas IV slope 

captures its slope.17 

[Insert Figure 3 about here.] 

Figure 3 confirms the option pricing implication in that the 3rd and 4th moments of XT affect the 

IV slope and IV convexity of the implied volatility curve, respectively, but not vice versa. 

2.2. Analytical Interpretation 

Although a stock return with normal distribution is extensively postulated in finance, it has long 

been disputed by empirical findings (e.g., Peters, 1991; Bollerslev, Chou, and Kroner, 1992) that 

the empirical distribution of stock returns tends to have fatter tails than those implied by the normal 

distribution. Earlier studies suggest stochastic volatility and jump diffusion models to capture the 

investors’ positively-skewed and platokurtic preferences. In this context, the 3rd and 4th moments 

of the model-implied return distributions are worthy of investigation. 

For a more in-depth exploration of the relationship between option pricing and the option-implied 

volatility curve, we first investigate Heston’s (1993) proposed stochastic volatility (SV) model. 

Specifically, we assume that the risk-neutral dynamics of the stock price follows a system of 

stochastic differential equations given by 

𝑑𝑆𝑡 = (𝑟 − 𝑞)𝑆𝑡𝑑𝑡 + √𝜐𝑡𝑆𝑡𝑑𝑊𝑡
(1)

,      (4) 

𝑑𝜐𝑡 = 𝜅(𝜃 − 𝜐𝑡)𝑑𝑡 + 𝜎𝑣√𝜐𝑡𝑑𝑊𝑡
(2)

,      (5) 

                                            
16 In the absence of arbitrage opportunities, put-call parity implies that the option-implied volatilities of European call 

and put options should be identical when they have the same strike price and expiration date. In other words, both IV 

Convexity and IV Slope can be defined in terms of the implied volatilities of call options. 
17 Notice that Xing, Zhang, and Zhao (2010) propose the IV smirk measure given by  

𝐼𝑉 𝑆𝑚𝑖𝑟𝑘 = 𝐼𝑉(𝑂𝑇𝑀𝑝𝑢𝑡) − 𝐼𝑉(𝐴𝑇𝑀), 

which is a simple average of IV Convexity and IV Slope. 
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where E[𝑑𝑊𝑡
(1)

 𝑑𝑊𝑡
(2)

] = 𝜌dt. Here, 𝑆𝑡 denotes the stock price at time t, 𝑟 is the annualized 

risk-free rate under the continuous compounding rule, q is the annualized continuous dividend 

yield, 𝜐𝑡 is the time-varying variance process whose evolution follows the square-root process 

with a long-run variance of 𝜃, a speed of mean reversion 𝜅, and a volatility of the variance 

process 𝜎𝑣. In addition, 𝑊𝑡
(1)

 and 𝑊𝑡
(2)

are two independent Brownian motions under the risk-

neutral measure, and 𝜌  represents the instantaneous correlation between the two Brownian 

motions.  

[Insert Figure 4 about here.] 

Based on our numerical experiments, Figure 4 demonstrates that IV slope reflects the leverage 

effect measured by the correlation coefficient (𝜌), while IV convexity represents the degree of a 

large contribution of extreme events to the variance, i.e., tail risk, driven by the volatility of 

variance risk (𝜎𝑣 ). Put simply, IV convexity contains the information about the volatility of 

stochastic volatility (𝜎𝑣) and can be interpreted as a simple measure of the perceived kurtosis that 

addresses the option-implied tail risk in the distribution of underlying stock returns; a similar 

intuition is also illustrated in Figures 1-4 of Heston (1993). 

On another note, IV convexity can be viewed as a component of VRP, as documented by Bakshi 

and Kapadia (2003), Carr and Wu (2009), Bollerslev, Tauchen, and Zhou (2010), and Drechsler 

and Yaron (2011), among others. According to Carr and Wu (2009), VRP consists of two 

components: (i) the correlation between the variance and the stock return and (ii) the volatility of 

the variance. In the SV model framework, the first component is captured by the correlation 

coefficient (𝜌), while the second component is addressed by the volatility of stochastic volatility 

(𝜎𝑣). Nevertheless, recent research into VRP have focused on the aggregate effect of VRP on 

stock returns, but do not separately investigate how the impacts of the two VRP components differ. 

Thus, it is interesting to investigate the implications of IV slope and IV convexity on VRP in the 

context of Carr and Wu (2009). Specifically, our study aims to investigate the impact of the 

second component of VRP by analyzing the information delivered by the IV convexity measure. 
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We next consider the impact of jumps in the dynamics of the underlying asset price. For example, 

Bakshi, Cao, and Chen’s (1997) study shows that jump components are necessary to explain the 

observed shapes of implied volatility curves in practice. In the presence of jump risk, the option-

implied risk-neutral distribution of a stock price return is a function of the average jump size and 

jump volatility. To illustrate the implications of jump components on the shape of the option-

implied volatility curve, we consider the following stochastic-volatility jump-diffusion (SVJ) 

model under the risk-neutral pricing measure given by  

𝑑𝑆𝑡 = (𝑟 − 𝑞 − 𝜆 𝜇𝐽)𝑆𝑡𝑑𝑡 + √𝜐𝑡𝑆𝑡𝑑𝑊𝑡
(1)

+ 𝐽𝑆𝑡𝑑𝑁𝑡,     (6) 

𝑑𝜐𝑡 = 𝜅(𝜃 − 𝜐𝑡)𝑑𝑡 + 𝜎𝑣√𝜐𝑡𝑑𝑊𝑡
(2)

,      (7) 

where E[𝑑𝑊𝑡
(1)

 𝑑𝑊𝑡
(2)

] = 𝜌dt, 𝑁𝑡 is an independent Poisson process with intensity 𝜆 > 0, and 

𝐽 is the relative jump size, where log(1 + 𝐽)~𝑁(log(1 + 𝜇𝐽) − 0.5𝜎𝐽
2, 𝜎𝐽

2). The SVJ model can 

be taken as an extension of the SV model with the addition of log-normal (Merton-type) jumps in 

the underlying asset price dynamics.18 

[Insert Figure 5 about here.] 

As we can see from Figure 5, our numerical analysis illustrates that IV slope is mainly driven by 

the average jump size (𝜇𝐽), whereas the jump size volatility (𝜎𝐽) contributes mainly to IV convexity. 

From this perspective, Yan (2011) argues that the implied-volatility spread between ATM call and 

put options contain information about the perceived jump risk by investigating the relationship 

between the implied-volatility spread and the cross-section of stock returns. Strictly speaking, in 

the SVJ model framework, Yan’s (2011) implied-volatility spread measure simply captures the 

effect of 𝜇𝐽 but ignores the information from 𝜎𝐽. In other words, the implied-volatility spread 

measure fails to provide any evidence in terms of whether the implied jump size volatility 𝜎𝐽, can 

predict future stock returns. Therefore, this study extends Yan’s (2011) finding by looking at the 

                                            
18 Note that the SVJ model given by (6)-(7) can be interpreted as a variation of the Bates (1996) model. Duffie, Pan, 

and Singleton (2000) provide an illustrative example to examine the implications of the SVJ model for options 

valuation. 
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predictability of the IV convexity measure, which contains the information from 𝜎𝐽, and examining 

how IV convexity affects the cross-section of future stock returns accordingly. 

2.3. Hypothesis Development 

We have seen that the convexity of an option-implied volatility curve is a forward-looking 

measure of the perceived likelihood of extreme movements in the underlying equity price 

originating from the perceived stochastic volatility and/or jump risk. Additionally, option prices 

can provide ex-ante information about the anticipated stochastic volatility and jump-diffusion due 

to its forward-looking nature. In this regard, the IV slope and IV convexity measures can be 

employed as proxies for the 3rd and 4th moments in the option-implied distribution of stock returns, 

respectively. 

Hence, the overall goal of this study is to determine if a measure of option-implied volatility 

convexity can show significant cross-sectional predictive power for future equity returns. This is 

summarized in the hypotheses as follows: 

 Hypothesis 1: If options traders have no information about the prediction for excess tail 

risk contributions to the perceived variance of the underlying equity returns, IV convexity 

cannot predict future stock returns with statistical significance. 

 Hypothesis 2-1: If there is a one-way information transmission from the options market to 

the stock market, informed options traders can anticipate the excess tail risk contribution 

to the perceived variance of the underlying equity returns. The option investors then 

proactively induce leptokurtic implied distributions of stock returns before equity 

investors express their tail-risk aversion. Hence, IV convexity will show its predictive 

power for future stock price returns with a negative relationship. 

 Hypothesis 2-2: If the information transmission occurs in both directions between the 

option and stock markets, the efficient market hypothesis implies that options investors 

simultaneously induce leptokurtic implied distributions of stock returns when equity 

investors express their tail-risk aversion. Hence, equity investors will require 
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compensation for taking the excess tail risk, and IV convexity will show its predictive 

power for future stock price returns with a positive relationship. 

If we reject Hypothesis 1 and observe negative relationship between IV convexity and future stock 

return with statistical significance, it would empirically support the existing literature 

demonstrating the information transmission between the options and stock markets in that 

informed options traders anticipating heavy tail risks proactively induce leptokurtic implied 

distributions before equity investors express their tail risk aversion in the stock market. 

3. Empirical Analysis 

This section introduces the data set and methodology to estimate option-implied convexity in a 

cross-sectional manner. We then test whether IV convexity, a proxy for the volatility of stochastic 

volatility (𝜎𝑣) and the jump size volatility (𝜎𝐽), has significant predictive power for future stock 

returns. Additionally, we compare the impact of the option implied volatility slope with that of our 

IV convexity measure on stock returns.  

3.1. Data 

We obtain the U.S. equity and index option data from OptionMetrics on a daily basis from January 

2000 through December 2013. As this raw data includes individual equity options in the American 

style, OptionMetrics applies Cox, Ross, and Rubinstein’s (1979) binomial tree model to estimate 

the options-implied volatility curve to account for the possibility of an early exercise with discrete 

dividend payments. Employing a kernel smoothing technique, OptionMetrics offers an option-

implied volatility surface across different option deltas and time-to-maturities. Specifically, we 

obtaine the fitted implied volatilities on a grid of fixed time-to-maturities, (30 days, 60 days, 90 

days, 180 days, and 360 days) and option deltas (0.2, 0.25, …, 0.8 for calls and -0.8, -0.75, … , -

0.2 for puts), respectively. Following Yan (2011), we then select the options with 30-day time-to-

maturity on the last trading day of each month to examine the predictability of IV convexity for 

future stock returns, 

[Insert Table 1 about here.] 
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Table 1 shows the summary statistics of the fitted implied volatility from the options with 30-day 

time-to-maturity chosen at the end of each month. We can clearly observe a positive convexity in 

the option-implied volatility curve as a function of the option’s delta in that the implied volatilities 

from in-the-money (ITM) (calls for delta of 0.55~0.80, puts for delta of -0.80~-0.55) options and 

OTM (calls for delta of 0.20~0.45, puts for delta of -0.45~-0.20) options are greater on average 

than those near the ATM options (calls for delta of 0.50, puts for delta of -0.50). 

We obtaine daily and monthly individual common stock (shrcd in 10 or 11) returns from the Center 

for Research in Security Prices (CRSP) for stocks traded on the NYSE (exchcd=1), Amex 

(exchcd=2), and NASDAQ (exchcd=3). Stocks with a price less than three dollars per share are 

excluded to weed out very small or illiquid stocks. Accounting data is obtained from Compustat. 

We obtain both daily and monthly data for each factor from Kenneth R. French’s Website.19 

3.2. Variables and Portfolio Formation  

We demonstrate that IV convexity has a positive relationship with the volatility of stochastic 

volatility (𝜎𝑣) and jump volatility (𝜎𝐽) in Section 2.2. That is, IV convexity can be interpreted as a 

simple measure of the perceived kurtosis of the option-implied distribution of the stock returns 

driven by the volatility of stochastic volatility and jump size volatility. As expected, it is hard to 

directly calibrate the volatility of stochastic volatility (𝜎𝑣) and jump size volatility (𝜎𝐽) for each 

underlying stock from the cross-sectional perspective on a daily basis. We thus overcome this 

computational difficulty by adopting IV convexity as a simple proxy for the volatility of stochastic 

volatility (𝜎𝑣) and jump size volatility (𝜎𝐽) to investigate how the ex-ante 4th moment in the option-

implied distribution of the stock returns affects the cross-section of future stock returns. 

Accordingly, we define our measure of IV convexity as 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = IVput(∆= −0.2) + IVput(∆= −0.8) − 2 × IVcall(∆= 0.5),  (8) 

Specifically, we use the implied volatilities of OTM and ITM put and ATM call options to capture 

the convexity of the implied volatility curve. The rationale is that those who respond sensitively 

to the forthcoming tail risk would buy put options either as a protection against the potential 

                                            
19 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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decrease in the stock return for hedging purposes or as a leverage to grab a quick profit for 

speculative purposes to capitalize on private information. Therefore, those investors would have 

an incentive to trade OTM and/or ITM put options rather than call options. Thus, we choose OTM 

and ITM puts for calculating the IV convexity measure. As a benchmark of the option-implied 

volatility curve, motivated by Xing, Zhang, and Zhao (2010), we use the implied volatility of an 

ATM call as a representative value for the implied volatility level, as the ATM call is generally 

the most frequently traded option best reflecting market participants’ sentiment regarding the 

firm’s future status and condition.   

As alternative measures related to the option-implied volatility curve, options implied volatility 

level (IV level), IV slope, IV smirk, and IV spread are defined as 

𝐼𝑉 𝑙𝑒𝑣𝑒𝑙 = 0.5[IVput(∆= −0.5) + IVcall(∆= 0.5)],     (9) 

𝐼𝑉 𝑠𝑙𝑜𝑝𝑒 = IVput(∆= −0.8) − IVput(∆= −0.2),      (10) 

𝐼𝑉 𝑠𝑚𝑖𝑟𝑘 = IVput(∆= −0.8) − IVcall(∆= 0.5),      (11) 

𝐼𝑉 𝑠𝑝𝑟𝑒𝑎𝑑 = IVput(∆= −0.5) − IVcall(∆= 0.5),      (12) 

where the last two measures are motivated by Yan (2011) and Xing, Zhang, and Zhao (2010), 

respectively. Note that our proposed measure of IV slope has an advantage compared to that 

proposed by Xing, Zhang, and Zhao (2010), as the IV smirk measure is a simple average of IV 

convexity and IV slope. This observation implies that IV smirk contains mixed information about 

both IV slope and IV convexity and cannot distinguish between the volatility slope and convexity 

components that affect the 3rd and 4th moments of the implied stock return distribution, respectively. 

To overcome the potential caveat of the IV smirk measure, we introduce our IV slope measure to 

identify the IV convexity information.  

Similar to our IV slope measure, IV spread is an approximation of the slope of its tangent line near 

the ATM point. Namely, this IV spread measure cannot capture the convexity property in the 

options-implied curve, so by using this incomplete measure, Yan (2011) examine only the 
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relationship between IV slope and stock returns, ignoring the convexity property of the option-

implied volatility curve.  

However, we assume in this study that IV slope and IV convexity deliver different information 

about the anticipated distribution of stock returns. By decomposing this into IV slope and IV 

convexity, we can investigate the impact of the IV slope and IV convexity on a cross-section of 

future stock returns and how they differ from the information extracted using Xing, Zhang, and 

Zhao’s (2010) measure. Specifically, it is of interest to examine whether IV convexity makes any 

marginal contribution to such predictability after controlling for IV slope or IV spread between a 

call and a put, as Yan (2011) proposes.  

At the end of each month, we compute the cross-sectional IV level, IV slope, IV convexity, IV smirk, 

and IV spread measures from 30-day time-to-maturity options. We define a firm’s size (Size) as 

the natural logarithm of the market capitalization (prc×shrout×1000), which is computed at the 

end of each month using CRSP data. When computing book-to-market ratio (BTM), we match the 

yearly BE [book value of common equity (CEQ) plus deferred taxes and investment tax credit 

(txditc)] for all fiscal years ending at year t-1 to returns starting in July of year t, and dividing this 

BE by the market capitalization at month t-1. Hence, the book-to-market ratio is computed on a 

monthly basis. Market betas (β) are estimated with rolling regressions using the previous 36 

monthly returns available up to month t-1 given by 

(Rit − Rf) = 𝛼𝑖 + 𝛽𝑖(MKTt − Rft) + 𝜀𝑖𝑡.       (13) 

Following Jegadeesh and Titman (1993), we compute momentum (MOM) using cumulative 

returns over the past five months (t-6~t-2) skipping one month between the portfolio formation 

period and the computation period to exclude the reversal effect. Momentum is also rebalanced 

every month and assumed to be held for the next one month. Short-term reversal (REV) is 

estimated based on the past one-month return (t-1) as in Jegadeesh (1990) and Lehmann (1990). 

Motivated by Amihud (2002), we define illiquidity (ILLIQ) as the average of the absolute value 

of the stock return divided by the trading volume of the stock in thousand USD using the past one-

month’s data on a daily basis. 
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Following Harvey and Siddique (2000), we regress daily excess returns of individual stocks on the 

daily market excess return and the daily squared market excess return using a moving-window 

approach with a window size of one year. Specifically, we re-estimate the regression model at each 

month-end, where the regression specification is given by 

(Rit − Rf)𝑖,𝑡−365~𝑡 = α
i

+ β
1,i

(MKTt − Rft)𝑡−365~𝑡 + β
2,i

(MKTt − Rft)2
𝑡−365~𝑡

 + ε
i,t

. (14) 

In this context, the coskewness (Coskew) of a stock is defined as the coefficient of the squared 

market excess return. We require at least 225trading days in a year to reduce the impact of 

infrequent trading on the coskewness estimates. 

Following Ang, Hodrick, Xing, and Zhang (2006), we compute idiosyncratic volatility using daily 

returns. The daily excess returns of individual stocks over the last 30 days are regressed on Fama 

and French’s (1993, 1996) three factors daily and momentum factors every month, where the 

regression specification is given by 

(Rit − Rf) = 𝛼𝑖 + 𝛽1𝑖(MKTt − Rft) + 𝛽2𝑖SMB + 𝛽3𝑖HML + 𝛽4𝑖WML + 𝜀𝑖𝑡,  (15) 

Idiosyncratic volatility is computed as the standard deviation of the regression residuals in every 

month. To reduce the impact of infrequent trading on idiosyncratic volatility estimates, a minimum 

of 15 trading days in a month for which CRSP reports both a daily return and non-zero trading 

volume is required. 

We estimate systematic volatility using the method suggested by Duan and Wei (2009): 𝑣𝑠𝑦𝑠
2 =

𝛽2𝑣𝑚
2 /𝑣2 for every month. We also computed idiosyncratic implied variance as 𝑣𝑖𝑑𝑖𝑜

2 = 𝑣2 −

𝛽2𝑣𝑀
2  on a monthly basis, where vm  is the implied volatility of the S&P500 index option 

following Dennis, Mayhew, and Stivers (2006). 

The impact of the volatility of stochastic volatility and the jump size volatility on the return 

dynamics of the underlying stock would be either systematic or idiosyncratic. As there are two 

types of options data, equity options and index options, we can disentangle IV convexity into 

systematic and the idiosyncratic components. We run the time series regression each month using 

the S&P 500 index options with 30-day time-to maturity as a benchmark for the market along with 
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individual equity options with daily frequency to decompose IV convexity into the systematic and 

the idiosyncratic components as follows:  

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖,𝑡−30~𝑡 = αi + βi × 𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑆&𝑃500,𝑡−30~𝑡 + εi,t,   (16) 

We define the fitted values and residual terms as the systematic component of IV convexity 

(𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠) and the idiosyncratic component of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜), respectively. 

When constructing a single sorted IV convexity portfolio, we sort all stocks at the end of each 

month based on the IV convexity and matched with the subsequent monthly stock returns. The IV 

convexity portfolios are rebalanced every month.  

To investigate whether the anomaly of IV convexity persists even after controlling for other 

systematic risk factors, we double sort all stocks following Fama and French (1993). At the end of 

each month, we first sort all stocks into 5 portfolios based on the level of systematic factors (i.e., 

firm size, book-to-market ratio, market β, momentum, reversal etc.) and then sub-sort them into 

five groups based on the IV convexity. These constructed portfolios are matched with subsequent 

monthly stock returns. This process is repeated every month. 

3.3. Portfolio Characteristics Sorted by IV convexity 

3.3.1. Predicting Cross-sectional Stock Returns   

We report our empirical results in terms of the predictive power of IV convexity for the cross-

section of future stock returns.  

[Insert Table 2 about here.] 

Panel A of Table 2 shows the descriptive statistics for each implied volatility measure computed 

at the end of each month using 30-day time-to-maturity options. As for the average values for each 

of variable, IV level has 0.4739, IV slope for 0.0423, IV spread for 0.009, IV smirk for 0.0687, and 

IV convexity for 0.0942, respectively. The standard deviation of IV convexity is 0.2624 and 0.1682 

for 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠 , 0.2015 for 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 , respectively. It seems that the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 

measure better captures the variation in IV convexity than the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠 measure.  
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Panel A of Table 2 also presents descriptive statistics for the alternative convexity measure using 

various OTM put deltas. The alternative IV convexity measures are computed by  

p∆1_c50_p∆2=IVput(∆1) + IVput(∆2) − 2 × IVcall(0.5).     (17) 

where −0.45 ≤ ∆1≤ −0.25  (for the range of OTM puts) and  −0.75 ≤ ∆2≤ −0.55  (for the 

range of ITM puts), respectively. For example, applying ∆1=-0.25 for OTM put and ∆2=-0.75 for 

ITM put, we calculate 

p25_c50_p75 = IVput(−0.25) + IVput(−0.75) − 2 × IVcall(0.5).    (18) 

Similarly, p45_p50_p55 is defined as IVput(−0.45) + IVput(−0.55) − 2 × IVcall(0.5) . It is 

natural that the IV convexity measure computed using deep out-of-the-money (DOTM) and deep 

in-the-money (DITM) options have higher options convexity values compared to measurements 

using OTM and ITM options. For example, IV convexity of p25_c50_p75 is 0.065, which is larger 

than the value of p45_p50_p55, 0.018. 

Panel B of Table 2 reports the descriptive statistics for the firm characteristic variables including 

Size, BTM, Market β, MOM, REV, ILLIQ and Coskew. While the mean and median of SIZE are 

19.4607 and 19.3757, respectively, its quintile average is monotonically increasing from 16.7256 

to 22.4613. On the other hand, BTM has a right-skewed distribution, with a mean of 0.9186 and 

median of 0.5472, whereas its quintile average varies from 0.1467 to 2.6192. 

To examine the relationship between IV convexity and future stock returns, we form five portfolios 

according to the IV convexity value at the last trading day of each month. Quintile 1 is composed 

of stocks with the lowest IV convexity while Quintile 5 is composed of stocks with the highest IV 

convexity. These portfolios are equally weighted, rebalanced every month, and assuming to be held 

for the subsequent one-month period.   

[Insert Table 3 about here.] 

Table 3 reports the means and standard deviations of the five IV convexity quintile portfolios and 

average monthly portfolio returns over the entire sample period. Specifically, Panel A shows the 

descriptive statistics for kurtosis along with the average monthly returns of both equal-weighted 
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(EW) and value-weighted (VW) portfolios sorted by IV convexity, IV spread, and IV smirk, where 

the last two measures are defined and estimated as in Yan (2011) and Xing, Zhang, and Zhao 

(2010), respectively.  

As shown, the average EW portfolio return monotonically decreases from 0.0208 for the quintile 

portfolio Q1 to 0.0074 for quintile portfolio Q5. The average monthly return of the arbitrage 

portfolio buying the lowest IV convexity portfolio Q1 and selling highest IV convexity portfolio Q5 

is significantly positive (0.0134 with t-statistics of 7.87). The average VW portfolio returns exhibit 

a similar decreasing pattern from Q1 (0.0136) to Q5 (0.0023), and the return of zero-investment 

portfolio (Q1-Q5) is significantly positive (0.0113 with t-statistics of 5.08).  

In addition, the EW portfolios sorted by IV spread show that their average returns decrease 

monotonically from 0.0145 for quintile portfolio Q1 to 0.0013 for quintile portfolio Q5, where the 

average return difference between Q1 and Q5 amounts to 0.0131 with t-statistics of 7.31, with 

similar patterns observed with VW portfolios sorted by IV spread. These results certainly confirm 

Yan's (2011) empirical finding in that low IV spread stocks outperform high IV spread stocks. In 

a similar vein, we find that the average returns of quintile portfolios sorted by IV smirk are 

decreasing in IV smirk, and the returns of zero-investment portfolios (Q1-Q5) are all positive and 

statistically significant for both the EW and VW portfolios. Note that our results are consistent 

with Xing, Zhang and Zhao (2010) in that there exists a negative predictive relationship between 

IV smirk and future stock return. 

Panel B reports descriptive statistics for average portfolio returns using several alternative IV 

convexities. The decreasing patterns in portfolio returns persist using the alternative IV convexity 

and arbitrage portfolio returns by buying the low IV convexity quintile portfolio and selling the 

high IV convexity quintile portfolio, which are significantly positive for both the EW and VW 

portfolio returns. This result confirms that the negative relationship between IV convexity and stock 

returns are robust and consistent whatever OTM put (ITM put) we use to compute convexity. 

These results support Hypothesis 2-1, indicating that information transmission between the options 

and stock markets wherein informed options traders anticipating heavy tail risks proactively induce 

leptokurtic implied distributions before equity investors express their tail risk aversion in the stock 

market. 
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[Insert Figure 6 about here.] 

Panel A of Figure 6 shows the monthly average IV convexity value for each quintile portfolio, 

while Panel B plots the monthly average return of the arbitrage portfolio formed by the long lowest 

quintile and short highest quintile portfolio (Q1-Q5). The time-varying average monthly returns 

of the long-short portfolio are mostly positive, confirming the results reported in Table 3. 

3.3.2. Controlling Systematic Risks 

Moreover, we investigate whether the positive arbitrage portfolio returns (Q1-Q5) compensate for 

taking systematic risk. If the positive arbitrage portfolio returns are still significant after controlling 

for systematic risk factors, we can argue that the decreasing pattern in the portfolio return in IV 

convexity may not be driven by systematic risks and can be recognized as an abnormal 

phenomenon. In this context, we test whether systematic risk factors have sufficient explanatory 

power for the negative relationship between IV convexity and stock returns. We begin this task by 

looking at two-way cuts on systematic risk and IV convexity, and then we conduct time-series tests 

by running risk factor-model [e.g., the CAPM and Fama and French (1993) factor model] 

regressions with the standard equity risk factors; i.e., Market β, SMB, HML, and MOM. 

A. Double Sorting by Systematic risk and IV convexity 

To examine whether the relationship between IV convexity and stock returns disappear after 

controlling for the systematic risk factors, we double-sort all stocks following Fama and French 

(1992). All stocks are sorted into five quintiles by ranking on systematic risk and then sorting 

within each quintile into five quintiles according to IV convexity. Fama and French (1993) suggest 

that firm size, book-to-market ratio, and market β are systematic risk components of stock returns, 

so we adopt these three firm characteristic risks as systematic risks. 

[Insert Table 4 about here.] 

Table 4 reports the average monthly returns of the 25 (5 × 5) portfolios sorted first by firm 

characteristic risks (firm size, book-to-market ratio, and market β) and then by IV convexity and 

average monthly returns of the long-short arbitrage portfolios (Q1-Q5).  
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We can observe that the average monthly portfolio returns generally decline as the average firm-

size increases. As for the results from double-sorting using firm-size and IV convexity, we find that 

the returns of the IV convexity quintile portfolios are still decreasing in IV convexity in most size 

quintiles, and the return of all zero-investment portfolios (Q1-Q5) in size quintiles are all positive 

and statistically significant. Particularly, the positive difference in the smallest quintile is largest 

(0.0187) compared to the other size quintile portfolios.  

The two-way cuts on book-to-market and IV convexity show that the higher book-to-market 

portfolio gets more returns compared to the lower book-to-market portfolios in each IV convexity 

quintile. The decreasing patterns in IV convexity portfolio returns remain even after controlling the 

systematic compensation drawn from the book-to-market factor. Note that the overall zero-cost 

portfolios formed by long Q1 and short Q5 are also positive and statistically significant: 0.0097 (t-

statistic = 4.82) for B1 (BTM quintile 1), 0.0121 (t-statistic = 5.76) for B2, 0.0108 (t-statistic = 

5.42) for B3, 0.0134 (t-statistic = 5.67) for B4, and 0.0177 (t-statistic = 5.19) for B5.  

When sorting the 25 portfolios first by market β  and then by IV convexity, the negative 

relationship between IV convexity and stock return persists, implying that this decreasing pattern 

cannot be explained by market β. Note that the average monthly portfolio returns generally 

increase as we increase the average market β. 

We also consider the other four systematic risk factors (i) the momentum effect documented by 

Jegadeesh and Titman (1993), (ii) the short-term reversal suggested by Jegadeesh (1990) and 

Lehmann (1990), (iii) the illiquidity proposed by Amihud (2002) and (iv) coskewness suggested 

by Harvey and Siddique (2000) to examine whether the decreasing pattern of portfolio returns in 

IV convexity disappears when controlling these systematic risk factors. Stocks are first sorted into 

five groups based on their momentum (or reversal, illiquidity, coskewness) measures and then 

sorted by IV convexity forming 25 (= 5 × 5) portfolios. 

[Insert Table 5 about here.] 

Table 5 presents the returns of 25 portfolios sorted by momentum (or reversal, illiquidity, 

coskewness) and IV convexity. When we look at the momentum patterns in the momentum-IV 

convexity portfolios, winner portfolios consistently achieve more abnormal returns than loser 
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portfolios except for the lowest momentum-lowest IV convexity quintiles, which could be caused 

by using a different sample datasets compared to that in Jegadeesh and Titman (1993). While 

Jegadeesh and Titman (1993) use only stocks traded on the NYSE (exchcd=1) and Amex 

(exchcd=2), we add stocks traded on the NASDAQ (exchcd=3). For the holding period strategies, 

Jagadeesh and Titman (1993) adopt 3-, 6-, 9-, and 12-month holding periods, while this study 

assumes that portfolios are held for one month. 

Even after controlling momentum as a systematic risk, we observe that the portfolio return 

differential between the lowest and highest IV convexity in each momentum quintile remains 

significantly positive, indicating that IV convexity contains economically meaningful information 

that cannot be explained by the momentum factor. 

For the reversal-IV convexity double sorted portfolio case, there is a clear reversal patterns in most 

cases when using a reversal strategy (i.e., the past winner earns higher returns in the next month 

compared to past loser), though there are some distortions in the lowest reversal-highest IV 

convexity quintiles. The Q1-Q5 strategy of buying and selling stocks based on IV convexity in each 

reversal portfolio and holding them for one month still earns significantly positive returns. This 

implies that the same results still hold even after controlling for reversal effects.  

We further incorporate the Amihud (2002) measure of illiquidity to address the role of the liquidity 

premium in asset pricing. Amihud (2002) finds that the expected market illiquidity has positive 

and highly significant effect on the expected stock returns, as investors in the equity market require 

compensation for taking liquidity risk. We examine whether Amihud’s (2002) proposed market 

illiquidity measure (ILLIQ) explains the higher return on the lowest IV convexity stock portfolio 

(Q1) relative to the highest IV convexity stock portfolio (Q5). The double-sorted quintile portfolios 

by ILLIQ and IV convexity exhibit analogous patterns in that their average returns tend to decrease 

in IV convexity. The zero-investment portfolios (Q1-Q5) based on the ILLIQ quintiles demonstrate 

their significantly positive average returns across different ILLIQ quintiles. This finding implies 

that a significantly negative IV convexity premium remains even after we control for the illiquidity 

premium effect. 
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Next, we consider conditional skewness, as Harvey and Siddique (2000) find that conditional 

skewness (Coskew) can explain the cross-sectional variation of expected returns even after 

controlling factors based on size and book-to-market value. To examine whether this Coskew 

factor captures the higher returns of the lowest IV convexity stocks relative to the highest IV 

convexity stocks, we constructed 25 portfolios sorted first by Coskew and then by IV convexity. 

For the Coskew -IV convexity double sorted portfolios, there is a clear decreasing pattern in IV 

convexity within each Coskew sorted quintile portfolio. The returns of zero-investment IV 

convexity portfolios (Q1-Q5) within each Coskew quintile portfolio are all positive and statistically 

significant: 0.0130 (t-statistic of 4.60) for C1 (Coskew quintile 1), 0.0090 (t-statistic of 3.83) for 

C2, 0.0040 (t-statistics 2.39) for C3, 0.0076 (t-statistics 4.18) for C4, and 0.0127 (t-statistics 5.07) 

for C5, respectively. The implication is that a negative IV convexity premium remains significantly 

even after we control for the Coskew premium effect. 

In summary, we can conclude that the negative relationship between IV convexity and stock return 

consistently persists even after controlling for various kinds of systematic risks identified in prior 

research. Therefore, we argue that IV convexity is not caused by systematic risk components and 

can be considered a significantly priced risk factor.   

B. Controlling for IV slope 

It is well-known in finance that stock returns are not normally distributed but are leptokurtic (fat-

tailed) and skewed to the left. To explain this property, Heston (1993) introduced the correlation 

between the volatility and the spot-price processes (𝜌) and the volatility of stochastic volatility (𝜎𝑣) 

and showed that these two parameters can generate fat-tailed and left-skewed properties in stock 

returns. In addition, the SVJ model, an extension of the SV model with the addition of log-normal 

(Merton-type) jumps in the underlying asset price dynamics, suggests that excess kurtosis can 

originate from both the volatility of stochastic volatility (𝜎𝑣) and jump volatility (𝜎𝐽). 

As demonstrated in the theoretical development, the four parameters (𝜌, 𝜎𝑣, 𝜇𝐽, 𝜎𝐽) suggested in 

the SV and SVJ models are deeply related to the options implied volatility curve; IV slope is 

associated with 𝜌 and 𝜇𝐽 , which may generate skewness in the distribution of stock returns; 
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whereas IV convexity has a positive relationship to 𝜎𝑣  and 𝜎𝐽 , which play major role in the 

kurtosis of stock returns.  

Although we numerically verify that the impact of IV slope on the distribution of stock returns is 

different from those of IV convexity on the distribution of stock returns, it is still unclear whether 

the IV convexity really affects the stock return differently from IV slope. To answer this question, 

we examine whether the negative relationship between IV convexity and stock returns persists after 

controlling for the effect of the option-implied volatility slope on stock returns suggested by other 

researchers. For this purpose, we consider the following three measures for the slope of the option-

implied volatility curve: (i) IV slope following our definition, (ii) IV spread suggested by Yan 

(2011), (iii) IV smirk proposed by Xing, Zhang, and Zhao (2010). 

[Insert Table 6 about here.] 

Table 6 presents the average monthly returns of 25 portfolios sorted first by IV slope, IV spread, 

and IV smirk and then sorted by IV convexity within each IV slope, IV spread, and IV smirk sorted 

quintile portfolio, respectively.  

The first five columns show the results of our IV slope-IV convexity double sorted portfolio returns. 

We can observe a decreasing pattern with respect to IV convexity in each IV slope quintile, and the 

Q1-Q5 strategy based on IV convexity in each IV slope portfolio and holding them for one month 

returns significantly positive profits across the different specifications. 

As for IV spread, following Yan (2011), the IV convexity strategy that buys the lowest quintile 

portfolio and sells the highest quintile portfolio within each IV spread portfolio yields significantly 

positive returns in all cases, suggesting that IV spread does not capture the IV convexity effect. 

It is noteworthy that IV convexity arbitrage portfolios (Q1-Q5) in the S1 and S5 IV smirk portfolios 

produce significantly positive returns, while the portfolio returns lose their statistical significance 

for the S2, S3, and S4 IV smirk quintiles. As the IV smirk measure is a simple average of IV slope 

and IV convexity, it contains mixed information. Hence, it is natural to observe that IV smirk 

explains a negative IV convexity premium to some extent, though IV smirk cannot fully capture the 

negative relationship between IV convexity and future stock returns in the S1 and S5 portfolios. 
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All in all, these findings support the proposition that the negative relationship of IV convexity to 

future stock returns still holds after considering the impact of IV slope and IV spread on stock 

returns. This implies that the impact of IV convexity on the distribution of stock returns does not 

come from IV slope and IV spread and that IV convexity is an important factor in determining the 

fat-tailed distribution characteristics of future stock returns. 

3.3.3. Systematic and Idiosyncratic Components of IV convexity 

The variance of stock returns are composed of two components: systematic and idiosyncratic 

volatility. Only systematic risk (market β) should be priced in equilibrium while idiosyncratic risk 

cannot capture the cross-sectional variation in stock returns. However, in the real world, investors 

cannot perfectly diversify away the idiosyncratic risks, so some researchers argue that 

idiosyncratic risk can also play important role in explaining the cross-sectional variation in stock 

returns. In this context, we try to decompose the volatility of stochastic volatility (𝜎𝑣) and jump 

size volatility (𝜎𝐽) into systematic and idiosyncratic components to further investigate the source 

of the relationship between IV convexity. Importantly, the fact that there are two types of option 

data, equity options and index options, allows us to decompose IV convexity into the market and 

idiosyncratic components. By analyzing the two components of IV convexity, we can check 

whether the volatility of stochastic volatility and/or the jump risk shock determines the fat-tailed 

property of stock returns, and if these are driven by the market and/or individual firms’ properties. 

[Insert Table 7 about here.] 

Panel A of Table 7 provides the descriptive statistics for the average portfolio returns sorted by 

systematic components and idiosyncratic components of IV convexity. Table 3 shows that the 

average portfolio return monotonically decreases from Q1 to Q5 and that the return differential 

between Q1 and Q5 is significantly positive. It is worth noting that the negative pattern is robust 

even if we decompose IV convexity into the systematic and idiosyncratic components. That is, 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜  reveal decreasing patterns in the portfolio returns as the IV 

convexity portfolio increases. The difference between the lowest and the highest quintile portfolios 

sorted by 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠 and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 are significantly positive with t-statistics of 6.56 and 
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5.72, respectively. This implies that both components have predictive power for future portfolio 

returns and are significantly priced. 

Panel B of Table 7 reports the average monthly portfolio returns of the 25 quintile portfolios 

formed by sorting stocks based on 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) first, and then sub-sorted 

by IV convexity in each 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) quintile. This will allow us to figure 

out how the systematic or idiosyncratic components contribute to IV convexity. In other words, if 

the decreasing patterns of returns in IV convexity portfolio become less clearly observed under the 

control of 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys  (or  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio ), this can be interpreted as a component of 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) and can mostly explain the cross-sectional variation of return on 

IV convexity compared to the other component of 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio). 

As for the results from the sample sorted first by 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and then by IV convexity, the 

decreasing patterns generally persist for the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys  quintiles, though there are some 

distortions in the 1st and 3rd 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys quintiles for the highest IV convexity quintiles. Note 

that the arbitrage portfolio’s returns (Q1-Q5) in each 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys quintile portfolio still remain 

large and statistically significant. As for the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio- IV convexity double sorted portfolios 

shown in the right-hand side of Table 8, the negative relationship between IV convexity and exists, 

though the order of portfolio returns are not perfectly preserved in the 3rd and 5th 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

case. Additionally, the long-short IV convexity portfolio returns in the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio  quintile 

portfolio (Q1-Q5) are significantly positive with a t-statistic higher than 2.  

Thus, these results provide evidence that neither component can fully capture and explain all cross-

section variations of returns on IV convexity, but both components (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) 

have decreasing patterns of portfolio returns, and are needed to capture the cross-sectional 

variations of returns. 

3.3.4. Time-Series Analysis 

In a perfectly and completely well-functioning financial market, the mean-variance efficiency of 

the market portfolio should hold as argued in the capital asset pricing model (CAPM), and market 

β is the only risk factor that captures the cross-sectional variation in expected returns. However, 
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as many investors cannot hold perfectly diversified portfolios in practice, CAPM may not be valid 

in reality, the biggest drawback for this theory. Fama and French (1996) found that CAPM's 

measure of systematic risk is unreliable and instead, firm size and book-to-market ratio are more 

dependable, arguing that the three-factor model in Fama and French (1993) can capture the cross-

sectional variations in returns that are not fully captured by the CAPM model. The Fama and 

French (1993) model has three factors: (i) Rm − Rf (the excess return on the market), (ii) SMB 

(the difference in returns between small stocks and big stocks) and (iii) HML (the difference in 

returns between high book-to-market stocks and low book-to-market stocks). 

To test whether the existing risk factor models can absorb the observed negative relationship 

between IV convexity and future stock returns, we conduct a time-series test based on CAPM and 

the Fama-French three factor model, respectively. Along with the Fama-French three factor model 

(FF3), we also use an extended four-factor model (Carhart, 1997) that includes a momentum factor 

(UMD) suggested by Jegadeesh and Titman (1993) (FF4). 

[Insert Table 8 about here.] 

Table 8 reports the coefficient estimates of CAPM, FF3, and FF4 time-series regressions for 

monthly excess returns on five portfolios sorted by IV convexity (or systematic and idiosyncratic 

components of IV convexity). The left-most six columns are the results using a portfolio sorted by 

IV convexity. When running regressions using CAPM, FF3, and FF4, we still observed the 

estimated intercepts in the Q1~Q3 IV convexity portfolio (�̂�𝑄1, �̂�𝑄2, �̂�𝑄3), which are statistically 

significant and have negative patterns with respect to portfolios formed by IV convexity. In addition, 

the differences in the intercept between the lowest and highest IV convexity, �̂�𝑄5 − �̂�𝑄1 , are 

0.0116 (t-statistic = 6.82) for CAPM, 0.0118 (t-statistic = 6.9) for FF3, and 0.012 (t-statistic = 6.80) 

for FF4. Adopting Gibbons, Ross, and Shanken (1989), we test the null hypothesis that all 

estimated intercepts are jointly different from zero (�̂�𝑄1 = ⋯ = �̂�𝑄5 = 0), and this is rejected with 

a p-value < 0.001 in the CAPM, FF3, and FF4 model specifications. These results imply that the 

widely-accepted existing factors (Rm − 𝑅𝑓, SMB, HML, UMD) cannot fully capture and explain 

the negative portfolio return patterns sorted by IV convexity. We may then argue that cross-

sectional IV convexity does not contain the existing systematic risk factors, thus this is one of the 
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risk factor that can capture the cross-sectional variations in returns not explained by existing 

models (CAPM, FF3, and FF4). 

When we conduct time-series test using portfolios sorted by decomposed components of IV 

convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) to see which components are not explained by existing 

risk factors, most of the estimated intercepts are significantly positive, indicating that the CAPM, 

FF3, and FF4 models leaves some portion of unexplained returns for the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys , 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio portfolios in Q1~Q3(Q4).  

The joint tests from Gibbons, Ross, and Shanken (1989) examining whether the model explains 

the average portfolio returns sorted by each component of convexity ( 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys , 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) are strongly rejected with p-value < 0.001 for the CAPM, FF3, and FF4 models. 

Therefore, regardless of whether IV convexity is invoked by the market (systematic) or by 

idiosyncratic risk, both components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys , 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio)  are not 

explained by existing systematic risk factors. Thus, we can infer that the negative return patterns 

shown in Tables 3-7 are hard to explain with existing traditional risk-based factor models. These 

results provide strong evidence for the information transmission in the context of Hypothesis2-1. 

4. Robustness Checks 

We address additional aspects of IV slope and IV convexity measurements for robustness. We first 

conduct a Fama-Macbeth regression analysis with various control variables, and then investigate 

a number of alternative IV convexity measures to check the robustness of our results. 

4.1. Fama-Macbeth Regression 

The time-series test results indicate that the existing factor models may not be able to perfectly 

capture the return predictability of IV convexity. As IV convexity can be a candidate risk factor that 

can explain stock returns, we conduct Fama-Macbeth (1973) cross-sectional regressions at the firm 

level to investigate whether IV convexity is another risk factor beyond other measures of risks 

suggested in previous literature.  
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We consider market 𝛽 [estimated following Fama and French (1992)], size (ln_mv), book-to-

market (btm), momentum (MOM), reversal (REV), illiquidity (ILLIQ), options volatility slope (IV 

spread and IV smirk), idiosyncratic risk (idio_risk), implied volatility level (IV level), systematic 

volatility (𝑣𝑠𝑦𝑠
2 ), and idiosyncratic implied variance (𝑣𝑖𝑑𝑖𝑜

2 )20 as common measures of risks that 

explain stock returns. The market 𝛽 is estimated from time-series regressions of raw stock excess 

returns on the Rm-Rf by month-by-month rolling over the previous three-year (36-month) returns 

(a minimum of 12 months). Motivated by Jegadeesh and Titman (1993), MOM is defined as the 

cumulative return over the past five months from t-6 to t-2 by omitting one month from the 

portfolio formation time point to eliminate the short-term reversal effect. The MOM portfolio is 

rebalanced monthly and held for the following one month period. REV is defined as the past one-

month return as suggested by Jegadeesh (1990) and Lehmann (1990). ILLIQ is defined as the 

absolute monthly stock return normalized by the trading volume of the stock in thousand USD as 

proposed by Amihud (2002). Though our options convexity measure is computed using options 

implied volatility, we include the IV level variable to confirm that the results are not driven by 

implied volatility. Following Yan (2011) and Xing, Zhang, and Zhao (2010), we define the option 

implied volatility slope as  

𝐼𝑉 𝑠𝑚𝑖𝑟𝑘 = IVput(∆= −0.8) − IVcall(∆= 0.5),      (20) 

𝐼𝑉 𝑠𝑝𝑟𝑒𝑎𝑑 = IVput(∆= −0.5) − IVcall(∆= 0.5),      (21) 

In addition, Ang, Hodrick, Xing and Zhang (2006) argue that idiosyncratic volatility can explain 

the cross-sectional variation of stock returns. In this context, we estimate the idiosyncratic risk 

following Ang, Hodrick, Xing, and Zhang (2006) using daily returns, and include this variable in 

the Fama-Macbeth regression. Daily excess returns of individual stocks over the last 30 days are 

regressed on the three Fama-French (1993, 1996) factors daily and the momentum factors monthly 

as follows: 

                                            
20 We do not include the coskewness factor in the Fama-Macbeth (1973) regression. Harvey and Siddique (2000) argue that 

coskewness is related to the momentum effect, as the low momentum portfolio returns tend to have higher skewness than high 

momentum portfolio returns. Thus, we exclude co-skewness from the Fama-Macbeth regression specification to avoid the multi-

collinearity problem with the momentum factor. 
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(Rit − Rf) = αi + β1i(MKTt − Rft) + β2iSMB + β3iHML + β4iWML + εit,  (22) 

The idiosyncratic volatility is computed as the standard deviation of the monthly regression 

residuals. To reduce the impact of infrequent trading on idiosyncratic volatility estimates, a 

minimum of 15 trading days in a month for which CRSP reports both a daily return and non-zero 

trading volume is required.  

We also compute systematic volatility estimated by the method suggested in Duan and Wei (2009): 

𝑣sys
2 = 𝛽2𝑣𝑚

2 /𝑣2. Idiosyncratic implied variance is 𝑣𝑖𝑑𝑖𝑜
2 = 𝑣2 − 𝛽2𝑣𝑀

2 , where vm is the implied 

volatility of the S&P 500 index option, and computed following Dennis, Mayhew and Stivers 

(2006). We then run the monthly cross-sectional regression of individual stock returns of the 

subsequent month on IV convexity and other known measures of risks presented above. 

[Insert Table 9 about here.] 

Panel A of Table 9 reports the averages of the monthly Fama-Macbeth (1973) cross-sectional 

regression coefficient estimates for individual stock returns with market β as a control variable 

along with the Newey-West adjusted t-statistics for the time-series average of coefficients with a 

lag of 3. In Model 1, the coefficient on IV convexity is significantly negative, in line with our 

previous observation in the portfolio formation approach. Other related option-implied volatility 

slope measures, IV smirk and IV spread in Models 2 and 3, have significantly negative coefficients, 

similar to Yan (2011) and Xing, Zhang, and Zhao’s (2010) finding indicating a negative 

relationship between IV smirk (IV spread) and stock returns.  

The next six columns, from Models 4 to 9, report the results with market β and other stock 

fundamentals, including firm-size (ln_mv) and book-to-market ratio (btm) as control variables. 

Even including stock fundamentals, we still observe significantly negative coefficients on IV 

convexity, IV smirk, and IV spread. When including both IV convexity and IV smirk (or IV spread), 

as shown in Models 8 and 9, the coefficients on IV convexity are still significantly negative, 

indicating that IV convexity has a strong explanatory power for stock returns that IV smirk and IV 

spread cannot fully capture. The significantly negative coefficients confirm the existence of size 
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effects shown in earlier studies, whereas the coefficients on btm are significantly positive, 

supporting the existence of a value premium. 

Model 10 represents the Fama-Macbeth regression result using market β, ln_mv, btm, MOM, REV, 

ILLIQ, and idiosyncratic risk. The first six variables are widely accepted stock characteristics that 

can capture the cross-sectional variation in stock returns. However, the result is surprising in that 

the coefficients on market β are insignificant, while ln_mv and btm have significantly negative 

and positive coefficients, respectively. The estimated coefficients on MOM have a positive sign 

without statistical significance, whereas REV has significantly negative coefficients and ILLIQ 

has significantly positive coefficients. 

Moreover, the estimated coefficient on idiosyncratic risk suggested by Ang, Hodrick, Xing, and 

Zhang (2006) is significantly negative. In an ideal asset pricing model that fully captures the cross-

sectional variation in stock returns, idiosyncratic risk should not be significantly priced. The 

relationship between idiosyncratic risk and stock returns are inconclusive, though this is somewhat 

controversial among researchers. Ang, Hodrick, Xing, and Zhang (2006) show that stocks with 

low idiosyncratic risk earn higher average returns compared to high idiosyncratic risk portfolios, 

and the arbitrage portfolio for long high idiosyncratic risk and short low idiosyncratic risk earns 

significantly negative returns. However, other researchers argue that this relationship does not 

persist when using different sample periods and equal-weighted returns.21  Fu (2009) finds a 

significantly positive relationship between idiosyncratic risk and stock returns, and Bali and Cakici 

(2008) show no significant negative relationship, but insignificant positive relationships when they 

form equal-weighted portfolios. However, the statistical significance of the estimated coefficient 

on the idiosyncratic risk in Panel A of Table 10 implies that idiosyncratic risk is priced and there 

may exist other risk factors besides market β, ln_mv, btm, MOM, REV, and ILLIQ. When adding 

IV convexity to Model 11, IV convexity has a significantly negative coefficient, with the value and 

significance level of the coefficient on idiosyncratic risk decreasing compared to Model 10 (from 

-0.121 to -0.113) and with a smaller t-value (-2.16 versus -2.06). We may thus infer that IV 

convexity can be a significant risk factor that contributes to some part of idiosyncratic risk and 

explains some part of the cross-sectional variation in returns that cannot be fully explained by 

                                            
21 Note that Ang, Hodrick, Xing, and Zhang (2006) employed value-weighted returns for their research. 
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market β, ln_mv, btm, MOM, REV or ILLIQ. The statistical significance of IV convexity remains, 

after including both IV smirk and IV spread Models 14 and 15, respectively.  

When all control variables are included, as in Models 16-20, the sign and significance for the IV 

convexity coefficients remain unchanged. They still have significantly negative coefficients, 

confirming that investors seem to require a negative premium for IV convexity. All in all, it can be 

inferred that there is no evidence that existing risk factors suggested by prior research can explain 

the negative return patterns in IV convexity, and it is possible that IV convexity is a priced risk 

factor that can capture the cross-sectional variations in returns not explained by existing models. 

Finally, we conduct additional analyses with 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio  to investigate 

whether the systematic and idiosyncratic components of IV convexity are priced. As reported in 

Panel B of Table 9, the univariate regressions of 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio in Models 1 

and 2 show that the estimated coefficients on 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio are significantly 

negative (-0.019 and -0.014 with t-statistics of -5.26 and -4.92, respectively), confirming our 

previous findings from the portfolio formation approach in Section 3.3.3.  

As shown in Models 8-10, the coefficients on the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio maintain 

their statistical significance even after controlling for market β, ln_mv, btm, MOM, REV, and 

idio_risk. In Model 8, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys  has a significantly negative average coefficient, but the 

estimated coefficient on idiosyncratic risk does not change significantly from that in Model 7 (from 

-0.115 with t-statistics of -2.03 to -0.114 with t-statistics of -2.04). 

Model 9 shows the results from adding the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio factor. It is notable that 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

has a significantly negative coefficient, and the absolute value of the coefficient on idiosyncratic 

risk decreases compared to Model 7 (from -0.115 to -0.109) and the idiosyncratic risk coefficient’s 

significance level also becomes weaker than that in Model 7, as the t-statistics changes from -2.03 

in Model 7 to -1.94 in Model 9. These results suggest that 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio is a significantly priced 

risk factor, which has a meaningful explanatory power for idiosyncratic risk, though 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys 

does not. 
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The statistical significance of both 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio  is intact even after 

including IV smirk and IV spread in Models 11 and 12, respectively. When we include all control 

variables in Models 13-18, we observe the same results, confirming that the cross-sectional 

predictive power of IV convexity is statistically significant for both the systematic and idiosyncratic 

components. 

4.2. Alternative Measures of Option-implied Volatility Convexity 

In this section, we explore alternative measures of options-implied volatility convexity. We define 

alternative option-implied volatility convexity measures given by  

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 =
[IVcall(0.2)+IVput(−0.8)]    

2
+

[IVcall(0.8)+IVput(−0.2)]    

2
− [IVcall(0.5) + IVput(−0.5)] (23) 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 = IVcall(0.25) + IVput(−0.25) − IVcall(0.5) − IVput(−0.5)  (24) 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 = IVput(−0.2) + IVcall(0.2) − 2 × IVput(−0.5)    (25) 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 = IVcall(0.2) + IVcall(0.8) − 2 × IVcall(0.5).    (26) 

Note that 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 incorporates comprehensive implied volatility information from call and 

put options, whereas our proposed IV convexity is constructed by deep OTM put, deep ITM put, 

and ATM call options. Motivated by Bali, Hu and Murray (2015), we define 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖  as 

the sum of OTM call and OTM put implied volatilities less the sum of the ATM call and ATM put 

implied volatilities. Finally, we construct a put-based IV convexity measure, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 and a 

call-based measure, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙. 

[Insert Table 10 about here.] 

Table 10 reports the descriptive statistics of the average portfolio returns sorted by alternative 

measures of option-implied volatility convexity. Though there are slight distortions in the 

𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡  quintiles, the portfolio returns still generally display a 

decreasing pattern with alternative measures of option-implied volatility convexity. Further, the 

returns of the arbitrage portfolio (Q1-Q5) in 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 quintile portfolios 

remain positive with statistical significance (0.0087 for 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 with t-statistic = 5.10, and 
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0.0091 for 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡  with t-statistic = 6.09). This result confirms that the negative 

relationship between IV convexity and future stock returns are robust and consistent across 

different definitions of option-implied volatility convexity. 

It is remarkable that the arbitrage portfolio (Q1-Q5) return is positive but insignificant, when the 

portfolio is constructed based on the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙  measures. This is 

consistent with Gârleanu, Pedersen, and Poteshman’s (2009) demand-based option pricing 

argument in that the pessimistic perception of the stock’s performance from investors’ aversion to 

the anticipated excess kurtosis is reflected more in the put option prices than in the call option 

prices. For this reason, the predictive power of the 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 measures 

becomes weaker and the arbitrage portfolio (Q1-Q5) returns lose their statistical significance. 

4.3. Performance Evaluation based on Sharpe Ratios 

Considering the risk-return trade-off, we evaluate the performance of each portfolio using two 

different versions of Sharpe ratios. The standard Sharpe ratio (SR) is defined as 

𝑆𝑅 =
𝜇−𝑟

𝜎
,                                                                 (27) 

which can be interpreted as the market price of risk under the standard mean-variance framework. 

In the context of non-normality in asset return distributions, however, investors prefer higher 

moments within the expected utility function. To overcome the shortcomings of the standard 

Sharpe ratio, Zakamouline and Koekebakker (2009) propose a Generalized Sharpe Ratio (GSR) 

as the ultimate generalization by accounting for all moments of distribution.22 Assuming negative 

exponential utility functions with zero initial wealth, we can numerically solve an optimal capital 

allocation problem by maximizing the expected utility function given by 

E[𝑈∗(�̃�)] = max
𝑎

𝐸[−𝑒−𝜆𝑎(𝑥−𝑟𝑓)],                                             (28) 

and the GSR is computed in a non-parametric way using23 

                                            
22 The generalized Sharpe ratio is originally introduced by Hodges (1998). 
23 It can be shown that the GSR reduces to the standard Sharpe ratio when we assume normally distributed asset 

returns. 
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GSR = √−2log (−𝐸[𝑈∗(𝑊)̃]).                                                 (29) 

[Insert Table 11 about here.] 

Panel A of Table 11 shows the Sharpe ratios for single-sorted portfolios formed based on IV 

convexity along with alternative measures of option-implied convexity. Although there are some 

minor distortions in 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 quintiles, similar decreasing patterns of SR and GSR occur in 

quintile portfolios based on IV convexity, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 . Moreover, the 

arbitrage portfolios (Q1-Q5) based on IV convexity, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡  show 

positive SR and GSR (over 0.3). This result implies that one can enjoy profit from taking excess 

tail risk contributions to the perceived variance from the zero-cost portfolios based on IV convexity. 

On the other hand, when we construct portfolios based on 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖  and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙, the 

decreasing SR and GSR patterns are substantially distorted. 

Panel B of Table 11 presents the SR and GSR of double-sorted quintile portfolios formed based 

on IV slope (as well as IV spread and IV smirk) first and then sub-sorted into five groups based on 

IV convexity. The decreasing patterns in IV convexity portfolios’ SR and GSR persist even after 

controlling for IV slope (IV spread), and the SR and GSR of the arbitrage portfolios (Q1-Q5) are 

higher than 0.19. However, when we control for IV smirk as suggested by Xing, Zhang, and Zhao 

(2010), IV convexity arbitrage portfolios’ (Q1-Q5) SR and GSR in the S2, S3 and S4 IV smirk 

portfolios become less than 0.09, confirming the results in Table 6. 

4.4. Different Holding Period Returns for Option-implied Convexity Portfolios 

We turn to examine how long the arbitrage strategy based on IV convexity portfolios continue to 

generate profits by varying investment horizons. 

[Insert Table 12 about here.] 

Table 12 reports the average risk-adjusted monthly returns(using a 4-factor model) of the quintile 

portfolios formed on IV convexity for holding periods from two to six months, where “Q1-Q5” 

denotes a long-short arbitrage portfolio that buys a low convexity portfolio and sells a high 
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convexity portfolio. The t-statistics are computed using Newey-West procedure to adjust the 

serially-correlated returns of overlapping samples. Though the decreasing patterns in the IV 

convexity portfolio returns are slightly distorted and the decreasing patterns are less pronounced 

as the holding period increases, a trading strategy with a long position in low IV convexity stocks and 

a short position in high IV convexity stocks still yield significantly positive profits. Note that the 

arbitrage portfolio return decreases from 0.012 (t-statistic = 6.80) for a 1-month holding period to 

0.0044 (t-statistic = 5.97) for a 6-month holding period. These results imply that the opportunity to 

create arbitrage profits using IV convexity information can be realized in the first month for the 

most part and gradually disappear as portfolios are held up to six months.  

5. Conclusion 

This study finds empirical evidence that IV convexity, our proposed measure for the convexity of 

an option-implied volatility curve, has a negative predictive relationship with the cross-section of 

future stock returns, even after controlling for the slope of an option-implied volatility curve 

discussed in recent literature. We demonstrate that the IV convexity measure, as a proxy of both 

the volatility of stochastic volatility and the volatility of stock jump size, reflects informed options 

traders' anticipation of the excess tail-risk contribution to the perceived variance of the underlying 

equity returns. Consistent with earlier studies, our empirical findings indicate that options traders 

have an information advantage over stock traders in that informed traders anticipating heavier tail 

risk proactively choose the options market to capitalize on their private information. The average 

portfolio return sorted by IV convexity monotonically decreases from 0.0208 for quintile portfolio 

1 (Q1) to 0.0074 for quintile portfolio 5 (Q5) on a monthly basis, implying that the average 

monthly return on the arbitrage portfolio buying Q1 and selling Q5 is significantly positive. It is 

interesting that this pattern persists after decomposing IV convexity into systematic and 

idiosyncratic components, as the results still reveal decreasing patterns in the portfolio returns as 

the portfolio-specific IV convexity increases with statistical significance. In addition, the negative 

relationship between IV convexity and future stock returns is robust after controlling for the various 

kinds of systematic risks suggested in earlier studies. Furthermore, the negative relationship 

between IV convexity and future stock returns remains after considering the impact of our IV slope 

and other well-documented option-implied volatility skewness measures. This consistency implies 
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that IV convexity can be an important measure to capture the fat-tailed characteristics of stock 

return distributions in a forward-looking manner, as this behavior leads to the leptokurtic implied 

distributions of underlying stock returns before equity investors show their kurtosis risk aversion. 

Thus, we argue that IV convexity is not absorbed by systematic risk components and should be 

considered as a significantly priced factor. 

References 

Amihud, Y., 2002, Illiquidity and Stock Returns: Cross-section and Time-series Effects, Journal 

of Financial Markets 5, 31-56. 

Andersen, T.G., Bollerslev, T., Diebold, F.X., Wu, J.G., 2005. A framework for exploring the 

macroeconomic determinants of systematic risk, No. w11134. National Bureau of Economic 

Research. 

Ang, A., Hodrick, R.J., Xing, Y., Zhang, X., 2006. The cross section of volatility and expected 

returns. Journal of Finance 61, 259-299. 

Anthony, J.H., 1988. The interrelation of stock and options market trading-volume data. Journal 

of Finance 43(4), 949-964.  

Arrow, K.J., 1971. Essays in the theory of risk-bearing. North-Holland, Amsterdam. 

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performance of alternative option pricing models. 

Journal of Finance 52, 2003-2049. 

Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and differential 

pricing of individual equity options. Review of Financial Studies 16(1), 101-143. 

Bali, T., Cakici, N., 2008. Idiosyncratic volatility and the cross-section of expected returns? 

Journal of Financial and Quantitative Analysis 43, 29-58. 

Bali, T. Hu, J., Murray, S., 2015. Option Implied Volatility, Skewness, and Kurtosis and the Cross-

Section of Expected Stock Returns, Unpublished Working Paper. 



39 

 

Bates, D., 1996. Jump and stochastic volatility: Exchange rate process implicit in deutsche mark 

options. The Review of Financial Studies 9, 69-107. 

Bhattacharya, M., 1987. Price changes of related securities: The case of call options and stocks. 

Journal of Financial and Quantitative Analysis 22(1), 1-15. 

Black. F., 1972. Capital market equilibrium with restricted borrowing. Journal of Business 45, 

444-455. 

Black, F., 1975. Fact and fantasy in the use of options. Financial Analysts Journal 31(4), 36-41. 

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political 

Economy 81, 637-659. 

Bollen, N.P.B., Whaley, R.E., 2004. Does net buying pressure affect the shape of implied 

volatility functions? Journal of Finance 59, 711-753. 

Bollerslev, T., Chou, R.Y., Kroner, K.F, 1992. ARCH modeling in finance: A review of the theory 

and empirical evidence. Journal of Econometrics 52(1), 5-59. 

Bollerslev, T., Engle, R.F., Nelson, D.B, 1994. ARCH models. Handbook of Econometrics 4, 

2959-3038. 

Bollerslev, T., Tauchen, G., Zhou., H., 2004. Expected stock returns and variance risk premia. The 

Review of Financial Studies 22, 4463-4492. 

Carhart, M.M., 1997. On persistence in mutual fund performance. The Journal of Finance 52, 57-

82. 

Carr, P., Wu, L., 2009. Variance risk premiums. Review of Financial Studies 22(3), 1311-1341. 

Chang, B.Y., Christoffersen, P., Jacobs, K., 2013. Market skewness risk and the cross-section of 

stock returns. Journal of Financial Economics 107, 46-68. 

Chakravarty, S., Gulen, H., Mayhew, S., 2004. Informed trading in stock and option markets. 

Journal of Finance 59(3), 1235-1257. 



40 

 

Chan, K., Chung, Y.P., Fong, W., 2002. The informational role of stock and option volume. 

Review of Financial Studies 15(4), 1049-1075. 

Chan, K., Chung, Y.P., Johnson, H., 1993. Why option prices lag stock prices: A trading based 

explanation. Journal of Finance 48(5), 1957-1967. 

Chi-Hsiou Hung, D., Shackleton, M., Xinzhong, X., 2004. CAPM, higher co-moment and factor 

models of UK stock returns. Journal of Business Finance and Accounting 31, 87-112. 

Chung, Y., Johnson, H., Schill, M., 2006. Asset pricing when returns are non-normal: Fama-

French factors vs. higher-order systematic co-moments. Journal of Business 79, 923-940. 

Cox, J.C., Rubinstein, M., 1985. Options markets. Vol. 340. Englewood Cliffs, NJ: Prentice-Hall. 

Cox, J.C., Ross, S.A., Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of 

Financial Economics 7, 229-263. 

Cremers, M., Weinbaum, D., 2010. Deviations from put-call parity and stock return predictability. 

Journal of Financial and Quantitative Analysis 45, 335-367. 

Dennis, P., Mayhew, S., Stivers, C., 2006. Stock returns, implied volatility innovations, and the 

asymmetric volatility phenomenon. Journal of Financial and Quantitative Analysis 41, 381-

406. 

Diamond, D.W., Verrecchia, R.E., 1987. Constraints on short-selling and asset price adjustment 

to private information. Journal of Financial Economics 18, 277-311. 

Dittmar, R., 2002. Nonlinear pricing kernels, kurtosis preference, and evidence from the cross 

section of equity returns. Journal of Finance 57, 369-403. 

Doan, M., Lin, C.T., Zurbruegg, R., 2010. Pricing assets with higher moments: evidence from the 

Australian and US stock markets. Journal of International Financial Markets, Institutions and 

Money 20, 51-67. 

Drechsler, I., Yaron, A., 2011. What’s vol got to do with it. The Review of Financial Studies 24, 

1-45. 



41 

 

Duan, J.C., 1995. The GARCH option pricing model. Mathematical Finance 5(1), 13-32. 

Duan, J.C., Wei, J., 2009. Systematic risk and the price structure of individual equity options. 

Review of Financial Studies 22, 1981-2006. 

Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine jump-

diffusions. Econometrica 68(6), 1343-1376. 

Easley, D., O' Hara, M., Srinivas, P.S., 1998. Option volume and stock prices: Evidence on 

where informed traders trade. Journal of Finance 53(2), 431-465. 

Evans, R., Geczy, C., Musto, D., Reed, A., 2005. Failure is an option: Impediments to short 

selling and options prices. Review of Financial Studies 22, 1955-1980. 

Fama, E.F., French, K.R., 1992. The cross section of expected stock returns. Journal of Finance 

47, 427-465. 

Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. Journal 

of Financial Economics 33, 3-56. 

Fama, E.F., French, K.R., 1996. Multifactor explanations of asset pricing anomalies. The Journal 

of Finance 51, 55–84. 

Fama, E.F., MacBeth, J., 1973. Risk, return and equilibrium: Empirical tests. Journal of Political 

Economy 81, 607-636. 

Fu, F., 2009. Idiosyncratic risk and the cross-section of expected stock returns. Journal of Financial 

Economics 91, 24-37.  

Gârleanu, N., Pedersen, L., Poteshman, A., 2009. Demand-based option pricing. Review of 

Financial Studies 22, 4259-4299. 

Gibbons, M.R., Ross, S.A., Shanken, J., 1989. A test of efficiency of a given portfolio. 

Econometrica 57, 1121-1152. 



42 

 

Giot, P., 2005. On the relationships between implied volatility indices and stock index returns. 

Journal of Portfolio Management 31(3), 92-100. 

Harvey, C.R., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal of Finance 

55, 1263-1295. 

Hodges, S., 1998. A generalization of the Sharpe ratio and its applications to valuation bounds and 

risk measures. Working Paper, Financial Options Research Centre, University of Warwick. 

Heston, S.A, 1993. Closed-form solution for options with stochastic volatility with applications to 

bonds and currency options. Review of Financial Studies 6, 327-343. 

Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatility. Journal of 

Finance 42, 281-300. 

Jegadeesh, N., 1990. Evidence of predictable behavior of security returns. Journal of Finance 45, 

881-898. 

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: implications for 

stock market efficiency. Journal of Finance 48, 65-91. 

Jin, W., Livnat, J., Zhang, Y., 2012. Option prices leading equity prices: Do option traders have 

an information advantage? Journal of Accounting Research 50(2), 401-432. 

Kraus, A., Litzenberger, R.H., 1976. Skewness preference and the valuation of risk assets. Journal 

of Finance 31, 1085-1100. 

Lehmann, B., 1990. Fads, martingales and market efficiency. Quarterly Journal of Economics 105, 

1-28. 

Lim, K.G., 1989. A new test of the three-moment capital asset pricing model. Journal of Financial 

and Quantitative Analysis 24(2), 205-216. 

Lintner, J., 1965. The valuation of risky assets and the selection of risky investments in stock 

portfolios and capital budgets. Review of Economics and Statistics 47, 13-37. 



43 

 

Madan, D.B., Chang, E.C., 1996. Volatility smiles, skewness premia and risk metrics: 

Applications of a four parameter closed form generalization of geometric Brownian motion 

to the pricing of options. Working Paper, University of Maryland. 

Manaster, S., Rendleman, R.J., 1982. Option prices as predictors of equilibrium stock prices. 

Journal of Finance 37(4), 1043-1058. 

Markowitz, H., 1956. Portfolio selection: Efficient diversification of investments. Wiley, New 

York. 

Melino, A., Turnbull, S.M., 1990. Pricing foreign currency options with stochastic volatility. 

Journal of Econometrics 45, 7-39. 

Melino, A., Turnbull, S.M., 1995. Misspecification and the pricing and hedging of long-term 

foreign currency options. Journal of International Money and Finance 14(3), 373-393. 

Merton, R.C., 1976. Option pricing when underlying stock return are discontinuous. Journal of 

Financial Economics 3, 125–144. 

Merton, R.C., 1982. On the microeconomic theory of investment under uncertainty. In: Arrow, 

K.J., Intriligator, M.D., (Eds.), Handbook of mathematical economics, Vol. 2. North-Holland, 

Amsterdam, pp. 601-669. 

Peters, E.E, 1991. Chaos and order in the capital markets. John Wiley, New York. 

Scott, R.C., Horvath, P.A., 1980. On the direction of preference for moments of higher order than 

the variance. Journal of Finance 35, 915-919. 

Sharpe, W.F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. 

Journal of Finance 19, 425–442. 

Smith, D., 2007. Conditional Co-skewness and Asset Pricing. Journal of Empirical Finance 14, 

91–119. 



44 

 

Stein, E.M, Stein, J.C., 1991. Stock Price Distributions with Stochastic Volatility: An Analytic 

Approach. Review of Financial Studies 4(4), 727-752. 

Stephan, J.A., Whaley, R.E., 1990. Intraday Price Change and Trading Volume Relations in the 

Stock and Option Markets. Journal of Finance 45(1), 191-220.  

Tanaka, K., Yamada, T., Watanabe, T., 2010. Applications of Gram-Charlier expansion and bond 

moments for pricing of interest rates and credit risk. Quantitative Finance 10(6), 645-662. 

Vijh, A.M., 1990. Liquidity of the CBOE equity options. Journal of Finance 45(4), 1157-1179. 

Wiggins, J., 1987. Option values under stochastic volatility: Theory and empirical estimates. 

Journal of Financial Economics 19, 351-372. 

Xing, Y., Zhang, X., Zhao, R., 2010. What does the individual option volatility smirk tell us about 

future equity returns? Journal of Financial and Quantitative Analysis 45(3), 641–662. 

Yan, S., 2011. Jump risk, stock returns, and slope of implied volatility smile. Journal of Financial 

Economics 99, 216–233. 

Zakamouline, V., Koekebakker, S., 2009. Portfolio performance evaluation with generalized 

Sharpe ratios: Beyond the mean and variance. Journal of Banking & Finance 33(7), 1242-1254. 

 

  



45 

 

Table 1. Option implied volatilities 

This table reports the summary statistics of the fitted implied volatilities and fixed deltas of the individual equity options with one 

month (30 days) to expiration at the end of month obtained from OptionMetrics. DS measures the degree of accuracy in the fitting 

process at each point and computed by the weighted average standard deviations. The sample period covers Jan 2000 to Dec 2013.    

 

 Call 

delta 20 25 30 35 40 45 50 55 60 65 70 75 80 

Mean 0.493 0.480 0.471 0.466 0.463 0.463 0.464 0.468 0.472 0.479 0.486 0.497 0.511 

stdev 0.279 0.278 0.277 0.276 0.274 0.273 0.273 0.274 0.275 0.277 0.279 0.281 0.285 

DS 0.054 0.043 0.033 0.026 0.022 0.020 0.019 0.019 0.020 0.022 0.027 0.035 0.046 

 

 

 Put 

delta -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 

Mean 0.492 0.481 0.474 0.471 0.469 0.470 0.473 0.478 0.484 0.492 0.502 0.516 0.535 

stdev 0.298 0.293 0.288 0.285 0.283 0.281 0.280 0.280 0.281 0.282 0.283 0.285 0.286 

DS 0.047 0.038 0.030 0.024 0.020 0.019 0.018 0.019 0.020 0.024 0.030 0.041 0.055 
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Table 2. Descriptive Statistics 

Panel A reports the descriptive statistics of options implied volatility, skew and convexity of the equity options with one month (30 days) to expiration at the end of month. IVput(∆put) 

and IVcall(∆call)  refer to fitted implied volatilities with one month(30days) to expiration and ∆𝑐𝑎𝑙𝑙,𝑝𝑢𝑡  are options deltas. Options implied volatility is defined by 

𝐼𝑉 𝑙𝑒𝑣𝑒𝑙 = 0.5[IVput(−0.5) + IVcall(0.5)] and Options volatility slopes are computed with 𝐼𝑉 𝑠𝑙𝑜𝑝𝑒 = IVput(−0.2) − IVput(−0.8), IV spread= IVput(−0.5) − IVcall(0.5), and IV smirk=

IVput(−0.2) − IVcall(−0.5), respectively, following our definition of options volatility slope, Yan(2011) and Xing, Zhang and Zhao(2010). Option implied convexity is calculated by 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = IVput(−0.2) + IVput(−0.8) − 2 × IVcall(0.5). Using daily options implied convexity of equity options and S&P500 index option, we conduct time series regressions in 

each month to decompose options implied convexity into the systematic and idiosyncratic components given by:  

𝑐𝑖,𝑡−30~𝑡 = αi + βi𝑐𝑆&𝑃500,𝑡−30~𝑡 + εi,t 

The fitted values and residual terms are the systematic components of options implied convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠) and the idiosyncratic components of options implied convexity 

(𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜), respectively. Alternative IV convexity are defined by p∆1_c50_p∆2=IVput(∆1) + IVput(∆2) − 2 × IVcall(0.5), where −0.45 ≤ ∆1≤ −0.2 and −0.80 ≤ ∆2≤ −0.55. 

Panel B shows the descriptive statistics of firm characteristic variables. Size (ln_mv) is computed at the end of each month and we define size as natural logarithm of the market capitalization. 

When computing book-to-market ratio(BTM), we match the yearly BE (book value of common equity (CEQ) plus deferred taxes and investment tax credit (txditc)) for all fiscal years 

ending at year t-1 to returns starting in July of year t and this BE is divided by market capitalization at month t-1. Beta (β) is estimated from time-series regressions of raw stock excess 

returns on the Rm-Rf by month-by-month rolling over past three year (36 months) returns (a minimum of 12 months). Momentum (MOM) is computed based on past cumulative returns 

over over the past 5 months (t-6 to t-2) following Jegadeesh and Titman (1993). Reversal (REV) is computed based on past one-month return (t-1) following Jegadeesh (1990) and 

Lehmann(1990). Illiquidity (ILLIQ) is the average of the absolute value of stock return divided by the trading volume of the stock in thousand USD calculated using past one month daily 

data following Amihud (2002). Following Harvey and Siddique (2000), daily excess returns of individual stocks are regressed on the daily market excess return and the daily squared 

market excess return using the last one year data month by month given by: 

(Rit − Rf)𝑖,𝑡−365~𝑡 = α
i

+ β
1,i

(MKTt − Rft)𝑡−365~𝑡 + β
2,i

(MKTt − Rft)2
𝑡−365~𝑡  + ε

i,t
 

The co-skewness of a stock is the coefficient of the squared market excess return. To reduce the impact of infrequent trading on co-skewness estimates, a minimum of 255 trading days in 

a month daily return are required.  

 

Panel A. Option Implied Volatility, Option Implied Volatility Slope and Option Implied Volatility Convexity 

 

  Implied Volatility Implied Slope Implied Convexity Alternative Convexity Measures 

  IV level IV slope IV spread IV smirk IV convexity 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 p25_c50_p75 p30_c50_p70 p35_c50_p65 p40_c50_p60 p45_c50_p55 

Mean 0.4739 0.0423 0.009 0.0687 0.0942 0.0942 0.0000 0.065 0.045 0.032 0.023 0.018 

Stdev 0.2689 0.1614 0.1235 0.1413 0.2624 0.1682 0.2015 0.213 0.199 0.19 0.184 0.183 

Median 0.4088 0.0422 0.0045 0.0516 0.0595 0.0668 -0.0049 0.039 0.027 0.019 0.014 0.01 

 
Panel B. Firm Characteristic Variables 

 Size BTM Beta (β) MOM REV ILLIQ Coskew 

Quintile Mean Median Stdev Mean Median Stdev Mean Median Stdev Mean Median Stdev Mean Median Stdev Mean Median Stdev Mean Median Stdev 

Q1 16.7256 16.8167 0.8923 0.1467 0.1434 0.0836 -0.0413 0.0865 0.5902 -0.2788 -0.2536 0.1693 -0.1499 -0.1231 0.1080 0.0000  0.0000  0.0000  -18.9451 -13.5341 17.1791 

Q2 18.2541 18.2806 0.5998 0.3559 0.3389 0.1028 0.5764 0.5891 0.2163 -0.0699 -0.0611 0.1123 -0.0424 -0.0322 0.0534 0.0001  0.0000  0.0001  -6.3591 -5.0588 5.0064 

Q3 19.3495 19.3875 0.5814 0.5771 0.5547 0.1597 0.9689 0.9783 0.2222 0.0454 0.0484 0.1086 0.0073 0.0102 0.0457 0.0003  0.0002  0.0004  -0.9856 -0.6643 2.2680 

Q4 20.5129 20.5177 0.5699 0.8946 0.8553 0.2919 1.4901 1.4735 0.2625 0.1763 0.1711 0.1316 0.0603 0.0561 0.0549 0.0018  0.0009  0.0023  4.2063 3.2719 3.3457 

Q5 22.4613 22.2198 1.1355 2.6192 1.6282 4.8822 2.8661 2.5030 1.2970 0.6099 0.4474 0.7128 0.2181 0.1623 0.2263 0.0359  0.0112  0.0631  15.3192 11.9180 13.5290 

All 19.4607 19.3757 2.1054 0.9186 0.5472 2.3613 1.1720 0.9808 1.1860 0.0966 0.0461 0.4515 0.0187 0.0080 0.1701 0.0076  0.0002  0.0316  -1.3516 -0.5745 15.2483 
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Table 3. Average returns sorted by option-implied volatility convexity 

Panel A reports descriptive statistics of the kurtosis and equal-weighted and value-weighted average portfolio monthly returns sorted by IV convexity(IV spread and IV smirk). IV 

convexity, IV spread and IV smirk are estimated, following our definition of IV convexity, Yan (2011) and Xing, Zhang and Zhao (2010), respectively. On the last trading day of 

every each month, all firms are assigned to one of five portfolio groups based on IV convexity (IV spread and IV smirk) and we assume stocks are held for the next one-month-

period. This process is repeated for every month. Panel B reports descriptive statistics of the equal-weighted and value-weighted average portfolio monthly returns sorted by 

alternative IV convexity. Alternative IV convexity are defined by p∆1_c50_p∆2=IVput(∆1) + IVput(∆2) − 2 × IVcall(0.5), where −0.45 ≤ ∆1≤ −0.2 and −0.80 ≤ ∆2≤ −0.55. 

Value-weighted portfolio returns are weighted by the lag of market capitalization of the underlying stocks. Monthly stock returns are obtained from Center for Research in 

Security Prices (CRSP) with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exchcd=3). We use only common shares (shrcd in 10, 11). The sample 

excludes stocks with a price less than three dollars. “Q1-Q5” denotes an arbitrage portfolio that buys a low option-implied convexity portfolio (Q1) and sells a high IV convexity 

portfolio (Q5). The sample period covers from Jan 2000 to Dec 2013. Numbers in parentheses indicate t-statistics. 

 

Panel A. IV convexity (IV spread and IV smirk) and Equal-weighted (Value-weighted) portfolio return 

 

  IV convexity IV spread IV smirk 

Quintile Avg # of firms Mean Stdev Avg kurtosis of return EW Ret VW Ret Avg # of firms Mean Stdev EW Ret VW Ret Avg # of firms Mean Stdev EW Ret VW Ret 

Q1 (Low ) 1816 -0.1364 0.2822 4.0509 0.0208 0.0136 1769.14 -0.0834 0.1491 0.0145 0.0109 1730.86 -0.0519 0.1462 0.0136 0.0112 

Q2 1781 0.0156 0.0317 4.0434 0.0124 0.0061 1844.14 -0.0094 0.0131 0.0102 0.0067 1767.79 0.0292 0.0176 0.0099 0.0066 

Q3 1819 0.0637 0.0394 4.1244 0.0098 0.0051 1752.86 0.0040 0.0109 0.0081 0.0044 1782.79 0.0527 0.0202 0.0073 0.0035 

Q4 1869 0.1333 0.0672 4.1822 0.009 0.0025 1892.14 0.0189 0.0173 0.0066 0.0040 1824.64 0.0845 0.0286 0.0066 0.0033 

Q5 (High) 1599 0.398 0.3539 4.2857 0.0074 0.0023 1700.14 0.1096 0.1844 0.0013 -0.0004 1541.21 0.2182 0.1863 0.0034 0.0019 

Q1-Q5         0.0134 0.0113       0.0131 0.0113       0.0102 0.0094 

t-statistic         [7.87] [5.08]       [7.31] [3.91]       [5.05] [3.64] 

 

 
Panel B. Alternative measure of IV convexity and Equal-weighted (Value-weighted) portfolio return 

 
  p25_c50_p75 p30_c50_p70 p35_c50_p65 p40_c50_p60 p45_c50_p55 

Quintile Avg # of firms Mean EW Ret VW Ret Avg # of firms Mean EW Ret VW Ret Avg # of firms Mean EW Ret VW Ret Avg # of firms Mean EW Ret VW Ret Avg # of firms Mean EW Ret VW Ret 

Q1 (Low) 1832 -0.1304 0.0202 0.0136 1831 -0.1364 0.0199 0.0106 1821 -0.1385 0.0199 0.0109 1801 -0.1388 0.0198 0.0106 1759 -0.1395 0.0204 0.0116 

Q2 1790 0.001 0.012 0.0058 1804 -0.0079 0.0123 0.0064 1817 -0.013 0.0124 0.0061 1813 -0.0155 0.0124 0.0063 1814 -0.0163 0.0122 0.0069 

Q3 1790 0.0421 0.0095 0.0052 1769 0.0292 0.0096 0.0049 1762 0.0206 0.0095 0.0056 1754 0.0147 0.0096 0.0057 1730 0.011 0.009 0.0052 

Q4 1857 0.0977 0.0093 0.0023 1855 0.0755 0.0089 0.0031 1857 0.0604 0.0085 0.0034 1853 0.0498 0.009 0.0032 1839 0.0428 0.0088 0.0034 

Q5 (High) 1585 0.312 0.008 0.0029 1572 0.2644 0.0084 0.0035 1582 0.2313 0.0088 0.0019 1583 0.2092 0.0083 0.0008 1570 0.1967 0.0086 0.0012 

Q1-Q5     0.0122 0.0106     0.0115 0.0071     0.0111 0.0090     0.0115 0.0098    0.0118 0.0104 

t-statistic     [7.74] [4.85]     [7.32] [3.36]     [7.11] [3.89]     [7.03] [4.07]     [6.79] [3.87] 
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Table 4. Average returns of portfolios sorted by firm-size, book-to-market ratio, market beta, and option-implied volatility convexity 

This table reports the average monthly returns of five double-sorted portfolios formed based on firm characteristic variables (firm size, book-to-market ratio, market beta) and IV 

convexity on a monthly basis, and then sub-sorted within each quintile portfolio into one of the five portfolios according to IV convexity.  

Using CRSP data, market capitalization (Size) is computed at the end of each month and we define size as the natural logarithm of the market capitalization. When computing 

book-to-market ratio(BTM), we match the yearly BE (book value of common equity (CEQ) plus deferred taxes and investment tax credit (txditc)) for all fiscal years ending at 

year t-1 to returns starting in July of year t and this BE is divided by market capitalization(Size) at month t-1. Market betas (Beta) are estimated using a rolling regression with 

the previous 36 monthly returns available up to month t-1 given by 

(Ri t−36~t − Rf t−36~t) = 𝛼𝑖 + 𝛽𝑖(MKTt−36~t − Rft−36~t) + 𝜀𝑖𝑡−36~t. 

A minimum of 12 months are required when estimating market beta. Stocks are assumed to be held for one month, and portfolio returns are equally-weighted. Monthly stock 

returns are obtained from the Center for Research in Security Prices (CRSP) with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exchcd=3). We use 

only common shares (shrcd in 10, 11). Stocks with a price less than three dollars are excluded from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low IV 

convexity portfolio and sells a high IV convexity portfolio in each characteristic portfolio. The sample covers Jan 2000 to Dec 2013. Numbers in parentheses indicates t-statistics. 

Avg Return 

IV convexity Quintiles 
Size Quintiles BTM Quintiles Beta Quintiles 

S1(Small) S2 S3 S4 S5(Large) B1(Low) B2 B3 B4 B5(High) beta1(Low) beta2 beta3 beta4 beta5(High) 

Q1 (Low IV convexity) 0.0255 0.0164 0.0112 0.0122 0.0093 0.0106 0.0148 0.0171 0.0225 0.0337 0.0157 0.0189 0.0189 0.0213 0.0263 

Q2 0.0205 0.0118 0.0111 0.0093 0.0064 0.0035 0.0089 0.0121 0.0153 0.0274 0.0100 0.0118 0.0125 0.0132 0.0148 

Q3 0.016 0.0111 0.008 0.0109 0.0071 0.0063 0.008 0.0106 0.0134 0.0195 0.0096 0.0121 0.0099 0.0109 0.0102 

Q4 0.0139 0.0097 0.0081 0.0081 0.0057 0.0033 0.006 0.0082 0.0126 0.0189 0.0084 0.0109 0.0109 0.0098 0.0084 

Q5 (High IV convexity) 0.0068 0.0034 0.0064 0.0065 0.0034 0.0009 0.0028 0.0063 0.0091 0.016 0.0076 0.0083 0.0072 0.0089 0.0050 

Q1-Q5 0.0187 0.013 0.0048 0.0057 0.0059 0.0097 0.0121 0.0108 0.0134 0.0177 0.0081 0.0106 0.0118 0.0124 0.0213 

t-statistic [6.49] [5.86] [2.26] [3.23] [3.97] [4.82] [5.76] [5.42] [5.67] [5.19] [4.73] [6.15] [6.13] [5.13] [6.32] 

 

Avg # of firms 

IV convexity Quintiles 
Size Quintiles BTM Quintiles Beta Quintiles 

S1(Small) S2 S3 S4 S5(Large) B1(Low) B2 B3 B4 B5(High) beta1(Low) beta2 beta3 beta4 beta5(High) 

Q1 (Low IV convexity) 416 461 448 416 379 408 467 486 470 377 425 488 493 457 378 

Q2 441 465 447 416 371 392 439 467 464 403 398 468 478 462 405 

Q3 446 468 461 429 381 400 457 479 478 401 419 480 486 468 405 

Q4 444 479 467 433 389 426 482 498 489 406 429 493 508 488 416 

Q5 (High IV convexity) 401 431 422 373 348 369 436 457 436 362 366 438 454 435 376 
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Table 5. Average returns of portfolios sorted by momentum, reversal, illiquidity, co-skewness, and option-implied volatility convexity 

This table reports the average monthly returns of a double-sorted quintile portfolio formed based on momentum (reversal, illiquidity, coskewness) and IV convexity. 

Momentum(MOM) is computed based on past cumulative returns over the past 5 months (t-6 to t-2) following Jegadeesh and Titman (1993). Reversal (REV) is computed based 

on previous one-month return (t-1) following Jegadeesh(1990) and Lehmann(1990). Illiquidity (ILLIQ) is the average of the absolute value of stock return divided by the trading 

volume of the stock in thousand USD calculated using past one month daily data following Amihud (2002). Following Harvey and Siddique (2000), daily excess returns of 

individual stocks are regressed on the daily market excess return and the daily squared market excess return month by month using the last one year data as below: 

 

(Rit − Rf)𝑖,𝑡−365~𝑡 = α
i

+ β
1,i

(MKTt − Rft)𝑡−365~𝑡 + β
2,i

(MKTt − Rft)2
𝑡−365~𝑡

 + ε
i,t

 

 

The co-skewness of a stock is the coefficient of the squared market excess return. Daily stock returns are obtained from the Center for Research in Security Prices (CRSP). To 

reduce the impact of infrequent trading on co-skewness estimates, a minimum of 255 trading days in a month for which CRSP reports daily return are required. Monthly stock 

returns are obtained from the Center for Research in Security Prices (CRSP). The sample covers Jan 2000 to Dec 2013 with stocks traded on the NYSE (exchcd=1), Amex 

(exchcd=2) and NASDAQ (exchcd=3). For each month, stocks are sorted into five groups based on momentum (reversal, liquidity, coskewness) and then subsorted within each 

quintile portfolio into one of the five portfolios according to IV convexity. Stocks are assumed to be held for one month, and portfolio returns are equally-weighted. We use only 

common shares (shrcd in 10, 11). Stocks with a price less than three dollars are excluded from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low IV convexity 

portfolio and sells a high IV convexity portfolio in each momentum (reversal, illiquidity, coskew) portfolio. Numbers in parentheses indicate t-statistics. 

 

  Avg Return   

IV convexity Quintiles 
MOM(t-6~t-2) Quintiles REV Quintiles ILLIQ Quintiles Coskew Quintiles 

M1(Loser) M2 M3 M4 M5(Winner) R1(Loser) R2 R3 R4 R5(Winner) I1(Low) I2 I3 I4 I5(High) C1(Low) C2 C3 C4 C5(High) 

Q1 (Low IV convexity) 0.0225 0.0157 0.013 0.0147 0.0273 0.0237 0.017 0.016 0.0136 0.0134 0.01 0.0116 0.0145 0.0181 0.0288 0.0128 0.0169 0.0131 0.0132 0.0140 

Q2 0.0107 0.0094 0.0103 0.01 0.0185 0.016 0.0132 0.0096 0.0092 0.0083 0.0071 0.009 0.0119 0.0134 0.0242 0.0115 0.0111 0.0116 0.0085 0.0082 

Q3 0.0025 0.006 0.0078 0.0087 0.0183 0.0123 0.0119 0.0098 0.0075 0.0065 0.0063 0.0102 0.0101 0.0116 0.0173 0.0098 0.0099 0.0087 0.0098 0.0057 

Q4 -0.0012 0.0071 0.007 0.0086 0.0177 0.0084 0.0092 0.0087 0.0066 0.0068 0.0055 0.0076 0.0089 0.0108 0.0157 0.0056 0.0086 0.0092 0.0074 0.0037 

Q5 (High IV convexity) -0.0029 0.0036 0.0072 0.0082 0.0166 0.0061 0.0095 0.007 0.0055 0.0013 0.0029 0.006 0.0076 0.0023 0.0084 -0.0003 0.0079 0.0091 0.0056 0.0013 

Q1-Q5 0.0254 0.0121 0.0058 0.0066 0.0108 0.0176 0.0076 0.0089 0.0081 0.0122 0.0071 0.0056 0.0069 0.0158 0.0204 0.0130 0.0090 0.0040 0.0076 0.0127 

t-statistic [8.36] [5.92] [3.76] [4.51] [5.39] [6.99] [3.64] [4.69] [4.49] [5.73] [4.21] [2.89] [3.15] [6.01] [6.85] [4.6] [3.83] [2.39] [4.18] [5.07] 

 
Avg # of firms 

IV convexity Quintiles 
MOM Quintiles REV Quintiles ILLIQ Quintiles Coskew Quintiles 

M1(Loser) M2 M3 M4 M5(Winner) R1(Loser) R2 R3 R4 R5(Winner) I1(Low) I2 I3 I4 I5(High) C1(Low) C2 C3 C4 C5(High) 

Q1 (Low IV convexity) 519 716 761 740 596 679 732 740 745 716 421 477 526 527 428 501 608 620 608 501 

Q2 574 690 711 694 602 745 730 700 718 742 401 470 513 521 462 524 574 585 575 511 

Q3 574 703 733 698 604 750 748 720 731 745 413 477 525 527 453 529 594 603 585 516 

Q4 571 717 741 715 602 745 753 736 753 758 429 486 526 533 449 537 609 621 610 529 

Q5 (High IV convexity) 497 646 650 628 522 667 697 684 700 695 389 420 460 463 408 473 552 570 558 480 
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Table 6. Average returns of portfolios sorted by option-implied volatility slope (spread, smirk) and option implied volatility convexity 

This table reports the average monthly returns of a double-sorted quintile portfolio formed based on IV slope (IV spread, IV smirk) and IV convexity. Portfolios are sorted in five 

groups at the end of each month based on IV slope (IV spread, IV smirk) first and then sub-sorted into five groups based on IV convexity. Options volatility slopes are computed 

by 𝐼𝑉 𝑠𝑙𝑜𝑝𝑒 = IVput(−0.2) − IVput(−0.8), IV spread= IVput(−0.5) − IVcall(0.5), and IV smirk= IVput(−0.2) − IVcall(−0.5), respectively, following our definition of options 

volatility slope, Yan(2011) and Xing, Zhang and Zhao(2010).  

Stocks are held for one month, and portfolio returns are equal-weighted. Monthly stock returns are obtained from the Center for Research in Security Prices (CRSP) with stocks 

traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exc hcd=3). We use only common shares (shrcd in 10, 11). Stocks with a price less than three dollars are 

excluded from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low IV convexity portfolio and sells a high IV convexity portfolio in each IV slope (IV spread, IV 

smirk) portfolio. The sample periods cover Jan 2000 to Dec 2013. Numbers in parentheses indicates t-statistics. 

 
 Avg Return 

IV convexity Quintiles 
IV slope Quintiles IV spread Quintiles IV smirk Quintiles 

S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) 

Q1 (Low IV convexity) 0.0267 0.027 0.0178 0.016 0.0151 0.0320 0.0163 0.0123 0.0138 0.0130 0.0314 0.0143 0.0104 0.0098 0.0125 

Q2 0.0165 0.0164 0.0115 0.0111 0.0136 0.0228 0.0132 0.0092 0.0085 0.0122 0.0224 0.0126 0.0084 0.0085 0.0093 

Q3 0.0126 0.0101 0.0079 0.0089 0.0123 0.0189 0.0102 0.0073 0.0067 0.0091 0.0198 0.0118 0.0084 0.0081 0.0087 

Q4 0.0079 0.007 0.0081 0.007 0.0089 0.0150 0.0111 0.0091 0.0074 0.0059 0.0191 0.0101 0.0078 0.0089 0.0059 

Q5 (High IV convexity) 0.0039 0.0085 0.0066 0.0113 0.0087 0.0167 0.0104 0.0078 0.0076 0.0028 0.0200 0.0132 0.0077 0.0078 0.0029 

Q1-Q5 0.0227 0.0185 0.0112 0.0047 0.0064 0.0153 0.0059 0.0045 0.0063 0.0102 0.0114 0.0011 0.0026 0.0020 0.0096 

t-statistic [6.84] [6.30] [4.59] [2.14] [2.52] [5.21] [3.22] [2.61] [3.17] [3.77] [3.9] [0.62] [1.24] [0.93] [3.75] 

p-value <.0001 <.0001 <.0001 0.0337 0.0128 <.0001 0.0016 0.0098 0.0018 0.0002 0.0001 0.5339 0.2163 0.3523 0.0002 

 

 

 

Avg # of firms 

Curvature Quintiles 
s Quintiles IV spread Quintiles IV smirk Quintiles 

S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) 

Q1(Low) 611 637 754 778 693 557 771 740 739 655 557 779 749 725 654 

Q2 688 669 681 740 735 705 718 666 698 657 711 701 714 731 676 

Q3 693 698 682 720 689 749 737 696 713 653 738 682 719 741 657 

Q4 669 726 719 727 636 770 781 751 729 619 691 691 728 722 610 

Q5(High) 548 689 729 704 527 669 736 724 683 511 618 689 704 675 504 
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Table 7. Average portfolio returns sorted by systematic and idiosyncratic components of IV convexity and IV convexity 

Panel A reports the descriptive statistics of the average portfolio returns sorted by systematic components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠) and idiosyncratic components of IV 

convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜). Using daily IV convexity of equity options and S&P500 index option, we conduct time series regressions in each month to decompose IV convexity 

into the systematic and idiosyncratic components given by:  

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖,𝑡−30~𝑡 = α
i

+ β
i
𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑆&𝑃500,𝑡−30~𝑡 + ε

i,t
 

The fitted values and residual terms are the systematic components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠) and the idiosyncratic components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜), 

respectively. On the last trading day of every each month, all firms are assigned into one of five portfolio groups based on IV convexity, 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠( 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 ) and we 

assume stocks are held for the next one-month-period. This process is repeated in every month. Panel B reports the average monthly returns of a double-sorted quintile portfolio 

using systematic components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys) and idiosyncratic components of IV convexity (𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio). Portfolios are sorted into five groups at the end of 

each month based on 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) first, and then sub-sorted into five groups based on IV convexity. Stocks are held for one month, and portfolio returns 

are equal-weighted. Stocks are assumed to be held for one month, and portfolio returns are equally-weighted. Monthly stock returns are obtained from the Center for Research in 

Security Prices (CRSP) with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exchcd=3). We use only common shares (shrcd in 10, 11). Stocks with a 

price less than three dollars are excluded from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low IV convexity portfolio and sells a high IV convexity portfolio 

in each 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys (or  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio) portfolio. The sample period covers Jan 2000 to Dec 2013. Numbers in parentheses indicate t-statistics. 

 

Panel A. Option implied convexity and averaged portfolio return 

   𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑠𝑦𝑠  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑖𝑑𝑖𝑜 

Quintile Avg # of firms Mean Stdev Avg Ret  Avg # of firms Mean Stdev Avg Ret  

Q1 (Low IV convexity) 1650 -0.0434 0.1517 0.0199  1776 -0.2113 0.2402 0.0174  

Q2 1674 0.0373 0.0199 0.0111  1895 -0.0518 0.0383 0.0117  

Q3 1777 0.0682 0.026 0.01  1794 -0.0039 0.033 0.0116  

Q4 1733 0.1145 0.0425 0.0094  1891 0.047 0.0483 0.0101  

Q5 (High IV convexity) 1355 0.2773 0.2113 0.0089  1811 0.2379 0.2781 0.0087  

Q1-Q5       0.011        0.0086  

t-statistic       [6.56]        [5.72]  

Panel B. Double sorted quintile portfolio using 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and  𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

IV convexity Quintiles 
Avg Return Avg # of firms Avg Return Avg # of firms 

csys1 csys2 csys3 csys4 csys5 csys1 csys2 csys3 csys4 csys5 cidio1 cidio2 cidio3 cidio4 cidio5 cidio1 cidio2 cidio3 cidio4 cidio5 

Q1 (Low IV convexity) 0.0319 0.0158 0.0156 0.0143 0.0155 553 775 776 762 665 0.0152 0.0145 0.0130 0.0111 0.0049 631 767 713 741 737 

Q2 0.0224 0.0122 0.0091 0.0091 0.0095 691 676 736 741 644 0.0129 0.0107 0.0105 0.0081 0.0044 783 753 659 732 790 

Q3 0.0188 0.0090 0.0079 0.0101 0.0094 677 646 713 713 604 0.0115 0.0093 0.0079 0.0075 0.0059 801 753 696 755 754 

Q4 0.0131 0.0102 0.0088 0.0077 0.0070 702 696 726 709 561 0.0101 0.0064 0.0095 0.0068 0.0007 755 754 730 745 709 

Q5 (High IV convexity) 0.0140 0.0086 0.0090 0.0059 0.0029 686 766 767 721 478 0.0049 0.0065 0.0079 0.0057 -0.0033 605 672 686 663 590 

Q1-Q5 0.0179 0.0072 0.0066 0.0084 0.0126      0.0102 0.0080 0.0051 0.0053 0.0082      

t-statistic [5.93] [3.49] [3.24] [4.07] [5.45]      [3.16] [3.66] [2.63] [2.71] [3.3]      
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Table 8. Time series tests of 3- and 4- factor models using options implied volatility convexity quintiles 

This table presents the coefficient estimates of CAPM, Fama-French three (four)-factor models for monthly excess returns on IV convexity quintiles portfolios. Fama-French 

factors [RM − Rf], small market capitalization minus big (SMB), and high book-to-market ratio minus low (HML), and momentum factor(UMD)] are obtained from Kenneth 

French’s website. IV convexity quintiles are formed as in Table4. The sample period covers Jan 2000 to Dec 2013 with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) 

and NASDAQ (exchcd=3). Stocks with a price less than three dollars are excluded from the sample, and Newey-west (1987) adjusted t-statistics are reported in square brackets. 

The last row in each model labeled “Joint test p-value” reports a Gibbons, Ross and Shanken (1989) results that tests the null hypothesis whether all intercept are jointly different 

from zero (�̂�𝑄1 = ⋯ = �̂�𝑄5 = 0) or not.     

  

Model Factor sensitivities 
IV convexity 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

Statistics Q1 Q2 Q3 Q4 Q5 Q1-Q5 Q1 Q2 Q3 Q4 Q5 Q1-Q5 Q1 Q2 Q3 Q4 Q5 Q1-Q5 

CAPM 

Alpha 
Coefficient 0.0146 0.0069 0.0042 0.0032 0.0014 0.0116 0.0138 0.0056 0.0043 0.0035 0.0031 0.0091 0.0113 0.0061 0.0061 0.0044 0.0026 0.0070 

t-stat [5.60] [4.75] [2.88] [2.04] [0.66] [6.82] [5.51] [3.96] [2.83] [2.05] [1.53] [5.39] [4.70] [3.92] [4.41] [2.88] [1.20] [4.63] 

MKTRF 
Coefficient 1.4472 1.2075 1.2505 1.3057 1.3830 0.0694 1.4207 1.2283 1.2811 1.3393 1.3338 0.0923 1.4086 1.2623 1.2307 1.2831 1.4110 0.0029 

t-stat [23.11] [31.82] [36.13] [34.53] [27.20] [1.48] [25.71] [33.44] [35.29] [30.46] [27.65] [2.12] [25.73] [30.01] [33.77] [35.37] [29.21] [0.07] 

Adj.R 0.792 0.8968 0.9065 0.9007 0.85 0.0162 0.8006 0.9057 0.9003 0.8858 0.8494 0.0337 0.8101 0.8932 0.9128 0.9017 0.8442 0 

 Joint test: p-value [0.00]  [0.00]  [0.00]  

FF3 

Alpha 
Coefficient 0.0124 0.0048 0.0023 0.0011 -0.0010 0.0118 0.0118 0.0039 0.0024 0.0011 0.0004 0.0098 0.0087 0.0038 0.0042 0.0025 0.0005 0.0066 

t-stat [5.87] [4.52] [2.34] [1.03] [-0.64] [6.90] [6.00] [3.69] [2.47] [0.90] [0.26] [6.46] [4.60] [3.62] [4.12] [2.49] [0.31] [4.38] 

MKTRF 
Coefficient 1.3027 1.1149 1.1512 1.2026 1.2650 0.0426 1.2767 1.1361 1.1724 1.2278 1.2313 0.0503 1.2713 1.1624 1.1475 1.1776 1.2796 -0.0035 

t-stat [23.58] [37.48] [44.49] [40.90] [28.50] [0.96] [28.30] [38.33] [46.30] [34.29] [29.01] [1.49] [25.92] [36.13] [38.38] [43.02] [29.43] [-0.08] 

SMB 
Coefficient 0.6328 0.4493 0.4557 0.4824 0.5520 0.0795 0.6199 0.4238 0.4955 0.5324 0.5111 0.1075 0.6300 0.4786 0.4016 0.4772 0.5825 0.0463 

t-stat [5.33] [8.39] [9.74] [8.46] [5.76] [1.43] [5.55] [8.44] [11.93] [7.58] [5.01] [2.39] [5.85] [8.64] [7.18] [9.60] [5.91] [0.90] 

HML 
Coefficient 0.0211 0.1346 0.0717 0.1006 0.1138 -0.1013 -0.0094 0.0685 0.0690 0.1377 0.1863 -0.2042 0.0995 0.1277 0.1146 0.0573 0.0386 0.0523 

t-stat [0.23] [2.71] [1.70] [2.44] [1.67] [-1.42] [-0.12] [1.42] [1.73] [2.51] [2.70] [-3.64] [1.19] [2.39] [2.65] [1.31] [0.61] [0.74] 

Adj.R 0.8685 0.9541 0.9642 0.9585 0.9133 0.0579 0.8803 0.9572 0.9654 0.9508 0.9063 0.1901 0.887 0.9527 0.9576 0.9625 0.9159 0.01 

 Joint test: p-value [0.00]  [0.00]  [0.00]  

FF4 

Alpha 
Coefficient 0.0132 0.0050 0.0024 0.0014 -0.0003 0.0120 0.0126 0.0040 0.0026 0.0015 0.0011 0.0099 0.0094 0.0042 0.0044 0.0028 0.0011 0.0067 

t-stat [7.33] [5.10] [2.48] [1.54] [-0.29] [6.80] [7.55] [3.94] [2.90] [1.48] [0.90] [6.34] [5.85] [4.63] [4.58] [2.93] [0.88] [4.37] 

MKTRF 
Coefficient 1.1125 1.0580 1.1264 1.1304 1.1112 0.0059 1.1050 1.1005 1.1200 1.1355 1.0804 0.0291 1.1044 1.0793 1.0974 1.1272 1.1380 -0.0290 

t-stat [18.13] [34.90] [37.00] [38.48] [27.91] [0.11] [19.37] [34.59] [42.41] [34.70] [29.53] [0.64] [20.55] [40.32] [35.53] [36.75] [25.76] [-0.61] 

SMB 
Coefficient 0.7588 0.4870 0.4722 0.5302 0.6539 0.1038 0.7336 0.4474 0.5302 0.5935 0.6110 0.1215 0.7406 0.5336 0.4348 0.5106 0.6763 0.0632 

t-stat [7.28] [11.09] [9.97] [11.01] [8.59] [1.54] [7.50] [9.27] [13.78] [10.08] [7.54] [2.13] [7.64] [12.92] [8.60] [11.41] [8.01] [1.05] 

HML 
Coefficient -0.0143 0.1240 0.0671 0.0871 0.0852 -0.1081 -0.0413 0.0619 0.0592 0.1206 0.1582 -0.2081 0.0684 0.1122 0.1053 0.0480 0.0123 0.0475 

t-stat [-0.22] [3.02] [1.64] [2.52] [1.86] [-1.52] [-0.68] [1.35] [1.78] [3.06] [3.89] [-3.47] [1.20] [3.10] [2.89] [1.22] [0.23] [0.70] 

UMD 
Coefficient -0.3321 -0.0994 -0.0433 -0.1261 -0.2686 -0.0640 -0.2999 -0.0622 -0.0915 -0.1612 -0.2635 -0.0369 -0.2916 -0.1452 -0.0875 -0.0880 -0.2474 -0.0446 

t-stat [-4.35] [-4.37] [-1.77] [-7.22] [-11.29] [-1.01] [-3.96] [-2.40] [-4.13] [-7.41] [-9.08] [-0.64] [-4.59] [-5.23] [-3.86] [-4.63] [-6.43] [-0.88] 

Adj.R 0.9232 0.9619 0.9654 0.9694 0.9553 0.0771 0.9269 0.96 0.9713 0.9675 0.9497 0.1935 0.9324 0.9681 0.9635 0.9679 0.9499 0.0013 

 Joint test: p-value [0.00]  [0.00]  [0.00]  
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Table 9. Fama-MacBeth regressions 

Panel A reports the averages of month-by–month Fama and Macbeth (1973) cross-sectional regression coefficient estimates for individual stock returns on IV convexity and control Panel A of this table reports the averages of 

month-by–month Fama and Macbeth (1973) cross-sectional regression coefficient estimates for individual stock returns on IV convexity and control variables. Panel B shows the averages of month-by–month Fama and Macbeth 

(1973) cross-sectional regression coefficient estimates for individual stock returns on 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio and control variables. The cross-section of expected stock returns is regressed on control variables. Control 

variables include market β estimated following Fama and French (1992), size (ln_mv), book-to-market (btm), momentum(MOM), reversal(REV), illiquidity(ILLIQ), IV slope (IV spread, IV spread), idiosyncratic risk (idio_risk), 

implied volatility level (IV level), systematic volatility (𝑣𝑠𝑦𝑠
2 ), idiosyncratic implied variance (𝑣𝑖𝑠𝑖𝑜

2 ). Market β is estimated from time-series regressions of raw stock excess returns on the Rm-Rf by month-by-month rolling over 

the past three year (36 months) returns (a minimum of 12 months). Following Ang, Hodrick, Xing, and Zhang (2006), daily excess returns of individual stocks are regressed on the four Fama-French (1993,, 1996) factors daily 

in every month as: 

(Rpt − Rf) = αp + β1p(MKTt − Rft) + β2pSMB + β3pHML + β4pWML + εpt 

The idiosyncratic volatility of a stock is computed as the standard deviation of the regression residuals. Daily stock returns are obtained from the Center for Research in Security Prices (CRSP). Momentum (MOM) is computed 

based on past cumulative returns over over the past 5 months (t-6 to t-2) following Jegadeesh and Titman (1993). Reversal (REV) is computed based on past one-month return (t-1) following Jegadeesh(1990) and Lehmann(1990). 

Illiquidity (ILLIQ) is defined as the absolute monthly stock return devided by the dollar trading volume in the stock (in $thousands) following Amihud (2002). Systematic volatility is estimated by the method suggested by Duan 

and Wei (2009) as 𝑣sys
2 = 𝛽2𝑣𝑚

2 /𝑣2. Idiosyncratic implied variance as 𝑣𝑖𝑑𝑖𝑜
2 = 𝑣2 − 𝛽2𝑣𝑀

2 , where vm is the implied volatility of S&P500 index option, is also computed following Dennis, Mayhey and Stivers (2006). The daily 

factor data are downloaded from Kenneth R. French’s web site. To reduce the impact of infrequent trading on idiosyncratic volatility estimates, a minimum of 15 trading days in a month for which CRSP reports both a daily return 

and non-zero trading volume are required. The sample period covers Jan 2000 to Dec 2013 with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exchcd=3) and stocks with a price less than three dollars 

are excluded from the sample. Newey-west adjusted t-statistics for the time-series average of coefficients using lag3 are reported. Numbers in parentheses indicate the t -statistic.  

 

Panel A. IV convexity 

Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 MODEL7 MODEL8 MODEL9 MODEL10 MODEL11 MODEL12 MODEL13 MODEL14 MODEL15 MODEL16 MODEL17 MODEL18 MODEL19 MODEL20 

IV 

convexity 

-0.015*** -0.009*** -0.011***   -0.015***     -0.011*** -0.013***   -0.015***     -0.011*** -0.012*** -0.016***    -0.011*** -0.013*** 

(-6.76) (-3.12) (-2.81)   (-6.60)     (-3.86) (-4.12)   (-6.76)     (-4.14) (-3.89) (-7.08)    (-4.25) (-4.12) 

IV  

smirk 

 -0.025***       -0.038***   -0.018**       -0.038***   -0.017**     -0.041***  -0.019**  

 (-2.79)       (-5.70)   (-2.22)       (-5.71)   (-2.19)     (-5.90)  (-2.20)  

IV  

spread 

  -0.012       -0.028***   -0.007       -0.028***   -0.009     -0.030***  -0.010 

  (-1.21)       (-5.29)   (-0.98)       (-5.54)   (-1.21)     (-5.39)  (-1.31) 

beta 
0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.002 0.002 

(0.67) (0.69) (0.68) (0.32) (0.33) (0.34) (0.32) (0.34) (0.34) (0.22) (0.20) (0.22) (0.20) (0.22) (0.22) (0.88) (0.90) (0.92) (0.86) (0.92) 

ln_mv 
    -0.001** -0.002** -0.002** -0.002** -0.002** -0.002** -0.002** -0.002*** -0.002** -0.002*** -0.002** -0.002** -0.002*** -0.002*** -0.002*** -0.002*** -0.002*** 

    (-2.27) (-2.39) (-2.34) (-2.34) (-2.37) (-2.30) (-2.52) (-2.64) (-2.54) (-2.62) (-2.60) (-2.52) (-3.10) (-2.79) (-3.02) (-3.00) (-2.95) 

btm 
    0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.003** 0.003** 0.003** 0.003** 0.003** 

    (2.08) (2.14) (2.06) (2.15) (2.13) (2.15) (2.15) (2.19) (2.12) (2.23) (2.18) (2.22) (2.06) (1.98) (2.09) (2.04) (2.09) 

MOM 
                0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 

                (0.23) (0.19) (0.24) (0.28) (0.19) (0.22) (0.44) (0.51) (0.54) (0.45) (0.46) 

REV 
                -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** 

                (-3.46) (-3.43) (-3.41) (-3.36) (-3.43) (-3.42) (-3.56) (-3.53) (-3.49) (-3.57) (-3.55) 

ILLIQ 
                0.037* 0.035* 0.038* 0.034* 0.036* 0.036* 0.047** 0.048** 0.045** 0.047** 0.046** 

                (1.83) (1.70) (1.83) (1.67) (1.72) (1.71) (2.18) (2.24) (2.14) (2.20) (2.16) 

idio_risk 
                -0.121** -0.113** -0.112** -0.117** -0.111** -0.107*        

                (-2.16) (-2.06) (-2.01) (-2.12) (-2.02) (-1.96)        

IV  

level 

                            -0.012 -0.010 -0.012 -0.011 -0.012 

                            (-1.06) (-0.87) (-1.07) (-0.94) (-1.04) 

𝑣𝑠𝑦𝑠
2  

                            -0.002** -0.002** -0.002** -0.002** -0.002** 

                            (-2.01) (-2.12) (-2.03) (-2.04) (-2.05) 

𝑣𝑖𝑠𝑖𝑜
2  

                            -0.000 -0.000 0.000 -0.001 -0.000 

                            (-0.04) (-0.03) (0.05) (-0.12) (-0.03) 

𝐴𝑑𝑗̅̅ ̅̅ ̅ 𝑅2 0.035 0.036 0.036 0.049 0.050 0.050 0.050 0.051 0.051 0.063 0.064 0.064 0.064 0.065 0.065 0.071 0.071 0.071 0.071 0.071 
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Panel B. 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦sys and 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦idio 

 

Variable MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 MODEL7 MODEL8 MODEL9 MODEL10 MODEL11 MODEL12 MODEL13 MODEL14 MODEL15 MODEL16 MODEL17 MODEL18 

𝒄𝒐𝒏𝒗𝒆𝒙𝒊𝒕𝒚𝐬𝐲𝐬 
-0.019*** -0.020***  -0.022***  -0.022***  -0.021***  -0.022*** -0.018*** -0.019*** -0.022*** -0.018*** -0.020*** -0.022*** -0.018*** -0.019*** 

(-5.26) (-6.13)  (-7.20)  (-7.23)  (-7.66)  (-7.70) (-5.27) (-5.51) (-7.41) (-5.14) (-5.69) (-7.92) (-5.28) (-5.67) 

𝒄𝒐𝒏𝒗𝒆𝒙𝒊𝒕𝒚𝐢𝐝𝐢𝐨 
-0.014*** -0.014***   -0.011*** -0.012***   -0.011*** -0.012*** -0.007** -0.010*** -0.012*** -0.007** -0.011*** -0.013*** -0.007** -0.011*** 

(-4.92) (-4.90)   (-4.29) (-4.68)   (-4.28) (-4.68) (-2.23) (-2.97) (-4.67) (-2.33) (-3.24) (-4.89) (-2.47) (-3.18) 

beta 
 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 

 (0.68) (0.32) (0.33) (0.34) (0.33) (0.22) (0.22) (0.22) (0.22) (0.24) (0.24) (0.06) (0.08) (0.08) (0.90) (0.87) (0.93) 

ln_mv 
  -0.001** -0.002** -0.002** -0.002** -0.002*** -0.002*** -0.002*** -0.002*** -0.002*** -0.002*** -0.001** -0.001** -0.001** -0.002*** -0.002*** -0.002*** 

  (-2.27) (-2.47) (-2.30) (-2.47) (-2.84) (-3.05) (-2.85) (-3.04) (-3.01) (-2.91) (-2.25) (-2.22) (-2.14) (-3.26) (-3.15) (-3.10) 

BTM 
  0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.004** 0.003** 0.003** 0.003** 

  (2.08) (2.15) (2.06) (2.14) (2.23) (2.29) (2.20) (2.27) (2.26) (2.30) (2.32) (2.31) (2.35) (2.06) (2.04) (2.08) 

MOM 
      0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.002 0.002 0.002 

      (0.19) (0.14) (0.20) (0.15) (0.16) (0.18) (0.09) (0.10) (0.11) (0.44) (0.45) (0.46) 

REV 
      -0.017*** -0.017*** -0.018*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** -0.017*** 

      (-3.45) (-3.38) (-3.48) (-3.43) (-3.42) (-3.41) (-3.36) (-3.35) (-3.36) (-3.56) (-3.56) (-3.55) 

idio_risk 
      -0.115** -0.114** -0.109* -0.110** -0.108* -0.104*       

      (-2.03) (-2.04) (-1.94) (-1.98) (-1.94) (-1.88)       

IV 

spread 

          -0.020**   -0.021***   -0.022**  

          (-2.58)   (-2.70)   (-2.56)  

IV 

smirk 

           -0.008   -0.005   -0.009 

           (-1.07)   (-0.77)   (-1.15) 

ILLIQ 
            0.026 0.028 0.027 0.043** 0.044** 0.043** 

            (1.25) (1.31) (1.29) (2.04) (2.06) (2.02) 

IV 

level 

               -0.012 -0.011 -0.012 

               (-1.09) (-0.96) (-1.07) 

𝑣𝑠𝑦𝑠
2  

               -0.002** -0.002** -0.002** 

               (-2.03) (-2.05) (-2.07) 

𝑣𝑖𝑠𝑖𝑜
2  

               -0.000 -0.001 -0.000 

               (-0.02) (-0.09) (-0.01) 

𝐴𝑑𝑗̅̅ ̅̅ ̅ 𝑅2 0.003 0.036 0.049 0.050 0.050 0.051 0.061 0.063 0.063 0.063 0.064 0.064 0.062 0.062 0.062 0.071 0.072 0.072 
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Table 10. Alternative Measure of Options implied Convexity 

 
This table reports the descriptive statistics of the average portfolio returns sorted by alternative measures of option implied convexity. 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 is an unbiased pure kurtosis 

measure without loss of information and is calculated by; 

 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 =
[IVcall(0.8) + IVput(−0.2)]    

2
+

[IVcall(0.2) + IVput(−0.8)]    

2
− [IVcall(0.5) + IVput(−0.5)] 

 

Alternative option implied convexities are calculated as below;  

 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 = IVcall(0.25) + IVput(−0.25) − IVcall(0.5) − IVput(−0.5) 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 = IVput(−0.2) + IVcall(0.2) − 2 × IVput(−0.5) 

𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 = IVcall(0.2) + IVcall(0.8) − 2 × IVcall(0.5) 

 

On the last trading day of each month, all firms are assigned to one of five portfolio groups based on alternative options implied convexity assuming that stocks are held for the 

next one-month-period. This process is repeated in every month. Monthly stock returns are obtained from the Center for Research in Security Prices (CRSP) with stocks traded 

on the NYSE (exchcd=1), Amex (exchcd=2), and NASDAQ (exchcd=3). We use only common shares (shrcd in 10, 11). Stocks with a price less than three dollars are excluded 

from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low options implied convexity portfolio (Q1) and sells a high options implied convexity portfolio (Q5). The 

sample covers Jan 2000 to Dec 2013. Numbers in parentheses indicate t-statistics. 

 

  𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 𝐼𝑉 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 IV 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 IV 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 

Quintile Avg # of firms Mean Stdev Avg Return Avg # of firms Mean Stdev Avg Ret Avg # of firms Mean Stdev Avg Return Avg # of firms Mean Stdev Avg Return 

Q1 (Low curvature) 1721 -0.0407 0.1191 0.019 1795 -0.0517 0.1324 0.0138 1778.79 -0.0571 0.1627 0.0177 1794.43 -0.0562 0.1588 0.0154 

Q2 1718 0.0227 0.0134 0.011 1722 0.0056 0.0070 0.0155 1782.93 0.0166 0.013 0.014 1766.71 0.0139 0.0138 0.0125 

Q3 1807 0.0501 0.02 0.0098 1715 0.0245 0.0096 0.0082 1794.71 0.047 0.0213 0.0095 1800 0.0434 0.0229 0.0093 

Q4 1831 0.0923 0.035 0.0096 1791 0.0584 0.0229 0.0095 1854.86 0.0955 0.0413 0.0099 1863.79 0.0904 0.0416 0.0097 

Q5 (High curvature) 1556 0.235 0.1566 0.0103 1456 0.2238 0.2183 0.0127 1624.5 0.2747 0.2034 0.0086 1590.93 0.2533 0.1893 0.0128 

Q1-Q5       0.0087       0.0011       0.0091       0.0026 

t-statistic       [5.10]       [0.86]       [6.09]       [1.76] 
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Table 11. Alternative Measure of Portfolio Performance: Sharpe Ratio (SR) and Generalized Sharpe Ratio (GSR) 

 

Panel A reports the Sharpe ratio for single-sorted portfolios formed based on IV convexity or alternative measures of option implied convexity. IV convexity is estimated following 

our definition of IV convexity and alternative measures of option implied convexities are computed as in Table 10. Panel B presents the Sharp ratio of double-sorted quintile 

portfolios formed based on IV slope (IV spread, IV smirk) first and then sub-sorted into five groups based on IV convexity. Options volatility slopes are computed by 𝐼𝑉 𝑠𝑙𝑜𝑝𝑒 =

IVput(−0.2) − IVput(−0.8), IV spread= IVput(−0.5) − IVcall(0.5), and IV smirk= IVput(−0.2) − IVcall(−0.5), respectively, following our definition of options volatility slope, 

Yan (2011) and Xing, Zhang and Zhao (2010). Sharpe ratios are estimated by standard Sharpe ratio (SR) and Generalized Sharpe ratio(GSR) suggested by Zakamouline and 

Koekebakker (2009). SR is defined as 
𝜇−𝑟

𝜎
 and GSR is computed as √−2log (−𝐸[𝑈∗(𝑊)̃]), where  E[𝑈∗(�̃�)] = max

𝑎
𝐸[−𝑒−𝜆𝑎(𝑥−𝑟𝑓]. Monthly stock returns are obtained 

from the Center for Research in Security Prices (CRSP) with stocks traded on the NYSE (exchcd=1), Amex (exchcd=2) and NASDAQ (exchcd=3). We use only common shares 

(shrcd in 10, 11). Stocks with a price less than three dollars are excluded from the sample. “Q1-Q5” denotes an arbitrage portfolio that buys a low IV convexity portfolio and sells 

a high IV convexity portfolio. The sample covers Jan 2000 to Dec 2013.  

 

Panel A. Sharpe ratio for single-sorted portfolios: IV convexity (alternative convexity) 

Sharpe Ratio 

 SR GSR 

Quintile IV convexity 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 IV_convexity 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑝 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝐵𝑎𝑙𝑖 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑝𝑢𝑡 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦𝑐𝑎𝑙𝑙 

Q1 (Low) 0.2526 0.2294 0.1715 0.2160 0.1866 0.2575 0.2325 0.1717 0.2170 0.1868 

Q2 0.1815 0.1545 0.2118 0.1976 0.1723 0.1799 0.1533 0.2113 0.1973 0.1717 

Q3 0.1334 0.1334 0.1088 0.1314 0.1248 0.1322 0.1321 0.1080 0.1303 0.1237 

Q4 0.115 0.1220 0.1200 0.1277 0.1239 0.1139 0.1210 0.1192 0.1266 0.1228 

Q5 (High) 0.0826 0.1298 0.1672 0.1025 0.1716 0.0823 0.1289 0.1659 0.1019 0.1706 

Q1-Q5 0.6087 0.3950 0.0667 0.4711 0.1362 0.7598 0.4018 0.0669 0.4829 0.1362 
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Panel B. Sharp ratio of double-sorted quintile portfolios: IV slope (IV spread, IV smirk) first and then on IV convexity 
 

 

 SR 

IV convexity Quintiles 
IV slope Quintiles IV spread Quintiles IV smirk Quintiles 

S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) 

Q1 (Low IV convexity) 0.2695 0.3063 0.2363 0.2016 0.1684 0.3326 0.2129 0.1672 0.1762 0.1476 0.3252 0.1872 0.1278 0.1145 0.1453 

Q2 0.2068 0.2391 0.1872 0.1616 0.1607 0.255 0.203 0.1335 0.112 0.1412 0.2502 0.1966 0.1132 0.1018 0.1097 

Q3 0.1452 0.1476 0.1163 0.1161 0.1479 0.2276 0.149 0.0973 0.0815 0.1015 0.2391 0.1965 0.1156 0.1004 0.1034 

Q4 0.0854 0.0903 0.1126 0.0838 0.1008 0.1935 0.1508 0.1244 0.0901 0.0569 0.2597 0.1467 0.1088 0.1084 0.062 

Q5 (High IV convexity) 0.0291 0.0991 0.0755 0.1397 0.1108 0.2124 0.1412 0.0988 0.0906 0.0143 0.2445 0.1738 0.0916 0.0869 0.0164 

Q1-Q5 0.5292 0.4877 0.3549 0.1657 0.1946 0.403 0.249 0.2022 0.2452 0.2916 0.302 0.0482 0.096 0.0722 0.2904 

 

 
 

 

  GSR 

IV convexity Quintiles 
IV slope Quintiles   IV spread Quintiles   IV smirk Quintiles 

S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) S1(Low) S2 S3 S4 S5(High) 

Q1 (Low IV convexity) 0.2804 0.3274 0.2379 0.2024 0.1699 0.3478 0.2148 0.1656 0.1752 0.1476 0.3405 0.1866 0.1277 0.1141 0.145 

Q2 0.2071 0.2391 0.1834 0.1608 0.161 0.2657 0.2021 0.1319 0.111 0.1406 0.2595 0.1949 0.1123 0.1011 0.1096 

Q3 0.1457 0.146 0.1153 0.1151 0.1471 0.2296 0.1475 0.0966 0.0808 0.1008 0.2428 0.193 0.1146 0.0995 0.1027 

Q4 0.0849 0.0895 0.1113 0.0833 0.1008 0.1942 0.1494 0.1234 0.0894 0.0566 0.2612 0.145 0.1078 0.1072 0.0617 

Q5 (High IV convexity) 0.0291 0.0987 0.0749 0.1388 0.1103 0.2122 0.1404 0.0979 0.0901 0.0143 0.2472 0.1735 0.0909 0.0864 0.0164 

Q1-Q5 0.6034 0.627 0.4378 0.1741 0.2004 0.4331 0.2575 0.1938 0.251 0.2942 0.3079 0.0485 0.0958 0.0722 0.2869 
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Table 12. Different holding period returns  

This table reports the average risk-adjusted monthly returns (using the four-factor model) of the quintile portfolios 

formed on c for holding period of two to six months. ‘Q1-Q5’ denotes a long-short arbitrage portfolio that buys a low 

convexity portfolio and sells a high convexity portfolio. The t-statistics are computed using Newey-West procedure 

to adjust the serially-correlated returns of overlapping samples.  

 

 Q1 (Low) Q2 Q3 Q4 Q5 (High) Q1-Q5 

One month 0.0132 0.005 0.0024 0.0014 -0.0003 0.012 

      [6.80] 

Two months 0.0110 0.0047 0.0024 0.0028 0.0015 0.0079 

      [6.78] 

Three months 0.0106 0.0048 0.0026 0.0028 0.0025 0.0064 

      [6.37] 

Four months 0.0101 0.0046 0.0027 0.0032 0.0033 0.0053 

      [5.92] 

Five months 0.0099 0.0043 0.0029 0.0035 0.0037 0.0046 

      [5.87] 

Six months 0.0099 0.0042 0.0030 0.0038 0.0039 0.0044 

      [5.97] 
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Figure 1. Density of a Lèvy Process 𝐗𝑻 under the Gram-Charlier Expansion  

This figure shows the impact of skewness and excess kurtosis on the shape of its probability distribution using Gram-Charlier 

expansions. The base parameter set is taken as (𝜇, 𝜎, 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝑒𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠) = (0.05, 0.3, −0.5, 1.0) where 𝜇 is mean and 

𝜎 is standard deviation.  

 

 

 

 

 

Figure 2. Shape of the Implied Volatility Curves 

This figure illustrates the effect of different values of skewness and excess kurtosis on the shape of the implied volatility curve. 

The base parameters are consistent with those of Figure 1 and (S0, 𝑇, 𝑟) = (100, 0.5, 0.05). 
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Figure 3. Higher Moments of Underlying Asset Return, IV slope and IV convexity 

This figure shows the effect of skewness and excess kurtosis of underlying asset returns on IV slope and IV convexity. The base 

parameters are consistent with those of Figure 1 and 2. We take 0.8, 1.0 and 1.2 as the moneyness (K/S) points for IV slope and IV 

convexity, respectively. 

 

 

 

 

 

 

 

 
Figure 4. Impact of  𝛒 and 𝛔𝐯 on IV slope and IV convexity in the SV Model 

This figure shows the effect of ρ and σv on IV slope and IV convexity in the SV model given by (4)-(5). The base parameter set 

(S, v0, κ, θ, σv, 𝜌, 𝑇, 𝑟, 𝑞) = (100, 0.01, 2.0, 0.01, 0.1, 0.0, 0.5, 0.0, 0.0) is taken from Heston (1993). 
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Figure 5. The Impacts of 𝛍𝐉 and 𝛔𝐉 on IV slope and IV convexity in the SVJ Model  

This figure shows the effect of μJ and σJ on IV slope and IV convexity in the SVJ model given by (6)-(7). The base parameter set 

(S, v0, κ, θ, σv, 𝜌, 𝜆, 𝜇𝐽, 𝜎𝐽 , 𝑇, 𝑟, 𝑞) = (100, 0.0942, 3.99, 0.014, 0.27, −0.79, 0.11, −0.12, 0.15, 0.5, 0.0319, 0.0)  is taken from 

Duffie, Pan and Singleton (2000). 
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Figure 6. Average IV convexity and quintile portfolio returns 

 

This figure shows the time-series behavior of the average IV convexity and returns of quintile portfolios from Jan 2000 to Dec 2013. 

Panel A plots the monthly average IV convexity of the quintile portfolios. Panel B shows the monthly average returns of the long-

short portfolios Q1-Q5.  

 

Panel A. Average IV convexity of quintile portfolios 

 
 
Panel B. Returns of Q1-Q5 

 

 


