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We thank Ernest Biktimirov, Àlvaro Cartea, Ines Chaieb, Bingfeng Cen, Ethan Chiang, Yongqiang Chu,

Steven Clark, Jennifer Conrad, Michael Densmore, Yufeng Han, Christopher Kirby, Junye Li, Lei Lu, Yuan

Zhang, Hao Zhou, and conference participants at 2022 American Finance Association (AFA) Annual Meeting,

2021 China International Conference in Finance (CICF), 2021 World Finance Conference, 7th International

Young Finance Scholars’ Conference, and seminar participants at University of North Carolina at Charlotte,

Shanghai University of Finance and Economics, and Wuhan University for helpful comments and suggestions.

The authors acknowledge the Belk College Summer Research Grant for partial financial support. This paper

supersedes an earlier version that circulated under the title “Serial Dependence in the Stock Market: What Can

We Learn from Derivatives?”

mailto:ylu28@uncc.edu
mailto:wtian1@uncc.edu


The Conditional Expected Return and Autocorrelation from the Derivatives

Abstract

We express conditional expected future returns and stock market autocorrelations with publicly available

derivatives data. Our approach is robust to pricing kernel process choice, and provides a real-time conditional

point of view. We demonstrate a moderate short-term reversal of market returns with this approach.

Furthermore, our approach implies comparable autocorrelation by statistical inference model with a gradually

fading memory feature. We construct a reversal signal based on this approach and show that the corresponding

market timing strategy outperforms the buy-and-hold strategy overall. Finally, we demonstrate that the term

structure of one-month future returns is pro-cyclical.
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1 Introduction

Researchers have devoted themselves to examining the stock market efficiency since Keynes’s (1936)

Animal Spirits pronouncement. The majority of these studies have focused on the forecastability of stock market

returns. Can past returns forecast future returns? Is the return of the stock market index autocorrelated? How

to estimate the unconditional autocorrelation coefficients of market returns? Despite extensive research about

autocorrelation with historical stock market data (see, for instance, Lo and MacKinlay, 1988; Fama and French,

1988; Poterba and Summers, 1988; Moskowitz, Ooi, and Pedersen, 2012; Campbell, 2017), how to express the

autocorrelation using derivatives is mainly missing in the literature.1

In this paper, we present a Q-approach to express the stock market index autocorrelation with publicly

available derivative price data.2 These derivatives include index options, VIX futures, and VIX options. Our

approach is real-time, and provides a time-varying conditional point of view about the return predictability in the

stock market. Moreover, we demonstrate the economic value of this approach and derive its new implications

to the stock market.

Conceptually, to compute autocorrelation coefficient, it suffices to compute conditional expected spot return,

conditional expected future return, and other statistical quantities that involves spot return and future return.3

Because the derivatives market offers a forward-looking perspective about the underlying stock market, many

authors have studied the conditional expected spot return by the Q-approach (see Martin, 2017; Martin and

Wagner, 2019; Kadan and Tang, 2020; Chabi-Yo and Loudis, 2020, etc.). Therefore, we first present a theoretical

study about the conditional expected future return, among other things, by the Q-approach.

In our theoretical contribution, we reformulate the conditional expected future return as a futures price of a

new index, a power VIX index (PVIX), given a power-specification of stochastic discount factor process (SDF).

Precisely, a PVIX measures risk-neutral moments of a spot market return that all market prices of index options

can span, similar to the CBOE VIX index. All PVIX indices together characterize a spot return’s conditional

distribution. The futures contract on PVIX is an innovation of the VIX derivatives market. Building on the

relation between VIX and PVIX, we obtain a no-arbitrage futures price of PVIX in terms of VIX derivatives

1Martin (2021), and Chabi-Yo (2019) are two notable exceptions in which they study the autocorrelation coefficient from the

derivatives market information. We later compare our paper with theirs and highlight the difference.

2Following standard terminology, we name it a Q-approach because the derivative price is computed by a risk-neutral (Q) measure.

3Here, the spot return from the time t perspective is Rt→T , the growth (rate of) asset return over the period from t to T . Similarly,

RT1→T2 is a future return from time t perspective for any T2 > T1 > t. By a conditional expected spot return we mean Et [Rt→T ], and

Et [RT1→T2 ] is a conditional expected future return for T2 > T1 > t. We also let R f ,T1→T2 denote the gross risk-free return over the period

from T1 to T2.
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(VIX futures and VIX options) and stock market index options. Therefore, we can express autocorrelation with

publicly available derivatives prices. For a robustness purpose, we also demonstrate that the Q-approach applies

to general specifications of the stochastic discount factor process.

We then implement our theoretical results to the S&P 500 index with market data of S&P 500 index options,

VIX futures, and VIX options. Our empirical results document significantly negative autocorrelation on the

S&P 500 index. For instance, the conditional autocorrelation between two consecutive monthly returns is on

average −20.90% with a t-stat of −18.10 (Table 3). The negative sign holds robustly for different risk-aversion

parameters in the power-specified SDFs, and different lengths of the two consecutive periods. Notably, the

autocorrelation coefficients by the Q-approach are around −20% to −40%, comparable in magnitude to the

findings in Martin (2021) and Chabi-Yo (2019). These empirical results reveal a persistent and moderate short-

term reversal of monthly returns from a forward-looking perspective.

Nevertheless, since Lo and MacKinlay (1999), it has been well documented that the unconditional market

(S&P 500 index) autocorrelation using historical monthly return data is either a very small positive value or

virtually zero, suggesting a weak or no return predictability. For simplicity and comparison, we call it a “P-

approach” to highlight that it uses historical stock market index data. The Q- and P-approaches imply significant

differences in both sign and magnitude of the autocorrelation of market returns. So, how to explain such a

discrepancy of the autocorrelation by these two approaches?

We next argue that the choice of statistical inference model leads to a noteworthy difference between the

P- and the Q-approaches. Remarkably, a statistical inference model with a gradually fading memory feature (a

fading memory methodology in Nagel and Xu (2021)) generates autocorrelation comparable to the Q-approach

(Figure 4), despite significant difference between the P- and Q-approaches. In this regard, the fading memory

methodology is appealing because it combines both historical and forward-looking perspectives. Therefore, our

Q-approach provides supportive evidence to investors’ learning with gradually fading memory.

To further understand the empirical implications of the Q-approach, we investigate its economic value.

Precisely, because of the moderate short-term reversal of monthly market return by the Q-approach, we construct

a reversal signal to trade the market, and the reversal signal relies on the autocorrelation identified by the Q-

approach. We empirically show that this reversal signal predicts the market downturn well, particularly when

the market declines significantly in the next month. Furthermore, we show that the market timing strategy, using

this reversal signal, is conservative and delivers higher Sharpe ratios than the buy-to-hold benchmark strategy.

Moreover, the economic value of our market-timing strategy can be substantial in a downward period. For

example, we show that investors are willing to pay as high as 11% per annum to switch from the buy-and-hold

benchmark to the market timing strategy between January 2008 and June 2009 (Table 7).
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Finally, we examine the term structure of one-month future returns, ft,T = Et [Rt+T→t+T+1] ,T = 1,2, · · ·,

and equity risk premiums, ft,T −Et [R f ,t+T→t+T ], from the time t-perspective. Based on our analytical formula

of conditional expected future returns with derivatives data only, we show that the term structure of one-month

future returns (and equity risk premiums) is mainly upward on average. Moreover, the term structures of one-

month future returns and equity risk premiums are pro-cyclical—they are downward sloping in bad times, but

upward sloping in good times (Figure 9).

Related Literature. Martin (2021) is the most relevant paper on the market autocorrelation coefficient

derived by the derivative data. For a log-specified SDF, Martin (2021) reduces the conditional expected future

return to a no-arbitrage price of a “forward-start option”. Since the forward-start option is not publicly tradable,

Martin (2021) relies on quoted prices from a sophisticated investment bank. From a no-arbitrage perspective,

Chabi-Yo (2019) derives lower and upper bounds on the market autocorrelation coefficient with index options.

In contrast, we use VIX derivatives (VIX futures and VIX options) in addition to index options and derive a

real-time market autocorrelation coefficient at any trading date. More importantly, we investigate new asset

pricing implications of the Q-approach to the stock market.

Since both Martin (2021) and this paper rely on derivatives’ no-arbitrage prices, it is plausible to use the

option spanning theory with basket options (Ross, 1976; Carr and Laurence, 2011; Tian, 2014). In this paper,

our approach does not rely on those basket options, instead on publicly VIX derivative data to price PVIX

futures. In this respect, our approach is also different from the no-arbitrage model approach of VIX derivatives

(See e.g. Mencia and Sentana, 2013). Moreover, we show that the approximation error in the (almost) pricing

formula is sufficiently tight for empirical applications.

In some important recent studies, the derivatives market plays an essential role in revealing the underlying

stock market information (Ross, 2015; Schneider and Trojani, 2019; Jensen, Lando, and Pedersen, 2019). Many

authors including Bakshi and Madan (2000); Bakshi, Kapadia, and Madan (2003); Martin (2017); Bakshi,

Crosby, Gao Bakshi, and Zhou (2019a); Bakshi, Gao Bakshi, and Xue (2019b) have utilized derivatives to

study the conditional expected spot return. Others investigate individual stock variance, disaster probability,

and currency rates by using risk-neutral measure and derivatives data (see, for instance, Backus, Chernov,

and Martin, 2011; Martin and Wagner, 2019; Kremens and Martin, 2019; Kadan, Liu, and Tang, 2019).

Our contribution in this area is to express the conditional expected future return and other relevant statistical

measures with derivatives data. This approach allows us to derive a bivariate distribution of two spot returns

under the physical probability from derivatives, whereas previous studies only focus on the marginal distribution

of a spot return.

This paper is also related to a strand of recent studies that investors learn asset prices with a gradually

fading memory (Collin-Dufresne, Johannes, and Lochstoer, 2017; Bordalo, Gennaioli, Porta, and Shleifer,
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2019; Malmendier and Nagel, 2016; Nagel and Xu, 2021). Unlike those studies, we use the Q-approach as a

benchmark to compare several statistical inference methods. Our empirical results support the gradually fading

memory methodology suggested in these articles.

Lastly, our results shed new light on the recent equity term structure studies in the literature. Binsbergen,

Brandt, and Koije (2012) document that the equity term structure is downward sloping on average. Gormsen

(2021) further shows that the term structure is downward sloping in good times, but upward sloping in bad

times (counter-cyclical). These authors discuss the hypothetical one-period returns on dividend-claims, or the

conditional expected annual return to long-maturity minus the annual return to short maturity equity. In contrast,

we study the expected one-month future return; thus, our finding of the term structure of equity risk premiums

is a new stylized fact. Similar to Binsbergen, Brandt, and Koije (2012) and Gormsen (2021) in which they use

derivatives, such as stock market index (call and put) options and dividend futures, we also use derivatives data

(VIX derivatives) to document the shape of the term structure. Remarkably, we show that the term structures of

one-month future returns and expected equity risk premiums are pro-cyclical.

The rest of the paper is organized as follows. Section 2 introduces the Q-approach. Section 3 presents the

theoretical results, followed by the empirical results with publicly available derivative data in Section 4. Section

5 explains the difference between the P- and Q-approaches. Section 6 demonstrates the economic value of the

Q-approach. Section 7 investigates the term structure of equity risk premiums. Finally, Section 8 concludes.

The details of the theory are presented in the Appendixes. More empirical supportive results are available in the

Online Appendix.

2 The Q-approach Framework

This section presents the Q-approach framework to investigate the serial dependence coefficients between

stock market returns over two consecutive periods.

2.1 Serial dependence of the market return

Let St denote the time-t price of the stock index. Rt→t+1 = St+1
St

is the gross market return over the time

period from t to the next time t + 1, and R f ,t→t+1 is the gross risk-free return over the same time period. The

information set at time t is Ft . Similarly, we define Rt→t+T = ST
St

and R f ,t→t+T for any T = 1,2, · · · in a dynamic

setting. The length of the period can be arbitrary.

Let X = Rt→t+T1 ,Y = Rt+T1→t+T1+T2 be stock market returns over two consecutive periods. Conditional

on the time-t perspective, the serial dependence between X and Y is captured by the conditional correlation
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coefficient,

corrt =
Covt(X ,Y )√

Vart(X)×
√

Vart(Y )
. (1)

In general, we can investigate the serial dependence closely by using the following standard regression

equation

Y = αt→t+T +βt→t+T X + ε, (2)

where Cov(X ,ε) = 0. We omit the script “T ” for brevity if the meaning is evident. The beta coefficient in

Equation (2) is given by

βt =
Covt(X ,Y )

Vart(X)
, (3)

and the intercept term is

αt =
Covt(XY,X)−βtCovt(X2,X)

Vart(X)
, (4)

assuming that Cov(X2,ε) = 0.4

With numerous statistical inference models, econometricians estimate serial dependence coefficients

{corrt ,βt ,αt} using historical return data over a specific horizon (before time t). We name this statistical

inference approach a “P-approach” as it relies on the (real-world) physical probability and historical stock

market data. In contrast, we name an approach to derive the serial dependence coefficients with derivatives

market data a “Q-approach”, as the derivatives market reveals information under the risk-neutral Q measure

from the derivative pricing theory.

To compute the above coefficients in Equations (1) - (4) in the Q-approach, it suffices to compute the

following terms with available derivatives data. (1) The conditional covariance of a spot return Rt→t+T1 and a

future return Rt+T1→t+T1+T2 . (2) The conditional covariance between two spot returns, Rt→t+T1 and Rt→t+T1+T2 .

(3) The conditional covariance between the spot return and its square, and (4) the conditional first two moments

of the spot return and the future return.

4Multiplying X on both sides of Equation (2), we obtain XY = αtX +βtX2 + εX , here XY = Rt→t+T1+T2 . Since Covt(ε,X2) = 0,

Covt(εtX ,X) =Et [εtX2]−Et [εtX ]Et [X ] =Et [εt ](Et [X2]−Et [X ]2) = 0. Therefore, Covt(XY,X) = αtVart(X)+βtCovt(X2,X), yielding

Equation (4).
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2.2 Conditional expected return and PVIX index

We start with the calculation of the conditional expected spot return. Other remaining terms in the Q-

approach are calculated in Section 3.

Let (Mt) be a pricing kernel process and mt,t+T = Mt+T
Mt

be the stochastic discount factor (SDF) over the

period from t to t +T . Equivalently, the risk-neutral probability measure Q is given by

dQ
dP
|Ft+T = R f ,t→t+T mt,t+T .

Then, for any f (St+T ) ∈ Ft+T with suitable integrable condition, its conditional expectation under the real-

world probability measure P is

Et [ f (St+T )] = EQ
t

[
dP
dQ

f (St+T )

]
=

1
R f ,t→t+T

EQ
t

[
f (St+T )

mt,t+T

]
. (5)

This equation states that a conditional expectation of f (St+T ) under the real-world probability measure is the

no-arbitrage time-t price of a contingent claim with payoff f (St+T )
mt,t+T

at time t +T .5

We consider a power-specification of the stochastic discount factor for now, and we discuss a general

specification of the stochastic discount factor in Section 3.4. Let

mt,t+T =

(
St

St+T

)γ

, γ > 0,

be a stochastic discount factor for a representative CRRA-type agent with a coefficient of constant relative risk

aversion γ . We define a power VIX (PVIX) index over the period [t, t +T ] with exponent n by

PV IX (n)
t→t+T ≡

1
T
EQ

t

[(
St+T

St

)n]
,n> 1. (6)

Given the power-specification of the pricing kernel process, the conditional moment of the spot return over the

period [t +T1, t +T1 +T2] is equivalent to a PVIX,

Et [Rn
t→t+T ] =

T
R f ,t→t+T

PV IX (γ+n)
t→t+T . (7)

As is well-studied in the literature (see, e.g. Bakshi, Kapadia, and Madan, 2003; Bakshi and Madan, 2000;

Carr and Madan, 1999; Carr, Ellis, and Gupta, 1998), we can synthesize the risk-neutral conditional moments

5Equation (5) is known as the inverting Girsanov theorem in Bakshi, Gao Bakshi, and Xue (2019b).
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of the spot return Rt→t+T in terms of market prices of index call options Ct→t+T (K). Precisely,

PV IX (γ+1)
t→t+T =

(γ +1)γR f ,t→t+T

T Sγ+1
t

∫
∞

0
Kγ−1Ct→t+T (K)dK. (8)

By its definition, PVIX measures the risk-neutral (conditional) moments of a spot return. However, PVIX

is not tradable in the market, whereas the publicly-traded CBOE volatility index product is VIX. Specifically,

VIX measures the risk-neutral entropy and it is given formally by

V IX2
t→t+T =

2
T

LQ
t

(
Rt→t+T

R f ,t→t+T

)
, (9)

where LQ
t (X)≡ logEQ

t X −EQ
t logX . The relation between PVIX and VIX plays a crucial role in our theoretical

results of the next section.

3 Theoretical Results

This section presents our theoretical results. The first subsection introduces PVIX futures. The second

subsection presents two assumptions behind our method. The third subsection presents a no-arbitrage method

to compute the PVIX futures price. Then we use these results to derive the serial dependence coefficients of

the market returns in the fourth subsection. Finally, we discuss the robustness of our method for a general

specification of the pricing kernel process.

3.1 PVIX futures

The challenge in computing the conditional correlation and other serial dependence coefficients is to

calculate the conditional moments of future returns. For this purpose, we first introduce a new VIX-derivative,

a forward contract on the PVIX index.

Like VIX futures written on the VIX index, a forward contract is written on the PVIX index. A forward

contract on PVIX is an agreement between two parties to “buy” or “sell” a PVIX at a specific future time

t +T1 (maturity) for a fixed price, FPVIX, and the underlying PVIX is calculated over the time period t +T1 to

t +T1 +T2. The fixed price FPVIX is the PVIX forward price. Those forward contracts can be standardized by

trading in the Exchange, and if so, we name them PVIX futures contracts.

3.2 Assumptions

We make the following two assumptions for the subsequent theoretical results.
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Assumption 3.1. The risk-free rate R f ,t→t+T is deterministic for any T > 0.

Assumption 3.1 assumes a deterministic risk-free rate. Since we focus on the serial dependence of the

market return, we ignore the effect of the interest rate risk to the market return. By Assumption 3.1, the no-

arbitrage futures price is the same as the forward price. Moreover, by the derivative pricing theory, the PVIX

futures price at time t for the time period [t +T1, t +T1 +T2] satisfies

FPV IX (γ+1)
t,t+T1→t+T1+T2

= EQ
t

[
PV IX (γ+1)

t+T1→t+T1+T2

]
.

By the law of iterated expectation and the definition of PVIX, the PVIX futures price at time t for the time

period [t +T1, t +T1 +T2] is a risk-neutral conditional moments of future return as follows.

FPV IX (γ+1)
t,t+T1→t+T1+T2

=
1
T2

EQ
t

[(
St+T1+T2

St+T1

)γ+1
]
=

1
T2

EQ
t

[
Rγ+1

t+T1→t+T1+T2

]
. (10)

Assumption 3.2. Stein’s Lemma holds for X = Rt→t+T1 and Y = Rt+T1→t+T1+T2 under the risk-neutral measure.

That is, CovQ
t (g(X),Y ) = EQ

t [g′(X)]CovQ
t (X ,Y ) and CovQ

t (X ,g(Y )) = EQ
t [g′(Y )]CovQ

t (X ,Y ).

Stein’s lemma is about a first-order approximation of the covariances for a bivariate distribution. To see

it, we write the first-order approximation as g(X) ∼ g(X0)+ (X −X0)g′(X0) and X0 = Et [X ] under a general

probability measure. Then

Covt(g(X),Y ) ∼ Covt(g(X0)+g′(X0)(X−X0),Y )

= Covt(g′(X0)(X−X0),Y ) = g′(X0)Covt(X ,Y ).

Similarly, Covt(X ,g(Y ))∼ g′(Y0)Covt(X ,Y ). Stein’s lemma states that the first-order approximation is accurate.

As shown in Vanduffel and Yao (2017); Adcock, Landsman, and Shushi (2019), Stein’s lemma holds

for a general class of bivariate distribution, including elliptic distribution, student distribution and hyperbolic

distributions. Assumption 3.2 essentially states that the first-order approximation is sufficiently accurate under

the risk-neutral measure.6

6As shown in Camara (2003); Schroder (2004), the risk-neutral distribution shapes remain similar by changing only the location

parameters through a simple restriction on the pricing kernel process.
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3.3 No-arbitrage price of PVIX futures

The following result presents a no-arbitrage (almost) pricing formula of the PVIX futures under Assumption

3.1. Building on the relation between VIX and PVIX, we use VIX derivatives to price the PVIX futures in a

static-replication approach.

Therefore, we do not need model assumptions or parameter estimations.7

Proposition 3.1. Assume Assumption 3.1, and for simplicity, let R = Rt+T1→t+T1+T2 , R f = R f ,t+T1→t+T1+T2 . Let

Ft = FV IXt,t+T1→t+T1+T2 be the futures price on VIX index with the time to maturity of T1, and σt be the implied

volatility of at-the-money options on VIX index with the time to maturity of T1, then EQ
t [Rn] can be obtained

recursively for n = 2,3,4, · · · via the following approximation formulae,

F2
t (1+σ

2
t T1)∼

1
T2

(
EQ

t

[(
R
R f

)2
]
−1

)
, (11)

T2

2
F2

t
(
1+σ

2
t T1
)
∼

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
,n> 3. (12)

Proof. See Appendix B. �

Proposition 3.1 offers a recursive no-arbitrage pricing formula of FPVIX, and it only depends on the

available real-time CBOE VIX index and VIX derivatives data. Although it is given in an approximative version,

the approximation error is very small for the empirical application (See the proof in Appendix B).

It is useful to explain the central idea behind Proposition 3.1 using the second-moment of the future return

as an example. We compute the conditional second moment of a future VIX because of the relation between the

second moment and the entropy. The second moment of a future VIX is the sum of a square of a VIX futures

price and a conditional variance of a future VIX, and the latter is derived by the implied volatility (variance) of

VIX options. Therefore, VIX derivatives are used in Proposition 3.1.

Since Proposition 3.1 calculates all risk-neutral moments of a future return, it is equivalent to a risk-neutral

conditional cumulant generating function of a future return as follows.

Remark 3.1. Following Martin (2013), the conditional cumulant-generating function K(λ ) of the relative future

return R
R f

is K(λ ) = log
(
EQ

t
[
eλR/R f

])
. Notice that EQ

t

[
R
R f

]
= EQ

t

[
EQ

t+T

(
R
R f

)]
= 1, then

K(λ ) = log

(
1+λ +

∞

∑
n=2

1
n!
EQ

t

[(
R
R f

)n]
λ

n

)
.

7In contrast with the VIX derivative literature, for instance, Mencia and Sentana (2013), our pricing formula depends only on

publicly-traded VIX derivatives data, without building a no-arbitrage model.
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3.4 Autocorrelation and regression coefficients

By Proposition 3.1, we can quantify the futures price of PVIX. We next present the following proposition to

calculate all remaining statistical terms in the Q-approach.

Proposition 3.2. Given the power-specification of the pricing kernel process, and under Assumption 3.1 and

Assumption 3.2, then

1. the conditional moment of the future return over the period [t +T1, t +T1 +T2] is

Et
[
Rn

t+T1→t+T1+T2

]
=

T2

R f ,t+T1→t+T1+T2

FPV IX (γ+n)
t,t+T1→t+T1+T2

, (13)

2. the conditional expectation of the product of two spot returns over different periods is

Et [Rt→t+T1Rt→t+T1+T2 ] =
T1T2

R f ,t→t+T1+T2

×PV IX (γ+2)
t→t+T1

×FPV IX (γ+1)
t,t+T1→t+T1+T2

. (14)

Proof. See Appendix C. �

The novelty of Proposition 3.2 is that the conditional moments of the future return are computed directly

from the market prices of VIX-related instruments.

3.5 Robustness of the pricing kernel process

In the last subsection, the expressions of serial dependence coefficients depend on a power specification

of the pricing kernel process. We relax this restriction of the pricing kernel process in the Q-approach for

robustness.

First, for the conditional expectation (or moments) of the spot return with a large class of SDFs, Et [Rt→t+1],

many authors in such as Bakshi, Crosby, Gao Bakshi, and Zhou (2019a) have derived an analytical formula.

Therefore, we focus on the conditional expectation (or moments) of the future return for a general specification

of pricing kernel processes.

Assume the stochastic discount factor over the period t+1 to t+T is given by mt+1,t+T = f (Rt+1→t+T ; t,T ),

for a function f (x; t,T ) of a component x with coefficients depending on time variables t and T . Under

Assumption 3.2, it is straightforward to show that (See the proof in Appendix B),

Et [Rt+1→t+T ] =
1

R f ,t+1→+T
EQ

t

[
Rt+1→t+T

mt+1,t+T

]
.
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For EQ
t

[
Rt+1→t+T
mt+1,t+T

]
, we use the Taylor series expansion of the function x

f (x;t,T ) and all higher moments of the

future returns (or the cumulant generating function) in Proposition 3.1. Therefore, the conditional moments

of the future return, and thus the coefficients in Equations (3) - (4), can be obtained by Q-approach with VIX

derivatives and index options data for the this specification of the pricing kernel process, mt+1,t+T .

We illustrate the Q-approach with several examples of the pricing kernel process.

Example 3.1. Assume that mt,t+1 = exp(a−φRt→t+1),a,φ > 0,∀t, an analytical expression of the conditional

expected spot return is available in Bakshi, Crosby, Gao Bakshi, and Zhou (2019a). Moreover, since

Rt+1→t+2

mt+1,t+2
= exp(−a)×Rt+1→t+2× exp(φRt+1→t+2) ,

we obtain

EQ
t

[
Rt+1→t+2

mt+1,t+2

]
= e−a

∞

∑
n=0

φ n

n!
EQ

t
[
Rn+1

t+1→t+2

]
.

By Proposition 3.1, we obtain the autocorrelation coefficient between Rt→t+1 and Rt+1→t+2, and the regression

coefficients {αt,t+1,βt,t+1} by the Q-approach.

Example 3.2. Let mt,t+1 = f (Rt→t+1, t) for all t. For instance, let f (·) be a polynomial function as in Harvey

and Siddique (2000) and Dittmar (2002), and Rt+1→t+2
mt+1,t+2

is a smooth function of Rt+1→t+2, under Assumption 3.2,

we can derive an analytical expression of the autocorrelation and the regression coefficients from the following

equation,

EQ
t

[
Rt+1→t+2

mt+1,t+2

]
=

∞

∑
n=0

EQ
t
[
Rn

t+1→t+2
] g(n)(0)

n!
,

where g(x) = x
f (x) is a smooth function.

Given a general pricing kernel process, we can project the stochastic discount factor mt,t+1 onto the space

generated by {Rt→t+1,R2
t→t+1, · · · ,Rn

t→t+1, · · ·} (see, e.g. Chaudhuri and Schroder, 2015; Schneider and Trojani,

2019). Therefore, the Q-approach can be applied to derive autocorrelation for a general class of pricing kernel

process.

Example 3.3. Given a pricing kernel process mt,t+1 = f (Rt→t+1, t),∀t, we can derive a bivariate conditional

distribution of (Rt→t+1,Rt+1→t+2) at time t. The bivariate distribution is characterized by the following moment
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generating function Et
[
ex1Rt→t+1+x2Rt+1→t+2

]
,(x1,x2) ∈R2,

Et
[
ex1Rt→t+1+x2Rt+1→t+2

]
=

1
R f ,t→t+2

EQ
t

[
ex1Rt→t+1+x2Rt+1→t+2

mt→t+2

]
=

1
R f ,t→t+2

EQ
t

[
ex1Rt→t+1

f (Rt→t+1, t)
ex2Rt+1→t+2

f (Rt+1→t+2, t +1)

]
=

1
R f ,t→t+2

EQ
t

[
ex1Rt→t+1

f (Rt→t+1, t)

]
EQ

t

[
ex2Rt+1→t+2

f (Rt+1→t+2, t +1)

]
,( by Assumption 3.2)

in which the first component is calculated similar to Equation (8), and the second component is derived explicitly

in Examples 3.1 - 3.2.

4 Empirical Results

In this section, we implement the theoretical results of Section 3. Using publicly available derivatives data,

we first demonstrate that the autocorrelation between two consecutive returns is significantly negative in the

Q-approach. It means a moderate short-term market return reversal. We next explain that the long-run trend of

the stock market is upward from a forward-looking perspective.

4.1 Data

We use three types of derivative instruments, namely, S&P 500 index options, CBOE VIX futures, and VIX

options. We collect index options and VIX options data from the OptionMetrics, VIX index and futures data

from the CBOE. After applying standard filters and merging data from different databases, we end up with a

sample of daily observations from February 24, 2006, to December 31, 2019.

Following the same procedure in CBOE and in Martin (2017), at each day t, we compute PVIXt→t+T for

T = 1, 2, 3, 4, 6, and 9 months by Equation (8).8 All results are annualized. We also follow Hu and Jacobs

(2020) to use linear interpolation, on each trading day, to compute daily VIX futures prices, FVIXt,t+T1→t+T1+T2 ,

with constant maturities for T1 = 1, 2, 3, 4, 6, and 9 month.9 Since both VIX and VIX futures measure the

forward-looking implied index volatility over 30 days, T2 always represents one month.

8We use market prices of out-of-the-money call and put options and the same linear interpolation method as in CBOE and in Martin

(2017) to calculate PVIX. For the log-utility-based SDF, γ = 1, the PVIX index is related to Martin’s (2017) SVIX. In Appendix A

we show that SVIX square essentially provides a lower bound for all PVIX indices. The detailed procedure is provided in the online

Appendix.

9CFE may list futures for up to nine near-term serial months, as well as five months on the February quarterly cycle associated with

the March quarterly cycle for options on S&P 500 (Mencia and Sentana, 2013). We thus choose the maximum constant maturity to be

nine months. VIX futures expiration calendar can be found at https://www.macroption.com/vix-expiration-calendar/.
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Figure 1 (a) displays the 1-month PVIX index for three different values of γ = 1,2,3. The PVIX index

spiked around the 2008-2009 crisis period. For example, the average value of PVIX when γ = 1 is about 12.24,

but the highest value is about 12.7. This spike feature is significant with a higher exponent. Moreover, Figure

1 (b) plots both the 1-month PVIX (γ = 1) and the CBOE VIX index. As shown, PVIX and VIX indices are

highly correlated.

Table 1 reports the summary statistics for PVIX indices over different T1 periods when γ = 1. For

completeness, we consider two different sample periods. Panel A considers the period from January 4, 1996, the

first available date in OptionMetrics. Panel B restricts the sample starting from February 24, 2006. In general,

PVIX is increasing monotonically to γ , but decreasing monotonically to T1 (See Appendix A for the proof).

We next compute the PVIX futures price by Proposition 3.1. Table 2 reports key statistics for PVIX futures

price. We use the average value between the implied volatility of at-the-money put and call VIX options as

a proxy for σt . On average, PVIX futures prices are higher than the PVIX index, displaying an upward term

structure. It is intuitive because of the VIX futures’ contango trap (Eraker and Wu, 2017), and the close relation

between VIX and PVIX as displayed in Figure 1. For robustness, we further compute PVIX indices and PVIX

futures price for other power-utility-based SDFs (when γ = 2 and 3) in the online Appendix. The patterns for

different value of the parameter γ remain similar.

4.2 Autocorrelation by Q-approach

Table 3 reports the summary statistics for market autocorrelation under the Q-approach. We observe

significantly negative coefficients across different T1, from one to nine months.10 Specifically, the mar-

ket autocorrelation on S&P 500 index is around −20% to −40%. For instance, when T1 is 1 month,

corrt(Rt→t+1mo,Rt+1mo→t+2mo) is on average −20.90%, with a t-stat of 18.10. Notably, the numbers in Table 3

are comparable to Chabi-Yo (2019) and Martin (2021). Using S&P 500 index options data, Chabi-Yo (2019)

estimates that the no-arbitrage bounds of autocorrelation varies from −28% to −3%. Martin (2021) computes

the implied autocorrelation of the S&P 500 index on 8 specific dates, with values also between −20% and

−40%. Since Martin (2021) relies on market quotes of forward-start options from investment banks, Table 3

suggest that our no-arbitrage pricing of the PVIX futures, in Proposition 3.1, is consistent with the pricing of

OTC derivatives in the market.

As a comparison, Table 3 also reports the market autocorrelation under the P-approach. As shown in

Panel B of Table 3, the unconditional autocorrelation coefficients over the same sample period are statistically

10We conduct a two-tail t-test on the time-series of the aucotorrelation coefficients from the Q-approach to assess the statistical

significance. The Newey-West estimators are used to adjust the standard errors.
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insignificant across different value of T1, and are much smaller in magnitudes compared to Panel A. For example,

when T1 = 1 month, the autocorrelation is 9.3% from the P-approach, whereas it is on average −21% from the

Q-approach. The difference between these approaches is even more striking if we consider the correlation

between the current one-month return and the past three-month return: from the Q-approach, it is about −36%;

but, it is only 8% from the P-approach. The P-approach in Table 3 suggests that market returns are almost

independent.

Using the same historical return data, we further study the realized month-to-month autocorrelation.

Specifically, we compute the sample autocorrelation between two consecutive calendar months, including

January/February, February/March, · · ·, December/January. Figure 2 plots the realized month-to-month

autocorrelation over various periods with the data prior to January 1927 obtained from Robert Shiller’s website.

As displayed in Figure 2, the month-to-month autocorrelation based on historical data can be either positive or

negative, depending on the sample of the data.11 For example, the autocorrelation of March/April is around

10% over 1871-2019, but −20% over a recent time period 1990-2019. The month-to-month autocorrelation in

Figure 2 also displays a moderate reversal between two consecutive calendar months in specific periods. For

instance, the corresponding autocorrelations are significantly negative from February to March, March to April,

May to June, November to December, and December to January. However, the autocorrelation coefficients of

January/February, April/May, and October/November are significantly positive. In this regard, Figure 2 shares

similar magnitudes of the autocorrelation by the Q-approach in Table 3.

Why is the difference between the P-approach and the Q-approach so substantial in Table 3? One plausible

explanation is that the derivatives’ prices are real-time and highly volatile. Take the expected return as an

example. Martin (2017) shows that the expected excess return computed from the derivatives (index options)

market is higher than that from Campbell and Thompson’s (2008) variation ratio approach, as the risk-

neutral variance contains real-time and forward-looking information about the index volatility. Due to the rich

information embedded in the VIX derivatives market, the difference in autocorrelation is more striking than that

in the expected return. However, the Q-approach implies prominent negative autocorrelation coefficients (-21%

to -36%), regardless of the time, risk-aversion, or the frequency of the data (length of the period), whereas the

P-approach yields a small positive value (3% to 11%). Therefore, the feature of the derivatives market alone

cannot explain the significant difference between these two approaches. Moreover, it is also puzzling that the

month-to-month autocorrelation with the P-approach might take considerable negative or positive values.

It is important to explore what causes such a discrepancy between the two approaches, and we delve into

this issue in Section 5. Before doing so, we present more empirical results of the Q-approach.

11In Section 5, we will also compute the month-to-month autocorrelation from the Q-apprpach and make a comparison.
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4.3 The market return dynamics by Q-approach

Table 4, Panel A reports the summary statistics for the beta coefficients of the Q-approach. Similarly, Table

5, Panel A reports the intercept coefficient of the Q-approach for the period over February 2006 to December

2019. In addition, we report the beta and the intercept coefficients from the P-approach in Panel B of each table

for comparison purposes.

Similar to the market autocorrelation, we observe consistently negative conditional beta coefficients across

columns. The beta coefficients from the Q-approach are much more prominent in magnitude and are statistically

significant than the P-approach. In contrast, the betas from OLS are virtually zero (from 0.013 to 0.093 in

absolute values) and are insignificant. Different from beta coefficients, the intercepts are primarily positive in

both approaches. The mean values are all larger than 1.4. On the contrary, the OLS intercepts are around one.

To better understand the Q-approach, we decompose Equation (4) as

αt =
Covt(X ,XY )

Vart(X2)
−βt

Covt(X2,X)

Vart(X2)
,

where X = Rt→t+T1 , Y = Rt+T1→t+T1+T2 , and XY = Rt→t+T1+T2 . For a positive gross return X , the two variables

X and X2 move in the same direction, yielding Covt(X2,X) > 0. Together with βt < 0, the second component

on the right hand of the last equation is positive. On the other hand, the first component on the right hand has

the same sign as Covt(X ,XY ), the conditional covariance between two spot returns Rt→t+T1 and Rt→t+T1+T2 .

By Proposition 3.2, the two autocovariances, Covt(X ,Y ) and Covt(X ,XY ), can be analytically computed

from no-arbitrage prices of contingent claims. That is,

Covt (X ,Y ) =
T1 +T2

R f ,t→t+T1+T2

×PV IX (2)
t→t+T1+T2

− T1T2

R f ,t→t+T1+T2

×PV IX (2)
t→t+T1

×FPV IX (2)
t,t+T1→t+T1+T2

, (15)

and

Covt (X ,XY ) =
T1T2

R f ,t→t+T1+T2

×PV IX (3)
t→t+T1

×FPV IX (2)
t,t+T1→t+T1+T2

− T1(T1 +T2)

R f ,t→t+T1R f ,t→t+T1+T2

×PV IX (2)
t→t+T1

×PV IX (2)
t→t+T1+T2

. (16)

Given the last two equations, a negative Covt(X ,Y ) and a positive Covt(X ,XY ) are equivalent to a lower

bound for the PVIX futures price as follows,

FPV IX (2)
t,t+T1→t+T1+T2

> max

T1 +T2

T1T2

PV IX (2)
t→t+T1+T2

PV IX (2)
t→t+T1

,
T1 +T2

T2R f ,t+T1

PV IX (2)
t→t+T1

×PV IX (2)
t→t+T1+T2

PV IX (3)
t→t+T1

 . (17)
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By Proposition 3.1, Equation (17) essentially becomes

FV IX2
t,t+T1→t+T1+T2

(1+σ
2
t T1)+

1
T2

> max

{
T1 +T2

T1T2

PV IX (2)
t→t+T1+T2

PV IX (2)
t→t+T1

,
T1 +T2

T2R f ,t+T1

PV IX (2)
t→t+T1

×PV IX (2)
t→t+T1+T2

PV IX (3)
t→t+T1

}
. (18)

Equation (18) displays a relation among market prices of index options, VIX futures, and VIX options. In

theory, a violation of the relation in Equation (18) does not suggests an arbitrage opportunity occurs, since its not

necessarily true that Covt(X ,Y )< 0 and Covt(X ,XY )> 0 follow from a simple no-arbitrage condition. Equation

(18) merely implies a short-term reversal and a long-run upward trend from a forward-looking perspective,

and Table 6 empirically documents this relation. Specifically, Panel A reports the summary statistics for the

negative autocovariance Covt(X ,Y ) by the Q-approach, and Panel B reports the positivity of Covt(X ,XY ). From

a forward-looking perspective, these two autovariances display entirely different signs. In Panel A, Covt(X ,Y )

are, on average, negative across columns, with a mean value around −1.5. Nevertheless, Covt(X ,Y ) in Panel B

are always positive, and the magnitude is around 3% on average.12 Economically, these results show that the

monthly return reversal is modest.

Finally, we rewrite Equation (2) as

Y − αt

1−βt
= βt

(
X− αt

1−βt

)
+ ε.

A large number of αt
1−βt

indicates an upward trend of the market return in the long-run. Figure 3 plots the time

series of the conditional beta and the intercept coefficients by the Q-approach. As shown, the beta coefficients

are mostly below zero over time, whereas the intercept terms are most above zero. We also plot the times series

of long-run rate, αt
1−βt

, when T1 and T2 are 1 month. The average of αt
1−βt

is around 1.34, indicating an upward

trend of the market, in spite of the short-term reversal.

In summary, we have shown a substantial difference between the P-approach and Q-approach about

the serial dependence of the market return. Remarkably, the Q-approach demonstrates significant negative

dependence between two consecutive monthly market returns, whereas the classical P-approach provides

virtually independent consecutive market returns. In the following two sections, we explain where the difference

comes from and explore the economic value of the Q-approach.

12In the Online Appendix, we relax the log-utility assumption and assume that γ = 2 or 3 for general power-utility-based SDFs. The

sign properties of these two conditional covariances are robust regardless of the risk-aversion coefficients in the SDF specification.
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5 The Difference Between the P- and Q-approaches

In this section, we demonstrate that the methodology of the P-approach itself leads to the difference of the

market autocorrelation between Q- and P-approaches. To do so, we compare the Q-approach with alternative

P-approach-based methodologies with the same historical stock market data. In particular, we find that the Q-

approach is comparable to the Nagel and Xu’s (2021) fading memory distribution, which will be explained in

the next several paragraphs.

In general, given a variable X with historical data X1, · · · ,XN from the beginning to the latest, Xt is the

observation at time t. Suppose our objective is to compute statistical quantities, say, the expected value, of X

at time N with those observations. We implement three methodologies below to compute the monthly stock

market autocorrelation by the P-approach with the same sample of historical data.

First, we adopt a fading memory methodology to compute the market autocorrelation. Inspired by Equation

(15) in Nagel and Xu (2021), we write

µt = µt−1 +ν(Xt −µt−1), (19)

where µt is the expected value of the variable X formed at t, and ν is a decay parameter. By using the above

equation recursively, we obtain

µt = νXt +(1−ν)νXt−1 + · · ·+(1−ν)t−1
νX1.

For simplicity, let E f
t [·] denote the expectation of X in the last equation. Economically, E f

t [·] reflects the

empirical fact that investors may learn from the most recent personal experiences when forming expectations

(Nagel and Xu, 2021; Bordalo, Gennaioli, Porta, and Shleifer, 2019; Collin-Dufresne, Johannes, and Lochstoer,

2017; Malmendier and Nagel, 2016). Given the expectation operator E f
t [·], we also compute the conditional

covariance and correlation coefficients between two variables X and Y .13 Since E f
t [·] is motivated by the fading

memory specification, we label the autocorrelation by this methodology as the fading-memory autocorrelation.

In the second methodology, we replace the number ν in Equation (19) by 1
t , yielding µt =

X1+···+Xt
t . This

is the standard sample (empirical) mean of the random variable X . Likewise, we use Es
t [·] to represent this

empirical expectation of X . Intuitively, at each time N, X has an equal probability, 1
N , among its historical

13Specifically, Var f
t (X) = E f

t

[
(X−E f

t [X ])2
]
, Cov f

t (X ,Y ) = E f
t [XY ]−E f

t [X ]E f
t [Y ] = (νXNYN +(1− ν)νXN−1YN−1 + · · ·+(1−

ν)t−1νX1Y1)−E f
t [X ]E f

t [Y ]. See Rougier (2016), page 32.
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observations {X1, · · · ,XN}. Since the classical statistical inference method essentially relies on this empirical

distribution, we name the autocorrelation under the empirical autocorrelation.

In the third methodology, we focus on the month-to-month autocorrelation that is discussed in Section 4. In

this methodology, since we compute the autocorrelation between two consecutive calendar months, we view the

corresponding month’s return in the last calendar year as the most recent historical data. To compare with the

empirical autocorrelation, we still impose equal weights on the historical data.

We start with the comparison of the first two methodologies. At the beginning of each month, we compute

the monthly stock market autocorrelation on S&P 500 index “recursively” with an initial window of 10 years.

Following Nagel and Xu (2021), we choose the decay parameter ν = 0.018 in computing the fading-memory

autocorrelation. The comparison results are presented in Figure 4. Consistent with Lo and MacKinlay (1999),

the covariance between historical monthly returns is virtually zero; thus, the empirical autocorrelation is almost

zero. However, the fading-memory autocorrelation is time-varying and significantly nonzero. For instance, most

of the monthly autocorrelation coefficients during 2019 are larger than−20% in absolute values. Similar results

are observed in Table 3 by Q-approach. Even though the Q-approach implies a more fluctuating and mostly

negative market autocorrelation, the fading-memory autocorrelation is comparable to that by Q-approach,

especially after 2018.

For robustness, we also use a “rolling method” in the first two methodologies, by fixing the number

of historical sample data at each time. The results with the rolling method are displayed in Figure 5, and

the patterns are similar to Figure 4. Overall, Figures 4 and 5 indicate that the derivated-based market

autocorrelation reveals different market movements from the empirical distribution, but, the fading-memory

distribution reconciles to some extent the Q-approach. While the empirical distribution implies virtually zero

(insignificant) autocorrelation between two consecutive monthly returns, a different statistical inference method

with the same data can lead to different and significantly nonzero autocorrelation.

Conceptually, it is not surprising that different statistical inference methods generate different market

autocorrelation. What is remarkable is that some statistical inference methods can be comparable to the

Q-approach. We can also confirm this fact by the third methodology to calculate the month-to-month

autocorrelation of the S&P 500 index between two consecutive calendar months. To calculate the month-to-

month autocorrelation by the Q-approach, we compute corrt(Rt→t+1mo,Rt+1mo→t+2mo) on the first day of each

month and take the simple average within each of 12 calendar months of the year. For consistency, we restrict

the sample period to 2006−2019 and plot the autocorrelation in Figure 6. The month-to-month autocorrelations

under the Q-approach (Figure 6) and the P-approach (Figure 2) display a relatively similar pattern, despite

the Q-based autocorrelations are still more negative in magnitude. For example, both of them yield a similar

autocorrelation coefficients of−35% between February and March, and−10% between December and January.
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Between May and June, however, the Q-approach implies an autocorrrelation as large as −40%, while the

P-approach suggests a value of −20%. Moreover, the monthly return displays a stronger reversal in specific

periods than others (for instance, from February to March, May to June, July to August, and December to

January) by both approaches.

The above findings have several important implications. First, since the Q-approach depends on real-time

derivatives data, it provides a forward-looking conditional point of view. It is well-known that all option

prices derive an implied distribution (see, for instance, Bakshi, Gao Bakshi, and Xue, 2019b). Specifically,

the implied distribution can be derived by market prices of call options, put options, and digital options

(Backus, Chernov, and Martin, 2011; Bakshi, Gao Bakshi, and Xue, 2019b). Therefore, we have shown

that the autocorrelation derived from the “implied distribution” of the market index is somewhat close to the

“fading-memory distribution” of the market index. In contrast, this implied distribution is significantly different

from the “empirical distribution”. In this regard, the Q-approach supports the learning with fading memory

and vice versa, as the implied distribution and the fading-memory distribution generate comparable market

autocorrelations.

Second, when we compute the month-to-month market autocorrelation, the corresponding consecutive

month returns in different calendar years have a more substantial effect than those in the same calendar year.

As an example, we consider the effect of February return on March return. If we use all monthly returns in the

P-approach, then the effect of February return to March return in the last year has been reduced by the middle

12 months’ returns, yielding virtually zero effect. However, if we only restrict the Feb-March effect in each

calendar year, this effect can be revealed directly by the P-approach. It suggests that the stock market might

have more memory about the same month in the last year than what happened in the last month (for instance,

the January effect). Moreover, the month-to-month market autocorrelation is comparable to the Q-approach in

magnitude.

Third, there exists a significant difference between the implied distribution and the risk-neutral distribution.

Even though the derivatives data derive the implied distribution, the implied distribution still reflects the agent’s

perception of market return under the subjective probability measure.14 In contrast, the risk-neutral distribution

represents the distribution under the risk-neutral measure. On one hand, it can be shown that (see Martin (2021)

and the proof of Proposition 3.1 in Appendix), the autocorrelation in the risk-neutral distribution is zero, under

Assumption 3.1. On the other hand, we have shown significantly negative market autocorrelation from the

14Cochrane (2017) suggests that investors’ survey report about the market return is consistent with the risk-neutral expectation.
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implied distribution.15 In a different context, Adam, Matveev, and Nagel (2021) strongly reject the risk-neutral

expectation with stock market data. Here, we reject the risk-neutral expectation with derivatives market data by

the Q-approach.

6 The Economic Value of the Q-approach

Thus far, we have explained the difference between the P-approach and the Q-approach about the serial

dependence of the market returns. In this section, we discuss the economic value of the Q-approach.

Motivated by the empirical results in Section 4, we implement a market timing strategy. Because of the

moderate short-term reversal revealed by the Q-approach, we first construct a reversal signal using both realized

cumulative excess returns and the conditional derivative-based autocorrelation. Then, we trade the market with

this reversal signal in the subsequent month. Specifically, we define the reversal signal at time t as,

S̃t,K [rt−K→t ,corrt−K(rt−K→t ,rt→t+1)] =


1, if rt−K→t > 0 & corrt−K(rt−K→t ,rt→t+1)> 0,

1, if rt−K→t < 0 & corrt−K(rt−K→t ,rt→t+1)< 0,

0, otherwise,

(20)

where rt−K→t =Rt−K→t−R f ,t−K→t is the realized cumulative excess return over the past K months, corrt−K(rt−K→t ,rt→t+1)

is calculated by the Q-approach, and K = 1, 2, 3, 4, 6, and 9 months. We name the strategy based on one reversal

signal as the single timing strategy. In total, we have six market reversal signals at time t.

Following a market reversal signal, we implement a zero-cost strategy when corrt−K(rt−K→t ,rt→t+1)

suggests a positive excess return rt→t+1. As an illustration, if we use the one-month reversal signal as a trading

signal at time t and implement the corresponding market timing strategy, the realized return in the subsequent

month is

η
[
S̃t,1
]
=


rt→t+1, if S̃t,1 = 1,

0, otherwise.
(21)

It is also possible to implement the market timing strategy using all six reversal signals together, and we label

it as the combination timing strategy. For instance, we long the market if ∑K S̃t,K is greater than a threshold, ξ ,

an integer ranging from 2 to 5. Following the combination timing strategy, the realized return in the next month

15We highlight that correlation-type derivatives are not required to obtain the autocorrelation between two consecutive spot returns

under the risk-neutral probability measure. In our study of the autocorrelation under the physical probability measure, we reduce it to

publicly available derivative data such as stock market index option, VIX futures, and VIX options. Hence, we also do not need any

correlation-type products in this approach.
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is

η
[
S̃t,K ,∀K;ξ

]
=


rt→t+1, if ∑K S̃t,K > ξ ,

0, otherwise.
(22)

It means that we long the market only if at least ξ reversal signals defined in Equation (20) indicate long signals.

We first study the realized return following the market timing strategy. Figure 7 plots the realized returns

generated from the single market timing strategy. As a benchmark, we also plot the realized returns from a buy-

and-hold strategy as in Gao, Han, Li, and Zhou (2018). The difference between our market timing strategy and

the benchmark strategy is that we long the market only when the signal shows a positive market excess return in

the following month, while the benchmark strategy is to long the market persistently. In other words, our market

timing strategy is to stay away from the stock market if the signal from the Q-approach shows a future market

downturn. Therefore, the relative performance of the market timing strategy depends on whether the reversal

signal from the Q-approach indeed reveals valuable information about the market return in the following month.

As shown in Figure 7, the reversal signal from the Q-approach predicts the market downturn, particularly

when the stock market declines significantly during 2008-2009, 2014, 2015, and 2018-2019. To sharpen our

argument, we further plot the realized returns from the above two strategies during the NBER recessions from

January, 2008 to June, 2009 in Figure 8. This recession period overlaps the 2008/09 global financial crisis. We

see that the market timing strategy based on a one-month reversal signal avoids significant market crashes in

January, June, September, October of 2008, and January of 2009.

We next analytically evaluate the timing strategy’s performance. Based on the mean µ̂ j and standard

deviation σ̂ j of the out-of-sample realized returns by a strategy j, we compute three quantities (performance

measures) as follows. (1) We measure the out-of-sample Sharpe ratio of each strategy, ŝ j =
µ̂ j
σ̂ j

; (2) we calculate

the certainty-equivalent (CEQ) return by

ˆCEQ j = µ̂ j−
γ

2
σ̂

2
j , (23)

where we choose γ = 1 to be consistent with the Q-approach in Section 4; (3) we compute return-loss with

respect to the buy-and-hold benchmark, as in DeMiguel, Garlappi, and Uppal (2009). Precisely, suppose

{µ̂b, σ̂b} are the monthly out-of-sample mean and volatility of the excess returns from the buy-and-hold strategy,

and {µ̂ j, σ̂ j} are the corresponding quantities for timing strategy j, the return-loss from strategy j is

return-loss j =
µ̂b

σ̂b
× σ̂ j− µ̂ j. (24)
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In other words, the return-loss is the additional return needed for strategy j to perform to be consistent with the

benchmark. A negative value indicates that the strategy j outperforms the benchmark in terms of the Sharpe

ratio.

Panel A of Table 7 reports performance evaluation statistics on (annualized) returns generated from the

market timing strategies over the period December 2006−December 2019. First, the market timing strategy

implies good realized returns, but does not necessarily lead to the highest realized return on average. The

realized return on average is about 4.433% per annum by the single timing strategy, whereas the realized return

from buy-and-hold is about 5.489% on average. This is reasonable because of the market’s upward trend from

2006 to 2019, regardless of the financial crisis around 2008 or a market downturn in 2018. Since the market

timing strategy only participates in the market in specific periods when the signal shows promising positive

return, it might lose some upward opportunities. What is more important is to investigate (1) whether the

market timing strategy is conservative and delivers a higher Sharpe ratio, and (2) whether it avoids bad market

times.

For the first question, all timing strategies indeed produce smaller standard deviations than the benchmark,

suggesting that the market timing strategy is always more conservative than the benchmark strategy. For

instance, the standard deviation is 9.616% per annum for the single timing strategy, whereas the buy-and-hold

strategy has an almost-twice-large standard deviation of 14.789%. As a result, the Sharpe ratio of the single

timing strategy is 0.461, but the buy-and-hold strategy only offers a Sharpe ratio of 0.371. We also see that the

last combination timing strategy delivers a higher Sharpe ratio of 0.467.

To evaluate the performance of the market timing strategy in bad market times for the second question,

Panel B of Table 7 reports summary statistics during the NBER recessions. Not surprisingly, the buy-and-

hold strategy suffers a dramatic loss, yielding a negative average return of −32.304% per annum, along with a

standard deviation as high as 25.565%. Consequently, the Sharpe ratio of the buy-and-hold strategy is around

−1.264. In contrast, the single timing strategy, η
[
S̃t,1
]
, achieves an average return of −7.027% per annum, and

a much smaller standard deviation of 14.420%. Although the Sharpe ratio from the single timing strategy is

also negative, around −0.487, it exhibits a significant economic value relative to the benchmark. Economically,

the −11.194% return-loss value of the single timing strategy suggests that investors are willing to pay as high

as 11% per annum to switch from the buy-and-hold to the market timing strategy. Remarkably and consistently,

during the market crisis, all single and combination timing strategies yield higher average returns, smaller

standard deviations, higher Sharpe ratios, larger CEQs, and negative return-loss measures than the buy-and-

hold strategy. In summary, Table 7 shows that the reversal signal identified by the Q-approach does reveal the

market downturn from a forward-looking perspective, and the economic value can be substantial.
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7 Other Applications of the Q-approach

In Section 3, we have shown that the serial dependence by the Q-approach can be derived by the conditional

expectations of future returns. In this section, we discuss the shapes of the term structure of one-period future

returns and expected risk premiums, as other applications of the Q-approach.

Let

ft,T = Et [Rt+T→t+T+1] ,∀t,∀T = 0,1, · · · . (25)

Here, ft ≡ ft,0 is the conditional expected spot return Et [Rt→t+1]. The expected future one-period return f (t,T )

forms a term structure of future returns analogous to the term structure of forward rates. To see it, conditional

on the time-t perspective, ft,T = Et [Et+T [Rt+T→t+T+1]] = Et [ ft+T ], which is similar to the equation that the

implied forward rate equals the expected spot rate.

Because of the small magnitude and relative stability of the risk-free return in each short-time period,

the term structure of f (t,T ) is essentially similar to (in shape) the term structure of expected risk premiums,

f (t,T )−Et [R f ,t+T→t+T+1], which is f (t,T )−R f ,t+T→t+T+1 (by Assumption 3.1). Therefore, we obtain the

term structure of one-period future returns and expected risk premiums by the Q-approach. Specifically, by

Proposition 3.2, with a power-specified pricing kernel, we have, ∀T = 1,2, · · ·,

f (t,T ) =
1

R f ,t+T→t+T+1
FPV IX (γ+1)

t,t+T→t+T+1. (26)

Given Proposition 3.1, we can derive the term structure of one-period future returns and expected risk premiums

with publicly available data.

Table 8 reports the summary statistics for the conditional expected one-month future returns by the Q-

approach. We choose T to be 0, 1, 2, 3, 4, 6, and 9 months in f (t,T ). Panel A considers the full sample period

from February 24, 2006 to December 31, 2019. For T = 0, the conditional expected spot return is on average

4.526% per annum. Since the risk-free rate, proxied by 1-month Treasury bill rate, is on average 1.117% during

the same sample period, Table 8 suggests that the equity risk premium inferred from the Q-approach is around

3.409% per annum, a number close to conventional estimates of the equity premium. For example, Fama and

French (2002) (Table IV in their paper) estimate the unconditional average equity premium over the sample

period 1951 to 2000 to be 2.55% and 4.32%, based on dividend and earnings growth, respectively.

As reported in Table 8, the term structure of one-month future returns (and equity risk premiums) is mainly

upward slopping on average in normal times. On average, the expected one-month future return and expected

risk premium increase with respect to maturity T , except a slightly downward/flat feature when T = 6 months.
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For example, the expected one-month future return one month later is, on average, 5.891% per annum; thus, the

expected risk premium is about 4.774% per annum. Similarly, the expected risk premium for one-month four

months later is around 5.736% per annum.

We then examine the shape of the term structure f (t,T ),T = 1,2,3,4,6,9, when the market is in bad (good)

times. Precisely, we use the NBER recessions period, January 1, 2008−June 30, 2009 to represent bad times,

and the post-NBER recessions, July 1, 2009−December 31, 2019, to represent good times. As shown in Panel

B of Table 8, the term structure of one-month future returns (and equity risk premiums) is downward sloping

on average in bad times. In contrast, Panel C reveals an upward term structure of one-month future returns (and

expected risk premiums), on average, in good times. Figure 9 illustrates the term structure of one-month future

returns on average, in “good”, “bad”, or “overall” times, respectively.

Furthermore, Figure 10 displays the term structure of one-month future returns for all time t during the

NBER recessions. More specifically, we divide the time period into four shorter periods: January 2008−October

2008; November 2008−January 2009; February 2009−April 2009; and May 2009−June 2009. We observe that

the downward term structure of one-month future returns (expected risk premiums) between October 2008 and

April 2009 (the most severe period of the financial crisis of 2007-2009) is significantly steep. On the contrary,

Figure 11 shows the upward term structure of one-month future returns (expected risk premiums) at most of the

time between 2009 and 2019.

It is interesting to compare our results with recent equity term structure studies in the literature. By viewing

equity as a strip of zero-coupon equity (with dividend as payment) and examining the term structure of the

zero-coupon equity to maturity, or the conditional expected annual return to long-maturity minus the annual

return to short maturity equity, Binsbergen, Brandt, and Koije (2012) document that the equity term structure is

downward sloping on average. Moreover, Gormsen (2021) shows that the term structure is downward sloping

in good times, but upward sloping in bad times (counter-cyclical). Notice that the term structure of expected

risk premium in our definition is different from those studies though. In our setting, f (t,T ) is the conditional

expected value of a one-month future return of the stock index, Rt+T→t+T+1, whereas Binsbergen, Brandt, and

Koije (2012) and Gormsen (2021) focus on the one-period expected returns on dividend-claims. Binsbergen,

Brandt, and Koije (2012) and Gormsen (2021) document these stylized facts with market derivative data such as

index (call and put) options and dividend futures. Similarly, our approach uses VIX derivatives data and stock

index options data. Importantly, we document another stylized fact that the term structure of one-period future

returns and expected risk premiums are pro-cyclical in our setting.

A pro-cyclicality of the term structure of expected risk premiums can be understood as follows. By

Proposition 3.2, the conditional expected one-month future returns in T months are essentially the futures prices

of PVIX over the same period, as described in Equation (26). Because of the close relation between PVIX and
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VIX, by the no-arbitrage principle and intuitively, the term structure of PVIX futures exhibits a similar shape as

of VIX futures. Indeed, using publicly market data, Hu and Jacobs (2020) document that VIX futures prices tend

to have an upward sloping term structure during normal times, and tend to become inverted or hump-shaped in

times of market turbulence. The main difference between our results and Hu and Jacobs (2020) is that a PVIX

futures contract is not tradable, and the pro-cyclicality property of the term structure of one-month future returns

follows from no-arbitrage PVIX futures prices with publicly available VIX derivatives data.

8 Conclusion

This paper presents a Q-approach to study the serial dependence in the stock market using the derivatives

market information. The distinct feature is its analytical expression of expected market future return (moments)

in VIX derivatives (VIX futures and VIX options) and stock market index options. The Q-approach is real-time,

provides a time-varying conditional view, and is robust to the stochastic discount factor process choice.

Using S&P 500 index options, CBOE VIX futures, and VIX options, we robustly demonstrate an upward

market trend in the long run, but moderate short-term reversals across different holding periods. We further

document that the market return dynamics inferred from the Q-approach are comparable to that from the

historical stock market prices with fading memory methodology, but significantly different from the standard

empirical method. Moreover, we show that the economic value of the Q-approach can be substantial since the

reversal signal by the Q-approach can particularly reveal a market downturn in the future. Finally, by the Q-

approach, we demonstrate the pro-cyclical term structure of expected risk premiums. Overall, we demonstrate

important implications to the stock market of the derivatives market.
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Appendix

Appendix A Monotonic properties of PVIX

Proposition Appendix A.1. Monotonic properties of PVIX.

1. Assume Et [Rt→t+T ]> 1 (positive risk premium), then PV IX (α)
t→t+T is strictly increasing to the exponent α

while the time to maturity T is fixed.

2. Under Assumption 3.1 and let Xt,T = 1
R f ,t→t+T

EQ
t [Rα

t→t+T ]. Then Xt,T is monotonic increasing to T when

both t and α are fixed.

Proof. (1) Let X = Rt→t+T . Then by the conditional-version of Holder’s inequality, we have Et [Xα | 1
α6

Et [Xβ |
1
β ,∀1 < α < β . In terms of PVIX, it can be written as

(
T ×PV IX (α)

t→t+T

) 1
α

6
(

T ×PV IX (β )
t→t+T

) 1
β

, (A1)

yielding

PV IX (α)
t→t+T 6 T

α

β
−1
(

PV IX (β )
t→t+T

) α

β

.

To prove PV IX (α)
t→t+T < PV IX (β )

t→t+T , it suffices to show that T ×PV IX (β )
t→t+T > 1. To the end, by using Jensen’s

inequality, we have

T ×PV IX (β )
t→t+T = Et [Xβ ]> Et [X ]β > 1.

because of the positive excess risk premium.

Proof. (2) For any t < S < T , by Jensen’s inequality, we have

EQ
S [R

α
S→T ]>

(
EQ

S [RS→T ]
)α

= Rα
f ,S→T ,
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where R f ,S→T = EQ
S [RS→T ]. Then, we have

Xt,T =
1

R f ,t→t+T
EQ

t
[
Rα

t→t+SRα
t+S→t+T

]
=

1
R f ,t→t+T

EQ
t

[
Rα

t→t+SE
Q
t+S[R

α
t+S→t+T ]

]
>

1
R f ,t→t+T

EQ
t
[
Rα

t→t+SRα
f ,t+S→t+T

]
=

1
R f ,t→t+S

Rα−1
f ,t+S→t+TE

Q
t
[
Rα

t→t+S
]

>
1

R f ,t→t+S
EQ

t
[
Rα

t→t+S
]
= Xt,S

since R f ,t+S→t+T > 1.

Appendix B Proof of Proposition 3.1

The proof is divided into several steps.

Step 1. We first derive an approximation formula of VIX as follows

V IX2
t→t+T ∼

1
T

(
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
−1

)
. (B1)

By using the second-order expansion of log(1+ x) ∼ x− 1
2 x2 when x closes to zero, and Rt→t+T

R f ,t→t+T
sufficiently

closes to one, we obtain

log
(

Rt→t+T

R f ,t→t+T

)
∼ Rt→t+T

R f ,t→t+T
−1− 1

2

(
Rt→t+T

R f ,t→t+T
−1
)2

. (B2)

By taking the conditional expectation under Q-measure, and EQ
t

[
Rt→t+T

R f ,t→t+T

]
= 1, we obtain

EQ
t log

(
Rt→t+T

R f ,t→t+T

)
∼ 1

2
− 1

2
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
. (B3)

Recall the definition of VIX,

V IX2
t→t+T =

2
T

LQ
t

(
Rt→t+T

R f ,t→t+T

)
(B4)
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where LQ
t (X)≡ logEQ

t X−EQ
t logX . Since logEQ

t

[
Rt→t+T

R f ,t→t+T

]
= 0, by (B3), we obtain

V IX2
t→t+T ∼

1
T

(
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
−1

)
. (B5)

Step 2. We derive the futures price of PVIX for α = 2. To simplify notations, we omit the exponent α in the

definition of FPV IX .

We use the formula (B1) for the time period from t +T1 to t +T1 +T2,

V IX2
t+T1→t+T1+T2

∼ 1
T2

(
EQ

t+T1

[(
R
R f

)2
]
−1

)
.

Here, to simplify notation, we write R = Rt+T1→t+T1+T2 ,R f = R f ,t+T1→t+T1+T2 .

By applying the conditional expectation at t in the Q-measure of the last equation, we have

EQ
t [V IX2

t+T1→t+T1+T2
]∼ 1

T2

(
EQ

t

[(
R
R f

)2
]
−1

)
.

∼
(

R f ,t→t+T1

R f ,t→t+T1+T2

)2

 1
T2

EQ
t
[
R2

t+T1→t+T1+T2

]
︸ ︷︷ ︸

FPV IXt,t+T1→t+T1+T2

− 1
T2

To compute FPV IXt,t+T1→t+T1+T2 on the right hand side, it suffices to compute the left fide, which is

EQ
t [V IX2

t+T1→t+T1+T2
] =

EQ
t [V IXt+T1→t+T1+T2 ]︸ ︷︷ ︸

FV IXt,t+T1→t+T1+T2


2

+VarQ
t (V IXt+T1→t+T1+T2).

Here, the first term on the right side of the last equation is the square of the VIX future by the risk-neutral pricing

formula, and the second term is the conditional variance VarQ
t (V IXt+T1→t+T1+T2).

We now consider the VIX option with maturity t + T1 and the underlying VIX is V IXt+T1→t+T1+T2 .

Since the VIX is a tradable asset, by the fundamental pricing theorem in derivative theory, its future value

process under Q− measue is a martingale. Then, the conditional variance VarQ
t (V IXt+T1→t+T1+T2) equals to(

FV IX2
t,t+T1→t+T1+T2

)
σ2T1, σ is the implied volatility of the at-the-money VIX option. Therefore,

EQ
t [V IX2

t+T1→t+T1+T2
] = FV IX2

t,t+T1→t+T1+T2
(1+σ

2T1). (B6)
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Finally, we obtain the futures price of PVIX for α = 2:

(B7)FPV IX (2)
t,t+T1 →t+T1+T2

∼
(

R f ,t→t+T1+T2

R f ,t→t+T1

)2

×
[

FV IX2
t,t+T1→t+T1+T2

+ FV IX2
t,t+T1→t+T1+T2

T1σ
2 +

1
T2

]
Step 3. We compute the forward prices for higher power PVIX for α = 3 by using the result in Step 2. A

recursive procedure is explained in the next Step.

For this purpose, we use the third-order expansion of the function log(1+x)∼ x− 1
2 x2 + 1

3 x3 when x closes

to zero. Therefore,

log
(

Rt→t+T

R f ,t→t+T

)
∼ Rt→t+T

R f ,t→t+T
−1− 1

2
(

Rt→t+T

R f ,t→t+T
−1)2 +

1
3
(

Rt→t+T

R f ,t→t+T
−1)3

we have (since EQ
t [Rt→t+T ] = R f ,t→t+T )

EQ
t

[
log
(

Rt→t+T

R f ,t→t+T

)]
∼ −1

2
EQ

t

[
(

Rt→t+T

R f ,t→t+T
−1)2

]
+

1
3
EQ

t

[
(

Rt→t+T

R f ,t→t+T
−1)3

]
= −1

2

(
EQ

t [(
Rt→t+T

R f ,t→t+T
)2−2(

Rt→t+T

R f ,t→t+T
)+1)]

)
+

1
3

(
EQ

t [(
Rt→t+T

R f ,t→t+T
)3−3(

Rt→t+T

R f ,t→t+T
)2 +3(

Rt→t+T

R f ,t→t+T
)−1]

)
=

1
3
EQ

t [(
Rt→t+T

R f ,t→t+T
)3]− 3

2
EQ

t [(
Rt→t+T

R f ,t→t+T
)2]+

7
6

We use the above equation to replace Rt→t+T by R = Rt+T1→t+T1+T2 , and R f ,t→t+T by R f ,t+T1→t+T1+T2 and

conditional on time t +T +1, we obtain

V IX2
t+T1→t+T1+T2

∼ 1
T2

(
−2

3
EQ

t+T1
[(

R
R f

)3]+3EQ
t+T1

[(
R
R f

)2]− 7
3

)
(B8)

and

EQ
t [V IX2

t+T1→t+T1+T2
]∼ 1

T2

(
−2

3
EQ

t [(
R
R f

)3]+3EQ
t [(

R
R f

)2]− 7
3

)
(B9)

By Step 2, we have

FV IX2
t,t+T1→t+T1+T2

(1+σ
2T1)∼

1
T2

(
−2

3
EQ

t [(
R
R f

)3]+3EQ
t [(

R
R f

)2]− 7
3

)
.

Therefore, we can derive EQ
t [(

R
R f
)3] and the futures price of PVIX for the exponent α = 3.

Step 4. The forward price of PVIX for a general exponent N can be calculated recursively.
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By the N-th order approximation of log(1+ x),

log(1+ x)∼
N

∑
i=1

(−1)i−1 1
i
xi

for x =
Rt+T1→t+T1+T2

R f ,t+T1→t+T1+T2
−1, we obtain

log
(

R
R f

)
∼

N

∑
i=1

(−1)i−1 1
i

(
R
R f
−1
)i

By using the same method in Step 2 and Step 3, we have

EQ
t+T1

[
log(

R
R f

)

]
∼

N

∑
i=1

(−1)i−1 1
i
EQ

t+T1

[(
R
R f
−1
)i
]
.

Since

V IX2
t+T1→t+T1+T2

=− 2
T2

EQ
t+T1

[
log

R
R f

]
∼ 2

T2

N

∑
i=1

(−1)i 1
i
EQ

t+T1

[(
R
R f
−1
)i
]
.

taking expectation conditional on t, the iterated law of expectation implies

Et [V IX2
t+T1→t+T1+T2

]∼ 2
T2

N

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
,

and then,

T2

2
FV IX2

t,t+T1→t+T1+T2

(
1+σ

2T1
)
∼

N

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
, (B10)

Finally, EQ
t

[(
R
R f

)N
]

can be calculated by EQ
t

[(
R
R f

)i
]
, i = 2, · · · ,N−1, recursively. �

Remark. Our approximation in Proposition 3.1 depends on Equation (B2) - (B3). We now explain why this

approximation is sufficiently tight for empirical applications. For simplicity we use x to the random variable
Rt→T

R f ,t→T
− 1. Let a ≡ supx|log(1+ x)− (x− x2

2 )| for all possible scenarios of x. The number a is very small in
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magnitude because x is closes to zero. Moreover, for any c > 0,

EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣] = EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|6 c
]
+EQ

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

6
c3

3
+EQ

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

6
c3

3
+aP(|x|> c).

Clearly, the smaller the parameter c the smaller the first term c3

3 . Even though the probability P(|x|> c) becomes

larger for a smaller value of c, but this probability itself is usually very small. In total, the upper bound of

EQ
[
|log(1+ x)− (x− x2

2 )|
]

is very small.

Numerically, if choose |x|6 1% for the monthly return (annual return bound is 12 percent), and the average

VIX is 15%, then

EQ
t

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣]6 1
3
(0.01)3,

and

∣∣∣EQ
t [log(1+ x)]

∣∣∣= T
2

V IX2 =
1

2×12
(0.15)2.

Therefore,

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣6 1
3
(0.01)3× (2×12)

1
(0.152 = 0.04%.

If we choose a large number for the month return, |x|6 2%, which means annually stock return is bounded by

24 percent and -24 percent on both sides, and V IX = 20%, then

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣6 0.16%.

Therefore, the approximation pricing formula for the futures price of PVIX is sufficiently accurate for the market

data, and Assumption 3.2 is not essentially required.
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Appendix C Proof of Proposition 3.2

Proof of Proposition 3.2 (1). Before considering the futures price of PVIX for any exponent γ > 0, we need

the following Lemma.

Lemma A. Under Assumption 3.1, then for any Lebesgue-measurable function h(x),

CovQ
t (Rt+T1→t+T1+T2 ,h(Rt→t+T1)) = 0. (C1)

Under additional Assumption 3.2, we have CovQ
t (g(Rt+T1→t+T1+T2),h(Rt→t+T1)) = 0.

Proof of Lemma A. The proof is similar to Martin (2021) and Chernov, Lochstoer, and Lundeby (2021). Let

h = h(Rt→t+T1).

CovQ
t (Rt+T1→t+T1+T2 ,h) = EQ

t

[(
Rt+T1→t+T1+T2−EQ

t [Rt+T1→t+T1+T2 ]
)
× (h−EQ

t [h])
]

= EQ
t

[
EQ

t+T1

(
Rt+T1→t+T1+T2−EQ

t [Rt+T1→t+T1+T2 ]
)
× (h−EQ

t [h])
]

= EQ
t

[(
R f ,t+T1→t+T1+T2−EQ

t [R f ,t+T1→t+T1+T2 ]
)
× (h−EQ

t [h])
]

= 0

where the last equation follows from the deterministic assumption (Assumption 3.1) of the risk-free interest

rate. Under Assumption 3.2,

CovQ
t (g(Rt+T1→t+T1+T2),h(Rt→t+T1)) = EQ

t [g
′(Rt+T1→t+T1+T2)]CovQ

t (Rt+T1→t+T1+T2 ,h(Rt→t+T1)) = 0.

�

We first derive Et [Rt+1→t+T ]. We write

Rt+1→t+T

mt,t+T
=

(
St+T

St+1

1
mt+1,t+T

)
1

mt,t+1

For the power utility function,

Rt+1→t+T

mt,t+T
= (Rt+1→t+T )

1+γ × (Rt→t+1)
γ .

By virtue of Lemma A, we have

CovQ
t

(
(Rt+1→t+T )

1+γ ,Rγ

t→t+1

)
= 0. (C2)
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Therefore,

Et [Rt+1→t+T ] =
1

R f ,t→t+T
EQ

t

[
Rt+1→t+T

mt,t+T

]
=

1
R f ,t→t+T

EQ
t

[
(Rt+1→t+T )

1+γ × (Rt→t+1)
]

=
1

R f ,t→t+T
EQ

t

[
(Rt+1→t+T )

1+γ
]
EQ

t

[
1

mt,t+1

]
=

1
R f ,t+1→t+T

EQ
t

[
(Rt+1→t+T )

1+γ
]

=
1

R f ,t+1→t+T
EQ

t

[
EQ

t+1

[
(Rt+1→t+T )

1+γ
]]

=
T −1

R f ,t+1→t+T
FPV IX (1+γ)

t,t+1→t+T .

Here we use the inverting Girsanov theorem that

EQ
t

[
1

mt,t+1

]
= R f ,t→t+1Et [1] = R f ,t→t+1.

Similarly, in terms of two periods T1 and T2, we have

Et [Rt+T1→t+T1+T2 ] =
T2

R f ,t+T1→t+T1+T2

FPV IX (1+γ)
t,t+T1→t+T1+T2

, (C3)

By the same idea, the conditional moments of Rt+T1,t+T2 is

Et [Rn
t+T1→t+T1+T2

] =
1

R f ,t→t+T1+T2

EQ
t

[(
St+T1+T2

St+T1

)n(St+T1+T2

St

)γ]
=

1
R f ,t→t+T1+T2

EQ
t

[(
St+T1+T2

St+T1

)γ+n(St+T1

St

)γ
]

=
1

R f ,t→t+T1+T2

EQ
t

[(
St+T1+T2

St+T1

)γ+n
]
EQ

t

[(
St+T1

St

)γ]
=

T2

R f ,t+T1→t+T1+T2

FPV IX (γ+n)
t,t+T1→t+T1+T2

.

�

Proof of Proposition 3.2 (2). Notice that

Rt→t+1Rt→t+T

mt,t+T
=

St+T

St+1

1
mt+1,t+T

(
St+1

St

)2 1
mt,t+1

.
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That is,

Rt→t+1Rt→t+T

mt,t+T
=

(
St+T

St+1

)γ+1

×
(

St+1

St

)γ+2

Applying Stein’s lemma under the risk-neutral measure Q, we have

Et [Rt→t+1Rt→t+T ] =
1

R f ,t→t+T
EQ

t

[(
St+T

St+1

)γ+1

×
(

St+1

St

)γ+2
]

=
1

R f ,t→t+T
EQ

t

[(
St+T

St+1

)γ+1
]
×EQ

t

[(
St+1

St

)γ+2
]

=
T −1

R f ,t→t+T
EQ

t [PV IX (γ+1)
t+1→t+T ]×PV IX (γ+2)

t

=
T −1

R f ,t→t+T
FPV IX (γ+1)

t,t+1→t+T ×PV IX (γ+2)
t .

For two periods T1 and T2, we have

Et [Rt→t+T1Rt→t+T1+T2 ] =
T1T2

R f ,t→t+T1+T2

×PV IX (γ+2)
t→t+T1

×FPV IX (γ+1)
t,t+T1→t+T1+T2

. (C4)

�

34



References

Adam, K., D. Matveev, and S. Nagel. 2021. Do Survey Expectations of Stock Return Reflect Risk Adjustments?

Journal of Monetary Economics 117:723–740.

Adcock, C., Z. Landsman, and T. Shushi. 2019. Stein’s Lemma for Generalized Skew-elliptical Random Vectors.

Communications in Statistics-Theory and Methods pp. 1–16.

Backus, D., M. Chernov, and I. Martin. 2011. Disasters Implied by Equity Index Options. The Journal of

Finance 66:1969–2012.

Bakshi, G., J. Crosby, X. Gao Bakshi, and W. Zhou. 2019a. A New Formula for the Expected Excess Return of

the Market. Working paper.

Bakshi, G., N. Kapadia, and D. Madan. 2003. Stock Return Characteristics, Skew Laws, and the Differential

Pricing of Individual Equity Options. Review of Financial Studies 16:101–143.

Bakshi, G., and D. Madan. 2000. Spanning and Derivative-Security Valuation. Journal of Financial Economics

55:205–238.

Bakshi, G. S., X. Gao Bakshi, and J. Xue. 2019b. Recovery. Working paper.

Binsbergen, J. H. v., M. Brandt, and R. Koije. 2012. On the timing and pricing of dividends. American Economic

Review 102:1596–1618.

Bordalo, P., N. Gennaioli, R. L. Porta, and A. Shleifer. 2019. Diagnostic expectations and stock returns. The

Journal of Finance 74:2839–2874.

Camara, A. 2003. A generalization of the Brennan-Rubinstein approach for the pricing of derivatives. The

Journal of Finance 58:805–819.

Campbell, J. Y. 2017. Financial decisions and markets: a course in asset pricing. Princeton University Press.

Campbell, J. Y., and S. B. Thompson. 2008. Predicting Excess Stock Returns Out of Sample: Can Anything

Beat the Historical Average? Review of Financial Studies 21:1509–1531.

Carr, P., K. Ellis, and V. Gupta. 1998. Static Hedging of Exotic Options. The Journal of Finance 53.

Carr, P., and P. Laurence. 2011. Multi-Asset Stochastic Local Variance Contracts. Mathematical Finance

21:21–52.

35



Carr, P., and D. Madan. 1999. Option Valuation using the Fast Fourier Transform. Journal of Computational

Finance 2:61–73.

Chabi-Yo, F. 2019. What is the Conditional Autocorrelation on the Stock Market? Working paper.

Chabi-Yo, F., and J. Loudis. 2020. The Conditional Expected Market Return. Journal of Financial Economics

137:752–786.

Chaudhuri, R., and M. Schroder. 2015. Monotonicity of the Stochastic Discount Factor and Expected Option

Returns. Review of Financial Studies 28:1462–1505.

Chernov, M., L. A. Lochstoer, and S. R. Lundeby. 2021. Conditional Dynamics and the Multihorizon Risk-

Return Trade-Off. Review of Financial Studies forthcoming.

Cochrane, J. H. 2017. Macro-finance. Review of Finance 21:945–985.

Collin-Dufresne, P., M. Johannes, and L. Lochstoer. 2017. Asset Pricing when ‘This Time is Different’. Review

of Financial Studies 30:505–535.

DeMiguel, V., L. Garlappi, and R. Uppal. 2009. Optimal versus naive diversification: How inefficient is the 1/N

portfolio strategy? The Review of Financial Studies 22:1915–1953.

Dittmar, R. F. 2002. Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from Cross Section of Equity

Return. The Journal of Finance 57:369–403.

Eraker, B., and Y. Wu. 2017. Explaining the Negative Returns to Volatility Claims: An Equilibrium Approach.

Journal of Financial Economics 125:72–98.

Fama, E. F., and K. R. French. 1988. Permanent and Temporary Components of Stock Prices. Journal of

Political Economy 96:246–273.

Fama, E. F., and K. R. French. 2002. The equity premium. The Journal of Finance 57:637–659.

Gao, L., Y. Han, S. Z. Li, and G. Zhou. 2018. Market intraday momentum. Journal of Financial Economics

129:394–414.

Gormsen, N. J. 2021. Time variation of the equity term structure. The Journal of Finance 76:1959–1999.

Harvey, C. R., and A. Siddique. 2000. Conditional Skewness in Asset Pricing Tests. The Journal of Finance

55:1263–1295.

Hu, G., and K. Jacobs. 2020. Expected and Realized Returns on Volatility. Working paper.

36



Jensen, C. S., D. Lando, and L. H. Pedersen. 2019. Generalized Recovery. Journal of Financial Economics

133:154–174.

Kadan, O., F. Liu, and X. Tang. 2019. Recovering Implied Volatility. Working paper.

Kadan, O., and X. Tang. 2020. A Bound on Expected Stock Returns. Review of Financial Studies 33:1565–1617.

Keynes, J. M. 1936. The general theory of employment, interest, and money. Harcourt, Brace, New York, chap.

12.

Kremens, L., and I. Martin. 2019. The Quanto Theory of Exchange Rates. American Economic Review 109:810–

843.

Lo, A. W., and A. C. MacKinlay. 1988. Stock Market Prices do not Follow Random Walks: Evidence from a

Simple Specification Test. Review of Financial Studies 1:41–66.

Lo, A. W., and A. C. MacKinlay. 1999. A Non-Random Walk Down Wall Street. Princeton University Press.

Malmendier, U., and S. Nagel. 2016. Learning from inflation experiences. The Quarterly Journal of Economics

131:53–87.

Martin, I. 2013. Consumption-Based Asset Pricing with Higher Cumulants. Review of Economic Studies

80:745–773.

Martin, I. 2017. What is the Expected Return on the Market? Quarterly Journal of Economics 132:367–433.

Martin, I. 2021. On the autocorrelation of the stock market. Journal of Financial Econometrics 19:39–52.

Martin, I., and C. Wagner. 2019. What is the Expected Return on a Stock? The Journal of Finance 74:1887–

1929.

Mencia, J., and E. Sentana. 2013. Valuation of VIX Derivatives. Journal of Financial Economics 108:367–391.

Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen. 2012. Time Series Momentum. Journal of Financial Economics

104:228–250.

Nagel, S., and Z. Xu. 2021. Asset pricing with fading memory. Review of Financial Studies forthcoming.

Poterba, J. M., and L. H. Summers. 1988. Mean Reversion in Stock Prices: Evidence and Implications. Journal

of Financial Economics 22:27–59.

Ross, S. A. 1976. Options and Efficiency. Quarterly Journal of Economics 90:75–89.

37



Ross, S. A. 2015. The Recovery Theorem. The Journal of Finance 70:615–648.

Rougier, J. 2016. Lecture Notes on Statistical Inference. https://warwick.ac.uk/fac/sci/statistics/

apts/students/resources-1415/apts_si.pdf.

Schneider, P., and F. Trojani. 2019. (Almost) Model-Free Recovery. The Journal of Finance 74:323–370.

Schroder, M. 2004. Risk-neutral parameter shifts and derivatives pricing in discrete time. The Journal of

Finance 59:2375–2402.

Tian, W. 2014. Spanning with Indexes. Journal of Mathematical Economics 53:111–118.

Vanduffel, S., and J. Yao. 2017. A stein type Lemma for the Multivariate Generalized Hyperbolic Distribution.

European Journal of Operational Research 261:606–612.

38

https://warwick.ac.uk/fac/sci/statistics/apts/students/resources-1415/apts_si.pdf
https://warwick.ac.uk/fac/sci/statistics/apts/students/resources-1415/apts_si.pdf


(a) 1-month PVIX indices (b) 1-month PVIX & CBOE VIX

Figure 1: PVIX index & CBOE VIX
This figure plots 1-month PVIX indices computed from market prices of index options and CBOE VIX index. The sample period is from January 4, 1996 to December
31, 2019.
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(a) Sample period 1871 - 2019 (b) Sample period 1920 - 2019

(c) Sample period 1970 - 2019 (d) Sample period 1990 - 2019

Figure 2: Realized market autocorrelation between adjacent calendar months
This figure plots the realized month-to-month autocorrelation of the S&P 500 monthly returns between two consecutive
months. The area between the dotted line represents the 90% confidence interval for the sample autocorrelation by
assuming the standard error equals one over the square root of the sample size. We consider four time periods: (a)
1871 – 2019, (b) 1920 – 2019, (c) 1970 – 2019, (d) 1990 – 2019. The data prior to January 1927 are obtained from Robert
Shiller’s website.
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(a) Beta coefficient (βt→t+T1 ) (b) Beta & S&P 500 index

(c) The intercept (αt→t+T1 ) (d) The long-run rate ( αt
1−βt

)

Figure 3: Market return dynamics by Q-approach
This figure plots the real time regression coefficients, {βt ,αt}, and the long-run rate, αt

1−βt
, by Q-approach. The sample

period is from February 24, 2006 to December 31, 2019.
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Figure 4: Time-varying market autocorrelation - recursive method
This figure compares the time-varying market autocorrelation computed from different empirical approaches. The sample (empirical) autocorrelation and fading-
memory autocorrelation coefficients are computed recursively with an initial window of 10 years. The key variable of fading memory is set to be ν = 0.018 as in Nagel
and Xu (2021). The Q-approach-based autocorrelation, corrt(Rt→t+1mo,Rt+1mo→t+2mo), is computed at the first day of each month using derivatives.
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Figure 5: Time-varying market autocorrelation - rolling method
This figure compares the time-varying market autocorrelation computed from different empirical approaches. The sample (empirical) autocorrelation and fading-
memory autocorrelation coefficients are computed using a 10-year rolling window. The key variable of fading memory is set to be ν = 0.018 as in Nagel and Xu (2021).
The Q-approach-based autocorrelation, corrt(Rt→t+1mo,Rt+1mo→t+2mo), is computed at the first day of each month using derivatives.
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Figure 6: Month-to-month market autocorrelation by Q- and P-approaches
This figure plots the month-to-month autocorrelation on S&P 500 index between two consecutive months. By P-approach, we compute the sample autocorrelation using
historical monthly return data; by Q-approach, we compute corrt(Rt→t+1mo,Rt+1mo→t+2mo) by derivative data on the first day of each month, and then take the average
within January, February, ..., and December. The sample period is from 2006 to 2019.
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Figure 7: Market timing
This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strategy (benchmark) or market timing strategy over the out-of-sample
evaluation period from December 2006 to December 2019. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month reversal signal,
S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. Mathematically,

S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] =


1, if rt−1→t > 0 & corrt−1(rt−1→t ,rt→t+1)> 0,
1, if rt−1→t < 0 & corrt−1(rt−1→t ,rt→t+1)< 0,
0, otherwise,

where rt−1→t denote the cumulative excess returns over the past 1 month, and corrt−1(rt−1→t ,rt→t+1) is the conditional autocorrelation by Q-approach computed at
time t−1.
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Figure 8: Market timing during NBER recessions
This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strategy (benchmark) or the market timing strategy over the NBER
recessions from January 2008 to June 2009. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month reversal signal,
S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. Mathematically,

S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] =


1, if rt−1→t > 0 & corrt−1(rt−1→t ,rt→t+1)> 0,
1, if rt−1→t < 0 & corrt−1(rt−1→t ,rt→t+1)< 0,
0, otherwise,

where rt−1→t denote the cumulative excess returns over the past 1 month, and corrt−1(rt−1→t ,rt→t+1) is the conditional autocorrelation by Q-approach computed at
time t−1.
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Figure 9: The term structure of expected future one-month return
This figure plots the term structure of the expected future one-month returns by Q-approach. The figure shows the unconditional average return (solid line), the average
return in bad times from January 2008 to June 2009 during the NBER recessions (dashed line), and the average return in good times during the post NBER recessions
(dash-dotted line).
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Figure 10: Expected future one-month returns by Q-approach during the NBER recessions
This figure plots the expected one-month returns in one, three, and six months by Q-approach during the NBER recessions from January 1, 2008 to June 30, 2009. All
results are annualized and expressed in percentage.
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Figure 11: Expected one-month future returns by Q-approach post the NBER recessions
This figure plots the expected one-month returns in one, three, and six months by Q-approach during the post NBER recession period from July 1, 2009 to December
31, 2019. All results are annualized and expressed in percentage.
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Table 1: PVIX index under a log-utility-based SDF

This table provide the summary statistics of power VIX index (PVIX) under a log-utility-based SDF (when γ = 1),
including mean, median, standard deviation, skewness and kurtosis. Panel A uses the sample from January 4, 1996,
the first available date in OptionMetrics; Panel B corresponds to the sample period utilized in the empirical analysis, from
February 24, 2006 to December 31, 2019.

Mean Std dev p25 p50 p75 Skew Kurt

Panel A: Sample period: January 4, 1996 - December 31, 2019

T (in months)

1 12.244 0.052 12.198 12.232 12.284 1.289 7.999

2 6.161 0.048 6.118 6.151 6.201 0.720 3.714

3 4.134 0.046 4.092 4.125 4.172 0.560 2.624

4 3.120 0.046 3.078 3.110 3.158 0.488 2.235

6 2.107 0.044 2.067 2.097 2.143 0.471 2.035

9 1.429 0.042 1.395 1.419 1.454 0.708 2.414

Panel B: Sample period: February 24, 2006 - December 31, 2019

T (in months)

1 12.223 0.050 12.189 12.206 12.244 3.010 19.512

2 6.140 0.042 6.109 6.126 6.161 1.986 10.417

3 4.113 0.039 4.083 4.099 4.133 1.548 6.784

4 3.098 0.036 3.070 3.085 3.116 1.272 5.049

6 2.084 0.033 2.060 2.073 2.101 0.971 3.260

9 1.406 0.024 1.387 1.400 1.425 0.857 4.199
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Table 2: No-arbitrage PVIX futures prices under a log-utility-based SDF

This table provide the summary statistics for prices of futures contract written on 1-month PVIX index. The futures
contracts expire in either 1, 2, 3, 4, 6, or 9 months. We report mean, median, standard deviation, skewness and kurtosis.
The sample period is from February 24, 2006 to December 31, 2019.

Mean Std dev p25 p50 p75 Skew Kurt

Panel A: 1-month PVIX

12.223 0.050 12.189 12.206 12.244 3.010 19.512

Panel B: PVIX futures price

Maturity (in months)

1 12.237 0.056 12.199 12.222 12.262 2.814 15.598

2 12.241 0.048 12.206 12.231 12.268 2.054 9.942

3 12.245 0.043 12.213 12.237 12.272 1.563 7.239

4 12.248 0.040 12.218 12.240 12.275 1.270 5.509

6 12.243 0.034 12.219 12.237 12.260 1.676 6.932

9 12.244 0.045 12.221 12.243 12.269 0.064 4.042
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Table 3: Market autocorrelation by Q-approach

This table reports the statistics of the market autocorrelation of S&P 500 index,

corrt(Rt→t+T1 ,Rt+T1→t+T1+T2) =
Covt [Rt→t+T1 ,Rt+T1→t+T1+T2 ]√

Vart(Rt→t+T1)×
√

Vart(Rt+T1→t+T1+T2)
.

Panel A reports the key summary statistics for the real-time time-series of the market autocorrelation by Q-approach.
We assess the statistical significance of the mean values with a t-test. Panel B reports the sample autocorrelation using
historical data of monthly gross returns. The sample period is from February 24, 2006 to December 31, 2019. *** indicates
significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: Autocorrelation computed from market prices of derivatives (Q-approach)

Mean -0.209*** -0.279*** -0.362*** -0.313*** -0.268*** -0.257***
(-18.10) (-24.40) (-28.66) (-24.42) (-18.20) (-14.73)

p25 -0.290 -0.364 -0.462 -0.383 -0.318 -0.346

p50 -0.196 -0.238 -0.346 -0.270 -0.251 -0.255

p75 -0.087 -0.151 -0.229 -0.194 -0.199 -0.204

Skew -0.944 -0.645 0.252 -1.364 0.018 1.048

Kurt 5.467 7.696 8.711 5.814 8.116 8.160

Panel B: Autocorrelation computed from historical market returns (P-approach)

ρ̂ 0.093 0.044 0.079 0.118 0.035 0.029
(1.20) (0.56) (1.01) (1.50) (0.44) (0.36)
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Table 4: Regression beta coefficient by Q-approach

This table reports the time-series regression beta coefficient,

Y = αt +βtX + ε,

where X = Rt→t+T1 ,Y = Rt+T1→t+T1+T2 . Panel A reports the key summary statistics for the real-time time-series of beta
coefficients by Q-approach. We assess the statistical significance of the mean values with a t-test. Panel B reports the OLS
estimator, β̂ , using historical data of monthly gross returns on S&P 500 index. The sample period is from February 24,
2006 to December 31, 2019. The t-statistics in the parentheses are based on the Newey-West standard errors. *** indicates
significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: Beta computed from market prices of derivatives (Q-approach)

Mean -0.267*** -0.260*** -0.297*** -0.239*** -0.176*** -0.155***
(-17.62) (-21.14) (-25.80) (-21.66) (-17.48) (-14.68)

p25 -0.374 -0.349 -0.380 -0.292 -0.212 -0.205

p50 -0.248 -0.224 -0.285 -0.204 -0.159 -0.141

p75 -0.114 -0.139 -0.184 -0.140 -0.125 -0.106

Skew -1.554 3.591 1.137 -1.994 -0.739 -0.416

Kurt 10.672 69.118 24.782 10.403 10.196 8.227

Panel B: Beta computed from historical market returns (P-approach)

β̂ 0.093 0.030 0.044 0.056 0.013 0.009
(0.77) (0.40) (0.64) (0.84) (0.26) (0.18)
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Table 5: Regression intercept term by Q-approach

This table reports the time-series regression intercept term,

Y = αt +βtX + ε,

where X = Rt→t+T1 ,Y = Rt+T1→t+T1+T2 . Panel A reports the key summary statistics for the real-time time-series of the
intercept term by Q-approach. We assess the statistical significance of the mean values with a t-test. Panel B reports the
OLS estimator of α̂ using historical data of monthly gross returns on S&P 500 index. The sample period is from February
24, 2006 to December 31, 2019. The t-statistics in the parentheses are based on the Newey-West standard errors. ***
indicates significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: The intercept computed from market prices of derivatives (Q-approach)

Mean 1.787*** 1.761*** 1.865*** 1.698*** 1.511*** 1.454***
(39.90) (48.02) (54.91) (51.62) (49.93) (45.65)

p25 1.336 1.407 1.538 1.408 1.362 1.313

p50 1.730 1.656 1.832 1.591 1.460 1.411

p75 2.098 2.023 2.101 1.846 1.619 1.606

Skew 1.578 -4.311 -1.533 2.175 0.593 0.287

Kurt 10.842 84.281 30.568 11.850 10.723 8.813

Panel B: The intercept computed from historical market returns (P-approach)

α̂ 0.913*** 0.976*** 0.961*** 0.950*** 0.993*** 0.997***
(7.37) (12.57) (13.41) (13.56) (18.24) (18.94)
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Table 6: Autocovariances of market returns by Q-approach

This table reports the two autocovariance indices on S&P 500 return by Q-approach,

Covt(Rt→t+T1 ,Rt+T1→t+T1+T2) = Et [Rt→t+T1+T2 ]−Et [Rt→t+T1 ]Et [Rt+T1→t+T1+T2 ],

Covt(Rt→t+T1 ,Rt→t+T1+T2) = Et [Rt→t+T1 Rt→t+T1+T2 ]−Et [Rt→t+T1 ]Et [Rt→t+T1+T2 ].

We assess the statistical significance of the mean values with a t-test. The sample period is from February 24, 2006
to December 31, 2019. The t-statistics in the parentheses are based on the Newey-West standard errors. *** indicates
significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: Covt(Rt→t+T1 ,Rt+T1→t+T1+T2) in percent

Mean -1.282*** -1.285*** -1.551*** -1.480*** -1.087*** -1.108***
(-4.97) (-8.84) (-11.27) (-7.14) (-8.87) (-8.95)

p25 -1.044 -1.418 -1.809 -1.444 -1.174 -1.490

p50 -0.434 -0.613 -0.912 -0.754 -0.714 -0.751

p75 -0.168 -0.353 -0.543 -0.473 -0.475 -0.546

Skew -9.166 -4.073 -2.868 -9.757 -1.363 0.266

Kurt 109.710 49.240 25.255 126.188 25.580 26.747

Panel B: Covt(Rt→t+T1 ,Rt→t+T1+T2) in percent

Mean 3.093*** 3.190*** 3.252*** 3.039*** 2.732*** 2.690***
(8.12) (12.41) (14.24) (12.87) (17.57) (19.45)

p25 1.053 1.431 1.612 1.568 1.604 1.646

p50 1.651 2.011 2.267 2.064 2.094 2.049

p75 3.033 3.473 3.725 3.268 2.986 3.122

Skew 6.300 4.808 3.735 5.777 3.921 3.378

Kurt 55.254 36.209 21.994 55.223 25.994 19.605
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Table 7: Market timing

This table reports the economic value of timing the previous cumulative market excess return and conditional market
autocorrelation by Q-approach. We consider six reversal signals, S̃t,K , for K = 1, 2, 3, 4, 6, and 9 months such that,

S̃t,K [rt−K→t ,corrt−k(rt−K→t ,rt→t+1)] =


1, if rt−K→t > 0 & corrt−k(rt−K→t ,rt→t+1)> 0,
1, if rt−K→t < 0 & corrt−k(rt−K→t ,rt→t+1)< 0,
0, otherwise,

where rt−K→t denote the cumulative excess returns over the past K months, and corrt−k(rt−K→t ,rt→t+1) is the conditional
autocorrelation by Q-approach computed at time t−K.

The single timing strategy, η
[
S̃t,1
]

takes a long position in the market when the one-month reversal signal,
S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. The combination
timing strategy, η

[
S̃t,K ,∀K;ξ

]
utilizes all six reversal signals, and takes a long position in the market only if at least ξ out

of six reversal signals take values of ones. We consider ξ to be 1, 2, 3, 4, and 5.

Panel A and B consider two different out-of-sample periods: 1) sample period: February 24, 2006 − December 31, 2019;
2) NBER recession period: January 1, 2008 − June 30, 2009, respectively. All results are annualized and are based on
excess returns. The average value, standard deviation, and return-loss are expressed in percentage.

Avg ex-Ret (%) Std dev (%) SRatio CEQ SRatio Diff CEQ Diff Ret-Loss (%)

Panel A: Sample period: December 2006−December 2019

Buy and hold 5.489 14.789 0.371 0.044

η
[
S̃t,1
]

4.433 9.616 0.461 0.040 0.090 -0.004 -0.863

η
[
S̃t,K ,∀K;ξ = 2

]
2.389 11.175 0.214 0.018 -0.157 -0.026 1.759

η
[
S̃t,K ,∀K;ξ = 3

]
1.997 9.986 0.200 0.015 -0.171 -0.029 1.709

η
[
S̃t,K ,∀K;ξ = 4

]
1.733 9.343 0.185 0.013 -0.186 -0.031 1.735

η
[
S̃t,K ,∀K;ξ = 5

]
3.347 7.166 0.467 0.031 0.096 -0.013 -0.687

Panel B: NBER recessions: January 2008−June 2009

Buy and hold -32.304 25.565 -1.264 -0.356

η
[
S̃t,1
]

-7.027 14.420 -0.487 -0.081 0.776 0.275 -11.194

η
[
S̃t,K ,∀K;ξ = 2

]
-23.918 20.746 -1.153 -0.261 0.111 0.095 -2.297

η
[
S̃t,K ,∀K;ξ = 3

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888

η
[
S̃t,K ,∀K;ξ = 4

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888

η
[
S̃t,K ,∀K;ξ = 5

]
-0.456 11.728 -0.039 -0.011 1.225 0.344 -14.364
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Table 8: Conditional expected future one-month return by Q-approach

This table provide the summary statistics for the expected future one-month return by Q-approach. The maturities are 1, 2,
3, 4, 6, or 9 months. Spot return is when maturity equals zero. We report mean, median, standard deviation, skewness and
kurtosis. Panel A, B, and C consider three different sample periods: (1) full sample: February 24, 2006−December 31,
2019; (2) Bad times (NBER recessions): January 1, 2008−June 30, 2009; and (3) Good times (post-NBER recessions):
July 1, 2009−December 31, 2019. All results are annualized and expressed in percentage.

Avg. Ret (%) Std dev (%) p25 p50 p75 Skew Kurt

Panel A: Sample period: February 24, 2006−December 31, 2019

Maturity (in months)

0 4.526 4.451 1.958 3.310 5.707 4.479 33.029

1 5.891 5.202 2.813 4.557 6.887 3.810 22.653

2 6.254 4.419 3.386 5.160 7.392 3.077 16.245

3 6.602 3.802 3.993 5.680 7.845 2.530 12.536

4 6.853 3.553 4.350 5.951 8.102 2.155 9.718

6 6.818 3.371 4.386 5.780 8.204 1.895 7.380

9 7.197 3.891 5.093 6.412 9.116 0.837 4.739

Panel B: Bad times (NBER recessions) January 1, 2008−June 30, 2009

Maturity (in months)

0 11.771 9.047 5.595 8.137 14.670 1.979 7.184

1 14.952 10.142 7.527 9.864 20.475 1.359 4.103

2 14.071 7.860 7.959 10.163 19.375 1.131 3.365

3 13.178 6.205 8.286 10.262 18.021 1.075 3.290

4 12.915 5.440 8.528 10.385 17.486 0.868 2.660

6 12.329 4.801 8.435 9.718 17.007 0.712 2.086

9 11.859 4.436 8.549 9.702 16.067 0.997 4.787

Panel C: Good times (post-NBER recessions) July 1, 2009−December 31, 2019

Maturity (in months)

0 3.138 2.009 1.781 2.515 3.888 2.464 12.361

1 4.332 2.477 2.569 3.683 5.233 2.056 8.809

2 4.891 2.399 3.066 4.357 5.753 1.574 5.815

3 5.442 2.356 3.582 4.968 6.331 1.330 4.548

4 5.781 2.360 3.939 5.294 6.714 1.289 4.395

6 6.409 2.451 4.499 5.724 7.366 1.174 3.754

9 7.446 2.931 5.360 6.439 9.011 1.023 3.683
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