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1 Introduction

Crude oil is the world’s largest and most actively traded commodity. Crude oil has both a deep

spot market and an exchange available to trade derivatives on them. The derivatives on crude oil

are available to be traded 23-hours a day, 6-days a week on the New York Mercantile Exchange

(NYMEX), and accounted for over 50% of the total volume traded in energy contracts in 2015

(Kyriakou et al., 2016). Further to this, crude oil prices are commonly monitored by multiple

stakeholders, including consumers and producers of oil, investors, and policy makers. As such,

it is necessary to have a deep understanding behind the underlying dynamics in the crude oil

market.

The underlying dynamics of crude oil can be explained through the use of risk-neutral moments.

These risk-neutral moments can be extracted through options, and have been extensively studied

in the literature. For example, the ubiquitous Chicago Board of Exchange (CBOE) Volatility

Index (VIX) is based on the risk-neutral second moment that is extracted from options, and

is directly used by many as a measure of volatility in the market. Carr and Wu (2009) use

options at a daily frequency to study the variance risk premium in the U.S. equities markets

through the means of a variance swap contract, which is the difference between the risk-neutral

second moment and the realised variance. Building on their methodology, Kozhan, Neuberger,

and Schneider (2013) also use options at a daily frequency, extend the analysis to include the

third moment, and find that the second and third risk-neutral moments can both explain the

S&P 500 excess returns. Similar studies on the risk-neutral moments extracted from option

prices have also been conducted in the crude oil market. For example, Chatrath et al. (2015)

forecast volatility using the risk-neutral second and third moment, Prokopczuk, Symeonidis, and

Wese Simen (2017) study the variance risk present in the commodity markets, Ruan and Zhang

(2018) look at the second and third risk-neutral moments in the crude oil market at the daily

frequency, Gagnon and Power (2020) utilise the risk-neutral moments to investigate crude oil

market integration and spillovers between the Brent and West Texas Intermediate (WTI) and

Indriawan et al. (2020) investigate the semi-variance moments on oil, gas, gold and silver ETFs.

An area coming more recently into focus involves the tails of the return distribution. There is

increasing evidence that the majority of the predictability in the variance risk premium, which
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involves the risk-neutral second order moment, is actually from the tails of the variance, in

particular the left tail. This is demonstrated in Bollerslev, Todorov, and Xu (2015) for the S&P

500 and Andersen, Todorov, and Ubukata (2021) for the Nikkei 225. In addition, Andersen,

Fusari, and Todorov (2015b) and Andersen, Fusari, and Todorov (2020), using daily option data

and parametric models that explicitly account for the tail risk component, find that when the

variance risk premium is stripped of the left tail variation, it has insignificant forecasting power

on the U.S. and European indices. Ellwanger (2017) investigates the tail variation in the crude

oil markets at the monthly frequency, and finds the tail variations can partially predict the

monthly crude oil futures and spot returns.

Research on high frequency option data is an area that is relatively (to the daily frequency)

unexplored. There are a couple of reasons for this. For example, high frequency, intraday

stock returns are subject to considerably more noise than is typically found at a lower daily

frequency. Adding to this, options have two further dimensions, namely the strike price and

time-to-maturity. Thus, moving even from a single asset to the options written on that asset in-

creases the dimensionality of the problem significantly. In saying that, the use of high frequency

option data is not a foreign concept in the literature. For example, Andersen, Bondarenko, and

Gonzalez-Perez (2015a) utilise tick-by-tick S&P 500 option data to construct a VIX measure

that is more robust to idiosyncratic changes arising from the time variant strike range. Griffin

and Shams (2018) show using high frequency S&P 500 option data that the VIX is susceptible

to manipulation. Beckmeyer, Branger, and Grünthaler (2019) use high frequency S&P 500 op-

tion data to show that the tail variation, extracted from S&P 500 options, also predicts returns

in the period just before the Federal Open Market Committee (FOMC) announcements. In

all of these cases, the insights gained from these works would not be possible without the use

of high frequency option data. To the best of our knowledge, high frequency crude oil option

data has not yet been exploited in analysing the relationships between the risk-neutral moments

and their options’ underlying assets’ returns at high frequency.1 These important relationships

have been extensively studied at the daily frequency in the literature (see for example, Martens

and Zein (2004), Da Fonseca and Xu (2017), Ruan and Zhang (2018) and Andersen, Todorov,

and Ubukata (2021).) Investigating these relationships at high frequency, however, is by no

1We are also unaware of any study of that investigates these relationships for the equity index option market
at high frequency.
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means straightforward. Indeed, as shown in Aı̈t-Sahalia, Fan, and Li (2013), even the well-

known leverage effect, the empirically observed negative correlation between an asset’s return

and its volatility, is difficult to estimate at high frequency and can have damaging consequences

on the hedging of options if estimated incorrectly. The work of Andersen, Bondarenko, and

Gonzalez-Perez (2015a) also demonstrates the correlation of S&P 500 returns with the VIX at

high frequency underestimates the leverage effect, further illustrating the difficulty of obtaining

meaningful results when working with high frequency options. These relationships are all-the-

more important to look at high frequency since crude oil options are commonly traded at these

high frequencies.

We contribute to the literature by answering the following three research questions. First, can

the risk-neutral moments (variance and third moment), semi-moments (semi-variance and semi-

third moment) and tail measures extracted from crude oil options at high frequency explain the

high frequency crude oil futures returns? Second, can these (semi-)moments predict the high

frequency crude oil futures returns? Third, do these results hold even in a cross-asset perspec-

tive? That is, can the crude oil (semi-)moments and tail measures explain and predict S&P 500

futures high frequency returns?

To address these questions, we use high frequency crude oil options traded on the NYMEX

and extract the higher moments as defined in Carr and Wu (2009) and Kozhan, Neuberger,

and Schneider (2013), and tail measures as defined in Bollerslev, Todorov, and Xu (2015). We

follow Kilic and Shaliastovich (2019) and decompose the second moment into semi-variances,

while the third moment is decomposed into its semi-moments as in Da Fonseca and Xu (2017).

Using these semi-moments, as well as the tail measures, we show that they can explain the high

frequency crude oil futures returns, as all of the contemporaneous regressions display significant

coefficients. We then show that these semi-moments and tail measures can even predict the

high frequency crude oil futures returns. Although the results are not as strong as the contem-

poraneous regression case, they all remain significant. Lastly, we look at the difficult case of a

cross-asset point of view, where the crude oil (semi-)moments and tail measures have to explain,

and predict the S&P 500 futures returns. This also leads to significant results.

The remainder of this article is presented as follows. In Section 2 we present the methodology
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behind deriving our higher order risk-neutral moments, which include the risk-neutral variance,

third moment and tail variations. In Section 3 we describe the dataset used for the analysis

and provide a brief description on the risk-neutral moments derived for our dataset. Section 4

studies the explanatory and predictive power of the semi-moments on the crude oil and S&P

500 futures returns through the use of the risk measures. We conclude in Section 5.

2 Methodology

2.1 Variance

Let (Ω,F ,F,P) be a complete filtered probability space with the filtration F = Ft∈[0,T ] on which

we will define any price process and P the historical probability measure. Assume now that the

futures price ft evolves according to the following jump diffusion

dft
ft

= µtdt+
√
VtdWt +

∫
R
(ex − 1)µ̃P

J(dx, dt), (1)

where Wt is a Wiener process under P, the drift µt and instantaneous variance Vt are assumed

to have cádlág paths, but are left unspecified otherwise, x is the size of the jump in the log-price,

µ̃P
J(dx, dt) ≡ µ(dx, dt)−νPt (dx)dt is a martingale measure under P, where µ(dx, dt) is a counting

measure for jumps in ft and νPt (dx)dt is its corresponding jump compensator.

The variability of the price over the period [t, t+τ ] is measured by the quadratic variation which

is defined as

QVt,τ =

∫ t+τ

t
Vs ds+

∫ t+τ

t

∫
R
x2 µ(dx, ds). (2)

The quantity Eq.(2) is in essence the variance in the price which is contributed by both the

diffusive movements in the futures price and the jumps in the futures price. One way to estimate

future expected variance is to construct a financial instrument that has payout Eq.(2) with no

intermediary cash flows. If we are able to do so, then the expected variance of ft over the

period [t, t + τ ] would be in theory EQ
t [QVt,τ ], where Q is the equivalent risk-neutral measure.

Annualising this security we have

vart,τ =
1

τ
EQ
t

[∫ t+τ

t
Vs ds+

∫ t+τ

t

∫
R
x2 µ(dx, ds)

]
. (3)

It is well understood in the literature that a trading strategy with payoff Eq.(2) can be ap-

proximately replicated with a portfolio of European call and put options and risk-free interest
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bearing instruments. Assume there exist European call / put options with time to maturity τ

and strike price K with time t price denoted respectively by Ct,τ (K) / Pt,τ (K), and that these

options are written on the futures contract ft which expires after the expiration of the options.

Further assume that these options trade on a continuum of strike prices. Then

vart,τ ≈ 2ert,τ

τ

[∫ Ft,τ

0

Pt,τ (K)

K2
dK +

∫ ∞

Ft,τ

Ct,τ (K)

K2
dK

]
=

2ert,τ τ

τ

∫ ∞

0

Mt(τ,K)

K2
dK, (4)

where rt,τ is the risk free interest over [t, t + τ ], Mt,τ (K) = min{Ct,τ (K), Pt,τ (K)}, and Ft,τ is

the time t forward price of the underlying futures contract with maturity t + τ .2 A call (put)

option is labelled out-of-the-money (OTM) for a specific strike K if K > Ft,τ (K < Ft,τ ), at-the-

money when K = Ft,τ , which is when Ct,τ (F ) = Pt,τ (F ), and in-the-money (ITM) if K < Ft,τ

(K > Ft,τ ). Since the forward price Ft,τ can be implied from the put-call parity then Eq.(4) in

turn only requires OTM options to be computed. Going forward, we set

varLt,τ =
2ert,τ

τ

∫ Ft,τ

0

Pt,τ (K)

K2
dK, varRt,τ =

2ert,τ

τ

∫ ∞

Ft,τ

Ct,τ (K)

K2
dK, (5)

to represent the ‘left’ and ‘right’ semi-moment for the second order risk-neutral moment.3 An

important note to recognise is that since

vart,τ = varLt,τ + varRt,τ , (6)

then the aggregated risk-neutral second moment vart,τ could be thought of as a portfolio that is

comprised of two components; one component is long put options varLt,τ , and the other is long

call options varRt,τ , and thus the return of vart,τ in Eq.(6) is the sum of the returns of varLt,τ and

varRt,τ .

One of the key problems with Eq.(4) is the requirement of having accurate pricing information

for the options on a continuum of strike prices. This assumption is obviously not met as options

do not trade on a continuum of strikes, but rather on a finite set of actively traded strike prices.

This requires the necessary truncation of the strike price range in the calculation of Eq.(4) and

2We acknowledge there is an approximation error in Eq.(4). As noted in Andersen, Todorov, and Ubukata
(2021) the r.h.s. of Eq.(4) is equal to 1

τ

∫ t+τ

t
EQ
t [Vs] ds + 2

τ

∫ t+τ

t
(ex − 1 − x)EQ

t [ν
Q
s (dx)], which is only equal to

1
τ
EQ
t [QVt,τ ] up to a third order term (in an expansion around zero). However, as outlined in Carr and Wu (2009),

Eq.(4) already provides a very good approximation to the future return variation even when jumps are present,
and thus we ignore the approximation error going forward.

3The ‘left’ and ‘right’ are used here in relation to the forward price F . The ‘left’ semi-moment are the options
with strike prices left of the forward price F (the put options), and the ‘right’ semi-moment are the options with
strike prices right of the forward price F (the call options).
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leads naturally to the approximation

v̂art,τ =
2ert,τ

τ

N∑
j=1

∆Kt,j

K2
t,j

Mt,τ (Kt,j) (7)

=
2ert,τ

τ

F∑
j=1

∆Kt,j

K2
t,j

Pt,τ (Kt,j) +
2ert,τ

τ

N∑
j=F+1

∆Kt,j

K2
t,j

Ct,τ (Kt,j) (8)

= v̂arLt,τ + v̂arRt,τ . (9)

Here Kt,j are the strike prices where we have available information, and Kt,F is the first available

strike price less than the forward price Ft,τ , i.e., 0 < Kt,1 < ... < Kt,F < Ft,τ < Kt,F+1 < ... <

Kt,N and ∆Kt,j = (Kt,j+1 −Kt,j−1)/2.
4

The CBOE VIX for the S&P 500 equity index is defined as the square root of the expected varia-

tion (in percentage) over the fixed horizon of 30 calendar days τM = 30
365 . The VIX methodology

uses two options sets with time to maturities τ1, τ2 which are qualified as the near-term and far-

term, except those with less than 7 calendar days to expiry such that 7
365 < τ1 < τM = 30

365 < τ2

and linearly combines the variances v̂art,τ1 and v̂art,τ2 to obtain an estimate for the expected

variance at τM . Formally, the CBOE defines the VIX as

VIXt = 100

√
[τ1v̂art,τ1w1 + τ2v̂art,τ2w2]

1

τM
, (10)

where w1 = τ2−τM
τ2−τ1

and w2 = τM−τ1
τ2−τ1

such that w1 + w2 = 1. Going forward, similar to the VIX

methodology, using an annualised 30-day measure for vart,τM , varLt,τM and varRt,τM , we set

v̂art,τM =
1

τM
[τ1v̂art,τ1w1 + τ2v̂art,τ2w2] , (11)

v̂arLt,τM =
1

τM

[
τ1v̂ar

L
t,τ1w1 + τ2v̂ar

L
t,τ2w2

]
, (12)

v̂arRt,τM =
1

τM

[
τ1v̂ar

R
t,τ1w1 + τ2v̂ar

R
t,τ2w2

]
. (13)

The quantities varLt,τM and varRt,τM are the contribution to the expected 30-day variance from

the put and call options respectively.

As an aside, from the necessary nature of truncating the integral in Eq.(4), prior work has

demonstrated this introduces idiosyncratic changes in the VIX due to the sudden inclusion of

4At the boundaries, in-line with the CBOE definition we define ∆Kt,1 = Kt,2 − Kt,1 and ∆Kt,N = Kt,N −
Kt,N−1.
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OTM options at the boundaries that were previously truncated from either inactivity, or due

to a zero bid price. As highlighted in Andersen, Bondarenko, and Gonzalez-Perez (2015a),

this can create non-trivial short-lived deviations that can appear as a ‘jump’ in volatility, but

which actually arise from the inclusion of previously dormant options in the VIX calculation.

Andersen, Bondarenko, and Gonzalez-Perez (2015a) suggest instead to use a temporally and

economically coherent index by using a truncation method that is not so sensitive to these

boundary options, but rather one that captures the main information of the VIX and truncates

these liquidity-sensitive options. However the truncation method used in Andersen, Bondarenko,

and Gonzalez-Perez (2015a) is a bit troublesome as it requires both the OTM and ITM options

to be actively traded. In our case the ITM options were not liquid enough to enable analysis

using this method. Furthermore, the problem of the inclusion with the previously dormant

options is partly mitigated with a flexible enough choice of the rolling window in the ‘previous

tick’ method we describe later. Finally, the crude oil options that we use in our dataset are more

liquid than the S&P 500 options used in Andersen, Bondarenko, and Gonzalez-Perez (2015a).

By not actively truncating the tail options it allows us to explore the tail distribution which

has been coming more into focus in the recent literature. As such, going forward we knowingly

use these tail options, even though they can create idiosyncratic changes in the second moment,

since we intend to exploit these tail options explicitly later on.

2.2 Third centralised moment

Higher risk-neutral moments of the future’s return distribution have also been explored previ-

ously in the literature. Kozhan, Neuberger, and Schneider (2013) exploit the risk-neutral third

moment to study the risk-neutral skew of the S&P 500 market. They demonstrate that the fol-

lowing portfolio of OTM European call and put options locally approximates the third central

moment of returns:5

κt,τ =
6ert,τ

τ

[∫ ∞

Ft,τ

K − Ft,τ

K2Ft,τ
Ct,τ (K)dK −

∫ Ft,τ

0

Ft,τ −K

K2Ft,τ
Pt,τ (K)dK

]
. (14)

We will also denote the following left and right side of the third moment

κRt,τ =
6ert,τ

τ

∫ ∞

Ft,τ

K − Ft,τ

K2Ft,τ
Ct,τ (K)dK, κLt,τ =

6ert,τ

τ

∫ Ft,τ

0

Ft,τ −K

K2Ft,τ
Pt,τ (K)dK, (15)

5Note that the second moment defined in Eq.(4) and third moment in Eq.(14) differ from those defined in
Bakshi et al. (2003). Section 1.3 of Kozhan et al. (2013) explains the advantages of these choices.
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which are positive by construction, so that

κt,τ = κRt,τ − κLt,τ . (16)

Hence, using the similar arguments that were used for vart,τ , κt,τ could be thought of as a

portfolio that is comprised of two components; one component that is long call options κRt,τ and

the other short put options κLt,τ . Then the return of κt,τ is given by the difference of the returns

from κRt,τ and κLt,τ .

Similar to the variance, the integral in Eq.(14) requires truncation. This leads us to the following

estimators for the third central moment6

κ̂t,τ =
6ert,τ

τ

N∑
j=f+1

∆Kt,j
Kt,j − Ft,τ

K2
t,jFt,τ

Ct,τ (Kt,j)−
6ert,τ

τ

f∑
j=1

∆Kj
Ft,τ −Kt,j

K2
t,jFt,τ

Pt,τ (Kt,j) (17)

= κ̂Rt,τ − κ̂Lt,τ . (18)

As an aside, if we normalise the third moment κt,τ by var
3/2
t,τ , then we have the implied skewness

measure skewt,τ defined as

skewt,τ =
κt,τ

var
3/2
t,τ

, (19)

where the relevant skewness estimator of Kozhan, Neuberger, and Schneider (2013) would be

given by

ŝkewt,τ =
κ̂Rt,τ

v̂ar
3/2
t,τ

−
κ̂Lt,τ

v̂ar
3/2
t,τ

. (20)

In this article we only study the third moment. Using a similar approach to the CBOE’s VIX

methodology, we look at the third central moment of returns along with their ‘left’ and ‘right’

components over thirty calendar days, (i.e., κt,τM , κLt,τM and κRt,τM ) and do this through linear

interpolation of the near and far terms of the option maturities. As such we set our estimators

6For both the second moment Eq.(4) and the third moment Eq.(14), the integrals are discretised and no
interpolation between the discrete market quotes are used. There is an abundant literature dealing with alternative
approximations of those integrals, see e.g., Byun and Kim (2016) and Hollstein and Prokopczuk (2016). However,
section A.2.3 of Kozhan et al. (2013) shows that more refined approximations of those integrals, in particular
using splines, do not significantly change the results.
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as

κ̂t,τM =
1

τM
[τ1κ̂t,τ1w1 + τ2κ̂t,τ2w2] , (21)

κ̂Lt,τM =
1

τM

[
τ1κ̂

L
t,τ1w1 + τ2κ̂

L
t,τ2w2

]
, (22)

κ̂Rt,τM =
1

τM

[
τ1κ̂

R
t,τ1w1 + τ2κ̂

R
t,τ2w2

]
, (23)

where again w1 =
τ2−τM
τ2−τ1

and w2 =
τM−τ1
τ2−τ1

such that w1 + w2 = 1.

2.3 Tail risk

An increasingly important area of study is the risk of extreme tail movements. This area has

recently been put under focus as the tail risk appears to have strong predictability power, and

perhaps even consumes most of the predictability power that is available from the variance risk

premium. We aim to utilise these tail risk measures for the crude oil market, and we are, to the

best of our knowledge, the first to study the tail risk variations in the crude oil markets.

The following subsection definitions and results are based on the work of Bollerslev, Todorov,

and Xu (2015). We define the left and right risk-neutral jump variation over the period [t, t+ τ ]

by

LJV Q
t,τ =

∫ t+τ

t

∫
x<−qt

x2νQu (dx)du, RJV Q
t,τ =

∫ t+τ

t

∫
x>qt

x2νQu (dx)du, (24)

where qt > 0 is a chosen time-varying cutoff for the log-jump size. We define the risk measures

LJV and RJV as the expectation of the quantities in Eq.(24)

LJVt,τ =
1

τ
EQ[LJV Q

t,τ ], RJVt,τ =
1

τ
EQ[RJV Q

t,τ ]. (25)

The tail variations LJV and RJV represent the contribution to the variance var that is only

from extreme (tail) price jump risk. As shown in Bollerslev and Todorov (2014), we can obtain

estimators for EQ
t [LJV

Q
t,τ ] and EQ

t [RJV Q
t,τ ] solely from option data. Furthermore, taking the

difference between LJV and RJV leads us to

LJVt,τ −RJVt,τ =
1

τ

(
EQ
t [LJV

Q
t,τ ]− EQ

t [RJV Q
t,τ ]
)
. (26)

This difference represents the excess risk investors place that is attributed to the possibility of

abrupt negative price movements over the possibility of abrupt positive price movements. It can

be interpreted as the pricing of negative tail events, or as argued in Bollerslev, Todorov, and
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Xu (2015) as a proxy of fear in the markets. Similar to before, the difference could be thought

of as a portfolio comprised of the two components that are long in LJVt,τ and short in RJVt,τ ,

and hence the returns of LJVt,τ − RJVt,τ in Eq.(26) is given by the difference in returns from

LJVt,τ and RJVt,τ .

The estimation of EQ[LJV Q
t,τ ] and EQ[RJV Q

t,τ ] is done following Bollerslev and Todorov (2014).

They impose a general specification on the (extreme) risk-neutral jump intensity process, from

which they are able to estimate the Q jump tail measures based on this specification. Suppose

that the extreme jumps follow the specification

νQt (dx) =
(
ϕ+
t × e−α+

t x1{x>0} + ϕ−
t × e−α−

t |x|1{x<0}

)
. (27)

This specification allows for the left (−) and right (+) jump tails to differ, and is very flexible

in that it allows for time-varying level shifts and shape governed by the parameters ϕ±
t and α±

t

respectively, compared to the usual parametric option pricing model which typically fixes the

shape of the jump.

Now let Ot,τ (k) be the price of an OTM option on the futures ft, with log-moneyness7 k and

time to maturity τ . With specification Eq.(27), and using the results derived in Bollerslev and

Todorov (2011) and Bollerslev and Todorov (2014), we have the following approximations for

short dated options

Ot,τ (k) ≈


τe−rt,τFt,τϕ

−
t

ek(1+α−
t )

α−
t (α−

t +1)
, k < 0,

τe−rt,τFt,τϕ
+
t

ek(1−α+
t )

α+
t (α+

t −1)
, k > 0.

(28)

Utilising the approximations in Eq.(28), we obtain estimates of α±
t and ϕ±

t through the following

optimisation problems

α̂±
t = argmin

α±

1

N±
t

N±
t∑

j=1

∣∣∣∣ln( Ot,τ (kt,j)

Ot,τ (kt,j−1)

)
(kt,j − kt,j−1)

−1 −
(
1± (−α±)

)∣∣∣∣ , (29)

ϕ̂±
t = argmin

ϕ±

1

N±
t

N±
t∑

j=1

∣∣∣∣ln(ert,τOt,τ (kt,j)

τFt,τ

)
−
(
1−∓α̂±

t

)
kt,j + ln

(
α̂±
t ∓ 1

)
+ ln

(
α̂±
t

)
− ln(ϕ±)

∣∣∣∣ ,
(30)

7Log-moneyness for an option with strike price K and forward price F is defined as k = ln(K/F ).
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where N±
t is the total number of calls (puts) used in the estimation with log-moneyness 0 <

kt,1 < · · · kt,N+
t

(0 < −kt,1 < · · · < −kt,N−
t
).

Then we have

EQ
t [LJV

Q
t,τ ] = τϕ−

t e
−α−

t |qt|(α−
t qt(α

−
t qt + 2) + 2)/(α−

t )
3, (31)

EQ
t [RJV Q

t,τ ] = τϕ+
t e

−α+
t |qt|(α+

t qt(α
+
t qt + 2) + 2)/(α+

t )
3. (32)

For the estimation procedure of the tail parameters α±
t and ϕ±

t we rely on the use of deep OTM

options. This is done through filtering out options that are relatively close to ATM options.

Following Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021) we

only use put options with log-moneyness less than −2.5 times the maturity-normalised ATM

Black-Scholes implied volatility (BSIV) for the left-tail parameters and call options with log-

moneyness in excess of the maturity-normalised BSIV. The choice for a more lenient cut-off for

the call options arises from the fact that the call options in the S&P 500 options are far less

liquid in comparison to their put option counterparts. Although this is not as necessary for the

crude oil options due to being similar levels of liquidity for the call and put options, we do this

so our methodology falls in line with the previous works of Bollerslev, Todorov, and Xu (2015)

and Andersen, Todorov, and Ubukata (2021).8

To minimise the effect of microstructure noise in our estimates of α±
t and ϕ±

t , we only allow

α±
t to change daily and for ϕ±

t to change only every 5-minutes. Previous works of the authors

Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021) work with

option data at a daily frequency where they only allow α±
t to change weekly and ϕ±

t to change

daily, and Ellwanger (2017) work with option data that is pooled into a monthly statistic, and

thus their α±
t and ϕ±

t are only allowed to change monthly.9 By utilising data available at higher

frequencies we can allow the tail risk parameters to change more frequently than would other-

wise be possible at lower frequencies.

We mention as an aside that the tail risk measures can be easily worked under the framework of

8We did find however having a symmetric cut-off for the call options did not materially change our results.
9It is important to note that typical parametric models in the literature, including the affine jump diffusion

models of Duffie, Pan, and Singleton (2000), impose a constant tail shape parameter α+
t = α−

t = α and that the
scale parameters describe both tails identically ϕ+

t = ϕ−
t . Allowing the parameters to change even weekly affords

us a very flexible model even when compared to the most advanced parametric models.
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risk premiums. Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021)

work explicitly with risk premiums instead of only the risk neutral tail variation measures. One

key caveat to mention is they do this through the assumption that the realised jump tail risk is

symmetric, which in turn leads to the difference cancelling out the historical measure component.

This by consequence means their risk premium is equivalent to the difference in Eq.(26). Since

we do not use risk premiums in this article, and further to this, use an assumption that essentially

cancels out the realised component, we do not delve into the historical component.

3 Data

Our dataset is comprised of tick-by-tick quotes of the monthly WTI crude oil options that trade

on the New York Mercantile Exchange (NYMEX), their underlying monthly WTI crude oil fu-

tures, and the S&P 500 futures. The sample covers the period of 1 January 2016 to 31 December

2019, and we restrict the hours of our analysis to 09:30 - 16:00 Eastern Time (ET) Monday to

Friday, the primary trading hours of the New York Stock Exchange. All data is downloaded

from Refinitiv Datascope in the form of best ask and best bid at the tick-by-tick frequency. For

the futures, we are in particular interested in the shortest term maturity available with more

than seven calendar days to maturity. Figure 1 shows the evolution of the price of the lead-term

futures of WTI and S&P 500 index. The four years in our sample contain the crude oil 2014-2016

supply glut noted by the sharp drop in the crude oil price at the beginning of our sample and

the 2018-2019 drop which was spurred by fears of an escalating trade war between the United

States and China.

The WTI options are American style and are written on a WTI futures contract that is deliv-

erable in the next calendar month after expiration of the crude oil option. While the theory

developed in the previous section is derived with European style options, we instead work with

American options on crude oil for the following reasons. First, the American options listed

on the NYMEX are by far the most liquid and actively traded crude oil option. To illustrate

the difference in liquidity between the American and European options, for our data set there

was an average daily volume of 74,920 American style contracts traded with an average daily

open interest of 680,670 contracts per day. In comparison, the European style options (which

are also listed on the NYMEX) only had an average daily volume of 258 contracts traded and
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an average daily open interest of 12,760 contracts. Since the underlying contract sizes are the

same for both the American and European options, the American style options would embed

far more timely and material information regarding the crude oil prices while their European

counterpart’s quotes would be stale. Second, while it is true that American style options have

a pricing premium when compared to their European style counterparts, this premium arises

solely from their early exercise rights. Since we only use OTM options for all the aforementioned

metrics, then the benefit of the early exercise premium will be at a minimum.10 Furthermore,

while there are crude oil options that expire weekly traded on the NYMEX which could then be

used to supplement our analysis, we also found them to have insufficient liquidity to work with

at high frequency.

[ Insert Figure 1 here. ]

We use all available tick-by-tick quotes except for those with a time-to-maturity of less than 7

days and days that have insufficient quote activity. We end up with 985 trading days in our

sample after discarding 38 trading days due to insufficient quotes on those days. For our dataset,

we have an extensive amount of quotes to work with. On average there are 4.19 (4.10) million

OTM put (call) option quotes per day, and we have in total 4.12 (4.04) billion OTM put (call)

option quotes for our entire sample.11

Quote activity varies significantly within the trading day and across moneyness. To highlight

quote activity within the trading day, Figure 2 plots the percentage of the total daily OTM

option quotes recorded every 5-minutes for our dataset. Quote activity is slightly elevated at

the open, with approximately around 2% of the daily quotes arriving every 5-minutes until 11:30,

from which there is a lull in activity until approximately 14:00 in the afternoon. Quote activity

spikes at 14:30, which is when Trade at Settlement (TAS) finishes for the day in the crude oil

futures.12 During the 5-minutes of 14:25 - 14:30 approximately 3.28% of the daily quotes are

recorded, more than double the daily average of 1.28% being recorded every 5-minutes. After

10It is customary in the literature to convert American options prices to European prices by using the Barone-
Adesi and Whaley (1987) approximation. It would be of interest to use it and assess the impact of using directly
American options in place of the converted European options. We leave this very computer intensive question for
future work. We would like to thank the anonymous referee for bringing this to our attention.

11To give an insight into how actively quoted these options are, the equivalent period for the S&P 500 options
on the CBOE has an average of 0.90 (0.41) million OTM put (call) option quotes per day and in total 876 (406)
million OTM put (call) option quotes for the entire sample.

12TAS is a mechanism employed by NYMEX that allows parties to the futures contract to execute the futures
contract within a spread around the current daily settlement price.
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TAS, the average quote activity is very subdued where every 5-minutes only approximately 0.44%

of the daily quotes arrive, close to one-third of the daily average. Figure 3 provides insight into

quote activity across the options moneyness. Here quote activity is highly concentrated around

the ATM options for both the near term and far term options. For the near (far) term options

52.9% (44.4%) of the total OTM option quotes are from options with moneyness between (0.9,

1.1) and 79.3% (78.2%) of the quotes between the moneyness range (0.75, 1.25). The near term

options quotes are more concentrated than their far term counterpart, likely arising from the

lower likelihood of the OTM options becoming ITM as time-to-maturity is lower.

[ Insert Figure 2 here. ]

[ Insert Figure 3 here. ]

For our subsequent analysis we begin by splitting the option and futures quotes into 15 second

intervals using the ‘previous tick method’, similar to the method employed in Andersen, Bon-

darenko, and Gonzalez-Perez (2015a). The last available quote is used if there is no arrival of a

quote in the 15 second interval. Similar to Andersen, Bondarenko, and Gonzalez-Perez (2015a)

we limit how far back we use the last available quote to prevent staleness in our measures. We

further employ some light data cleaning filters to remove any erroneous quotes and outliers. The

details of the data cleaning procedure are listed in Appendix A. After applying the filters, we

have for every 15 second interval an average of 30 (34) strikes of OTM put (call) quotes for the

near term maturity and an average of 42 (52) strikes of OTM put (call) quotes for the far term

maturity. Lastly, we aggregate our 15 second intervals into 5-minute intervals in order to limit

the effect of microstructure noise. We then compute our various risk measures based on the

5-minute series.

The higher order risk-neutral moments and their respective semi-moments are displayed in Fig-

ures 4 and 5 respectively, and Table I displays summary statistics for them. The variance changes

substantially over time, as evidenced by the elevated state in 2016 to then a subdued state in

2017 to late 2018, and the 75th percentile being 0.1574 but the maximum is 0.7586. Standard

deviation is large as well, being 0.0891, while the mean is 0.1303. Globally, the third central

moment κ is negative on average with a mean of −0.0079 and the 75th percentile being negative

at −0.0018. The third central moment κ is also negatively skewed, and contains leptokurtic

tails with a kurtosis of 8.1555. The difference in the left and right jump variations is positive
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on average with a mean of 0.0315 and the 25th percentile at 0.0140. The difference is positively

skewed and similar to the third moment, and contains heavy tails with a kurtosis of 9.6055.

[ Insert Figure 4 here. ]

[ Insert Figure 5 here. ]

[ Insert Table I here. ]

The left and right semi-moments are very similar in shape. The left semi-moment is larger in scale

than the corresponding right semi-moment for all the variables, indicating the left semi-moment

is the main contributor to the aggregated higher order risk-neutral moments. This is more or

less confirmed in Table I, where each of the left semi-moments have higher means, quantiles

and standard deviations than their corresponding right semi-moments. The tail measure LJV

mean of 0.0052 is larger than the RJV mean of 0.0026 by a factor of two. This is in contrast to

the results found in Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata

(2021) where they found respectively that for the S&P 500 and Japanese equity markets the

left tail variation LJV is about ten times larger than the right tail variation RJV , which allows

them to safely ignore the right tail for their analyses. Our results indicate that the right tail is

as important as the left tail in the crude oil markets, and cannot be ignored. Our results are

also inline with the analysis done in Ellwanger (2017), where they also found the mean for the

LJV is roughly twice as large as the mean for the RJV when analysing the crude oil market

over the years 1989-2013 at a monthly frequency. Interestingly, the authors in Ellwanger (2017)

provide evidence that the tail variation historical measures can be safely ignored for the crude

oil market when working with risk premia, as they are approximately 100 times smaller than

their risk-neutral counterparts. These results suggests the crude oil market is more concerned

(relatively speaking) about tail price increases compared to the S&P 500 market, which can be

potentially explained by the fact that consumers of crude oil care about price increases almost

as much as price decreases, where the S&P 500 market tends to be more concerned with extreme

price decreases than increases. It is also interesting that the kurtosis for the right semi-moment

is larger than its left’s counterpart, indicating the right semi-moment is more heavy tailed than

the left semi-moment.
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4 Regressions

In this section we aim to explain and predict the high frequency, intraday crude oil and S&P 500

futures returns through the use of our available high frequency risk-neutral semi-moments. The

literature has demonstrated that the use of risk-neutral moments (through risk premiums) are

able to partly explain and predict the excess returns of equity indexes at lower frequencies, such

as daily and monthly (see for example, Carr and Wu (2009), Kozhan, Neuberger, and Schneider

(2013), Da Fonseca and Xu (2017) and Kilic and Shaliastovich (2019)). These studies were

conducted using daily data, which are then used to explain or predict the futures excess returns

over a monthly horizon.

Here we adjust the methodology of the previous works in the literature in order to explain and

predict high frequency futures returns. The use of the risk premium framework is untenable in

our situation. The realised component requires the entire month of returns, which is unavailable

when we are trying to explain the very same intraday returns. Since the risk neutral semi-

moments are available to us at these high frequencies, we instead focus our efforts on extracting

the information embedded in these moments. As a means to this end, we utilise the commonly

used regression:

1

h̄2
Y j
t,t+h2

= γ0(h1, h2)
j + γ1(h1, h2)

jr(Pt, h1) + ujt,t+h2
, t = 1, ..., T j , (33)

where j is either the crude oil or S&P 500 futures, t refers to the specific 5-minute period we

are inspecting, h is the number of 5-minute periods (i.e., h1 = 1 means 5-minutes), Yt,t+h2 =

ln(ft+h2)− ln(ft) are the log returns of the relevant futures over the period [t, t+ h2] which are

annualised by the scaling factor h̄2 =
h2

288×365 and r(Pt, h1)t are the log returns of the predictor

P over the period [t, t + h1] that overlaps with our prediction interval (i.e., 0 < h1 ≤ h2).

Concretely, r(Pt, h1) is defined by

r(Pt, h1) = ln(Pt+h1)− ln(Pt), (34)

where Pt is the predictor of interest at time t, for example, such as the variables varL and

varR, the left and right semi-moments of the variance.13 We restrict our regressions to intraday

13The norm in the literature is to work with excess returns, which is the excess of the log return less the risk-free
rate. As our horizon is over short periods (i.e., up to an hour) the risk-free return over such a small period is
effectively zero. In either case, the log returns on the futures are equivalent to the excess returns on the spot (as
the initial cost of the futures is zero).
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predictions to remove any potential overnight effects. To account for overlap, we rely on the

robust Newey and West (1987) t-statistic with a lag of 2h1, consistent with the approach of

Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021). We first look

at contemporaneous regressions by setting h1 = h2, and then subsequently predictive regressions

by setting h1 < h2.

An important remark, through setting h1 < h2 we enter into a predictive situation. This is

due to the fact that one variable is known, but the other is not. Our situation is different to

the norm where the predictive regression uses non-overlapping periods. Our results found that

having non-overlapping periods leads to extremely poor results. However, it is also necessary

to stress here when h1 is much smaller than h2 (which is what we do when we set h1 = 1 (5

minutes) and h2 = 12 (one hour)) then the challenge of predicting accurately still remains.

4.1 Contemporaneous regressions on crude oil futures

Now that we have built higher order risk-neutral measures and even decomposed them into

their semi-measures, we intend to use these measures to see the extent at which these factors

can explain the returns of the crude oil futures similar to what has been done in the literature.

An important note to recognise regarding the studies from Carr and Wu (2009), Kozhan, Neu-

berger, and Schneider (2013), Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and

Ubukata (2021) is that the authors use a return to explain the returns of the futures. Carr and

Wu (2009) and Kozhan, Neuberger, and Schneider (2013) use precisely a return through the

construction of synthetic swaps in the S&P 500 market and Da Fonseca and Xu (2017) do the

same for the crude oil markets at the daily frequency (see for example, Eq.(9) from Carr and

Wu (2009), Eq.(29)-(30) from Kozhan, Neuberger, and Schneider (2013) and Eq.(15)-(16) from

Kilic and Shaliastovich (2019) for further details). The tail risk premiums are similar to a return

in the sense that they ‘long’ the risk-neutral option portfolio and ‘short’ the realised component.

Since our dataset affords us the ability to calculate the higher order risk-neutral moments at

high frequencies, it is natural to consider explaining the returns of the high frequency futures

with the returns on our high frequency risk-neutral moments.14

14We also considered using the level higher order risk neutral moments. The level higher order moments had no
predictive power and the coefficients from the univariate regression were not statistically significant at the 10%
level on a forecasting horizon of 15, 30 and 60 minutes. For brevity, we omit these results, but they are available
upon request.
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In what follows we conduct regressions based on the returns of the higher order crude oil risk-

neutral semi-moments. This is done primarily to isolate the effects from either the put or call

options and to see whether the left or right semi-moments of the higher order moments are more

important in explaining the futures returns at these higher frequencies. Moreover, by using

the semi-moments we are able to utilise the deeper information available within them, over the

aggregated risk-neutral moments.

To demonstrate the benefit of the semi-moments, we also create a synthetic series of the aggre-

gated higher order moment returns for comparison. Since the risk-neutral third central moment

and difference between the left and right jump variations can be positive or negative, as seen

in Figure 4, creating a series of log returns with them directly is not possible. As such, we

create these returns by utilising the portfolio component argument laid forth in Section 2. We

label these synthetic series of returns as var′, κ′, and (LJV − RJV )′, and they are created

by appropriately summing or differencing the returns of the individual semi-moments laid out

by the relationships defined in Eq.(6), (16) and (26). Formally, the returns of var′, κ′, and

(LJV −RJV )′ over the period [t, t+ h1] are given by

r(var′t, h1) =
[
ln(varLt+h1

)− ln(varLt )
]
+
[
ln(varRt+h1

)− ln(varRt )
]
, (35)

r(κ′t, h1) =
[
ln(κRt+h1

)− ln(κRt )
]
−
[
ln(κLt+h1

)− ln(κLt )
]
, (36)

r((LJV −RJV )′t, h1) =
[
ln(LJV L

t+h1
)− ln(LJV L

t )
]
−
[
ln(RJV R

t+h1
)− ln(RJV R

t )
]
. (37)

Tables II and III conduct contemporaneous regressions at 5 and 60 minutes on the crude oil

futures returns respectively.15 The results are quite compelling in that the higher order risk-

neutral semi-moments are able to reasonably explain the crude oil futures returns at all the time

intervals considered. Globally speaking, the semi-moments for var and third moment κ have

more explanatory power over the futures returns than the tail risk variation measures. At both

time intervals, the coefficients of the semi-moments are always negative and highly significant for

all variables. The negative sign of the left and right semi-moments of the variance aligns closely

with the leverage effect observed in the crude oil markets (Kang, Nikitopoulos, and Prokopczuk,

2020). When the variance increases (decreases) then both the crude oil futures decrease (in-

crease) on average. The negative signs on the jump variations align with the previous findings in

15We also conducted these contemporaneous regressions at other time intervals of interest. The results at these
time intervals are similar to the results presented, and hence we omit these regressions.
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Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021) which means

futures are priced higher when the perceived risk of a tail movement in either direction is lower.

Furthermore, in all but one case (at 5-minutes for the third moment) the coefficients of the left

semi-moment of the risk measure are larger (in absolute terms) then the corresponding right

semi-moment of the risk measure, suggesting the left semi-moment carries more information

than its corresponding right semi-moment.

[ Insert Table II here. ]

[ Insert Table III here. ]

What is also interesting is the difference in explanatory power between the synthetic aggregated

series var′, κ′, and (LJV − RJV )′ and their semi-moments. In each case, the synthetic series

did not perform as well as the equivalent semi-moment regression, clearly underlining the benefit

of decomposing the aggregated risk-neutral moments into their semi-moments. The difference

in performance is potentially attributed to the fact that by splitting the moments into their

respective semi-moments, it allows the more prevalent information in the regression to be high-

lighted rather than being lost due to aggregation.

Through the utilisation of our high frequency dataset, we were able to show that the informa-

tion embedded in high frequency options contains strong explanatory power over the futures

returns. Through creating returns with the high frequency higher order risk-neutral moments,

we demonstrated that these returns were able to partly explain the crude oil futures returns,

and it does highlight that even at intraday frequencies, there is some sort of leverage effect

present.16 Recovering the leverage effect at high frequency is important as obtaining estimates

of leverage at high frequency is notoriously difficult (see for example Aı̈t-Sahalia, Fan, and Li

(2013)). Failing to account for the leverage effect can lead to an incorrect hedging ratio for

16The leverage effect is the description given to the phenomena observed in the equity markets where volatility
in a share tends to increase inversely to its share price with the common interpretation that a company’s leverage
increases as a proportion of the company’s equity (see Black (1976) and Aı̈t-Sahalia, Fan, and Li (2013) for further
details). Different economic interpretations of the leverage effect present in the commodity markets have been
explained through different theories, and for more details we refer the interested reader to Ng and Pirrong (1994),
Basak and Pavlova (2016), Chiarella et al. (2016), Baur and Dimpfl (2018), Kang, Nikitopoulos, and Prokopczuk
(2020) and their references within for further details. We would like to thank the anonymous referee for bringing
this to our attention.
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options as shown in Eq.(21) of Bakshi, Cao, and Chen (1997). These questions are all the more

important for crude oil options as they are commonly traded at high frequency.

4.2 Predictive regressions on crude oil futures

The natural progression of explaining returns is to then predict these returns, similar to what

has been done in the literature (see for example, Bollerslev, Todorov, and Xu (2015), Kilic and

Shaliastovich (2019), and Andersen, Todorov, and Ubukata (2021)). In this part we focus our

efforts on predicting the crude oil futures returns. We set up the regressions so that we have

predictive regressions through the setting of h1 < h2. Specifically, the following regressions are

set up so that we vary h1 = 1, ..., 4 between 5-minutes to 20-minutes, and we set h2 = 12 to be

one hour.17 Since the overlapping period does not cover the full interval (unlike the contempo-

raneous regressions) the regressions by construction are predictive. The following analysis only

uses the higher order semi-moments.18 We conducted similar predictive regressions with the

synthetic aggregated series var′, κ′ and (LJV − RJV )′, but we found that, similar to the con-

temporaneous regressions, the semi-moments perform uniformly better, and hence we omit them.

Table IV contains predictive regression for the hourly returns of the crude oil futures matched

with the log returns of the semi-higher order risk neutral moments. The top panel contains

the regression from the returns of the left and right jump variations from Eq.(31)-(32). The

coefficients estimated are all negative with significance at the 1% level. The negative coefficient

implies that when there is a decrease (increase) in the expected jump variation, crude oil re-

turns are expected to increase (decrease). This result is consistent with the equity markets when

studied at a daily frequency (see Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov,

and Ubukata (2021)) and is consistent with the leverage effect. The coefficient for the log re-

turns on the LJV is larger (in absolute terms) and is more significant than the log returns of

the RJV . This indicates that, similar to the equity markets, the left tail of extreme returns

are more significant than the right tails (i.e., market participants demand greater compensa-

tion for extreme drops in the price, but not as much for extreme increases). These results are

17We also conducted the predictive regressions when we fix h1 = 1 (5-minutes) and vary h2 = 3, 6, 12, 24. These
results are available in the Online Supplementary Appendix in Section D.1.

18We performed the same regressions on the second and third moments detailed in Bakshi, Kapadia, and Madan
(2003), which differs in construction to that in Eq.(4) and Eq.(14) as a form of a robustness check. We found
the predictive regressions are robust to the construction of the second and third moments and provide almost
identical results. These results are provided in the Online Supplementary Appendix in Section D.3.
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quite impressive considering they are in line with the predictive regressions found in Andersen,

Todorov, and Ubukata (2021) when the forecasting period is 3-months or less, even though high

frequency returns are much more noisy and difficult to predict than monthly returns. Further to

this, the coefficients remain statistically significant at the 1% level across all periods considered

here, where the coefficients in Andersen, Todorov, and Ubukata (2021) are significant at the 5%

level typically. As expected, predictive power decreases as h1 decreases, but nevertheless, the

coefficients estimated still remain highly significant at the 1% level even when the overlapping

period is only 5-minutes.

[ Insert Table IV here. ]

The middle and bottom panel of Table IV contain predictive regressions for the hourly returns

of the crude oil futures predicted by the semi-moments of the variance var and third moment κ

respectively. The coefficients of the semi-moments for the variance and third moment are both

highly significant and deeply negative for all periods considered. The predictive power of the

variance is impressive, the adjusted R2 is 8.3% when h1 is set to 20-minutes and retains an

adjusted R2 of 4.1% even when the overlapping period is only 10-minutes, clearly suggesting

the returns of the variance process contain a significant amount of information in predicting

the crude oil returns. These results are strong considering their adjusted R2 are high, and are

also in line with the results in Andersen, Todorov, and Ubukata (2021), even in the presence

of noisier high frequency data. Similar to the jump variations, the signs of the coefficients

are negative, implying that the crude oil futures tend to increase (decrease) when the variance

decreases (increases), echoing the notion that market participants invest when perceived risk

is lower. The coefficient of the left variance semi-moment is larger (in absolute terms) then

the coefficient of the right variance semi-moment, suggesting put options changes have more

information embedded in them compared to their respective call options. The returns of the

left and right third moment are also highly significant at the 1% level across all levels and are

able to obtain an adjusted R2 of 7.7% when h1 is 20-minutes and retain an adjusted R2 of

5.9% and 3.9% at 15 and 10-minutes respectively. Their coefficients are negative at all the time

periods considered, but since the third moment is defined as the difference between the right

and left semi-moment, global interpretation is not possible. What is interesting however, is

that for longer overlapping periods the left third moment is increasing in scale and is becoming
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more statistically significant, but for the right third moment this effect is reversed, and becomes

smaller in scale while also becoming less statistically significant. We are not sure what causes

this phenomena, but note it as a potential open question for the literature. We also conducted

out-of-sample experiments to confirm the stability of the semi-moments out-of-sample, and we

found the semi-moments are robust to out-of-sample data. These results are provided in the

Online Supplementary Appendix in Section D.2.

4.3 Cross-market analysis between crude oil and S&P 500

We now turn our attention to explaining and predicting the S&P 500 futures using high frequency

crude oil risk-neutral semi-moments.19 There is increasing evidence that the commodity and

equity markets are becoming more and more interlinked with the increasing financialisation of

the commodity markets Basak and Pavlova (2016). For example, the correlation of the 60-

minutes log returns of the crude oil and S&P 500 futures returns is 0.34. Thus, an interesting

question to observe is whether the information embedded in the crude oil options can be used

to deepen our understanding of the S&P 500 market. Here we use the same regression structure

in Eq.(33), but with the S&P 500 futures. We demonstrate that the crude oil options are able

to partly explain and predict the S&P 500 futures, albeit to a lesser degree than the crude oil

futures.

4.3.1 Contemporaneous regressions

Here we set out with the goal of explaining the high frequency S&P 500 futures returns using

the returns of the high frequency crude oil semi-moments.20 Similar to the tables presented

in Section 4.1, Table V reports the results for the 60-minutes contemporaneous regressions on

the S&P 500 futures using the returns of the high frequency risk-neutral semi-moments and the

synthetic aggregated series var′, κ′ and (LJV −RJV )′ which were defined in Eq.(35), (36) and

(37) respectively.21 There are clear similarities between the dynamics of the S&P 500 futures

returns and the crude oil futures returns. The results are impressive, with the adjusted R2 being

6.1% and 6.2% for the semi-moments of the variance and third moment. Here, the coefficients

19An alternative research question would be to use the S&P 500 risk-neutral (semi-)moments and / or tail
measures to explain or predict the S&P 500 futures returns. We thank the anonymous referee for this suggestion.

20We conducted similar regressions with the level risk measures. We found the level risk measures provided no
predictability and all the coefficients were insignificant at the 10% level, and thus we do not report them.

21The regressions were conducted at other time intervals of interest, however the results are quite similar and
are not reported here.

23



on each semi-moment are negative, similar to the results from the previous section. Further to

this, the coefficient of each left semi-moment is larger (in absolute terms) than the coefficient

of the right semi-moment. This indeed indicates there is a systematic information differential

present in the put options and call options in the crude oil options even when used in a cross-

market setting. On top of this, each of the coefficients of the left semi-moments are significant

at the 1% level, and so are the right semi-moments with the exception of κR that is significant

at 10% only. Similar to the results found in the crude oil futures, the variance and third moment

contain more explanatory power over the S&P 500 futures than the tail risk measures. Finally,

even across different markets, the benefit of utilising the semi-moments over the regular higher

order moments is apparent with the synthetic aggregated series failing to perform as well as the

decomposed semi-moments.

[ Insert Table V here. ]

4.3.2 Predictive regressions

Finally, we also study the predictability of the S&P 500 futures returns using the returns of

the high frequency semi-moments. Similar to the analysis in Section 4.2, we set h1 < h2, fix

h2 = 12, one hour and vary the overlapping period h1 = 1, ..., 4 between 5-minutes to 20-minutes.

The results of our regressions on the returns of the semi-moments are outlined in Table VI, which

contains the regressions on the tail variations, variance and third moment. The coefficients of

the tail variation measures are significant at the 1% level, except when h1 is 5-minutes which is

significant at the 5% level. The signs are negative and the coefficient for the left jump variation

is larger (in absolute terms) than the right jump variation, similar to the crude oil market.

[ Insert Table VI here. ]

The tail variations afford little to no predictability over the S&P 500 futures returns, but nev-

ertheless, the results are still respectable given the cross-market nature, as they are significant

at the 1% level at all overlapping periods (except at 5-minutes) and are more or less in line

with the results found in Andersen, Todorov, and Ubukata (2021) when they forecast less than

3-months.
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The returns of the left and right variance moments in the middle panel of Table VI are very

impressive, given we are able to achieve an adjusted R2 of up to 1.7%. The coefficients for the

variance are significant at the 1% level across all time intervals considered, and again the left

variance’s coefficient is larger than the right variance’s coefficient. What is also interesting is the

negative signs in the variance suggests there is a ‘cross-market leverage’ effect happening. When

the variance in the crude oil increases, the expected return for the S&P 500 futures decrease.

Finally, the regressions of the third moment are reported in the bottom panel of Table VI. The

coefficients for the third moment are all negative, similar to the findings in Table IV, and the

third moment achieves an adjusted R2 up to 1.5%. The scale of the third moment displays the

similar pattern found in the crude oil futures, in that when the overlapping period is small, the

right third moment’s coefficient is larger in scale than the left third moment’s coefficient and is

statistically significant at the 1% level. However, when the overlapping period is larger, the left

third moment’s coefficient is larger. We are not quite sure what is creating this dynamic, but

it is interesting to document that this phenomenon translates across into the S&P 500 futures

returns.

Our results clearly indicate that the returns of the high frequency crude oil semi-moments are

able to partly predict the returns on the S&P 500 futures returns. The second and third semi-

moments perform better than the tail risk measures, similar to the crude oil market, and the signs

of the coefficient are similar to the results found in Section 4.2. Further to this, we document

that the left semi-moments in the variance and tails contain more predictive power than their

right semi-moment counterparts, and that the third moment exhibits the similar pattern to

the findings in the crude oil market in that the right third moment contains more predictive

information at smaller overlapping periods, which is clearly the challenging case. Overall, the

quality of our results is in line, if we consider the significance of the coefficients and the level of

the R2, with the literature, although in our case we deal with the far more difficult objective of

predicting returns at high frequency.
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5 Conclusion

In this article we investigate the dataset of high frequency crude oil options. The use of these

options allows us to extract the higher order risk neutral semi-moments, including the tail

variation measures used in Bollerslev, Todorov, and Xu (2015), Ellwanger (2017) and Andersen,

Todorov, and Ubukata (2021), at a high frequency - a first for the crude oil market. We document

that the second moment and third moment have more explanatory power over both the tail

risk measures, in slight contrast to the results found at the daily frequency, but nevertheless,

the tail risk measures’ coefficients are highly significant at all time intervals and contain some

explanatory and predictive power over the crude oil futures and S&P 500 futures. We decompose

these moments into semi-moments and find that the ‘left’ component, the put options, are larger

than their ‘right’ counterpart, which suggests the put options are the main contributor to the

overall higher order moment. We also find that the semi-moments are able to both explain, and

predict, the crude oil and S&P 500 futures high frequency returns. We demonstrate the benefit of

using semi-moments by comparing our regressions to regressions on synthetic moments designed

to reproduce the aggregated risk-neutral moments; the semi-moments unambiguously perform

better. Our results also indicate that mostly the left semi-moment contains more predictive

information over its right counterpart for each moment. Overall, our results show that high

frequency options, despite being challenging to handle, provide relevant information for the

difficult problem of explaining and predicting returns at high frequency.
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A Data cleaning

The following filters are applied to the individual option quotes for the entire dataset.

(F1) When multiple quotes have the same timestamp, we replace all these with a single entry
with the median bid and median ask price. (Barndorff-Nielsen et al., 2009)

(F2) Delete entries for which the spread is negative. (Barndorff-Nielsen et al., 2009)

(F3) Delete entries for which the spread is more that 50 times the median spread on that day.
(Barndorff-Nielsen et al., 2009)

(F4) Delete entries for which the mid-quote deviated by more than 10 mean absolute devia-
tions from a rolling centered median (excluding the observation under consideration) of 50
observations (25 observations before and 25 after). (Barndorff-Nielsen et al., 2009)

(F5) Delete entries in which prices exceed 9 times the rolling standard deviation over the past
2 minutes and either (1) 75% of this price movement is reversed within one minute or (2)
80% of this price movement is reversed within two minutes. (The Bounceback Filter from
Andersen et al. (2015a))

(F6) The last available quote in the past five minutes is used. When there is no quote for more
than five minutes the option is removed from the calculations until a new quote becomes
available. (Andersen et al., 2015a)

These filters are mild and are there to primarily guard against errant option quotes which would
influence the final risk measure calculation. Filter (F1) is used to combine multiple quotes with
the same timestamp. (F2) removes serious quote errors. (F3) and (F4) are used to remove
excessive outliers that can arise out of a mistake in the dissemination of the quote data. Here
we use 50 rolling observations similar to Barndorff-Nielsen et al. (2009). (F5) is the Bounceback
filter from Andersen et al. (2015a) which is also used to remove outliers that end up reversing
themselves within two minutes. This reversal is typically created from an error in the outlier
quote that is then subsequently corrected. (F6) is used to prevent staleness in the option quotes.
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Table IV: Regression results for forecasting 60-minutes crude oil futures returns using the returns
of the pairs LJV and RJV , varL and varR, and κL and κR.

5-mins 10-mins 15-mins 20-mins

Const. 0.04 0.03 −0.00 0.01
(0.11) (0.08) (0.00) (0.03)

LJV −9.47∗∗∗ −18.45∗∗∗ −77.86∗∗∗ −48.14∗∗∗

(−5.68) (−9.64) (−14.93) (−16.70)
RJV −4.45∗∗∗ −8.29∗∗∗ −14.94∗∗∗ −10.15∗∗∗

(−4.39) (−6.91) (−6.73) (−8.24)
Adj. R2 0.0 0.2 0.8 0.7

Const. −0.19 −0.30 −0.46 −0.61
(−0.38) (−0.72) (−0.98) (−1.22)

varL −541.28∗∗∗ −550.40∗∗∗ −549.75∗∗∗ −550.50∗∗∗

(−22.58) (−25.10) (−25.63) (−25.96)
varR −406.49∗∗∗ −414.29∗∗∗ −411.63∗∗∗ −410.94∗∗∗

(−22.44) (−24.89) (−25.28) (−25.47)
Adj. R2 1.9 4.1 6.2 8.3

Const. −0.07 −0.18 −0.30 −0.41
(−0.19) (−0.44) (−0.64) (−0.82)

κL −120.77∗∗∗ −209.44∗∗∗ −281.35∗∗∗ 332.80∗∗∗

(−4.54) (−8.07) (−10.62) (−12.36)
κR −528.09∗∗∗ −465.11∗∗∗ −394.28∗∗∗ −337.56∗∗∗

(−17.08) (−17.67) (−14.45) (−11.86)
Adj. R2 2.0 3.9 5.9 7.7

Note. This table reports predictive regressions for the 60-minutes log returns on the crude oil futures using the
returns of the higher order risk-neutral moments defined by Eq.(34). The top panel displays the results for the
left and right components of the tail jump variation LJV and RJV . The middle panel displays the results for the
left and right semi-moments of the variance varL and varR. The bottom panel displays the returns for the left
and right semi-moments of the third central moment κL and κR. The constant and slope coefficients are reported
with the robust t-statistic with a lag of 2h1 in parenthesis below. Adjusted R2 is reported in percentage form.
The symbol *** indicates significance at p < 0.01, ** indicates significance at p < 0.05 and * indicates significance
at p < 0.1.
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Table VI: Regression results for forecasting 60-min S&P 500 futures returns using the returns
of the pairs LJV and RJV , varL and varR, and κL and κR.

5-mins 10-mins 15-mins 20-mins

Const. 0.25∗ 0.25 0.24 0.25
(1.86) (1.50) (1.29) (1.20)

LJV −1.13∗∗ −2.89∗∗∗ −13.11∗∗∗ −8.00∗∗∗

(−1.97) (−4.36) (−6.87) (−7.93)
RJV −0.48 −1.40∗∗∗ −2.15∗∗∗ −1.61∗∗∗

(−1.53) (−3.77) (−2.90) (−4.22)
Adj. R2 0.0 0.0 0.1 0.1

Const. −0.23∗ 0.19 0.16 0.133
(1.67) (1.16) (0.87) (0.65)

varL −82.82∗∗∗ −91.36∗∗∗ −95.09∗∗∗ −98.13∗∗∗

(−8.14) (−9.60) (−10.84) (−11.82)
varR −63.40∗∗∗ −71.31∗∗∗ −73.71∗∗∗ −74.85∗∗∗

(−8.24) (−9.89) (−11.14) (−11.93)
Adj. R2 0.3 0.7 1.2 1.7

Const. 0.24∗ 0.21 0.19 0.17
(1.74) (1.28) (1.02) (0.83)

κL −19.56∗∗ −37.44∗∗∗ −52.94∗∗∗ 64.75∗∗∗

(−2.12) (−3.61) (−4.92) (−6.03)
κR −79.32∗∗∗ −74.08∗∗∗ −63.87∗∗∗ −54.39∗∗∗

(−9.22) (−8.78) (−7.42) (−6.29)
Adj. R2 0.3 0.7 1.1 1.5

Note. This table reports predictive regressions for the 60-minutes log returns on the S&P 500 futures using the
returns of the higher order risk-neutral moments defined by Eq.(34). The top panel displays the results for the
left and right components of the tail jump variation LJV and RJV . The middle panel displays the results for the
left and right semi-moments of the variance varL and varR. The bottom panel displays the returns for the left
and right semi-moments of the third central moment κL and κR. The constant and slope coefficients are reported
with the robust t-statistic with a lag of 2h1 in parenthesis below. Adjusted R2 is reported in percentage form.
The symbol *** indicates significance at p < 0.01, ** indicates significance at p < 0.05 and * indicates significance
at p < 0.1.
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C Figures

Figure 1: Price of the crude oil futures and the S&P 500 futures.
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Note. Left y-axis is the price of the crude oil (CL) lead-month futures (blue solid). Right y-axis is the price of
the S&P 500 (SP) lead month-futures (orange dashed). Prices are plotted over the sample period Jan 1, 2016 to
Dec 31, 2019.
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Figure 2: Average OTM quote activity within the trading day
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Note. Percentage of the daily OTM quotes arriving in 5-minute intervals. For example, the value of 3.28% at
14:30 means 3.28% of the daily OTM quotes arrived between 14:25-14:30.
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Figure 3: Average OTM quote activity across moneyness
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Note. Percentage of daily quotes across moneyness for the near term (solid blue) and far term (dashed orange).
Moneyness of the option is defined as K/F , where K is the strike price of the option and F is the forward price
of the underlying asset. Moneyness is grouped by values of 0.05. For example, the value of 17.6% at 1 for the
near term means 17.6% of the daily quotes are from the options with a moneyness between (0.95, 1).
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Figure 4: Risk measures
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Note. Each panel displays the higher order risk-neutral moments over the sample period Jan 1, 2016 to Dec 31,
2019. The top panel displays the 30-day expected variance var from Eq.(11). The middle panel displays the third
central moment κ from Eq.(21). The bottom panel displays the difference between the left jump variation and
right jump variation from Eq.(26).
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Figure 5: Higher order semi-moments

2016
2017

2018
2019

2020

Date

0.0

0.1

0.2

0.3

0.4

va
rL

2016
2017

2018
2019

2020

Date

0.0

0.1

0.2

0.3

0.4

va
rR

2016
2017

2018
2019

2020

Date

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

L

2016
2017

2018
2019

2020

Date

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

R

2016
2017

2018
2019

2020

Date

0.000

0.005

0.010

0.015

0.020

0.025

LJ
V

2016
2017

2018
2019

2020

Date

0.000

0.005

0.010

0.015

0.020

0.025

RJ
V

Note. Each panel displays the higher order risk-neutral semi-moment over the sample period of Jan 1, 2016
to Dec 31, 2019. The top panel displays the left and right semi-moments of the variance varL and varR from
Eq.(12)-(13). The middle panel displays the left and right semi-moments of the third moment κL and κR from
Eq.(22)-(23). The bottom panel displays the left and right jump variations LJV and RJV from Eq.(31)-(32).
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Online Supplementary Appendix to:
Predicting intraday crude oil returns with higher order risk-neutral moments

D Supplementary appendix

D.1 Alternative timeframe predictive regressions

In this section we reproduce the predictive regressions of Section 4.2 and 4.3.2 over an alterna-

tive time horizon.22 To keep things simple, we fix h1 = 1, and vary h2 = 3, 6, 12, 24, i.e. from

15-minutes to 2-hours. This gives the least amount of overlap in the regressions, and will give us

any indication whether the risk-neutral semi-moments are able to partially predict the futures

returns even with as little as 1/24 of the time-interval as overlap.

Table VII contains the regression result for forecasting crude oil futures returns using the pairs

of semi-moments, similar to Table IV. We can see all predictors in the regressions remain sta-

tistically significant at the 1% level, even when h2 = 24 (2-hours). This is impressive, as it

demonstrates that the crude oil risk-neutral semi-moments contains information that can par-

tially predict the crude oil futures returns, even at a difficult forecasting horizon. The tail

variation jump measures have, little to no predictive power given their adjusted R2 are low.

The second and third moments contain roughly the same amount of predictive information and

attain an adjusted R2 of 1.1% when h2 is 2-hours.

Table VIII contains the regression result for forecasting S&P 500 futures returns using the pairs of

semi-moments, similar to Table VI. The second moment in the regressions remain statistically

significant at the 1% level across all time-periods considered. The third-moment’s left semi-

moment κL is significant at the 1% level when h2 are either 15-minutes or 30-minutes, and

are significant at the 5% level when h2 is either 60-minutes or 2-hours. The third moment’s

right semi-moment κR remains significant at the 1% level for all periods considered. The tail

jump variation measures are all significant at least the 5% level, with the exception of RJV

when h2 is 2-hours. This corroborates the notion that the left-tail is viewed as more important

than the right tail in the crude oil markets. The results demonstrate that crude oil risk-neutral

semi-moments contains information that can partially predict the S&P 500 futures returns.

22We thank the anonymous referee for this suggestion.

1



D.2 Out-of-sample performance

In this section we conduct out-of-sample tests to validate the predictive power of our models.23

We estimate the regression model from Eq.(33) only on the options and futures data from 2016

and we set h1 = 1 (5-minutes) and h2 = 12 (60-minutes).24 We then compute the root-mean-

squared-error (RMSE) on the following time periods: 2016 (in-sample), 2017, 2018, 2019 and

2017-2019. The RMSE is defined as

RMSE =
√

E [(yi − ŷi)2]. (38)

By estimating the RMSE on the out-of-sample data, we can investigate whether our methodol-

ogy is robust to out-of-sample data. A nuanced point to be aware of, is that we cannot compare

RMSE across different years, since a year with less volatility will almost always have a lower

RMSE than a year with higher volatility. As such, to demonstrate performance, we benchmark

our model to the same predictive regressions, but when it is trained on the period of interest.

The regression trained on the period of interest will always give a lower RMSE compared to the

model from 2016. Thus, if the RMSE deteriorates only marginally, then we can safely say our

models are robust to out-of-sample data.

Our results are outlined in Tables IX and X for the crude oil futures and S&P 500 futures

respectively. For the crude oil futures, we can clearly see the semi-moments provide very stable

estimates out-of-sample. The largest percentage change in RMSE is 0.63% in the year 2017.

This is a negligible amount, and shows our forecast results are stable across different periods.

Similar results are found in the S&P 500 futures, with the maximum percentage change in RMSE

being only 0.32% for the third moment in 2017.

Our results demonstrate that the semi-moments are robust to out-of-sample data. It is important

to stress the RMSE from the 2016 estimates will always be larger, for both the crude oil futures

and S&P 500 futures, than the RMSE from the model trained on the period of interest. As such,

for the RMSE to only increase by at most 0.63% shows our model is stable to even out-of-sample

data.
23We thank the anonymous referee for this suggestion.
24We also conducted the same experiment with estimating over different years, different h1 and h2 and different

time-periods, such as half years. We found the results to be qualitatively similar to the results presented here,

and are thus not reported. They are available upon request.
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D.3 Robustness checks

One robustness check is to compare the results of how the second and third moment is defined

in Kozhan, Neuberger, and Schneider (2013) to the alternative formulation outlined in Bakshi,

Kapadia, and Madan (2003) (BKM). The authors in Bakshi, Kapadia, and Madan (2003) look at

constructing the risk-neutral skew and kurtosis. They define the annualised risk-neutral second

moment BKM-var as

BKM-var =
2ert,τ

τ

[∫ Ft,τ

0

(
1 + ln

Ft,τ

K

K2

)
Pt,τdK +

∫ ∞

Ft,τ

(
1− ln K

Ft,τ

K2

)
Ct,τdK

]
. (39)

We can decompose the risk-neutral second moment BKM-var into its semi-moments, similar to

Eq.(5), yielding

BKM-varL =
2ert,τ

τ

∫ Ft,τ

0

(
1 + ln

Ft,τ

K

K2

)
Pt,τdK, (40)

BKM-varR =
2ert,τ

τ

∫ ∞

Ft,τ

(
1− ln K

Ft,τ

K2

)
Ct,τdK. (41)

The risk-neutral central third moment BKM-κ is defiend as

BKM-κ =
3ert,τ

τ

∫ ∞

Ft,τ

ln K
Ft,τ

(
2− ln K

Ft,τ

)
K2

Ct,τdK −
∫ Ft,τ

0

ln
Ft,τ

K

(
2− ln

Ft,τ

K

)
K2

Pt,τdK

 . (42)

The left and right central third semi-moment is given by

BKM-κL =
3ert,τ

τ

∫ ∞

Ft,τ

ln K
Ft,τ

(
2− ln K

Ft,τ

)
K2

Ct,τdK, (43)

BKM-κL =
3ert,τ

τ

∫ Ft,τ

0

ln
Ft,τ

K

(
2− ln

Ft,τ

K

)
K2

Pt, τdK. (44)

Although the formulation of risk-neutral moments in BKM is different to that in Eq.(4) and

Eq.(14), they are still estimating the same quantity, and should theoretically provide the same

level of information. To demonstrate this, Table XI and XII below estimates regressions with

both the BKM method and the method used in our paper for predicting crude oil futures prices

for the second and third moment respectively. Similarly for the S&P 500 futures returns, Tables

XIII and XIV does the same, but for the S&P 500 futures. We can see for all four tables, the

signs of the coefficients are all the same, the estimates of the coefficients are very similar and

the adjusted R2 are essentially identical.

3



Further to this, in Figure 6 we have plotted the individual semi-moments and their BKM coun-

terparts. While they differ slightly in scale, the linear correlation is 0.996 or larger for all four

semi-moments, indicating they are more-or-less the same.
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Figure 6: Comparison of semi-moments and their BKM counterpart

2017
2018

2019

Date

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

va
rL

0.00

0.01

0.02

0.03

0.04

BK
M

-v
ar

L

2017
2018

2019

Date

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

va
rR

0.000

0.005

0.010

0.015

0.020

0.025

BK
M

-v
ar

R

2017
2018

2019

Date

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

L

0.000

0.005

0.010

0.015

0.020
BK

M
-

L

2017
2018

2019

Date

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

R

0.000

0.002

0.004

0.006

0.008

BK
M

-
R

Note. Each panel displays the higher order risk-neutral semi-moment, and their BKM counterpart over the sample

period of Jan 1, 2016 to Dec 31, 2019. The top panel displays the left and right semi-moments of the variance

varL and varR on the left axis in solid blue, and its BKM counterpart BKM-varL and BKM-varR on the right

axis in dashed orange. The bottom panel displays the left and right semi-moments of the central third moment

κL and κR on the left axis in solid blue, and its BKM counterpart BKM-κL and BKM-κR on the right axis in

dashed orange.
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Table VII: Regression results for forecasting crude oil futures returns using the returns of the

pairs LJV and RJV , varL and varR, and κL and κR, fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. 0.03 0.07 0.04 0.20

(0.06) (0.16) (0.11) (0.72)

LJV −31.71∗∗∗ −16.04∗∗∗ −9.47∗∗∗ −3.73∗∗∗

(−7.45) (−6.30) (−5.68) (−3.73)

RJV −16.00∗∗∗ −7.80∗∗∗ −4.45∗∗∗ −2.05∗∗∗

(−5.92) (−4.97) (−4.39) (−2.77)

Adj. R2 0.1 0.1 0.0 0.0

Const. −0.44 −0.20 −0.13 0.10

(−0.86) (−0.46) (−0.38) (0.36)

varL −2072.89∗∗∗ −1063.79∗∗∗ −541.28∗∗∗ −17.97∗∗∗

(−34.70) (−29.31) (−22.58) (−17.97)

varR −1558.19∗∗∗ −794.08∗∗∗ −406.49∗∗∗ −211.09∗∗∗

(−34.95) (−29.05) (−22.44) (−17.63)

Adj. R2 6.6 3.5 1.9 1.1

Const. −0.23 −0.08 −0.07 0.12

(−0.45) (−0.20) (−0.19) (0.44)

κL −350.29∗∗∗ −222.61∗∗∗ −120.77∗∗∗ −5.31∗∗∗

(−5.24) (−5.58) (−4.53) (−5.31)

κR −2002.81∗∗∗ −1014.80∗∗∗ −528.09∗∗∗ −269.84∗∗∗

(−20.80) (−19.44) (−17.08) (−14.81)

Adj. R2 6.7 3.6 2.0 1.1

Note. This table reports predictive regressions for the log returns on the crude oil futures using the returns of

the higher order risk-neutral moment defined by Eq.(34) with h1 fixed at 5-minutes. The top panel displays the

results for the left and right components of the tail jump variation LJV and RJV . The middle panel displays

the results for the left and right semi-moments of the variance varL and varR. The bottom panel displays the

returns for the left and right semi-moments of the third central moment κL and κR. The constant and slope

coefficients are reported with the robust t-statistic with a lag of 2 in parenthesis below. Adjusted R2 is reported

in percentage form. The symbol *** indicates significance at p < 0.01, ** indicates significance at p < 0.05 and *

indicates significance at p < 0.1.
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Table VIII: Regression results for forecasting S&P 500 futures returns using the returns of the

pairs LJV and RJV , varL and varR, and κL and κR, fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. 0.15 0.25 0.25∗ 0.25∗∗

(0.64) (1.37) (1.86) (2.37)

LJV −5.01∗∗∗ −2.86∗∗∗ −1.13∗∗ −1.81∗∗

(−3.40) (−3.12) (−1.96) (−1.81)

RJV −2.13∗∗∗ −1.29∗∗∗ −0.48 −0.17

(−2.57) (−2.60) (−1.50) (−0.76)

Adj. R2 0.0 0.0 0.0 0.0

Const. 0.07 0.20 0.23∗ 0.23∗∗

(0.29) (1.12) (1.67) (2.22)

varL −353.97∗∗∗ −176.93∗∗∗ −82.82∗∗∗ −6.08∗∗∗

(−15.58) (−11.30) (−8.14) (−6.08)

varR −268.13∗∗∗ −132.81∗∗∗ −63.40∗∗∗ −33.73∗∗∗

(−15.63) (−11.25) (−8.24) (−6.00)

Adj. R2 1.1 0.6 0.3 0.2

Const. 0.10 0.22 0.23∗ 0.24∗∗

(0.45) (1.23) (1.74) (2.25)

κL −80.54∗∗∗ −39.54∗∗∗ −19.56∗∗ −2.18∗∗

(−3.82) (−2.92) (−2.12) (−2.18)

κR −317.00∗∗∗ −163.87∗∗∗ −79.32∗∗∗ −41.16∗∗∗

(−14.98) (−12.26) (−9.22) (−6.59)

Adj. R2 1.0 0.6 0.3 0.2

Note. This table reports predictive regressions for the log returns on the S&P 500 futures using the returns of the

higher order risk-neutral moments defined by Eq.(34) fixing h1 at 5-minutes. The top panel displays the results

for the left and right components of the tail jump variation LJV and RJV . The middle panel displays the results

for the left and right semi-moments of the variance varL and varR. The bottom panel displays the returns for

the left and right semi-moments of the third central moment κL and κR. The constant and slope coefficients are

reported with the robust t-statistic with a lag of 2 in parenthesis below. Adjusted R2 is reported in percentage

form. The symbol *** indicates significance at p < 0.01, ** indicates significance at p < 0.05 and * indicates

significance at p < 0.1.
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Table IX: Percentage change in RMSE on crude oil futures returns when fitted to only 2016

data.

2016 2017 2018 2019 2017-2019

LJV , RJV 0.00 0.10 0.06 0.17 0.06

varL, varR 0.00 0.58 0.62 0.17 0.38

κL, κR 0.00 0.63 0.21 0.24 0.25

Note. This table reports the percentage change in RMSE when using the estimated model from fitting the

predictive regression on 2016 crude oil futures returns when h1 = 1 (5-minutes) and h2 = 12 (60-minutes)

compared to the estimated model from fitting the predictive regression on the time period of interest. The top

row reports the RMSE from the model fitted with LJV and RJV as predictors. The middle row reports the

RMSE from the model fitted with varL and varR as predictors. The bottom row reports the RMSE from the

model fitted with κL and κR as predictors.

Table X: Percentage change in RMSE on S&P 500 futures returns when fitted to only 2016 data.

2016 2017 2018 2019 2017-2019

LJV , RJV 0.00 0.00 0.12 0.03 0.02

varL, varR 0.00 0.22 0.13 0.01 0.03

κL, κR 0.00 0.32 0.13 0.06 0.03

Note. This table reports the percentage change in RMSE when using the estimated model from fitting the

predictive regression on 2016 crude oil futures returns when h1 = 1 (5-minutes) and h2 = 12 (60-minutes)

compared to the estimated model from fitting the predictive regression on the time period of interest. The top

row reports the RMSE from the model fitted with LJV and RJV as predictors. The middle row reports the

RMSE from the model fitted with varL and varR as predictors. The bottom row reports the RMSE from the

model fitted with κL and κR as predictors.
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Table XI: Regression results for forecasting crude oil futures returns using the returns of the

pairs varL and varR and the pair BKM-varL and BKM-varR of Bakshi, Kapadia, and Madan

(2003), fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. −0.44 −0.20 −0.13 0.10

(−0.86) (−0.46) (−0.38) (0.36)

varL −2072.89∗∗∗ −1063.79∗∗∗ −541.28∗∗∗ −17.97∗∗∗

(−34.70) (−29.31) (−22.58) (−17.97)

varR −1558.19∗∗∗ −794.08∗∗∗ −406.49∗∗∗ −211.09∗∗∗

(−34.95) (−29.05) (−22.44) (−17.63)

Adj. R2 6.6 3.5 1.9 1.1

Const. −0.72 −0.47 −0.37 −0.18

(−1.40) (−1.11) (−1.12) (−0.68)

BKM-varL −2079.52∗∗∗ −1075.50∗∗∗ −540.17∗∗∗ −18.01∗∗∗

(−35.28) (−29.36) (−22.53) (−18.01)

BKM-varR −1375.94∗∗∗ −708.28∗∗∗ −357.34∗∗∗ −190.25∗∗∗

(−35.70) (−29.14) (−22.37) (−17.76)

Adj. R2 6.6 3.5 1.8 1.1

Note. This table reports predictive regressions for the log returns on the S&P 500 futures using the returns of the

higher order risk-neutral moments defined by Eq.(34) fixing h1 at 5-minutes. The top panel displays the returns

for the left and right semi-moments of the third central moment κL and κR using the methodology in Kozhan,

Neuberger, and Schneider (2013). The bottom panel displays the left and right semi-moments of the third central

moment BKM-κL and BKM-κR using the methodology from Bakshi, Kapadia, and Madan (2003). The constant

and slope coefficients are reported with the robust t-statistic with a lag of 2 in parenthesis below. Adjusted R2

is reported in percentage form. The symbol *** indicates significance at p < 0.01, ** indicates significance at

p < 0.05 and * indicates significance at p < 0.1.

9



Table XII: Regression results for forecasting crude oil futures returns using the returns of the

pairs κL and κR and the semi third moments BKM-κL and BKM-κR of Bakshi, Kapadia, and

Madan (2003), fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. −0.23 −0.08 −0.07 0.12

(−0.45) (−0.20) (−0.19) (0.44)

κL −350.29∗∗∗ −222.61∗∗∗ −120.77∗∗∗ −5.31∗∗∗

(−5.24) (−5.58) (−4.53) (−5.31)

κR −2002.81∗∗∗ −1014.80∗∗∗ −528.09∗∗∗ −269.84∗∗∗

(−20.80) (−19.44) (−17.08) (−14.81)

Adj. R2 6.7 3.6 2.0 1.1

Const. −0.55 −0.37 −0.32 −0.16

(−1.06) (−0.88) (−0.96) (−0.60)

BKM-κL −204.23∗∗∗ −148.83∗∗∗ −83.59∗∗∗ −4.58∗∗∗

(−3.25) (−4.11) (−3.50) (−4.58)

BKM-κR −2215.38∗∗∗ −1116.54∗∗∗ −563.31∗∗∗ −289.16∗∗∗

(−21.15) (−19.73) (−17.17) (−15.20)

Adj. R2 6.8 3.6 1.9 1.1

Note. This table reports predictive regressions for the log returns on the crude oil futures using the returns of the

higher order risk-neutral moments defined by Eq.(34) fixing h1 at 5-minutes.The top panel displays the returns

for the left and right semi-moments of the third central moment κL and κR using the methodology in Kozhan,

Neuberger, and Schneider (2013). The bottom panel displays the left and right semi-moments of the third central

moment BKM-κL and BKM-κR using the methodology from Bakshi, Kapadia, and Madan (2003). The constant

and slope coefficients are reported with the robust t-statistic with a lag of 2 in parenthesis below. Adjusted R2

is reported in percentage form. The symbol *** indicates significance at p < 0.01, ** indicates significance at

p < 0.05 and * indicates significance at p < 0.1.
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Table XIII: Regression results for forecasting S&P 500 futures returns using the returns of the

pairs varL and varR and the pair BKM-varL and BKM-varR of Bakshi, Kapadia, and Madan

(2003), fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. 0.07 0.20 0.23∗ 0.23∗∗

(0.29) (1.12) (1.67) (2.22)

varL −353.97∗∗∗ −176.93∗∗∗ −82.82∗∗∗ −6.08∗∗∗

(−15.58) (−11.30) (−8.14) (−6.08)

varR −268.13∗∗∗ −132.81∗∗∗ −63.40∗∗∗ −33.73∗∗∗

(−15.63) (−11.25) (−8.24) (−6.00)

Adj. R2 1.1 0.6 0.3 0.2

Const. 0.10 0.20 0.22∗ 0.22∗∗

(0.45) (1.13) (1.69) (2.19)

BKM-varL −346.46∗∗∗ −169.63∗∗∗ −75.76∗∗∗ −5.78∗∗∗

(−14.99) (−10.55) (−7.28) (−5.78)

BKM-varR −231.05∗∗∗ −112.61∗∗∗ −51.60∗∗∗ −28.48∗∗∗

(−15.12) (−10.61) (−7.46) (−5.76)

Adj. R2 1.0 0.5 0.2 0.2

Note. This table reports predictive regressions for the log returns on the S&P 500 futures using the returns of the

higher order risk-neutral moments defined by Eq.(34) fixing h1 at 5-minutes. The top panel displays the returns

for the left and right semi-moments of the third central moment κL and κR using the methodology in Kozhan,

Neuberger, and Schneider (2013). The bottom panel displays the left and right semi-moments of the third central

moment BKM-κL and BKM-κR using the methodology from Bakshi, Kapadia, and Madan (2003). The constant

and slope coefficients are reported with the robust t-statistic with a lag of 2 in parenthesis below. Adjusted R2

is reported in percentage form. The symbol *** indicates significance at p < 0.01, ** indicates significance at

p < 0.05 and * indicates significance at p < 0.1.
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Table XIV: Regression results for forecasting crude oil futures returns using the returns of the

pairs κL and κR and the semi third moments BKM-κL and BKM-κR of Bakshi, Kapadia, and

Madan (2003), fixing h1 at 5-minutes.

15-mins 30-mins 60-mins 120-mins

Const. 0.10 0.22 0.23∗ 0.24∗∗

(0.45) (1.23) (1.74) (2.25)

κL −80.54∗∗∗ −39.54∗∗∗ −19.56∗∗ −2.18∗∗

(−3.82) (−2.92) (−2.12) (−2.18)

κR −317.00∗∗∗ −163.87∗∗∗ −79.32∗∗∗ −41.16∗∗∗

(−14.98) (−12.26) (−9.22) (−6.59)

Adj. R2 1.0 0.6 0.3 0.2

Const. 0.13 0.21 0.23∗ 0.23∗∗

(0.58) (1.21) (1.75) (2.22)

BKM-κL −42.59∗∗ −19.38∗ −6.92 −1.43

(−2.43) (−1.70) (−0.87) (−1.43)

BKM-κR −351.71∗∗∗ −177.95∗∗∗ −83.47∗∗∗ −44.49∗∗∗

(−15.60) (−12.14) (−9.14) (−6.78)

Adj. R2 1.0 0.5 0.2 0.2

Note. This table reports predictive regressions for the 60-minute log returns on the S&P 500 futures using the

returns of the higher order risk-neutral moments defined by Eq.(34) fixing h1 at 5-minutes. The top panel displays

the returns for the left and right semi-moments of the third central moment κL and κR using the methodology

in Kozhan, Neuberger, and Schneider (2013). The bottom panel displays the left and right semi-moments of the

third central moment BKM-κL and BKM-κR using the methodology from Bakshi, Kapadia, and Madan (2003).

The constant and slope coefficients are reported with the robust t-statistic with a lag of 2 in parenthesis below.

Adjusted R2 is reported in percentage form. The symbol *** indicates significance at p < 0.01, ** indicates

significance at p < 0.05 and * indicates significance at p < 0.1.
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