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Abstract

While there is a large literature on modeling volatility smile in options markets, almost all
such studies are eventually focused on the forecasting performance of the model parameters
and not on the applicability of the models in a trading environment. Drawing on the
analogy of a volatility smile as interest rate term structure, we evaluate the performance of
the Dynamic Nelson Siegel approach to model the dynamics of volatility smile in a trading
environment against competing alternatives. Based on rank ordering of options identified by
model-based mispricing, our trading strategy is to go long the options in the upper deciles
and going short the options in the lower deciles. We show that, in general, dynamic models
outperform their static counterparts, with the worst dynamic model outperforming the best
static model in terms of percentage of positive returns from the trading portfolios and
the Sharpe ratio. Specifically, we find that the Dynamic Nelson Siegel model consistently
outperforms all other competing specifications on most of our selected criteria.
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1. Introduction

There is a growing literature on understanding the behaviour of volatility smile in option
markets, the name given to the commonly observed empirical relationship between implied
volatility (IV) and option strike. In the last decade, using data from economies with liquid
option markets, there have been many articles published on the modeling of volatility smile,
as well as on its applications in the larger literature on option pricing, financial engineering
and risk management (Cont and Fonseca, 2002; Hagan et al., 2002; Carr and Wu, 2003;
Christoffersen et al., 2009; Taylor et al., 2010; Grnborg and Lunde, 2016; Garca-Machado
and Rybczyski, 2017; Wong and Heaney, 2017; Jain et al., 2019; Kim et al., 2020; Kim,
2021; Franois and Stentoft, 2021a).

The importance of having a systematic approach to modeling volatility smile cannot be
overemphasized – option traders are known to quote not option prices but volatility implied
by them during trading (Reiswich and Wystup, 2009; Wong and Heaney, 2017), making
IV an important forward-looking measure of financial market’s view of uncertainty and risk
aversion over the life of an option contract (Koopman et al., 2005; Jin et al., 2012; Park
et al., 2019). Options are traded for various strikes, and each strike provides additional
information about market participant’s view of the prevailing uncertainty and movement
of future stock returns and volatility. Given the option price, in terms of the Black (1976)
formula, IV is written as an inverse function:

Implied volatility ≡ σIV = Option price−1
Black

(
V, F,K, r, τ

)
where V , F , K, r, and τ respectively denote the option price, price of futures contract with
same maturity as the option, strike price, the risk-free rate, and the time to maturity.

Given the empirically established nature of volatility smile across markets, asset classes and
geographies (for a survey, see Derman and Miller, 2016; Kearney et al., 2019) a working model
for IV becomes important for a variety of reasons. Firstly, and possibly most importantly,
it allows option traders to implement trading strategies given their view on the evolution
of volatility smile (Kim et al., 2020). Secondly, a model for the volatility smile allows for
extracting the market implied risk-neutral probability distribution of future price movements
(Malz, 1997; Jackwerth, 2004; Hayashi, 2020). Finally, the ability to price over-the-counter or
exotic equity derivatives requires volatility smile as an input to stochastic volatility models,
to ensure that the model-dependent price of any exotic option and the associated hedging
strategy are consistent with the prices of prevailing plain vanilla option prices (Dupire, 1994;
Rebonato, 2004; Wong and Heaney, 2017; Gatheral et al., 2020).

This paper contributes to the stream of literature on modeling volatility smile by showing the
superiority of dynamic models of IV for implementing trading strategies using stock options
data from the National Stock Exchange of India (NSE). The reason for choosing data from
NSE are two-fold: i) it is one of the few markets worldwide with a liquid stock options
market, consistently ranking among the largest options market globally by volume (World
Federation of Exchanges, 2021), and ii) unlike most developed country options markets,
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NSE also has liquid futures contracts simultaneously with liquid options on the same stock,
allowing us to directly use the Black (1976) formula to find implied volatility without needing
to estimate stock-wise dividend yield (Jain et al., 2019).

We draw on the analogy of a volatility smile as interest rate term structure (Derman et al.,
1996; Rogers and Tehranchi, 2010), and use a popular approach to fit the term structure
in fixed income markets called the Dynamic Nelson Siegel (DNS) model (Diebold and Li,
2006) to fit IV as a function of delta dynamically. The use of the Diebold and Li (2006)
approach to model the time evolution of volatility is not new. Starting from the work of
Chalamandaris and Tsekrekos (2011), many researchers have used their flexible approach
to model volatility surface across markets (Chalamandaris and Tsekrekos, 2014; Guo et al.,
2014) and asset classes (Kearney et al., 2019). All these papers, however, use the Diebold and
Li (2006) specification to only model the time dimension of the volatility surface and not for
modeling the dynamics of the smile itself. Also, most of these studies are eventually focused
on the forecasting performance of the model parameters and not on their applicability or
use in a trading environment.

There are three main concerns in using static models for fitting the volatility smile. Firstly,
there is no way to ensure that smile evolution is economically reasonable, and because
parameters are estimated separately for each day, the fitted smile can vary wildly over
consecutive days. Secondly, even in liquid option markets, not all instruments or option
strikes are equally liquid (World Federation of Exchanges, 2021), and price of illiquid options
can often be distorted. This is similar to the phenomenon of not all Government bonds being
equally liquid in fixed-income markets (Cortazar et al., 2007; Nagy, 2020). Thirdly, and
specific to the use of lower-order polynomials in fitting volatility smile (Jain et al., 2019),
quadratic models assume a symmetry which is at odds with the observed downward sloping
relationship between IV and delta (often called a skew or a smirk) for stock options (Zhang
and Xiang, 2008).

The use of dynamic state space models addresses all of these concerns. By design, the DNS
approach estimates the whole panel of observations together by explicitly incorporating the
time dynamics of the underlying factors. This allows for aggregating trading information
over a longer period in a theoretically consistent manner, so the distorted prices pose less
of a problem and the specification is flexible enough to capture smirks at the same time.
Finally, with a larger sample of observations available and a reasonable dynamics imposed
on the parameters by construction, the parameter evolution is naturally smoother. In terms
of a state space interpretation of the model, our study is closest to that of Chen et al. (2018)
who apply the adaptive version of DNS (Chen and Niu, 2014) which successively estimates
the model parameters over optimal subsamples of varying lengths.

We show that our implementation based on the DNS model estimated using the Kalman
Filter outperforms other comparable candidates in terms of profit generated from trading
strategies. In our horse race, we consider four specifications: the DNS model estimated
for the full sample, a static Nelson Siegel (SNS) model estimated separately for each day
in the sample, and similarly for the dynamic and static versions of a quadratic polynomial
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used by Jain et al. (2019) on the same NSE data in an earlier study. The Dynamic Nelson
Siegel model consistently outperforms the other three specifications on most of our selected
criteria. Although static models provide marginally better in-sample fit than their dynamic
counterparts, their performance is marred by highly unstable factor estimates over time.

The main contribution of this study is to evaluate the utility of popular competing models
from the perspective of an options trading desk. We create delta and vega-neutral portfolios
of option contracts by buying/selling undervalued/overvalued options (as implied by the
models) for 100 different stocks in each expiration cycle. The DNS model performs the best
with a 65% win rate (percentage of positive returns in the sample), a 104% mean annual
return, and with a Sharpe ratio of 0.13. Using a one-sided paired Wilcoxon Rank test,
we also demonstrate that the returns generated by the DNS model are statistically greater
than that of competing models at 99% confidence interval. Our results are robust for stocks
across industries and expiration cycles.

We also demonstrate that the return generated by the trading strategy is not driven by
portfolio exposure to other systematic risk factors relevant to the options market. Given
that our portfolios throughout are delta and vega-neutral by design, we regress portfolio
return on other relevant option Greeks, including theta, rho, gamma, vanna and vomma
and find that none of these Greeks have significant explanatory power for the portfolio
returns, suggesting trading returns are driven primarily by the mispricing captured by the
DNS model.

Our results also provide some interesting insights about the attributes of our two class of
models. On the majority of metrics, dynamic models outperform their static counterparts,
with the worst dynamic model outperforming the best static model in terms of the win rate.
The comparison between the SNS and quadratic models is more nuanced. In their static
avatars, the more parsimonious quadratic model does distinctly better, whereas the more
flexible DNS model is superior in a dynamic setting. The lesson here is that a more flexible
model needs more data to be effective.

The rest of the paper is structured as follows. Section 2 reviews the related literature and
describes our research questions. Section 3 describes the data, and section 4 presents our
modeling approach and the estimation methodology. Section 5 discusses the results and
presents our main findings. Finally, section 6 concludes.

2. Literature review and research questions

The original Black-Scholes approach to option pricing (Black and Scholes, 1973) was based
on the principle of no-arbitrage using the ideas of dynamic replication and a self-financing
strategy, and getting to the Black-Scholes formula required many assumptions, including,
and most importantly, that of constant volatility (Merton, 1973). In the early 1990s, how-
ever, Rubinstein (1994) documented that since the late 1980s, out-of-the-money (OTM)
put options on the S&P500 index have consistently traded at a higher prices compared to
equivalent OTM call options. In terms of IV, this translates into a higher IV for OTM put
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options compared to that for OTM call options, resulting in what has now come to be known
as volatility smile.

The theoretical explanations for the existence of a volatility smile include the leverage effect
(Black, 1976), increased risk aversion and hedging demand for put options in times of mar-
ket stress (Franke et al., 1998; Bollen and Whaley, 2004) and a compensation for bearing
short-run variance risk (Vogt, 2016). Over time, the existence of volatility smile has been
documented in other equity options markets globally (Dennis and Mayhew, 2002; Foresi and
Wu, 2005), including the Indian options market (Jain et al., 2019). Figure 1 provides a
snapshot of a volatility smile for a sample stock (ticker RELIANCE) as on January 1, 2020.

[Insert Figure 1 about here]

Given the importance of volatility for financial engineering and risk management, modeling
volatility smile has been one of the most prolific areas of research within option pricing.
The literature on modifying the Black-Scholes model to capture volatility smile has evolved
in three broad directions. The first strand attempts to capture the smile using stochastic
volatility (SV) models within a no-arbitrage setting, with some of the early popular papers
including Hull and White (1987), Stein and Stein (1991) and Heston (1993). They have been
found to be particularly useful for pricing path-dependent derivatives (Kou and Wang, 2004,
and references therein). In a different context, SV models have also been used by studies who
take a general equilibrium approach to option pricing (Guidolin and Timmermann, 2003),
though these have been found to only limited empirical success (for a review, see Bedendo
and Hodges, 2009).

The second strand on local volatility (LV) models, developed originally by practitioners,
modified the Black-Scholes approach by defining volatility as a deterministic function of the
underlying stock price and time (Dupire, 1994; Derman and Kani, 1994). Their attractive-
ness stems from their internal consistency, particularly in their ability to fit prevailing prices
of plain vanilla call and put options, making them popular for pricing exotic options (Rebon-
ato, 2004). However, after Hagan et al. (2002) identified that the dynamics of the market
smile predicted by LV models varied significantly from the market observed behaviour of the
smile, the use of pure LV models has almost ended, and popular models for pricing exotic
options today include at least some SV component, effectively leading to merging of models
in the first two strands in practice (Rebonato et al., 2009).

The third strand, and the one that has seen the most development in empirical finance
recently, involves the use of atheoretical models. These effectively constitute statistical
methods that describe the shape of the smile parametrically or non-parametrically, often
using unobservable latent factors (Dumas et al., 1998). The different approaches to modeling
volatility smile this way in the more modern literature range from use of polynomials (Zhang
and Xiang, 2008; Le and Zurbruegg, 2014; Choi et al., 2015; Sui et al., 2020; Kim, 2021; Yue
et al., 2021) to use of SV models (Franois and Stentoft, 2021a) to use of semi-parametric
methods (Fengler and Hin, 2015, and references therein) and neural networks (Liu et al.,
2021). In a recent study with a detailed review of the related literature, Kim (2021) concludes
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that such atheoretical models (the author calls them ad hoc Black-Scholes models) are “...the
best alternative to mathematically sophisticated option-pricing models given its simplicity
of implementation.” A study which is methodologically closest to ours, Chen et al. (2018),
also acknowledges that “...structured parametric forecasting models achieve superior out-of-
sample results.”

The literature on volatility smile goes beyond just exploring the relationship between IV
and strike or delta. For markets with liquid long-maturity options, researchers have also
looked at both the pure term structure of volatility (the time dimension) as well as the
volatility surface – the mapping of IV with respect to both strike and time to maturity.
Some examples of such studies include Chalamandaris and Tsekrekos (2011), Guo et al.
(2014), Chalamandaris and Tsekrekos (2014), Guo et al. (2018), Kearney et al. (2019, and
references therein) and Kim et al. (2020). Since liquidity in stock options in India is restricted
to those with short maturity, exploring the time dimension or the volatility surface is outside
the scope of our study. Even so, the literature and the methodological approach used to
model the time dimension and the volatility surface remains quite relevant for us, as many
such recent studies use the Diebold and Li (2006) approach, the one that we also use.

The interpretation of a volatility smile as a schedule of IV for varying strikes in options
markets – similar to the schedule of interest rates for varying maturities in bond markets –
is a powerful idea (Derman et al., 1996; Rogers and Tehranchi, 2010; Derman and Miller,
2016) and something we exploit to model the behaviour of volatility smile in our study.
In particular, we use a popular approach to fit the term structure in fixed income markets
called the DNS model (Diebold and Li, 2006) to fit IV as a function of delta dynamically.
While DNS has been used to model volatility surface across markets (Chalamandaris and
Tsekrekos, 2014; Guo et al., 2014) and asset classes (Kearney et al., 2019), the focus in those
studies has invariably been on using the Diebold and Li (2006) specification to only model
the time dimension of the volatility surface and not for modeling the dynamics of the smile
itself. Also, all the above cited studies are eventually focused on the forecasting performance
of the model parameters and not on their applicability or use in trading. To our knowledge,
there is no other study in the literature which has used our approach to model the time
dynamics of volatility smile with respect to option delta in a trading environment.

Our first research question follows directly from the literature reviewed above: do dynamic
models of IV perform better or worse than their static counterparts in terms of profit from
a trading strategy after accounting for transaction costs? We address this question in the
context of both the DNS model of Diebold and Li (2006) as well as the quadratic polynomial
approach of Malz (1997) as implemented by Jain et al. (2019). Our second research question
relates to the choice of the model itself: does the DNS model perform better or worse than
the quadratic polynomial approach?

In a recent study, Agarwalla et al. (2021b) showed that as COVID-19 spread through the
economy, the option implied risk-neutral density responded differently across sectors. There
is also evidence that there is an idiosyncratic component of information content of IV, with
stocks with a higher trading volume containing more information (Sui et al., 2020). Since
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our sample includes the onset and spread of COVID-19 in India, our third and final research
question relates to determinants of performance of the trading strategy across options on
stocks belonging to different sectors of the economy through the spread of COVID-19.

3. Data

We use stock options data from NSE, one of the few markets worldwide with a liquid stock
options market along with a simultaneously liquid stock futures market, consistently ranking
among the largest options market worldwide (World Federation of Exchanges, 2021). The
existence of matching liquid futures contracts allows us to directly use the Black (1976)
formula to find IV without needing to estimate stock-wise dividend yield (Jain et al., 2019).

As on date, NSE has more than 150 stock options (SSOs) listed for trading, but not all
are equally liquid. To ensure that our results are not affected by highly illiquid contracts,
we select top 100 SSOs sorted by trading volume for our purpose (the full list used in the
sample is given in table A.1. The sample period is January 1 to December 24, 2020.

Given our focus on implementing our models for trading strategies, only near-month options
data are used, and to avoid issues arising from expiration day effects (Bollen and Whaley,
1999) we remove all data with less than five days before the expiry date. Following Franois
and Stentoft (2021b), we also remove all observations which violate the option bounds, and
following Mixon (2009), we only consider those stock option days where at least five unique
options have been traded. Overall, this leaves us with a final sample consisting of a total of
501,697 daily observations. Table 1 presents a summary of the observations across delta for
call (left panel) and put (right panel) options.

As is now common in the literature, we convert delta of the put option into delta of the
corresponding call option to make the range of delta in (0, 1] throughout. Our sample
period also includes the COVID-19 shock in March 2020. Panel A of Table 1 provides the
summary of the full sample, while panel B provides the summary of the subsample around
the spread of COVID-19 in March, 2020. Column ‘N’ presents the monthly average of
number of observations, ‘Bid-ask Spread (%)’ presents average bid-ask spread divided by
option price in percentage terms, ‘Volume’ presents average monthly traded volume, and
‘N(trades)’ represents the average monthly number of trades. For the risk-free rate input to
the Black (1976) formula, the implicit yield at cut-off price of 91-day Treasury bill published
by the Reserve Bank of India is used. Finally, for studying determinants of profit from
trading strategy through the spread of COVID-19, following Agarwalla et al. (2021b), we
classify the stocks into eleven unique industries based on the Global Industry Classification
Standard (GICS) (table A.1 provides the classification).

[Insert Table 1 about here]

4. Modeling volatility smile using the Dynamic Nelson Siegel approach

The original Nelson Siegel (NS) model dates back to the 1980s (Nelson and Siegel, 1987),
and with its parsimony and intuitive interpretation of model parameters, it has been one
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of the most popular choice of models with central banks and practitioners to fit the term
structure of interest rates. The NS model assumes that the instantaneous forward rate is
the solution to a second-order differential equation with two equal roots. The resulting spot
rate or zero-coupon yield from the model is given by:

y(τ) = β0 + β1

(
1− e−λτ

λτ

)
+ β2

(
1− e−λτ

λτ
− e−λτ

)
(1)

Diebold and Li (2006) extended the model into a dynamic setting by allowing the NS pa-
rameters to vary over time. Referred to as the Dynamic Nelson Siegel model, its popularity
has only increased since (for a recent survey, see Kumar and Virmani, 2022). The dynamics
of the spot rate in the DNS model is given by:

yt(τ) = β0,t + β1,t

(
1− e−λτ

λτ

)
+ β2,t

(
1− e−λτ

λτ
− e−λτ

)
(2)

where, yt is the zero-coupon yield at time t with maturity τ , and β0,t, β1,t, β2,t are often
referred to as ‘factor loadings’ (Nelson and Siegel, 1987). Their behaviour is such that β0,t

is constant across maturities, β1,t is decreasing across maturities, and β2,t is hump-shaped,
with the parameter λ determining the location of the hump. This structure has been found
to be flexible enough to fit different shapes of the yield curve (Diebold and Li, 2006).

Alexander (2001) showed that similar to the term structure, the three principal components
of volatility can also be understood in terms of the level, slope and the curvature of volatility
smile. In the literature on modeling volatility smile, however, the DNS model has only
been predominantly used to model the volatility term structure, with examples including
Chalamandaris and Tsekrekos (2011), Guo et al. (2014), Chalamandaris and Tsekrekos
(2014), Guo et al. (2018), Kearney et al. (2019, and references therein) and Kim et al.
(2020).

Following Alexander (2001) and the analogy drawn by Derman et al. (1996), Rogers and
Tehranchi (2010) and Derman and Miller (2016), we use the DNS approach to model the
dynamics of volatility smile in our study. To our knowledge, no other study in the literature
has taken this approach to modeling the dynamics of the smile. The study closest to ours,
methodologically, is that of Chen et al. (2018) who apply the Adaptive DNS approach of
Chen and Niu (2014) to model the term structure of volatility smile.

For reasons explained in Agarwalla et al. (2021b), we model volatility smile with respect
to option delta (∆). In particular, analogous to a model for the term structure of interest
rates, our model specification for IV as a function of delta (yt(∆)) is the following:

yt(∆) = β0,t + β1,t

(
1− e−λ∆

λ∆

)
+ β2,t

(
1− e−λ∆

λ∆
− e−λ∆

)
+ ϵt (3)

8



Depending on the context, ϵt or ϵ denote the error terms throughout.

As mentioned earlier, in our horse race of models, we compare profits from a trading strategy
based on the DNS model with three alternatives: i) its static avatar, the static Nelson Siegel
model (SN), ii) the quadratic polynomial approach of Malz (1997) as implemented by Jain
et al. (2019), which we refer to as the static quadratic (SQ) model:

y(∆) = a∆2 + b∆+ c+ ϵ (4)

and, iv) its dynamic version, which we call the Dynamic Quadratic (DQ) model:

yt(∆) = at∆
2 + bt∆+ ct + ϵt (5)

For the static models, the estimation is relatively straight forward, and we estimate the
parameters for each day independently by minimizing the weighted sum of the square of the
estimation error as:

min
N∑
i=1

ωi × (σIV,i − σ̂model,i(β,∆))2 (6)

where, as defined earlier, σIV,i = Option price−1
Black,i

(
Vi, Fi, Ki, r, τi

)
, σ̂model,i(β,∆) is the pre-

dicted implied volatility from a given model with the parameter vector β. Given the
large variation in terms of trading volume and liquidity across option strikes, we incor-
porate the heterogeneity of the trading volume in the estimation by assigning different
weights to the observation measured by the natural logarithm of trading volume, i.e. we set
ωi = log(trading volumei).

4.1. Estimation of the Dynamic Nelson Siegel and Quadratic models

We cast both our dynamic models in a state space framework and estimate them using the
approach laid out in Kumar and Virmani (2022). We describe the steps for estimation for
the DNS model here. The approach for estimating the DQ model is analogously identical.

As in Diebold and Li (2006), the three parameters in the DNS (β ≡ (β0, β1, β2)) model are
assumed to follow a Vector Autoregressive process of order 1 or VAR(1). Extending equation
3 earlier, our state space specification for DNS is:

yt(∆) = β0,t + β1,t

(
1− e−λ∆

λ∆

)
+ β2,t

(
1− e−λ∆

λ∆
− e−λ∆

)
+ ϵt Measurement equation

βt = C+Aβt−1 + ηt State equation

(7)

where yt is the observed IV, ∆ is the corresponding call delta, and βt ≡ {β0,t, β1,t, β2,t} is the
vector of time varying NS parameters. The constant vector C and the matrix A together
define the VAR process. In the language of state space models, ϵt captures the measurement
error and ηt the state error, with their joint distribution assumed to be Normal/Gaussian:
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(
ϵt
ηt

)
∼ N

[(
0
0

)
,

(
Ht 0
0 Qt

)]
(8)

The standard approach for the estimation of a linear state space model with Gaussian errors
is the use of the Kalman Filter and maximum likelihood. The Kalman filter recursively
updates the mean and variance of the state vectors. First, the state mean and covariance
are initialized at the values of their unconditional mean and covariance respectively:

E(β0|F0) = E(β0), Σ(β0|F0) = Σ(β0) (9)

The update equations for conditional mean and covariance from time k− 1 to k follow well-
defined recursions. At every step of the recursion, the Kalman filter predicts the conditional
mean and variance of the measurement variable (yk) using the updated conditional mean of
the state vector. Calling F as the NS loading of the factors, the main recursions are:

E(βk|Fk−1) = C+AE(βk−1|Fk−1)

Σ(βk|Fk−1) = AΣ(βk−1|Fk−1)A
T +Qt

E(yk|Fk−1) = FE(βk|Fk−1)

Σ(yk|Fk−1) = FΣ(βk|Fk−1)F
T +Ht

(10)

Finally, ζk is the prediction error vector measured as difference between yk and its condi-
tional expectation, and the Kalman filter algorithm uses ζk to update the inference about
the unobserved state vector by revising its conditional expectation and variance using the
following recursions:

ζk = σk − E(yk|Fk−1)

E(βk|Fk) = E(βk|Fk−1) +Kkζk

Σ(βk|Fk) = (I − KkF)Σ(βk|Fk−1)

(11)

where
Kk = Σ(βk|Fk−1)F

TΣ(σk|Fk−1)
−1 (12)

The above steps are repeated for every time step to get the estimates of the prediction error
(ζk) and the covariance matrix of the state vectors (Σ(βk|Fk−1)). Under the assumption of
Gaussian error terms, the log-likelihood function takes the following form:

l(θ) = −1

2

N∑
k=1

(
nk ln 2π + ln(det(Σ(βk|Fk−1)) + ζTk Σ(βk|Fk−1)

−1ζk
)

(13)
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where N is the number of time points in the sample, and nk is the number of observations
at time point k.

The model specification and steps for estimation for the DQ model are exactly analogous.

yt(∆) = at∆
2 + bt∆+ c+ ϵt Measurement equation

βt = C+Aβt−1 + ηt State equation
(14)

where, in this case, βt ≡ {at, bt, ct}.

5. Results

5.1. Preliminary analysis
For comparing the performance and parameter stability across models, it is useful to have a
reference point. And the simplest, and arguably the most natural, reference point is the IV
corresponding to ∆ = 0 (deep OTM options), which we refer to as IVOTM. In the quadratic
model, IVOTM is captured by the coefficient c, and that in the NS model is captured by the
sum of the first two coefficients, β0 + β1 (as ∆ → 0; see Nelson and Siegel, 1987). To begin
with, we use the IVOTM estimate to compare the in-sample performance and the stability of
factors estimates across the four models.

Figure 2 represents time series evolution of IVOTM for the four methods for a sample stock
(ticker RELIANCE). Except for the NS model, which shows large in-sample variation, the
corresponding values from the other three models are comparable. Given the high variation
in IVOTM from the NS model (as seen in the top panel of figure 2), the bottom panel separately
compares IVOTM from DNS, DQ and SQ models. Although not shown here, we find the same
pattern for all the stocks considered in the sample (results available on request).

[Insert Figure 2 about here]

Next, to quantify the stability of parameters, we use the standard deviation of the first
difference of the estimates, and for comparing the in-sample fit we use the Root Weighted
Mean Squared Error (RWMSE), as defined earlier in equation 6. Table 2 provides a summary
of these measures (mean value across 100 symbols) across the four models. The top panel
presents the result for the two NS variants, and the bottom panel presents the results of two
quadratic models. For both types, the dynamic specification provides more stable factor
estimates than their static counterparts. The difference is even more stark in the case of NS
and DNS. The NS model has four free parameters (β0, β1, β2, λ), as compared to three in
the quadratic model (a, b, c). It is evident that this additional flexibility of the NS model
comes at the cost of possible overfitting. The NS seems useful only in its dynamic avatar, the
DNS model. On the other hand, for most of the stocks, SQ model provides better in-sample
fit than its dynamic counterpart. However, the difference in the RWMSE across the four
models is marginal (in the range of 0.1% to 0.3%) for most of the stocks.

[Insert Table 2 about here]
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5.2. A trading strategy based on mis-pricing

While the in-sample fit is a good measure to assess the ability of a model to match the
observed shape of the volatility smile, it is neither a necessary nor a sufficient condition for
the model’s success in a real world trading environment. A better measure of predictive
ability for the task at hand is the trading profits or returns generated by a trading strategy
based on the competing models.

Our preferred trading strategy follows the popular market-neutral long-short portfolio ap-
proach widely used in the empirical asset pricing literature (Jegadeesh and Titman, 1993;
Pástor and Stambaugh, 2003; Fama and French, 1993). This formulation allows us to tease
out the variation in the excess return contributed by the specific risk factors or anomalies
after controlling for other risk factors. Goyal and Saretto (2009) use a similar approach in
the context of option markets, where they explore the relationship between option returns
and the difference between historical realized volatility and ATM IV. Although, in princi-
ple, we also explore the relationship between the pricing error (measured by the difference
between market price and model price) and option returns after controlling for other risk
factors for the options (as measured by option Greeks), our objective here is more aligned
with the idea of statistical arbitrage. Our approach is based on earning almost riskless profit
by buying the undervalued and selling the overvalued options implied by the model. The
step-by-step details of the trading strategy as implemented by us is described below.

[Insert Table 3 about here]

Step 1. Identification of options to trade: Every day, we divide the traded options in 10
deciles based on their pricing error (market price−model price). Our preferred trad-
ing strategy buys the cheapest or most undervalued options (bottom 10% of options
ranked by market price model price) and sells the most expensive or overvalued
options (top 10% of options ranked by market price−model price). We also consider
buying the bottom 20% (undervalued) options and selling the top 20% (overvalued
options) and seven other strategies for selecting options to trade (these are listed
in Table 3). However, these alternative strategies do not perform as well as our
preferred strategy which is also intuitively understandable.

Step 2. Weighting of options : For simplicity and better diversification, we choose to equally
weight all the options in the long side of the trade, and separately equally weight
all the options in the short side of the trade.

Step 3. Scaling of the long versus short side of the trading portfolio: In order to reduce the
risk of the strategy as much as possible, we scale the long and short portfolios to
have equal (and opposite) vega so that the total trading portfolio is vega-neutral.
We do not equate the market value of the options on the long and short side, because
the capital required to support this trade has very little to do with the net option
premium. As explained below, the economic capital required to support the trade is
estimated using the margin rules of the derivatives exchange (in this case, the NSE
clearing corporation). Also, we do not try to equate the notional value or the option
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delta of the long and short side because we can (and do) use the liquid SSF market to
make the portfolio delta-neutral. The only material choice here is between gamma
and vega-neutrality, but gamma is more relevant in a hold-to-maturity paradigm,
while (subject to liquidity considerations) we seek to trade out of our positions as
soon as the market price converges to the model price.

Step 4. Exit strategy : As mentioned above, our preference is to trade out of our positions
as soon as the market price converges to the model price. But this is not always
possible because some strikes may be relatively illiquid to begin with. Moreover,
even an option that was liquid at inception could become illiquid subsequently if the
underlying moves significantly causing the strike to stray far from the money. If we
are unable to exit the position due to illiquidity, we hold the option to maturity and
calculate the payoff at expiry by using the SSF price. We rebalance the portfolio on
a daily basis to maintain delta and vega-neutrality.

Step 5. Economic capital and rate of return: We calculate profit of every symbol for each
expiry cycle independently, resulting in 1,200 profit observations (100 stocks × 12
expiry cycles). To calculate the rate of return, we divide the realized profit of the
trading strategy by the economic capital required for the strategy. We estimate
the economic capital using the SPAN methodology used by the NSE to determine
portfolio margins. This capital requirement is also a close approximation to the
regulatory capital, but it could be an underestimate because the exchange also
levies certain other margins like intraday margins which we ignore for our study.
The use of margin rules to estimate capital requirements and rate of return is well
established in the literature (Murray, 2013).

Step 6. Accounting for transaction costs : Our objective of this analysis is twofold: first,
to demonstrate that market price of the option contracts has a tendency to revert
to the model price implied by the respective models. For this purpose, we use the
last traded price as the execution price. However, this assumption might not be
realistic from the trading perspective, because of the presence of bid-ask spread. In
the next set of analysis, we explore whether the mispricing in the option market is
significant enough for traders to earn profit, even after considering the impact of
bid-ask spread. Here, we approximate the ask price (price at which trader can buy)
by adding half of the average bid-ask spread for the day for that particular contract,
and similarly for the bid price (price at which trader can sell), by subtracting half
of the average bid-ask spread for the day for that particular contract. The bid-ask
spread is determined by averaging the bid-ask spreads at five different time stamps
during the day. NSE provides the five order book snapshots, taken at 11:00, 12:00,
13:00, 14:00 and 15:00 hours. We first compute the bid-ask spread for each option
contract using the order book snapshots and then use the average of the bid-ask
spreads as a measure of the transaction cost. Although tedious and demanding, this
granular approach of calculating contract-wise bid-ask spread enables us to filter
out extremely illiquid deep ITM and OTM strikes from our trading sample, which
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are suspected to be used for tax manipulation purposes (Jain et al., 2019) with the
possibility of trade happening at a very unreasonable price.

Step 7. Setting a placebo sample - a random portfolio: To ascertain that the trading profit
is generated solely because of the mispricing captured by the model, and not by
design of the trading strategy itself, we also create a placebo long-short portfolio.
This strategy, referred to as random strategy henceforth, randomly selects 10% of the
traded option contracts to buy and 10% of the traded option contracts to sell. The
rest of the implementation follows the exact procedure of trading strategy described
earlier.

This completes our description of the steps involved in implementing our trading strategy.

Table 4 provides a comparison of the performance of our preferred trading strategy of buy-
ing the top decile and selling the bottom decile across different estimation models. Panel A
provides the performance summary of the trading strategy, where we assume that orders are
executed on the last traded price without accounting for transaction costs, and panel B pro-
vides the performance summary of the trading strategy after accounting for the transaction
costs on the order execution.

The ‘win rate’ row provides the percentage of positive return observations in the sample,
and the next five rows provide the summary statistics of the return observation measured
in percentage points. The last three rows respectively provide the Sharpe ratio, the 5th
percentile and the mean of the profits in Indian Rupees (INR). As described earlier, we
scale the long and short portfolios to have equal (and opposite) vega. Thus, the cash profit
earned on any of the strategies is also a scaled measure (INR earned on 1000 vega long
and short exposure), and therefore they can be compared across strategies. Note that the
negative of the 5th percentile of the profit in INR is the associated 95% Value at Risk for
the strategy.

[Insert Table 4 about here]

In the first set of results shown in panel A, all four models perform much better than
the random strategy on all the performance criteria. As expected, the random strategy
has around 50% win rate compared to the win rate of around 88-90% for the four models.
Overall, the dynamic models outperform their static counterparts, with the DNS performing
the best on most of the criteria (except on the Sharpe ratio, where DQ performs the best).
In the second set of results, panel B summarises our main result relevant from a trading
perspective. In this, we also consider additional transaction costs implied by bid-ask spread.
While, as expected, the overall performance of the second trading strategy across models
is significantly inferior, now the superiority of dynamic models comes across as even more
pronounced, suggesting that the performance of the static models might be inflated in the
earlier case because of the inclusion of less liquid contracts in the trading sample. The DNS
model now outperforms all other models with a 65% win rate and 104% annualized average
return, followed by the DQ model.
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[Insert Table 5 about here]

We also examine the statistical significance of the difference in the trading returns between
dynamic and static models. As the paired differences of the trading returns do not have
a Normal distribution, we conduct a one-sided paired Wilcoxon Rank test on the paired
observations of selected models’ trading returns. Table 5 provides p-value of the paired
Wilcoxon Rank test, with the alternative hypothesis that the returns generated by model in
row-names are greater than the returns generated by model in the column-name. As earlier,
panel A presents the results without considering the impact of transaction costs, while panel
B does so. The results confirm the superiority of DNS model over all other models with a
p-value of < 0.01 in all cases but one. When transaction costs are considered, the DQ model
provides statistically significant higher returns than its static counterpart.

As a robustness check, we also consider eight additional trading strategies depending on the
decile buckets considered for buying and selling securities. Table 3 provides brief description
of these strategies, and figures 3 and 4 provide boxplots for trading returns generated by
these strategies both with and without bid-ask spreads. As expected, the performance of
the trading strategies deteriorate as the option selection criteria approach the median decile.
But as earlier, here also the DNS model outperforms other models for most of the strategies
even if the majority of strategies generate a negative median return after accounting for
transaction costs. Overall, our results show that the trading returns generated by the
preferred ‘10-1’ strategy using the DNS model are neither driven by any particular industry,
nor by any specific period. The trend of superiority of the DNS model remains even with
trading strategies based on other deciles.

[Insert Figure 3 about here]

[Insert Figure 4 about here]

5.3. Determinants of profit from the trading strategy

Finally, we demonstrate that trading return is not driven by portfolio exposure to other
systematic risk factors relevant to options markets. Given that our portfolio is designed to
be both delta and vega-neutral, we regress portfolio return on other option Greeks, including
theta, rho, gamma, vanna and vomma. As is well known in the option pricing literature,
theta measures the sensitivity of an option’s price with respect to time to maturity, rho
measures the sensitivity of the option’s price with respect to risk-free interest rate, and
the higher order Greeks, gamma, vomma and vanna respectively capture option convexity
to stock price and volatility, and sensitivity of vega to delta. For each underlying stock,
we calculate these Greeks on a daily basis and then average them over the expiry cycle.
Using a random effects panel data approach, we then regress the trading returns against
the Greeks while controling for size (measured as log of market capitalization) and industry
and expiration-date fixed effects. Table 7 summarises the regression results. Our main
result is presented in the first column, where we account for transaction costs, i.e. returns
are adjusted for the effect of bid-ask spread. The results in column 2 do not consider the
transaction costs.
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[Insert Table 7 about here]

We find that none of the option Greeks have significant explanatory power for the portfolio
returns, indicating that the trading returns are primarily driven by the mispricing captured
by the DNS model. A negative and statistically significant coefficient for log(market capi-
talization) without accounting for bid-ask spread suggests that less profitable mispricing is
in options written on large stocks than in small stocks. This is not surprising, given that
the pricing of options on large stocks tends to be more efficient. Also, the higher transaction
costs for trading options on small stocks would likely have a negatively influence on the trad-
ing returns. The results in column 2 only captures the first channel, while results in column
1 likely capture both the impacts simultaneously. It appears that mispricing in small-sized
stocks is partially offset by the higher transaction costs required to execute trades in these
stocks. While the coefficients are still negative, they are not statistically significant. We
observe a similar pattern of diminishing influence in the COVID-19 month (the March 2020
expiration cycle), a period of high uncertainty. Here also we observe positive and statisti-
cally significant fixed effects in the March 2020 expiration cycle in column 1 results. And
in line with the rest of the results, when we do not consider transaction costs, the effect is
much higher. As demonstrated in table 1, there is also evidence of a wider bid-ask spread in
March, 2020, which should negatively influence the coefficients. However, in this case, the
coefficient is still significant. We also have negative and positive fixed effects in August and
September. Although not reported here, we do not find any statistically significant evidence
for industry-fixed effects.

As our sample period coincides with the COVID-19 pandemic, we also try and understand if
COVID-19 induced uncertainty (Agarwalla et al., 2021a) impacts the trading results. Figure
5 displays the time series plot of the benchmark stock index – NIFTY (blue line) and the
India VIX (green line) for the sample period. Although the pandemic was not yet over
when our sample period ends, the financial market witnessed the greatest uncertainty in
March 2020, with large stock market declines and the India VIX levels exceeding 80%. To
analyze the impact of COVID-19, following Agarwalla et al. (2021b), we divide our sample
into three sub-periods: pre-COVID (January-February, 2020), COVID (March, 2020), and
post-COVID (April to December, 2020).

[Insert Figure 5 about here]

Table 6 presents the summarized trading returns across industry and the three subperiods.
The increased market uncertainty can impact trading profits in both directions. Because
of uncertainty and forced liquidation due to funding constraints, option prices can deviate
further from their fair values. However, these mispricings may not necessarily result in a
trading profit, as they may not revert to zero because of limits to arbitrage (Shleifer and
Vishny, 1997). As the stock market witnessed some signs of recovery in late March, we
should also anticipate some reversion of the fear-induced mispricing. For certain industries,
such as Consumer Discretionary, Energy Finance, Healthcare, Industrials, Materials, Real
Estate and Utilities, the COVID month has a much higher return than the pre-COVID and
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post-COVID period. However, industries such as Communication, Consumer Goods and
Software generate lower and even negative mean returns during the COVID period.

[Insert Table 6 about here]

6. Conclusion

The language of options markets is that of IV, and in addition ascertaining options mar-
ket’s view of future returns and for pricing exotic derivatives, an economically meaningful
and flexible model for implied volatility is also essential for implementing option trading
strategies.

Drawing on the analogy of a volatility smile as interest rate term structure, we have used the
DNS approach popular in the fixed income markets to model the dynamics of volatility smile
with respect to option delta. While it has been used in the literature earlier to capture the
term structure of volatility smile, to our knowledge, ours is the first study which has used
it to model the dynamics of the smile with respect to delta and evaluated its performance
in a trading environment while accounting for transaction costs.

Using stock options data from NSE, one of the few markets worldwide with a liquid stock
options market along with a simultaneously liquid stock futures market (and so allowing
for a clean computation of implied volatility), we show that the DNS model consistently
outperforms all other competing specifications on most of our selected criteria. Our trading
strategy is based on rank ordering the options based on mispricing, and going long the
options in the upper deciles and going short the options in the lower decile. Our 10-1
strategy performs the best (long the last decile and short the first decile), but our results
are robust to other trading strategies which follow the same logic as our preferred strategy.

We find that none of the option Greeks have significant explanatory power for the portfolio
returns, indicating that the trading returns are primarily driven by the mispricing captured
by the Dynamic Nelson Siegel model. We also tried to assess if COVID-19 induced uncer-
tainty impacts our trading results, and we find that for certain industries, such as Consumer
Discretionary, Energy Finance, Healthcare, Industrials, Materials, Real Estate and Utilities,
the COVID month has a much higher return than the pre-COVID and post-COVID period.
However, industries such as Communication, Consumer Goods and Software generate lower
and even negative mean returns during the COVID period.

Beyond showing the success of the specific DNS model, we argue that for modeling volatility
smile for trading purposes, dynamic models outperform their static counterparts, with the
worst dynamic model outperforming the best static model in terms of the win rate (per-
centage of positive returns in the sample). Further, we show that when it comes to static
models, the more parsimonious quadratic models do distinctly better, but when it comes
to a dynamic setting, the DNS model is significantly superior to the Dynamic Quadratic
model. The lesson here is that a more flexible model needs more data to be effective.
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Pástor, L., Stambaugh, R.F.. Liquidity risk and expected stock returns. Journal of Political economy
2003;111(3):642–685.

Rebonato, R.. Volatility and Correlation: The Perfect Hedger and the Fox. 2nd ed. Wiley, 2004.
Rebonato, R., McKay, K., White, R.. The SABR/LIBOR Market Model: Pricing, Calibration and

Hedging for Complex Interest-Rate Derivatives. 1st ed. Wiley, 2009.
Reiswich, D., Wystup, U.. Fx volatility smile construction. 2009.
Rogers, L.C.G., Tehranchi, M.R.. Can the implied volatility surface move by parallel shifts? Finance and

Stochastics 2010;14(2):235–248. doi:10.1007/s00780-008-0081-9.
Rubinstein, M.. Implied binomial trees. The Journal of Finance 1994;49(3):771–818.
Shleifer, A., Vishny, R.W.. The limits of arbitrage. The Journal of finance 1997;52(1):35–55.
Stein, E.M., Stein, J.C.. Stock Price Distributions with Stochastic Volatil-

ity: An Analytic Approach. The Review of Financial Studies 1991;4(4):727–
752. URL: https://doi.org/10.1093/rfs/4.4.727. doi:10.1093/rfs/4.4.727.
arXiv:https://academic.oup.com/rfs/article-pdf/4/4/727/24417268/040727.pdf.

Sui, C., Lung, P., Yang, M.. Predictable dynamics in the implied volatility surface based on weighted least
squares: Evidence from soybean meal futures options in china. Emerging Markets Finance and Trade
2020;56(11):2625–2638. doi:10.1080/1540496X.2019.1616543.

Taylor, S.J., Yadav, P.K., Zhang, Y.. The information content of implied volatilities and model-free

20

http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2019.105657
http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2019.105657
http://dx.doi.org/https://doi.org/10.1002/fut.22070
http://dx.doi.org/https://doi.org/10.1002/fut.22213
http://dx.doi.org/https://doi.org/10.1016/j.jempfin.2004.04.009
http://dx.doi.org/10.1287/mnsc.1030.0163
http://dx.doi.org/10.1080/00036846.2021.1967866
http://dx.doi.org/https://doi.org/10.1016/j.irfa.2014.07.006
http://dx.doi.org/https://doi.org/10.1016/j.iref.2020.10.023
http://dx.doi.org/https://doi.org/10.1016/j.iref.2020.10.023
http://dx.doi.org/10.1086/296409
http://dx.doi.org/https://doi.org/10.1002/fut.22000
http://dx.doi.org/10.1007/s00780-008-0081-9
https://doi.org/10.1093/rfs/4.4.727
http://dx.doi.org/10.1093/rfs/4.4.727
http://arxiv.org/abs/https://academic.oup.com/rfs/article-pdf/4/4/727/24417268/040727.pdf
http://dx.doi.org/10.1080/1540496X.2019.1616543


volatility expectations: Evidence from options written on individual stocks. Journal of Banking & Finance
2010;34(4):871–881. doi:https://doi.org/10.1016/j.jbankfin.2009.09.015.

Vogt, E.. Option-Implied Term Structures. Staff Reports 706; Federal Reserve Bank of New York; 2016.
Wong, A.H.S., Heaney, R.A.. Volatility smile and one-month foreign currency volatility forecasts. Journal

of Futures Markets 2017;37(3):286–312. doi:https://doi.org/10.1002/fut.21799.
World Federation of Exchanges, . WFE/IOMA Derivatives Market Survey 2020. World Federation of

Exchanges 2021;.
Yue, T., Gehricke, S.A., Zhang, J.E., Pan, Z.. The implied volatility smirk in the chinese equity options

market. Pacific-Basin Finance Journal 2021;69:101624. doi:https://doi.org/10.1016/j.pacfin.2021.
101624.

Zhang, J.E., Xiang, Y.. The implied volatility smirk. Quantitative Finance 2008;8(3):263–284. doi:10.
1080/14697680601173444.

21

http://dx.doi.org/https://doi.org/10.1016/j.jbankfin.2009.09.015
http://dx.doi.org/https://doi.org/10.1002/fut.21799
http://dx.doi.org/https://doi.org/10.1016/j.pacfin.2021.101624
http://dx.doi.org/https://doi.org/10.1016/j.pacfin.2021.101624
http://dx.doi.org/10.1080/14697680601173444
http://dx.doi.org/10.1080/14697680601173444


7. Figures

Figure 1: An example volatility smile. This figure shows the observed volatility smile for an example
stock (ticker RELIANCE) as on January 1, 2020. The x-axis represents the option ∆ and the y-axis
represents the implied volatility.
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Figure 2: Comparison of model estimates of IVOTM. The top panel of the figure compares the
estimate of IVOTM from the four models (DNS, NS, DQ and SQ) in a semi-log plot for an example stock
(ticker RELIANCE). Given the high variation in IVOTM from the NS model, the bottom panel separately
compares IVOTM from DNS, DQ and SQ models.
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Figure 3: Returns from different trading strategies without accounting for the transaction
cost. This figure provides the box plots of the returns generated on different trading strategies for all the
four estimation models. The returns are represented as a number, for example, where 1 implies 100%. The
transaction price is taken to be the last traded price without considering the impact of bid-ask spread.
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Figure 4: Returns on different trading strategies after accounting for transaction costs. The
figure provides the box plots of the returns (represented in number, where 1 implies 100%) generated on
different trading strategies for all the four estimation models. Here, the transaction price is taken to be the
last traded price net of half the average bid-ask spread.
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Figure 5: Impact of COVID-19. This figure describes the impact of the COVID-19 pandemic for Nifty
returns and the India VIX. The blue line represents the time series plot of Indian benchmark index (Nifty)
for the year 2000 (axis represented on the right side), while the green line represents the time series plot
of the India VIX published by NSE. The sample is divided into three sub-periods to analyze the impact of
COVID-19: Pre-COVID (January 2020 to February 2020), COVID (March, 2020), and Post-COVID (April
2020 to December 2020). See the main text for further discussion.
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Tables

Table 1: Summary statistics. This table provides the summary of the observations across delta for call
(left panel) and put (right panel) options. The delta of put option is converted into delta of the corresponding
call option to make the range of Delta in (0, 1]. Panel A provides the summary of the full sample, while
panel B provides the summary of the subsample of March 2020 (high volatility post COVID). Column ‘N’
presents the monthly average of number of observations, ‘Bid-ask Spread (%)’ presents the average bid-ask
spread divided by option price in percentage terms, ‘Volume’ presents the average monthly traded volume,
and ‘N(trades)’ presents the average monthly number of trades.

A: Full Sample
Call Option Put Option

Delta N Bid-ask Volume N (trades) N Bid-ask Volume N (trades)
Spread (%) (in 109) (in 1000) Spread(%) (in 109) (in 1000)

(0,0.1] 4, 544.17 0.28 1.24 528.71 290.83 0.07 0.02 6.24
(0.1,0.2] 3, 803.58 0.12 2.71 1, 279.95 507.08 0.06 0.04 15.87
(0.2,0.3] 2, 960.83 0.07 3.29 1, 593.84 743.83 0.06 0.09 43.70
(0.3,0.4] 2, 557.92 0.04 3.60 1, 862.88 1, 212.25 0.05 0.26 136.76
(0.4,0.5] 2, 346.17 0.04 3.81 2, 011.36 1, 862.42 0.05 0.76 428.58
(0.5,0.6] 2, 122.17 0.04 2.61 1, 365.76 2, 160.75 0.04 1.55 892.58
(0.6,0.7] 1, 675.92 0.05 1.12 537.00 2, 283.58 0.04 1.82 1, 024.53
(0.7,0.8] 1, 267.33 0.05 0.40 189.06 2, 527.58 0.06 1.78 956.40
(0.8,0.9] 970.67 0.05 0.16 70.45 3, 052.33 0.12 1.63 843.52
(0.9,1] 567.25 0.04 0.05 21.52 4, 351.42 0.32 0.95 459.66

B: Subsample: March 2020
Call Option Put Option

Delta N bid-ask Volume N (trades) N Bid-ask Volume N (trades)
Spread(%) (in 109) (in 1000) Spread (%) (in 109) (in 1000)

(0,0.1] 7, 728 0.36 1.81 647.97 1, 725 0.09 0.09 39.45
(0.1,0.2] 3, 854 0.20 2.44 1, 058.34 1, 735 0.10 0.12 54.78
(0.2,0.3] 2, 553 0.13 2.38 1, 143.07 1, 522 0.09 0.17 86.17
(0.3,0.4] 2, 054 0.10 2.11 1, 084.18 1, 558 0.09 0.37 194.76
(0.4,0.5] 1, 798 0.12 1.67 889.69 1, 698 0.09 0.89 464.15
(0.5,0.6] 1, 425 0.13 0.87 466.50 1, 745 0.09 1.42 751.18
(0.6,0.7] 835 0.13 0.28 137.64 1, 766 0.10 1.45 722.28
(0.7,0.8] 371 0.11 0.07 40.96 1, 843 0.13 1.32 615.94
(0.8,0.9] 90 0.13 0.01 4.06 1, 731 0.20 0.87 360.63
(0.9,1] 10 0.18 0.0003 0.10 801 0.51 0.19 73.18
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Table 2: In-sample fit versus the stability of the parameters. This table provides model-wise
comparison of the stability of the parameter estimates as measured by the standard deviation (SD) of the
first difference of the parameter, and in-sample fit as measured by the squared root of weighted mean squared
error. The top panel presents the results for the two Nelson Siegel models, and the bottom panel presents
the results for the two quadratic models.

Nelson Siegel
SD(β0) SD(β1) SD(β2) RWMSE

Dynamic 0.13 0.11 0.27 0.0553
Static 17.95 42.82 322.58 0.0563

Quadratic
SD(a) SD(b) SD(c) RWMSE

Dynamic 0.13 0.13 0.06 0.0525
Static 0.49 0.41 0.1 0.0502
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Table 3: Description of trading strategies. This table describes the nine trading strategies used in this
study: Every day we rank the option contracts for a particular stock into 10 deciles based on their pricing
error using the difference between the market price and the model price. For each strategy, the column ‘Buy
Decile’ describes the decile buckets in which long positions are entered into, and the ‘Sell Decile’ column
describes the decile buckets used for taking a short position in the options.

Strategy Buy Decile Sell Decile

1 1 10
2 1 + 2 10 + 9
3 1 + 2 + 3 10 + 9 + 8
4 1 + 2 + 3 + 4 10 + 9 + 8 + 7
5 1 + 2 + 3 + 4 + 5 10 + 9 + 8 + 7 + 6
6 2 9
7 3 8
8 4 7
9 5 6
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Table 4: Performance of the preferred (10-1) trading strategy. The table provides a comparison
of the performance of our preferred trading strategy - going long the 10th decile and short the first decile
- across different estimation models. Under this strategy, every day the option contracts for a particular
stock are ranked into 10 deciles based on their pricing error (market price − model price), and long position
is taken in the undervalued bottom decile options and a short position in the overvalued top decile options.
As a control, a random strategy is also used, where we 10% each of the total traded options are randomly
selected to buy and sell. This strategy is run for every stock and for every expiry cycle independently,
giving a total of 1200 profit observations (100 stocks × 12 expiry cycles). Panel A provides the performance
summary of the trading strategy, without considering transaction costs (the bid-ask spreads), and panel B
after considering accounting for the bid-ask spreads. It is assumed that buy/sell orders are executed on the
approximate ask/bid price calculated by adding/subtracting the half the average bid-ask spread to the last
traded price. The returns are calculated by dividing the trading profit with the average margin required to
execute the trade. The ‘win rate’row provides the percentage of positive return observations in the sample.
The next five rows provide the summary statistics of the return observation measured in percentage points,
and the final three rows provide the Sharpe ratio, the 5th percentile of the profit in INR, and the mean
profit in INR.

A: Performance of the trading strategy (without transaction costs)

DNS NS DQ SQ Random

N 1200 1200 1200 1200 1200
Win rate 0.903 0.883 0.893 0.868 0.519
1st Quartile (Return) 127.493 80.702 124.442 121.683 -93.87
Median (Return) 312.140 269.143 287.830 329.166 7.549
Mean (Return) 437.965 386.640 406.660 430.130 -2.249
3rd Quartile (Return) 609.113 589.294 531.196 567.231 124.773
Std. Dev (Return) 652.158 1244.018 515.333 585.173 1259.82
Sharpe Ratio 0.666 0.308 0.782 0.729 -0.0048
5 Pct (Profit) -255.123 -317.994 -297.945 -392.447 -1044.87
Mean (Profit) 1352.853 1255.216 1244.968 1076.794 -44.392

B: Performance of the trading strategy (with transaction costs)

DNS NS DQ SQ Random

Win rate 0.651 0.580 0.623 0.593 0.14
1st Quartile (Return) -50.073 -65.834 -51.481 -90.1699 -351.549
Median (Return) 78.7842 34.858 50.421 46.76 -175.263
Mean (Return) 104.8072 70.78 74.865 33.308 -243.497
3rd Quartile (Return) 250.695 222.00 184.7005 186.4736 -60.829
Std. Dev. 775.1864 1227.77 559.609 616.324 572.5997
Sharpe Ratio 0.1304 0.054 0.127 0.0479 -0.432
5 Pct (Profit) -981.551 -1136.91 -974.743 -1150.65 -3617.36
Mean (Profit) 365.661 294.933 267.102 135.19 -900.756
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Table 5: Wilcoxon Paired Rank test on trading returns. This table provides p-value for the paired
Wilcoxon Rank test, with the alternative hypothesis that the return generated using a model in the row
names is greater than the return from a model in the column names. Panel A provides the result without
accounting for transaction costs, and panel B after considering it.

A: Paired comparision of the trading returns

(without transaction costs)

DQ SNS SQ random
DNS 1.1e-05 1.8e-07 0.09 1.8e-135
DQ 0.18 1 5.2e-123

B: Paired comparision of the trading returns

(with transaction costs)

DNS 3.7e-08 1.2e-05 4.9e-11 9.5e-158
DQ 0.77 7.3e-05 2.4e-142
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Table 6: Industry-wise performance comparison Pre-COVID, during COVID and Post-
COVID. This table presents the mean return of the trading strategy across industries. All the 100 stocks in
the sample are classified into 11 industries using the GICS classification. Column ‘N’ represents number of
stocks in the particular industry, Pre-COVID column represents the mean return for the January - February,
2020 period, the COVID column represents the mean return for March 2020, and the Post-COVID column
represents the mean return for the April-December, 2020 period.

Industry N Pre-COVID COVID Post-COVID Full Sample

1 COMMUNICATION 4 124.67 -71.44 237.55 192.98
2 Consumer Discretionary 12 114.22 510.75 -65.96 12.13
3 Consumer goods 9 49.73 -98.93 62.13 46.64
4 Energy 7 171.43 322.09 71.32 108.9
5 FINANCE 26 77.85 503.22 105.38 133.94
6 Healthcare 10 165.9 183.63 101.03 118.72
7 Industrials 7 132 315.29 92.23 117.44
8 Materials 16 95.82 756.29 95.09 150.31
9 Real Estate 1 -228.27 410.53 63.18 43.55
10 SOFTWARE 5 89.61 -89.74 107.33 87.96
11 Utilities 3 -24.29 650.97 29.69 72.47
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Table 7: Regression results: source of trading profit. This table summarizes the results on the
regression of the portfolio trading returns with respect to the relevant options Greeks other than delta and
vega. In particular, the independent variables considered in our model are theta, rho, gamma, vomma
and vanna of the portfolio. Additional controls include the size of the underlying stock measured by the
logarithm of market capitalization as on January 1, 2020 (log(Mcap) along with industry and expiration
date fixed effects. The results in first column ignore transaction costs, and those in the second column
account for transaction costs (the bid-ask spread).

Dependent variable:

Return

Results without transaction costs Results with transaction costs

Gamma 0.002 (0.040) −0.008 (0.026)
Rho 0.0003 (0.0005) −0.001∗∗ (0.0003)
Theta 0.00003 (0.00005) 0.00004 (0.00003)
Vanna 0.002 (0.002) −0.001 (0.002)
Vomma −0.00004 (0.0001) 0.00003 (0.0001)
log(Mcap) −0.202 (0.208) −0.830∗∗∗ (0.148)
Expiry: Feb 0.934 (0.970) 1.418∗∗ (0.682)
Expiry: March 2.317∗∗ (1.176) 7.693∗∗∗ (0.850)
Expiry: April 0.666 (0.976) 2.914∗∗∗ (0.689)
Expiry: May 0.034 (0.975) 0.960 (0.686)
Expiry: June 0.771 (0.971) 1.770∗∗∗ (0.683)
Expiry: July 0.065 (0.972) 0.530 (0.681)
Expiry: August −1.858∗ (0.970) −0.805 (0.682)
Expiry: September 2.431∗∗ (0.970) 2.972∗∗∗ (0.683)
Expiry: October −0.214 (0.970) −0.133 (0.682)
Expiry: November 0.806 (0.971) 1.231∗ (0.682)
Expiry: December 0.671 (0.972) 1.093 (0.682)

Observations 1,199 1,199
R2 0.036 0.222
Adjusted R2 0.014 0.204
F Statistic 44.280∗∗ 334.934∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix A.

Table A.1: List of stock options with the industry details

Symbol Name Industry Symbol Name Industry

RELIANCE Reliance Industries Energy BIOCON Biocon Healthcare
TCS Tata Consultancy Services Software GAIL GAIL (India) Energy
HDFCBANK HDFC Bank Finance TATATEA Tata Consumer Products Cons. goods
HINDLEVER Hindustan Unilever Cons. goods HINDALC0 Hindalco Industries Materials
INFOSYSTCH Infosys Software AUROPHARMA Aurobindo Pharma Healthcare
HDFC Housing Development Finance

Corporation
Finance ADANIEXPO Adani Enterprises Industrials

KOTAKMAH Kotak Mahindra Bank Finance MOTHERSUMI Motherson Sumi Systems Cons. Disc.
ICICIBANK ICICI Bank Finance GUJAMBCEM Ambuja Cements Materials
BAJAUTOFIN Bajaj Finance Finance CADILAHC Cadila Healthcare Healthcare
BHARTI Bharti Airtel Communication MUTHOOTFIN Muthoot Finance Finance
ASIANPAINT Asian Paints Materials LUPIN Lupin Healthcare
ITC ITC Cons. goods MCDOWELLN United Spirits Cons. goods
HCLTECH HCL Technologies Software JUBLFOOD Jubilant Foodworks Cons. goods
SBIN State Bank of India Finance UNIPHOS UPL Materials
MARUTI Maruti Suzuki India Cons. Disc. IGL Indraprastha Gas Energy
WIPRO Wipro Software NMDC NMDC Materials
UTIBANK Axis Bank Finance APOLLOHOSP Apollo Hospitals Enterprise Healthcare
LT Larsen & Toubro Industrials HINDPETRO Hindustan Petroleum Corpora-

tion
Energy

ULTRACEMCO UltraTech Cement Materials NICOLASPIR Piramal Enterprises Finance
SUNPHARMA Sun Pharmaceutical Industries Healthcare PNB Punjab National Bank Finance
BAJAJFINSV Bajaj Finserv Finance SAIL Steel Authority of India Materials
TITAN Titan Company Cons. Disc. ACC ACC Materials
ONGC Oil & Natural Gas Corporation Energy PFC Power Finance Corporation Finance
DIVISLAB Divi’s Laboratories Healthcare BEL Bharat Electronics Industrials
BAJAJ AUTO Bajaj Auto Cons. Disc. BANKBARODA Bank of Baroda Finance
POWERGRID Power Grid Corporation of India Utilities ASHOKLEY Ashok Leyland Cons. Disc.
NTPC NTPC Utilities VOLTAS Voltas Cons. goods
MUNDRAPORT Adani Ports and Special Eco-

nomic Zone
Industrials JINDALSTEL Jindal Steel & Power Materials

DABUR Dabur India Cons. goods SRTRANSFIN Shriram Transport Finance Com-
pany

Finance

TECHM Tech Mahindra Software RECLTD REC Finance
JSWSTL JSW Steel Materials TATAPOWER Tata Power Company Utilities
MM Mahindra & Mahindra Cons. Disc. TVSSUZUKI TVS Motor Company Cons. Disc.
DRREDDY Dr. Reddy’s Laboratories Healthcare MMFIN Mahindra & Mahindra Financial

Services
Finance

BRITANNIA Britannia Industries Cons. goods ZEETELE Zee Entertainment Enterprises Communication
IOC Indian Oil Corporation Energy BATAINDIA Bata India Cons. goods
COALINDIA Coal India Materials LTFH L&T Finance Holdings Finance
BPCL Bharat Petroleum Corporation Energy CANBK Canara Bank Finance
TISCO Tata Steel Materials LICHSGFIN LIC Housing Finance Finance
ICICIPRULI ICICI Prudential Life Insurance

Company
Finance ESCORTS Escorts Cons. Disc.

EICHERMOT Eicher Motors Cons. Disc. MANAPPURAM Manappuram Finance Finance
INDUSINDBK IndusInd Bank Finance GLENMARK Glenmark Pharmaceuticals Healthcare
INDIGO InterGlobe Aviation Industrials RBLBANK RBL Bank Finance
CIPLA Cipla Healthcare FEDERALBNK The Federal Bank Finance
HEROHONDA Hero MotoCorp Cons. Disc. BHEL Bharat Heavy Electricals Industrials
INFRATEL 0 Communication TATACHEM Tata Chemicals Materials
GRASIM Grasim Industries Materials IBULHSGFIN Indiabulls Housing Finance Finance
SESAGOA Vedanta Materials APOLLOTYRE Apollo Tyres Cons. Disc.
DLF DLF Real Estate NATIONALUM National Aluminium Company Materials
HAVELLS Havells India Industrials PVR PVR Communication
TELCO Tata Motors Cons. Disc. IDFCBANK IDFC Finance
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