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Abstract
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a higher compensation. However, when intermediation constraints tighten – for instance, due to high

leverage, Value-at-Risk, and funding costs – the liquidity provision costs increase and the elasticity of
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deteriorate when intermediary constraints are tightening.
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1. Introduction

Financial intermediaries play a crucial role in supporting the functioning of financial markets.
This is especially true for over-the-counter (OTC) markets, which are not organised based on
centralised exchanges but rely on the intermediation by dealers who provide immediacy to
their clients.1 However, dealers’ ability to provide liquidity depends on their willingness to
make balance sheet space available. Therefore, constraints on dealers’ intermediation capacity
can lead to a reduction in dealers’ incentives to intermediate trades, an increase in the cost of
liquidity provision, as well as widespread asset mispricing (i.e., no-arbitrage violations).2

Against this backdrop, the key question that we address in this paper is whether dealer
constraints can have a bearing on liquidity provision, in particular, by increasing the cost of
market liquidity and by leading dealers to curtail their market-making activity. To analyse
this question, we study prices and quantities in the foreign exchange (FX) market based on a
globally representative trade data set from CLS Group. The FX market is the largest financial
market in the world and often regarded as one of the most liquid and efficient ones. Given
that many FX dealer banks provide intermediation services across a host of financial markets,
we expect that our findings about the key mechanisms also apply to other OTC markets.

The contribution of this paper is threefold. First, we provide a simple, yet effective, analyt-
ical framework to tease out the costs of providing spot FX market liquidity from a no-arbitrage
condition. The framework builds on the well-known triangular relation among FX rates (e.g.,
Chaboud, Chiquoine, Hjalmarsson, and Vega, 2014; Foucault, Kozhan, and Tham, 2016) and
outlines two liquidity cost components that both depend on FX dealers’ intermediation ca-
pacity. First, VLOOP, which captures the shadow cost of intermediary constraints and arises
when dealers’ marginal valuation of a currency pair diverges from its fundamental value.
Second, TCOST, which is the round-trip transaction cost of performing a triangular arbitrage
trade and represents the dealer’s compensation to endure inventory imbalances. Our sec-
ond contribution is to study VLOOP and TCOST through the lenses of constrained financial
intermediaries. In particular, we document a novel non-linear relation between the cost of
liquidity provision and dealer intermediated trading volume. We show that in unconstrained
states dealers cater to their clients’ trading demand and, as expected, require a higher com-
pensation for doing so. But, in states when dealers’ intermediation capacity is constrained,
their liquidity provision deteriorates along two dimensions: First, market liquidity becomes
increasingly more costly. Second, dealers are less prone to provide immediacy to clients and
raise the liquidity cost per unit of intermediated volume. Lastly, we provide a tractable model
that formalises the intuition on the increasing liquidity costs stemming from constraints on
intermediation capacity and the inelastic liquidity provision by dealers.

1To be clear, we focus on the role of dealers as liquidity providers rather than cross-market arbitrageurs. This
is consistent with the role that these institutions have played after the clampdown on proprietary trading in the
aftermath of the Global Financial Crisis.

2See “Holistic Review of the March Market Turmoil,” Financial Stability Board, November 2020.
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How intermediation constraints impact market liquidity is an important issue for both
policy makers and academics. In fact, it has been much debated whether the policies put
in place since the Global Financial Crisis in 2008/09 have had any consequence on the func-
tioning of OTC markets by disincentivising liquidity provision (e.g., Dudley, 2018). On top
of the regulatory costs, the academic literature seeks to understand the increased reluctance
of dealers to use their balance sheets for intermediation. Moreover, the monitoring of how
liquidity costs fluctuate and are affected by dealer behavior is also beneficial for practitioners
as well as central banks operating in such markets.

Our paper consists of three parts. Specifically, we start by proposing a novel analytical
approach for measuring the cost of liquidity provision. The conceptual underpinning is a no-
arbitrage relation that ties together triplets of spot FX rates. We show that deviations from this
no-arbitrage condition represent an amalgam of two liquidity cost components. The first part
(i.e., VLOOP) captures the violations from the law of one price. In line with the literature on
intermediary asset pricing (e.g., Adrian, Etula, and Muir, 2014; Duffie, 2018; Fleckenstein and
Longstaff, 2018; Du, Hébert, and Huber, forthcoming 2022), a natural interpretation of these
no-arbitrage violations is that they capture the shadow cost of intermediary constraints.3 The
second part (i.e., TCOST) captures the round-trip trading cost that traders would incur in
such a triangular arbitrage trade. Effectively, TCOST represents the dealer’s compensation to
endure inventory imbalances due to the clients’ demand for immediacy.

Based on our spot FX transaction data from CLS Group, we document three new empirical
results. First, both liquidity cost components are economically significant but, as expected,
VLOOP is an order of magnitude smaller than TCOST. Second, the two cost components move
in tandem over time, albeit their correlation is less than 30% on average. This is consistent
with the idea that both are affected by dealers’ intermediation capacity, but in different ways.
While VLOOP reflects the shadow cost of intermediary constraints, TCOST captures dealer’s
compensation for enduring inventory imbalances. Third, both components, but especially
TCOST, tend to rise as intermediated volumes increase. This pattern is in line with the
idea that dealers require compensation for their market-making activity the more it requires
management of possible inventory imbalances.

In the second part of the paper, we link the cost of liquidity provision to dealers’ con-
straints. The key mechanism is that constrained dealers are less inclined to make balance
sheet space available to clients who wish to trade currency positions that create persistent
inventory positions. Hence, leveraged and risk-averse dealers have limited intermediation
capacity. This mechanism stems from two dealer behaviours that we test empirically: First,
dealers pass on their intermediation costs on the prices offered to clients. As such, this
will be reflected in our two trading cost measures, which increase as intermediated volumes
rise. Second, dealers are less inclined to maintain large and unbalanced inventories for mar-

3In line with this strand of literature, one may also refer to these shadow costs as “balance sheet costs”
associated with spot FX liquidity provision.
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ket making purposes when their intermediation capacity is lower. The higher trading costs
charged by dealers will in turn also curb some potential liquidity traders from trading. In
other words, dealer constraints can have a bearing not only on the cost, but also the quantity
of FX liquidity provision. The former increases the cost of providing liquidity, while the latter
renders dealers’ liquidity provision less elastic.

In principle, the underlying mechanism we are interested in could be studied based on any
no-arbitrage condition (e.g., put-call parity, treasury cash bonds vs futures, etc.). However,
the triangular no-arbitrage condition offers at least two main advantages: First, it provides
us with a clean laboratory to measure the cost of liquidity provision in the FX spot market.
This is because unlike other arbitrage conditions that embed various frictions4 (e.g., coun-
terparty risk, funding roll-over risk, etc.) the triangular no-arbitrage condition captures the
shadow cost of constraints on intermediation activities that are nearly risk-free (i.e., spot FX)
and which can be financed by deploying existing balance sheet cash or short-term funding
(Andersen, Duffie, and Song, 2019). Second, it allows us to attribute a meaningful economic
interpretation to both VLOOP and TCOST liquidity cost components: while the former cap-
tures the shadow cost of intermediation constraints arising from differences in the dealer’s
marginal valuation across a currency pair triplet, the latter reflects the dealer’s realised com-
pensation for incurring inventory risk when dealing with clients.

For our empirical analysis, we construct a composite measure of dealers’ constraints that
increases with higher leverage, Value-at-Risk (VaR), and funding costs. Specifically, we define
our time-varying “dealer constraint measure” DCM as the first principal component of the
top 10 FX dealer banks’ i) FX portfolio VaR, ii) He, Kelly, and Manela (2017) leverage ratio,
iii) credit default swap (CDS) premia, and iv) funding costs that are particularly relevant for
debt-financed positions and market-making functions (see, e.g. Andersen et al., 2019). To rule
out reverse causality, DCM enters all our regression with a lag of 1 day and our results are
robust to using more lags. From an institutional perceptive, the relation between the cost of
liquidity provision (i.e., VLOOP and TCOST) and dealer-intermediated volume is unlikely to
have any effect on DCM. This is because spot FX trading itself does not affect dealer leverage
or trading book VaRs, not least given substantial internalisation of trades and netting.5

Equipped with a consistent measure of dealers’ constraints, we are in an ideal position
to analyse the relation between our two liquidity cost components and dealer-provided vol-
umes. Two main results emerge concerning liquidity costs and volumes. First, although well
expected, the cost of liquidity provision increases significantly with dealers’ constraints. Sec-
ond, to gauge how the quantity of supplied liquidity evolves depending in dealer constraints,
we regress liquidity provision costs on dealer-intermediated volume conditional on dealers’

4For instance, Siriwardane, Sunderam, and Wallen (2021) show that the low correlation in the violation of seven
no-arbitrage conditions (excluding the FX triangular no-arbitrage condition) is attributable to various frictions
driving both the segmentation of balance sheets and also the funding abilities of financial firms.

5Moore, Schrimpf, and Sushko (2016) document that some of the major FX dealer banks have internalisation
ratios of up to 90%. Moreover, CLS claims that multilateral netting shrinks funding needs by over 96%.
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constrainedness. This analysis highlights how the “elasticity of liquidity provision” – that
is, the correlation between liquidity costs and trading volumes – decreases as dealers become
more constrained. To do so, we rely on so-called logistic smooth transition regression (LSTAR)
methods (e.g., Christiansen, Ranaldo, and Söderlind, 2011) that are particularly well-suited to
capture correlations across different regimes. The main goal of the regime-dependent analy-
sis is to investigate how the relation between dealer-intermediated volume and liquidity costs
changes across two regimes: i) normal times when dealers are mostly unconstrained, and ii)
stressed periods when dealers face more tightening economic conditions. Two novel find-
ings arise: First, changes in dealer-provided volume and our liquidity cost measures co-move
with an average correlation of 12%–31%. Second, we find that the correlation between liq-
uidity costs and intermediated volume falls off sharply when dealers’ inventory absorption
capacity is strained.6 Despite both liquidity costs (i.e., VLOOP and TCOST) and intermedi-
ated volume being on average at least 20–29% higher in the constrained state compared to
normal times, the correlation between the two measures decreases by 14–15 percentage points
in constrained periods. We interpret this result as a drop in dealers’ elasticity to provide liq-
uidity. All findings remain qualitatively unchanged when considering each determinant of
the dealer constraint measure as a single regime variable.

In the third part of the paper, we rationalise our empirical findings with a simple par-
tial equilibrium model. Building on standard microstructure theory (see, e.g., Grossman
and Miller, 1988; Hendershott and Menkveld, 2014), the model features two periods, three
currency pairs, and two types of agents: i) a risk-averse and debt-financed dealer supply-
ing liquidity and ii) liquidity traders with exogenous trading demands. The two liquidity
cost components discussed above arise naturally arise from our model. Regarding VLOOP,
heterogeneity in private values among liquidity traders results in demand imbalances across
the three currency pairs (Gabaix and Maggiori, 2015), which in turn generates imbalanced
customer demand. Such imbalances in turn weighs on the dealer’s marginal valuation of
the three currency pairs due to the implied balance sheet costs. More specifically, this incen-
tivises the dealer to set mid-quotes away from their fundamental value resulting in a violation
of the law of a price (VLOOP). VLOOP thus emerges as a key variable to measure the shadow
cost of dealer constraints in FX spot trading. It is important to note, however, that for most
market participants it is not feasible to benefit from such deviations due to high transaction
costs as well as FX quantity conventions on major trading platforms. In particular, the dealer
sets bid and ask quotes to be compensated for its customers’ demand for immediacy, which
consumes economic capital due to debt funding costs, volatility, and risk aversion. Against
this backdrop, TCOST represents the total round-trip cost for performing such a triangular
no-arbitrage trade in equilibrium.

6The key focus of our analysis lies on the supply side of liquidity provision that we capture via our dealer
constraint measure DCM. In the robustness section of the paper, we also use a structural vector autoregression
with sign restrictions to disentangle liquidity demand and supply dynamics. The setup here closely follows
Goldberg (2020) and Goldberg and Nozawa (2020).
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Related literature. Our paper contributes to three strands of literature. First, our work is
related to the broader literature that emphasises the role of intermediary frictions in affecting
asset prices and, in particular, risk premia (e.g., Gârleanu and Pedersen, 2011; He and Krish-
namurthy, 2011, 2013; Adrian and Boyarchenko, 2012; Adrian et al., 2014; He et al., 2017). Our
main contribution is to show in depth how constrained dealers curtail their liquidity provision
and charge higher liquidity costs in times of markets stress. This finding is consistent with the
evidence in Nagel (2012) showing that market makers’ liquidity supply is increasing in their
intermediation capacity and decreasing in the level of risk. Moreover, our paper corrobo-
rates the idea that market-wide liquidity conditions depend on intermediaries’ balance sheet
capacity (Adrian and Shin, 2010) and that intermediary leverage and banks’ risk manage-
ment practices (e.g., following VaR methodologies) tend to be pro-cyclical (Adrian and Shin,
2013). Lastly, our findings suggesting that the cost of dealers’ balance sheet space affects both
the cost and quantity of liquidity provision are consistent with slow-moving intermediated
capital causing distortions in pricing relations (Duffie, 2010).

Second, we add to the literature on limits to arbitrage. Our work differs from previous
research along two important dimensions. First, while prior research has mostly focused on
constrained arbitrageurs (e.g., Shleifer and Vishny, 1997; Gromb and Vayanos, 2002; Hombert
and Thesmar, 2014) and more recently Du et al. (forthcoming 2022) and Siriwardane et al.
(2021), we study the role of constrained dealers and how their ability to provide immediacy
contributes to market liquidity. Second, we use a well-known no-arbitrage identity to derive
two liquidity cost components with an economically meaningful interpretation. Thus, our key
contribution is to analyse arbitrage conditions to shed light on the relation between liquidity
costs and trading volume and to show how this relation critically depends on the interme-
diation capacity of dealers. In addition, a large body of prior research has studied limits to
arbitrage in equity markets (see Gromb and Vayanos, 2010). However, many of the frictions,
such as short sale constraints which are considered a major explanation in equities (e.g., Chu,
Hirshleifer, and Ma, 2020), do not apply to FX. Related to the stock market literature, recent
studies document widespread mispricings in stressful conditions (Pasquariello, 2014), com-
monality in arbitrage deviations (Rösch, Subrahmanyam, and van Dijk, 2016), and limits to
arbitrage impacting market liquidity (Rösch, 2021). We add to this branch of the literature by
identifying constrained intermediaries as the main driving force behind such commonalities
and by showing how their liquidity provision impacts aggregate trading volume.

Lastly, we contribute to the literature on FX microstructure on understanding the role of
trading volume. Our key angle here is to study the relation of both quantities (i.e., volumes
from CLS Group) and prices. In contrast to the order flow literature (e.g., Evans, 2002; Evans
and Lyons, 2002, 2005), the literature on trading volume is relatively scarce due to the lack
of comprehensive data sets. Earlier research has focused largely on the inter-dealer segment,
which is dominated by two platforms: Reuters (e.g., Evans, 2002; Payne, 2003; Foucault et al.,
2016) and EBS (e.g., Chaboud, Chernenko, and Wright, 2008; Mancini, Ranaldo, and Wram-
pelmeyer, 2013; Chaboud et al., 2014). Alternative sources of spot FX volume are proprietary
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data sets from specific dealer banks (e.g., Bjønnes and Rime, 2005; Menkhoff, Sarno, Schmel-
ing, and Schrimpf, 2016). The recent public access to CLS data has enabled researchers to
study customer-dealer volume at a global scale (Hasbrouck and Levich, 2018, 2021; Ranaldo
and Santucci de Magistris, 2018; Cespa, Gargano, Riddiough, and Sarno, 2021; Ranaldo and
Somogyi, 2021). We contribute to this strand of literature by investigating the impact of FX
dealer constraints on both the cost and quantity dimension of global FX market liquidity.

2. Measuring the cost of liquidity provision in FX markets

2.1. Data sources

The empirical analysis employs high-frequency trade and quote data from two main sources.
The spot FX volume data come directly from CLS Group (CLS) and is sampled hourly. Note
that the dataset excludes any trades between two market makers or two price takers and
hence only includes trading activity that is intermediated by FX dealer banks. This data set is
publicly available from CLS or via Quandl.com, a financial and economic data provider.7 CLS
data have been used in prior research, among others, by Hasbrouck and Levich (2018, 2021),
Ranaldo and Santucci de Magistris (2018), Cespa et al. (2021), and Ranaldo and Somogyi
(2021). These authors have comprehensively described the CLS volume data.

The full sample period spans from November 2011 to September 2020 and includes data
for 18 major currencies and 33 currency pairs. Our goal is to construct measures capturing
the cost of liquidity provision. We derive these measures from triangular no-arbitrage trades
involving one non-dollar currency pair (e.g., AUDJPY) and two dollar legs (i.e., USDAUD and
USDJPY). Hence, we exclude the USDHKD, USDILS, USDKRW, USDMXP, USDSGD, and
USDZAR from our sample because there are no further non-dollar currency pairs involving
the respective quote currencies (i.e., HKD, ILS, KRW, MXP, SGD, and ZAR). Furthermore, to
maintain a balanced panel, we also remove all currency pairs involving the Hungarian forint
(HUF), which enters the data set later, on 7 November 2015.8

Next, we pair the hourly FX volume data with intraday spot bid and ask quotes from
Olsen, a well-known provider of high-frequency data. Olsen compiles historical tick-by-
tick data from various electronic trading platforms, both from the inter-dealer and dealer-
customer segments. The indicative bid and ask quotes are directly available for all 25 currency
pairs but do not correspond to actually executable transaction prices. This is not an issue for

7CLS operates the world’s largest payment-vs-payment settlement system handling up to 50% of global FX
volumes. At settlement, CLS mitigates principal and operational risk by settling both sides of the trade at once.

8This filtering leaves us 15 non-dollar currency pairs (i.e., AUDJPY, AUDNZD, CADJPY, EURAUD, EURCAD,
EURCHF, EURDKK, EURGBP, EURJPY, EURNOK, EURSEK, GBPAUD, GBPCAD, GBPCHF, and GBPJPY) and 10
dollar pairs (i.e., USDAUD, USDCAD, USDCHF, USDDKK, USDEUR, USDGBP, USDJPY, USDNOK, USDNZD,
and USDSEK) that are used to synthetically replicate each of the non-dollar pairs.
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our purposes for two reasons: First, we are interested in measuring the cost of liquidity provi-
sion rather than identifying actual triangular arbitrage opportunities. Second, on average, the
correlation of Olsen indicative quotes with tradeable EBS best bid and offer prices is around
99% and the mean absolute error is roughly 3.3%.9

2.2. Key variables

We measure the cost of liquidity provision in the spot FX market along two dimensions: i)
violations of the law of one price (VLOOP), and ii) round-trip transaction costs (TCOST). In
a first step, we explain how we derive the two components and, in a second step, elaborate
how they relate to the costs that dealers face when providing spot FX liquidity.

Conceptually, VLOOP captures the price dislocations for two assets or trading positions
with the same intrinsic value, while TCOST refers to the round-trip trading costs to take
advantage of the violations. We derive both measures from the well-known triangular arbi-
trage trade that takes advantage of three exchange rates (e.g., Chaboud et al., 2014; Foucault
et al., 2016). The VLOOP component of the triangular arbitrage trade can be computed with
midquote prices reflecting the intrinsic values of the direct and indirect positions. TCOST in
turn is computed from the bid and ask quotes (depending on the base and quote currency).

Deriving VLOOP and TCOST from the triangular no-arbitrage relation. To derive VLOOP,
consider a trader exchanging one euro (EUR) to some amount of US dollar (USD), exchanging
the amount of US dollar to some amount of Canadian dollar (CAD) and exchanging back the
amount of Canadian dollar to euro instantaneously at time t. The final amount of such a
round-trip transaction measured in euro is given as:

∆t ≡
3

∏
i=1

Pi,t, (1)

where P1,t =
1

USDEURmid
t

, P2,t = USDCADmid
t , and P3,t =

1
EURCADmid

t
denote midquote exchange

rates expressed as the amount of quote currency per unit of base currency, for instance, 1.255
Canadian dollar per US dollar (i.e., indirect quotation).

The trader has identified a violation of the law of one price if ∆t is different from unity.
Note that ∆t may be positive or negative depending on the direction of the trade but will
be identical in absolute terms (if measured in logs) irrespective of the initial endowment of
the trader (i.e., CAD, EUR or USD). Clearly, an arbitrageur would take this into account by
choosing the direction of the triangular no-arbitrage trade conditional on ∆t being positive.
Panel A in Figure 1 provides a schematic overview of how to measure such deviations from
triangular no-arbitrage conditions based on midquote prices.

9To be precise, we estimate correlations and mean absolute errors individually for 25 currency pairs over the
full-year of 2016. For brevity, we relegate these results to the Online Appendix.
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To derive TCOST, we consider the same trader as before but now incorporate transaction
costs by accounting for bid-ask spreads. Specifically, for every transaction that a trader makes,
she pays the midquote price plus the half-spread. To reflect this, we replace the midquote
prices in Eq. (1) by bid and ask prices, that is, P1,t = 1

USDEURask
t

, P2,t = USDCADbid
t , and

P3,t = 1
EURCADask

t
, respectively. The superscripts ’bid’ and ’ask’ refer to the price at which

someone sells and buys one currency for another currency. Panel B in Figure 1 provides an
overview of such a triangular arbitrage trade including transactions costs. Note that the bid
and ask prices in this example are illustrative and do not correspond to actual data.

Figure 1: Triangular arbitrage trade

CAD

EUR USD

Δ𝑡 =
1.255

0.820 ⋅ 1.505
= 1.017 𝐸𝑈𝑅

𝟎. 𝟖𝟐𝟎𝑴𝑰𝑫

Panel A

CAD

EUR USD

Δ𝑡 =
1.25

0.83 ⋅ 1.52
= 0.991 𝐸𝑈𝑅

0.81𝐵𝐼𝐷|𝟎. 𝟖𝟑𝑨𝑺𝑲

Panel B

Note: This figure provides a schematic overview of a triangular arbitrage trade prior (Panel A) and after transac-
tion costs (Panel B). The arrows denote the direction of the trade. Panel A shows the prior transaction cost return
of a trader starting with one euro, first exchanging it to 1

0.820 = 1.220 US dollars, then exchanging 1.220 US dollars
to Canadian dollars at the midquote price of 1.255 Canadian dollars per US dollar. This yields 1.531 Canadian
dollars that are exchanged back to euros at the CADEUR midquote that is equivalent to 1

EURCADMID = 1
1.505 .

Such a round trip yields 1.017 euros or equivalent a positive return of 1.7% in this example. Panel B shows the
return of first exchanging one euro to 1

0.83 = 1.21 US dollars at the ask price, then exchanging 1.21 US dollars to
Canadian dollars at the bid price of 1.25 Canadian dollars per US dollar. This yields 1.51 Canadian dollars that
are exchanged back to euros at the CADEUR bid price that is equivalent to 1

EURCADASK = 1
1.52 . Such a round trip

yields 0.991 euros or equivalent a negative return of −0.9%.

The last step in the derivation of the two liquidity cost metrics (VLOOP and TCOST)
consists of taking the log on both sides of Eq. (1), and leveraging that bid and ask prices are
the midquote minus and plus half the bid-ask spread. This yields the following expression:

log(∆t) ≡ log

(
USDCADmid

t

USDEURmid
t · EURCADmid

t

)
︸ ︷︷ ︸

VLOOPt

− log

((
1 + USDEURbas

t
2

)
·
(
1 + EURCADbas

t
2

)
1 − USDCADbas

t
2

)
︸ ︷︷ ︸

TCOSTt

, (2)

where the superscripts ’mid’ and ’bas’ denote the midquote price (i.e., the average of the
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bid and ask price) and relative bid-ask spread (i.e., the difference between ask and bid price
relative to the midquote), respectively. Note that in this expression TCOSTt is by definition
positive and also contingent on the direction of the trade.

The first part of Eq. (2) (i.e., VLOOPt) captures the violations from the law of one price.
Following the literature on intermediary asset pricing (e.g., Adrian et al., 2014; Duffie, 2018)
we interpret these no-arbitrage violations as a measure of the lower bound of the shadow cost
of intermediary constraints. In our context, these costs stem from constraints that are related
to spot FX liquidity provision. The second part (i.e., TCOSTt) reflects the cumulative round-
trip transaction cost of performing such a triangular arbitrage trade. Hence, these transaction
costs also represent the dealer’s compensation to endure an inventory imbalance due to the
clients’ demand for immediacy.

Following our methodology, we compute VLOOPt and TCOSTt for k = 1, 2, ..., 15 triplets
of currency pairs. A triplet of currency pairs is defined as one non-dollar currency pair (e.g.,
EURCAD) plus the two USD legs (e.g., USDEUR and USDCAD).10 In particular, at every point
in time we take the perspective of the arbitrageur above by first, identifying the seemingly
profitable direction of the trade by conditioning on VLOOPt being positive and second, by
extracting the associated transaction cost TCOSTt. Moreover, we prune the hourly time-series
of VLOOPt and TCOSTt, respectively, for heavy outliers, which we define as observations
in the top and bottom 1.5 percentiles of the data. Eventually, we can also compute daily
measures of VLOOPt and TCOSTt by summing up hourly observations for each day.

Empirical illustrations. Figure 2 shows the time-series and cross-sectional variation of hourly
no-arbitrage violations VLOOPt (left y-axis) and round-trip transaction costs TCOSTt (right y-
axis), respectively. Economically, a higher reading of VLOOPt coincides with a larger shadow
cost of intermediary constraints, whereas TCOSTt captures the realised compensations for
providing immediacy. Both measures of dealers’ liquidity costs exhibit intuitive properties
in the sense that they surge during periods of market stress and mean-revert during calm
periods. The large spike during the Covid-19 market turmoil in March and April 2020 is
particularly well pronounced across all 15 triplets of currency pairs and is indicative of the
global nature of the stress. The correlation of VLOOPt and TCOSTt is positive for the en-
tire cross-section and ranges from 12–39%. We interpret this as evidence of commonality in
no-arbitrage violations and market liquidity in the broader sense (Rösch, 2021).

Table 1 reports the time-series average of hourly triangular no-arbitrage deviations VLOOP
and round-trip transaction costs TCOST. In addition, it also tabulates hourly averages of direct
trading volume in non-dollar currency pairs (e.g., AUDJPY) and synthetic trading volume in

10As a robustness check, we have also constructed triplets of euro-based currency pairs that do not involve
any dollar currency pairs (e.g., AUD-EUR-JPY). This leaves us with 6 currency pair triplets: AUD-EUR-JPY,
CAD-EUR-JPY, GBP-EUR-AUD, GBP-EUR-CAD, GBP-EUR-CHF, and GBP-EUR-JPY, respectively. All our key
empirical results remain qualitatively unchanged when estimated based on this alternative cross-section of cur-
rency pair triplets. See the Online Appendix for these additional findings.
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Figure 2: No-arbitrage violations and round-trip transaction costs
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Note: This figure plots the absolute value of 22-day moving averages of hourly triangular no-arbitrage deviations
VLOOPt (left y-axis) and round-trip trading costs TCOSTt (right y-axis), respectively, for 15 triplets of currency
pairs. Both variables are measured in basis points. The numbers in the titles refer to the correlation coefficient of
VLOOPt and TCOSTt. The sample covers the period from 1 November 2011 to 30 September 2020.

dollar pairs (e.g., USDAUD and USDJPY). By “synthetic” we refer to the total sum of trading
volume in two dollar currency pairs within a currency pair triplet, for instance, AUDJPY,
USDAUD, and USDJPY, that we abbreviate as AUD-USD-JPY. Each row corresponds to one
triplet of currency pairs.

This simple summary statistics table conveys two main insights: First, deviations from
fundamentals VLOOP are an order of magnitude smaller than round-trip transaction costs
TCOST. We interpret this result as suggestive evidence that dealers recharge their interme-
diation costs on the bid and ask prices offered to their customers. Another implication is
that seemingly profitable violations of triangular no-arbitrage most of the time will not be
exploitable by the average trader as transactions costs are prohibitively high (i.e., there is
no free lunch). Second, trading volume in non-dollar currency pairs is considerably smaller
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relative to the synthetic volume in dollar currency pairs.11 This is essentially the case for all
15 currency pair triplets but the effect is less pronounced for those involving the NOK and
SEK, where the euro crosses play a bigger role. Consequently, the average relative bid-ask
spread and realised volatility are somewhat smaller in the more heavily traded dollar than in
non-dollar currency pairs.

Table 1: Summary statistics

Liquidity cost in bps Volume in $bn Bid-ask spread in bps Volatility in bps

VLOOP TCOST Direct Synthetic Direct Synthetic Direct Synthetic

AUD-USD-JPY 0.24 4.88 0.18 5.11 4.15 5.87 14.38 15.86
AUD-USD-NZD 0.29 5.85 0.09 2.01 4.44 7.43 9.32 17.95
CAD-USD-JPY 0.30 4.67 0.03 5.32 4.29 5.21 12.66 13.39
EUR-USD-AUD 0.19 4.52 0.14 7.72 3.54 5.64 11.54 15.51
EUR-USD-CAD 0.28 4.25 0.08 7.94 3.55 4.99 10.15 12.89
EUR-USD-CHF 0.21 3.98 0.37 6.76 2.62 5.41 6.38 13.44
EUR-USD-DKK 0.14 3.89 0.09 6.17 2.54 5.30 1.82 13.03
EUR-USD-GBP 0.19 4.07 0.61 8.16 3.19 4.95 9.52 13.60
EUR-USD-JPY 0.21 3.90 0.65 9.67 3.14 4.83 11.43 13.71
EUR-USD-NOK 0.26 7.69 0.24 6.25 6.25 9.40 11.01 16.90
EUR-USD-SEK 0.23 6.86 0.27 6.27 5.41 8.42 9.18 15.95
GBP-USD-AUD 0.20 5.08 0.04 3.60 4.22 5.99 12.53 15.93
GBP-USD-CAD 0.29 4.69 0.03 3.81 4.00 5.34 10.85 13.31
GBP-USD-CHF 0.19 4.94 0.03 2.64 4.09 5.76 10.69 13.99
GBP-USD-JPY 0.19 4.47 0.20 5.55 3.85 5.18 12.78 14.13

Note: This table reports the time-series average of hourly triangular no-arbitrage deviations VLOOP in basis
points (bps), round-trip trading costs TCOST in bps, direct trading volume in non-dollar currency pairs (e.g.,
AUDJPY) in $bn, synthetic volume in dollar pairs (e.g., the sum across USDAUD and USDJPY) in $bn, as well
as direct and synthetic relative bid-ask spreads and realised volatility in non-dollar and dollar pairs in bps,
respectively. Each row corresponds to a triplet of currency pairs, for example, AUDJPY, USDAUD, and USDJPY
that we abbreviate as AUD-USD-JPY. The sample covers the period from 1 November 2011 to 30 September 2020.

3. Elasticity of liquidity provision and dealer constraints

This section presents evidence consistent with our hypothesis that dealers accommodate their
customers’ trading demands in normal times, whereas their liquidity provision becomes in-
creasingly inelastic at times of heightened intermediation constraints. The analysis is split
into two parts. We first start with some simple motivating evidence showing that the rela-
tionship between dealer-intermediated volumes and the cost of liquidity provision depends
on dealers’ intermediation constraints. We then draw on smooth transition regressions to
study the state-dependent nature of this relation more formally.

11Somogyi (2021) provides both theoretical and empirical evidence in favour of the idea that strategic comple-
mentarity in price impact can explain these cross-sectional differences between dollar and non-dollar pairs.
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3.1. Motivating evidence

For motivational purposes, we first present some descriptive evidence of how trading vol-
ume and the costs of liquidity provision (i.e., VLOOP and TCOST) co-move over time. In a
second step, we then compute conditional correlations to show how the relation weakens as
intermediaries become more constrained.

To measure dealer banks’ intermediation constraints we derive a composite dealer con-
straint measure (DCM) that we compute in two steps. As a first step, we create four time-
series based on cross-sectional averages of the top 10 FX dealer banks’ (see Euromoney FX
surveys) i) Value-at-Risk (VaR) of the FX trading book (quarterly), ii) He et al. (2017) lever-
age ratio (quarterly), iii) credit default swap (CDS) premia (daily) and iv) debt funding costs
(daily). Figure 3 shows the time-series variation of these four measures that exhibit corre-
lations ranging from 58% to 91% percent. See the Online Appendix for details on how we
retrieve and compute each of these variables.

Figure 3: State variables: Dealer constraint measure and its components
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Note: This figure plots different state variables that we observe at the daily and quarterly frequency. Observations
have been standardised by subtracting the sample mean and dividing by the sample standard deviation of every
variable. The four state variables are the 1-day lagged value of primary FX dealer banks’ i) quarterly Value-at-Risk
measure (VaR, dashed black line), ii) quarterly He et al. (2017) leverage ratio (HKM, dashed grey line), iii) daily
credit default spread (CDS, solid black line), and iv) daily funding cost yield (DFC, solid grey line). We define
our dealer constraint measure (DCM, black solid line with grey markers) as the first principal component across
these four variables. The sample covers the period from 1 November 2011 to 30 September 2020.

All of these factors can have a bearing on financial intermediaries’ capacity to absorb cus-
tomer order flow imbalances on their balance sheet. For example, self-imposed or regulatory-
driven VaR-limits force dealers to scale back their market making or proprietary trading.
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Similarly, dealers’ willingness to engage in market making activity and liquidity provision
is linked to their risk profile, as reflected, for instance, in higher leverage and CDS premia.
In addition, elevated risk exposure can lead to an immediate increase in funding costs and
valuation adjustments (XVA), including debt and funding value adjustments (Andersen et al.,
2019). These factors in turn will affect dealers’ assessment of the financing costs for its fran-
chise, and as such will have a bearing on its intermediation activities.

Since large FX dealer banks (e.g., Citi Bank or UBS) typically operate on a global scale
and provide liquidity in many currencies and other asset classes at once, they are even more
exposed to these issues. As such, intermediaries might be forced to reduce liquidity provi-
sion in all currency pairs when they endure trading losses in particular positions and/ or
experience funding constraints affecting the whole dealer franchise.

As a second step, we extract the first principal component that explains around 83% of
the total variance and serves as our composite measure of dealer constraints. Hence, the key
advantage of our dealer constraint measure DCM is that it encompasses a range of different
factors that can all impact dealers’ risk appetite and willingness to warehouse risk.12 By doing
so, we are able to extract common information of all these factors and obtain a daily measure
of economic constraints on global dealers’ intermediation activity.13

A valid question is whether our dealer constraint measure may be also affected by the
amount of intermediated volume itself. There are at least two reasons why this is unlikely to
be the case: First, we use lagged DCM in all our state-dependent regression analyses to rule
out any contemporaneous relation or reverse causality issues. Second, spot FX intermediation
activity only minimally affects dealer leverage since it is a direct exchange of two currencies
(i.e., an accounting exchange on the asset side). And similarly, FX trading volume is unlikely
to affect the dealers’ credit spread and overall costs of funding.

Figure 4 plots the average 30-day rolling window correlation between each of our two
liquidity cost measures (i.e., VLOOP and TCOST) and total dealer-intermediated trading
volume against our dealer constraint measure DCM.14 For ease of illustration, we show the
cross-sectional average of these rolling window correlations across 15 triplets of currency
pairs. There are two key takeaways from this figure: First, both dimensions of liquidity costs
(i.e., VLOOP and TCOST) covary positively on average with dealer-intermediated trading
volume. Second, the correlation between the cost of liquidity provision (i.e., VLOOP and

12One might wonder how much our results are driven by market-wide state factors that are not dealer specific.
To prove robustness, we use the VIX index, TED spread, gold price, and the LIBOR-OIS spread. We find that
these state variables do not appropriately capture the state-dependent relation between liquidity costs and trading
volume. See the Online Appendix for output tables.

13Ideally, we would be able to measure dealer constraints intraday. Unfortunately, this is not feasible due to the
low frequency availability of VaRs, leverage ratios, CDS spreads, and debt funding costs at the bank level.

14Note that the CLS volume data include the FX trading activity of all top dealer banks listed in the Euromoney
FX surveys. In particular, the banks that show up in the Euromoney FX surveys are also the most dominant
players on the CLS settlement system. Moreover, the decline in DCM since 2012 is also consistent with the rise of
electronic and algorithmic trading activity in the FX market.
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TCOST) and trading volume weakens substantially as DCM increases.

Figure 4: Rolling correlations of liquidity costs and volumes vs dealer constraints
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Note: This figure plots the cross-sectional average of the 30-day rolling window correlation between the shadow
cost of intermediary constraints and total dealer-intermediated trading volume (i.e., cor(VLOOP, Volume), left
figure) as well as between dealers’ compensation to endure inventory imbalances and total dealer-intermediated
trading volume (i.e., cor(TCOST, Volume), right figure) in percent (%). Our dealer constraint measure (DCM)
is in units of standard deviations. We define DCM as the first principal component of the top 10 FX dealers’
(based on the Euromoney FX survey) quarterly Value-at-Risk measure (VaR), quarterly He et al. (2017) leverage
ratio (HKM), daily credit default spread (CDS), and daily debt funding cost (DFC). The bold black lines are linear
regression lines. The sample covers the period from 1 November 2011 to 30 September 2020.

Table 2 takes the descriptive analysis one step further by computing conditional correla-
tion coefficients of (log) changes in VLOOP, TCOST, and dealer-intermediated trading volume
(i.e., VLM) across the quantiles of our dealer constraint measure DCM. Consistent with our in-
tuition, we find that the correlation with each of the two liquidity cost measures (i.e., VLOOP
and TCOST) weakens substantially as our dealer constraint measure DCM increases. For in-
stance, the conditional correlation based on the highest DCM decile (i.e., when dealers are
most constrained) is a mere 17% for TCOST, and hence economically and statistically signifi-
cantly lower than the full-sample correlation of 31%. Moreover, we also observe a monotonic
increase in both liquidity cost measures and also a stronger commonality of VLOOP and
TCOST (i.e., cor(VLOOP, TCOST)) across the DCM quantiles.

These initial results suggest that market liquidity tends to deteriorate when dealers are
more constrained. Our preliminary explanation (which we formalise based on a simple model
in Section 4) for these empirical findings is that there are two main forces at play when deal-
ers are constrained: On the one hand, violations of no-arbitrage conditions (i.e., VLOOP)
increase as dealers charge a higher mark-up (or mark-down) across currency pairs reflecting
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the increase in the shadow cost of intermediary constraints. On the other hand, dealers will
also post more conservative bid and ask quotes and thus increasing transaction costs (i.e.,
TCOST) due to the surge in the cost of economic capital. Consequently, a higher spread will
discourage clients’ trading activity, which in turn makes dealers’ incoming customer flows
less imbalanced dampening VLOOP. As we show in the model, the first effect dominates if
dealer constraints are sufficiently small resulting in a higher VLOOP. A potential interpreta-
tion, which we develop in much more depth below both empirically and theoretically, for this
finding is that during constrained periods dealers’ liquidity provision is not elastic enough to
dampen the deterioration in market liquidity conditions.

Table 2: Liquidity provision cost characteristics across top DCM quantiles

Top DCM quantile cor(VLOOP, VLM) cor(TCOST, VLM) cor(VLOOP, TCOST) VLOOP in % TCOST in % VLM in $bn #Obs

least constrained 1.0 0.12 0.31 0.22 0.05 1.12 148.66 2,182
0.9 0.12 0.31 0.22 0.05 1.14 150.21 1,954
0.8 0.11 **0.30 0.22 0.05 1.18 153.27 1,726
0.7 0.13 *0.30 0.22 0.05 1.21 157.93 1,500
0.6 0.13 **0.30 0.22 0.05 1.23 159.24 1,271
0.5 0.12 ***0.28 0.21 0.05 1.23 158.99 1,042
0.4 0.12 ***0.22 0.21 0.06 1.28 161.65 815
0.3 0.10 ***0.16 *0.20 0.06 1.32 169.36 586
0.2 ***0.06 ***0.18 0.22 0.06 1.35 176.74 358

most constrained 0.1 ***−0.03 ***0.17 ***0.28 0.06 1.44 180.52 129

Note: This table shows the conditional correlation of our two liquidity cost measures (i.e., VLOOP and TCOST)
and total trading volume VLM across the top quantiles of the dealer constraint measure (DCM, columns 1 and
2). Column 3 reports the conditional correlation between VLOOP and TCOST. The underlying data are based
on a panel of 15 currency pair triplets. The asterisks *, **, and *** indicate that the correlation is significantly
different from the full sample (in the first line) estimate at the 90%, 95%, and 99% levels. The corresponding
test statistic for the conditional correlation corτ being equal to the full sample correlation corτ=1.00, where
τ ∈ 0.1, 0.2, ..., 0.9 refers to top DCMt deciles, are based on the Fisher z-transformation. Columns 4 to 6 report
the average VLOOPk,t (VLOOP) in %, TCOSTk,t (TCOST) in %, and the average VLMk,t (VLM) in $bn across
15 currency pair triplets. The last column contains the average number of observations (#Obs). The full sample
covers the period from 1 November 2011 to 30 September 2020.

3.2. Smooth transition regressions

We next briefly describe our preferred econometric approach that is based on a simple smooth
transition regression (LSTAR) model (e.g., van Dijk, Teräsvirta, and Franses, 2002; Chris-
tiansen et al., 2011). The LSTAR model is particularly well-suited for our analysis as con-
strained and unconstrained regimes are determined endogenously and are allowed to vary
smoothly over time.15

For the LSTAR model, let G(zt−1) be a logistic function depending on the 1-day lagged
regime variable zt−1

G(zt−1) = (1 + exp(−γ′(zt−1 − c)))−1, (3)

15As robustness check, we have also experimented with Markov chain switching models using DCM as an
exogenous state variable and found consistent results. These additional findings are available upon request.
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where the parameter c is the central location and the vector γ determines the steepness of
G(zt−1). Hence, the LSTAR model is of the form

yk,t = λt + αk + [1 − G(zt−1)]β
′
1 fk,t + G(zt−1)β′

2 fk,t + β′
3wk,t + εk,t, (4)

where the dependent variable is one of our two liquidity cost measures (i.e., VLOOP or
TCOST) and fk,t (wk,t) are state-dependent (state-independent) regressors. We include both
cross-sectional αk and time-series λt fixed effects to control for any unobservable heterogene-
ity that is constant across triplets of currency pairs k and time t, respectively. For estimation,
we use the generalised method of moments (GMM) and determine the optimal parameters γ

and c by nonlinear least squares minimising the concentrated sum of squared errors.16 Note
that the slope coefficients in Eq. (4) vary smoothly with the regime variable zt−1 from β1 at
low values of γ′zt−1 to β2 at high values of γ′zt−1. There are two interesting boundary cases:
First, if β1 = β2 we effectively have a linear regression. Second, the limit case where γ → ∞
is equivalent to a linear regression with a dummy variable.

The state-dependent explanatory variable fk,t is the total dealer-provided trading volume
(i.e., VLMk,t) that is defined as the sum of all trading volume in one non-dollar as well as two
dollar currency pairs within a particular currency pair triplet k. The state-independent vari-
able is the realised variance (i.e., RVk,t) in the direct non-dollar currency pair (e.g., AUDJPY)
that we estimate following Barndorff-Nielsen and Shephard (2002) as the sum of squared
intraday midquote returns. Note that across all regression specifications both LHS and RHS
variables are taken in logs and first differences. The obvious advantage of this is twofold:
First, regression coefficients are straightforward to be interpreted as elasticities. Second, FX
volume in levels is non-stationary and persistent (see Ranaldo and Santucci de Magistris,
2018), hence taking first-differences is an effective remedy to render the series stationary.

Table 3 shows the passage from a linear model with a dummy to a non-linear smooth
transition regression (LSTAR). To be specific, the first two columns in this table report the
results from estimating a linear model (OLS) of the form

yk,t = λt + αk + β′
1 fk,t + δ′ fk,t · Dt−1 + β′

3wk,t + ϵk,t, (5)

where fk,t and wk,t collect all regressors and Dt−1 is a 1-day lagged interaction variable cap-
turing periods of heightened dealer constraints. Note that the estimate of δ corresponds to
the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) of
the LSTAR model in Eq. (4). In column ‘Dummy’, Dt is equal to one if DCMt is above its 75%
quantile in period t. Note that the specifications in ‘Dummy’ is a simple, yet intuitive, approx-
imation of non-linear regression model. In column ‘Logistic’, Dt is a logistic transformation
of DCMt based on 1/[1 + exp(−γDCMt)], where γ determines the steepness of the function.

16Our inference is based on a Driscoll and Kraay (1998) covariance matrix that allows for random clustering
and serial correlation up to 8 lags. We choose the optimal bandwidth using the plug-in procedure for automatic
lag selection by Andrews and Monahan (1992) and Newey and West (1994), respectively.
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For simplicity, we set γ = 1 but the results in column ‘Logistic’ are robust for values of γ

ranging from 1 to 12. Lastly, in column ‘LSTAR’ the table shows results from a smooth transi-
tion regression (LSTAR) as in Eq. (4), which constitutes our preferred econometric approach.
Again, the logistic function G(zt−1) depends on 1-day lagged values of our dealer constraint
measure DCMt.17 Note that across each of the three specifications we control for the realised
variance in the direct non-dollar currency pair (e.g., AUDJPY). Moreover, in the Online Ap-
pendix we show that our findings are robust to including the cross-currency (CIP) basis (e.g.,
Akram, Rime, and Sarno, 2008; Du, Tepper, and Verdelhan, 2018) and the Amihud (2002)
price impact as a control for FX funding (Andersen et al., 2019; Rime, Schrimpf, and Syrstad,
2021) and market (e.g., Ranaldo and Santucci de Magistris, 2018) liquidity, respectively.

There is a consistent picture that arises across all three specifications in Table 3: the differ-
ence between the slope coefficient on total trading volume in constrained and unconstrained
periods is negative and highly statistically significant for both VLOOP and TCOST. Moreover,
the estimated slope coefficients are almost identical for the linear model with dummy (col-
umn ‘Dummy’) and the LSTAR model (column ‘LSTAR’). In both cases, the difference in the
slope coefficients (i.e., β2 − β1) is at least 80% lower when dealer banks are constrained and
hence less willing or able to cater their customers’ trading demands. In sum, two findings
stand out from this analysis: First, dealer-provided volume covaries significantly less with
VLOOP and TCOST during times when dealers are more constrained. Second, it is above
all the relation between VLOOP and trading volume that strongly diverges and even exhibits
negative (albeit insignificant) coefficients in the constrained regime.

Taken together, these results highlight the state-dependent nature of the relation between
our two liquidity cost measures (i.e., VLOOP and TCOST) and dealer-intermediated trading
volume.18 Moreover, the estimated coefficient linking VLOOP and TCOST to DCM can be
interpreted as an elasticity due the log and first-difference transformation of all variables.
From this perspective, our results suggest that dealers’ liquidity provision is generally elastic
in normal times, supporting market liquidity. However, when dealers face constraints their
liquidity supply becomes more inelastic, which adversely affects both the noise in exchange
rates (i.e., VLOOP) and also the level of transaction costs (i.e., TCOST).

To hone some further intuition for the LSTAR model, we plot the resulting time path of
the fitted regime function G(DCMt) for VLOOP and TCOST in Panels A and B of Figure 5.
Except for the first two years of the sample, the fitted G(DCMt) is mostly close to 0 (it is less
than 0.25 on 57% and 72% of the days in the sample for VLOOP and TCOST, respectively)
and occasionally increases above 0.75 (36% and 22% of the days for VLOOP and TCOST, re-
spectively). These upward spikes are particularly pronounced during the European sovereign
debt crisis through 2014/15, uncertainty around Brexit and US elections in 2016, and also the

17In the Online Appendix we show that our findings are robust to using up to 22 lags (see Figures B.4 and B.5).
18Note that our estimates for the difference in the slope coefficients across constrained and unconstrained

regimes are very similar when using either VLOOP or TCOST as a regressor and VLM as the dependent variable.
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Table 3: From linear model with dummies to smooth transition regression

VLOOP TCOST

Dummy Logistic LSTAR Dummy Logistic LSTAR

γ 1.00 ***12.05 1.00 ***5.94
c ***−0.14 ***0.39

Unconstrained volume ***0.08 ***0.16 ***0.11 ***0.09 ***0.12 ***0.09
[2.94] [3.47] [3.50] [11.07] [8.55] [10.85]

Constrained volume −0.07 *−0.09 −0.05 0.01 0.02 0.01
[1.37] [1.72] [1.40] [0.85] [1.14] [0.96]

Realised variance **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03
[2.05] [2.01] [2.02] [7.98] [7.95] [7.95]

Constrained-Unconstrained ***−0.14 ***−0.25 ***−0.16 ***−0.08 ***−0.10 ***−0.08
[2.66] [2.90] [3.25] [4.88] [4.19] [4.78]

R2 in % 0.13 0.14 0.15 3.78 3.73 3.78
Avg. #Time periods 2,182 2,182 2,182 2,185 2,185 2,185
#Currency triplets 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes

Note: In columns labelled ‘Dummy’ and ‘Logistic’ this table reports results from estimating a linear model
(OLS) of the form yk,t = λt + αk + β′1 fk,t + δ′ fk,t · Dt−1 + β′3wk,t + ϵk,t, where the dependent variable yk,t is
a liquidity cost measure (i.e., VLOOP or TCOST), fk,t and wk,t collect all regressors and Dt−1 is a 1-day
lagged interaction variable capturing distressed market periods. Note that the estimate of δ corresponds to the
difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1) in column ‘LSTAR’. In
column ‘Dummy’, Dt is equal to one if DCMt is above its 75% quantile in period t. In column ‘Logistic’, Dt

is a logistic transformation of DCMt based on 1/[1 + exp(−γDCMt)], where γ determines the steepness of
the function. In column ‘LSTAR’ the table shows results from a smooth transition regression (LSTAR) of the
form yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where fk,t (wk,t) are state-dependent

(state-independent) regressors and G(zt−1) is a logistic function depending on the state variable zt−1. The regime
variable is the 1-day lagged value of DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.

Covid-19 period in 2020. Hence, the unconstrained regime (when β1 is the effective slope
coefficient) corresponds to a normal market situation, while the constrained regime (when
the effective slope coefficient is close to β2) represents stressed periods when dealers face
constraints on their risk-bearing capacity.

Besides the LSTAR approach, we also rely on an alternative methodology in the robustness
section of the paper. Specifically, we estimate the correlation between each of our two liquid-
ity cost measures (i.e., VLOOP and TCOST) and dealer-intermediated volume in a rolling
window and regress it on DCM. Consistent with our baseline results, we find that the rolling
correlation between VLOOP or TCOST and volume decreases as DCM increases. Moreover,
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we extract exogenous liquidity demand and supply shocks from a structural vector autore-
gression inspired by Goldberg (2020). We use the demand shocks as instrument for DCM and
the supply shocks as an alternative measure of tightening dealer constraints arising outside
of the FX market (see Section 5 for further details).

Figure 5: Time-series of fitted regime function G(CDS)
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Note: Panel A of this figure shows the fitted regime function G(DCMt) for VLOOP using the point estimates
in column 3 of Table 3, whereas Panel B shows the fitted regime function G(DCMt) for TCOST using the point
estimates in column 6 of Table 3. The sample covers the period from 1 November 2011 to 30 September 2020.

4. A simple model of constrained liquidity supply

This section presents a static partial equilibrium model that rationalises the two main empir-
ical findings from the previous section:

1. The cost of liquidity provision (i.e., VLOOP and also TCOST) is higher when volatility is higher
and FX dealer banks are more constrained (see Table 2).

2. Liquidity provision costs and dealer-provided volume co-move when the dealers are uncon-
strained but the positive correlation decreases when dealer constraints tighten (see Table 3).

The model features two periods (t = 0, 1), three currency pairs (e.g., EURCAD, USDEUR,
USDCAD) and two types of agents: liquidity traders and one representative dealer. At t = 0,
liquidity traders arrive and trade with the dealer. At t = 1, the uncertainty is resolved.
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4.1. Trading environment

FX spot contracts. Let us denote the three currency pairs as x, y, and z. Let p denote the
exchange rates of the three currency pairs [px, py, pz]T at t = 0 whereby the base currency for
the first currency pair is the EUR, whereas for the other two it is the USD. For instance, for
currency pair x, 1 EUR = px CAD. More specifically, let aj and bj denote the ask and bid price
of currency pair j, and mj and sj denote the mid-quote and the spread of currency pair j.

The agents trading these three currency pairs at t = 1 get the fundamental value, in
which there is no difference between the direct FX rate (i.e., EURCAD) and the correspondent
synthetic rate computed with two indirect rates (i.e., first USDEUR and then USDCAD). We
denote the fundamental value of the three currency pairs as ẽ = [ẽx, ẽy, ẽz]T. The mean and
variance of the fundamental value are e = [ex, ey, ez]T and σ = [σ, σ, σ]T, respectively. Note
that the three fundamental values are intimately linked via ex = eyez.

Liquidity traders. We model liquidity demand in reduced form, following the classic mar-
ket microstructure literature (see, e.g., Grossman and Miller, 1988; Hendershott and Menkveld,
2014). At t = 0, there is L unit mass of liquidity traders in each currency pair where L is in-
creasing in σ. In addition, L is a decreasing function of the transaction cost, that is, the
(absolute) spread s quoted by the dealer. Let λ denote the trading demand parameter and
hence L = λσ(1 − s). A π fraction of the liquidity traders in currency pair x are buyers and
the rest are sellers. For currency pair y, a π fraction of liquidity traders are sellers and the rest
are buyers. For currency pair z, half of them are buyers, whereas the other half are sellers.

The demand is imbalanced across the three currency pairs due to diverging private values
among market participants (i.e., disagreement), following the spirit of Gabaix and Maggiori
(2015).19 For simplicity, suppose that π is larger than 1/2. Thus, the liquidity traders impose
net buying pressure (2π − 1) in currency pair x and net selling pressure (1 − 2π) in currency
pair y. As a result, the liquidity traders’ demand imbalance (i.e., the net buying pressure)20

in each of the three currencies is given as

d = λσ(1 − s)× [2π − 1, 1 − 2π, 0]T. (6)

Dealer. There is a representative and competitive dealer, à la Foucault, Pagano, and Roell
(2013, Sec. 3.5). The dealer is risk-averse and is endowed with equity capital that is worth

19To account for the effect of disagreement, we have explored regression specifications including alternative
high-frequency measures of disagreement. For instance, we consider the dispersion of order flows of corporates,
funds, non-bank financials, and banks (Cespa et al., 2021) as well as the volume-volatility ratio (Liu and Tsyvinski,
2020) as control variables and have found that our key empirical results remain qualitatively unchanged. These
additional findings are available upon request.

20 As the empirical results suggest in the previous section, the violation of the law of one price does not directly
imply that there are profitable triangular arbitrage opportunities if transaction costs in the form of bid-ask spreads
are sufficiently large. Hence, for simplicity, in the model we abstract away from any cross-market arbitrageurs.
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E and makes the market at t = 0. Being competitive and starting with zero inventory, she
decides on her positions q in the three currency pairs, where qj > 0 means the dealer sells
the currency pair j, taking the market-clearing prices p as given.

The dealer is assumed to be debt-financed and incurs funding costs when managing in-
ventory positions associated with market making (e.g., Scott, 1976; van Binsbergen, Graham,
and Yang, 2010). The funding cost has two components: a financing cost and an economic
capital cost. The financing cost is proportional to the net positions in the three currency pairs:
1T|q|, where 1 = [1, 1, 1]T. The economic capital increases in the Value-at-Risk of the currency
positions: qTΣq, where Σ is the covariance matrix across the triplet of currency pairs.21 For
simplicity, suppose the per-unit funding cost across the three currency pairs is the identical
and is denoted by η which increases in the dealer’s leverage and her debt financing costs.
Hence, η can be interpreted as a measure of the dealer’s constrainedness. The utility of the
dealer is given as

UD = E
(

pTq − eTq
)
− η

(
1T|q|︸ ︷︷ ︸

Outstanding position

+ qTΣq︸ ︷︷ ︸
Economic capital

)
. (7)

Thus, the empirical constraints examined in Section 3 (i.e., leverage ratio in He et al. (2017),
CDS spreads, dealers’ bond financing cost, and Value-at-Risk constraint) are captured via the
financing and economic capital components of the debt funding cost η.22

Market clearing. The market clearing condition is the following: At t = 0, the liquidity
traders’ demand is equal to the dealer’s position q. In other words,

d = q. (8)

4.2. Equilibrium outcomes

At t = 0, the supply function of the dealer is pinned down by her first order condition:

∂UD

∂qj =


aj − η − ej︸ ︷︷ ︸

marginal value of selling

− 2ησ2qj︸ ︷︷ ︸
price impact

if qj > 0,

bj + η − ej︸ ︷︷ ︸
marginal value of buying

− 2ησ2qj︸ ︷︷ ︸
price impact

if qj < 0.
(9)

The first order condition suggests that there are two components in the dealer’s supply func-
tion. The first one is related to the marginal valuation of buying and selling and arises from

21We assume the three currencies are i.i.d. and hence the correlations among currencies are zero. Relaxing this
assumption will not change our results quantitatively.

22“Constrained” in our context refers to impaired risk-bearing capacity, which does not necessarily imply bind-
ing restrictions. Hence, in the model, the dealer is not subject to any additional (regulatory) binding constraints.
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the debt financing cost. The second component is the price impact, which depends on the
dealer’s cost of economic capital. Thus, the supply function is

qj =


aj−η−ej

2ησ2 if qj > 0,
bj+η−ej

2ησ2 if qj < 0.
(10)

Facing the liquidity traders’ demand, the bid and ask prices for the three currency pairs
are pinned down by the following six market clearing conditions (see Eqs (11) to (13)). There
are two equations for each currency pair: one is when the dealer is buying (i.e., bid price)
and the other is when the dealer is selling (i.e., ask price). Taking the first condition as an
example, the left-hand side is the amount sold by the liquidity traders and the right-hand
side is the amount bought from the dealer in currency pair x. Eventually, in equilibrium, the
bid price of currency pair x is determined by market clearing:

−λσ(1 − sx)(1 − π) =
bx + η − ex

2ησ2 , λσ(1 − sx)π =
ax − η − ex

2ησ2 ; (11)

−λσ(1 − sy)π =
by + η − ey

2ησ2 , λσ(1 − sy)(1 − π) =
ay − η − ey

2ησ2 ; (12)

−1
2

λσ(1 − sz) =
bz + η − ez

2ησ2 ,
1
2

λσ(1 − sz) =
az − η − ez

2ησ2 . (13)

Solving the system of equations, the bid-ask spreads for the three currency pairs turn out
to be the same. The intuition for this hinges on the simplifying assumption that the dealers’
debt financing cost and leverage as well as the volatility of fundamental values are the same
across the three currency pairs.23 Therefore, in this setup, the half bid-ask spread is given by
the following expression:

s =
η(1 + λσ3)

1 + 2ηλσ3 . (14)

Thus, we can express TCOST, which is equal to three times the half bid-ask spread (since
financing cost, leverage, and volatility are symmetric across currency pairs) as follows:

TCOST =
3s
2

=
3η(1 + λσ3)

1 + 2ηλσ3 . (15)

As a result, both the bid-ask spread and TCOST are increasing in η. Put differently, when
the dealer is more constrained, either because leverage is high, or due to high debt financing
cost, the bid-ask spread is also higher. Moreover, as the dealer-intermediated volume is
proportional to (1 − s), the model implicitly assumes that s < 1, since volume cannot be

23Relaxing the assumption of homogeneous volatility across currency pairs (i.e., having currency pair specific
volatility) does not change the results qualitatively because the market clearing conditions Eqs (11) to (13) are also
currency pair specific.
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negative. Thus, Eq. (14) implies that η < 1/2. In this case, one finds that the bid-ask spread
increases in σ. Substituting 2s into the market clearing conditions, the mid-quotes are

mx = ex +
ηλσ3 (2π − 1) (1 − 2η)

1 + 2ηλσ3 , my = ey +
ηλσ3 (1 − 2π) (1 − 2η)

1 + 2ηλσ3 , mz = ez. (16)

The mid-quotes of currency pair x and y in Eq. (16) deviate from their fundamental values
ex and ey, if π ̸= 1

2 and η ̸= 1
2 , respectively. On the contrary, the midquote for currency pair

z is equal to its fundamental value (i.e., mz = ez).24 The effect of volatility and the dealer
constraints on the mid-quotes are directional and depend on the (net) order imbalance across
the three currency pairs. Take currency pair x as an example. The buying pressure from
the liquidity traders dominates their selling pressure, which subsequently pushes up the
mid-quote price above its fundamental value. In other words, due to the buying pressure,
the dealer charges a mark-up on currency pair x. This mark-up increases in the order flow
imbalance (i.e., λσ(2π − 1)(1 − s)) and the dealer’s economic cost due to the Value-at-Risk
constraint (i.e., ησ2). The deviation of the mid-quotes set by the dealer from the fundamental
values represents a violation of the law of one price:

VLOOP = mx − mymz = λσ3(2π − 1)(1 + ez)
η(1 − 2η)

1 + 2ηλσ3 . (17)

Note that such deviations from the law of one price are not necessarily profitable arbitrage
opportunities due to non-zero transaction costs (TCOST), that is, bid-ask spreads, which
define the arbitrage bounds (Shleifer and Vishny, 1997).25

4.3. The links between the model and the empirical results

Taking the first order derivatives of TCOST with respect to σ and η, from Eq. (14) we have

∂TCOST
∂σ

=
9ηλσ2

>0 as η<1/2︷ ︸︸ ︷
(1 − 2η)

(1 + 2ηλσ3)2 > 0, (18)

∂TCOST
∂η

=
3(1 + λσ3 + 2ηλσ3)

(1 + 2ηλσ3)2 > 0. (19)

In other words, TCOST increases in both volatility (i.e., σ) and the dealer’s constraint (i.e., η).
The left panel in Figure 6 visualises these effects. The intuition behind the effect of volatility

24Note that this choice is for simplicity in the sense that with a slightly different setup on demand imbalances
we could also have that mz ̸= ez. More generally, as long as the demand imbalance across the three currency
pairs is not exactly the same, the size of the deviations of the mid-quotes from the fundamental values is different
across the three currency pairs, generating violations of the law of one price. For brevity, our modeling focuses
on one illustrative example.

25As indicated in footnote 20, the model focuses on the cases when there are no actually profitable arbitrage
opportunities and is hence consistent with the empirical evidence in Section 3.
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comes from two channels. First, when volatility is higher, then the order flow imbalance is
larger, pushing up TCOST. Second, a higher volatility also leads to a higher economic capital
cost for the dealer. Hence, she will ask for a higher spread as compensation for larger risk.
Similarly, when the dealer is more constrained (i.e., higher η), she will also charge a higher
bid-ask spread as a compensation for higher debt funding costs.

Taking the first order derivative of VLOOP in Eq. (17) with respect to σ and η we get that

∂VLOOP
∂σ

= (2π − 1)(1 + ez)
3ηλσ2(1 − 2η)

(1 + 2ηλσ3)2 > 0, (20)

∂VLOOP
∂η

=
λσ3(2π − 1)(1 + ez)

(1 + 2ηλσ3)
(1 − s − 2η) . (21)

Hence, VLOOP increases in volatility (i.e., σ) unconditionally, but it increases in the dealer’s
constraint (i.e., η) only if η < (1 − s)/2. The intuition behind volatility is similar to the case
of TCOST. However, the impact of η on VLOOP has two offsetting effects. On the one hand,
when the dealer is more constrained (e.g., higher leverage), she charges a higher mark-up
(or mark-down) for currency x (or y) since her marginal valuation is higher (or lower) for
currency x (or y), which increases VLOOP. On the other hand, a higher η also leads to a
higher TCOST, suppressing the order flow imbalance, which dampens VLOOP. With a small
η, i.e., when η < (1 − s)/2, the first effect dominates the latter. In this case, VLOOP increases
in η. As shown in Table 2, VLOOP is larger when FX dealers are more constrained, suggesting
that the first channel indeed dominates the second one. Hence, the analysis below focuses on
the case where η < (1 − s)/2. The right panel in Figure 6 visualises these effects.

Proposition 1 summarises these results and formalises the intuition behind the empirical
findings in Table 2 showing that more severe dealer constraints (i.e., higher η and empiri-
cally higher DCM) are associated with both higher VLOOP and TCOST. In addition, across
different parameter specifications, it turns out that the VLOOP is much smaller than TCOST,
which is also one of the stylized facts in the empirical analysis (see Table 1). Proposition 1
summarises these results, which are consistent with the empirical findings in Table 3.

Proposition 1: Both VLOOP and TCOST are higher when

i) the volatility of the currency pairs is higher (i.e., higher σ);

ii) the (representative) dealer is more levered or has a higher debt financing cost (i.e., higher η).

Proof. See the discussion preceding this Proposition.

Next, we investigate the dealer’s elasticity of liquidity provision, which corresponds to
the regression coefficients on dealer-intermediated volume in the previous section. Note that

24



Figure 6: The effects of volatility and the dealer’s constraint on VLOOP and TCOST

0 0.2 0.4 0.6 0.8 1 1.2

<

0

0.1

0.2

0.3

0.4

0.5

0.6

VLOOP
TCOST

0 0.05 0.1 0.15 0.2

2

0

0.1

0.2

0.3

0.4

0.5

0.6

Note: This figure shows how volatility and the dealer’s constraint affect VLOOP and TCOST. The baseline pa-
rameters are π = 0.7, λ = 1, σ = 1, η = 0.15, ex = 1.32, ey = 1.1, ez = 1.2, where π denotes the fraction
of liquidity traders that are buyers (sellers) in currency pair x (y), λ is the trading demand parameter, σ is the
fundamental volatility of exchange rates, η is a measure of dealer constrainedness, whereas ex, ey, and ez denote
the fundamental values of currency pairs x, y, and z, respectively.

volume, VLOOP, and TCOST are equilibrium outcomes. The dealer-provided volume is26

VLM = 3λσ(1 − s) =
3λσ(1 − 2η)

1 + 2ηλσ3 . (22)

Taking the first order derivative with respect to σ, we have that

∂VLM
∂σ

= 3λ(1 − 2η)
(1 − 4ηλσ3)

(1 + 2ηλσ3)2 . (23)

As η < 1/2, (1 − 2η) is positive. Thus, when λ < 1/(4ησ3), the dealer-intermediated
volume increases in volatility. Intuitively, as discussed above, an increase in volatility affects
volume via two channels: First, it induces a higher trading demand due to a larger dispersion
in fundamentals. Second, it lowers trading volume due to the concurrent rise in the bid-ask
spread. When the trading demand parameter λ is small, the former dominates the latter.
As shown in Table 2, dealer-intermediated volume increases in volatility, indicating that the
parameter space of interest is indeed λ < 1/(4ησ3). Thus, for the rest of this section, we only
focus on this particular case.

From Eq. (23), it is clear that when η is larger, the first order derivative is smaller (yet still
positive). Put differently, dealer-intermediated volume (i.e., VLM) increases in volatility (i.e.,
σ) at a slower pace as the dealer becomes more constrained. Lemma 1 summarises this result.

26Note that the scalar 3 comes from the fact that each triplet comprises three currency pairs.
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Lemma 1: When the dealer is more constrained, volume increases in volatility at a slower pace.

Proof. See the discussions preceding this Lemma.

Both TCOST and VLOOP increase in volatility for a given η (see Eqs (18) and (20)):

∂VLM
∂σ

/
∂TCOST

∂σ
=

(1 − 4ηλσ3)

3ησ2 ,
∂VLM

∂σ
/

∂VLOOP
∂σ

=
(1 − 4ηλσ3)

ησ2(2π − 1)(1 + ez)
. (24)

Hence, as volatility increases, the dealer-provided volume (i.e., VLM) positively correlates
with both TCOST and VLOOP. This positive correlations capture the elasticity of liquid-
ity provision and correspond to the regression coefficient with respect to trading volume
in the regression analysis (see Section 3). In essence, the positive correlations between dealer-
intermediated volume and the two liquidity cost components represent how the market depth
reacts to price dislocations. If both market depth and pricing distortions are large, then liq-
uidity provision is more elastic and hence more resilient to demand and supply shocks.

Figure 7 visualises the elasticity of liquidity provision across constrained and uncon-
strained regimes. When the dealer is unconstrained, that is, η is small, both the dealer-
intermediated volume and each of the two liquidity cost components are small as well (see
grey line). Hence, in unconstrained periods liquidity provision is elastic since both vari-
ables correlate positively conditional on different realisations of volatility. However, when
the dealer is more constrained, the line shifts towards the upper right (see black line), with a
modest increase of volume but a significant increase in both liquidity cost components, sug-
gesting that liquidity provision is more inelastic. To see why, compare the slope of the two
tangent dotted lines, which capture the elasticity of liquidity provision across the two market
states: i) unconstrained dealers and low volatility and ii) constrained dealers and high volatil-
ity. Beyond doubt, the slope of the latter is much steeper, implying that liquidity provision is
much more inelastic when dealers are more constrained. This numerical result squares well
with the fact that both derivatives in Eq. (24) are decreasing in η. The intuition for this finding
is that in constrained periods the dealer charges a higher spread that subsequently leads to a
slower increase in equilibrium trading volume. Proposition 2 summarises these results.

Proposition 2: Dealer-intermediated volume correlates positively with both VLOOP and TCOST.
However, this positive correlation, capturing the elasticity of liquidity provision, weakens when the
dealer is more constrained due to higher funding costs (i.e., higher η).

Proof. See the discussion preceding this Proposition.

Proposition 2 finds compelling support in our empirical analyses. Specifically, Table 2
shows that dealer-provided volume increases even when dealers are more constrained. How-
ever, the state-dependent correlation between intermediated volume and the cost of liquidity
provision weakens when dealer constraints intensify. This result holds for both liquidity cost
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Figure 7: The elasticity of liquidity provision
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Note: This figure plots the dealer-intermediated volume against VLOOP and TCOST, respectively. The baseline
parameters are π = 0.7, λ = 1, ex = 1.32, ey = 1.1, ez = 1.2, where π denotes the fraction of liquidity traders that
are buyers (sellers) in currency pair x (y), λ is the trading demand parameter, whereas ex, ey, and ez denote the
fundamental values of currency pairs x, y, and z, respectively. The unconstrained dealer faces η = 0.05, whereas
the constrained one is exposed to η = 0.1. The solid lines indicate the equilibrium outcomes when varying the
fundamental volatility exchange rates σ from 0.5 to 0.7. The grey dashed line indicates the derivative of volume
with respect to VLOOP and TCOST when the dealer is unconstrained and fundamental volatility is low. The
black dashed line is the derivative of volume with respect to VLOOP and TCOST when the dealer is constrained
and fundamental volatility is high.

measures (VLOOP and TCOST) no matter which econometric model is applied (Table 3) and
after controlling for volatility and other confounding factors (see Online Appendix).

5. Additional analyses and robustness tests

The key goal of our empirical analysis is to show how the elasticity of dealer banks’ liq-
uidity provision (i.e., the correlation between the cost of liquidity provision and dealer-
intermediated volume) weakens as dealer constraints tighten. To demonstrate this we have
relied on logistic smooth transition regressions (LSTAR) that are particularly well-suited to
capture non-linear relations. However, one might wonder whether our results are robust
to using alternative methods and measures of dealer constraints. To address this issue, we
employ rolling window correlations and structural vector autoregressions to infer exogenous
liquidity demand and supply shocks directly from price and quantity data.

5.1. Disentangling liquidity demand and supply

The empirical analysis based on LSTAR has employed our dealers constraint measure
(i.e., DCM) as an exogenous proxy for liquidity supply shocks. Here, we take the analysis
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one step further by explicitly disentangling liquidity demand and supply shocks using a
structural vector autoregression with sign restrictions. Specifically, we build on the approach
by Uhlig (2005) and others (e.g. Canova and Nicoló, 2002; Rubio-Ramírez, Waggoner, and
Zha, 2010), which has become widely used in economics and finance to estimate models with
sign restrictions. Eventually, we are using the supply shocks as an alternative measure for
tightening dealer constraints, whereas we employ demand shocks as an instrument for our
dealer constraint measure. Our analysis proceeds in two steps.

In a first step, we estimate a structural (bivariate) vector autoregression (SVAR) model of
liquidity cost measures (i.e., VLOOP or TCOST) and dealer-provided volume VLM. To iden-
tify supply and demand shifts, we estimate the SVAR imposing sign restrictions in the spirit of
Cohen, Diether, and Malloy (2007),Goldberg (2020), and Goldberg and Nozawa (2020), respec-
tively, using Bayesian methods (see the Online Appendix Section C for a detailed explanation
of the setup and the estimation procedure). In particular, the sign restrictions assume that
supply shifts lead to opposite-sign changes in liquidity costs and trading volume, whereas
demand shifts are assumed to lead to same-sign changes in liquidity costs and volume. As
a result, the structural shocks have a natural interpretation as inward and outward shifts of
liquidity supply and demand, respectively.

In a second step, we estimate the correlation between the cost of liquidity provision (i.e.,
VLOOP or TCOST) and dealer-intermediated trading volume (i.e., VLM) in a 30-day27 rolling
window fashion (cf. Figure 4) and estimate the following panel regression model:

ρk,t = αk + η1DCMt + η2RVk,t + η3Amihudk,t + ϵk,t, (25)

where the dependent variable is the 30-day rolling window correlation of a liquidity cost
measure (i.e., VLOOP or TCOST) and trading volume, αk denotes currency triplet fixed ef-
fects, RVk,t (Amihudk,t) the realised variance (Amihud (2002) price impact) in the non-dollar
currency pair within each triplet k, and DCMt is our dealer constraint measure. Throughout
this paper, we estimate Amihud as the ratio between daily realised volatility and aggregate
daily trading volume following Ranaldo and Santucci de Magistris (2018).

Table 4 documents the results of estimating Eq. (25) by OLS and 2SLS, respectively. In par-
ticular, Panel A shows the OLS estimates of Eq. (25), whereas Panel B uses liquidity demand
shocks δd

k,t from the SVAR as an instrument for DCM.28 The economic intuition following
our theoretical framework in Section 4 is that a positive liquidity demand shock causes more
imbalanced customer order flows to which dealers respond by increasing the bid-ask spread
to dampen volumes. However, concurrently, no-arbitrage deviations (i.e., VLOOP) increase
due to the customer order flows being more imbalanced. Panel C reports the results of us-

27All our results are qualitatively unchanged when using longer or shorter estimation windows.
28We estimate demand and supply shocks individually for every currency pair triplet and then stack them

together. Our findings are robust to extracting the shocks from a panel SVAR with currency triplet fixed effects.
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ing liquidity supply shocks δs
k,t as an alternative measure of tightening dealer constraints.29

The key takeaway from Table 4 is fully consistent with the LSTAR analysis (see Table 3) and
corroborates the idea that soaring dealer constraints are associated with a significantly lower
elasticity of liquidity provision (i.e., smaller ρk,t).

5.2. Robustness tests

To investigate the robustness of our main findings we run five additional robustness tests:
i) decompose the dealer constraint measure into its constituents, ii) split volume into inter-
bank and customer-bank trades, iii) perform a subsampling analysis, iv) estimate the LSTAR
currency pair triplet by triplet, and v) account for potential bias in the bid-ask spread.

Different components of dealer constraints. We consider the same LSTAR specification as
in Eq. (4) but instead of our dealer constraint measure DCM we use its four constituents. In
particular, we use the 1-day lagged value of primary FX dealer banks’ quarterly Value-at-Risk
measure (VaR), quarterly He et al. (2017) leverage ratio (HKM), daily credit default spread
(CDS), and daily funding cost yield (DFC) as regime variables. Table 5 reports the estimates
of using each of the four aforementioned measures as a state variable. The difference between
the constrained and unconstrained coefficients is negative and significant across all four spec-
ifications for both VLOOP and TCOST. These estimates are fully in line with our baseline
specification based on DCM in terms of economic magnitudes. The robustness of our results
is not surprising given the strong co-movement across these four different regime variables.

Inter-bank vs customer-bank volumes. We decompose trading volume into to inter-bank
and customer-bank volume to better understand which market segments suffer the most from
reduced liquidity provision when dealer constraints tighten. Specifically, the CLS customer-
bank order flow data comprise three groups of customers, that is, corporates, funds, and
non-bank financials.30 Note that bilateral trades between two such customer groups are quasi
non-existent given the two-tier structure of the FX market (Rime and Schrimpf, 2013) and
hence also do not form part of the data that CLS provides. As a result, the customer-bank data
only contains trades that pass through an FX dealer bank (e.g., Citi Bank or UBS). Moreover,
the inter-bank data include trades between two banks that are members of the CLS system.
Some of these banks are GSIBs, whereas others include lower-tier banks outside of the main
dealer community (e.g., Danske Bank or Commerzbank).

29In the Online Appendix we also exploit the unexpected removal of the Swiss franc cap on 15 January 2015
by the Swiss National Bank as a quasi-natural experiment. We find that the elasticity of dealer banks’ liquid-
ity provision drops significantly in currency pair triplets involving the Swiss franc (i.e., EUR-USD-CHF and
GBP-USD-CHF) but not in other triplets. These findings support the idea that dealers face currency (pair) specific
risk limits. See the Online Appendix Section D for additional information.

30See Cespa et al. (2021) and Ranaldo and Somogyi (2021) for a detailed description of the CLS flow data set.
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Table 4: Elasticity of liquidity provision and dealer constraints

cor(VLOOP,Volume) cor(TCOST,Volume)

Panel A (1) (2) (3) (4) (5) (6)

DCM ***−0.03 ***−0.03 ***−0.03 ***−0.04 ***−0.04 ***−0.03
[3.50] [3.51] [3.57] [2.92] [2.92] [2.77]

Realised variance *0.00 0.00 −0.01 −0.01
[1.70] [1.17] [1.47] [0.93]

Amihud (2002) ***0.03 ***−0.08
[3.31] [5.14]

Adj. R2 in % 1.65 1.70 1.87 1.76 1.93 2.80
Avg. #Time periods 2,159 2,159 2,159 2,159 2,159 2,159

Panel B

Instrumented DCM ***−0.07 ***−0.08 ***−0.07 *−0.06 *−0.06 **−0.07
[3.62] [3.75] [3.60] [1.76] [1.77] [2.14]

Realised variance 0.01 0.00 −0.01 −0.01
[1.57] [1.26] [1.47] [0.89]

Amihud (2002) **0.02 ***−0.09
[2.39] [5.54]

Avg. #Time periods 2,159 2,159 2,159 2,159 2,159 2,159

Panel C

δs ***−0.01 ***−0.01 ***−0.01 ***−0.02 ***−0.02 ***−0.02
[3.64] [3.61] [3.76] [4.28] [4.75] [4.10]

Realised variance *0.00 *0.00 −0.01 −0.01
[1.89] [1.89] [1.51] [1.45]

Amihud (2002) 0.00 −0.01
[0.02] [1.46]

Adj. R2 in % 0.10 0.13 0.13 0.38 0.62 0.77
Avg. #Time periods 2,256 2,256 2,256 2,256 2,256 2,256

#Exchange rates 15 15 15 15 15 15
Currency FE yes yes yes yes yes yes
Time series FE no no no no no no

Note: This table reports results from daily fixed effects panel regressions of the form ρk,t =

αk + η1DCMt + η2RVk,t + η3 Amihudk,t + ϵk,t, where the dependent variable is the 30-day rolling window
correlation of a liquidity cost measure (i.e., VLOOP, or TCOST) and trading volume (i.e., VLM), αk denotes
cross-sectional fixed effects, RVk,t (Amihudk,t) the realised variance (Amihud (2002) price impact) in the non-dollar
currency pair within each triplet k, and DCMt is our dealer constraint measure. Panel A shows the OLS estimates
of Eq. (25), whereas Panel B uses liquidity demand shocks δd as an instrument for DCM. Panel C reports
the results of using liquidity supply shocks δs as an alternative measure of tightening dealer constraints. All
regressors have been normalised to have unit standard deviation. Hence, the regression coefficients measure
the increase in ρ associated with a one standard deviation increase in DCM and δs, respectively. The sample
covers the period from 1 September 2012 to 30 September 2020. The test statistics based on Driscoll and Kraay
(1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in procedure
for automatic lag selection by Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote
significance at the 90%, 95%, and 99% levels.

Table 6 reports the results of estimating the LSTAR model in Eq. (4) based on inter-bank
and customer-bank volume rather than total volume. To be precise, we define total volume in
each client group as the sum of buy and sell volume in a given currency pair. There is an inter-
esting picture that arises: On the one hand, the coefficients related to unconstrained volume
of the inter-bank segment are higher than those of the customer-bank segment suggesting a
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Table 5: Smooth transition regression with different state variables

VLOOP TCOST

VaR HKM CDS DFC VaR HKM CDS DFC

γ ***11.15 ***4.97 ***9.20 ***12.10 ***12.08 ***4.93 ***12.03 ***3.92
c ***0.25 ***0.59 ***−0.10 ***−0.35 ***0.39 ***0.60 ***−0.16 ***−0.10

Unconstr. volume ***0.09 **0.06 ***0.08 ***0.16 ***0.09 ***0.09 ***0.10 ***0.10
[3.16] [2.23] [2.89] [3.59] [11.35] [10.61] [11.26] [7.83]

Constr. volume **−0.08 −0.03 *−0.06 −0.01 *0.02 **0.03 **0.03 ***0.04
[2.12] [0.73] [1.66] [0.42] [1.65] [2.45] [2.31] [2.99]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.07] [2.13] [2.11] [2.09] [8.35] [8.39] [8.37] [8.00]

Constr.-Unconstr. ***−0.17 *−0.10 ***−0.15 ***−0.18 ***−0.07 ***−0.05 ***−0.07 ***−0.06
[3.50] [1.68] [3.00] [3.04] [4.28] [3.28] [4.83] [2.82]

R2 in % 0.13 0.08 0.11 0.15 3.72 3.65 3.77 3.66
BIC 91.61 91.62 91.61 91.06 49.24 49.25 49.23 48.55
Avg. #Time periods 2,280 2,280 2,280 2,182 2,284 2,284 2,284 2,185
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR, columns 1 and 6), quarterly He et al.
(2017) leverage ratio (HKM, columns 2 and 7), daily credit default spread (CDS, columns 3 and 8), and daily
funding cost yield (DFC, columns 4 and 9). Note that we assign an equal weight to each top 10 FX dealer bank
(based on the Euromoney FX survey) when computing a cross-sectional average. The optimal parameters γ and
c are determined by nonlinear least squares minimising the concentrated sum of squared errors. Both dependent
and independent variables are taken in logs and changes. The sample covers the period from 1 November 2011
to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard errors allowing for
random clustering and serial correlation (using the plug-in procedure for automatic lag selection by Andrews
and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance
at the 90%, 95%, and 99% levels.

more elastic liquidity provision in the former. On the other hand, the elasticity of liquidity
provision weakens significantly with dealer constraints for both inter- and customer-bank
trading activity. However, the economic magnitudes of the constrained minus unconstrained
coefficients suggest that large dealer banks mainly curtail their liquidity provision in trades
with other banks facing similar constraints. Of course, this does not rule out the possibility
that dealers charge higher spreads to their customers when they are more constrained.

Non-bank liquidity providers. To shed some light on the importance of non-bank liquidity
providers (e.g., XTX, HC Tech or Jump Trading) we split our sample period into two halves.
The first half concerns the time period from November 2011 until May 2016, whereas the
second half runs from June 2016 to September 2020. Our sample split is motivated by the
fact that XTX enters the top 10 of the Euromoney FX surveys for the first time in 2016. Ta-
ble 7 documents the same regression specifications as in our baseline (see Table 3) except for
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Table 6: Smooth transition regression with different counterparty groups

VLOOP TCOST

Non-bank Non-bank Bank Bank Non-bank Non-bank Bank Bank

γ 20.01 20.02 ***20.03 ***20.06 20.04 20.08 ***14.96 **20.03
c ***1.10 ***0.37 ***−0.15 ***−0.15 0.03 0.03 ***0.57 ***0.58

Unconstr. volume **0.03 *0.03 ***0.12 ***0.11 ***0.03 ***0.02 ***0.12 ***0.09
[2.11] [1.87] [3.68] [3.14] [6.77] [5.40] [13.70] [9.53]

Constr. volume −0.03 −0.02 −0.05 −0.06 0.01 0.00 0.02 −0.01
[1.16] [0.81] [1.07] [1.38] [1.51] [0.33] [1.07] [0.23]

Realised variance **0.02 *0.02 ***0.04 ***0.03
[2.27] [1.68] [9.02] [7.14]

Constr.-Unconstr. **−0.06 −0.05 ***−0.17 ***−0.17 ***−0.02 ***−0.02 ***−0.09 ***−0.09
[2.06] [1.62] [2.98] [2.96] [2.62] [2.86] [3.84] [3.74]

R2 in % 0.05 0.10 0.14 0.16 0.54 2.99 2.49 3.90
Avg. #Time periods 1,979 1,979 1,979 1,979 1,983 1,982 1,983 1,982
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the 1-day lagged
value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear
least squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 September 2012 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Newey and West, 1994) are reported in
brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

the time periods being different. The key takeaway from comparing the constrained minus
unconstrained coefficients across the first and second half of the sample is that the economic
magnitudes of the coefficients are almost twice as large for the first half than for the second
half. We interpret this as suggestive evidence in favour of the idea that non-bank liquid-
ity providers are much less affected by our dealer constraint measure and are hence able to
provide additional liquidity when dealer banks are more constrained.

LSTAR estimates currency pair triplet by triplet. Thus far, we have mainly focused on
the time-series dimension of the relation between trading volume and the cost of liquidity
provision but have not delved deeper into the cross-section of currency pair triplets. To
explore the cross-sectional heterogeneity, we estimate the LSTAR model individually for 15
triplets of currency pairs. We further contrast the result with a simple linear model that does
not distinguish between constrained and unconstrained regimes. We report these analyses in
Online Appendix (see Tables B.1 and B.2).

The currency pair triplet by triplet estimates strongly support the idea that intermediary
constraints non-linearly impact the relation between dealer-provided volume and the cost
of liquidity provision. In particular, the difference between the parameter estimates of con-
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Table 7: Sample split: Smooth transition panel regression with DCM as state variable

11/2011 – 05/2016 06/2016 – 09/2020

VLOOP TCOST VLOOP TCOST

γ ***4.98 ***4.96 ***6.51 ***7.48 12.03 12.06 12.02 12.10
c ***−0.40 ***−0.41 ***−0.41 ***−0.40 *0.47 *0.46 ***0.89 ***0.90

Unconstr. volume 0.06 0.05 ***0.13 ***0.11 ***0.13 **0.10 ***0.13 ***0.10
[1.42] [1.07] [10.72] [8.62] [3.10] [2.38] [10.89] [7.36]

Constr. volume *−0.09 **−0.10 *0.03 0.01 0.10 0.08 ***0.08 **0.05
[1.82] [2.00] [1.92] [0.51] [1.44] [1.08] [3.36] [2.03]

Realised variance 0.01 ***0.02 **0.03 ***0.03
[1.20] [4.44] [2.27] [6.39]

Constr.-Unconstr. **−0.15 **−0.15 ***−0.10 ***−0.10 −0.03 −0.03 **−0.05 *−0.05
[2.26] [2.24] [5.35] [5.18] [0.36] [0.32] [2.04] [1.85]

R2 in % 0.06 0.08 2.77 3.77 0.17 0.24 2.41 3.82
Avg. #Time periods 1121 1121 1122 1122 1061 1060 1063 1062
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and
West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.

strained and unconstrained regimes (i.e., β2 − β1) is significantly negative for 10 and 9 out of
15 triplets of currency pairs for VLOOP and TCOST, respectively. In line with this finding,
the R2s of these regressions are rather close to the linear model. This is entirely expected,
given that the coefficient with respect to trading volume in constrained regimes is close to
zero. In sum, both results are consistent with the idea that in calm periods dealers’ liquidity
provision is elastic supporting FX market liquidity, however it becomes more inelastic when
dealer constraints are tightening.

Bias in the bid-ask spread. Hagströmer (2021) shows that the effective bid-ask spread mea-
sured relative to the spread midpoint overstates the true bid-ask spread in markets with
discrete prices and elastic liquidity demand (e.g., the currency market). To address this issue,
we compute both no-arbitrage violations VLOOP and round-trip transactions costs TCOST
using the “weighted midpoint” (i.e., mwp) as an alternative measure of the midquote price:

mwp =
b × qbuys + a × qsells

qbuys + qsells , (26)

where b and a are bid and ask prices, respectively, whereas qbuys and qsells are the buy and sell
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volume in a given currency pair. Table 8 shows the results of estimating the same regression
specifications as in our baseline in Eq. (4), but using mwp instead of the spread midpoint m
to compute VLOOP and TCOST. The difference between the constrained and unconstrained
coefficient on intermediated-trading volume is negative and economically significant for both
VLOOP and TCOST across most specifications. Thus, we conclude that our findings are not
materially affected by any potential bias in the quoted bid-ask spread in the Olsen data.

Table 8: Smooth transition panel regression with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ **4.97 ***4.99 ***4.91 12.09 ***4.98 ***5.00 ***5.49 ***4.96
c ***1.10 ***−0.41 ***−0.41 ***0.26 ***0.53 ***0.54 ***0.58 ***0.36

Unconstr. volume *0.03 **0.06 **0.06 0.03 ***0.12 ***0.12 ***0.11 ***0.12
[1.69] [2.19] [2.28] [1.52] [11.65] [11.32] [9.24] [9.47]

Constr. volume −0.06 −0.01 −0.01 −0.04 ***0.07 **0.06 **0.05 *0.05
[0.85] [0.50] [0.32] [0.81] [2.70] [2.53] [1.97] [1.77]

Amihud (2002) 0.00 −0.01
[0.05] [1.33]

Realised variance −0.01 ***0.02
[0.80] [3.36]

1M CIP basis 0.00 0.00
[0.72] [0.21]

Constr.-Unconstr. −0.09 *−0.07 *−0.07 −0.07 **−0.06 **−0.06 **−0.06 **−0.07
[1.27] [1.67] [1.69] [1.35] [2.07] [2.07] [2.02] [2.05]

R2 in % 0.02 0.03 0.04 0.03 1.36 1.38 1.56 1.21
Avg. #Time periods 1,981 1,981 1,981 1,786 1,983 1,982 1,982 1,788
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST) computed based on the weighted midquote price (Hagströmer,
2021), fk,t (wk,t) are state-dependent (state-independent) regressors, and G(zt−1) is a logistic function depending
on the state variable zt−1. The regime variable is the 1-day lagged value of the dealer constraint measure DCMt.
The optimal parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of
squared errors. Both dependent and independent variables are taken in logs and changes. The sample covers the
period from 1 September 2012 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.

To summarise, the first robustness check has delved into the determinants of our com-
posite dealer constraint measure, whereas the second robustness test has sought to better
understand how dealer constraints affect customer-dealer and inter-dealer relations. The
third one has aimed to shed some light on the role of non-bank liquidity providers for FX liq-
uidity. The fourth one has estimated the LSTAR model currency pair triplet by triplet, while
the last one has accounted for bias in the bid-ask spread. Overall, these tests corroborate our
previous results and support the main mechanisms of our model. Dealers promote market
liquidity in normal times through elastic liquidity provision. As such, dealer intermediation
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contributes to better market liquidity, that is, narrow spreads and more informative prices
(i.e., lower transactions costs and tight no-arbitrage conditions). However, during periods
of market stress FX dealer banks are more constrained and as a result their intermediation
activities cannot keep up with the deterioration of market liquidity.

6. Conclusion

In this paper, we have studied whether dealer constraints have adverse implications on mar-
ket liquidity. Using a unique data set of prices and volumes in the FX market, we provide a
novel analytical method to identify and measure the cost of liquidity provision, and its main
components: the shadow cost of intermediary constraints and dealers’ realised compensa-
tion for enduring inventory imbalances. Second, we uncover the following novel empirical
findings: On the one hand, when dealers are unconstrained they support market liquidity by
providing immediacy to their clients. On the other hand, when dealers are constrained, for
instance, when they face Value-at-Risk, leverage, or funding constraints, their liquidity pro-
vision is impaired and consequently the positive correlation between intermediated volume
and the cost of liquidity provision breaks down. We rationalise our findings with a theoretical
model outlining how market liquidity deteriorates when markets are more volatile and when
financial intermediaries are more constrained.

We obtain our results for the FX spot market, which is commonly regarded as one of
the most liquid financial markets in the world. However, we believe that our findings also
have implications for other over-the-counter (OTC) markets. For instance, broadly similar
mechanisms could be at play when pricing distortions emerge between similar government
bonds (Hu, Pan, and Wang, 2013) with pronounced deviations from a smooth yield curve
(as observed during the Covid-19 crisis). We leave the study of the role of dealer constraints
on the liquidity provision in other important OTC markets (e.g., government and corporate
bonds, OTC derivatives) to future research.
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Appendix A. Data sources

CLS data. The CLS system is owned by its 72 settlement members, which include all the
dealer banks listed in the Euromoney FX surveys. To protect member anonymity, CLS does
not disclose any transaction-level information about settlement activity. Therefore, the CLS
data set only contains hourly aggregates of the trading activity in each currency pair and
provides no information about traders’ identities or executed transaction prices.

The CLS spot FX volume and order flow data sets are interrelated. Volume data include
the sum of all inter-dealer and dealer-to-customer trades. Order flow data contain separate
entries for buying and selling activity but only for dealer-to-customer transactions. Moreover,
the buy and sell volume in a given hour and currency pair refers to how much of the base
currency was bought and sold by customers from dealer banks (see Somogyi, 2021).

Customers can be categorised into four groups: corporates, funds, non-bank financial
firms, and non-dealer banks. “Funds” may also include principal trading firms (PTFs) such as
high-frequency trading firms and electronic non-bank liquidity providers (e.g., XTX or Jump
Trading). The majority of these PTFs relies on prime brokers to gain access to the FX market
(Schrimpf and Sushko, 2019). Hence, if PTFs trade via a prime broker who is a CLS member,
then this trade would appear as a bank-to-bank trade. Inter-bank trades are excluded from
the flow (but not from the volume) data set unless one of the counterparties is classified as a
non-dealer bank. See Ranaldo and Somogyi (2021) for further details on how CLS categorises
market participants into customers and dealer/ non-dealer banks, respectively.

Euromoney FX survey. Major FX dealer banks are at the heart of our composite dealer
constraint measure. For each year from 2011 to 2020, we retrieve the ranking of the top 10 FX
dealer banks from the Euromoney FX surveys, which are publicly available. See Table A.1 for
an overview of the top 10 FX dealer banks over the sample period from 2011 to 2020. Note
that this implies that we do not include any non-bank financial liquidity providers (i.e., XTX
or Jump Trading), which are privately held companies. What follows lists the data source for
each of the four subcomponents of our composite dealer constraint measure (DCM).

• Value-at-Risk (VaR) is retrieved directly from the financial statements for each of the
top 10 dealer banks and is based on banks’ FX trading books. The frequency is quarterly.

• Leverage ratio (HKM) is computed following the work by He et al. (2017) as book
debt (i.e., short plus long term debt) relative to the sum of market equity (i.e., shares
outstanding times share price) and book debt that are retrieved from Bloomberg for
each dealer bank. The frequency is quarterly.

• Credit default spread (CDS) with 5 year maturity is retrieved from Bloomberg for each
dealer bank. The CDS premia are denominated in dollars for US banks and in euros for
all Europeans banks, including the UK domiciled ones. The frequency is daily.
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• Debt Funding cost (DFC) is retrieved from iBoxx for each dealer bank corresponding
to the average bond issuance cost across different maturities and major currencies (i.e.,
USD, EUR, and GBP). The frequency is daily.

Figure 1: Time-series of top 10 FX dealer share

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0%

20%

40%

60%

80%

100%

Top 10 FX Dealers
Top 10 NBFIs

Note: This figure reports the market share of the top 10 FX dealer banks (e.g., Citi Bank or UBS) as well as
non-bank financial liquidity providers (i.e., XTX, HC Tech or Jump Trading) for the years 2011 to 2020 from the
Euromoney FX surveys.

Table A.1: Top 10 FX dealer banks

Rank 2011 2012 2013 2014 2015

1 Deutsche Bank Deutsche Bank Deutsche Bank Citi Bank Citi Bank
2 Barclays Citi Bank Citi Bank Deutsche Bank Deutsche Bank
3 UBS Barclays Barclays Barclays Barclays
4 Citi Bank UBS UBS UBS JP Morgan Chase
5 JP Morgan Chase HSBC HSBC HSBC UBS
6 HSBC JP Morgan Chase JP Morgan Chase JP Morgan Chase Bank of America
7 Royal Bank of Scotland Royal Bank of Scotland Royal Bank of Scotland Bank of America HSBC
8 Credit Suisse Credit Suisse Credit Suisse Royal Bank of Scotland BNP Paribas
9 Goldman Sachs Morgan Stanley Morgan Stanley BNP Paribas Goldman Sachs
10 Morgan Stanley Goldman Sachs Bank of America Goldman Sachs Royal Bank of Scotland

Rank 2016 2017 2018 2019 2020

1 Citi Bank Citi Bank JP Morgan Chase JP Morgan Chase JP Morgan Chase
2 JP Morgan Chase JP Morgan Chase UBS Deutsche Bank UBS
3 UBS UBS Bank of America Citi Bank Deutsche Bank
4 Deutsche Bank Bank of America Citi Bank UBS Citi Bank
5 Bank of America Deutsche Bank HSBC State Street HSBC
6 Barclays HSBC Goldman Sachs HSBC Goldman Sachs
7 Goldman Sachs Barclays Deutsche Bank Bank of America State Street
8 HSBC Goldman Sachs Standard Chartered Goldman Sachs Bank of America
9 Morgan Stanley Standard Chartered State Street Barclays BNP Paribas
10 BNP Paribas BNP Paribas Barclays BNP Paribas Barclays

Note: This table reports the ranking of the top 10 FX dealer banks for the years 2011 to 2020 from the Euromoney
FX surveys. Note that this ranking only includes banks and excludes any non-bank financial liquidity providers
(i.e., XTX, HC Tech or Jump Trading), which are privately held companies.
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Appendix B. Estimating a panel LSTAR model

Figure B.1: Time-series of fitted G(CDS) and VLOOP
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Note: Panel A of this figure shows the fitted regime function G(DCMt), using the point estimates in column 3 of
Table 3. Panel B shows the cross-sectional average of the part of the fitted log changes in VLOOPt that is driven by
unconstrained state coefficients ([1 − G(zt−1)]β

′
1 ft). Panel C shows the cross-sectional average of the part driven

by the constrained state coefficients (G(zt−1)β′2 ft). By construction, the fitted values for log changes in TCOSTt

are the sum of Panels B and C. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure B.2: Time-series of fitted G(CDS) and TCOST

2012 2013 2014 2015 2016 2017 2018 2019 2020
0

0.2

0.4

0.6

0.8

Panel A: Estimated G(DCMt)

2012 2013 2014 2015 2016 2017 2018 2019 2020
-30%

-20%

-10%

0%

10%

20%

30%
Panel B: Fitted TCOSTt in unconstrained states

2012 2013 2014 2015 2016 2017 2018 2019 2020
-30%

-20%

-10%

0%

10%

20%

30%
Panel C: Fitted TCOSTt in constrained states

Note: Panel A of this figure shows the fitted regime function G(DCMt), using the point estimates in column 6 of
Table 3. Panel B shows the cross-sectional average of the part of the fitted log changes in TCOSTt that is driven by
unconstrained state coefficients ([1 − G(zt−1)]β

′
1 ft). Panel C shows the cross-sectional average of the part driven

by the constrained state coefficients (G(zt−1)β′2 ft). By construction, the fitted values for log changes in TCOSTt

are the sum of Panels B and C. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure B.3: Principal component analysis
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Note: This figure plots the share of variation (in %) across currency pair triplets explained by the first 5 principal
components (PCs). The top two figures are based on our two liquidity cost measures (i.e., VLOOP or TCOST),
whereas the bottom figure is based on total trading volume. The sample covers the period from 1 November 2011
to 30 September 2020.
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Table B.3: Smooth transition panel regression with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ ***12.02 ***12.02 ***12.05 ***12.08 ***5.38 ***5.38 ***5.93 ***4.96
c ***−0.14 ***−0.14 ***−0.14 ***−0.20 ***0.34 ***0.34 ***0.39 ***0.34

Unconstr. volume ***0.13 ***0.12 ***0.11 ***0.13 ***0.12 ***0.13 ***0.09 ***0.13
[4.09] [3.96] [3.50] [3.33] [15.01] [15.04] [10.85] [12.17]

Constr. volume −0.04 −0.04 −0.05 −0.05 ***0.04 ***0.04 0.01 **0.03
[1.04] [1.15] [1.40] [1.43] [2.77] [2.91] [0.96] [2.13]

Amihud (2002) −0.01 **0.01
[1.08] [2.24]

Realised variance **0.02 ***0.03
[2.02] [7.95]

1M CIP basis 0.01 0.00
[1.07] [0.65]

Constr.-Unconstr. ***−0.16 ***−0.16 ***−0.16 ***−0.18 ***−0.09 ***−0.09 ***−0.08 ***−0.09
[3.30] [3.30] [3.25] [3.23] [5.22] [5.19] [4.78] [4.63]

R2 in % 0.12 0.13 0.15 0.12 2.47 2.51 3.78 2.31
Avg. #Time periods 2,182 2,182 2,182 1,978 2,186 2,185 2,185 1,981
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample covers the period from 1 November 2011 to 30 September 2020. The test
statistics based on Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial
correlation (using the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and
West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Table B.4: Smooth transition regression with non dealer specific state variables

VLOOP TCOST

VIX XAU TED LOIS VIX XAU TED LOIS

γ ***4.16 *12.08 ***12.06 12.01 *7.65 12.04 12.02 12.07
c ***−0.50 ***−0.17 ***−0.39 **−0.48 ***0.50 *−0.11 0.50 −0.31

Unconstr. volume 0.10 **0.06 −0.02 0.00 ***0.07 ***0.08 ***0.08 ***0.07
[1.64] [2.11] [0.71] [0.07] [9.04] [9.80] [9.27] [5.26]

Constr. volume 0.02 0.00 ***0.09 0.05 ***0.09 ***0.06 ***0.07 ***0.07
[0.46] [0.07] [2.66] [1.02] [5.36] [4.78] [4.84] [5.46]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.10] [2.15] [2.30] [2.14] [8.39] [8.43] [8.45] [6.54]

Constr.-Unconstr. −0.09 −0.06 **0.12 0.05 0.02 *−0.03 0.00 0.00
[1.03] [1.32] [2.31] [0.83] [0.98] [1.81] [0.14] [0.12]

R2 in % 0.09 0.08 0.11 0.09 3.64 3.65 3.65 3.93
BIC 91.33 91.61 91.44 87.90 48.78 49.21 48.99 43.20
Avg. #Time periods 2,221 2,279 2,247 1,853 2,225 2,283 2,251 1,855
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of the VIX index, which is the Chicago Board Options Exchange’s volatility index measuring the stock
market’s expectation of volatility based on S&P 500 index options; the gold price (i.e., XAU); the TED spread,
which is the difference between the interest rates for three-month U.S. Treasuries contracts and the three-month
Eurodollars contract; and the LIBOR-OIS spread (i.e., LOIS), which is considered to be measuring the health of
the banking system. The optimal parameters γ and c are determined by nonlinear least squares minimising the
concentrated sum of squared errors. Both dependent and independent variables are taken in logs and changes.
The sample covers the period from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll
and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using the plug-in
procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in
brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Table B.5: Smooth transition regression with different state variables using market shares

VLOOP TCOST

VaR HKM CDS DFC VaR HKM CDS DFC

γ ***12.05 ***12.05 ***7.85 ***12.08 ***12.10 ***12.04 ***6.65 ***5.00
c ***0.25 ***0.71 ***−0.10 ***−0.36 ***0.39 ***0.72 ***−0.15 ***−0.09

Unconstr. volume ***0.09 ***0.07 ***0.09 ***0.17 ***0.09 ***0.09 ***0.10 ***0.10
[3.15] [2.66] [2.88] [3.77] [11.35] [11.56] [10.83] [8.74]

Constr. volume **−0.08 *−0.09 −0.06 −0.02 *0.02 0.01 **0.03 **0.03
[2.11] [1.90] [1.55] [0.73] [1.65] [0.73] [2.19] [2.55]

Realised variance **0.02 **0.02 **0.02 **0.02 ***0.03 ***0.03 ***0.03 ***0.03
[2.07] [2.10] [2.11] [2.07] [8.35] [8.34] [8.37] [7.98]

Constr.-Unconstr. ***−0.17 ***−0.16 ***−0.14 ***−0.19 ***−0.07 ***−0.08 ***−0.08 ***−0.07
[3.50] [2.88] [2.90] [3.27] [4.28] [4.88] [4.81] [3.43]

R2 in % 0.13 0.11 0.11 0.16 3.72 3.74 3.76 3.69
BIC 91.61 91.61 91.61 91.05 49.24 49.23 49.23 48.54
Avg. #Time periods 2,280 2,280 2,280 2,182 2,284 2,284 2,284 2,185
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variables are the 1-day lagged
value of primary FX dealer banks’: quarterly Value-at-Risk measure (VaR, columns 1 and 6), quarterly He et al.
(2017) leverage ratio (HKM, columns 2 and 7), daily credit default spread (CDS, columns 3 and 8), and daily
funding cost yield (DFC, columns 4 and 9). Note that we weight each top 10 FX dealer bank (based on the
Euromoney FX survey) by its relative market share when computing a cross-sectional average. The optimal
parameters γ and c are determined by nonlinear least squares minimising the concentrated sum of squared
errors. Both dependent and independent variables are taken in logs and changes. The sample covers the period
from 1 November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust
standard errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic
lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **,
and *** denote significance at the 90%, 95%, and 99% levels.
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Figure B.4: VLOOP: Constrained–Unconstrained coefficient and t-stat
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Note: This figure plots the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1)
of the LSTAR model in Eq. (4) with VLOOP being the dependent variable and conditional on varying the number
of lags in the regime variable DCMt−n for n = 1, 2, ..., 22. The sample covers the period from 1 November 2011 to
30 September 2020.

Figure B.5: Constrained–Unconstrained coefficient and t-stat
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Note: This figure plots the difference between the constrained and unconstrained regime coefficient (i.e., β2 − β1)
of the LSTAR model in Eq. (4) with TCOST being the dependent variable and conditional on varying the number
of lags in the regime variable DCMt−n for n = 1, 2, ..., 22. The sample covers the period from 1 November 2011 to
30 September 2020.
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Table B.6: LSTAR panel regression ‘London hours’ with DCM as state variable

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ *12.03 ***4.97 ***6.04 *12.04 ***12.04 ***12.06 ***12.07 ***12.04
c ***0.42 ***0.72 ***0.75 ***0.35 ***0.24 ***0.24 ***0.27 ***0.26

Unconstr. volume ***0.11 ***0.11 **0.06 ***0.10 ***0.13 ***0.13 ***0.10 ***0.14
[3.99] [4.13] [2.20] [3.17] [11.90] [11.47] [7.89] [10.10]

Constr. volume −0.07 −0.09 **−0.13 −0.08 *0.03 *0.03 0.00 0.03
[1.41] [1.59] [2.31] [1.56] [1.72] [1.76] [0.18] [1.43]

Amihud (2002) 0.01 0.00
[1.05] [0.51]

Realised variance ***0.05 ***0.03
[4.13] [3.80]

1M CIP basis 0.00 0.00
[0.97] [0.46]

Constr.-Unconstr. ***−0.18 ***−0.20 ***−0.19 ***−0.18 ***−0.10 ***−0.10 ***−0.09 ***−0.11
[3.08] [3.22] [3.11] [2.93] [4.91] [4.89] [4.47] [4.38]

R2 in % 0.11 0.12 0.24 0.10 1.82 1.82 2.75 1.86
Avg. #Time periods 2,173 2,173 2,173 1,970 2,186 2,185 2,185 1,981
#Currency triplets 15 15 15 15 15 15 15 15
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the regime variable zt−1. The regime variable is the 1-day lagged
value of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear
least squares minimising the concentrated sum of squared errors. Both dependent and independent variables
are taken in logs and changes. When aggregating hourly to daily data we omit any observations outside of the
main London stock market trading hours (i.e., from 8 am to 5 pm GMT). The sample covers the period from 1
November 2011 to 30 September 2020. The test statistics based on Driscoll and Kraay (1998) robust standard
errors allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag
selection by Andrews and Monahan, 1992; Newey and West, 1994) are reported in brackets. Asterisks *, **, and
*** denote significance at the 90%, 95%, and 99% levels.
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Table B.7: Smooth transition panel regression with DCM as state variable (euro triplets)

VLOOP TCOST

(1) (2) (3) (4) (5) (6) (7) (8)

γ 12.09 12.01 12.06 12.03 ***4.94 ***12.08 **12.05 ***12.08
c −0.06 −0.06 −0.06 −0.07 ***−0.33 ***−0.21 ***0.53 ***−0.23

Unconstr. volume ***0.20 ***0.21 ***0.19 ***0.18 ***0.10 ***0.10 ***0.06 ***0.10
[4.56] [4.54] [4.13] [4.20] [8.86] [9.54] [6.84] [9.00]

Constr. volume **0.12 **0.12 **0.11 **0.11 ***0.05 ***0.05 0.01 ***0.05
[2.28] [2.41] [2.04] [2.01] [4.26] [4.37] [1.00] [4.22]

Amihud (2002) 0.01 *0.00
[0.88] [1.69]

Realised variance 0.01 ***0.04
[0.95] [9.07]

1M CIP basis 0.01 0.00
[1.24] [0.28]

Constr.-Unconstr. −0.09 −0.08 −0.08 −0.07 ***−0.06 ***−0.05 ***−0.04 ***−0.05
[1.21] [1.16] [1.13] [0.99] [3.28] [3.22] [2.93] [3.04]

R2 in % 0.71 0.70 0.71 0.61 3.33 3.37 5.91 3.55
Avg. #Time periods 2,183 2,182 2,182 2,092 2,186 2,184 2,184 2,095
#Currency triplets 6 6 6 6 6 6 6 6
Currency triplet FE yes yes yes yes yes yes yes yes
Time-series FE yes yes yes yes yes yes yes yes

Note: This table reports results from daily fixed effects LSTAR panel regressions of the form
yk,t = λt + αk + [1 − G(zt−1)]β

′
1 fk,t + G(zt−1)β′2 fk,t + β′3wk,t + εk,t, where the dependent variable yk,t is a

liquidity cost measure (i.e., VLOOP or TCOST), fk,t (wk,t) are state-dependent (state-independent) regressors, and
G(zt−1) is a logistic function depending on the state variable zt−1. The regime variable is the 1-day lagged value
of the dealer constraint measure DCMt. The optimal parameters γ and c are determined by nonlinear least
squares minimising the concentrated sum of squared errors. Both dependent and independent variables are
taken in logs and changes. The sample consists of 6 euro-based currency pair triplets that do not involve any
dollar currency pairs (i.e., AUD-EUR-JPY, CAD-EUR-JPY, GBP-EUR-AUD, GBP-EUR-CAD, GBP-EUR-CHF, and
GBP-EUR-JPY) and covers the period from 1 November 2011 to 30 September 2020. The test statistics based on
Driscoll and Kraay (1998) robust standard errors allowing for random clustering and serial correlation (using
the plug-in procedure for automatic lag selection by Andrews and Monahan, 1992; Newey and West, 1994) are
reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and 99% levels.
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Appendix C. Estimating an SVAR with sign restrictions

We estimate a structural vector autoregression (SVAR) model of liquidity cost measures
(i.e., VLOOP or TCOST) and dealer-provided volume VLM. Let Yk,t = [Xk,t VLMk,t]

T be a
2 × 1 vector containing X ∈ {VLOOP, TCOST} and VLM in currency pair triplet k and day
t. The bivariate panel SVAR for Yk,t is:

Yk,t = αk +
l

∑
i=1

Bk,iYk,t−i + ξk,t, (C.1)

where Bk,i is a 2 × 2 matrix of coefficients, l the lag length, ξk,t = [ξX;k,t ξVLM;k,t]
T the reduced

form error, and αk is a 2 × 1 vector of currency triplet fixed effects. The residual ξk,t is:[
ξX;k,t

ξVLM;k,t

]
= Ak

[
δs

k,t

δd
k,t

]
, (C.2)

where Ak is a 2 × 2 matrix and δk,t = [δs
k,t δd

k,t]
T is a 2 × 1 vector. Based on Eqs (C.1) and (C.2),

the first column of Ak corresponds to changes in liquidity provision costs (i.e., VLOOP or
TCOST) and dealer-intermediated volume associated with an increase in δs

k,t, whereas the
second column corresponds to changes in liquidity costs and VLM associated with an increase
in δd

k,t. Following Goldberg (2020), if Ak satisfies the following sign restrictions:

sign(Ak) =

(
+ +

− +

)
, (C.3)

then δs
k,t can be interpreted as an inward shift in liquidity supply reflecting a tightening

of dealer constraints, whereas δd
k,t corresponds to an outward shift in customers’ liquidity

demand. In particular, the sign restrictions in Eq. (C.3) assume that supply shifts lead to
opposite-sign changes in liquidity costs and trading volumes, whereas demand shifts are
assumed to lead to same-sign changes in liquidity costs and volume.

To identify supply and demand shifts, we estimate Eqs (C.1) and (C.2) imposing the sign
restrictions in Eq. (C.3) using Bayesian methods. Specifically, we follow the approach of Uhlig
(2005) and others, which has become widely used to estimate models with sign restrictions.
Both the liquidity cost measure (i.e., VLOOP or TCOST) and dealer-intermediated volume
enter in log levels. Consider the reduced-form SVAR in Eq. (C.1) with parameters Bk =

[Bk,1, ..., Bk,l ] and covariance matrix Σk for currency pair triplet k. We use a weak Normal-
Wishart prior over these parameters. The lag length l is determined according to the Akaike
Information Criterion and is equal to 2 in our baseline estimation. The parameters of the
panel SVAR are Bk, Σk, and Ak, where Ak is the mapping from the liquidity supply and
demand shifts δk,t to the reduced-form residual ξk,t given by ξk,t = Akδk,t. The ultimate aim
is to draw from the posterior distribution of δk,t. Hence, we first draw from the posterior
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distribution over Bk and Σk. By definition, Ak has to satisfy Ak AT
k = Σk. Specifically, we draw

Ak by using Cholesky factorisation: Σk = chol(Σk)chol(Σk)
T. Next, we draw orthonormal

matrices Qk uniformly from the unit circle and compute Ak = chol(Σk)Qk. If the resulting Ak

satisfies the sign restrictions in Eq. (C.3) over 2 periods then we keep the draw and discard
it otherwise. When implementing this estimation procedure we make 500 draws over Bk and
Σk and, for each Bk and Σk, 500 draws over Qk. Eventually, the liquidity supply and demand
shift proxies are normalised to have mean zero and standard deviation equal to one.

For illustrative purposes, Figure C.1 (Figure C.2) shows estimates of the dynamic re-
sponses of VLOOP (TCOST) and VLM to supply and demand shifts for the EUR-USD-JPY
currency pair triplet.31 By construction, concurrently with a liquidity supply shift, VLOOP
(TCOST) rises and VLM positions decline. As shown in Figure C.1, contemporaneous with a
liquidity supply shift, VLOOP (TCOST) rises 31% (6%) and VLM positions decline 15% (18%),
according to the posterior mean. Contrarily, a liquidity demand shock is associated with an
increase in VLOOP (TCOST) and VLM by 25% and 12% (13% and 21%), respectively.

Figure C.1: VLOOP: Dynamic impulse response function for EUR-USD-JPY
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Note: This figure plots the estimated dynamic response of the shadow cost of intermediary constraints (VLOOP)
and dealer-intermediated volume (VLM) associated with liquidity supply and demand shifts. The median re-
sponse is shown by the black solid line. The grey shaded area marks a pointwise 95% confidence interval around
the median. The sample covers the period from 1 November 2011 to 30 September 2020.

Figures C.3 and C.4 plot the rolling correlation between each of our two liquidity cost

31The impulse response functions for the other 14 currency pair triplets exhibit qualitatively similar patters.
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Figure C.2: TCOST: Dynamic impulse response function for EUR-USD-JPY
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Note: This figure plots the estimated dynamic response of dealers’ compensation for enduring inventory imbal-
ances (TCOST) and dealer-intermediated volume (VLM) associated with liquidity supply and demand shifts. The
median response is shown by the black solid line. The grey shaded area marks a pointwise 95% confidence inter-
val around the median. The sample covers the period from 1 November 2011 to 30 September 2020.

measures (i.e., VLOOP or TCOST) and dealer-provided volumes. It is easy to see that the
strong positive association between liquidity costs and trading volume breaks down during
the Covid-19 market turmoil in March and April 2020 across all 15 currency pair triplets.

Appendix D. Quasi-natural experiment: Swiss franc decap

Table D.1 reports the results from daily panel regressions of the form:

ρk,t = α + η1Dk,t + η2Postt + η3(Dk,t × Postt) + κ′wk,t + ϵk,t, (D.1)

where the dependent variable is the 30-day rolling window correlation of liquidity provision
costs (i.e., VLOOP or TCOST) and dealer-provided trading volume (i.e., VLM), α denotes
the intercept, Dk,t is equal to one if currency pair triplet k contains the Swiss franc, Postt is
one for the time period after the removal of the Swiss franc cap on 15 January 2015, and
η3 is the difference-in-differences (DnD) coefficient. wk,t collects additional control variables
such as the realised variance or Amihud (2002) price impact measure. Except for the case
where ρ = cor(VLOOP, VLM) we find the DnD regression coefficient η3 to be negative and
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Figure C.3: Rolling window correlation VLOOP and VLM
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Note: This figure plots the 30- and 252-day rolling window correlation of daily cumulative no-arbitrage deviations
VLOOP (i.e., shadow cost of intermediary constraints) and dealer-intermediated trading volume VLM. The sam-
ple covers the period from 1 November 2011 to 30 September 2020.

statistically significant. For instance, after the removal of the Swiss franc cap the correlation
between TCOST and VLM is 54 percentage points lower for currency pair triplets involving
the Swiss franc. Figures D.1 and D.2 illustrate the drop in the rolling window correlation
coefficient based on each of our two liquidity cost measures (i.e., VLOOP or TCOST) after the
removal of the Swiss franc cap.
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Figure C.4: Rolling window correlation TCOST and VLM
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Note: This figure plots the 30- and 252-day rolling window correlation of daily cumulative round-trip transaction
cost TCOST (i.e., dealers’ compensation for enduring inventory imbalances) and dealer-intermediated trading
volume VLM. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure D.1: Event study: cor(VLOOP, VLM) around the Swiss franc decap

May 2014 Jun 2014 Jul 2014 Aug 2014 Sep 2014 Oct 2014 Nov 2014 Dec 2014 Jan 2015 Feb 2015 Mar 2015
-20%

-10%

0%

10%

20%

30%

40%

50%

S
w

is
s 

fr
an

c 
de

ca
p 

- 
15

 J
an

 2
01

5

Treated
Control

Note: This figure plots the cross-sectional average of 30-day rolling window correlations of daily VLOOP (i.e.,
shadow cost of intermediary constraints) and dealer-intermediated trading volume VLM. The “Treated” group
comprises currency pair triplets that involve the Swiss franc (i.e., EUR-USD-CHF and GBP-USD-CHF) and the
“Control” group contains the remaining 13 triplets.

Figure D.2: Event study: cor(TCOST, VLM) around the Swiss franc decap
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Note: This figure plots the cross-sectional average of 30-day rolling window correlations of daily TCOST (i.e.,
dealers’ compensation for enduring inventory imbalances) and dealer-intermediated trading volume VLM.
The “Treated” group comprises currency pair triplets that involve the Swiss franc (i.e., EUR-USD-CHF and
GBP-USD-CHF) and the “Control” group contains the remaining 13 triplets.
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Table D.1: Event study panel regression: Removal of the Swiss franc cap

cor(VLOOP,Volume) cor(TCOST,Volume)

(1) (2) (3) (4) (5) (6)

Intercept ***0.16 ***0.16 ***0.19 ***0.49 ***0.49 ***0.49
[11.42] [11.40] [11.55] [23.15] [23.21] [26.74]

Dk,t 0.04 0.04 0.04 0.00 0.00 0.00
[1.49] [1.46] [1.63] [0.13] [0.05] [0.14]

Postt *−0.04 *−0.04 −0.03 ***−0.35 ***−0.35 ***−0.34
[1.93] [1.94] [1.23] [12.36] [12.33] [11.48]

Dk,t × Postt 0.00 0.00 0.05 ***−0.54 ***−0.54 ***−0.53
[0.03] [0.02] [1.17] [18.99] [19.33] [19.00]

Realised variance ***0.00 ***0.02 ***−0.01 **−0.01
[6.16] [5.48] [6.40] [2.51]

Amihud (2002) ***−0.04 −0.02
[4.55] [1.62]

R2 in % 29.35 29.37 31.19 86.11 86.19 86.27
Adj. R2 in % 29.28 29.28 31.08 86.09 86.18 86.25
Avg. #Time periods 207 207 207 207 207 207
#Exchange rates 15 15 15 15 15 15

Note: This table reports results from daily panel regressions of the form ρk,t = α + η1Dk,t + η2Postt + η3(Dk,t ×
Postt) + κ′wk,t + ϵk,t, where the dependent variable is the 30-day rolling window correlation of our liquidity cost
measure (i.e., VLOOP or TCOST) and trading volume (i.e., VLM), α denotes the intercept, Dk,t is equal to one if
currency pair triplet k contains the Swiss franc, Postt is one for the time period after the removal of the Swiss
franc cap on 15 January 2015, and η3 is the difference-in-differences coefficient. wk,t collects additional control
variables such as the realised variance or Amihud (2002) price impact measure. The sample covers the period
from 9 May 2014 to 26 February 2015. The test statistics based on Driscoll and Kraay (1998) robust standard errors
allowing for random clustering and serial correlation (using the plug-in procedure for automatic lag selection by
Newey and West, 1994) are reported in brackets. Asterisks *, **, and *** denote significance at the 90%, 95%, and
99% levels.
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Appendix E. Additional empirical results

Figure 2: Identifying a triangular arbitrage opportunity
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Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the hypothetical profit of a trader starting with one euro, first exchanging it to

1
0.820 = 1.220 US dollars, then exchanging 1.220 US dollars to Canadian dollars at the midquote price of 1.255
Canadian dollars per US dollar. This yields 1.531 Canadian dollars that are exchanged back to euros at the
CADEUR midquote that is equivalent to 1

EURCADMID = 1
1.505 . Such a round trip yields 1.017 euros or equivalent a

positive return of 1.7% in this example. Panel B embraces the same logic but going the opposite direction, that is,
first from euro to Canadian dollar, to US dollar and then back to euro yielding a negative return of −1.7%.
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Figure 3: Triangular arbitrage trade with transaction costs
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Note: This figure provides a schematic overview of two triangular arbitrage strategies, where the arrows denote
the direction. Panel A shows the profit of first exchanging one euro to 1

0.83 = 1.21 US dollars at the ask price,
then exchanging 1.21 US dollars to Canadian dollars at the bid price of 1.25 Canadian dollars per US dollar.
This yields 1.51 Canadian dollars that are exchanged back to euros at the CADEUR bid price that is equivalent
to 1

EURCADASK = 1
1.52 . Such a round trip yields 0.991 euros or equivalent a negative return of −0.9%. Panel B

embraces the same logic but going the opposite direction, that is, first from euro to Canadian dollar, to US dollar
and then back to euro.

Table E.1: Summary statistics

Liquidity cost in bps Volume in $bn Bid-ask spread in bps Volatility in bps VLOOP>TCOST in %

VLOOP TCOST Direct Synthetic Direct Synthetic Direct Synthetic

AUD-USD-JPY 0.24 4.88 0.18 5.11 4.15 5.87 14.38 15.86 0.18
AUD-USD-NZD 0.29 5.85 0.09 2.01 4.44 7.43 9.32 17.95 0.02
CAD-USD-JPY 0.30 4.67 0.03 5.32 4.29 5.21 12.66 13.39 0.43
EUR-USD-AUD 0.19 4.52 0.14 7.72 3.54 5.64 11.54 15.51 0.04
EUR-USD-CAD 0.28 4.25 0.08 7.94 3.55 4.99 10.15 12.89 0.07
EUR-USD-CHF 0.21 3.98 0.37 6.76 2.62 5.41 6.38 13.44 0.10
EUR-USD-DKK 0.14 3.89 0.09 6.17 2.54 5.30 1.82 13.03 0.05
EUR-USD-GBP 0.19 4.07 0.61 8.16 3.19 4.95 9.52 13.60 0.03
EUR-USD-JPY 0.21 3.90 0.65 9.67 3.14 4.83 11.43 13.71 0.66
EUR-USD-NOK 0.26 7.69 0.24 6.25 6.25 9.40 11.01 16.90 0.05
EUR-USD-SEK 0.23 6.86 0.27 6.27 5.41 8.42 9.18 15.95 0.05
GBP-USD-AUD 0.20 5.08 0.04 3.60 4.22 5.99 12.53 15.93 0.02
GBP-USD-CAD 0.29 4.69 0.03 3.81 4.00 5.34 10.85 13.31 0.05
GBP-USD-CHF 0.19 4.94 0.03 2.64 4.09 5.76 10.69 13.99 0.03
GBP-USD-JPY 0.19 4.47 0.20 5.55 3.85 5.18 12.78 14.13 0.62

Note: This table reports the time-series average of hourly triangular no-arbitrage deviations VLOOP in basis
points (bps), round-trip trading costs TCOST in bps, direct trading volume in non-dollar currency pairs (e.g.,
AUDJPY) in $bn, synthetic trading volume in dollar pairs (e.g., the sum across USDAUD and USDJPY) in $bn, as
well as direct and synthetic relative bid-ask spreads and realised volatility in non-dollar and dollar currency pairs
in bps, respectively. The last column shows the relative share of VLOOP>TCOST in %. Each row corresponds to
a triplet of currency pairs, for example, AUDJPY, USDAUD, and USDJPY that we abbreviate as AUD-USD-JPY.
The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure 4: Law of one price violations, intermediated volume, dealer constraints
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Note: This figure plots the cross-sectional average of the shadow cost of intermediary constraints (VLOOP, black
solid line) against total trading volume (Total volume, black dashed line) in units of standard deviations. Both
time-series correspond to 22-day moving averages. The grey line plots our dealer constraint measure (DCM). The
grey shaded areas correspond to times when DCM exceeds its 75% quantile. The sample covers the period from
1 November 2011 to 30 September 2020.

Figure 5: Round-trip trading costs, intermediated volume, dealer constraints
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Note: This figure plots the cross-sectional average of dealers’ compensation for enduring inventory imbalances
(TCOST, black solid line) against total trading volume (Total volume, black dashed line) in units of standard
deviations. Both time-series correspond to 22-day moving averages. The grey line plots our dealer constraint
measure (DCM). The grey shaded areas correspond to times when DCM exceeds its 75% quantile. The sample
covers the period from 1 November 2011 to 30 September 2020.
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Table E.2: Comparison EBS vs Olsen bid and ask quotes

RMSE MAE CORR

BID ASK BID ASK BID ASK

AUDJPY 0.286 0.232 0.131 0.126 0.996 0.997
AUDNZD 0.001 0.001 0.001 0.001 0.999 0.999
AUDUSD 0.001 0.002 0.001 0.001 0.998 0.997
CADJPY 0.335 0.315 0.148 0.147 0.995 0.996
EURAUD 0.003 0.002 0.002 0.002 0.998 0.998
EURCAD 0.002 0.002 0.001 0.001 0.998 0.998
EURCHF 0.001 0.001 0.001 0.001 0.993 0.992
EURDKK 0.001 0.001 0.001 0.001 0.991 0.988
EURGBP 0.001 0.001 0.001 0.001 1.000 1.000
EURJPY 0.211 0.201 0.124 0.124 0.999 0.999
EURNOK 0.016 0.012 0.008 0.008 0.996 0.998
EURSEK 0.009 0.009 0.006 0.006 0.999 0.999
EURUSD 0.002 0.002 0.001 0.001 0.997 0.998
GBPAUD 0.004 0.005 0.003 0.003 1.000 0.999
GBPCAD 0.004 0.004 0.003 0.003 0.999 0.999
GBPCHF 0.003 0.003 0.002 0.002 0.999 0.999
GBPJPY 0.523 0.590 0.251 0.257 0.999 0.999
GBPUSD 0.002 0.003 0.001 0.001 1.000 0.999
NZDUSD 0.001 0.001 0.001 0.001 0.999 0.999
USDCAD 0.002 0.002 0.001 0.001 0.999 0.999
USDCHF 0.001 0.001 0.001 0.001 0.998 0.998
USDDKK 0.007 0.007 0.005 0.005 0.999 0.999
USDJPY 0.178 0.194 0.112 0.111 1.000 0.999
USDNOK 0.014 0.016 0.010 0.010 0.998 0.998
USDSEK 0.018 0.013 0.009 0.008 0.999 0.999

Note: This table reports the root mean squared error (RMSE, columns 1 and 2), the mean absolute error (MAE,
columns 3 and 4), and the pairwise correlation coefficient (CORR, columns 5 and 6) for bid and ask quotes based
on EBS and Olsen data, respectively. The sample covers the period from 4 January 2016 to 30 December 2016.

Table E.3: Correlations in percent

VLOOP TCOST VOD VOS BAD BAS RVD

TCOST ***28.10
VOD ***−0.48 ***6.19
VOS ***4.93 ***16.53 ***61.87
BAD ***23.24 ***74.34 ***1.85 ***9.59
BAS ***20.68 ***75.85 ***17.01 ***34.91 ***83.36
RVD ***15.52 ***37.78 ***27.43 ***37.57 ***54.60 ***49.05
RVS ***13.22 ***44.43 ***31.47 ***55.92 ***45.59 ***69.84 ***74.85

Note: This table reports the pairwise correlation coefficient of hourly triangular no-arbitrage deviations VLOOP,
trading costs TCOST, direct trading volume VOD in non-dollar pairs (e.g., XXXYYY), synthetic trading volume
VOS in dollar pairs (e.g., the average across USDXXX and USDYYY), relative bid-ask spread BAD and realised
volatility RVD in non-dollar pairs, as well as relative bid-ask spreads BAS and realised volatility RVS in dollar
currency pairs in percent (%). Significant correlations at the 90%, 95%, and 99% levels are represented by asterisks
*, **, and ***, respectively. The sample covers the period from 1 November 2011 to 30 September 2020.
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Figure E.1: Comparison of no-arbitrage violation using EBS vs Olsen data
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Note: This figure plots the daily cumulative sum of hourly no-arbitrage deviations (VLOOP) computed based on
EBS and Olsen data, respectively. The percentages in the titles report the Pearson correlation coefficient between
the two time-series. The sample covers the period from 8 June 2016 to 30 December 2016.
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Figure E.2: No-arbitrage violations and trading volumes
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Note: This figure plots total trading volume VLM against no-arbitrage deviations VLOOP (i.e., shadow cost of
intermediary constraints) for 15 triplets of currency pairs. Currency pair triplets are denoted as XXX-USD-YYY,
consisting of two dollar currency pairs (i.e., USDXXX, and USDYYY) as well as one non-dollar currency pair (i.e.,
XXXYYY). The percentages in the titles report the Pearson correlation coefficient between VLM and VLOOP. Both
time-series correspond to 22-day moving averages. The sample covers the period from 1 November 2011 to 30
September 2020.
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Figure E.3: Round-trip transaction costs and trading volumes
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Note: This figure plots total trading volume VLM against round-trip transaction cost TCOST (i.e., dealers’ com-
pensation for enduring inventory imbalances) for 15 triplets of currency pairs. Currency pair triplets are denoted
as XXX-USD-YYY, consisting of two dollar currency pairs (i.e., USDXXX, and USDYYY) as well as one non-dollar
currency pair (i.e., XXXYYY). The percentages in the titles report the Pearson correlation coefficient between
VLM and TCOST. Both time-series correspond to 22-day moving averages. The sample covers the period from 1
November 2011 to 30 September 2020.
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Figure E.4: Autocorrelated trading volume
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Note: This figure plots the autocorrelation coefficient of total dealer-provided trading volume VLM for 15 triplets
of currency pairs. Currency pair triplets are denoted as XXX-USD-YYY, consisting of two dollar currency pairs
(i.e., USDXXX, and USDYYY) as well as one non-dollar currency pair (i.e., XXXYYY). The solid lines are approx-
imate 95% confidence bounds. Both time-series correspond to 22-day moving averages. The sample covers the
period from 1 November 2011 to 30 September 2020.
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