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1 Introduction

What moves stock prices? Known contenders are information, news and noise. Brogaard et al.
(2022) recently have shown that 8% of the return variance can be explained by market-wide
information whereas around 61% of the return variance can be attributed to firm-specific
information. Starting from information and ending with pricing fluctuations leave one of
the intermediate steps unclear. The pricing of information happens due to trades executed
by the traders in the market. How do they exactly carry out these trades in response to
different kinds of information? A complete answer to this question necessitates observing
individual traders in the market and analyzing their trading history. However, such datasets
are practically non-existent. In this paper, we take up the question and pursue it in a different
form. How do traders, in particular High-Frequency Traders (HFTs henceforth), exploit
information which are market-wide or stock-specific for carrying out their trades? We exploit
a novel transaction-level dataset from the National Stock Exchange in India (NSE henceforth)
to answer this question.

We consider HFTs as the focal point for our analysis due to the prominent role they
play in modern financial markets to assimilate information into asset prices. High frequency
trading is a relatively new and one of the most important technological disruptions in the
recent times. The last decade has seen an exponential growth in algorithmic trading activity
around the globe. By definition, algorithmic trading refers to the phenomenon of computer
programmes automatically making trading decisions (Menkveld, 2016). HFTs belong to
the group of traders who engage in algorithmic trading. These traders carry out extremely
fast trading, with trading decisions executed in fraction of seconds. Due to the inherent
advantage of speed and the potential to manipulate financial markets, such traders have
garnered significant academic and policy interests in the recent past. Through their role in
provisioning of continuous liquidity to financial markets, HFTs have often been ascribed the
role of modern market makers (Hagströmer & Nordén, 2013; Menkveld, 2013).

A large stream of the literature on HFT is focused on their use of information. HFT
trading activity is correlated to public information (Brogaard et al., 2014; Zhang, 2012;
Chakrabarty et al., 2020). They are known to react faster than other groups of traders to
publicly disclosed corporate announcements (Frino et al., 2017) as well as macroeconomic
announcements (Scholtus et al., 2014). Due to these trading activities, HFTs enhance the
speed of information getting assimilated to security prices, improving price efficiency. At
the same time, due to the diffusion of aggregate market-level information, HFT activity
also result in significant co-movements of security returns and liquidity (Malceniece et al.,
2019). There are complementary channels through which HFT trading strategies may affect
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stock returns. One of the possible channels is HFTs’ market-making strategies which require
optimal inventory control. HFT market-making also requires the provisioning of liquidity
during periods of stress. As this liquidity-provisioning is typically related to an increase
in expected earnings (Nagel, 2012), HFT trading strategies may be positively related to
stock returns. This association may also stem from HFT’s front-running and back-running
algorithms. Front-running on stock-specific information results in predatory-type trading
behavior (Brunnermeier & Pedersen, 2005). Back-running stems from these traders trying to
identify orders split from larger informed (possibly institutional) orders (Yang & Zhu, 2020).
While the literature has developed an understanding of timing of HFTs trading activities
with respect to information and its broad correlations with aggregate information, there is
a prominent gap in understanding how HFTs utilize information which are market-wide or
stock-specific.

In this paper, we analyze how HFTs use information which can be specific to stocks or the
market as a whole. Let us elaborate on the novelty of this decomposition of information in
terms of its scope. The present literature primarily focuses on HFT activity immediately after
public information disclosures. The focus is on whether the source of the information is public
or private. However, they do not provide any evidence if HFTs primarily use market-wide or
stock-specific information to price individual securities. Both of these types of information
can have a public or a private source. Thus the current literature cannot differentiate between
the two types of effects – is it related to individual stocks or the market as a whole? We take
a direct approach to decompose information into stock-specific and market-wide components
and examine which component has higher impact on stock pricing via HFT trades.

As information can not be directly observed, we use order imbalance (OIB) as an ex-post
measure of information. We know from the work of Chordia et al. (2002) and Chordia
& Subrahmanyam (2004) that order imbalance is positively related to security prices. In
presence of positive (negative) information in the market, we anticipate the order imbalance
to be also positive (negative). This motivation comes from the observation of Chordia &
Subrahmanyam (2004) that order imbalance can arise in intermediated markets either due
to inventory pressure of the market-maker or asymmetric information. NSE is completely
driven by limit orders with no designated market-maker. Also, HFTs are known not to carry
inventory, even on an intraday basis. Therefore, the source of order imbalance at NSE for
HFTs is new information. Building on this insight, we create a measure of order imbalance
specifically for the HFTs and decompose it to construct stock-specific and market-wide
components.

We find that HFT order imbalance is positively associated with individual stock returns
at an intraday level. The HFTs rely on the direction of the information (e.g. positive or
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negative) rather than the magnitude of the information. The informativeness of the HFTs
order imbalance can arise from either stock-specific or market-wide factors. To differentiate
between the two, we employ a factor model to decompose the order imbalance into components
due to stock-specific or market-wide information. Empirically, both of these components have
significant impact on the asset returns – with heterogeneous effects over time. Most of the
time during our period of analysis, the impact of stock-specific information seem to be more
than market-wide information. However, during periods of extreme price movements, both
these components result in very similar magnitudes of effects.

Does order imbalance capture information? In short, we argue that - it does. In
an order-driven market, Investors can participate in a trade in two ways-either as an active
participant, where they act as liquidity-taker; or as a passive participant, where they act as
liquidity providers. Due to time-sensitive nature of financial market information, informed
investors are more likely to participate in trades as active participants, rather than passive
liquidity-providers. This allows us to use order imbalance as a proxy of information, in
absence of better alternatives.

An intuitive way to see why is that we can interpret order imbalance for an asset as excess
demand for that asset. Note that we are not calculating order imbalance of an individual
investor. We are instead computing it at the level of an asset aggregating over all investors.
Since order imbalance is effectively excess demand for an asset, order imbalance would be
positive (negative) in presence of positive (negative) information. Therefore, changes in
information available at the level of traders will likely be captured by the order imbalance.

However, one can now flip the question and ask - is information the only source of
fluctuations in order imbalance? In practice, order imbalance may also arise out of liquidity
demand of traders, hedging needs and need to manage their inventory. However, these effects
would be zero-mean and would not affect our analysis for the following reason. As described
above, we do not compute the order imbalance of individual traders/investors. Instead, we
estimate the order imbalance of an entire trader group aggregating over all traders belonging
to that group. Though individual traders at any point in time may execute trades that are
not motivated by information, and goes against the direction of prevalent information (based
on their liquidity or hedging needs), it is extremely improbable that a large group of investors
in a trading group will do so impacting the order imbalance aggregated at the level of the
market.

To summarize the above discussion, information is the most likely source that can
synchronize trading positions for a trading group as a whole. Therefore, we consider asset-
level order imbalance to reflect information.

The rest of the paper is arranged as follows. Section 2 describes the related literature.
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Section 3 describes the data and institutional setting. In section 4, we carry out and describe
the main empirical analysis on information and prices. Section 5 provides robustness checks
through panel estimation with fixed effects to account for unobserved heterogeneity. Section
6 summarizes and concludes.

2 Related Literature

Our paper relates to three strands in the literature. First, we review the current understanding
of HFT behavior and the resulting impact on the market microstructure. The extant literature
on HFTs has primarily focused on their impact on market quality. The evidence on the
impact on market quality has been mostly positive. HFTs have been shown to improve
market quality in terms of bid-ask spread and price efficiency (Menkveld, 2013; Hagströmer
& Nordén, 2013; Brogaard et al., 2014). HFTs monitor liquidity more closely compared to
human traders and help the market by acting as the liquidity provider when it is expensive
and consume liquidity when it is cheap (Hendershott & Riordan, 2011). The quotes provided
by HFTs are seen to be more efficient (Hendershott et al., 2011). HFTs trade in the direction
of permanent price changes and against transitory changes (Brogaard et al., 2014). More
generally, algorithmic traders improves informational efficiency through faster price discovery,
though it imposes adverse selection cost to human traders (Chaboud et al., 2014).

There is a large literature on market volatility and agent behavior (Schroeder et al.,
2020). The behavior of HFTs are typically endogenous to the state of the market. It is not
a priori clear exactly what causes large prices changes resulting in volatility. Farmer et al.
(2004) attribute large price changes to changes in supply of liquidity. Boudt & Petitjean
(2014) find evidence consistent with this liquidity-oriented view on price jumps. Jiang et al.
(2011) on the other hand, show that macroeconomic news announcements account for a large
fraction of price jumps. How do HFTs respond to such jumps? Possibly they exacerbate the
volatility by adversely reacting through liquidity withdrawal or by not providing the liquidity
to counteract the trades of non-HFTs. Notably, Kirilenko et al. (2017) found such behavior
during the 2010 flash crash in the Dow Jones Index, an event that prompted policy-makers to
be worried about the role of HFTs in contributing to market instability.1 Golub et al. (2012)
suggests that that stock-specific flash crashes may have an origin from the trading nature of
HFTs. This behavior is consistent with the empirical findings on a larger class of endogenous
liquidity providers (Anand & Venkataraman, 2016).

The second stream of literature our work relates to is on order imbalance and its relationship

1US Securities and Exchange Commission’s investigation indicated a possible ‘algorithmic’ origin of this
crash. While HFTs by themselves did not initiate the crash, they were thought of to be net contributors to it.
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with information. In one of the earliest papers related to order imbalance, Chordia et al.
(2002) show that market returns are positively related to contemporaneous and lagged order
imbalances. The same holds true for individual stock returns (Chordia & Subrahmanyam,
2004). Using a similar notion of order imbalance, Cushing & Madhavan (2000) show that
trading in the last five minutes of any day explains a large fraction of stock variation. Chan &
Fong (2000) shows that order imbalance explains stock returns more for large stocks compared
to small stocks. There are other related notions which, in principle, are very similar to the
idea of order-imbalance as mentioned by Chordia et al. (2002), such as marketable imbalance
(Hirschey, 2021), trade-imbalance (Hsieh & Lee, 2021), or buying-selling pressure (Bollen &
Whaley, 2004; Kang & Park, 2008).

Hirschey (2021) shows that through their analysis of past patterns in orders and trades,
HFTs are able to predict order flow from other class of traders. He argues that through
this anticipatory channel, HFTs increase trading cost for non-HFTs. Using trade imbalance
as measure of informativeness, Hsieh & Lee (2021) show that mutual funds and foreign
institutions are the primary source of information in the market.

The idea of buying/selling pressure is more prevalent in the derivatives literature. Bollen
& Whaley (2004) show that the changes in implied volatility is directly related to buying
pressure arising from public order flow. Kang & Park (2008) further show that the net buying
pressure of calls (puts) increases the implied volatility of calls (puts), while the net buying
pressure of puts (calls) lowers the implied volatility of calls (puts).

Third, our paper relates to the literature on information usage in trading. It is understood
for a very long time that traders act on information which gets reflected in the asset prices.
In fact, this idea itself forms the basic tenet of efficient market hypothesis. One strand of the
current literature attempts to understand the modes of analyzing such information (Bernales
et al., 2022). We are interested in a complementary strand of literature which analyzes the
sources of such information – does it have stock-specific or market-wide origin?

Sequential trade models (Copeland & Galai, 1983; Glosten & Milgrom, 1985; Easley &
O’hara, 1987) in traditional market microstructure theory explains how public information
gets incorporated into security prices. Using Dow Jones announcements as proxis, Mitchell &
Mulherin (1994) show that public information is directly related to market activity. Berry &
Howe (1994) show a moderate positive relationship between public information (news releases
by Reuter’s) and trading volume.

Kyle (1985) explains the process through which private information that gets assimilated
into prices through the process of continuous trading. In follow-up empirical work, Ito et al.
(1998) show the presence of private information in the Tokyo FX market. In more recent
work, Kacperczyk & Pagnotta (2019) show that on the days of private information based
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trading, the indicators for asymmetric information display abnormal values. Volume and
volatility are unusually high, whereas illiquidity is low.

3 Data and Institutional Background

3.1 List of Variables

Let us first introduce some notations. We denote the number of observation on any day
by n0 and the total number of days by n1. The total number of observations, therefore, is
n0 × n1. Throughout the paper, we denote this as n. We denote the spot return of the ith
stock at day t and intraday period τ as ri,t,τ , where i = 1, 2, ..., p, t = 1, 2, ..., n1 and
τ = 1, , 2, ..., n0. The NIFTY502 index return at date t and intraday period τ is denoted by
rmt,τ . We denote the measure of liquidity as Li,t,τ . Return and liquidity measures are standard
in the literature. So we will not elaborate on them.

Here is a list of order imbalance-related variables we use throughout the paper.

OIBNUMi,t,τ : the number of buyer-initiated trades less the number of seller-initiated
trades during the period τ on the t-th date for the i-th stock scaled by the total number of
trades in the said period.

OIBV OLi,t,τ : the INR aggregate volume of buyer-initiated trades less the INR aggregate
volume of seller-initiated trades during the period τ on the t-th date for the i-th stock scaled
by the total INR volume of the trades during the said period.

These two measures of order imbalance (OIBNUM and OIBVOL) expresses the aggregate
information in the market. We may construct a similar measure specific to the HFTs.

OHFT
i,t,τ : the number of HFT buyer-initiated trades less the number of HFT seller-initiated

trades during the period τ on the t-th date for the i-th stock scaled by the total number of
trades in the said period.3

This measure of order imbalance is representative of the ex-post information utilized by
HFTs to execute their trades.

2NIFTY50 is the benchmark value-weighted index of NSE consisting of the 50 largest firms.
3Please note that though we have defined the order imbalance measure for the HFTs based on the trade

counts, a similar measure may be developed using the value of trades as well.
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Table 1: Descriptive Statistics

Variable No. of Obs. Mean SD Minimum Maximum

OIBNUM 14,512,125 -0.0141 0.4957 -1.00 1.00
OIBVAL 14,512,125 -0.0098 0.5562 -1.00 1.00
HFT OIBNUM 14,512,125 -0.0036 0.1831 -1.00 1.00
HFT OIBVAL 14,512,125 -0.0019 0.2129 -1.00 1.00
Spot Return (×104) 14,325,459 -0.0585 14.0320 -1,823.22 1,083.80
Index Return (×104) 14,370,449 -0.0442 4.0113 -74.78 123.59
Spot Trade Count 14,325,459 83.3779 133.5942 1.00 26,620.00
Spot Traded Value (INR) 14,325,459 2.30E+06 2.74E+07 5.45 7.05E+10
Liquidity (×10−8) 11,963,003 76.4488 833.4658 5.91E-06 1.33E+06

Note: The table presents the summary statistics for the sample stocks traded in NSE during the year 2015. The variables are
computed at one minute intervals for each of the 166 sample stocks during the entire calendar year of 2015 which corresponds to
246 trading days. Here, we have scaled spot and index returns and liquidity for the ease of comparison of magnitudes. None of
these scaling affect the results.

3.2 Institutional Background

The Market: For our study, we use an unique dataset obtained from the National Stock
Exchange (NSE) of India. NSE is a completely limit order driven market without any
traditional market-maker (or specialist). The exchange was established in 1992 and within
three decades it has surpassed the incumbent Bombay Stock Exchange (BSE) in terms of
market share. Presently the Indian stock market operates as a duopoly with NSE having
more than 92.5% of the equity market trading volume for FY 2021-22.4 At present there are
more than 2000 firms listed in NSE. The exchange operates on a price-time priority. The
market operates from 9:15 AM IST (GMT + 5:30) to 3:30 PM IST without any breaks.
There is a pre-open period for the spot market (from 9:00 AM to 9:15 AM) which is used
to discover daily opening price through a call-auction. Presently NSE stands as one of the
largest stock exchange in the world with an annual turnover of more than 2.18 trillion USD
(FY 2021-22) in the spot market.56

In our dataset, we have exact identifiers for algorithmic orders and subsequent trades.
This implies that we do not need to use proxies for identification of algorithmic traders, which
has been one of the majors limitations in this literature. The exchange had 1,794 stocks listed
during the year 2015. In our analysis, we consider trading data for all the stocks listed in
NSE that are permitted to issue derivative securities. This criteria ensures that the selected
stocks are large-cap stocks with sufficient liquidity.

4For FY 2015-16, NSE had a market share of 85%.
5For FY 2015-16, the turnover was 639 billion USD.
6World Federation of Exchanges website – statistics.world-exchanges.org accessed on 25 Sep 2022.
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Consistent with academic (Hendershott et al., 2011) as well as regulatory conventions
(SEC, 2010), we use proprietary algorithmic traders as our proxy for high-frequency traders.
Existing literature suggests that HFT contribute significant proportion of the order messages,
have high order-to-trade ratio and relatively low traded volume. For our dataset, we find
that HFTs contribute 76.37% of the message traffic and participate in 13.18% of the trades.7

Order Imbalance: We use the framework provided by Chordia et al. (2002) and
Chordia & Subrahmanyam (2004) to use order imbalance as a measure of aggregate ex-post
information. In a limit order driven market without any designated intermediary (market-
maker), information asymmetry is likely to drive order-imbalance. In presence of positive
(negative) information in the market, we expect more trades in a particular time interval to
be initiated by buyers (sellers) who expect price appreciation (depreciation) in the future.

By definition, the normalized order imbalance measures OIBNUMi,t and OIBV OLi,t

take a value between -1 to +1, where -1 indicates all trades initiated by sellers and +1
indicates all trades initiated by buyers. In the context of intermediated markets, order
imbalance can arise from information as well as the inventory pressure of the market-maker.
However, in the context of a completely limit order driven electronic market, order imbalance
can be conceptualized as an ex-post measure of aggregate information in the market. It is
well established that the contemporaneous order imbalance measures are positively correlated
with the stock returns in that period.

How well does order imbalance reflect active trade? In short, the answer is - quite
well. Traditionally, high frequency traders are known to be liquidity providers, primarily
participating in trades as passive participants. However, with time the number of high
frequency traders have increased, resulting in reduced profitability of passive market making
trades. We observe that almost half of the trades executed by HFTs in the Indian market is
active or liquidity-demanding. Our estimation of order imbalance considers only the trades
where HFTs participated as active participants.

Theoretically it may be possible that informed investors place non-marketable orders that
would not reflect in the order imbalance. But such orders are unlikely to reflect price-sensitive
information. In the case of HFTs, it becomes even more difficult to track informativeness of
orders that are not executed. Especially because HFTs modify their orders very frequently

7Over the years, NSE has evolved significantly in its trader composition. Though it is difficult to pinpoint
an exact time when algorithmic trading started in NSE, the introduction of Direct Market Access (DMA)
in 2008 was possibly the first step, followed by the provision of co-location services in 2010. Since then,
the market had witnessed an exponential growth in algorithmic trading activity. The market consists of
other types of traders as well. Proprietary non-algorithmic traders, who execute trades using their own funds
contribute 7.45% of the overall traded volume during the period. Institutional traders contribute 32.74%
while other traders (high net individuals, corporate entities, retail traders etc.) contribute 46.63% of the
traded volume.
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leading to a high order to trade ratio. As such, we only focus on possible price sensitive
information, that is acted upon by HFTs through marketable orders.

3.3 Data Description

For our study, we use a novel dataset of order and trade level data obtained from the National
Stock Exchange of India. Our dataset consists of 166 stocks which are permitted to be traded
in the derivative market. These are usually stocks with highest liquidity. In this dataset, we
can exactly identify the algorithmic traders – in particular, HFT traders.8 The dataset spans
across the calendar year of 2015 consisting of 246 trading days.

For all the stocks, we create a time series of intraday order imbalance and returns computed
at one minute interval. A one-minute interval allows us to capture enough trades so that the
price series is not flat, and at the same time, it is granular enough to capture high-frequency
behavior of the traders.

Table 1 provides descriptive statistics of the minute-level trading data regarding the order
imbalance measures and individual stock returns. The market in general was slightly bearish
for the period. The benchmark NIFTY50 stock index declined from a level of 8284.00 at
the closing of 1st Jan 2015 to 7946.30 at the closing on 31st Dec 2015. The mean value
of the returns and imbalance measures in this period are both negative. As the trading
activity differs significantly across the selected stocks, we observe high degree of dispersion
for the number of trades (spot trade count) and the traded volume (in INR). Stock and index
returns are estimated as log returns over the one-minute periods.9 Our liquidity measure is
constructed as the inverse of the illiquidity measure proposed by Amihud (2002).

4 How is Information Priced?

HFTs are generally thought of to be informed traders (Brogaard et al., 2014) in the line of
using information efficiently as described by Kyle (1985). Here we empirically analyze the
informational component of the HFT trades.

8The algorithmic identifier flag in the dataset is provided by the exchange (National Stock Exchange
India). We combine this flag with the type of trader (Proprietary) flag, to identify Proprietory-Algorithmic
(PA) traders.

9In general, this is estimated as close-to-close returns over the one-minute intervals, but for the first
trading minute of the day, this is estimated as open to close returns.
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4.1 Constructing Aggregate and Stock-specific Factors

To analyze the relationship between stock returns and information, we have to look at the
idiosyncratic component of returns after controlling for known factors that explain return
variability. There are well-recognized factors that explain stock returns at a daily level.
Since the introduction of the Capital Asset Pricing Model (Sharpe, 1964; Lintner, 1969), the
aggregate market return has been used as one of the primary factors to explain individual
stock returns. Further, Amihud & Mendelson (1986) show that even after accounting for
aggregate market risk, illiquidity demands a premium for investors. To account for these two
channels, we use a simple two-factor model to regress the intraday returns for a particular
stock on the market returns and stock-specific liquidity as described in equation 1. We use
this model to extract the return residuals after controlling for systematic components arising
from fundamentals and liquidity –

ri,t,τ = αi + βmkt
i rmt,τ︸ ︷︷ ︸

fundamentals-driven
systematic component

+ βliq
i Li,t,τ︸ ︷︷ ︸

liquidity-driven
systematic component

+ ϵi,t,τ︸︷︷︸
return residual

. (1)

The intraday return for the i-th stock at day t and intraday period τ is denoted as ri,t,τ
are is calculated as log returns over one-minute periods. The market return on date t and
intraday period τ is denoted by rmt,τ and is calculated as log returns over one-minute periods
of the NIFTY50 index – the market index for NSE. Liquidity Li,t,τ is estimated through
the inverse of the illquidity measure proposed by Amihud (2002). In this model, the βmkt

coefficient is analogous to the market model beta. The term ϵi,t,τ denotes the return residuals.
We expect this residual to be related to the positive or negative information arrival in the
said period. We run individual time-series regression for each stock to extract the residuals.
The summary of the results of the time-series regression is tabulated in table A.2.10 We also
estimated the model using a panel setup using fully specified fixed effects and we discuss the
corresponding results in the robustness section.

While we are not interested in the estimated coefficients as only the residuals from this
estimation after purging out systematic factors would contain information, it is useful to
discuss them for a sanity check. The coefficient for the market returns is positive and
significant for all the regressions. The coefficient for the liquidity parameter is positive –

10As the returns are computed at one-minute intervals, the magnitude of the return variables (spot returns
and index returns) are very small. As the illiquidity measure takes the return component in the denominator,
the computed liquidity estimate blows up making the interpretation of the measure cumbersome. For the
ease of interpreting the magnitude of the coefficients, we scale down the liquidity variable by a factor of 1012.
This scaling only improves the readability of the corresponding co-efficient and does not impact the statistical
significance of the results. In the following, we work only with the residuals after normalization. Hence, this
scaling is automatically cancelled out.
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the positiveness is explained by the fact that we employ the measure of illiquidity which is
inverse of liquidity. However, they are not statistically significant in most of the cases. The
stock-level residuals from this regression, form the idiosyncratic component of the returns
free of the market return and stock-specific liquidity effects. We use these residuals for our
following analysis as they are free of the aggregate index return and effects due to liquidity.

4.2 HFT-specific Information and Stock Returns

After constructing the idiosyncratic component of the returns, we explore how HFT-specific
component of the information impacts the idiosyncratic component of the returns. Chordia
et al. (2002) and Chordia & Subrahmanyam (2004) show that order-imbalance is positively
associated with stock returns. If HFTs are informed, the HFT-specific component of order
imbalance should also be positively associated to idiosyncratic returns in the said period. In
order to test the statement, we set up our first hypothesis as follows.

Hypothesis 1: HFT specific information is associated with market returns.

As both the residuals and information parameters may differ significantly in size across
individual stocks, we first normalize these parameters. We denote the normalized residual
vector obtained from equation 1 as ϵ̂:

ϵ̂ =
ϵ− ϵ̄

SD(ϵ)
(2)

where we represent sample average and standard deviation of a variable X by X̄ and SD(X)

respectively. Similarly, we also normalize the HFT information vector OHFT as ÔHFT :

ÔHFT =
OHFT − ŌHFT

SD(OHFT )
. (3)

The normalized residual is used as the explanatory variable in the next stage. We regress
the residual return on normalized information acted upon by high frequency traders. If our
null hypothesis is to be accepted, the beta coefficient βinfo

i should be statistically significant.

Model 1:
ϵ̂i,t,τ = αi + βinfo

i ÔHFT
i,t,τ + ξi,t,τ (4)

In terms of Model 1 (equation 4), hypothesis 1 can be written as H1
0,i : β

info
i = 0 vs

H1
1,i : β

info
i ̸= 0 for all i.
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Table 2: Summary of Model 1

Mean % positive %+ve & significant %-ve & significant

Intercept 0.0002 66.27% 0.00% 0.00%
βinfo 0.1547 100.00% 100.00% 0.00%

Average R2 0.0281

Note: The table presents the summary of the individual time series regressions as in Model 1 (equation 4). The model uses
normalized idiosyncratic returns as the dependent variable and normalized HFT order imbalance is used as the independent
variable. The dataset consists of 166 sample stocks traded in the NSE during the period 01-Jan-2015 till 31-Dec-2015. The
statistical significance reported are at 1% level.

The HFT-information variable HFT i,t,τ is created after aggregating the order imbalances
of different HFT traders within in a fixed period of time - one-minute intervals in our case.
This aggregation captures only the effect of information and not inventory control by HFT
market-making strategies.11

We run individual time-series regressions for every stock on a time series of intraday
observations. Both the idiosyncratic returns (normalized) and the HFT order imbalance
(normalized) are estimated on a one-minute interval. The results of the individual time-series
regressions are presented in table 2. The stock-wise regressions show that all the βinfo

i s turn
out to be significant (p val < 0.01). Average βinfo

i across the stocks is 0.15. The results
clearly show that HFT information is positively associated with the contemporaneous stock
returns supporting hypothesis 1.

Figure A.1 reports the estimated βinfo and the corresponding confidence intervals. For
ease of visualization, we have rank-ordered the stocks on the x-axis in ascending order of the
estimated coefficient values. The narrow confidence band around the estimated beta values
indicate that the βinfo values are statistically significant for most of the individual companies.

4.3 Does Direction of Information Matter or the Magnitude?

HFTs’ trading strategies are built around their advantage of speed of reaction to information.
This happens as they extract information from limit orderbook (LOB) rather than searching
for private information. Informed high frequency traders may rely more on the direction of
the information rather than the actual magnitude of information. This idea forms our next

11One can think of liquidity dislocation affecting returns and hence, it may introduce bias in our estimation.
We note two points here. One, our dependent variable in equation 1 is constructed after controlling for
systematic factors and hence accounts for changes in the return through liquidity provisioning to begin with.
Two, as long as the βinfo

i coefficient is statistically significant, we know that the HFT- information variable
has significant impact on return via the residual. We confirm that this is indeed empirically the case and this
observation allows us to proceed with the rest of the analysis.
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hypothesis which we split into two interrelated parts.
Due to the mode of constructing the measure, order imbalance can be either positive or

negative. In presence of positive information, we expect OIB to be positive and vice-versa.
Due to the inherent nature of trade executions by HFTs, it is likely the HFTs find it easier
to interpret information in a binary form - positive or negative (+1/-1) rather than judging
the degree of positiveness or negativeness of the information. We set up the next hypothesis
arguing that the sign of the information in terms of positive or negative matter, but the
magnitude of the information does not matter.

Hypothesis 2a: Direction of information matters.

Hypothesis 2b: Magnitude of information doesn’t matter.

First, we define sign(ÔHFT
i,t,τ ) as

sign(ÔHFT
i,t,τ ) =


+1 if ÔHFT

i,t,τ > 0

0 if ÔHFT
i,t,τ = 0

−1 if ÔHFT
i,t,τ < 0

.

We define abs(ÔHFT
i,t,τ ) as

abs(ÔHFT
i,t,τ ) =

ÔHFT
i,t,τ if ÔHFT

i,t,τ ≥ 0

−ÔHFT
i,t,τ if ÔHFT

i,t,τ < 0
.

We use the following empirical model 2 to test Hypothesis 2a and 2b.
Model 2:

ϵ̂i,t,τ = αi + βsign
i sign(ÔHFT

i,t,τ ) + βabs
i abs(ÔHFT

i,t,τ ) + ξi,t,τ (5)

In terms of the Model 2 (equation 5), Hypothesis 2a implies βsign
i is significant for all i i.e.

H2
0,i : β

sign
i = 0 vs H2

1,i : β
sign
i ≠ 0 for all i. Hypothesis 2b implies βabs

i is not significant, i.e.
H3

0,i : β
abs
i = 0 vs H3

1,i : β
abs
i ̸= 0 for all i. We also subset the model to estimate the effects

individually –
Model 2a:

ϵ̂i,t,τ = αi + βsign
i sign(ÔHFT

i,t,τ ) + ξi,t,τ (6)

and
Model 2b:

ϵ̂i,t,τ = αi + βabs
i abs(ÔHFT

i,t,τ ) + ξi,t,τ (7)
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Table 3: Summary of Model 2

Panel A: Model 2a

Mean % positive %+ve & significant %-ve & significant

Intercept -0.0191 25.90% 24.10% 67.47%
βsign 0.1399 100.00% 98.80% 0.00%

Average R2 0.0198

Panel B: Model 2b

Mean % positive %+ve & significant %-ve & significant

Intercept -0.0009 46.99% 0.00% 1.20%
βabs 0.0014 53.01% 6.63% 0.00%

Average R2 1.75×10−5

Panel C: Model 2 joint estimation

Mean % positive %+ve & significant %-ve & significant

Intercept -0.0323 25.90% 24.70% 71.69%
βsign 0.1393 100.00% 97.59% 0.00%
βabs 0.0185 74.10% 69.88% 24.10%

Average R2 0.0176

Note: The table presents the summary of the individual time series regressions as specified in Model 2 (equation 5). The
models use normalized idiosyncratic returns as the dependent variable while abs(OHFT ) and sign(OHFT ) are used as the
independent variables respectively. The dataset consists of 166 sample stocks traded in the NSE during the period 01-Jan-2015
till 31-Dec-2015. The statistical significance reported are at 1% level.
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The results for the individual time series regressions is presented in table 3. Let us first
focus on the individual regression models (panels A and B). The results indicate that the
βsign is positive and significant for 164 out of the 166 individual firms wheres the βabs is
positive and significant for only 11 firms. The average estimate for βsign is much higher
compared to βabs. The average model explanatory power for Model 2a is also much higher
compared to Model 2b. Thus, both hypotheses 2a and 2b are empirically supported.

Figure A.2 plots the estimated βsign and βabs from Models 2a and 2b with corresponding
confidence intervals. For Model 2a, the band of confidence interval is much narrow whereas
for Model 2b, the band is much wider.

The joint estimation in Panel C retains very similar feature where βsign is significant
almost for all stocks whereas βabs has much lesser frequency of significant relationships and it
is also directionally inconsistent (both positive and negative effects are seen across stocks
although negatives are fewer in number – 24.1% < 69.8%). The directional inconsistency
appears due to the fact that large downswings are associated with price drops (downward
movement implies negative excess demand or more simply, excess supply) but that is picked
up by the variable as a positive upswing due to conversion to absolute values. To summarize,
direction of order imbalance is much more consistent and has a significant relationship in
explaining return residuals than the magnitude of order imbalance.

4.4 Scope of Information: Stock-specific and Market-wide

Information may have two different scopes of effect – stock-specific and market-wide. Such
information may originate from public or private sources. Both types of information have
well-documented effects on the market. Macroeconomic news is known to induce real time
effects on price discovery (Andersen et al., 2003). Order book imbalance is another well
known source of information (Cao et al., 2009). While all traders use such information, HFTs
most likely exploit such information with a lead of a few seconds than the rest of the traders
(Brogaard et al., 2014).

We split the aggregate information into idiosyncratic and market-wide components.
As noted above, HFTs are known to react faster to any market-level information (e.g.,
macroeconomic announcements). In the absence of any specific instrument to use in the spot
market for these market-level information, these traders are likely to interpret the implication
of such information for individual stocks and take positions accordingly. The aggregate
information acted upon by HFTs for individual stocks may arise from either stock specific
information or market-wide information. In order to decompose this aggregate information
OHFT

i,t,τ into market-wide and stock specific components, we use a unobserved factor model
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with a single latent factor. Ex-ante we hypothesise that both these type of information for
HFTs will be significantly related to the idiosyncratic component of the return as HFTs
exploit both types of information. Our next hypothesis is set up accordingly.

Hypothesis 3: Both market-wide information and idiosyncratic information affect idiosyn-
cratic component of returns.

Let us first set up an unobserved factor model to carry out the decomposition of OIB
into two components - a common factor and the residual. Consider a single factor model for
a p-variable data set Z with a latent factor F and factor loading L in the following form:

Zp×1 = µp×1 + Lp×1F 1×1 + ψp×1. (8)

Our intent is to replace Z by the OIB and carry out the above decomposition. In our
implementation, we will consider p number of OIB series. Since we have already normalized
OIB as part of pre-processing as per equation 3, we set the constant vector equal to zero i.e.,
µ = 0. Therefore, the resulting model is

Z1×p = L1×pF 1×1 + ψ1×p (9)

after taking a transpose. This operation of taking a transpose helps explaining the estimation
of the model with stacked variables as explained below.

The model for OIB described by equation 9, holds at every point of time- and day-index.
Therefore, to carry out estimation of the factor jointly across OIB indexed with respsct to
both time and day, we stack them up and write it in the matrix form in the following way.
Let n0 denote the number of minutes in a trading day. Consider Zn×p to denote the data
matrix where the {i, j}-th element represents OIB information of jth stock on day t and at
time τ such that (t− 1)× n0 + τ = i, n denotes the total number of observations. We use
the following one factor model for Z to extract market-wide information and idiosyncratic
information,

Zn×p = F n×1L1×p +Ψn×p. (10)

We denote the estimate of F as F̂ and the vectorized (row-wise) estimate of Ψ as ψ̂. Specifically,

ψ̂i,t,τ =
(
(t− 1)× τ, i

)th
element of Ψ̂. (11)

F̂ gives us the estimated common factor capturing market-wide information and Ψ̂ gives us
the idiosyncratic stock-specific information.12

12In terms of actual implementation, the number of stocks p = 166, the number of minute within the
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Table 4: Summary of Model 3

Mean % positive %+ve & significant %-ve & significant

Intercept 0.0024 73.49% 4.22% 0.00%
βmw 0.1630 99.40% 97.59% 0.00%
βss 0.6919 100.00% 100.00% 0.00%

Average R2 0.0579

Notes: The table presents the summary of the individual time series regressions as specified in Model 3 (equation 12). The
model uses normalized idiosyncratic returns as the dependent variable while shock-specific and market-wide components of
HFT-specific information are used as the independent variables. The dataset consists of 166 sample stocks traded in the NSE
during the period 01-Jan-2015 till 31-Dec-2015. The statistical significance reported are at 1% level.

Our factor analysis to decompose information has a parallel with the principal component
decomposition implemented in Boehmer et al. (2018) although our objective is very different.
They used principal components decomposition of the total number of messages that HFT
firms send to the market to initiate changes in their positions, with the purpose of identifying
different underlying HFT trading strategies. Our objective is to capture information directly
via OIB rather than the number of messages which captures at best, a possible indication of
trade rather than capturing the trade itself.

To study the impact of market-wide information and stock-specific information, we split
these two components of Z and gauge their relative effects by plugging their estimated values
into the same regression model. Specifically, we estimate the following model:
Model 3:

ϵ̂i,t,τ = αi + βss
i ψ̂i,t,τ + βmw

i F̂t,τ + ξi,t,τ . (12)

In terms of equation 12, hypothesis 3 implies that both βss
i and βmw

i are statistically
significant.

In table 4, we present the resulting coefficient estimates. Both βss
i and βmw

i are positive
and significant for almost all stocks. These findings are clearly in favour of hypothesis 3. For
analysing the relative size of the two coefficients for individual stocks, we plot a histogram of
the ratio of these beta coefficients – βss

i /β
mw
i in panel (a) of figure 1. As can be observed, the

ratio is larger than 1 for most of the individual stocks, indicating that βss is larger than βmw.

active trading time in a typical day n0 = 375, and the number of trading days is 246. Thus, n = 166 × 246
× 375.
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(a) Histogram of βss
i /βmw

i (b) Histogram of β̄ss
i /β̄mw

i

Figure 1: The two figures plot the histogram of the beta ratios for the overall data (model 3)
and for the subset of data during periods of extreme idiosyncratic returns. Figure (a) plots
the ratio during for the overall data while figure (b) plots the same for the subset of data
during extreme returns. For both of the scenarios, we observe that the probability mass is
spread on the right side of 1, indicating βss is more than βmw

i . We also observe that on a
relative basis, the ratios are closer to 1 during periods of extreme movements.

4.5 HFT Responses during Extreme Price Movements

HFTs are known to stabilize extreme price movements (Brogaard et al., 2018). Notably,
Grossman & Miller (1988) posited that traders behaving as endogenous liquidity providers
choose to supply liquidity during times of order imbalance. HFTs on an average, behave
like this which in turn, contributes to stabilization of prices. Thus the role of HFTs during
extreme price movements is understood in the literature quite well.

What is not so well understood is exactly which kind of information do they use during
times of extreme price movements. Building on the above results, we check the informativeness
of HFTs during such periods of extreme movements. For each stock we run a model similar
to model 3 (equation 12), but only during periods where the returns were either in the top or
bottom ten percentile of the returns13 individually for each stock. HFTs are machine enabled
traders. Possibly, they would be less exposed to behavioral biases compared to human traders.
Ex-ante we expect the results corresponding to hypothesis 3 to be same as hypothesis 4
where both the stock-specific component as well the market-wide component of the HFTs’
information significantly affects the idiosyncratic component of the return.

Hypothesis 4: Both market-wide information and idiosyncratic information affects extreme
idiosyncratic return.

13The choice of tenth percentile to describe extreme returns is not unique. We run robustness tests with
different cutoffs. All results hold.
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Table 5: Summary of Model 4

Mean % positive %+ve & significant %-ve & significant

Intercept 0.0201 83.73% 15.66% 0.00%
β̄mw 0.5720 96.99% 96.39% 2.41%
β̄ss 2.2469 100.00% 100.00% 0.00%

Average R2 0.0614

Note: The table presents the summary of the individual time series regressions as specified in Model 4 (equation 14). The model
uses normalized idiosyncratic returns as the dependent variable while shock-specific and market-wide components of HFT-specific
information are used as the independent variables, but only for the subset of periods of extreme returns. The dataset consists of
166 sample stocks traded in the NSE during the period 01-Jan-2015 till 31-Dec-2015. The statistical significance reported are at
1% level.

Suppose F (.) denotes the empirical distribution function of ϵ̂. For 0 < p < 1, define
Q(ϵ̂, p) = F−1(p), where F−1(p) = inf{u : F (u) ≤ p}. We also define

ϵ̄ = {ϵ̂i,t,τ : either ϵ̂i,t,τ > Q(ϵ̂, 0.9) or ϵ̂i,t,τ < Q(ϵ̂, 0.1)}. (13)

ϵ̄ represents the extreme parts of the residual vector. The corresponding market-wide infor-
mation and idiosyncratic information are denoted by F̄ and γ̄.

To study the same hypothesis for extreme idiosyncratic return we propose the following
model -

Model 4:
ϵ̂i,t,τ = αi + β̄ss

i ψ̂i,t,τ + β̄i
mwF̂t,τ + ξi,t,τ . (14)

We want to test whether both market-wide information and idiosyncratic information
affect extreme idiosyncratic return i.e. the alternative hypothesis suggests β̄ss

i ̸= 0 & β̄mw
i ̸= 0

for all i.
Our analysis suggests that β̄ss

i is positive and significant for 56% of stocks and β̄mw
i are

significant for 71% stocks. Average β̄ss
i turns out to be 0.035 where average β̄mw

i is 0.069.
Panel (b) of figure 1 plots the histogram of beta ratio – βss

i /β
mw
i during periods of extreme

price movements. As it can be observed, similar to panel (a), most of the coefficients are larger
than one, indicating that the βmw is larger than βss during periods of extreme movements also.
However, the probability mass is shifted towards the left for panel (b), indicating that the
relative importance of stock-specific component over the market-wide component decreases
during these periods of extreme movements.
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Table 6: Split sample analysis – summary of Model 3 separating periods of positive and
negative returns.

Mean % positive %+ve & significant %-ve & significant

Panel A : Periods of positive idiosyncratic returns

Intercept 0.6873 100.00% 100.00% 0.00%
βmw 0.0497 89.16% 80.72% 7.83%
βss 0.2562 100.00% 99.40% 0.00%

Average R2 0.0080

Panel B : Periods of negative idiosyncratic returns

Intercept -0.6786 0.00% 0.00% 100.00%
βmw 0.0568 89.76% 84.94% 7.23%
βss 0.2060 99.40% 96.99% 0.00%

Average R2 0.0082

Note: The table presents the summary of the individual time series regressions as specified in Model 3 (equation 12) split
into periods of positive and negative idiosyncratic returns. The model uses normalized idiosyncratic returns as the dependent
variable while stock-specific and market-wide components of HFT-specific information are used as the independent variables.
The dataset consists of 166 sample stocks traded in the NSE during the period 01-Jan-2015 till 31-Dec-2015. The statistical
significance reported are at 1% level.

4.6 Do HFTs exhibit Asymmetric Responses to Return Fluctua-

tions?

Accounting for asymmetric response to positive and negative expected returns, Glosten et al.
(1993) show that positive (negative) unanticipated returns result in downward (upward)
revision of the conditional volatility. Given that HFTs respond to information that drive
prices up or down, it is a natural extension of the above analysis to check how they respond
to positive as opposed to negative information. Given that generally HFTs act very fast on
information and as we have seen above they respond to the direction rather than magnitude
of information, it is a prioi unlikely that they would respond asymmetrically to return
fluctuations. We formally test this hypothesis by estimating model 3 (equation 12) separately
on positive and negative idiosyncratic returns.

Table 6 presents the results of the individual time series regressions split into periods of
positive and negative idiosyncratic returns. For each stock, we split the sample into positive
and negative idiosyncratic returns. As the idiosyncratic return measure is normalized, this
splits the samples into two exact halved for each stock. The results corresponding to periods
of positive idiosyncratic returns (normalized) is presented in Panel A, whereas the same
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corresponding to negative idiosyncratic returns (normalized) is presented in Panel B. We
observe that the coefficients corresponding to the market-wide and stock-specific component
of HFT information are consistent across the two scenarios, indicating that HFTs are not
exposed to the mentioned behavioral biases.

5 Robustness

5.1 Panel Estimation with Fully Specified Fixed Effects

In the preceding analysis, we use time series regression coupled with a factor model approach.
One may have a concern that the empirical results do not account for unobserved heterogeneity
at the levels of stocks being traded, days of trading and intra-day time of trading. Here we
take the previous models to a panel data format and conduct joint estimation with additional
fixed effects to account for all such possible unobserved heterogeneity.

In the earlier sections, we had estimated the basic model coeffcients through individual
time-series models, which can be be expressed in the following generalized form –

yi,t,τ = αi + βixi,t,τ + ξi,t,τ . (15)

Here yi,t,τ represents the dependent variable, which is our case is the the idiosyncratic individ-
ual time-series of intraday stock returns for the i-th stock in the t-th day for the τ -th period.
xi,t,τ represents the model-specific independent variables. For Model 1, the independent vari-
able was HFT-specific information. For the two models 2a and 2b, the independent variables
were the sign and absolute value of HFT-specific information respectively. For models 3
and 4, the independent variables were both market-wide and stock-specific component of
information.

Next, we test for the robustness of the existing models (1-4) in a panel setup, which can
be expressed in the following generalized form –

yi,t,τ = βxi,t,τ + δi + γt + ωτ + δi × γt + ξi,t,τ . (16)

The dependant variable yi,t,τ and the independent variable xi,t,τ carry the same meanings as
described in the earlier paragraph. δi, γt, and ωτ are used to control firm, day and intraday
fixed-effects respectively. The detailed results of the panel regressions models are provided in
the appendix.

Table A.3 provides the results of robustness test for model 1. Consistent with our findings
reported in table 2, where the coefficient for βinfo term was positive and significant for all the
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individual stocks, we find that in the panel form (table A.3), the same coefficient is positive
and significant across all the different panel specifications. The values of the βinfo coefficient
in the panel specification (table A.3) is also similar to the average value of the βinfo coefficient
(0.1547) in table 2.

Similarly, for models 2a and 2b, we also find that the results of the individual time-series
regressions reported in table 3 are consistent with the panel regression results reported in
table A.4. The coefficient corresponding to βsign was positive and significant for 164 of the 166
sample stocks 3. In contrast, the coefficient corresponding to βabs was positive and significant
for only 6.63% of the stocks. In the panel specifications (table A.4), we find that though both
of these coefficients are positive and significant across specifications, the magnitude of the
βsign component is approximately 100 times the magnitude of the βabs component.

In model 3, we decompose the HFT-specific information is decomposed into stock-specific
and market-wide components. We find that the individual time series results (table 4) are
consistent with panel regression results (table A.5). The mean parameter estimates for the
coefficient of the stock-specific component is almost four times that of the market-wide
component for either specification.

In model 4, we run model 3 for the subset of periods belonging to either positive or
negative extreme returns. For individual time-series regressions, we find that the stock-specific
component is positive and significant for approximately half of the stocks while same is true
for close to three-fourth of the stocks for the market-wide component (table 5). In the panel
specifications, both the components are statistically significant (table A.6). Though the
coefficient values differ across the two specifications, the coefficient for the stock-specific
component is almost twice that of the market-wide component, in either specification.

5.2 Alternate Definition of Extreme Events

So far we have constructed extreme events on the basis of normalized idiosyncratic returns
rather than raw individual stock returns. To show robustness of our result, we estimate the
same models only for extreme periods signified by top and bottom ten percentile of individual
stock returns. All results continue to hold (details can be found in the online appendix). Both
the individual time-series (table OA.1) as well as the panel regression models (table OA.2)
during the extreme return periods suggest that the both the coefficients of the stock specific
component and the market-wide component are statistically significant across specifications
and the coefficients of the stock-specific component is twice in magnitude compared to the
market-wide component. We further segregate the periods into that for only either the
positive or negative extreme returns. Both the individual time-series (table OA.3) and panel
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(table OA.4) are consistent with the earlier results with a difference that while the coefficient
for the stock-specific component is positive, the coefficient for the market-wide component is
negative. This can be explained by the observation that the extreme events are constructed
conditional on the individual raw returns, i.e. without normalization. Therefore, it is likely
that the extreme fluctuations in them would be correlated with the stock-specific component.
The market-wide component moderates the effect possibly due to inducing common direction
of fluctuations in returns across stocks.

6 Summary and Discussion

In this paper, we analyze the role of HFTs in terms of pricing information. HFTs are known
to help in price discovery (Brogaard et al., 2014). What is not understood well is how do
they exploit information affecting the market as a whole or information specific to stocks,
for that purpose? An answer to this question will shed light on how the joint movement of
prices change with respect to shocks (Lan et al., 2023; Raunig, 2023).

Using a dataset obtained from the National Stock Exchange (NSE) of India with identifiers
for algorithmic traders, we show that HFT-specific information is positively associated with
idiosyncratic stock returns. Empirically, the direction of information matters – sign of
the information is correlated with the idiosyncratic component of returns much more than
the magnitude of the information. Using a factor model, we decompose the HFT-specific
information into stock-specific and market-wide components. We find that both these
components are positively associated with idiosyncratic component of returns, though the
importance of stock-specific component is more than that of the market-wide component.
We also find that the relative importance of the stock-specific component compared to
market-wide component is lower during periods of extreme price movements. The findings
are consistent across individual time-series as well panel specifications after accounting for
stock-, trading day- and trading time-level unobserved heterogeneity.

Our work sheds light on how traders engage with the market. This has two sides to it.
One, traders get influenced by market states. Two, traders themselves may influence the
market. While we do not attempt the disentangle this endogeneity in the relationship between
the traders and the states of the market, our approach is to focus on the statistical nature of
how traders trade on the basis of the aggregate market-wide information and stock-specific
information. Our work should be seen as depicting the equilibrium relationship between
trading behavior and the market behavior.

We end the paper with some caveats and thoughts on future work. One limitation of our
dataset is that we cannot differentiate between stock- or more generally, company-specific
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information available publicly and company-specific information obtained privately. Therefore,
our factor model decomposition allows us to keep track of market-wide information and
stock-specific information where the nomenclature emphasizes the scope of the effect of the
information rather than whether the origin of the information in public or private. However,
observing the source of information is an extremely difficult task. Our approach is akin to
inferring information based only on equilibrium prices which has an obvious limitation that
we cannot differentiate between the supply side and the demand side. The second limitation
is that the order imbalance appearing from the HFTs is aggregated over all HFTs. Thus,
we lose granular trader-level heterogeneity. Again, data limitations stop us from exploiting
trader-level information. We leave it to future work with more granular data to explore
the direct relationship between sources of information and how it gets priced via individual
traders.

Competing Interests: The authors have no financial or proprietary interests in any
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25



References

Amihud, Yakov. 2002. Illiquidity and stock returns: cross-section and time-series effects.
Journal of Financial Markets, 5(1), 31–56.

Amihud, Yakov, & Mendelson, Haim. 1986. Liquidity and stock returns. Financial Analysts
Journal, 42(3), 43–48.

Anand, Amber, & Venkataraman, Kumar. 2016. Market conditions, fragility, and the
economics of market making. Journal of Financial Economics, 121(2), 327–349.

Andersen, Torben G, Bollerslev, Tim, Diebold, Francis X, & Vega, Clara. 2003. Micro
effects of macro announcements: Real-time price discovery in foreign exchange. American
Economic Review, 93(1), 38–62.

Bernales, Alejandro, Valenzuela, Marcela, & Zer, Ilknur. 2022. Effects of Information Overload
on Financial Markets: How Much Is Too Much? Available at SSRN 3904916.

Berry, Thomas D, & Howe, Keith M. 1994. Public information arrival. The Journal of
Finance, 49(4), 1331–1346.

Boehmer, Ekkehart, Li, Dan, & Saar, Gideon. 2018. The competitive landscape of high-
frequency trading firms. Review of Financial Studies, 31(6), 2227–2276.

Bollen, Nicolas PB, & Whaley, Robert E. 2004. Does net buying pressure affect the shape of
implied volatility functions? The Journal of Finance, 59(2), 711–753.

Boudt, Kris, & Petitjean, Mikael. 2014. Intraday liquidity dynamics and news releases around
price jumps: Evidence from the DJIA stocks. Journal of Financial Markets, 17, 121–149.

Brogaard, Jonathan, Hendershott, Terrence, & Riordan, Ryan. 2014. High-Frequency Trading
and Price Discovery. Review of Financial Studies, 27(8), 2267–2306.

Brogaard, Jonathan, Carrion, Allen, Moyaert, Thibaut, Riordan, Ryan, Shkilko, Andriy, &
Sokolov, Konstantin. 2018. High frequency trading and extreme price movements. Journal
of Financial Economics, 128(2), 253–265.

Brogaard, Jonathan, Nguyen, Thanh Huong, Putnins, Talis J, & Wu, Eliza. 2022. What
Moves Stock Prices? The Roles of News, Noise, and Information. The Review of Financial
Studies, 35(9), 4341–4386.

26



Brunnermeier, Markus K, & Pedersen, Lasse Heje. 2005. Predatory trading. The Journal of
Finance, 60(4), 1825–1863.

Cao, Charles, Hansch, Oliver, & Wang, Xiaoxin. 2009. The information content of an open
limit-order book. Journal of Futures Markets: Futures, Options, and Other Derivative
Products, 29(1), 16–41.

Chaboud, Alain P., Chiquoine, Benjamin, Hjalmarsson, Erik, & Vega, Clara. 2014. Rise of
the machines: Algorithmic trading in the foreign exchange market. The Journal of Finance,
69(5), 2045–2084.

Chakrabarty, Bidisha, Moulton, Pamela C., & Wang, Xu. 2020. Limited Attention and Market
Pricing of Earnings in a High Frequency World.

Chan, Kalok, & Fong, Wai-Ming. 2000. Trade size, order imbalance, and the volatility–volume
relation. Journal of Financial Economics, 57(2), 247–273.

Chordia, Tarun, & Subrahmanyam, Avanidhar. 2004. Order imbalance and individual stock
returns: Theory and evidence. Journal of Financial Economics, 72(3), 485–518.

Chordia, Tarun, Roll, Richard, & Subrahmanyam, Avanidhar. 2002. Order imbalance, liquidity,
and market returns. Journal of Financial economics, 65(1), 111–130.

Copeland, Thomas E, & Galai, Dan. 1983. Information effects on the bid-ask spread. the
Journal of Finance, 38(5), 1457–1469.

Cushing, David, & Madhavan, Ananth. 2000. Stock returns and trading at the close. Journal
of Financial Markets, 3(1), 45–67.

Easley, David, & O’hara, Maureen. 1987. Price, trade size, and information in securities
markets. Journal of Financial economics, 19(1), 69–90.

Farmer, J. Doyne, Gillemot, Laszlo, Lillo, Fabrizio, Mike, Szabolcs, & Sen, Anindya. 2004.
What really causes large price changes? Quantitative Finance, 4(4), 383–397.

Frino, Alex, Prodromou, Tina, Wang, George H.K., Westerholm, P. Joakim, & Zheng, Hui.
2017. An empirical analysis of algorithmic trading around earnings announcements. Pacific
Basin Finance Journal, 45, 34–51.

Glosten, Lawrence R, & Milgrom, Paul R. 1985. Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders. Journal of financial economics, 14(1),
71–100.

27



Glosten, Lawrence R, Jagannathan, Ravi, & Runkle, David E. 1993. On the relation between
the expected value and the volatility of the nominal excess return on stocks. The journal
of finance, 48(5), 1779–1801.

Golub, Anton, Keane, John, & Poon, Ser-Huang. 2012. High frequency trading and mini
flash crashes. arXiv preprint arXiv:1211.6667.

Grossman, Sanford J, & Miller, Merton H. 1988. Liquidity and market structure. Journal of
Finance, 43(3), 617–633.

Hagströmer, Björn, & Nordén, Lars. 2013. The diversity of high-frequency traders. Journal
of Financial Markets, 16(4), 741–770.

Hendershott, Terrence, & Riordan, Ryan. 2011. Algorithmic Trading and Information.

Hendershott, Terrence, Jones, Charles M, & Menkveld, Albert J. 2011. Does Algorithmic
Trading Improve Liquidity? The Journal of Finance, 66(1), 1–33.

Hirschey, Nicholas. 2021. Do high-frequency traders anticipate buying and selling pressure?
Management Science, 67(6), 3321–3345.

Hsieh, Wen-liang Gideon, & Lee, Chin-Shen. 2021. Who reacts to what information in
securities analyst reports? Direct evidence from the investor trade imbalance. Pacific-Basin
finance journal, 65, 101492.

Ito, Takatoshi, Lyons, Richard K, & Melvin, Michael T. 1998. Is there private information in
the FX market? The Tokyo experiment. The Journal of Finance, 53(3), 1111–1130.

Jiang, George J, Lo, Ingrid, & Verdelhan, Adrien. 2011. Information shocks, liquidity shocks,
jumps, and price discovery: Evidence from the US Treasury market. Journal of Financial
and Quantitative Analysis, 46(2), 527–551.

Kacperczyk, Marcin, & Pagnotta, Emiliano S. 2019. Chasing private information. The Review
of Financial Studies, 32(12), 4997–5047.

Kang, Jangkoo, & Park, Hyoung-Jin. 2008. The information content of net buying pressure:
Evidence from the KOSPI 200 index option market. Journal of Financial Markets, 11(1),
36–56.

Kirilenko, Andrei, Kyle, Albert S, Samadi, Mehrdad, & Tuzun, Tugkan. 2017. The flash
crash: High-frequency trading in an electronic market. The Journal of Finance, 72(3),
967–998.

28



Kyle, Albert S. 1985. Continuous auctions and insider trading. Econometrica: Journal of the
Econometric Society, 1315–1335.

Lan, Tingting, Shao, Liuguo, Zhang, Hua, & Yuan, Caijun. 2023. The impact of pandemic on
dynamic volatility spillover network of international stock markets. Empirical Economics,
1–30.

Lintner, John. 1969. The valuation of risk assets and the selection of risky investments in
stock portfolios and capital budgets: A reply. Review of Economics and Statistics, 222–224.

Malceniece, Laura, Malcenieks, KÄrlis, & PutniÅš, TÄlis J. 2019. High frequency trading
and comovement in financial markets. Journal of Financial Economics, 134(2), 381–399.

Menkveld, Albert J. 2013. High frequency trading and the new market makers. Journal of
Financial Markets, 16(4), 712–740.

Menkveld, Albert J. 2016. The Economics of High-Frequency Trading. Annual Review of
Financial Economics, 8, 1–24.

Mitchell, Mark L, & Mulherin, J Harold. 1994. The impact of public information on the
stock market. The Journal of Finance, 49(3), 923–950.

Nagel, Stefan. 2012. Evaporating liquidity. The Review of Financial Studies, 25(7), 2005–2039.

Raunig, Burkhard. 2023. Using causal graphs to test for the direction of instantaneous
causality between economic policy uncertainty and stock market volatility. Empirical
Economics, 1–20.

Scholtus, Martin, Van Dijk, Dick, & Frijns, Bart. 2014. Speed, algorithmic trading, and
market quality around macroeconomic news announcements. Journal of Banking and
Finance, 38(1), 89–105.

Schroeder, Florian, Lepone, Andrew, Leung, Henry, & Satchell, Stephen. 2020. Flash crash
in an OTC market: trading behaviour of agents in times of market stress. The European
Journal of Finance, 26(15), 1569–1589.

SEC. 2010. Concept release on market structure.

Sharpe, William F. 1964. Capital asset prices: A theory of market equilibrium under
conditions of risk. Journal of Finance, 19(3), 425–442.

Yang, Liyan, & Zhu, Haoxiang. 2020. Back-running: Seeking and hiding fundamental
information in order flows. The Review of Financial Studies, 33(4), 1484–1533.

29



Zhang, S. Sarah. 2012. Need for Speed - An Empirical Analysis of Hard and Soft Information
in a High Frequency World.

30



APPENDIX

A Additional Figures

Figure A.1: The figure plots the regression coefficient and the corresponding confidence
intervals for βinfo

i estimated from Model 1. The figures illustrates that the most of the βinfo

are statistically significant. For ease of visualization, we have ordered the stocks indices on
the x-axis in (weakly) ascending order of the estimated coefficient – βinfo

i in this case.
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(a) Model 2: Single variable estimation of
βsign
i and its CI.

(b) Model 2: Single variable estimation of
βabs
i and its CI.

Figure A.2: Plot for estimated regression coefficient for the two hypothesis 2a and 2b. The
confidence intervals for each estimate is also shown. For hypothesis 2a, most of the βs are
significant. However, for hypothesis 2b, the value 0 is contained in the confidence intervals
for most of the βs. For ease of visualization, we have ordered the stocks indices on the x-axis
in (weakly) ascending order of the estimated coefficients – βsign

i and βabs
i in panels (a) and

(b) respectively.

(a) Model 3: βmw and its CI. (b) Model 3: βss and its CI.

Figure A.3: Plot for estimated regression coefficient for the parameters βmw and βss estimated
from model 3. The confidence intervals for each estimate is also shown. For model 2a most
of the βs are significant. However, for model 2b, the value 0 is contained in the confidence
intervals for most of the βs. For ease of visualization, we have ordered the stocks indices on
the x-axis in (weakly) ascending order of the estimated coefficient – βmw

i and βss
i in panels

(a) and (b) respectively.
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(a) Model 4: estimated β̄ss
i and its CI. (b) Model 4: estimated β̄mw

i and its CI.

Figure A.4: Estimated regression coefficients and confidence intervals for Model 4. For ease
of visualization, we have ordered the stocks indices on the x-axis in (weakly) ascending order
of the estimated coefficients – ¯βmw

i and β̄ss
i in panels (a) and (b) respectively.
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B Additional Tables

Table A.1: Correlation table

Variable OIBNUM OIBVAL HFT HFT Index Spot
OIBNUM OIBVAL Ret. Ret.

OIBVAL 0.7696
HFT OIBNUM 0.4477 0.3516
HFT OIBVAL 0.3513 0.4422 0.7994
Index Ret. 0.1677 0.1648 0.1701 0.1663
Spot Ret. 0.3395 0.3332 0.1952 0.1783 0.2983
Liquidity 0.0043 0.0031 0.0032 0.0020 -0.0015 0.0044

Note: The table provides a cross-sectional average of individual time-series correlations for order imbalance measures computed
at one minute interval.

Table A.2: Summary of the filtering model

Mean % positive %+ve & significant %-ve & significant

Intercept -0.0507 31.33% 0.00% 3.61%
βmkt 1.0454 100.00% 100.00% 0.00%
βliq 0.0083 89.16% 13.25% 0.00%

Average R2 0.1132

Note: The table presents the summary of the individual time series regressions as illustrated in equation 1. The model uses
individual stock returns as the dependent variable while market return and market liquidity are used as the independent variables.
The dataset consists of 166 sample stocks traded in the NSE during the period 01-Jan-2015 till 31-Dec-2015. The statistical
significance reported are at 1% level.
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Table A.3: Panel regression models with HFT order imbalance (Model 1)

(1) (2) (3) (4) (5)

(Intercept) 0.0002
(0.58)

βinfo 0.1555∗∗∗ 0.1555∗∗∗ 0.1557∗∗∗ 0.1558∗∗∗ 0.1639∗∗∗

(555.00) (555.00) (555.19) (555.80) (572.38)

Num. obs. 11,917,377 11,917,377 11,917,377 11,917,377 11,917,377
R2 0.0252 0.0252 0.0254 0.0259 0.0292
Adj. R2 0.0252 0.0252 0.0253 0.0258 0.0260

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table presents the results of the panel regression models using normalized idiosyncratic returns as the dependent
variable and normalized HFT order imbalance as the independent variable. The dataset consists of 166 sample stocks traded in
the NSE during the period 01-Jan-2015 till 31-Dec-2015. Column 1 reports the results of a a pooled regression model without
any fixed-effect. Column 2 reports results with firm fixed-effects. Column 3 uses both firm and day fixed effects. Column 4 uses
firm, day and intraday period fixed-effects. Column 5 uses an interaction of firm and day fixed-effects.
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Table A.4: Panel regression models with sign and absolute value of HFT order imbalance
(Models 2a and 2b)

PanelA : Model2a

(1) (2) (3) (4) (5)

(Intercept) -0.0171∗∗∗

(-59.02)
βsign 0.1292∗∗∗ 0.1406∗∗∗ 0.1407∗∗∗ 0.1412∗∗∗ 0.1474∗∗∗

(445.87) (465.34) (465.42) (466.94) (478.55)

Num. obs. 11,917,377 11,917,377 11,917,377 11,917,377 11,917,377
R2 0.0164 0.0178 0.0180 0.0186 0.0213
Adj. R2 0.0164 0.0178 0.0180 0.0186 0.0181

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes

PanelB : Model2b

(1) (2) (3) (4) (5)

(Intercept) -0.0008∗∗

(-2.16)
βabs 0.0013∗∗∗ 0.0013∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗ 0.0015∗∗∗

(3.49) (3.51) (3.27) (3.30) (3.88)

Num. obs. 11,917,377 11,917,377 11,917,377 11,917,377 11,917,377
R2 0.0000 0.0000 0.0001 0.0007 0.0024
Adj. R2 0.0000 -0.0000 0.0001 0.0006 -0.0008

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table presents the results of the panel regression models using normalized idiosyncratic returns as the dependent
variable and sign(OHFT ) as the independent variable. The dataset consists of 166 sample stocks traded in the NSE during
the period 01-Jan-2015 till 31-Dec-2015. Column 1 reports the results of a a pooled regression model without any fixed-effect.
Column 2 reports results with firm fixed-effects. Column 3 uses both firm and day fixed effects. Column 4 uses firm, day and
intraday period fixed-effects. Column 5 uses an interaction of firm and day fixed-effects.
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Table A.5: Panel regression models with market-wide and stock specific components of HFT
order imbalance (Model 3)

(1) (2) (3) (4) (5)

(Intercept) 0.0022∗∗∗

(7.74)
βmw 0.1404∗∗∗ 0.1405∗∗∗ 0.1406∗∗∗ 0.1415∗∗∗ 0.1457∗∗∗

(357.64) (357.77) (357.84) (359.28) (367.77)
βss 0.5528∗∗∗ 0.5532∗∗∗ 0.5536∗∗∗ 0.5539∗∗∗ 0.5803∗∗∗

(401.04) (401.19) (401.20) (401.50) (413.06)

Num. obs. 11,917,377 11,917,377 11,917,377 11,917,377 11,917,377
R2 0.0146 0.0146 0.0148 0.0154 0.0179
Adj. R2 0.0146 0.0146 0.0147 0.0153 0.0147

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table presents the results of the panel regression models using normalized idiosyncratic returns as the dependent
variable and market-wide and stock specific components of HFT information as the independent variable. The dataset consists
of 166 sample stocks traded in the NSE during the period 01-Jan-2015 till 31-Dec-2015. Column 1 reports the results of a a
pooled regression model without any fixed-effect. Column 2 reports results with firm fixed-effects. Column 3 uses both firm
and day fixed effects. Column 4 uses firm, day and intraday period fixed-effects. Column 5 uses an interaction of firm and day
fixed-effects.
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Table A.6: Panel regression models with market-wide and stock specific components of HFT
order imbalance during periods of extreme idiosyncratic returns (Model 4)

(1) (2) (3) (4) (5)

(Intercept) 0.0285∗∗∗

(27.57)
β̄mw 0.6395∗∗∗ 0.6397∗∗∗ 0.6403∗∗∗ 0.6451∗∗∗ 0.6527∗∗∗

(480.13) (480.19) (479.91) (481.81) (482.87)
β̄ss 1.2881∗∗∗ 1.2884∗∗∗ 1.2885∗∗∗ 1.2905∗∗∗ 1.3450∗∗∗

(262.62) (262.59) (262.52) (263.04) (268.56)

Num. obs. 2,851,818 2,851,818 2,851,818 2,851,818 2,851,818
R2 0.0776 0.0777 0.0789 0.0804 0.0912
Adj. R2 0.0776 0.0777 0.0788 0.0801 0.0787

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table presents the results of the panel regression models using normalized idiosyncratic returns as the dependent
variable and market-wide and stock specific components of HFT information as the independent variable during periods of
extreme idiosyncratic returns. The dataset consists of 166 sample stocks traded in the NSE during the period 01-Jan-2015 till
31-Dec-2015. Column 1 reports the results of a a pooled regression model without any fixed-effect. Column 2 reports results
with firm fixed-effects. Column 3 uses both firm and day fixed effects. Column 4 uses firm, day and intraday period fixed-effects.
Column 5 uses an interaction of firm and day fixed-effects.
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Table A.7: Panel regression models with market-wide and stock specific components of HFT
order imbalance (split into periods of positive and negative idiosyncratic returns)

Panel A : Periods of positive idiosyncratic returns

(1) (2) (3) (4) (5)

(Intercept) 0.6805∗∗∗

(2242.54)
βmw 0.0467∗∗∗ 0.0438∗∗∗ 0.0433∗∗∗ 0.0542∗∗∗ 0.0413∗∗∗

(112.36) (105.45) (105.22) (136.67) (100.55)
βss 0.2007∗∗∗ 0.1983∗∗∗ 0.1987∗∗∗ 0.2021∗∗∗ 0.2069∗∗∗

(137.53) (136.06) (137.63) (145.67) (141.95)

Num. obs. 5,923,472 5,923,472 5,923,472 5,923,472 5,923,472
R2 0.0033 0.0086 0.0286 0.1035 0.0602
Adj. R2 0.0033 0.0086 0.0285 0.1034 0.0540

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes

(1) (2) (3) (4) (5)

Panel B : Periods of negative idiosyncratic returns

(Intercept) -0.6718∗∗∗

(-2238.85)
βmw 0.0553∗∗∗ 0.0533∗∗∗ 0.0532∗∗∗ 0.0461∗∗∗ 0.0526∗∗∗

(136.09) (131.16) (132.16) (118.40) (130.79)
βss 0.1503∗∗∗ 0.1506∗∗∗ 0.1525∗∗∗ 0.1568∗∗∗ 0.1649∗∗∗

(104.97) (105.23) (107.68) (114.71) (115.25)

Num. obs. 5,993,905 5,993,905 5,993,905 5,993,905 5,993,905
R2 0.0032 0.0081 0.0307 0.0973 0.0613
Adj. R2 0.0032 0.0081 0.0306 0.0972 0.0552

Firm FE Yes Yes Yes
Day FE Yes Yes
Intraday FE Yes
Firm*Day FE Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Note: The table presents the results of the panel regression models using normalized idiosyncratic returns as the dependent
variable and market-wide and stock specific components of HFT information as the independent variable during periods of
positive (Panel A) and negative (Panel B) idiosyncratic returns. The dataset consists of 166 sample stocks traded in the NSE
during the period 01-Jan-2015 till 31-Dec-2015. Column 1 reports the results of a a pooled regression model without any
fixed-effect. Column 2 reports results with firm fixed-effects. Column 3 uses both firm and day fixed effects. Column 4 uses firm,
day and intraday period fixed-effects. Column 5 uses an interaction of firm and day fixed-effects.
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