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Abstract

Asset Pricing with Affect Investing, Gambling, and Overconfidence:
Theory and Evidence

We present a multi-asset model with three investor types: Gamblers, who derive direct

utility from large stock positions, overconfident investors, who underestimate the preci-

sion of public information (that they do not produce themselves), and affect investors,

whose attitude towards a firm’s products impacts their investment in the firm’s stock.

We consider the joint impact of these investors on trading activity, measured systematic

risk, and expected returns. We find that gambling amplifies trading volume and mit-

igates overconfidence-induced excess return co-movement and underreaction. Further,

risk-adjusted returns decrease in the strength of the affect heuristic; but this relation at-

tenuates when gambling propensity is high. Empirical evidence supports these implica-

tions.



“The game of investing is intolerably boring and over-exacting to any one who

is entirely exempt from the gambling instinct; whilst he who has it must pay to this

propensity the appropriate toll.”

–Keynes (1936)

“Perhaps the most robust finding in the psychology of judgment is that people are

overconfident”

–De Bondt and Thaler (1995)

“Another common assumption in asset pricing models is that investors are con-

cerned only with the payoffs from their portfolios; that is, investment assets are not

also consumption goods. Apparent violations are plentiful. ”

–Fama and French (2007)

1 Introduction
There is reliable evidence that financial market investors may not be characterized by

neoclassical notions of risk and reward. For instance, investors appear to treat financial

markets as gambling venues (Gao and Lin (2015)), and investment in a firm’s stock (such

as Tesla or Apple) appears to be influenced by individuals’ personal preferences for the

firm’s activities and products (Billett, Jiang, and Rego (2014)).1 In addition, investors tend

to be overconfident; indeed, Lichtenstein, Fischhoff, and Phillips (1982) discuss the perva-

siveness of the overconfidence bias. What are the joint implications of such behaviors for

financial market equilibrium? We address this question by studying a multi-asset setting

that combines these elements of investment within a unified framework. By integrating

the elements, we allow for a first treatment of the question: what does the financial mar-

ket equilibrium look like when behavioral elements are jointly considered in the same

setting, as opposed to being modeled in isolation? We also derive and empirically test the

implications of our model for the cross-section of equities.

1For more information on gambling incentives and how brand perceptions influence investment, see
Coventry and Brown (1993) and Frieder and Subrahmanyam (2005).
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In our setting, each stock’s future payoff is influenced by both a common factor and

a firm-specific component. Further, public signals are available about both systematic

and firm-specific components of cash flows. Our model consists of three types of in-

vestors. First, due to a form of overconfidence (Odean (1998) and Luo, Subrahmanyam,

and Titman (2021)), a class of investors underestimate the precision of the public sig-

nals, as they do not produce the signals themselves.2 Second, affect investors perceive a

stock to produce a non-monetary payoff beyond its actual level; the incremental payoff

varies across stocks. This notion captures the idea that the stock can evoke positive or

negative affect, which may arise from brand perceptions, loyalty (Schoenbachler, Gor-

don, and Aurand (2004); Frieder and Subrahmanyam (2005)), or societal norms (e.g.,

against “sin” companies (Geczy, Stambaugh, and Levin (2005); Hong and Kacperczyk

(2009))). Finally, gambling investors (or just “gamblers”) derive direct utility from the ab-

solute scale of their stock positions, beyond wealth maximization. This type of gambling

propensity represents a “betting-big” tendency, which reflects the idea that a large posi-

tion (either positive or negative) in a stock increases the “thrill” of gambling in financial

markets. Our perspective is supported by neuro-psychological research which shows that

the ex ante uncertainty of the reward from gambling triggers the secretion of dopamine,

a pleasure-inducing hormone (Preuschoff, Bossaerts, and Quartz (2006); Anselme and

Robinson (2007)). In our analysis, we allow the gambling propensity parameter to vary

in the cross-section.

In our model, trading is triggered because of “agreement to disagree” on the model’s

parameters (as also demonstrated by Odean (1998)). Further, gamblers act as de facto

liquidity providers, selling/buying at a low demanded premium when other investors

are on net buying/selling. This “market making” occurs because gamblers’ consumption

value arises from the scale of the position in the risky asset but not the position’s sign. We

show that gamblers’ liquidity provision amplifies trading volume in equilibrium. Our ex-

planation for high trading volume is consistent with Liu, Peng, Xiong, and Xiong (2022),

who find evidence that overconfidence and gambling are primary drivers of trading.3

2Overconfidence also involves overestimating the precision of private information signals. As this aspect
is hard to measure, we do not test its implications, but consider this case in the Internet Appendix.

3Dorn and Sengmueller (2009), Markiewicz and Weber (2013), and Gao and Lin (2015) also demonstrate
the influence of gambling on trading activity.
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While overconfidence results in underreaction to fundamentals-related variables, gam-

bling attenuates this underreaction. The reason is as follows: Overconfident investors

underestimate the precision of public signals, they willingly take the opposite side of the

rational investors’ reaction to the public signal; hence there is overtrading. Gamblers pro-

vide liquidity and help mitigate price movements caused by this extra trading. In the

cross-section, if gamblers have a stronger preference for a particular stock, they provide

more liquidity in that stock, resulting in mitigated underreaction to public information.

Overconfidence also leads to a divergence between the return beta (representing a

stock’s return co-movement with the market) and the cash flow beta; and gambling at-

tenuates this divergence as well. The intuition here is similar: overconfident investors

underestimate the precision of the signal about the common factor, and gamblers pro-

vide liquidity and mitigate the effects of overtrading due to overconfidence. In the cross-

section, if gamblers have a stronger preference for a particular stock, they provide more

liquidity in that stock, resulting in lower return co-movement with the market.

We also show that in the cross-section, risk-adjusted returns are lower when the affect

heuristic is higher; furthermore, this negative relationship attenuates when the gambling

propensity is high. To understand the intuition behind this, consider the stocks for which

investors have a high positive affect. There is high demand for such a stock, leading

to overpricing and thus lower future returns relative to other stocks. For stocks with a

higher gambling propensity, gamblers trade more aggressively, mitigating the pressures

on stock prices and risk-adjusted returns to a greater extent.

Based on our theoretical analyses, we formulate four main empirical implications:

(i) In the cross-section of stocks, turnover increases in gambling propensity.

(ii) The relative beta (i.e., the ratio of the return beta to the cash flow beta) decreases in

gambling propensity.

(iii) Underreaction to public signals attenuates to a greater extent when gambling propen-

sity is higher.

(iv) The risk-adjusted return decreases in the affect heuristic; further, this negative rela-

tionship attenuates when gambling propensity is high.
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We test these implications for U.S. equities, using empirical proxies for gambling propen-

sity and affect suggested by previous literature.4

Our gambling proxy is motivated by the work of Kumar, Page, and Spalt (2011), who

observe that there is a positive correlation between an investor’s gambling propensity

and religion (specifically, Catholics are more pre-disposed towards gambling than Protes-

tants). If investors tend to invest in local stocks (Coval and Moskowitz (1999)), then in-

vestors in firms with headquarters located in areas with a high Catholic-to-Protestant

(CP ) ratio are likely to have a high gambling propensity. Therefore, we measure gam-

bling propensity in a stock by the CP ratio in the county where the firm of the stock

is headquartered. We find that in the cross-section of stocks, turnover increases in the

CP ratio, while the relative beta decreases in this ratio. The findings remain robust after

we control for other variables including past stock performance, firm size, and book-to-

market ratio.5 This evidence supports Implications (i) and (ii). Novy-Marx (2013) finds

that firms with high gross margins generate significantly higher returns than unprofitable

firms. We find that this underreaction to profit margins decreases in the CP ratio, even

after we control for other variables including past stock performance, firm size, and book-

to-market ratio. This evidence supports Implication (iii).

Next, with regard to the affect proxy, Grullon, Kanatas, and Weston (2004) and Lou

(2014) propose that a firm’s product market advertising promotes brand visibility and

attracts investor attention. Therefore, in our cross-sectional test of stock returns, we mea-

sure the affect heuristic for a stock via the corresponding firm’s advertising spending. We

find that risk-adjusted returns (relative to CAPM and standard factor models) decrease in

advertising spending; further, this negative relationship attenuates when the CP ratio is

high. These findings remain robust after we control for various variables including past

stock performance, firm size, and book-to-market ratio. We also use portfolio analysis to

find supportive evidence. These findings support Implication (iv).

4Note that overconfidence plays a key role in Implication (ii) by causing the relative beta to diverge from
unity. The reader may wonder if proxies for overconfidence could be used to test for this divergence but we
were unable to identify effective overconfidence proxies in the cross-section that are not also endogenous
(e.g., trading volume, as analyzed in Odean (1998)).

5In the regression analysis for turnover, we also control for firm age, leverage, earnings volatility, the
number of analysts following the firm, and analyst forecast dispersion. For relative beta, we control for
operating leverage.
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There are other models of investors’ gambling incentives based on misperceptions of

probabilities to generate a preference for lottery-type stocks, characterized by positively

skewed returns. For example, Barberis and Huang (2008) show that if investors over-

weight small probabilities, the cumulative prospect theory of Tversky and Kahneman

(1992) can generate a preference for lottery stocks. Bordalo, Gennaioli, and Shleifer (2012)

demonstrate that investors may exaggerate the probability of salient (e.g., extreme) pay-

offs, leading to a preference for lottery stocks.

We explore a different dimension of gambling propensity, specifically the “betting-

big” tendency, which arises from the “thrill” of gambling in financial markets. That indi-

viduals may derive direct utility from gambling is well-documented in psychology (see,

e.g., Kuley and Jacobs (1988)). Black (1986) argues for the inclusion of “direct utility of

trading” (p. 531) in financial market models to account for the higher trading volume

observed in real-world markets compared to that predicted by rational portfolio rebal-

ancing.6 Our analysis shows that, consistent with Black’s conjecture, the betting-big pref-

erence amplifies trading activity driven by heterogeneous beliefs, such as overconfidence,

as demonstrated by Odean (1998). As such, we provide a rationale for the generally high

volume in speculative markets (Hong and Stein (2007)).

Liu, Peng, Xiong, and Xiong (2022) provide evidence indicating that retail investors’

turnover is significantly correlated with their responses to a survey question on “block-

busters,” which reads as follows: “When I trade stocks, I aim to select those stocks whose

price would rise sharply in a short period of time so that I can make a lot of money

quickly.” It is plausible that investors’ responses to the “blockbusters” question are re-

lated to their “betting-big” preference, which extends to large total positions in a given

stock, the value of which would also “rise sharply” in dollar terms as prices rise. Our

model implies such a preference amplifies trading, and therefore accords with the ar-

guments of Liu, Peng, Xiong, and Xiong (2022). In other related work, Grinblatt and

Keloharju (2009) provide evidence that sensation seeking and turnover are correlated at-

6Other biases are discussed in Tversky and Kahneman (1974). Investors’ naı̈ve extrapolation from past
outcomes, as shown in important survey-based work by Greenwood and Shleifer (2014), or failing to con-
dition on market prices (Hong and Stein (1999); Eyster, Rabin, and Vayanos (2019)) are other well-studied
biases in the literature. For parsimony, we focus on overconfidence, and understudied phenomena based
on the affect heuristic and a gambling propensity.
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tributes across investors. Dorn and Sengmueller (2009) show that investors who enjoy

trading (as evidenced in a survey response) exhibit greater share turnover.

Components of our theory have been discussed in previous studies, although not in

the same place. For instance, Daniel, Hirshleifer, and Subrahmanyam (1998) study the

link between overconfidence and return patterns. Nagy and Obenberger (1994) find that

an important reason for stock investment is an individual’s feelings for a firm’s prod-

ucts and services. Keloharju, Knüpfer, and Linnainmaa (2012) empirically connect stock-

holdings with product usage and argue that a “setup in which customer-investors regard

stocks as consumption goods, not just as investments, seems to best explain [their] re-

sults.” Friedman and Heinle (2016) explore investors’ preferences for particular types

of stocks, using the affect heuristic (see also Luo and Subrahmanyam (2019a)). Luo and

Subrahmanyam (2019b) introduce the idea that investors derive direct utility from the

magnitude of their unsigned positions.

There also are alternative theoretical approaches that depart from neoclassical mod-

els with rational investors. For instance, Grinblatt and Han (2005) and Da, Gurun, and

Warachka (2014) present rationales for underreaction and momentum via the disposition

effect, and the idea that investors pay less attention to news that arrives gradually, as

opposed to discrete chunks. Bordalo, Gennaioli, Ma, and Shleifer (2020) show that mo-

mentum obtains under extrapolative expectations. Puri (2018) states that the complexity

of an asset’s payoff function dictates its desirability to an investor. While most previous

papers, including the preceding ones, examine one behavioral aspect at a time, our con-

tribution is to combine the elements of gambling, affect investing, and overconfidence to

provide new insights on trading activity and asset pricing. Furthermore, we demonstrate

that key implications of our theory are supported by empirical evidence.

The rest of this paper is organized as follows. In Section 2, we describe the setting of

our model. In Section 3, we derive and analyze the equilibrium. In Section 4, we test the

predictions of our model using empirical analysis. Section 5 concludes.
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2 The Model
We next present the structure of our model, which consists of two dates, 0 and 1. A contin-

uum of investors with mass unity trade at Date 0, and consume at Date 1. Each investor

is an atomistic price-taker. There are three types of investors indexed by κ (overconfident

investors), A (affect investors), and G (gamblers). The three types have masses of ηκ, ηA,

and ηG, respectively, where the η’s are positive constants that sum to one.

Assets and Information: There are J stocks. At Date 1, the j’th (j = 1, ..., J) stock pays a

liquidating cash flow of

Vj = V̄j + ℓjF + θj, (1)

where V̄j is a positive constant denoting the unconditional mean, ℓj is a constant parame-

ter denoting the loading on a common factor F , and θj denotes the firm-specific cash flow.

The random variables F and θj follow independent normal distributions with a mean of

zero. Throughout the paper, we assume that the variance of a generic random variable χ

is given by a constant νχ, unless otherwise specified. For simplicity, we assume that the

per capita supply of each stock is unity, as a normalization. There is also a risk-free asset

with a constant gross rate of return Rf > 1.

At Date 0, a public signal about the common factor, τ = F + ζ , is released, where the

noise term ζ is drawn from a normal distribution with mean zero and variance νζ . Also, a

public signal about the j’th stock’s firm-specific cash flow, sj = θj + ϵj , is released, where

the noise term ϵj is drawn from a normal distribution with zero mean and variance νϵj .

Overconfidence: As in Odean (1998) and Luo, Subrahmanyam, and Titman (2021), we

assume that overconfident investors are skeptical about the quality of information they do

not produce themselves. Specifically, overconfident investors are overly attached to their

prior cash flow expectation relative to a rational Bayesian, so that they underestimate the

precision of public information. Thus, in assessing the public signal about the common

factor, τ = F + ζ , they believe that ζ has a larger variance ρνζ than the actual variance

νζ , where ρ > 1 is a constant parameter representing the scale of the overconfident bias.

Denote the unbiased (skeptical) belief about the variance of τ as ντ = νF + νζ (κτ =

νF + ρνζ). Overconfident investors also underestimate the precision of the public signal

about the firm-specific cash flow, sj = θj + ϵj , in that they believe that ϵj has a larger
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variance ρνϵj than the actual variance νϵj . Denote the unbiased (skeptical) belief about the

variance of sj as νsj = νθj + νϵj (κsj = νθj + ρνϵj ).
7

The i’th overconfident investor has a standard exponential utility function given by:

U(Wi1) = −exp(−γWi1),

where Wi1 is the wealth at Date 1 and γ is a positive constant representing the absolute

risk-aversion coefficient.

Affect Investors: Affect investors hold unbiased beliefs about the variances νζ and νϵj .

The i’th affect investor also has a standard exponential utility function with a risk aversion

parameter γ. As in Friedman and Heinle (2016), affect investors perceive that the j’th

stock produces an extra non-monetary payoff Aj beyond the actual level Vj . This reflects

the idea that the stock evokes positive or negative emotions. This affect heuristic can

arise from brand perceptions and loyalty (Schoenbachler, Gordon, and Aurand (2004);

Frieder and Subrahmanyam (2005)) and from societal norms against “sin” companies

such as alcohol, tobacco, and gaming companies (Geczy, Stambaugh, and Levin (2005);

Hong and Kacperczyk (2009)). In this setting, Aj denotes the strength and direction of the

affect heuristic. If Aj is positive (negative), then affect investors have a positive (negative)

emotional attachment to the stock.

Let Xij denote the position of the i’th affect investor in the j’th stock, and let Wi1 de-

note their wealth at Date 1. Then, the i’th affect investor’s utility function is the following:

U(WA
i1) = −exp(−γWA

i1),

where

WA
i1 ≡ Wi1 +

J∑
j=1

(XijAj).

Gamblers: These investors have unbiased beliefs about the variances νζ and νϵj , but ob-

tain direct consumption benefits from their stockholdings. Specifically, the i’th gambler

7In the Internet Appendix, we consider a setting with the traditional form of overconfidence (i.e., the
informed investors over-assess the precision of an additional private signal they receive, as in Daniel, Hir-
shleifer, and Subrahmanyam (1998)). While this model does not permit an analytic solution, we show that
our main results still hold. Further, our reasoning also applies when the uninformed underassess the preci-
sion of information signals, or fail to condition on market prices (Hong and Stein (1999), Eyster, Rabin, and
Vayanos (2019)). However, such models are also complex and have no analytic solutions.
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has the following utility function:

UG(Wi1, Xi) = −exp[−γWi1 − CG(Xi)],

where CG(Xi) is the extra benefit of holding stocks derived from non-wealth-related con-

siderations. We define CG(Xi) as follows:

CG(Xi) = 0.5
J∑

j=1

(
GjX

2
ij

)
,

where Gj is a positive constant representing investors’ gambling propensity in the j’th

stock, and Xij denotes investor i’s holdings in the j’th stock.

Thus, in the above specification, we model the idea that increasing the scale of the

stock position increases the excitement derived from gambling in financial markets (Dorn

and Sengmueller (2009)).8 Based on this notion, the greater the holdings (in absolute

terms), the higher the utility derived from investing. Therefore, we can think of this type

of gambling propensity as a “betting-big” preference. Note that if Gj is high relative

to γ (risk aversion), the investor, in effect, becomes a risk seeker, so there is no interior

optimum for risky asset positions. We assume that the gambling propensity Gj is at a

moderate level, so that there is indeed an interior optimum for the investor’s demand for

the j’th stock.9 It is worth observing that gamblers derive utility from the size, but not the

sign, of their position. Therefore, they are willing to absorb the opposite side of the net

position from other investors at ever lower premia as Gj increases. This activity is what

we term de facto liquidity provision.

We will use the following vector and matrix notations:

• The mean cash flows V̄ , the loadings ℓ, and the firm-specific cash flows θ and its

8In a survey of retail investors, Dhar and Goetzmann (2006) report that more than 25% of investors
view stock market investing as a hobby. Grinblatt and Keloharju (2009) provide empirical evidence that
sensation-seeking personalities (e.g., those who get speeding citations) may get a thrill from the act of
trading.

9In our model, investors are afflicted with either a gambling motive, or overconfidence, or an affect
heuristic, but the same investor does not possess more than one of these attributes. This assumption is for
tractability, and we believe the thrust of our intuition would go through under alternative models where
some affect investors are also overconfident gamblers, for example.
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variance-covariance matrix νθ are denoted in vector and matrix notations as:

V̄ =


V̄1
V̄2
...
V̄J

 , ℓ =


ℓ1
ℓ2
...
ℓJ

 , θ =


θ1
θ2
...
θJ

 , and νθ =


νθ1 0 · · · 0
0 νθ2 · · · 0
...

... . . . ...
0 0 · · · νθJ

 .

• The information signal vector s and its variance-covariance matrix based on unbi-

ased (skeptical) beliefs, νs (κs), are denoted as:

s =


s1
s2
...
sJ

 , νs =


νs1 0 · · · 0
0 νs2 · · · 0
...

... . . . ...
0 0 · · · νsJ

 , and κs =


κs1 0 · · · 0
0 κs2 · · · 0
...

... . . . ...
0 0 · · · κsJ

 . (2)

• The prices P , supplies 1, and the i’th investor’s demands Xi are denoted as:

P =


P1

P2
...
PJ

 , 1 =


1
1
...
1

 , and Xi =


Xi1

Xi2
...

XiJ

 .

• The affect parameters A and gambling propensity G are denoted as

A =


A1

A2
...
AJ

 and G =


G1 0 · · · 0
0 G2 · · · 0
...

... . . . ...
0 0 · · · GJ

 .

The cash flow can be expressed in vector form as V = V̄ +ℓF+θ. Affect investors perceive

the payoffs to be A+ V . The direct utility of the i’th gambler from the risky asset position

is denoted by CG(Xi) = 0.5X ′
iGXi.

3 The Equilibrium
In this section, we determine the equilibrium of the setting described in Section 2. All

proofs, unless otherwise stated, are in Appendix A. Define the following parameters:

∆ ≡ νF
κτ

− νF
ντ
, κF |τ ≡ νF − ν2F

κτ
, and νF |τ ≡ νF − ν2F

ντ
;

Ω ≡ νθκ
−1
s − νθν

−1
s , κθ|s ≡ νθ − ν2θκ

−1
s , and νθ|s ≡ νθ − ν2θν

−1
s ,

ϕκ ≡ ℓℓ′κF |τ + κθ|s, ϕ ≡ ℓℓ′νF |τ + νθ|s, ϕG ≡ ϕ−G/γ2, and

Φ ≡ ηκϕ
−1
κ + ηAϕ

−1 + ηGϕ
−1
G . (3)
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We have the following result:

Theorem 1 In equilibrium:

(i) Prices are given by:

P =
1

Rf

[
V̄ + ℓ

νF
ντ
τ + νθν

−1
s s+ Φ−1

[
ηκϕ

−1
κ (ℓ∆τ + Ωs) + ηAϕ

−1A− γ1
]]
.

(ii) Each overconfident and affect investor’s, and each gambler’s, demands for a stock are respec-

tively given by:

Xκ =
ϕ−1
κ

γ

(
V̄ + ℓ

νF
κτ
τ + νθκ

−1
s s− PRf

)
,

XA =
ϕ−1

γ

(
A+ V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
,

XG =
ϕ−1
G

γ

(
V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
.

The term V̄ + ℓ
νF
ντ
τ + νθν

−1
s s in the equilibrium price vector P represents the unbiased

expectation of the final payoff V conditional on the public signals τ and s. The remaining

terms reflect investors’ behavior that goes beyond risk-reward considerations. Essentially

a positive A (positive affect) implies a high mean price and vice-versa, whereas overcon-

fidence causes underweighting of the information signals in the realized price. Finally,

a high G lowers the premia demanded by gamblers to absorb the trades of the other in-

vestors, which mitigates the effect of biases on market prices. Thus, prices are the result

of affect, gambling, and overconfidence interacting with each other.

However, the setting generally precludes analyzing the model in closed form. There-

fore, in what follows, we first study a special case, where we are able to examine the

equilibrium analytically; this allows us to obtain clear intuitions about the equilibrium.

We then numerically examine the general case, and verify these intuitions.

3.1 A simple case with a closed-form solution

We consider a simple economy where firm-specific payoff variances are identical in the

cross-section of stocks (i.e., ∀j νθj = ν), and signals about the firm-specific component θj ,

sj , are uninformative (i.e., ∀j νϵj → ∞). We then obtain the following Theorem:
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Theorem 2 In the simplified economy where firm-specific payoff variances are identical across

firms, and there are no information signals about firm-specific payoffs, the following results hold:

(i) The equilibrium prices are given by:

P =
1

Rf

[
V̄ + ℓ

νF
ντ
τ + Φ−1

(
ηκϕ

−1
κ ℓ∆τ + ηAϕ

−1A− γ1
)]
.

(ii) The demands of each overconfident and affect investor, and each gambler, are respectively

given by:

Xκ =
ϕ−1
κ

γ

(
V̄ + ℓ

νF
κτ
τ − PRf

)
, XA =

ϕ−1

γ

(
A+ V̄ + ℓ

νF
ντ
τ − PRf

)
,

and XG =
ϕ−1
G

γ

(
V̄ + ℓ

νF
ντ
τ − PRf

)
.

Since the signal about the firm-specific payoff θj , sj , is not informative in the simple

economy, the prices and demands for stocks do not depend on sj as in the general case

(see Theorem 1). The compensation for risk is represented by the term associated with

γ1 in the price vector P . The other terms in P , which are related to the masses of over-

confident and affect investors, and gamblers (ηκ, ηA, and ηG, respectively) directly and/or

through Φ, are the result of their trading behaviors grounded in overconfidence, or other

nontraditional ways of defining utility and beliefs.

Overconfident investors underestimate the precision of the signal τ (i.e., ρ > 1 and

therefore κτ > ντ ). This underreaction is reflected in the term ∆ < 0 in the price vector

P . Affect investors obtain an additional component A in their payoff, and their demand

for a given stock increases if the affect parameter Aj for that stock (i.e., the j’th element

of the vector A) is higher. This tendency of affect investors to demand more of a stock

with a higher Aj value contributes to a higher equilibrium price for that stock on aver-

age. Finally, gamblers help mitigate deviations of stock prices from their fundamental

values. The influence of gamblers on stock prices is captured by the term Φ in the pricing

equation.

We proceed below to analyze the influence of investors on turnover, the co-movement

of stock returns with the market, and the risk-adjusted return. In the remainder of this

section, we assume that we are in the economy described within Theorem 2. We fur-

ther make a technical assumption that in this simple economy, the factor payoff exhibits
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sufficiently lower volatility compared to the firm-specific payoff (i.e., ν−1
F ν is sufficiently

high). This assumption further allows us to conduct an analytical examination of the

equilibrium.

3.1.1 Turnover

We first consider stock turnover. Theorem 2 shows that each overconfident and affect

investor’s and gambler’s, demand for the j’th stock, denoted by Xκj , XAj , and XGj , re-

spectively, are simply the j’th elements of the vectors Xκ, XA, and XG. Let 1j be a J × 1

vector where the j’th element equals 1 and the other elements equal 0. Using Theorem 2,

we can write:

Xκj = 1′
jXκ, XAj = 1′

jXA, and XGj = 1′
jXG.

Suppose that each of the three investor types respectively starts with an endowment of

Yκj , YAj , and YGj shares of the stock. The expected turnover of the j’th stock is given by

half of the sum of the absolute differences between each type of investor’s demand for

that stock and their initial endowment:

E(Tj) = 0.5 [ηκE (|Xκj − Yκj|) + ηAE (|XAj − YAj|) + ηGE (|XGj − YGj|)] . (4)

Note that our static setting can be interpreted as the reduced-form of a steady-state

setting, where investors begin Date 0 with positions equal to the ex-ante means of their

demands (i.e., ∀j Yκj = E(Xκj), YAj = E(XAj), and YGj = E(XGj)) as a result of prior re-

balancing. As new information arrives, trading occurs. Specifically, the expected turnover

of the j’th stock takes the following form:

E(T ∗
j ) = 0.5

[
ηκE (|Xκj − E(Xκj)|) + ηAE (|XAj − E(XAj)|) + ηGE (|XGj − E(XGj)|)

]
. (5)

We obtain the following result:

Proposition 1 Suppose that investors begin with positions that are equal to the ex-ante means of

their demands (i.e., ∀j Yκj = E(Xκj), YAj = E(XAj), and YGj = E(XGj)).

(i) If there is no overconfidence (i.e., ρ = 1), then the expected turnover E(T ∗
j ) = 0.

(ii) With overconfidence (ρ > 1), the expected turnoverE(T ∗
j ) increases in the gambling propen-

sity Gj (assuming ℓj ̸= 0) with the cross-section. E(T ∗
j ) also increases in the overconfidence

parameter ρ, and decreases in the risk-aversion parameter γ.
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In the proof of Proposition 1, we derive the following equations for the trades of over-

confident investors, affect investors, and gamblers:

Xκj − E(Xκj) = ψκj∆τ, XAj − E(XAj) = ψAj∆τ and XGj − E(XGj) = ψGj∆τ,

where the ψ’s are constant parameters. The affect parameter Aj does not affect trade. The

reason for this is that affect investors overbuy or oversell depending on the level of the

constant Aj . This affects the mean position E(Xj). However, if investors start at the mean

position, Aj does not induce any further trading.

Note that trade is triggered by the overconfidence bias (see also Odean (1998)). Specif-

ically, if overconfident investors assess the precision of the signal τ properly (i.e., if ρ = 1),

then ∆ = 0. Thus, without overconfidence, even if there is affect investing and gambling,

there is no trade. However, if overconfident investors underestimate the precision of the

signal τ (i.e., if ρ > 1), then ∆ < 0; trade occurs. In this case, overconfident investors

perceive that a good (bad) signal τ is not that good (bad), and the resulting high (low)

stock prices cannot be justified; therefore, they sell (buy). In the cross-section, if a stock

has a higher gambling propensity Gj , gamblers buy (sell) more aggressively, amplifying

trading activity.

If overconfident investors underestimate the precision of the signal τ to a greater ex-

tent (i.e., with a higher ρ), they sell (buy) based on τ to a greater extent. This further

intensifies trading activity. If investors are more risk-averse (i.e., with a higher γ), then

investors trade more conservatively; in this case, trading activity is subdued.

Of course, investors can start with positions that are not identical to the ex ante means

of their demands. In this case, we define λXY,j as endowment-driven trade, which repre-

sents the deviation of endowment Yj from the ex ante mean E(Xj); specifically:

λXY,j = 0.5
[
ηκ (|E(Xκj)− Yκj|) + ηA (|E(XAj)− YAj|) + ηG (|E(XGj)− YGj|)

]
.

It is straightforward to show that the expected turnover in Equation (4)

E(Tj) ∈
[
E(T ∗

j )− λXY,j, E(T
∗
j ) + λXY,j

]
;

this means that E(T ∗
j ) (the component of expected turnover due to information alone),

represents the mid-point between the lower and upper bounds of E(Tj). We are not able
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to further analyze the expected turnover E(Tj) in closed from; we investigate it through

numerical study in Section 3.2.

3.1.2 Return co-movement with the market

Using Theorem 2, we can express the j’th stock’s excess return (i.e., the return above the

risk-free interest rate) as follows:10

rj = 1′
j(V − PRf ) = ℓj

(
F − νF

ντ
τ

)
+ θj − 1′

jΦ
−1
(
ηκϕ

−1
κ ℓ∆τ + ηAϕ

−1A− γ1
)
. (6)

We represent the market excess return using the cross-sectional average of stock returns:

rM =
1

J
1′(V − PRf ) = ℓM

(
F − νF

ντ
τ

)
+ θM −ΨM ×∆τ − AM + γΣM , (7)

where

ℓM =
1

J
1′ℓ, θM =

1

J
1′θ, ΨM =

1

J
1′Φ−1ηκϕ

−1
κ ℓ,

AM =
1

J
1′Φ−1ηAϕ

−1A, and ΣM =
1

J
1′Φ−11. (8)

We assume that the loading of the market portfolio on the common factor equals 1, i.e.:

ℓM = 1. From Equation (7), the market excess return can then be expressed as:

rM = F − νF
ντ
τ + θM −ΨM ×∆τ − AM + γΣM . (9)

As the market portfolio represents the factor, we interpret the loading of the j’th

stock’s cash flow on the common factor F , ℓj (see Equation (1)), as the cash flow beta.

The co-movement of the stock with the market return is measured by the return beta:

βjM =
Cov(rj, rM)

Var(rM)
. (10)

We scale the return beta by the cash flow beta and the resulting “relative beta” is βjM/ℓj .

We obtain the following result:

Proposition 2 (i) For a sufficiently large number of securities (J), if there is no overconfidence

bias (i.e., ρ = 1), then the relative beta βjM/ℓj = 1.

10As is standard in exponential-normal settings, we measure the return via the price change (viz. Hong
and Stein (1999)).
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(ii) If there is overconfidence bias (i.e., ρ > 1), then in the cross-section of stocks, the relative beta

βjM/ℓj decreases in the gambling propensity Gj (assuming that the cross-sectional average

factor loading, ℓj , is positive).

The intuition for Part (i) of Proposition 2 is as follows. If the number of stocks, J , is suf-

ficiently high, then θM → 0 due to the diversification effect. In this case, if overconfident

investors assess the precision of the signal factor τ properly (i.e., ρ = 1) and condition

their trades on it, then stock prices respond to τ in a way that precisely reflects the infor-

mation conveyed by the signal. Consistent with this intuition, ∆ = 0 in the expressions of

rj and rM in Equations (6) and (9). This implies that without overconfidence, and when

the number of securities J is large, a stock return’s co-movement with the market depends

almost completely on its cash flow loading ℓj .

If overconfident investors underestimate the precision of the signal τ (i.e., ρ > 1), then

∆ < 0, and therefore, βjM ̸= ℓj ; in this case, there is a divergence between the return

beta and the cash flow beta. Part (ii) of Proposition 2 describes how gamblers affect this

divergence.11 The intuition is as follows: Suppose the information signal τ is positive.

Since overconfident investors underestimate the precision of τ , they underreact to the in-

formation, leading to a market-wide price underreaction followed by a subsequent price

continuation, as reflected in the term −ΨM ×∆τ > 0 within the expression of rM in Equa-

tion (9) (note that ∆ < 0, and we show ΨM > 0 in the proof of Proposition 2). When stock

prices are below their fundamental levels due to overconfident investors underreacting

to the information, gamblers buy stocks in equilibrium. If a stock consists of investors

with a higher Gj , gamblers buy aggressively and cause an increase in the stock’s price

to a larger extent, resulting in a diminished level of the subsequent price continuation

and return co-movement with the market; this implies an even smaller relative beta (that

tends towards zero). A similar argument holds for negative signals.

Noting that the divergence between the return beta βjM and the cash flow beta ℓj

arises from stock price underreaction due to the overconfidence bias, we conjecture that

11 It is also notable from Equations (6), (9), and (10) that the affect parameter Aj does not affect βjM . The
reason is that βjM captures the return co-movement between rj and rM that is driven by the information
about the common factor F , τ . The affect parameter Aj decreases the mean level of rj , but does not affect
its sensitivity to τ .
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if overconfident investors underestimate the precision of the signal τ to a greater extent

(i.e., a higher ρ), then there should be a greater deviation of βjM from ℓj . If investors are

more risk averse (i.e., have a higher γ), then overconfident investors are more conserva-

tive in their trading based on τ ; this leads to a lesser deviation of βjM from ℓj . On the

other hand, affect investors and gamblers are more conservative in providing liquidity to

overconfident investors, correcting mispricing due to the overconfident bias; this leaves

a greater deviation βjM from ℓj . We are not able to examine the net effect of risk aversion

analytically; therefore, we investigate this effect through numerical study in Section 3.2.

3.1.3 Underreaction to public information

Consider a public signal regarding the j’th stock:

Sj = µsj + (1− µ)τ, (11)

where µ ∈ (0, 1] is a constant parameter. This public signal has two components. The first

component is related to the firm-specific signal sj . The second component is related to

the signal about the common factor, τ . This hybrid-type of public signal accounts for the

fact that such signals would typically contain information about both the common and

firm-specific components of value. Note that in the simple economy considered here, sj

is assumed to be uninformative; we will allow sj to be informative in the numerical study

in Section 3.2.

We use Equations (6) and (11) to compute Cov(rj, Sj), which we use to measure post-

information returns.12

Proposition 3 There is underreaction to the public signal (Cov(rj, Sj) > 0) if and only if there

is an overconfidence bias (i.e., ρ > 1). Further, in the cross-section of stocks, Cov(rj, Sj) decreases

in the gambling propensity Gj (assuming that ℓj is positive).

If overconfident investors assess the precision of the signal factor τ properly (i.e., ρ =

1) and condition their trades on it, then stock prices respond to the signal, Sj = µsj +(1−

µ)τ (note that sj is assumed to be uninformative here), in a way that precisely reflects the

12Luo, Subrahmanyam, and Titman (2021) show that this covariance can be interpreted as the return on
a long-short portfolio formed based on Sj .
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information conveyed by the announcement. This implies that without overconfidence,

there is no misreaction to the signal.

If overconfident investors underestimate the precision of the signal τ (i.e., ρ > 1), then

∆ < 0, and therefore, Cov(rj, Sj) > 0; in this case, there is underreaction. Proposition 3

describes how gamblers affect this underreaction.13 The intuition is as follows: Suppose

the information signal τ is positive; this implies that the announcement Sj = µsj+(1−µ)τ

is also likely to be positive. Since overconfident investors underestimate the precision

of τ , they underreact to the information. This implies that they are willing to take the

opposite side of the rational investors’ positions, thus creating additional volume. If a

stock consists of investors with a higher Gj , gamblers provide more liquidity, resulting in

a diminished effect of underreaction on prices.

3.1.4 The risk-adjusted expected return

From Equations (6) and (9), we can express the expected excess returns of the j’th stock

and the market as follows:

E(rj) = 1′
jΦ

−1
(
γ1− ηAϕ

−1A
)

and E(rM) = γΣM − AM . (12)

The expected return of the stock adjusted for beta is:

αj = E(rj)− βjME(rM), (13)

where βjM is computed in Equation (10).14 We obtain the following result:

Proposition 4 (i) If overconfidence, affect investing, and gambling are absent (i.e., ρ = 1 and

∀j Aj = Gj = 0), then the risk-adjusted expected return αj = 0.

(ii) If overconfidence, affect investing, and gambling are present (i.e., ρ > 1 and ∃j such that

Aj ̸= 0 and Gj > 0), then in the cross-section of stocks, the derivative of αj with respect to

the affect parameter Aj is negative. The absolute magnitude of this derivative

(a) decreases in the gambling propensity Gj , and

13For a similar reason as described in Footnote 11, the affect parameter Aj does not affect the drift measure
Cov(rj , Sj) > 0.

14For convenience, our model assumes only one risk factor. However, the model can be easily extended
to include multiple risk factors using the technique in Luo, Subrahmanyam, and Titman (2021).
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(b) increases in the risk-aversion parameter γ.

Proposition 4 shows that in the benchmark case where all investors are rational (specif-

ically, when there is no overconfidence bias, affect investing, or gambling), the risk-

adjusted expected return αj equals zero. However, with overconfidence bias, affect in-

vesting, and gambling, αj ̸= 0 and depends on the affect and gambling parameters, Aj

and Gj . To provide further insight, consider stocks with a relatively high affect parameter

Aj . Affect investors have an abnormally high demand for such stocks, causing them to

become overpriced compared to others. This leads to a low risk-adjusted expected return

αj . In contrast, for higher Gj , gamblers mitigate the rise in the stock price Pj as well as

the decrease in αj . A reverse intuition holds for negative Aj .

If investors are more risk averse (i.e., with a higher γ), then both gamblers and over-

confident investors are more conservative in their trading against affect investors, cor-

recting the mispricing due to affect investing. In this case, affect investing has a more

pronounced (negative) effect on the risk-adjusted return αj .

3.2 The general case: Numerical illustration

In this section, we move away from the special case of the previous section, which means

we lose analytical solutions. We therefore examine the general case using numerical

study. We use this study to verify the implications of the equilibrium, which we have

obtained using the special case, for turnover, stock return co-movement with the market,

the post-public-announcement drift, and risk-adjusted expected returns.

3.2.1 Turnover

We can use Theorem 1 to obtain the demand for the j’th stock by each overconfident and

affect investor, and gambler, denoted by Xκj , XAj , and XGj , respectively, which are the

j’th elements of the vectors Xκ, XA, and XG. We can then use Equation (4) to compute the

expected turnover of the j’th stock.

We consider an economy with J = 200 stocks, where the Gj values are evenly dis-

tributed on the support [0, 1], and the Aj values are evenly distributed on the support

[−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1,

νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF/2. The overconfidence parameter ρ
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takes values from 1 to 9.15 Figure 1 plots the expected turnover E(Tj) for each stock

as a function of gambling propensity Gj , for different values of overconfident investors’

overconfidence ρ ranging from 1 to 9.16 As in Proposition 1, we assume here that each

type of investors’ endowments equal the ex ante means of their optimal demands (i.e., ∀j

Yκj = E(Xκj), YAj = E(XAj), and YGj = E(XGj)); in this case, the turnover is not affected

by the affect parameter Aj .

Figure 1 supports findings from the previous analysis (see Section 3.1.1 and Propo-

sition 1). Specifically, when overconfident investors correctly assess the precision of the

signals (i.e., ρ = 1), no trading occurs. Conversely, if they underestimate the precision of

the signals (i.e., ρ > 1), trading does occur, and an increase in the gambling propensity Gj

leads to an increase in E(Tj). Additionally, an increase in the overconfidence parameter ρ

results in an increase in the expected turnover E(Tj).

Our analysis also suggests that both the overconfidence bias and gambling play dis-

tinct roles in trading activity. Specifically, the overconfidence bias triggers trading, while

gambling amplifies it. This implication is consistent with the findings of Liu, Peng, Xiong,

and Xiong (2022), which suggest that overconfidence in having an information advantage

and a preference for gambling are the primary drivers of trading.

Figure 2 displays the expected turnover E(Tj) for each stock as a function of gambling

propensity Gj , when investors’ risk aversion γ varies from 2 to 2.5 (fixing ρ = 9). Consis-

tent with the previous analysis (see Proposition 1), as γ increases, the expected turnover

E(Tj) decreases. Additionally, in line with the results from Figure 1, an increase in the

gambling propensity Gj leads to an increase in E(Tj) in the cross-section of stocks.

If, unlike in Proposition 1, each type of investors’ endowments do not equal the ex ante

means of their optimal demands, then in the cross-section of stocks, turnover can also

depend on the affect parameter Aj . In Figure 3, we consider two other scenarios of en-

dowments. In Panel A, we assume that each investor’s endowment equals the per capita

15Our value for risk aversion, γ = 2, is the same as that used in Leland (1992) and Holden and Sub-
rahmanyam (2002). We assume a significant mass of each type of investor, with ηκ = 0.5, ηA = 0.2, and
ηG = 0.3. The values of ℓj = 1 and νθj = 1 for all j are normalization constants. We choose νF = 0.01 (with
SD(F ) = 0.1), so that the common factor is less volatile than the firm-specific cash flow. We set νϵj = νθj/2
and νζ = νF /2 to indicate a significant magnitude of noise in the signals sj and τ . Our results are generally
robust to different parameter values.

16This range is consistent with that of Odean (1998) (pp. 1909–10).
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supply (i.e., ∀j, Yκj = YAj = YGj = 1), and in Panel B, investor endowments are identically

zero (i.e., ∀j, Yκj = YAj = YGj = 0). We plot the expected turnover E(Tj) for each stock

as a function of the gambling propensity Gj and the affect parameter Aj . It is notable

that the cross-sectional relationship between E(Tj) and Aj is non-monotonic; E(Tj) is

higher for stocks with extreme positive/negative values of Aj . In other words, investors

with strong positive/negative affect toward these stocks tend to trade them more actively.

This heightened response drives them to buy or sell more intensely to reach their optimal

holdings, intensifying trading activity. The relationship between gambling and turnover

also remains consistent with the previous analysis. Specifically, in the cross-section of

stocks, the expected turnover E(Tj) increases as gambling propensity Gj increases.

3.2.2 Return co-movement with the market

Using Theorem 1, we can express for the general case the realized excess returns of the

j’th stock and the market as

rj = 1′
j(V − PRf ) and rM =

1

J
1′(V − PRf ), (14)

where

V − PRf = ℓ

(
F − νF

ντ
τ

)
+ θ − νθν

−1
s s− Φ−1

[
ηκϕ

−1
κ (ℓ∆τ + Ωs) + ηAϕ

−1A− γ1
]
.

We can compute for the stock βjM =
Cov(rj, rM)

Var(rM)
.

Figure 4 depicts the relative beta βjM/ℓj for each stock as a function of gambling

propensityGj , for different levels of overconfidence (ρ). In line with our previous analysis

(Proposition 2), when overconfident investors assess the precision of the signals properly

(i.e., ρ = 1), we observe βjM/ℓj = 1, indicating a perfect alignment between the return

beta βjM and the cash flow beta ℓj . However, if overconfident investors underestimate

the precision of the signals (e.g., ρ = 9), a discrepancy arises between βjM and ℓj . Specif-

ically, in the cross-section of stocks, we observe that βjM/ℓj decreases as Gj increases,

which accords with Proposition 2. It is also worth noting from Figure 4 that as overconfi-

dent investors underestimate the precision of the signals to a greater extent (i.e., a higher

ρ), a greater discrepancy arises between βjM and ℓj . This result aligns with the reasoning

in Proposition 2 that the discrepancy is a consequence of stock price underreaction due to

overconfidence.
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Figure 5 depicts the relative beta βjM/ℓj for each stock as a function of gambling

propensity Gj , when investors’ risk aversion (indicated by the parameter γ) varies. Con-

sistent with Figure 4, as Gj increases, βjM/ℓj decreases. Note that as investors become

more risk averse (i.e., as γ increases), the discrepancy between βjM and ℓj diminishes. Ac-

cording to the previous analysis (see also the discussion following Proposition 2), a higher

level of risk aversion has two effects. On the one hand, overconfident investors are more

cautious in their trading. This increased caution leads to reduced stock price undereac-

tion and, consequently, a decreased disparity between βjM and ℓj . On the other hand,

affect investors and gamblers are more cautions in providing liquidity to overconfident

investors, correcting mispricing due to the overconfident bias; this leaves an increased

disparity between βjM and ℓj . Our numerical study indicates that the first effect domi-

nates.

3.2.3 Underreaction to public signals

Recall that the public signal for the j’th stock (see Equation (11)) takes the following form:

Sj = µsj + (1− µ)τ,

where µ ∈ (0, 1] is a constant parameter. We can use rj given in Equation (14) to compute

the measure Cov(rj, Sj).

Figure 6 plots the underreaction measure, Cov(rj, Sj), for each stock as a function of

the gambling propensity Gj , for different levels of the overconfidence bias (ρ). We set

µ = 0.8 (our results are robust to different values of µ); the other parameters are the same

as those used in the earlier figures. Confirming our previous analysis (Proposition 3),

when overconfident investors assess the precision of the signals properly (i.e., ρ = 1), we

observe Cov(rj, Sj) = 0 indicating no underreaction. However, if overconfident investors

underestimate the precision of the signals s and τ (i.e., ρ > 1), then underreaction arises,

i.e., Cov(rj, Sj) > 0, and an increase in the gambling propensity Gj leads to a decrease

in Cov(rj, Sj). It is also worth noting from Figure 6 that as overconfident investors un-

derestimate the precision of the signals to a greater extent (i.e., a higher ρ), Cov(rj, Sj) is

greater. This result aligns with the discussion following Proposition 3.

Figure 7 depicts the underreaction measure, Cov(rj, Sj), for each stock as a function
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of the gambling propensity Gj , when investors’ risk aversion (indicated by the parameter

γ) varies. Consistent with Figure 6, as Gj increases, Cov(rj, Sj) decreases. Note that as

investors become more risk averse (i.e., as γ increases), Cov(rj, Sj) increases. According

to the previous analysis (see also the discussion following Proposition 3), a higher level of

risk aversion has two effects. On the one hand, overconfident investors are more cautious

in their trading. This increased caution leads to reduced stock price undereaction. On

the other hand, affect investors and gamblers are more cautious in providing liquidity

to overconfident investors and thus correcting mispricing due to overconfidence. Our

numerical study indicates that the second effect dominates (we have verified this is the

case for most parameter values).

3.2.4 The (unconditional) risk-adjusted expected return

Using Theorem 1 and Equation (14), we can express for the general case the expected

excess returns of the j’th stock and the market as

E(rj) = 1′
jΦ

−1
(
γ1− ηAϕ

−1A
)
, and E(rM) =

1

J
1′Φ−1

(
γ1− ηAϕ

−1A
)
;

note that these expected returns are unconditional on the public information τ and s. We

can compute the (unconditional) risk-adjusted expected returns of the stocks as

αj = E(rj)− βjME(rM),

Figure 8 plots the risk-adjusted return αj for each stock as a function of its gam-

bling propensity Gj and affect parameter Aj . In line with our previous analysis (see Sec-

tion 3.1.4 and, specifically, Proposition 4), we observe that in the cross-section of stocks,

αj decreases as the affect parameter Aj increases. Additionally, the negative relationship

between αj and Aj attenuates when gambling propensity Gj is high.

In Panel A of Figure 9, we set γ to a higher value (2.5), compared to Figure 8, where γ =

2. Consistent with our previous analysis (see Proposition 4), we observe that the negative

relationship between αj and the affect parameterAj becomes more pronounced for higher

γ. We corroborate this finding in Panel B of Figure 9, where we plot the difference between

the αj’s when γ = 2.5 and when γ = 2. The difference decreases as the affect parameter

Aj increases.

23



3.3 Empirical implications

Based on our theoretical analyses, we formulate four main empirical implications which

we test using available data for U.S. equities. We provide these implications below, along

with references to the corollaries and/or figures that support them:17

(i) (Proposition 1 and Figures 1-3) In the cross-section of stocks, turnover increases in

gambling propensity.

(ii) (Proposition 2 and Figures 4-5) The relative beta (i.e., the ratio of the return beta to

the cash flow beta) decreases in gambling propensity.

(iii) (Proposition 3 and Figures 6-7) Underreaction to public information is mitigated

when gambling propensity is high.

(iv) (Proposition 4 and Figures 8-9) The risk-adjusted return decreases in the affect heuris-

tic; this negative relationship attenuates when gambling propensity is high.

4 Empirical Analysis
We now test the empirical implications of our model for turnover, return co-movement

with the market, post-public-announcement drift, and risk-adjusted expected returns, us-

ing data on U.S. equities.

4.1 Data

We obtain our sample of common stocks traded on NYSE, NASDAQ, and AMEX from

the CRSP database. We retrieve accounting information from the Compustat database.

To avoid potential market microstructure issues, we exclude stocks with prices below $1

as of the end of month t − 1, where t is the current month.18 Further, in accordance with

Fama and French (1992), we exclude firms in the financial and utility industries.

17While Propositions 1, 2, and 4 used for the implications are derived under the assumption that, after
accounting for conditional information, the factor payoff is sufficiently less volatile than the firm-specific
payoff, we have verified that these results hold for the parameter values used in the calibration in Sec-
tion 3.2.

18Our empirical results are not significantly affected when we instead use a $5 threshold for penny stocks.
We have also tried excluding microcaps, defined as stocks with market capitalization below the 10% NYSE
breakpoint (Fama and French (2008)), and found similar results.
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For stock-month t, we use monthly share turnover as reported by CRSP, scaled by the

number of outstanding shares at the end of the past month t − 1. To address NASDAQ

double counting due to the recording of inter-dealer trades in turnover, we follow the

method proposed by Gao and Ritter (2010) and divide the turnover of NASDAQ stocks

by 2.0 before January 2001, by 1.8 for the rest of 2001, by 1.6 for 2002-2003, and leave it

unchanged thereafter.

We compute Relative beta as the ratio of the estimated return beta to cash flow beta

in month t. We estimate the return beta using at least 18 monthly returns in the past 36

months (from months t − 36 to t − 1). If month t is in quarter q, we estimate the cash

flow beta as the coefficient in the regression of the firm’s ROE on the value-weighted

market-level ROE using at least 12 quarters in the past 20 quarters (from quarters q − 20

to q − 1). When computing the firm’s ROE in a quarter, we use the sum of the earnings

in the quarter and in the past three quarters to remove seasonality effects; we scale this

sum using the book equity as of the past quarter end. To ensure the reliability of our

regressions involving relative betas, we require both the estimated return and cash flow

betas to be positive to retain a stock-month in our sample.

We calculate the risk-adjusted return as the stock’s excess return over the risk-free

interest rate or the difference between the stock return and the benchmark-implied return

in month t. We estimate our benchmark models, including the CAPM, the Fama and

French (1993) and Carhart (1997) four-factor model (FFC4), and the Fama and French

(2015) five-factor model (FF5), using at least 18 monthly returns in the past 36 months

(from months t− 36 to t− 1).19

Novy-Marx (2013) finds evidence that stock returns exhibit preditctability in the di-

rection of profitability (specifically, firms with high announced gross margins generate

significantly higher returns than firms with the opposite characteristic). We focus on this

phenomenon to test the relation between returns and public information.20 For stock-

19We obtain the market, size, and value factors through Wharton Research Data Services, and the five
Fama and French (2015) factors from Kenneth French’s website (https://tinyurl.com/336hyekj).

20Earnings drift (Bernard and Thomas (1989)) has virtually completely attenuated in recent years (Mar-
tineau (2021)); hence we chose not to use this anomaly; though, in unreported analysis we find similar
results. when we use earnings surprises in place of profits. Subrahmanyam (2024) shows that profitability
is one of the few main anomalies that survives in more recent years.
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month t, we use the quarterly report that is released in the past three months (from

months t−3 to t−1) to compute Profitability as the ratio of a firm’s gross profits (revenues

minus cost of goods sold) in the quarter to its assets at the beginning of the quarter.21

We next turn to our gambling and affect proxies. We identify gambling propensity in a

stock as follows. Kumar, Page, and Spalt (2011) argue that investors’ proclivity to gamble

is related to their religion (i.e., Catholicism vs. Protestantism). If investors tend to invest

in local stocks (Coval and Moskowitz (1999)), then stocks of companies headquartered in

counties with high Catholic-to-Protestant (CP ) ratios would tend to attract investors with

a high gambling propensity. We calculate a county’s CP for each year between 1980 and

2020 using survey data of the religious profile of all U.S. counties in 1980, 1990, 2000, and

2010 from the Association of Religion Data Archives and in 2020 from the U.S. Religion

Census.22 For years with missing data, we estimate CP using linear interpolation.23 For

stock-month t in the period from July of year y to June of the next year y + 1, we use the

CP ratio in the county where the firm of the stock is headquartered as of the end of the

past fiscal year y − 1.

We identify the affect heuristic for a stock as follows. According to Campbell and

Keller (2003), and Grullon, Kanatas, and Weston (2004), a firm’s product market adver-

tising increases brand visibility and attracts investor attention. We thus use a firm’s ad-

vertising expenditure in the product market as a proxy for the affect heuristic for a stock.

We retrieve the annual advertising expense (XAD) from the Compustat database for the

firm.24 For stock-month t in the period from July of year y to June of the next year y + 1,

we use the firm’s three-year moving average of advertising expense (to accommodate for

periodic fluctuations in advertising expenditure) as of the end of the past fiscal year y−1,

denoted as XAD3. We adjust XAD3 by subtracting the industry average advertising ex-

pense (where the industry is based on the first two digits of the listed SIC code for the

firm in month t− 1), in order to mitigate potential industry effects on advertising expen-
21We use item RDQ, the reporting date for quarterly profits in Compustat, as the release date for gross

profits each quarter (see Novy-Marx (2013)).
22See http://www.thearda.com/ and https://www.usreligioncensus.org.
23For years with missing data, we also consider using the CP based on the most recent survey data, and

find similar empirical results.
24We ignore firm-years with missing XAD information because we are not able to tell whether the firm

fails to report XAD, or its advertising expense is actually zero. We exclude firm-years with advertising
expenses below $100, 000, as suggested by Lou (2014). Our results remain robust to this exclusion.
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diture. Figure 10 plots the cross-sectional dispersion of XAD3 over time, and shows that

this quantity has been increasing in the past decades; so usingXAD3 directly in the Fama-

MacBeth regression may affect inferences from the regression test. Therefore, we employ

a standardized advertising measure ADV , which is computed as the cross-sectional per-

centile rank of the industry-adjusted XAD3.

In our empirical analyses, we also control for several firm characteristics. For stock-

month t,ME denotes the stock’s market value of equity (i.e., the stock price × the number

of outstanding shares) as of the end of the past month t − 1; Firm age is the number of

months since the stock’s first CRSP appearance as of the end of the past month t − 1;

ANA is the number of analysts who follow the firm and report forecasts to the I/B/E/S

database in the past month t − 1; and FDISP is the stock analysts’ forecast dispersion,

which is computed as the standard deviation of earnings per share (EPS) forecasts re-

ported by analysts in the I/B/E/S database in the past month t− 1. For stock-month t in

the period from July of year y to June of the next year y + 1, BM is the book-to-market

ratio computed using the book equity as of the end of the past fiscal year y − 1, and the

market value of equity as of the end of the past calendar year y − 1.25 D/A is the stock’s

book debt (i.e., the sum of short-term and long-term debt) divided by total assets as of

the end of the past fiscal year y − 1. OL is the operating leverage computed as the yearly

sum of the stock’s cost of goods sold and selling, general and administrative expenses

divided by total assets as of the end of the past fiscal year y − 1 (we follow the method

of Novy-Marx (2011)). For stock-month t in quarter q, we compute EV OLA, the earnings

volatility of the stock, as the standard deviation of EPS using at least 12 quarters in the

past 20 quarters (from quarters q − 20 to q − 1).

Appendix B provides detailed definitions of the variables. Our sample period is from

July 1981 to December 2021. To address extreme values, we winsorize all continuous

variables (i.e., all variables except Firm age and ANA) at the 1% and 99% levels,26 using

each of their distributions every month. The exceptions are risk-adjusted returns and the

standardized advertising measure ADV , which are not winsorized.

25We follow Fama and French (1993) and require both the market equity and the book equity to be posi-
tive. Our empirical results still hold if we do not impose this requirement.

26We also try winsorizing at the 0.5% and 99.5% percentiles as a robustness check; our results continue to
obtain.
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Table 1 presents the time-series averages of the cross-sectional statistics of selected

variables. The mean (median) Turnover is 12.8% (8.7%) per month. The mean (median)

Relative beta is 2.344 (0.777). The mean stock return is 1.4% per month. The mean CP

ratio across firms, 1.705, is higher than the mean county-level ratio across all U.S. coun-

ties, which is 0.694 during the sample period. The reason for the difference is that the

headquarters of most firms in our sample are located in counties with a high CP ratio.27

The mean advertising expense is $89.687 million per year. The mean gross profitability

is 0.099% per quarter. The average market equity ME is $3.16 billion, and the means of

firm age, analyst following, and EPS forecast dispersion are 178 months, 4.97, and $0.121,

respectively. The average value of the book-to-market ratio BM is 0.663, the mean lever-

age D/A is 0.219, and the mean operating leverage OL is 1.113. The mean EPS volatility

is $0.508 per quarter.

4.2 Gambling and turnover

Implication (i) from Section 3.3 is that in the cross-section of stocks, turnover should in-

crease in gambling propensity. We test this implication using the following regression:

Turnoverj,t = b0 + b1 × CP j,t + b2 × Controls+ ϵj,t. (15)

The dependent variable is the turnover of the j’th stock in month t. If month t is in

the period from July of year y to June of the next year y + 1, CP j,t is the Catholic-to-

Protestant ratio in the county where the firm of the stock is headquartered as of the end

of the past fiscal year y − 1. We control for past stock returns in month t − 1 (rj,t−1), in

month t− 2 (rj,t−2), and from months t− 12 to t− 3 (rj,t−12 to t−3), market equity ME and

firm age as of the end of the past month t − 1, book-to-market ratio BM and leverage

D/A as of the end of the past year y − 1, earnings volatility EV OLA, and the number of

analysts following the firm and reporting forecasts, ANA, and analyst forecast dispersion

FDISP in the past month t− 1. According to Chordia, Huh, and Subrahmanyam (2007),

firm size (i.e., market equity ME), firm age, and book-to-market ratio BM proxy for a

firm’s visibility; earnings volatility EV OLA proxies for uncertainty about fundamental

values; the number of analysts following the firm, ANA, proxies for the mass of informed
27Kumar, Page, and Spalt (2011) provide details of counties with high CP ratios (see their Panel B of

Figure 1 on p. 673).
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agents; and leverage D/A and analysts’ forecast dispersion FDISP proxy for differences

of opinion. We use past stock returns rj,t−1, rj,t−2, and rj,t−12 to t−3 to capture possible

trend-chasing (Hong and Stein (1999)).

We estimate Regression (15) using the Fama and MacBeth (1973) procedure and correct

standard errors using the Newey-West method with up to three lags. Table 2 presents the

results. We find consistent evidence that the coefficient on the CP ratio is significantly

positive. Specifically, in Column 1, the CP coefficient is 0.097 (t-stat= 3.48) after con-

trolling for past stock returns rj,t−1, rj,t−2, and rj,t−12 to t−3, market equity ME, firm age,

book-to-market ratio BM , leverage D/A, and earnings volatility EV OLA. In Column 2,

there is an increase to 0.26 (t-stat= 8.98) after controlling for the number of analysts fol-

lowing the firm and reporting forecasts, ANA, and analyst forecast dispersion FDISP .

The latter coefficient suggests that a one-standard-deviation shift in CP (1.428 from Ta-

ble 1) corresponds to a (0.26/100) × 1.428 = 0.371% increase in turnover. Relative to the

median turnover (8.7% from Table 1), this represents a 0.371%/8.7% = 4.27% increase.

Table 2 also presents additional evidence on turnover. Specifically, the coefficients on

past stock returns rj,t−1, rj,t−2, and rj,t−12 to t−3 are significantly positive, indeed suggest-

ing trend chasing or portfolio rebalancing. Young stocks and growth stocks have high

turnover (the coefficients on ln(Firm age) and BM are significantly negative). Uncer-

tainty about fundamental values increases turnover (the coefficient on earnings volatility

EV OLA is positive). There is evidence of analyst-induced trading (i.e., the coefficient on

the number of analysts following the firm, ANA, is significantly positive). Greater dif-

ferences of opinion increases turnover (analysts’ forecast dispersion FDISP is positively

related to turnover). These findings are in line with previous research on trading activity

(e.g., Chordia, Huh, and Subrahmanyam (2007)).

4.3 Gambling and the relative beta

Implication (ii) from Section 3.3 suggests that in the cross-section of stocks, the relative

beta should be decreasing in gambling propensity. We test this implication using the

following regression:

Relative betaj,t = b0 + b1 × CP j,t + b2 × Controls+ ϵj,t. (16)
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The dependent variable is the relative beta of the j’th stock (i.e., the ratio of the return beta

to the cash flow beta). We control for past stock returns in month t − 1 (rj,t−1), in month

t − 2 (rj,t−2), and from months t − 12 to t − 3 (rj,t−12 to t−3), market equity ME as of the

end of the past month t− 1, and book-to-market ratio BM , leverage D/A, and operating

leverage OL as of the end of the past year y − 1.

Table 3 presents the results from estimating Regression (16) using the Fama-MacBeth

procedure. We find consistent evidence that the coefficient on the CP ratio is significantly

negative. Specifically, in Column 1, the CP coefficient is significantly negative at −0.031

(t-stat= −2.68) after controlling for past stock returns rj,t−1, rj,t−2, and rj,t−12 to t−3, market

equity ME, book-to-market ratio BM , and leverage D/A. In Column 2, the coefficient

on CP is also significantly negative at −0.021 (t-stat= −1.81), after further controlling for

operating leverage OL. This suggests that a one standard deviation shift in CP (1.428

from Table 1) corresponds to a 0.021× 1.428 = 0.030 decrease in relative beta. Relative to

the median relative beta (0.777 from Table 1), this represents an economically significant

0.030/0.777 = 3.86% decrease.

4.4 The Profitability Effect and Gambling

Implication (iii) from Section 3.3 is that underreaction to public signals attenuates when

gambling propensity is high. As motivated in Section 4.1, we use gross margins (Novy-

Marx (2013)) to test this implication. To accurately measure the level of underreaction to

gross margins, we measure the relation of returns to profit margins announced one, two,

and three months ago, relative to the current month. Specifically, we use the following

regression:

Risk-adjusted returnj,t =
3∑

m=1

( b0,m ×D−m

+b1,m × Profitabilityj,t ×D−m

+b2,m × Profitabilityj,t × CP j,t ×D−m

+b3,m × CP j,t ×D−m) + b4 × Controls+ ϵj,t. (17)

In the above regression, the dependent variable Risk-adjusted returnj,t is either the j’th

stock’s excess return over the risk-free interest rate, or the difference between the stock
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return and the benchmark-implied return in month t. For stock-month t, we use the

quarterly report that is announced in the past three months (from months t− 3 to t− 1) to

compute Profitability as the ratio of a firm’s gross profits (revenues minus cost of goods

sold) in the quarter to its assets at the beginning of the quarter;D−m (wherem = 1, 2, or 3)

is a dummy variable indicating that the announcement is made in month t−m. We control

for past stock returns in month t− 1 (rj,t−1), in month t− 2 (rj,t−2), and from months t− 12

to t − 3 (rj,t−12 to t−3),28 market equity ME as of the end of the past month t − 1, and

book-to-market ratio BM as of the end of the past year y − 1.

Table 4 presents the results from the Fama-MacBeth estimation of Regression (17).

The evidence is consistent with the notion that underreaction attenuates when gambling

propensity (proxied by CP here) is high. For example, consider the FF5-adjusted return

in Columns 7 and 8. In Column 7, the coefficient on Profitability × D−1 (D−2) (D−3) is

significantly positive; this evidence indicates that the underreaction lasts at least for three

months. A simple comparison of the coefficients suggests that the underreaction is most

pronounced in the first subsequent month. Further, the coefficient on Profitability ×

CP × D−1 is significantly negative at −1.221 (t-stat= −2.83), while the coefficient on

Profitability × CP × D−2 (D−3) is not; this evidence is consistent with the notion that

gamblers attenuate underreaction, especially in the first subsequent month when the un-

derreaction is most pronounced. We find consistent evidence in Column 8, where we

control for past stock returns rj,t−1, rj,t−2, and rj,t−12 to t−3, market equity ME, and book-

to-market ratio BM . Particularly, the coefficient on the term Profitability × CP × D−1

remains significantly negative at −1.367 (t-stat= −3.27). The evidence is similar in other

columns of Table 4 where we use the excess return and in turn, risk-adjusted returns

based on the CAPM and FFC4 models as the dependent variable.

Table 4 also presents evidence of the short-term reversal effect (i.e., the coefficient on

rj,t−1 is significantly negative), the size effect (i.e., the coefficient on ln(ME) is significantly

negative), and the value effect (i.e., the coefficient on BM is significantly positive). We

also find evidence of momentum (e.g., Column 2 shows that the coefficient of the excess

28We use the stock return in month t−1 (rj,t−1) to control for short-term reversals (Jegadeesh (1990)), and
the stock return from months t − 12 to t − 3 (rj,t−12 to t−3) to control for the longer-term momentum effect
(Jegadeesh and Titman (1993)). We control for the stock return in month t − 2 (rj,t−2) separately because
Goyal and Wahal (2015) document a carryover of short-term reversals from month −2.
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return on rj,t−12 to t−3 is positive).29

4.5 Gambling, affect investing, and risk-adjusted expected returns

Implication (iv) from Section 3.3 is that in the cross-section of stocks, risk-adjusted ex-

pected returns should decrease in the affect heuristic, and this negative relationship should

attenuate when gambling propensity is high.

Recall from Section 4.1 that we measure the affect heuristic for a stock using the stan-

dardized advertising-spending information ADV . We test the effect of gambling propen-

sity (i.e., the CP ratio) on the relation between risk-adjusted return and ADV using the

following regressions:

Risk-adjusted returnj,t = b0 + b1 × ADV j,t + b2 × ADV j,t × CP j,t

+b3 × CP j,t + b4 × Controls+ ϵj,t. (18)

The dependent variableRisk-adjusted returnj,t is either the j’th stock’s excess return over

the risk-free interest rate, or the difference between the stock return and the benchmark-

implied return in month t. If month t is in the period from July of year y to June of

the next year y + 1, ADVj,t is the cross-sectional percentile rank of the industry-adjusted

XAD3 (i.e., the difference between the firm’s three-year moving average of advertising

expense,XAD3, and the industry average) as of the end of the past year y−1. We consider

controlling for past stock returns in month t − 1 (rj,t−1), in month t − 2 (rj,t−2), and from

months t − 12 to t − 3 (rj,t−12 to t−3), market equity ME as of the end of the past month

t − 1, and book-to-market ratio BM as of the end of the past year y − 1. We also control

for profitability as suggested by the empirical analysis in Section 4.4.

Table 5 presents the results from the Fama-MacBeth estimation of the regressions. The

evidence is consistent with the notion that the negative relation between risk-adjusted

returns and ADV attenuates when gambling propensity (proxied by CP here) is high.
29Daniel and Moskowitz (2016) show that the momentum effect reverses following recessions; specifi-

cally, during 2001-2002 and 2009 (see their Table 2 on p. 227). If we exclude these specific years and the
immediate post-pandemic period of 2021 from our sample period, then the statistical significance of the
momentum effect improves. See also Jegadeesh, Luo, Subrahmanyam, and Titman (2023); they show that
the coefficient on rj,t−1 is negative and significant, indicating the presence of familiar monthly reversals (as
highlighted in Jegadeesh (1990)); the coefficient on rj,t−12 to t−3 is positive and significant, pointing to mo-
mentum, a phenomenon extensively studied by Jegadeesh and Titman (1993) and others; and the coefficient
on rj,t−2 is insignificant, suggesting a gradual transition from reversals to momentum.
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For example, consider the FF5-adjusted return in Columns 6 and 7. Column 6 shows that

the coefficient on ADV alone is significantly negative at −0.620 (t-stat= −4.24), while

the coefficient on the interaction term ADV × CP is significantly positive at 0.190 (t-

stat= 2.68). Column 7 shows that after controlling for additional variables, the coefficient

on the interaction term ADV × CP remains significantly positive at 0.247 (t-stat= 3.39).

The evidence is similar in other columns where we use the excess return and in turn,

risk-adjusted returns based on the CAPM and FFC4 models as the dependent variable.

Table 5 also presents evidence consistent with the previous analysis in Section 4.4:

That is, the underreaction to profitability attenuates when gambling propensity (proxied

by CP here) is high. Specifically, the coefficient on Profitability × D−1 (D−2) (D−3) is

mostly significantly positive; the coefficient on Profitability × CP ×D−1 is significantly

negative.

Portfolio analysis

We next use portfolio analysis to test for the relations between advertising expense,

the CP ratio, and risk-adjusted expected returns. For month t from July of year y to

June of the next year y + 1, we divide the sample of stocks into two equal-size groups

by the median of the advertising expense variable ADV from the past fiscal year y − 1,

and independently into two equal-size groups based on the median of the Catholic-to-

Protestant (CP) ratio from the past fiscal year y − 1. This leads to 2 × 2 portfolios. We

compute the return of each portfolio by weighting the stocks in the portfolio equally. We

then compute the risk-adjusted return for the portfolio using the excess return over the

risk-free interest rate and the benchmark-adjusted returns based on the CAPM, the Fama

and French (1993) and Carhart (1997) 4-factor model (FFC4), and the Fama and French

(2015) 5-factor model (FF5).

Table 6 presents the results. Consistent with the regression results in Table 5, the nega-

tive relation between the risk-adjusted return and advertising spending attenuates when

gambling propensity is high. Consider, for example, the FF5-adjusted return in Columns

7 and 8. Column 7 shows that conditional on low CP , the FF5-adjusted return of the

high-ADV minus low-ADV portfolio is significantly negative at −19.6 bps per month

(t-stat= −2.27). By contrast, Column 8 shows that conditional on high CP , the FF5-
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adjusted return of the high-ADV minus low-ADV portfolio, 12.3 bps per month, is in-

significant. The difference is significantly positive at 12.3− (−19.6) = 31.9 bps per month

(t-stat= 2.53). The evidence is similar in other columns where we use excess returns, and,

in turn, risk-adjusted returns based on the CAPM and FFC4 models.

5 Conclusions
We address the joint impact of non-cashflow considerations and overconfidence on in-

vestors’ demands, and in turn, on expected returns, within a multi-asset setting. Specifi-

cally, we consider the effects of a direct preference or affect for a firm’s stock, direct con-

sumption utility from trading (a gambling motive), and a form of overconfidence wherein

investors underestimate the precision of public information they do not produce them-

selves. Our setting takes a first step towards integrating various behavioral elements

within a common setting, as opposed to considering the elements in isolation. We also

test the model’s implications using data on U.S. equities, along with proxies for gambling

propensity and affect investing.

In our model, gamblers amplify volume that results from agreements to disagree on

the model’s parameters. Further, they are willing to absorb the net positions of other

traders at low premia. This liquidity provision reduces excess stock return co-movement

with the market and the stock price underreaction caused by overconfident investors. In

turn, this implies that the relative beta (the ratio of return beta to cash flow beta), and

the degree of underreaction to public information, both decrease in the propensity of

investors to gamble. Our analysis also suggests that in the cross-section of stocks, the

risk-adjusted return decreases in the affect heuristic, and this relation attenuates when

gambling propensity is high.

To measure the scale of the gambling propensity in a stock, we adopt the approach of

Kumar, Page, and Spalt (2011) and use the Catholic-to-Protestant (CP ) ratio of the county

where the firm’s headquarters is situated. Our findings support our theory: in the cross-

section of stocks, turnover increases in the CP ratio; the relative beta decreases in the CP

ratio; and the underreaction to profit margins (Novy-Marx (2013)) attenuates when the

CP ratio is high. We follow Grullon, Kanatas, and Weston (2004) and Lou (2014) and

use the firm’s advertising spending in the product market as a metric for the strength of
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the affect heuristic. Again, our results are in line with our theory: in the cross-section

of stocks, risk-adjusted return decreases in advertising spending; further, this negative

relation attenuates when the CP ratio is high.

Our results underscore the value of considering attributes of investing that go beyond

traditional wealth maximization. In follow-up work, it may be useful to consider dy-

namic extensions of our setting where gambling propensities vary with asset moments

such as volatility and skewness. The role of rational arbitrageurs in attenuating pricing

effects caused by affect investing, gambling, and overconfidence also deserves a full in-

vestigation. These and other issues are left for future research.
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Appendix A
Proof of Theorem 1: (a) The i’th overconfident investor believes that

F |τ ∼ N

(
νF
κτ
τ, κF |τ

)
, where κF |τ = νF − ν2F

κτ
; and

θ|s ∼ N
(
νθκs

−1s, κθ|s
)
, where κθ|s = νθ − ν2θκs

−1.

Write the investor’s wealth at Date 1 as

Wi1 = Wi0Rf +X ′
i(V − PRf ) = Wi0Rf +X ′

i(V̄ + ℓF + θ − PRf ).

The investor’s demand Xi maximizes

Ê [U(Wi1)|τ, s]

= Ê
[
−exp

[
−γWi0Rf − γX ′

i(V̄ + ℓF + θ − PRf )
]
|τ, s

]
= −exp

[
−γWi0Rf − γX ′

i

(
V̄ + ℓ

νF
κτ
τ + νθκ

−1
s s− PRf

)
+ 0.5γ2X ′

iϕκXi

]
,

where Ê() indicates taking expectations based on the investor’s biased beliefs, ϕκ =

ℓℓ′κF |τ + κθ|s, and the second equality is based on the normality assumption. The first-

order condition (f.o.c.) with respect to (w.r.t.) Xi implies that the optimal demand is:

Xκ =
ϕ−1
κ

γ

(
V̄ + ℓ

νF
κτ
τ + νθκ

−1
s s− PRf

)
. (A.1)

The second-order condition holds here and other cases that follow, so we omit referencing

it in the rest of the proofs.

(b) The i’th affect investor perceives that in addition to the actual liquidation values

V = V̄ +ℓF +θ, there are extra non-monetary payoffs as indicated byA, and has unbiased

beliefs that

F |τ ∼ N

(
νF
ντ
τ, νF |τ

)
, where νF |τ = νF − ν2F

ντ
; and

θ|s ∼ N
(
νθνs

−1s, νθ|s
)
, where νθ|s = νθ − ν2θνs

−1.

The investor’s demand Xi maximizes:

E
[
U(WA

i1)|τ, s
]

= E
[
−exp

[
−γWi0Rf − γX ′

i(A+ V̄ + ℓF + θ − PRf )
]
|τ, s

]
= −exp

[
−γWi0Rf − γX ′

i

(
A+ V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
+ 0.5γ2X ′

iϕXi

]
,
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where ϕ = ℓℓ′νF |τ + νθ|s. The f.o.c. implies that the demand is expressed as:

XA =
ϕ−1

γ

(
A+ V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
. (A.2)

(c) The i’th gambler also has unbiased beliefs. The investor’s demand Xi maximizes:

E [UG(Wi1)|τ, s]

= E
[
−exp

[
−γWi0Rf − γX ′

i(V̄ + ℓF + θ − PRf )− 0.5X ′
iGXi

]
|τ, s

]
= −exp

[
−γWi0Rf − γX ′

i

(
V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
+ 0.5γ2X ′

i

(
ϕ− G

γ2

)
Xi

]
.

The f.o.c. implies that the demand is expressed as:

XG =
ϕ−1
G

γ

(
V̄ + ℓ

νF
ντ
τ + νθν

−1
s s− PRf

)
, (A.3)

where ϕG = ϕ−G/γ2 > 0.

(d) From Equations (A.1), (A.2), and (A.3), the market-clearing condition, ηκXκ +

ηAXA + ηGXG = 1, implies that the equilibrium prices P take the form as given in this

theorem. □

Proof of Proposition 1: Prior to proving this proposition, we first lay out the groundwork.

This groundwork also serves as a foundation for proving Propositions 2 and 4.

Note that in the simple economy, the variance of the firm-specific payoff (denoted

by ν) is identical across stocks and the information signal about θj , denoted by sj , is

not informative. See Equation (3). According to the formula in Sherman and Morrison

(1950),30 we have:

ϕ−1
κ =

1

ν

(
I− ℓℓ′

κ−1
F |τν + ℓ′ℓ

)
, ϕ−1 =

1

ν

(
I− ℓℓ′

ν−1
F |τν + ℓ′ℓ

)
, and

ϕ−1
G =

1

ν

[
(I−G∗)−1 − (I−G∗)−1 ℓℓ′ (I−G∗)−1

ν−1
F |τν + ℓ′ (I−G∗)−1 ℓ

]
, (A.4)

where G∗ = G/(γ2ν), and I is a J × J identity matrix. We can express Φ = ν−1 (Φ1 + Φ0),

30Specifically, let M be a J × J matrix and Λ be a J × 1 vector. Suppose that M is invertible and that

1 + Λ′M−1Λ ̸= 0. Then, (M + ΛΛ′)−1 = M−1 − M−1ΛΛ′M−1

1 + Λ′M−1Λ
.
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where

Φ1 = (ηκ + ηA)I+ ηG (I−G∗)−1 , (A.5)

Φ0 = −

[
ηκ

ℓℓ′

κ−1
F |τν + ℓ′ℓ

+ ηA
ℓℓ′

ν−1
F |τν + ℓ′ℓ

+ ηG
(I−G∗)−1 ℓℓ′ (I−G∗)−1

ν−1
F |τν + ℓ′ (I−G∗)−1 ℓ

]
. (A.6)

From the matrix identity in Woodbury (1950),31 we have

Φ−1 = ν
[
Φ−1

1 − Φ−1
1 Φ0(I+ Φ−1

1 Φ0)
−1Φ−1

1

]
. (A.7)

Suppose that in the simple economy, the conditional factor payoff is significantly less

volatile than the conditional firm-specific payoff. For notational convenience, let ν−1
F ν →

∞; this implies ν−1
F |τν → ∞ and κ−1

F |τν → ∞. We can use Equations (A.6) and (A.7) to show

that:

Φ0 → 0J×J and Φ−1 → νΦ−1
1 . (A.8)

Equation (A.5) implies that Φ1 is a diagonal matrix: It is straightforward to show:

• dΦ1/dρ = 0J×J ;

• d(Φ−1
1 )/dγ is a diagonal matrix where each diagonal element is positive;

• d(Φ−1
1 )/dGj ∝ −Ijj where Ijj is a J × J matrix where the j’th diagonal element

equals 1 and the other elements equal 0.

Since ν−1
F |τν → ∞ and also κ−1

F |τν → ∞, it follows from Equation (A.6) that:

• dΦ0/dρ→ 0J×J , and dΦ0/dγ → 0J×J .

See the expression of Φ−1 in Equation (A.7). Note from the previous derivation that

Φ0 → 0J×J , dΦ0/dρ→ 0J×J , and dΦ1/dρ→ 0J×J ; it follows that

d(Φ−1)

dρ
→ 0J×J . (A.9)

31Specifically, let M and N be two J × J matrices. Suppose that M is invertible and that I + M−1N is
also invertible. Then, (M +N)−1 = M−1 −M−1N(I+M−1N)−1M−1.
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Note from the previous derivation that Φ0 → 0J×J , dΦ0/dγ → 0J×J , and d(Φ−1
1 )/dγ is a

diagonal matrix where each diagonal element is positive; it follows that

d(Φ−1)

dγ
is a diagonal matrix where each diagonal element is positive. (A.10)

Next, we consider the derivative of Φ−1 w.r.t. Gj . See the expression of Φ0 in Equa-

tion (A.6). Note that in the simple economy, ν−1
F |τν → ∞ and κ−1

F |τν → ∞; it follows

that dΦ0/dGj → 0J×J . Also note from the previous derivation that Φ0 → 0J×J and

d(Φ−1
1 )/dGj ∝ −Ijj ; then, it follows from Equation (A.7) that

d(Φ−1)

dGj

→ ν
d(Φ−1

1 )

dGj

∝ −Ijj. (A.11)

This completes the preparation for the subsequent analysis.

Now we prove Proposition 1 using Theorem 2. We substitute the equilibrium price

into the demands of each investor type, which yields:

Xκ =
ϕ−1
κ

γ

[(
I− Φ−1ηκϕ

−1
κ

)
ℓ∆τ − Φ−1

(
ηAϕ

−1A− γ1
)]
,

XA =
ϕ−1

γ

[
A− Φ−1

(
ηκϕ

−1
κ ℓ∆τ + ηAϕ

−1A− γ1
)]
,

XG = −ϕ
−1
G

γ
Φ−1

(
ηκϕ

−1
κ ℓ∆τ + ηAϕ

−1A− γ1
)
.

Note that the demand for the j’th stock by each of the three investor types, denoted as

Xκj , XAj , and XGj , is simply the j’th element of the vectors Xκ, XA, and XG, respectively.

Xκj − E(Xκj) = ψκj∆τ, XAj − E(XAj) = ψAj∆τ and XGj − E(XGj) = ψGj∆τ, (A.12)

where

ψκj =
1

γ
1′
jϕ

−1
κ

(
I− Φ−1ηκϕ

−1
κ

)
ℓ,

ψAj = −1

γ
1′
jϕ

−1Φ−1
(
ηκϕ

−1
κ

)
ℓ, and ψGj = −1

γ
1′
jϕ

−1
G Φ−1

(
ηκϕ

−1
κ

)
ℓ. (A.13)

It is straightforward to verify that ηκψκj + ηAψAj + ηGψGj = 0.

If ρ = 1, then it follows from Equation (3) that ∆ = 0. We can use Equations (5) and

(A.12) to show that E(T ∗
j ) = 0. This proves Part (i) of this proposition.
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If ρ > 1, suppose that ℓj > 0 (we can modify the derivation here to show that the

results also apply to the case with ℓj < 0). Then, from Equation (A.13), we have

ψκj =
1

γν
1′
j

(
I− ℓℓ′

κ−1
F |τν + ℓ′ℓ

)[
I− Φ−1ηκ

ν

(
I− ℓℓ′

κ−1
F |τν + ℓ′ℓ

)]
ℓ (A.14)

→ 1

γν
1′
j

(
I− Φ−1

1 ηκ
)
ℓ

∝
[
1− ηκ

ηκ + ηA + ηG(1−Gj/(γ2ν))−1

]
ℓj

> 0

where the equality follows from the expression of ϕκ in Equation (A.4), the → follows

from Equation (A.8) and the fact that κ−1
F |τν → ∞ in the simple economy, and the inequal-

ity follows from the assumption that ℓj > 0. A similar derivation can be used to show

that

ψAj < 0 and ψGj < 0.

See the expression of ψκj in Equation (A.14). It follows from the fact κ−1
F |τν → ∞ and

the previously derived d(Φ−1)/dρ→ 0J×J (see Equation (A.9)) that

• dψκj/dρ→ 0.

Note from the previous derivation that d(Φ−1)/dγ is a diagonal matrix where each diago-

nal element is positive (see Equation (A.10)); it follows that

• dψκj/dγ < 0.

Note from the previous derivation that d(Φ−1)/dGj ∝ −Ijj (see Equation (A.11)); it fol-

lows that given ℓj > 0,

• dψκj/dGj > 0.

Consider Equations (5) and (A.12). Using the previously derived results that ψκj > 0,

ψAj < 0, ψGj < 0, and ηκψκj + ηAψAj + ηGψGj = 0, we obtain

E(T ∗
j ) = 0.5ηκψκjE(|∆τ |)− 0.5ηAψAjE(|∆τ |)− 0.5ηGψGjE(|∆τ |)

= ηκψκjE(|∆τ |). (A.15)
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Note from the previous derivation that dψκj/dρ→ 0; it follows that

dE(T ∗
j )

dρ
→ ηκψκj

dE(|∆τ |)
dρ

∝ d|∆|
dρ

> 0,

where the last inequality obtains from the expression of ∆ in Equation (3). Note from the

previous derivation that dψκj/dγ < 0; it follows that

dE(T ∗
j )

dγ
∝ dψκj

dγ
< 0.

Note from the previous derivation that dψκj/dGj > 0 given that ℓj > 0; it follows that

dE(T ∗
j )

dGj

∝ dψκj

dGj

> 0.

This proves Part (ii) of this proposition. □

Proof of Proposition 2: Suppose that ρ = 1. It follows from Equation (3) that ∆ = 0. For a

sufficiently large J , θM in Equation (8) converges to zero due to the diversification effect.

In this case, we can use Equations (6), (9), and (10) to show that

βjM =
ℓjνF |τ

νF |τ
= ℓj.

Thus, βj/ℓj = 1. This proves Part (i) of this proposition.

Now suppose that ρ > 1. See the expression of rj in Equation (6). We can use a similar

derivation as in the proof of Proposition 1 to show that the expression

1′
jΦ

−1ηκϕ
−1
κ ℓ → 1′

jΦ
−1
1 ηκ

(
I− ℓℓ′

κ−1
F |τν + ℓ′ℓ

)
ℓ→ 1′

jΦ
−1
1 ηκℓ

=
ηκ

ηκ + ηA + ηG(1−Gj/(γ2ν))−1
ℓj, (A.16)

where the first → follows from Equation (A.8) and the expression for ϕ−1
κ in Equation (A.4),

and the second → follows from the fact that κ−1
F |τν → ∞ in the simple economy. Using

Equation (8), it follows that:

ΨM =
1

J

J∑
j=1

(1′
jΦ

−1ηκϕ
−1
κ ℓ) → 1

J

J∑
j=1

[
ηκ

ηκ + ηA + ηG(1−Gj/(γ2ν))−1
ℓj

]
> 0,

where the inequality holds under regular parameter values, with ℓj on average being

positive. Thus, in the simple economy, we can assert that ΨM > 0.
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From Equations (6), (9), and (10), we obtain

βjM
ℓj

=
Cov(rj, rM)

ℓj

1

Var(rM)
,

where

Cov(rj, rM)

ℓj
=

ℓjνF |τ + ν/J +ΨM1′
jΦ

−1ηκϕ
−1
κ ℓ∆2ντ

ℓj

= νF |τ +
ν

Jℓj
+

1

ℓj
ΨM1′

jΦ
−1ηκϕ

−1
κ ℓ∆2ντ .

Note that Var(rM) and ΨM > 0 are identical across all stocks. For Part (ii) of this proposi-

tion, it suffices to show that

d

dGj

(
1′
jΦ

−1ηκϕ
−1
κ ℓ∆2ντ

ℓj

)
∝ 1

ℓj
1′
j

d(Φ−1)

dGj

ϕ−1
κ ℓ =

1

ℓj
1′
j

d(Φ−1)

dGj

(
I− ℓℓ′

κ−1
F |τν + ℓ′ℓ

)
ℓ

→ 1

ℓj
1′
jν
d(Φ−1

1 )

dGj

ℓ ∝ 1

ℓj
1′
j(−Ijj)ℓ = −1 < 0, (A.17)

where the first equality follows from the expression for ϕκ in Equation (A.4), the → fol-

lows from Equation (A.11) and the fact that κ−1
F |τν → ∞ in the simple economy, and the

second ∝ follows from Equation (A.11). This completes the proof for Part (ii) of this

proposition. □

Proof of Proposition 3: Note that in the simple economy, the firm-specific signal sj is not

informative. Using Equations (6) and (11), we can compute

Cov(rj, Sj) = −(1− µ)1′
jΦ

−1ηκϕ
−1
κ ℓ∆ντ .

If ρ = 1, then it follows from Equation (3) that ∆ = 0; in this case, Cov(rj, Sj) = 0.

Suppose ρ > 1. Then, κτ > ντ ; it follows from Equation (3) that ∆ < 0. In this case,

Cov(rj, Sj) ∝ 1′
jΦ

−1ηκϕ
−1
κ ℓ→ ηκ

ηκ + ηA + ηG(1−Gj/(γ2ν))−1
ℓj,

where the → can be obtained by using the same derivation as in the proof of Propo-

sition 2 (see Equation (A.16)). Therefore, given ℓj > 0, Cov(rj, Sj) > 0. We can use

a similar derivation as in the proof of Proposition 2 (see Equation (A.17)) to show that

dCov(rj, Sj)/dGj < 0.□
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Proof of Proposition 4: Suppose that ρ = 1 and ∀j Aj = Gj = 0. It follows from Equa-

tion (3) that ∆ = 0 and Φ = ϕ−1. Using Theorem 2, we can express the excess return

vector as

r = V − PRf = ℓ

(
F − νF

ντ
τ

)
+ θ + γϕ1.

Note that by definition, rM = 1′r/J . It follows that

E(r) = γϕ1, E(rM) = γ1′ϕ1/J,

Var(r) = ϕ, Cov(r, rM) = ϕ1/J, and Var(rM) = 1′ϕ1/J2.

We can express the risk-adjusted expected return vector as:

α = E(r)− βmE(rM) = γϕ1− ϕ1/J

1′ϕ1/J2
γ1′ϕ1/J = 0J×1;

it follows that αj = 1′
jα = 0. This proves Part (i) of this proposition.

Now suppose that ρ > 1 and ∃j such that Aj ̸= 0 and/or Gj > 0. We can use a

similar derivation as in the proof of Proposition 2 to compute βjM and show that it does

not depend on Aj .

Note from Equations (12) and (13) that

αj = E(rj)− βjME(rM), where E(rj) = 1′
jΦ

−1
(
γ1− ηAϕ

−1A
)
.

Note that E(rM) is identical across all stocks and that βjM does not depend on Aj , as

proved above. For Part (ii) of this proposition, we just need to show that

∂E(rj)

∂Aj

= −1′
jΦ

−1ηAϕ
−11j

→ −1′
jΦ

−1
1 ηA

(
I− ℓℓ′

ν−1
F |τν + ℓ′ℓ

)
1j → −1′

jΦ
−1
1 ηA1j

= − ηA
ηκ + ηA + ηG(1−Gj/(γ2ν))−1

< 0,

where the first → follows from Equation (A.11) and the expression for ϕ−1 in Equa-

tion (A.4), and the second → follows from the fact that ν−1
F |τν → ∞ in the simple economy.

∂

∂Gj

(
∂E(rj)

∂Aj

)
∝ −1′

j

d(Φ−1)

dGj

ϕ−11j → −1′
j

d(Φ−1)

dGj

(
I− ℓℓ′

ν−1
F |τν + ℓ′ℓ

)
1j

→ −1′
jν
d(Φ−1

1 )

dGj

1j ∝ 1′
jIjj1j = 1 > 0,
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where the first → follows from the expression for ϕ−1 in Equation (A.4), the second →

follows from Equation (A.11) and the fact that ν−1
F |τν → ∞ in the simple economy, and the

second ∝ follows from Equation (A.11).

∂

∂γ

(
∂E(rj)

∂Aj

)
∝ −1′

j

d(Φ−1)

dγ
ϕ−11j → −1′

j

d(Φ−1)

dγ

(
I− ℓℓ′

ν−1
F |τν + ℓ′ℓ

)
1j

→ −1′
j

d(Φ−1)

dγ
1j < 0,

where the first → follows from the expression for ϕ−1 in Equation (A.4), the second →

follows from the fact that ν−1
F |τν → ∞ in the simple economy, and the inequality follows

from the fact that d(Φ−1)/dγ is a diagonal matrix where each diagonal element is positive

(see Equation (A.10) in the proof of Proposition 1). □
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Appendix B
This table describes how we compute the variables used in our empirical analysis.
Variables Definition

Turnover For stock-month t, we use monthly shares traded in month t as reported
by CRSP, scaled by the number of outstanding shares at the end of the past
month t− 1. To address double counting in NASDAQ turnover, due to the
recording of inter-dealer trades, we follow the method proposed by Gao
and Ritter (2010) and divide the turnover of NASDAQ stocks by 2.0 before
January 2001, by 1.8 for the rest of 2001, by 1.6 for the years 2002-2003, and
leave it unchanged thereafter.

Relative beta For stock-month t, we compute Relative beta as the ratio of the estimated
return beta to cash flow beta in that month. We estimate the return beta
using at least 18 monthly returns in the past 36 months (from months t− 36
to t − 1). For month t is in quarter q, we estimate the cash flow beta as the
coefficient of the market-level ROE in the regression of the firm’s ROE on
the value-weighted market-level ROE, using at least 12 quarters in the past
20 quarters (from quarters q−20 to q−1). When computing the firm’s ROE
as of the end of a quarter, we use the sum of the earnings in the quarter and
in the past three quarters to remove seasonality effects; we scale this sum
using the book equity as of quarter-end. To enhance the reliability of our
regressions involving relative betas, we further require both the estimated
return and cash flow betas to be positive in order to retain a stock-month in
our sample.

Risk-adjusted
return

For stock-month t, we use the stock’s excess return over the risk-free in-
terest rate or the difference between the stock return and the benchmark-
implied return in month t. We estimate benchmark models, including
the CAPM, the Fama and French (1993) and Carhart (1997) 4-factor model
(FFC4), and the Fama and French (2015) 5-factor model (FF5), using at least
18 monthly returns in the past 36 months (from months t− 36 to t− 1).

Profitability For stock-month t, we use the quarterly report that is announced in the past
three months (from months t − 3 to t − 1) to compute Profitability as the
ratio of a firm’s gross profits (revenues minus cost of goods sold) in the
quarter to its assets at the beginning of the quarter.

CP For stock-month t in the period from July of year y to June of the next year
y + 1, we use the Catholic-to-Protestant (CP ) ratio in the county where the
firm of the stock is headquartered, as of the end of the past fiscal year y− 1.
We compute the CP in a county for each of the years 1980, 1990, 2000, 2010,
and 2020 using survey data. For any missing year between 1980 and 2020,
we compute CP using linear interpolation.
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XAD3 For stock-month t in the period from July of year y to June of the next year
y + 1, we use the firm’s three-year moving average of advertising expense
as of the end of the past fiscal year y − 1.

ADV For stock-month t, we adjust XAD3 by subtracting the industry average
(where the industry is based on the first two digits of the SIC code in the
past month t−1). ADV represents the cross-sectional percentile rank of the
industry-adjusted XAD3.

ME For stock-month t, we use the stock’s market value of equity (i.e., the stock
price × the number of outstanding shares) as of the end of the past month
t− 1.

Firm age For stock-month t, we use the number of months since the stock’s first CRSP
appearance as of the end of the past month t− 1.

ANA For stock-month t, we use the number of analysts who follow the firm and
report forecasts to the I/B/E/S database in the past month t− 1.

FDISP For stock-month t, we use the stock’s analyst forecast dispersion, which is
computed as the standard deviation of EPS forecasts reported by analysts
in the I/B/E/S database in the past month t− 1.

BM For stock-month t in the period from July of year y to June of the next year
y + 1, we compute the book-to-market ratio using the book equity as of the
end of the past fiscal year y − 1, and the market value of equity as of the
end of the past calendar year y − 1. We follow Fama and French (1993) and
require both the market equity and the book equity to be positive.

D/A For stock-month t in the period from July of year y to June of the next year
y+1, we use the stock’s book debt (i.e., the sum of short-term and long-term
debt) divided by total assets as of the end of the past fiscal year y − 1.

OL For stock-month t in the period from July of year y to June of the next year
y + 1, we use the operating leverage computed as the yearly sum of the
stock’s cost of goods sold and selling, general and administrative expenses
divided by total assets as of the end of the past fiscal year y − 1.

EV OLA For stock-month t in quarter q, we compute the earnings volatility of the
stock as the standard deviation of EPS using at least 12 quarters in the past
20 quarters (from quarters q − 20 to q − 1).
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Figure 1: Expected turnover as a function of gambling propensity, for different levels of
overconfidence

This graph plots the expected turnover E(Tj) for each stock as a function of gambling propensity
Gj , for different levels of the overconfidence bias (ρ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 1], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2,
ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2. We assume that each type of
investors’ endowments equal the ex ante means of their optimal demands (i.e., ∀j Yκj = E(Xκj),
YAj = E(XAj), and YGj = E(XGj)).
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Figure 2: Expected turnover as a function of gambling propensity, for different levels of
investors’ risk aversion

This graph plots the expected turnover E(Tj) for each stock as a function of the gambling propen-
sity Gj , for different levels of investors’ risk aversion (γ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 1], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are ηκ = 0.5, ηA = 0.2,
ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. We assume
that each type of investors’ endowments equal the ex ante means of their optimal demands (i.e.,
∀j Yκj = E(Xκj), YAj = E(XAj), and YGj = E(XGj)).
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Figure 3: Expected turnover, gambling propensity, and the affect heuristic
This graph plots the expected turnover E(Tj) for each stock as a function of the gambling propen-
sity Gj and the affect parameter Aj . We consider an economy with J = 200 stocks, where the Gj

values are evenly distributed on the support [0, 1], and the Aj values are evenly distributed on the
support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1,
νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. We assume that each type of
investor’s endowments equal per capita supplies (i.e., ∀j Yκj = YAj = YGj = 1) in Panel A, and
that all endowments equal zero (i.e., ∀j Yκj = YAj = YGj = 0) in Panel B.
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Figure 4: Relative beta as a function of gambling propensity, for different levels of
overconfidence

This graph plots the relative beta βjM/ℓj as a function of the gambling propensity Gj , for different
levels of the overconfidence bias (ρ). We consider an economy with J = 200 stocks, where the Gj

values are evenly distributed on the support [0, 1], and the Aj values are evenly distributed on the
support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1,
νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2.
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Figure 5: Relative beta as a function of gambling propensity, for different levels of
investors’ risk aversion

This graph plots the relative beta βjM/ℓj as a function of the gambling propensity Gj , for different
levels of investors’ risk aversion (γ). We consider an economy with J = 200 stocks, where the Gj

values are evenly distributed on the support [0, 1], and the Aj values are evenly distributed on the
support [−2, 2]. The other parameter values are ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1
and νϵj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9.
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Figure 6: The degree of underreaction to public announcements as a function of
gambling propensity, for different levels of overconfidence

This graph plots the level of underreaction to public announcements (as measured by Cov(rj , Sj))
as a function of the gambling propensity Gj , for different levels of the overconfidence bias (ρ).
We consider an economy with J = 200 stocks, where the Gj values are evenly distributed on the
support [0, 1], and the Aj values are evenly distributed on the support [−2, 2]. The other parameter
values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01 and
νζ = νF /2; and µ = 0.8.
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Figure 7: The degree of underreaction to public announcements as a function of
gambling propensity and the affect parameter, for different levels of investors’ risk

aversion
This graph plots the level of underreaction to public announcements (as measured by Cov(rj , Sj))
as a function of the gambling propensity Gj , for different levels of investors’ risk aversion (γ).
We consider an economy with J = 200 stocks, where the Gj values are evenly distributed on the
support [0, 1], and the Aj values are evenly distributed on the support [−2, 2]. The other parameter
values are ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2;
ρ = 9; and µ = 0.8.
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Figure 8: Risk-adjusted expected returns, gambling propensity, and the affect heuristic
This graph plots the risk-adjusted expected return αj for each stock as a function of the gambling
propensity Gj and the affect parameter Aj . We consider an economy with J = 200 stocks, where
the Gj values are evenly distributed on the support [0, 1], and the Aj values are evenly distributed
on the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j
ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9.
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Figure 9: Risk-adjusted expected returns as functions of the gambling and affect
heuristics, for different levels of investors’ risk aversion

Panel A of this graph plots the risk-adjusted expected return αj for each stock as a function of
the gambling propensity Gj and the affect parameter Aj , when investors’ risk-aversion parameter
γ = 2.5. Panel B of this graph plots the difference between the αj ’s for cases where γ equals 2.5
and 2. We consider an economy with J = 200 stocks, where the Gj values are evenly distributed
on the support [0, 1], and the Aj values are evenly distributed on the support [−2, 2]. The other
parameter values are ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νθj/2; νF = 0.01
and νζ = νF /2; and ρ = 9.
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Figure 10: The cross-sectional dispersion of the industry-adjusted measure of the
advertising expense XAD3

For stock-month t in the period from July of year y to June of the next year y+1, we compute each
firm’s three-year moving average of advertising expense as of the end of the past fiscal year y− 1.
We then adjust this expense by subtracting the industry average (where the industry is defined
as the first two digits of the SIC code in month t − 1). To address extreme values, we further
winsorize the industry-adjusted expense for each cross-section at the 1% and 99% levels, using
its distribution every month. Panel A shows the cross-sectional standard deviation (SD) of the
industry-adjusted expense (XAD3), while Panel B shows the 10th, 25th, 75th, and 90th percentiles
of the cross-section of XAD3 over the sample period from July 1981 to December 2021.
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Table 1: Summary statistics
For stock-month t, Turnover represents the monthly shares traded in month t, scaled by the num-
ber of outstanding shares at the end of the past month t− 1. Relative beta is the ratio of the return
beta (estimated using at least 18 monthly returns in the past 36 months (from months t − 36 to
t − 1)) to cash flow beta in the month. Given month t in quarter q, we estimate the cash flow
beta as the coefficient of the market-level ROE in the regression of the firm’s ROE on the value-
weighted market-level ROE using at least 12 quarters in the past 20 quarters (from quarters q− 20
to q − 1). rj,t is the return of the stock in month t. If month t is in the period from July of year y
to June of the next year y + 1, we use the Catholic-to-Protestant (CP ) ratio in the county where
the firm of the stock is headquartered as of the end of the past fiscal year y − 1. We compute the
CP in a county for each of the years 1980, 1990, 2000, 2010, and 2020 using survey data, and for
any missing year between 1980 and 2020 using linear interpolation. XAD3 is the firm’s three-year
moving average of advertising expense as of the end of the past fiscal year y − 1. We use the
quarterly report that is announced in the past three months (from months t − 3 to t − 1) to com-
pute Profitability as the ratio of a firm’s gross profits (revenues minus cost of goods sold) in the
quarter to its assets at the beginning of the quarter. ME is the stock’s market value of equity as
of the end of the past month t− 1; Firm age is the number of months since the stock’s first CRSP
appearance as of the end of the past month t − 1; ANA is the number of analysts who follow the
firm and report forecasts to the I/B/E/S database in the past month t − 1; FDISP is the stock’s
analyst forecast dispersion, which is computed as the standard deviation of EPS forecasts reported
by analysts in the I/B/E/S database in the past month t− 1. BM is the book-to-market ratio com-
puted using the book equity as of the end of the past fiscal year y − 1, and the market value of
equity as of the end of the past calendar year y − 1; D/A is the stock’s book debt (i.e., the sum of
short-term and long-term debt) divided by total assets as of the end of the past fiscal year y − 1;
OL is the operating leverage computed as the yearly sum of the stock’s cost of goods sold and
selling, general and administrative expenses divided by total assets as of the end of the past fiscal
year y−1. For month t in quarter q, EV OLA is the earnings volatility of the stock computed as the
standard deviation of EPS using at least 12 quarters in the past 20 quarters (from quarters q−20 to
q − 1). To address extreme values, we winsorize the continuous variables (i.e., all variables except
Firm age and ANA) at the 1% and 99% levels, using each of their distributions every month. The
exception is Stock return (rj,t), which is not winsorized. Table 1 presents the time-series averages
of the cross-sectional statistics of the variables. The sample period is from July 1981 to December
2021. See Appendix B for variable definitions.
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Table 1 (continued)

Percentile
Mean Median SD 10th 25th 75th 90th

Turnover 0.128 0.087 0.146 0.021 0.045 0.155 0.269
Relative beta 2.344 0.777 5.732 0.153 0.348 1.809 4.527

Return beta 1.239 1.14 0.666 0.474 0.769 1.598 2.132
Cash flow beta 3.801 1.546 8.173 0.254 0.643 3.491 7.578

Stock return (rj,t) 0.014 0.005 0.145 –0.131 –0.06 0.074 0.161
CP 1.705 1.392 1.428 0.232 0.558 2.374 3.787
XAD3 ($106) 89.687 6.708 273.772 0.278 1.142 38.59 186.882
Profitability 0.099 0.09 0.079 0.022 0.052 0.137 0.196
ME ($106) 3158.772 450.281 9288.735 34.238 109.492 1740.906 6580.083
Firm age 178.415 157.348 122.51 29.048 77.591 270.697 377.035
ANA 4.97 2.145 6.875 0 0.086 7.106 14.545
FDISP 0.121 0.067 0.161 0.017 0.032 0.139 0.277
BM 0.663 0.527 0.526 0.173 0.307 0.858 1.291
D/A 0.219 0.182 0.203 0.003 0.04 0.334 0.491
OL 1.113 0.949 0.758 0.352 0.611 1.405 2.041
EV OLA 0.508 0.262 0.79 0.075 0.133 0.538 1.096
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Table 2: Gambling propensity and turnover
The table presents the estimated coefficients and the corresponding t-statistics (in parentheses) for
the following regression:

Turnoverj,t = b0 + b1 × CP j,t + b2 × Controls+ ϵj,t.

Turnoverj,t is the turnover of the j’th stock in month t. Given month t in the period from July of
year y to June of the next year y + 1, CP j,t is the Catholic-to-Protestant ratio in the county where
the firm of the stock is headquartered as of the end of the past fiscal year y − 1. We compute CP
in a county for each of the years 1980, 1990, 2000, 2010, and 2020 using survey data, and for each
missing year between 1980 and 2020 using linear interpolation. We control for past stock returns
in month t− 1 (rj,t−1), in month t− 2 (rj,t−2), and from months t− 12 to t− 3 (rj,t−12 to t−3), mar-
ket equity ME and firm age as of the end of the past month t − 1, book-to-market ratio BM and
leverage D/A as of the end of the past year y − 1, earnings volatility EV OLA, and the number of
analysts following the firm and reporting forecasts, ANA, and analyst forecast dispersion FDISP
in the past month t− 1. To address extreme values, we winsorize the continuous variables (i.e., all
variables except Firm age and ANA) at the 1% and 99% levels, using each of their distributions
every month. We estimate the regression using the Fama-MacBeth procedure and correct the stan-
dard errors using the Newey-West method with up to three lags. ∗, ∗∗ and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively. The sample period is from July 1981 to December 2021.
See Appendix B for variable definitions.

Dependent variable: Turnoverj,t × 100
(1) (2)

CP 0.097*** 0.260***
(3.48) (8.98)

rj,t−1 2.726*** 2.779***
(2.65) (3.72)

rj,t−2 1.788** 3.213***
(2.04) (5.13)

rj,t−12 to t−3 1.736*** 4.190***
(4.46) (12.96)

ln(ME) 1.216*** -1.660***
(8.02) (-11.51)

ln(Firm age) -1.829*** -0.659***
(-18.03) (-9.50)

BM -0.684*** -1.244***
(-3.37) (-5.52)

D/A 0.362 -0.804***
(1.48) (-2.86)

EV OLA 1.183*** 0.956***
(10.52) (9.85)

ln(1 +ANA) 6.895***
(18.01)

FDISP 14.065***
(13.50)

Observations 930,463 545,803
R-squared 0.163 0.213

65



Table 3: Gambling propensity and the relative beta
The table presents the estimated coefficients and the corresponding t-statistics (in parentheses) for
the following regression:

Relative betaj,t = b0 + b1 × CP j,t + b2 × Controls+ ϵj,t.

Relative betaj,t is the relative beta of the j’th stock (i.e., the ratio of the return beta, which is
estimated using at least 18 monthly returns in the past 36 months (from months t− 36 to t− 1), to
the cash flow beta, which is estimated as the coefficient of the market-level ROE in the regression
of the firm’s ROE on the the value-weighted market-level ROE, using at least 12 quarters of the
past 20 quarters) in month t. Given month t in the period from July of year y to June of the next
year y + 1, CP j,t is the Catholic-to-Protestant ratio in the county where the firm of the stock is
headquartered as of the end of the past fiscal year y − 1. We compute CP in a county for each of
the years 1980, 1990, 2000, 2010, and 2020 using survey data, and for each missing year between
1980 and 2020 using linear interpolation. We control for past stock returns in month t− 1 (rj,t−1),
in month t− 2 (rj,t−2), and from months t− 12 to t− 3 (rj,t−12 to t−3), market equity ME as of the
end of the past month t− 1, and book-to-market ratio BM , leverage D/A, and operating leverage
OL as of the end of the past year y − 1. To address extreme values, we winsorize continuous
variables at the 1% and 99% levels, using each of their distributions every month. We estimate the
regression using the Fama-MacBeth procedure and correct the standard errors using the Newey-
West method with up to three lags. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively. The sample period is from July 1981 to December 2021. See Appendix B for variable
definitions.

Dependent variable: Relative betaj,t
(1) (2)

CP -0.031*** -0.021*
(-2.68) (-1.81)

rj,t−1 -0.179 -0.186
(-1.58) (-1.55)

rj,t−2 -0.170 -0.175
(-1.53) (-1.47)

rj,t−12 to t−3 -0.037 -0.044
(-0.54) (-0.65)

ln(ME) 0.181*** 0.172***
(14.58) (14.08)

BM 0.685*** 0.658***
(6.03) (5.84)

D/A -0.680*** -0.717***
(-8.49) (-8.13)

OL 0.006
(0.22)

Observations 470,033 436,865
R-squared 0.018 0.021
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Table 4: Gambling propensity and the post-profitability-announcement drift
The table presents the estimated coefficients and the corresponding t-statistics (in parentheses) for the following regression:

Risk-adjusted returnj,t =
3∑

m=1

(
b0,m ×D−m + b1,m × Profitabilityj,t ×D−m + b2,m × Profitabilityj,t × CP j,t ×D−m

+b3,m × CP j,t ×D−m) + b4 × Controls+ ϵj,t.

Risk-adjusted returnj,t is the j’th stock’s excess return over the risk-free interest rate (Exret) or the difference between the stock return
and the benchmark-implied return in month t. We estimate the benchmark models, including the CAPM, the Fama and French (1993)
and Carhart (1997) 4-factor model (FFC4), and the Fama and French (2015) 5-factor model (FF5), using at least 18 monthly returns in
the past 36 months (from months t − 36 to t − 1). If month t is in the period from July of year y to June of the next year y + 1, we
use the quarterly report that is announced in the past three months (from months t − 3 to t − 1) to compute Profitability as the ratio
of a firm’s gross profits (revenues minus cost of goods sold) in the quarter to its assets at the beginning of the quarter; D−m (where
m = 1, 2, or 3) is a dummy variable indicating that the announcement is made in month t −m. CP is the Catholic-to-Protestant ratio
in the county where the firm of the stock is headquartered as of the end of the past fiscal year y − 1. We compute CP in a county for
each of the years 1980, 1990, 2000, 2010, and 2020 using survey data, and for each missing year between 1980 and 2020 using linear
interpolation. We consider controlling for past stock returns in month t − 1 (rj,t−1), in month t − 2 (rj,t−2), and from months t − 12 to
t− 3 (rj,t−12 to t−3), market equity ME as of the end of the past month t− 1, and book-to-market ratio BM as of the end of the past year
y−1. To address extreme values, we winsorize all continuous variables at the 1% and 99% levels, using each of their distributions every
month. The exception is the dependent variable Risk-adjusted returnj,t, which is not winsorized. We estimate the regression using the
Fama-MacBeth procedure and correct the standard errors using the Newey-West method with up to three lags. ∗, ∗∗ and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The sample period is from July 1981 to December 2021. See Appendix B for
variable definitions.
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Table 4 (continued)

Dependent variable: Risk-adjusted returnj,t × 100
Exret Exret CAPM CAPM FFC4 FFC4 FF5 FF5
(1) (2) (3) (4) (5) (6) (7) (8)

Profitability ×D−1 5.581*** 6.128*** 5.627*** 6.745*** 5.301*** 6.822*** 4.506*** 6.450***
(5.55) (6.64) (5.71) (7.36) (4.81) (6.61) (4.47) (6.55)

Profitability ×D−2 3.695*** 4.059*** 3.585*** 4.324*** 2.968*** 3.679*** 3.319*** 3.783***
(3.73) (4.37) (3.64) (4.61) (2.84) (3.60) (3.01) (3.95)

Profitability ×D−3 4.662*** 4.324*** 4.733*** 4.558*** 3.927*** 3.850*** 3.846*** 3.415***
(3.78) (3.65) (3.62) (3.80) (3.19) (3.16) (2.90) (2.72)

Profitability×CP ×D−1 -0.974** -1.016*** -0.938** -1.078*** -0.832* -0.945** -1.221*** -1.367***
(-2.53) (-2.69) (-2.29) (-2.81) (-1.81) (-2.26) (-2.83) (-3.27)

Profitability×CP ×D−2 -0.066 -0.146 0.113 -0.049 0.193 0.123 -0.297 -0.241
(-0.17) (-0.40) (0.30) (-0.13) (0.48) (0.31) (-0.68) (-0.57)

Profitability×CP ×D−3 0.080 0.368 0.179 0.400 0.619 0.786 0.494 0.834
(0.15) (0.68) (0.32) (0.74) (1.08) (1.41) (0.82) (1.42)

CP ×D−1 0.092 0.082 0.092 0.084 0.087 0.073 0.172*** 0.152***
(1.53) (1.46) (1.54) (1.55) (1.51) (1.35) (3.19) (2.73)

CP ×D−2 -0.014 -0.016 -0.023 -0.025 -0.028 -0.033 0.082 0.050
(-0.23) (-0.31) (-0.39) (-0.47) (-0.50) (-0.62) (1.40) (0.86)

CP ×D−3 0.008 -0.038 -0.016 -0.055 -0.069 -0.105 0.010 -0.051
(0.10) (-0.54) (-0.21) (-0.80) (-0.95) (-1.57) (0.14) (-0.73)

rj,t−1 -3.597*** -3.920*** -5.170*** -5.981***
(-8.63) (-8.23) (-8.28) (-9.86)

rj,t−2 -0.026 -0.158 -1.282** -1.276**
(-0.06) (-0.39) (-2.48) (-2.37)

rj,t−12 to t−3 0.374** 0.337* 0.115 -0.060
(1.98) (1.88) (0.62) (-0.32)

ln(ME) -0.144*** -0.144*** -0.149*** -0.191***
(-3.53) (-3.57) (-4.98) (-6.24)

BM 0.338*** 0.352*** 0.229** -0.026
(2.91) (3.10) (2.28) (-0.24)

Observations 966,313 888,011 894,557 867,572 894,557 867,572 894,557 867,572
R-squared 0.018 0.053 0.018 0.051 0.015 0.049 0.014 0.051
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Table 5: Gambling propensity, advertising, and risk-adjusted returns
The table presents the estimated coefficients and the corresponding t-statistics (in parentheses) for the following regression:

Risk-adjusted returnj,t = b0 + b1 ×ADV j,t + b2 ×ADV j,t × CP j,t + b3 × CP j,t + b4 × Controls+ ϵj,t.

Risk-adjusted returnj,t is the j’th stock’s excess return over the risk-free interest rate (Exret) or the difference between the stock return
and the benchmark-implied return in month t. We estimate the benchmark models, including the CAPM, the Fama and French (1993)
and Carhart (1997) 4-factor model (FFC4), and the Fama and French (2015) 5-factor model (FF5), using at least 18 monthly returns in
the past 36 months (from months t− 36 to t− 1). If month t is in the period from July of year y to June of the next year y + 1, ADVj,t is
the cross-sectional percentile rank of the industry-adjusted XAD3 (i.e., the difference between the firm’s three-year moving average of
advertising expense, XAD3, and the industry average) as of the end of the past year y − 1. CP is the Catholic-to-Protestant ratio in the
county where the firm of the stock is headquartered as of the end of the past fiscal year y−1. We compute CP in a county for each of the
years 1980, 1990, 2000, 2010, and 2020 using survey data, and for each missing year between 1980 and 2020 using linear interpolation.
We consider controlling for Profitability. We use the quarterly report that is announced in the past three months (from months t − 3
to t − 1) to compute Profitability as the ratio of a firm’s gross profits (revenues minus cost of goods sold) in the quarter to its assets
at the beginning of the quarter; D−m (where m = 1, 2, or 3) is a dummy variable indicating that the announcement is made in month
t−m. We also consider controlling for past stock returns in month t− 1 (rj,t−1), in month t− 2 (rj,t−2), and from months t− 12 to t− 3
(rj,t−12 to t−3), market equity ME as of the end of the past month t − 1, and book-to-market ratio BM as of the end of the past year
y−1. To address extreme values, we winsorize all continuous variables at the 1% and 99% levels, using each of their distributions every
month. The exceptions are the dependent variable Risk-adjusted returnj,t and the standardized advertising measure (ADV ), which are
not winsorized. We estimate the regression using the Fama-MacBeth procedure and correct the standard errors using the Newey-West
method with up to three lags. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The sample period is from
July 1981 to December 2021. See Appendix B for variable definitions.
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Table 5 (continued)

Dependent variable: Risk-adjusted returnj,t × 100.
Exret CAPM CAPM FFC4 FFC4 FF5 FF5
(1) (2) (3) (4) (5) (6) (7)

ADV -0.504*** -0.559*** -0.284** -0.593*** -0.251* -0.620*** -0.315**
(-3.64) (-3.98) (-2.13) (-4.31) (-1.77) (-4.24) (-2.08)

ADV × CP 0.215*** 0.222*** 0.221*** 0.237*** 0.231*** 0.190*** 0.247***
(3.48) (3.42) (3.39) (3.36) (3.26) (2.68) (3.39)

CP -0.087* -0.088* -0.096* -0.054
(-1.96) (-1.90) (-1.94) (-1.22)

Profitability ×D−1 6.608*** 7.035*** 5.894***
(5.23) (5.08) (4.26)

Profitability ×D−2 4.169*** 3.552** 3.433**
(3.06) (2.56) (2.41)

Profitability ×D−3 5.245*** 4.873*** 2.921
(3.19) (2.70) (1.64) )

Profitability × CP ×D−1 -1.007* -1.246** -1.143*
(-1.78) (-2.00) (-1.81)

Profitability × CP ×D−2 0.640 1.117 0.887
(0.96) (1.53) (1.25)

Profitability × CP ×D−3 -0.149 -0.034 0.606
(-0.17) (-0.04) (0.63)

CP ×D−1 0.006 0.051 0.018
(0.08) (0.53) (0.18)

CP ×D−2 -0.204* -0.257** -0.201*
(-1.68) (-1.98) (-1.68)

CP ×D−3 -0.121 -0.156 -0.204
(-0.94) (-1.16) (-1.54)

rj,t−1 -3.934*** -5.253*** -5.998***
(-7.73) (-8.23) (-8.68)

rj,t−2 0.225 -0.739 -0.787
(0.47) (-1.23) (-1.28)

rj,t−12 to t−3 0.080 -0.090 -0.229
(0.39) (-0.42) (-1.04)

ln(ME) -0.096** -0.111*** -0.120***
(-2.28) (-3.37) (-3.58)

BM 0.483*** 0.356*** 0.233*
(3.88) (3.05) (1.95)

Observations 335,341 326,623 286,647 326,623 286,647 326,623 286,647
R-squared 0.007 0.007 0.077 0.006 0.077 0.006 0.079
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Table 6: Gambling propensity, advertising, and the risk-adjusted return: Portfolio analysis
For month t from July of year y to June of the next year y + 1, we divide the sample stocks into two equal groups based on the stan-
dardized advertising expense ADV (i.e., the cross-sectional percentile rank of the industry-adjusted XAD3, representing the difference
between the firm’s three-year moving average of advertising expense, XAD3, and the industry average) from the past fiscal year y − 1,
and independently into two equal groups based on the Catholic-to-Protestant ratio (CP ) in the county where the firm of the stock is
headquartered as of the end of the past fiscal year y− 1. This leads to 2× 2 portfolios (where “Hi” indicates “High”; and “Lo” indicates
“Low”). We compute CP in each of the years 1980, 1990, 2000, 2010, and 2020 using survey data, and for each missing year between
1980 and 2020 using linear interpolation. We compute the return of each portfolio by weighting stocks in the portfolio equally. This
table presents the excess return over the risk-free interest rate, and benchmark-adjusted returns based on the CAPM, the Fama and
French (1993) and Carhart (1997) 4-factor model (FFC4), and the Fama and French (2015) 5-factor model (FF5)) for each portfolio, as
well as each high-ADV minus low-ADV (conditional on high/low CP ratio) portfolio, and the return difference between high-ADV
minus low-ADV portfolios conditional on high and low CP ratios. We correct standard errors using the Newey-West method with up
to three lags. t-statistics are reported in parentheses. ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The
sample period is from July 1981 to December 2021. See Appendix B for variable definitions.

Risk-adjusted return× 100
Exret CAPM FFC4 FF5

Lo CP Hi CP Lo CP Hi CP Lo CP Hi CP Lo CP Hi CP
(1) (2) (3) (4) (5) (6) (7) (8)

(1) Lo ADV 1.333*** 1.186*** 0.534*** 0.329** 0.488*** 0.329*** 0.414*** 0.375***
(5.11) (4.35) (3.24) (2.18) (4.6) (3.64) (3.53) (4.06)

(2) Hi ADV 1.145*** 1.335*** 0.311** 0.413*** 0.254*** 0.418*** 0.219** 0.498***
(4.49) (4.76) (2.5) (3.38) (3.01) (4.47) (2.15) (4.25)

(2)-(1) -0.188** 0.149 -0.223** 0.085 -0.234*** 0.089 -0.196** 0.123
(-2.1) (1.65) (-2.43) (0.93) (-2.81) (1.03) (-2.27) (1.3)

Difference 0.336*** 0.308*** 0.323*** 0.319**
(3.08) (2.7) (2.78) (2.53)
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A Traditional Form of Overconfidence

In the main paper (see Section 2), we assume that both the signal about the common

factor, τ , and the signal about the j’th (j = 1, ..., J) stock’s firm-specific cash flow, sj , are

public information; and that overconfident investors are skeptical about the quality of

the information since they do not produce the information themselves (Odean (1998) and

Luo, Subrahmanyam, and Titman (2021)).

Here we modify the setting in Section 2 of the main paper by assuming the presence

of private information. Specifically, we assume that for the j’th stock, overconfident in-

vestors also observe a private signal, s∗j = θj + ξj , where the noise term ξj is drawn from

a normal distribution with zero mean and variance νξj . Further, we add a traditional

form of overconfidence as in Daniel, Hirshleifer, and Subrahmanyam (1998). Specifically,

overconfident investors overestimate the precision of the private signal, s∗j = θj + ξj , in

that they believe that ξj has a smaller variance ξj/ρ∗ than the actual variance νξj , where

ρ∗ > 1 is a constant parameter representing the scale of the traditional overconfident bias.

We denote the unbiased (overconfident) belief about the variance of s∗j as νs∗j = νθj + νξj

(ωs∗j
= νθj + νξj/ρ

∗). Affect investors and gamblers hold unbiased beliefs about the vari-

ance νξj .

Denote the vector of the private signals as

s∗ =


s∗1
s∗2
...
s∗J

 ; and let S =

(
s
s∗

)
.

Note that the per capita supply of each stock is fixed at unity. Stock prices fully reveal

the private signals s∗; therefore, there is no asymmetric information. However, investors

have heterogeneous assessments of signal informativeness; that is, they agree to disagree.

Specifically, overconfident investors believe that θ|S ∼ N
(
q̂S, Γ̂

)
, where q̂ and Γ̂ are

constants depending on the variance-covariance matrix of θ and S based on overconfident

investors’ biased beliefs. Affect investors and gamblers believe that θ|S ∼ N (qS,Γ ) ,

where q and Γ are constants depending on the variance-covariance matrix of θ and S

based on their unbiased beliefs.
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See Equation (3) of the main paper; we redefine the following parameters:

Ω ≡ q̂ − q, ϕκ ≡ ℓℓ′κF |τ + Γ̂ , ϕ ≡ ℓℓ′νF |τ + Γ , ϕG ≡ ϕ−G/γ2, and

Φ ≡ ηκϕ
−1
κ + ηAϕ

−1 + ηGϕ
−1
G .

We obtain the following theorem (the proof of which is at the end of this Internet Ap-

pendix).

Theorem 1 With overestimation of the precision of private information, in equilibrium:

(i) Stock prices are given by:

P =
1

Rf

[
V̄ + ℓ

νF
ντ
τ + qS + Φ−1

[
ηκϕ

−1
κ (ℓ∆τ + ΩS) + ηAϕ

−1A− γ1
]]
.

(ii) Each overconfident and affect investor’s, and each gambler’s, demands for a stock are respec-

tively given by:

Xκ =
ϕ−1
κ

γ

(
V̄ + ℓ

νF
κτ
τ + q̂S − PRf

)
,

XA =
ϕ−1

γ

(
A+ V̄ + ℓ

νF
ντ
τ + qS − PRf

)
,

XG =
ϕ−1
G

γ

(
V̄ + ℓ

νF
ντ
τ + qS − PRf

)
.

We consider a simple economy like in Section 3.1 of the main paper, where firm-

specific payoff variances are identical in the cross-section of stocks (i.e., ∀j νθj = ν),

and signals about the firm-specific components θj , sj , and s∗j are uninformative (i.e., ∀j

νϵj → ∞). In this case, we obtain the same analytical results as in Propositions 1, 2, 3, and

4. In what follows, we examine the general case numerically as in Section 3.2 of the main

paper.

IA.1 Turnover

We can use Theorem 1 to obtain the demand for the j’th stock by each overconfident and

affect investor, and gambler, denoted by Xκj , XAj , and XGj , respectively, which are the

j’th elements of the vectors Xκ, XA, and XG. We can then use Equation (4) of the main

paper to compute the expected turnover of the j’th stock.

2



We consider an economy with J = 200 stocks, where the Gj values are evenly dis-

tributed on the support [0, 0.5], and the Aj values are evenly distributed on the support

[−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1,

νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF/2. The overconfidence parameter ρ

takes values from 1 to 9. There is also a traditional form of overconfidence (as indicated

by ρ∗ = 2).1

Figure IA.1 plots the expected turnover E(Tj) for each stock as a function of gam-

bling propensity Gj , for different values of overconfidence (ρ), ranging from 1 to 9. As

in Figure 1, we assume here that each type of investors’ endowments equal the ex ante

means of their optimal demands (i.e., ∀j Yκj = E(Xκj), YAj = E(XAj), and YGj = E(XGj));

in this case, the turnover is not affected by the affect parameter Aj . Figure IA.1 shows

that when overconfident investors correctly assess the precision of the public signals (i.e.,

ρ = 1), trading still occurs. This is caused by heterogeneous assessments of private in-

formation precision, due to informed investors’ traditional form of overconfidence (i.e.,

ρ∗ > 1). Consistent with Figure 1 of the main paper, an increase in the gambling propen-

sityGj also leads to an increase in E(Tj), and an increase in the overconfidence parameter

ρ results in an increase in the expected turnover E(Tj).

Figure IA.2 displays the expected turnover E(Tj) for each stock as a function of gam-

bling propensity Gj , when investors’ risk aversion γ varies from 2 to 2.5 (fixing ρ = 9).

Consistent with Figure 2 of the main paper, as γ increases, the expected turnover E(Tj)

decreases; also an increase in the gambling propensity Gj leads to an increase in E(Tj) in

the cross-section of stocks.

In Panel A of Figure IA.3, we assume that each investor’s endowment equals the per

capita supply (i.e., ∀j, Yκj = YAj = YGj = 1); in Panel B, we assume that investor endow-

ments are identically zero (i.e., ∀j, Yκj = YAj = YGj = 0). We plot the expected turnover

E(Tj) for each stock as a function of the gambling propensity Gj and the affect parameter

Aj . Like in Figure 3 of the main paper, the cross-sectional relationship between E(Tj) and

Aj is non-monotonic; E(Tj) is higher for stocks with extreme positive/negative values

1We set νξj = νθj/2 to indicate a significant magnitude of noise in the signal s∗j . The traditional overcon-
fidence parameter ρ∗ = 2 is consistent with the range used in Odean (1998) (pp. 1909–10). See Footnote 15
of the main paper for justification of other parameter values.
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of Aj . Further, in the cross-section of stocks, the expected turnover E(Tj) increases as

gambling propensity Gj increases.

IA.2 Return co-movement with the market

Using Theorem 1, we can express the realized excess returns of the j’th stock and the

market as

rj = 1′
j(V − PRf ) and rM =

1

J
1′(V − PRf ), (IA.1)

where

V − PRf = ℓ

(
F − νF

ντ
τ

)
+ θ − qS − Φ−1

[
ηκϕ

−1
κ (ℓ∆τ + ΩS) + ηAϕ

−1A− γ1
]
.

We can compute βjM =
Cov(rj, rM)

Var(rM)
.

Figure IA.4 depicts the relative beta βjM/ℓj for each stock as a function of gambling

propensity Gj , for different levels of overconfidence (ρ). Like in Figure 4 of the main

paper, in the cross-section of stocks, βjM/ℓj decreases as Gj increases, which accords with

Proposition2. Also, as overconfident investors underestimate the precision of the signals

to a greater extent (i.e., a higher ρ), a greater discrepancy arises between βjM and ℓj .

Figure IA.5 depicts the relative beta βjM/ℓj for each stock as a function of gambling

propensity Gj , when investors’ risk aversion (indicated by the parameter γ) varies. Like

in Figure 5 of the main paper, as Gj increases, βjM/ℓj decreases. As investors become

more risk averse (i.e., as γ increases), the discrepancy between βjM and ℓj diminishes.

IA.3 Underreaction to public information

Recall that the public signal for the j’th stock (see Equation (11) of the main paper) takes

the following form:

Sj = µsj + (1− µ)τ,

where µ ∈ (0, 1] is a constant parameter. We can then use rj from Equation (IA.1) to

compute the underreaction measure Cov(rj, Sj).

Figure IA.6 plots Cov(rj, Sj), for each stock as a function of the gambling propensity

Gj , for different levels of the overconfidence bias (ρ). We set µ = 0.8 (our results are
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robust to different values of µ); the other parameters are the same as those used in the

earlier figures. Like in Figure 6 of the main paper, when overconfident investors assess

the precision of the signals properly (i.e., ρ = 1), we observe Cov(rj, Sj) = 0 indicating

no underreaction. However, if overconfident investors underestimate the precision of the

signals s and τ (i.e., ρ > 1), then Cov(rj, Sj) > 0, and an increase in the gambling propen-

sity Gj leads to a decrease in Cov(rj, Sj). Also, if overconfident investors underestimate

the precision of the signals to a greater extent (i.e., a higher ρ), Cov(rj, Sj) is higher.

Figure IA.7 depicts Cov(rj, Sj), for each stock as a function of the gambling propensity

Gj , when investors’ risk aversion (indicated by the parameter γ) varies. Like in Figure 7

of the main paper, as Gj increases, Cov(rj, Sj) decreases. As investors become more risk

averse (i.e., as γ increases), Cov(rj, Sj) increases.

IA.4 The (unconditional) risk-adjusted expected return

Using Theorem 1 and Equation (IA.1), we the express the expected excess returns of the

j’th stock and the market, respectively, as

E(rj) = 1′
jΦ

−1
(
γ1− ηAϕ

−1A
)
, and E(rM) =

1

J
1′Φ−1

(
γ1− ηAϕ

−1A
)
;

note that these expected returns are unconditional on the public information τ and s, and

the private information s∗. We can compute the (unconditional) risk-adjusted expected

returns of the stocks as

αj = E(rj)− βjME(rM),

Figure IA.8 plots the risk-adjusted return αj as a function of gambling propensity Gj

and affect parameter Aj . Like in Figure 8 of the main paper, we observe that in the cross-

section of stocks, αj decreases as the affect parameter Aj increases. Also the negative

relationship between αj and Aj attenuates when gambling propensity Gj is high.

In Panel A of Figure IA.9, we set γ to a higher value (2.5), compared to Figure IA.8,

where γ = 2. Like in the main paper (see Panel A of Figure 9 and the ensuing discussion),

we observe that the negative relationship between αj and the affect parameterAj becomes

more pronounced for higher γ. We corroborate this finding in Panel B of Figure IA.9,

where we plot the difference between the αj’s when γ = 2.5 and when γ = 2. The

difference decreases as the affect parameter Aj increases.
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Proof of Theorem 1:

Denote S =

(
s
s∗

)
.

(a) The i’th overconfident investor believes that

F |τ ∼ N

(
νF
κτ
τ, κF |τ

)
and θ|S ∼ N

(
q̂S, Γ̂

)
,

where q̂ and Γ̂ are constants depending on the variance-covariance matrix of θ and S

based on the investor’s biased belief. Write the investor’s wealth at Date 1 as

Wi1 = Wi0Rf +X ′
i(V − PRf ) = Wi0Rf +X ′

i(V̄ + ℓF + θ − PRf ).

The investor’s demand Xi maximizes

Ê [U(Wi1)|τ,S]

= Ê
[
−exp

[
−γWi0Rf − γX ′

i(V̄ + ℓF + θ − PRf )
]
|τ,S

]
= −exp

[
−γWi0Rf − γX ′

i

(
V̄ + ℓ

νF
κτ
τ + q̂S − PRf

)
+ 0.5γ2X ′

iϕκXi

]
,

where ϕκ = ℓℓ′κF |τ + Γ̂ . The f.o.c. w.r.t. Xi implies that the optimal demand is:

Xκ =
ϕ−1
κ

γ

(
V̄ + ℓ

νF
κτ
τ + q̂S − PRf

)
. (IA.2)

(b) The i’th affect investor perceives that in addition to the actual liquidation values

V = V̄ +ℓF +θ, there are extra non-monetary payoffs as indicated byA, and has unbiased

beliefs that

F |τ ∼ N

(
νF
ντ
τ, νF |τ

)
, and θ|S ∼ N (qS,Γ ) ,

where q and Γ are constants depending on the variance-covariance matrix of θ and S

based on the investor’s unbiased belief. The investor’s demand Xi maximizes:

E
[
U(WA

i1)|τ,S
]

= E
[
−exp

[
−γWi0Rf − γX ′

i(A+ V̄ + ℓF + θ − PRf )
]
|τ,S

]
= −exp

[
−γWi0Rf − γX ′

i

(
A+ V̄ + ℓ

νF
ντ
τ + qS − PRf

)
+ 0.5γ2X ′

iϕXi

]
,
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where ϕ = ℓℓ′νF |τ + Γ . The f.o.c. implies that the demand is expressed as:

XA =
ϕ−1

γ

(
A+ V̄ + ℓ

νF
ντ
τ + qS − PRf

)
. (IA.3)

(c) The i’th gambler also has unbiased beliefs. The investor’s demand Xi maximizes:

E [UG(Wi1)|τ,S]

= E
[
−exp

[
−γWi0Rf − γX ′

i(V̄ + ℓF + θ − PRf )− 0.5X ′
iGXi

]
|τ, s

]
= −exp

[
−γWi0Rf − γX ′

i

(
V̄ + ℓ

νF
ντ
τ + qs− PRf

)
+ 0.5γ2X ′

i

(
ϕ− G

γ2

)
Xi

]
.

The f.o.c. implies that the demand is expressed as:

XG =
ϕ−1
G

γ

(
V̄ + ℓ

νF
ντ
τ + qS − PRf

)
, (IA.4)

where ϕG = ϕ−G/γ2 > 0.

(d) From Equations (IA.2), (IA.3), and (IA.4), the market-clearing condition, ηκXκ +

ηAXA + ηGXG = 1, implies that the equilibrium prices P take the form as given in this

theorem. □
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Figure IA.1: Expected turnover as a function of gambling propensity, for different levels
of overconfidence, when there is private information

This graph plots the expected turnover E(Tj) for each stock as a function of gambling propensity
Gj , for different levels of the overconfidence bias (ρ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 0.5], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA =
0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF /2. There is
also a traditional form of overconfidence (as indicated by ρ∗ = 2). We assume that each type of
investors’ endowments equal the ex ante means of their optimal demands (i.e., ∀j Yκj = E(Xκj),
YAj = E(XAj), and YGj = E(XGj)).
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Figure IA.2: Expected turnover as a function of gambling propensity, for different levels
of risk aversion, when there is private information

This graph plots the expected turnover E(Tj) for each stock as a function of the gambling propen-
sity Gj , for different levels of investors’ risk aversion (γ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 0.5], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are ηκ = 0.5, ηA = 0.2,
ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. There
is also a traditional form of overconfidence (as indicated by ρ∗ = 2). We assume that each type of
investors’ endowments equal the ex ante means of their optimal demands (i.e., ∀j Yκj = E(Xκj),
YAj = E(XAj), and YGj = E(XGj)).
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Figure IA.3: Expected turnover, gambling propensity, and the affect heuristic, when
there is private information

This graph plots the expected turnover E(Tj) for each stock as a function of the gambling propen-
sity Gj and the affect parameter Aj . We consider an economy with J = 200 stocks, where the Gj

values are evenly distributed on the support [0, 0.5], and the Aj values are evenly distributed on
the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1,
νθj = 1 and νϵj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. There is also a traditional form
of overconfidence (as indicated by ρ∗ = 2). We assume that each type of investor’s endowments
equal per capita supplies (i.e., ∀j Yκj = YAj = YGj = 1) in Panel A, and that all endowments equal
zero (i.e., ∀j Yκj = YAj = YGj = 0) in Panel B.
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Figure IA.4: Relative beta as a function of gambling propensity, for different levels of
overconfidence, when there is private information

This graph plots the relative beta βjM/ℓj for each stock as a function of the gambling propensity
Gj , for different levels of the overconfidence bias (ρ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 0.5], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2,
ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF /2. There is also a
traditional form of overconfidence (as indicated by ρ∗ = 2).
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Figure IA.5: Relative beta as a function of gambling propensity, for different levels of risk
aversion, when there is private information

This graph plots the relative beta βjM/ℓj for each stock as a function of the gambling propensity
Gj , for different levels of investors’ risk aversion (γ). We consider an economy with J = 200
stocks, where the Gj values are evenly distributed on the support [0, 0.5], and the Aj values are
evenly distributed on the support [−2, 2]. The other parameter values are ηκ = 0.5, ηA = 0.2,
ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. There is
also a traditional form of overconfidence (as indicated by ρ∗ = 2).
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Figure IA.6: Level of underreaction to public information as a function of gambling
propensity, for different levels of overconfidence, when there is private information

This graph plots the post-public-announcement drift (as measured by Cov(rj , Sj)) for each stock
as a function of the gambling propensity Gj , for different levels of the overconfidence bias (ρ).
We consider an economy with J = 200 stocks, where the Gj values are evenly distributed on
the support [0, 0.5], and the Aj values are evenly distributed on the support [−2, 2]. The other
parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2;
νF = 0.01 and νζ = νF /2; and µ = 0.8. There is also a traditional form of overconfidence (as
indicated by ρ∗ = 2).
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Figure IA.7: Level of underreaction to public information as a function of gambling
propensity, for different levels of investors’ risk aversion, when there is private

information
This graph plots the post-public-announcement drift (as measured by Cov(rj , Sj)) for each stock
as a function of the gambling propensity Gj , for different levels of investors’ risk aversion (γ).
We consider an economy with J = 200 stocks, where the Gj values are evenly distributed on
the support [0, 0.5], and the Aj values are evenly distributed on the support [−2, 2]. The other
parameter values are ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2;
νF = 0.01 and νζ = νF /2; ρ = 9; and µ = 0.8. There is also a traditional form of overconfidence (as
indicated by ρ∗ = 2).
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Figure IA.8: Risk-adjusted expected returns, gambling propensity, and the affect
heuristic, when there is private information

This graph plots the risk-adjusted expected return αj for each stock as a function of the gambling
propensity Gj and the affect parameter Aj . We consider an economy with J = 200 stocks, where
the Gj values are evenly distributed on the support [0, 0.5], and the Aj values are evenly dis-
tributed on the support [−2, 2]. The other parameter values are γ = 2, ηκ = 0.5, ηA = 0.2, ηG = 0.3;
∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2; νF = 0.01 and νζ = νF /2; and ρ = 9. There is also a
traditional form of overconfidence (as indicated by ρ∗ = 2).
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Figure IA.9: Risk-adjusted expected returns, gambling propensity, and the affect
heuristic, for different levels of risk aversion, when there is private information

Panel A of this graph plots the risk-adjusted expected return αj for each stock as a function of
the gambling propensity Gj and the affect parameter Aj , when investors’ risk-aversion parameter
γ = 2.5. Panel B of this graph plots the difference between the αj ’s for cases where γ equals 2.5
and 2. We consider an economy with J = 200 stocks, where the Gj values are evenly distributed
on the support [0, 0.5], and the Aj values are evenly distributed on the support [−2, 2]. The other
parameter values are ηκ = 0.5, ηA = 0.2, ηG = 0.3; ∀j ℓj = 1, νθj = 1 and νϵj = νξj = νθj/2;
νF = 0.01 and νζ = νF /2; and ρ = 9. There is also a traditional form of overconfidence (as
indicated by ρ∗ = 2).

17


	Introduction
	The Model
	The Equilibrium
	A simple case with a closed-form solution
	Turnover
	Return co-movement with the market
	Underreaction to public information
	The risk-adjusted expected return

	The general case: Numerical illustration
	Turnover
	Return co-movement with the market
	Underreaction to public signals
	The (unconditional) risk-adjusted expected return

	Empirical implications

	Empirical Analysis
	Data
	Gambling and turnover
	Gambling and the relative beta
	The Profitability Effect and Gambling
	Gambling, affect investing, and risk-adjusted expected returns

	Conclusions
	Turnover
	Return co-movement with the market
	Underreaction to public information
	The (unconditional) risk-adjusted expected return


