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Abstract

This paper pertains to the idea of using options data to infer risk neutral market

beta. We investigate the validity of hypotheses of the zero skewness for the id-

iosyncratic component of the market model and the independence between market

return and idiosyncratic component under the risk-neutral measure by an existing

methodology. We find that, for about 30% of the stocks, the risk-neutral betas ob-

tained from the methodology imply negative risk-neutral variances or fourth central

moments of the idiosyncratic components. Results of sensitivity analysis show that

zero skewness assumption changes the order of risk-neutral betas drastically. The

implications of the zero skewness and independence hypotheses are strongly rejected

for the majority of the stocks with traded options.

Keywords: option-implied market beta, option-implied moments, zero skewness

hypothesis, independence hypothesis.
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1 Introduction

Market beta, which is standardized covariance between an individual stock return and the

market return, is very important in asset pricing and corporate finance. In the well-known

Capital Asset Pricing Model (CAPM), market beta is the only relevant risk measure for

asset pricing purposes. Although versions of the CAPM have been rejected by numerous

tests, the importance of market beta remains, as the market return is still the most im-

portant factor driving returns on individual stocks. One of the issues in this literature is

the estimation of the market betas. While the theory allows the conditional market betas

to be time-varying, depending on other state variables at the time, the most common

method of beta estimation is to run regressions of individual returns on market returns

over a historic period. Such backward looking estimates certainly cannot capture the

changes in the market beta quickly enough, so the usefulness of the market beta in de-

scribing stock returns has not been adequately assessed. Accurate measurement of the

market beta has always been a hot topic in both academia and industry.

A relatively new idea is to use the information contained in the options prices to infer

the conditional market beta. The benefit of using options data is that the betas estimated

that way are forward looking, rather backward looking, as options are priced based on the

information available at the time regarding the future risk-neutral return distributions.

Unlike inferences about the characteristics of the distribution of individual stocks, the

market beta involve the joint distribution of an individual stock and the market return.

Since options written on joint events do not exist, the risk neutral market beta cannot

be inferred without making additional assumptions. Chang, Christofferson, Jacobs and

Vainberg (2011, hereafter CCJV) make an assumption that the risk-neutral skewnesses

of the idiosyncratic component of individual stock returns are all zero, in addition to the

assumption that the idiosyncratic component is independent of the market return. They

report that their estimated risk-neutral market betas possess certain desired features and

forecast future physical market betas better than historically estimated market betas.
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The current paper is a follow-up study of CCJV. We first point out certain undesired

features of the CCJV betas. In particular, we report that for about 30% of the stocks

that have options traded on them, the CCJV betas imply negative risk-neutral variances

and fourth moments of the idiosyncratic components. Sensitivity analysis further con-

firms that estimated risk-neutral skewness is sensitive to the skewness hypothesis and,

as a result, the CCJV methodology does not generate accurate and reliable risk-neutral

market betas. We formally test the implications of the zero skewness hypothesis and the

independence hypothesis using the generalized method of moments. The results show

that for majority of the stocks with options, the hypotheses are strongly rejected.

The rest of the paper is organized as follows. Section 2 describes the moment relations

under risk neutral measure, the assumptions made by CCJV, and a methodology to

calculate unconditional risk-neutral expectation. Section 3 describes the data used in this

paper. Section 4 presents the results. Section 5 concludes.

2 The Potential Problem

2.1 Risk Neutral Moments

Corresponding to the market model under the physical measure, the market model under

the risk-neutral measure is as follows,

Ri,t = α̃i + β̃iRm,t + ε̃i,t (1)

where Ri,t and Rm,t are the log return of stock i and the market index in period t,

respectively. ε̃i,t captures the idiosyncratic shock of stock i and is uncorrelated with

market return under the risk-neutral measure, with Ẽ[ε̃i,t] = 0. A tilde indicates a quantity

under the risk-neutral measure. For example, β̃i is the risk-neutral beta and ε̃i,t is the

idiosyncratic component of the return on stock i, which is supposed to satisfy Ẽ[Rm,tε̃i,t] =
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0.

According to the market model for log return under the risk-neutral measure, the

following equations for risk-neutral conditional moments under the additional assumption

that Rm,t and ε̃i,t are independent under the risk-neutral measure:

Ṽ ari,t,τ = β2
i,t,τ Ṽ arm,t,τ + Ṽ arεi,t,τ (2)

S̃kewi,t,τ =
β3
i,t,τ S̃kewm,t,τ Ṽ ar

3/2

m,t,τ + S̃kewεi,t,τ Ṽ ar
3/2

εi,t,τ

Ṽ ar
3/2

i,t,τ

(3)

K̃urti,t,τ =
β4
i,t,τK̃urtm,t,τ Ṽ ar

2

m,t,τ + 6β2
i,t,τ Ṽ arm,t,τ Ṽ arεi,t,τ + K̃urtεi,t,τ Ṽ ar

2

εi,t,τ

Ṽ ar
2

i,t,τ

(4)

where V ar, Skew and Kurt represent variance, skewness and Kurtosis. The detail deriva-

tion of these equations are given in Appendix A.

Given the market model of log return under the risk-neutral measure and an inde-

pendence assumption which states that Rm,t and ε̃i,t are independent under the risk-

neutral measure, CCJV propose a method for beta calculation by assuming that the

skewness/third central moment of the idiosyncratic shock is zero, i.e., S̃kewεi,t,τ = 0.

Substituting this into (4), we have

β̃i =

(
S̃kewi

S̃kewm

)1/3(
Ṽ ari

Ṽ arm

)1/2

=

(
µ̃3(Ri)

µ̃3(Rm)

)1/3

where µ̃n(X) is the n-th central moments of X under the risk-neutral measure. Using

methods for estimating option-implied moments such as ?, one can easily calculate the

third option-implied moments of both individual stock returns and market index returns,

therefore obtain the option-implied beta.

CCJV obtain the risk-neutral market betas using (4) only. However, substituting

βCCJV
i,t,τ into equations (2) and (4), one cannot guarantee that Ṽ arεi,t,τ and K̃urtεi,t,τ are

positive, which is contradictory with the definition of variance and kurtosis. We can
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easily verify this once we calculate the risk-neutral moments of the individual stock and

the market index.

2.2 Option-implied moments

We calculate the option-implied moments (volatility, skewness and kurtosis) using the

method proposed by ? (BKM hereafter). BKM show that the conditional annualized

variance, skewness and kurtosis of tau−period log return of stock i under the risk-neutral

measure at time t can be calculated as:

Ṽ ar
BKM

i,t,τ =
erτVi,t,τ − µ2

i,t,τ

τ
(5)

S̃kew
BKM

i,t,τ =
erτWi,t,τ − 3µi,t,τe

rτVi,t,τ + 2µ3
i,t,τ

(erτVi,t,τ − µ2
i,t,τ )

3/2
(6)

K̃urt
BKM

i,t,τ =
erτXi,t,τ − 4µi,t,τe

rτWi,t,τ + 6µ2
i,t,τe

rτVi,t,τ − 3µ4
i,t,τ

(erτVi,t,τ − µ2
i,t,τ )

2
(7)

where

µi,t,τ = erτ − 1− erτ

2
Vi,t,τ −

erτ

6
Wi,t,τ −

erτ

24
Wi,t,τ ,

Vi,t,τ =

∫ ∞
Si,t

2(1− ln[ K
Si,t

])

K2
Ci,t(τ ;K)dK +

∫ Si,t

0

2(1 + ln[
Si,t

K
])

K2
Pi,t(τ ;K)dK,

Wi,t,τ =

∫ ∞
Si,t

6 ln[ K
Si,t

]− 3(ln[ K
Si,t

])2

K2
Ci,t(τ ;K)dK

−
∫ Si,t

0

6 ln[
Si,t

K
] + 3(ln[

Si,t

K
])2

K2
Pi,t(τ ;K)dK,

Xi,t,τ =

∫ ∞
Si,t

12(ln[ K
Si,t

])2 − 4(ln[ K
Si,t

])3

K2
Ci,t(τ ;K)dK

+

∫ Si,t

0

12(ln[
Si,t

K
])2 + 4(ln[

Si,t

K
])3

K2
Pi,t(τ ;K)dK,

where Vi,t,τ , Wi,t,τ and Xi,t,τ are the prices of the squared, cubed, and quartic contracts

formulated through a portfolio of options indexed by the strikes.
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Following ?, ?, ? and ?, we use a trapezoidal method to estimate Vi,t,τ , Wi,t,τ and Xi,t,τ .

The detail trapezoidal approach to estimating the integrals are introduced in Appendix

B.

2.3 Unconditional risk-neutral moments of idiosyncratic shock

Even for stocks that positivity of variance and kurtosis is not violated, the CCJV beta

may not be right in the sense that the CCJV beta generates a sequence of idiosyncratic

component of the stock return, which does not satisfy the usual orthogonality condition

Ẽ[Rm,tε̃i,t] = 0, nor the zero skewness assumption S̃kewεi,t,τ = 0. We can check these

conditions by the implied unconditional moments. To do this, we need a stochastic

discount factor.

To verify whether CCJV’s assumption of zero skewness of idiosyncratic shock under

the risk-neutral measure is right, we have to calculate the unconditional risk-neutral third

central moments, Ẽ[ε̃3i,t,t+τ ]. According to the relation between the physical measure and

the risk-neutral measure, we have

Ẽ[ε̃3i,t,t+τ ] = E[M̃i,t,t+τ ε̃
3
i,t,t+τ ] (8)

where M̃i,t,t+τ = Et[Mt,t+τ |Ri,t,t+τ ] is the projected stochastic discount factor (SDF here-

after), which is the general SDF Mt,t+τ projected on the space spanned by stock re-

turn Ri,t,t+τ conditional on time−t information. Given β̃CCJV
i,t,τ , we can obtain a time-

series of residual under the risk-neutral measure according to equation (??), ẽCCJV
i,t,τ =

ri,t,t+τ − β̃CCJV
i,t,τ rm,t,t+τ for t = 1, · · · , T . Since α̃i,τ is assumed to be constant, Ẽ[ε̃3i,t,t+τ ] =

Ẽ[(ẽCCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])3]. Thus the core question to calculate Ẽ[ε̃3i,t,t+τ ] is to estimate the

projected SDF M̃i,t,t+τ .

Following ?, we propose a nonparametric approach for estimating the projected SDF.

Let Rt,t+τ be the N × 1 vector of τ−period gross return of N stocks. We apply principle
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component analysis on Rt,t+τ regarding the extracted r × 1 vector of factors as RB
t,t+τ ,

Rt,t+τ = ΛRB
t,t+τ + vt (9)

where Λ is N × r matrix, Λ′Λ = Ir. Then we can estimate that

R̂B
t,t+τ = Λ̂′Rt,t+τ (10)

where Λ̂ is the first r eigenvectors of T−1
∑T

t=1Rt,t+τR
′
t,t+τ .

Consider the Euler equation

Et[Mt,t+τR
′
t,t+τ ] = 1′N (11)

where Et is the expectation conditional on time-t information set F is generated by a

state vector Xt. Assume Mt,t+τ = c′rR̂
B
t,t+τ , then we have

Et[c
′
rR̂

B
t,t+τR

′
t,t+τ ] = Et[c

′
rR̂

B
t,t+τR̂

B′
t,t+τ Λ̂

′] = 1′N (12)

We solve that

c′r = 1′N Λ̂Et[R̂
B
t,t+τR̂

B′
t,t+τ ]

−1 (13)

Thus, the projected SDF for stock i

M̃ i
t,t+τ = Et[Mt,t+τ |Ri

t,t+τ ]

= Et[c
′
rR̂

B
t,t+τ |Ri

t,t+τ ]

= 1′N Λ̂Et[R̂
B
t,t+τR̂

B′
t,t+τ ]

−1Et[R̂
B
t,t+τ |Ri

t,t+τ ]

= 1′N Λ̂E[R̂B
t,t+τR̂

B′
t,t+τ |Xt]

−1E[R̂B
t,t+τ |Ri

t,t+τ , Xt] (14)

. Let the state vector Xt contain the VIX index and 1-m risk-free rate at time t,
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we use locally weighted regression to estimate each element in E[R̂B
t,t+τR̂

B′
t,t+τ |Xt] and

E[R̂B
t,t+τ |Ri

t,t+τ , Xt] referring to ?, then we obtain the estimate of M̃ i
t,t+τ .

3 Data Description

We study the common stocks with options in the sample period from the end of Jan.

1996 to the end of Dec. 2015 in this paper. The data frequency is monthly and our study

focus on 1-m and 6-m investment horizon of returns. The stock and option data is briefly

described in Section 3.1. The option-implied moments estimation is discussed in Section

3.2.

3.1 Stock and option data

The individual stock return data are available in CRSP database while the option data

are obtained from OptionMetrics. The risk-free rate and market return are from French’s

data library. At the last trading day of each month, we extract the security ID, implied

volatility, implied strike from the Volatility surface file at delta of 0.2,0.25,0.3,0.35,0.4,0.45

and 0.5 (-0.2,-0.25,-0.3,-0.35,-0.4,-0.45 and -0.5) for call (put) options with expiration of

30 and 182 calendar days. We apply the local linear regression model for fitting the

implied volatility curve then transform it into option price using Black-Shore formula.

When fitting the implied volatility curve, we restrict the moneyness between 70% of the

moneyness corresponding to delta of -0.2 and 130% of the moneyness corresponding to

delta of 0.2. We climate those stocks with less than 12 time-series observations during

Jan. 1996 to Dec. 2015 and finally obtain data for over 1900 stocks on average for both

1-m and 6-m horizons.

Summary statistics of the gross return of stocks, annualized implied volatility, and

minimum (delta = -0.2) and maximum ((delta = 0.2)) moneyness of options for 1-m

and 6-m horizons are presented in Table 1. The corresponding time-series mean of each
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variable are plotted in Figure 1. It shows that the spread between the moneyness of out-of

call option and out-of put option is large when the option-implied volatility is high, which

indicates a flat risk-neutral density function appears in period of high option-implied

volatility such as the financial crisis in 2008.

3.2 Option-implied moments estimation

As introduced in Section 2.2, we estimate the option-implied variance, skewness, and

kurtosis for log returns of individual stocks and S&P 500 index for τ = 1 month and 6

months using BKM method and report the characteristics of each variable in this section.

Table 2 presents the time-series means for the cross-sectional statistics of option-

implied variance, skewness and kurtosis of individual log returns. It shows that the

average option-implied skewness of log return of individual stock is negative. The 1-m

option-implied skewness is less than 6-m option implied skewness while the 1-m option-

implied kurtosis is larger than 6-m option-implied kurtosis.

We compare the time-series of cross-sectional mean of option-implied individual vari-

ance,skewness and kurtosis with the time-series of option-implied market index variance,

skewness and kurtosis in Figure 2. The correlation between each average moment of indi-

vidual stocks and moment of market index are positive with coefficient ranging from 0.48

to 0.82. The cross-sectional mean of individual variance is much higher than that of the

market index, indicating that the idiosyncratic shock accounts a remarkable proportion of

the total variance of individual stock. The market index option-implied skewness is nega-

tive and much lower than the cross-sectional mean of individual option-implied skewness

at almost all the time. Opposite to the skewness, market index shows a higher kurtosis

than the average kurtosis of individual stocks.
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4 Empirical Results

In this section, we first discuss the characteristics of the estimates of risk-neutral following

CCJV’s idea. Then we provide empirical evidence for the violation of positive variance and

kurtosis of idiosyncratic shocks for β̃CCJV. Finally, we construct hypothesis test to testing

whether the zero skewness assumption of idiosyncratic shocks is empirically supported.

4.1 Option-implied betas

For each stock i at time t, given the option-implied variance and skewness of stock i and

the market index log returns with maturity τ calculated by BKM method, we calculate

the option-implied beta with zero idiosyncratic skewness assumption,

β̃CCJV
i,t,τ =

 S̃kewBKMi,t,τ

S̃kew
BKM

m,t,τ

1/3 Ṽ arBKMi,t,τ

Ṽ ar
BKM

m,t,τ

1/2

.

Figure 3 shows the histogram of the calculated β̃CCJV
i,t,τ for τ = 1m and τ = 6m, about

4.78 × 105 values of betas for each τ . Since the skewness of market index log return is

mostly negative, the negative betas in Figure 3 correspond to positive skewness of indi-

vidual stock log returns. Table 3 presents the summary statistics of option-implied betas

by CCJV’s zero idiosyncratic skewness assumption with 1-m and 6-m option maturities

during Jan 1996-Dec 2015. It shows that the mean, median and standard deviation val-

ues of 1-m option-implied beta are higher than those of 6-m option-implied beta. The

time-series mean of 1-m and 6-m option-implied betas are plotted in Figure 4. The more

negative mean of beta corresponds to the higher positive mean of individual skewness in

the sample period.

Problems of betas calculated by zero idiosyncratic skewness assumption are discussed

in the following subsections.
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4.2 Violation of idiosyncratic positive variance and kurtosis

Given the option-implied beta with zero idiosyncratic skewness assumption, β̃CCJV
i,t,τ , we

can calculate the conditional idiosyncratic variance and fourth central moment according

to equations (2) and (4) as follows,

Ṽ ar
CCJV

εi,t,τ
= Ṽ ar

BKM

i,t,τ − β̃CCJV2

i,t,τ Ṽ ar
BKM

m,t,τ

µ̃4
CCJV
εi,t,τ

= K̃urt
BKM

i,t,τ Ṽ ar
BKM2

i,t,τ − β̃CCJV4

i,t,τ K̃urt
BKM

m,t,τ Ṽ ar
BKM2

m,t,τ − 6β̃CCJV2

i,t,τ Ṽ ar
BKM

m,t,τ Ṽ ol
BKM2

εi,t,τ

According to the definition of variance and fourth central moment, Ṽ ar
CCJV

εi,t,τ
and µ̃4

CCJV
εi,t,τ

should be positive for all i, t and τ .

We plot the histograms of conditional variance and fourth central moment of idiosyn-

cratic shock implied by option-implied betas given zero idiosyncratic skewness assumption

with τ = 1m and τ = 6m in Figure 5. It shows that not all Ṽ ar
CCJV

εi,t,τ
and µ̃4

CCJV
εi,t,τ

are larger

than zero, which means CCJV’s zero idiosyncratic skewness assumption could generate

negative conditional idiosyncratic variance and forth central moment.

The summary statistics of the valid and invalid conditional idiosyncratic variance

and forth central moment are presented in Table 4. We find that the proportional of

invalid conditional idiosyncratic variance is less than 10%, while the proportional of invalid

conditional idiosyncratic forth central moment is more than 25%. There is total about

30% of the estimated β̃CCJV
i,t,τ generate invalid conditional idiosyncratic variance and forth

central moment.

We discuss the unconditional idiosyncratic risk-neutral skewness of the left 70% betas

that generate positive idiosyncratic variance and forth central moment in next subsection.
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4.3 Violation of zero idiosyncratic skewness assumption

As we discussed in Section 2.3, given the estimated β̃CCJV
i,t,τ and M̃ i

t,t+τ , we can calculate

the unconditional risk-neutral idiosyncratic skewness,

S̃kew
M

εi,τ
=

Ẽ[(ẽCCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])3]

(Ẽ[(ẽCCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])2])3/2
(15)

where ẽCCJV
i,t,τ = ri,t,t+τ − β̃CCJV

i,t,τ rm,t,t+τ .

Figure 6 plots the histograms of unconditional idiosyncratic skewness implied by

option-implied betas given zero idiosyncratic skewness assumption for τ = 1m and τ =

6m. The summary statistics of S̃kew
M

εi,1m
and S̃kew

M

εi,6m
are presented in Table 5. It

shows that the mean and median values of the unconditional idiosyncratic skewness are

negative, indicating that more individual stocks demonstrating negative unconditional

idiosyncratic skewness given zero idiosyncratic skewness assumption. A simulation study

in CCJV shows that the bias amounts to 10% of the true beta when the absolute value

of idiosyncratic skewness is close to 0.5. In our sample, we find that the absolute value of

idiosyncratic skewness of 40% of the individual stocks is larger than 0.5.

Assuming the conditional risk-neutral idiosyncratic third central moment equals to

the uncondition skewness calculated by the residual time-series ẽCCJV
i,t,τ at each time, we

simulate a new measure of betas,

β̃Simulatei,t,τ =

 S̃kewBKMi,t,τ Ṽ ar
BKM3/2

i,t,τ − 1
Ti

∑Ti
t=1 M̃i,t,τ (ẽ

CCJV
i,t,τ − 1

Ti

∑Ti
j=1 M̃i,t,τ ẽ

CCJV
i,j,τ )3

S̃kew
BKM

m,t,τ Ṽ ar
BKM3/2

m,t,τ

1/3

.

We plot β̃Simulatei,t,τ versus β̃CCJV
i,t,τ in Figure 7 and find significant difference between these

two betas. Lot’s of points are badly deviated from the 45 degree line in the figure on both

sides, which indicates that the zero skewness idiosyncratic skewness assumption seriously

twists the sequence of risk-neutral betas.
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4.4 Zero idiosyncratic skewness and independence assumption

test

In this section, we construct a statistic to test whether the zero idiosyncratic skew-

ness and independence assumption hold for each individual stock i. In particular, we

test the moments Ẽ[(ẽCCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])3] = 0, Ẽ[rm,t,τ (ẽ
CCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])] = 0 and

Ẽ[r2m,t,τ (ẽ
CCJV
i,t,τ − Ẽ[ẽCCJV

i,t,τ ])] = 0. GMM formula is applied to test these moments. We

first test each moment separately for each individual stock, than we construct joint test

for three moments. The GMM formula for moments test is as following,

JT = Tg′TS
−1gT → χ2(n) (16)

where gT is the vector of sample means corresponding to the expectations of tested vari-

ables, S is the covariance matrix of tested variables, and n is the number of tested vari-

ables.

For τ = 1m and τ = 6m, we calculate the p-values corresponding to the statistic JT of

univariate tests and joint tests and plot the histograms in Figures 8 and 9, respectively.

The summary statistics of the p-values are presented in Tables 6 and 7, respectively. The

univariate tests show that less than 10% of the individual stocks reject the null hypothesis

of zero idiosyncratic skewness at 10% significant level, while about 50% of the individual

stocks reject the null hypothesis of independence of market log return and idiosyncratic

shocks at 10% significant level. The joint tests also confirm that large proportion of the

firms reject the zero idiosyncratic skewness and independence assumption.

5 Conclusion

Motivated by the research of CCJV about measuring risk-neutral beta, this paper fur-

ther investigates whether CCJV’s zero idiosyncratic risk-neutral skewness assumption is

13



reasonable in a large sample containing almost all common stocks having options during

Jan. 1996- Dec. 2015.

Our empirical results show that about 30% of the estimated betas by zero idiosyncratic

risk-neutral skewness assumption generate negative idiosyncratic risk-neutral variance or

fourth central moment. For the rest betas, we summarize the unconditional idiosyncratic

risk-neutral skewness implied by these betas and find that 40% of the individual stocks

have the absolute value of idiosyncratic skewness larger than 0.5, which would lead a

bias more than 10% of the true beta. We also simulate a group of betas considering the

conditional idiosyncratic risk-neutral central third moment equal to the CCJV’s beta-

implied unconditional one. Comparing the simulated beta with CCJV’s beta, we find

that the zero skewness idiosyncratic skewness assumption seriously twists the sequence of

risk-neutral betas.

The statistics constructed to test the null hypothesis of zero idiosyncratic skewness and

independence of market log return and idiosyncratic shocks show that large proportion of

firms reject the null at 10% significant level. Our further research will focus on developing a

measure of risk-neutral beta without imposing the zero idiosyncratic risk-neutral skewness

constrain for all individual stocks and considering the dependence of market return and

idiosyncratic shocks.
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Appendices

A Risk-neutral Moments Equations

Given the one-factor model of the log return under the risk-neutral measure in equation

(??), we have

Ṽ ari,t,τ = Ẽt[(ri,t+1 − Ẽt[ri,t+1])
2]

= Ẽt[((α̃i + β̃i,t,τrm,t+1 + εi,t+1)− (α̃i + β̃i,t,τ Ẽt[rm,t+1]))
2]

= Ẽt[(β̃i,t,τ (ri,t+1 − Ẽt[ri,t+1]) + εi,t+1)
2]

= β̃2
i,t,τ Ẽt[(ri,t+1 − Ẽt[ri,t+1])

2] + Ẽt[ε
2
i,t+1]

= β̃2
i,t,τ Ṽ arm,t,τ + Ṽ arεi,t,τ (17)

S̃kewi,t,τ =
Ẽt[(ri,t+1 − Ẽt[ri,t+1])

3]

Ṽ ar
3/2

i,t,τ

=
Ẽt[((α̃i + β̃i,t,τrm,t+1 + εi,t+1)− (α̃i + β̃i,t,τ Ẽt[rm,t+1]))

3]

Ṽ ar
3/2

i,t,τ

=
Ẽt[(β̃i,t,τ (ri,t+1 − Ẽt[ri,t+1]) + εi,t+1)

3]

Ṽ ar
3/2

i,t,τ

=
β̃3
i,t,τ Ẽt[(ri,t+1 − Ẽt[ri,t+1])

3] + Ẽt[ε
3
i,t+1]

Ṽ ar
3/2

i,t,τ

=
β̃3
i,t,τ S̃kewm,t,τ Ṽ ar

3/2

m,t,τ + S̃kewεi,t,τ Ṽ ar
3/2

εi,t,τ

Ṽ ar
3/2

i,t,τ

(18)
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K̃urti,t,τ =
Ẽt[(ri,t+1 − Ẽt[ri,t+1])

4]

Ṽ ar
2

i,t,τ

=
Ẽt[((α̃i + β̃i,t,τrm,t+1 + εi,t+1)− (α̃i + β̃i,t,τ Ẽt[rm,t+1]))

4]

Ṽ ar
2

i,t,τ

=
Ẽt[(β̃i,t,τ (ri,t+1 − Ẽt[ri,t+1]) + εi,t+1)

4]

Ṽ ar
2

i,t,τ

=
β̃4
i,t,τ Ẽt[(ri,t+1 − Ẽt[ri,t+1])

4] + 6β̃2
i,t,τ Ẽt[(ri,t+1 − Ẽt[ri,t+1])

2]Ẽt[ε
2
i,t+1] + Ẽt[ε

4
i,t+1]

Ṽ ar
2

i,t,τ

=
β̃4
i,t,τK̃urtm,t,τ Ṽ ar

2

m,t,τ + 6β̃2
i,t,τ Ṽ arm,t,τ Ṽ arεi,t,τ + K̃urtεi,t,τ Ṽ ar

2

εi,t,τ

Ṽ ar
2

i,t,τ

(19)

B Risk-neutral Moments Calculation

We introduce how to estimate the integrals for the prices of the squared (Vi,t,τ ), cubed

(Wi,t,τ ), and quartic (Xi,t,τ ) contracts from the prices of option with discrete strikes in

this section.

Define the strike differences for call (put) options as ∆KC
j = KC

j − KC
j−1 (∆KP

j =

KP
j−1−KP

j ) for i = 2, · · · , nC (i = 2, · · · , nP ) and ∆KC
1 = KC

1 −Si,t (∆KP
1 = Si,t−KP

1 ).

Then we can approximate the BKM integrals for Vi,t,τ , Wi,t,τ and Xi,t,τ as follows,

Vi,t,τ = vC(KC
1 )Ci,t∆K

C
1 +

nC∑
j=2

1

2
[vC(KC

j )Ci,t,j + vC(KC
j−1)Ci,t,j−1]∆K

C
i

+vP (KP
1 )Pi,t∆K

P
1 +

nP∑
j=2

1

2
[vP (KP

j )Pi,t,j + vP (KP
j−1)Pi,t,j−1]∆K

P
i (20)

Wi,t,τ = wC(KC
1 )Ci,t∆K

C
1 +

nC∑
j=2

1

2
[wC(KC

j )Ci,t,j + wC(KC
j−1)Ci,t,j−1]∆K

C
i

−wP (KP
1 )Pi,t∆K

P
1 +

nP∑
j=2

1

2
[wP (KP

j )Pi,t,j + wP (KP
j−1)Pi,t,j−1]∆K

P
i (21)
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Xi,t,τ = xC(KC
1 )Ci,t∆K

C
1 +

nC∑
j=2

1

2
[xC(KC

j )Ci,t,j + xC(KC
j−1)Ci,t,j−1]∆K

C
i

+xP (KP
1 )Pi,t∆K

P
1 +

nP∑
j=2

1

2
[xP (KP

j )Pi,t,j + xP (KP
j−1)Pi,t,j−1]∆K

P
i (22)

where

vC(K) =
2(1− ln[ K

Si,t
])

K2

vP (K) =
2(1 + ln[

Si,t

K
])

K2

wC(K) =
6 ln[ K

Si,t
]− 3(ln[ K

Si,t
])2

K2

wP (K) =
6 ln[

Si,t

K
] + 3(ln[

Si,t

K
])2

K2

xC(K) =
12(ln[ K

Si,t
])2 − 4(ln[ K

Si,t
])3

K2

xP (K) =
12(ln[

Si,t

K
])2 + 4(ln[

Si,t

K
])3

K2
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Table 1: Summary statistics of return, implied volatility and moneyness

Mean Std 5% quantile Median 95% quantile Firm

Ri,1m 1.008 0.132 0.814 1.004 1.214 1989

Implied V oli,1m 0.504 0.230 0.238 0.454 0.935 1989

kmini,1m 0.892 0.038 0.822 0.897 0.941 1989

kmaxi,1m 1.154 0.095 1.061 1.130 1.319 1989

Ri,6m 1.050 0.337 0.582 1.025 1.590 1956

Implied V oli,6m 0.474 0.208 0.231 0.428 0.873 1956

kmini,6m 0.807 0.047 0.727 0.811 0.876 1956

kmaxi,6m 1.458 0.383 1.154 1.354 2.084 1956

Note: This table presents summary statistics of gross return of individual stocks, im-

plied volatility, minimum and maximum moneyness of individual stock options

for horizons of 1 and 6 months during Jan 1996-Dec 2015. Each month, the mean

(Mean), standard deviation (Std), fifth percentile (5% quantile), median (Median),

and 95th percentile (95% quantile) values of the cross-sectional distribution of each

variable are calculated. The table presents the time-series means for each cross-

sectional value.
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Table 2: Summary statistics of option-impled moments

Mean Std 5% quantile Median 95% quantile Firm

Ṽ ar
BKM

i,1m 0.371 0.355 0.076 0.271 0.982 1989

S̃kew
BKM

i,1m -0.447 0.981 -2.144 -0.389 0.970 1989

K̃urt
BKM

i,1m 5.983 4.182 2.646 4.589 14.129 1989

Ṽ ar
BKM

i,6m 0.269 0.205 0.064 0.207 0.688 1956

S̃kew
BKM

i,6m -0.204 0.485 -0.863 -0.227 0.522 1956

K̃urt
BKM

i,6m 2.947 1.657 1.920 2.734 4.475 1956

Note: This table presents summary statistics of option-implied variance, skewness

and kurtosis calculated by BKM method for τ = 30, 182 days during Jan

1996-Dec 2015. Each month, the mean (Mean), standard deviation (Std), fifth

percentile (5% quantile), median (Median), and 95th percentile (95% quantile)

values of the cross-sectional distribution of each variable are calculated. The

table presents the time-series means for each cross-sectional value.

Table 3: Summary statistics of option-implied betas by CCJV’s zero idiosyn-

cratic skewness assumption

Mean Std 5% quantile Median 95% quantile Firm

β̃CCJV
1m 0.783 1.608 -2.135 1.165 2.919 1989

β̃CCJV
6m 0.239 1.232 -2.316 0.616 1.460 1956

Note: This table presents summary statistics of option-implied betas by

CCJV’s zero idiosyncratic skewness assumption with 30-day and 182-

day option maturities during Jan 1996-Dec 2015. Each month, the mean

(Mean), standard deviation (Std), fifth percentile (5% quantile), median

(Median), and 95th percentile (95% quantile) values of the cross-sectional

distribution of β̃CCJV
1m and β̃CCJV

6m are calculated. The table presents the

time-series means for each cross-sectional value.
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Table 4: Summary statistics of conditional variance and fourth central moment of idiosyn-

cratic shock

Mean Std 5% quantile Median 95% quantile Firm

All 0.227 0.281 -0.014 0.147 0.721 1989

Ṽ ar
CCJV

εi,t,1m
Valid 0.246 0.278 0.024 0.160 0.739 1866

Invalid -0.053 0.071 -0.168 -0.032 -0.002 123

All 0.165 0.135 0.019 0.132 0.421 1956

Ṽ ar
CCJV

εi,t,6m
Valid 0.169 0.129 0.026 0.134 0.422 1933

Invalid -0.092 0.136 -0.389 -0.039 -0.003 24

All 0.086 1.788 -0.645 0.058 1.247 1989

µ̃4
CCJV
εi,t,1m

Valid 0.383 0.816 0.005 0.130 1.517 1452

Invalid -0.699 2.824 -2.802 -0.092 -0.002 537

All 0.002 0.312 -0.255 0.014 0.227 1956

µ̃4
CCJV
εi,t,6m

Valid 0.078 0.180 0.002 0.032 0.273 1506

Invalid -0.222 0.471 -0.996 -0.066 -0.002 451

Note: This table presents summary statistics of conditional variance and fourth central

moment of idiosyncratic shock implied by option-implied betas given CCJV’s zero id-

iosyncratic skewness assumption with 30-day and 182-day option maturities during Jan

1996-Dec 2015. Each month, the mean (Mean), standard deviation (Std), fifth per-

centile (5% quantile), median (Median), and 95th percentile (95% quantile) values of

the cross-sectional distribution of Ṽ ar
CCJV

εi,t,1m
, Ṽ ar

CCJV

εi,t,6m
, µ̃4

CCJV
εi,t,1m

, and µ̃4
CCJV
εi,t,6m

are cal-

culated. The table presents the time-series means for each cross-sectional value. The

’Valid’ and ’Invalid’ represent positive and negative beta-implied conditional variance

and fourth central moment of idiosyncratic shock, respectively.
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Table 5: Summary statistics of unconditional idiosyncratic skewness implied by

option-implied betas given CCJV’s zero idiosyncratic skewness assumption

Mean Std 5% quantile Median 95% quantile Firm

S̃kew
M

εi,1m
-0.284 0.820 -1.806 -0.180 0.827 4434

S̃kew
M

εi,6m
-0.235 0.708 -1.440 -0.171 0.770 4181

Note: This table presents summary statistics of unconditional idiosyncratic

skewness implied by option-implied betas given CCJV’s zero idiosyncratic

skewness assumption with 30-day and 182-day option maturities.The mean

(Mean), standard deviation (Std), fifth percentile (5% quantile), median (Me-

dian), and 95th percentile (95% quantile) values of the cross-sectional distri-

bution of S̃kew
M

εi,1m
and S̃kew

M

εi,6m
are calculated.

Table 6: Summary statistics of p-values of p-values of univariate test

H0 Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

Ẽ[ε̃3i,t,1m] = 0 0.548 0.236 0.194 0.523 0.947 0.005

Ẽ[rm,t,1mε̃i,t,1m] = 0 0.278 0.294 0.001 0.159 0.888 0.416

Ẽ[r2m,t,1mε̃i,t,1m] = 0 0.502 0.241 0.161 0.461 0.933 0.016

Ẽ[ε̃3i,t,6m] = 0 0.463 0.270 0.077 0.430 0.933 0.077

Ẽ[rm,t,6mε̃i,t,6m] = 0 0.235 0.287 0.000 0.094 0.855 0.511

Ẽ[r2m,t,6mε̃i,t,6m] = 0 0.380 0.278 0.049 0.309 0.917 0.167

Note: This table presents summary statistics of p-values of univariate test. The mean (Mean),

standard deviation (Std), fifth percentile (5% quantile), median (Median), and 95th per-

centile (95% quantile) values of the cross-sectional distribution of p-values as well as the

proportion of firms with p-values less equal than 0.1 for each test are calculated.
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Table 7: Summary statistics of p-values of p-values of joint test

H0: Ẽ[ε̃3i,t,1m] = 0 and Ẽ[rm,tε̃i,t,1m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.321 0.292 0.001 0.242 0.875 0.333

H0: Ẽ[ε̃3i,t,1m] = 0 and Ẽ[r2m,tε̃i,t,1m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.511 0.241 0.116 0.512 0.918 0.038

H0: Ẽ[ε̃3i,t,1m] = 0, Ẽ[rm,t,1mε̃i,t,1m] = 0 and Ẽ[r2m,t,1mε̃i,t,1m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.312 0.281 0.001 0.235 0.841 0.327

H0: Ẽ[ε̃3i,t,6m] = 0 and Ẽ[rm,t,6mε̃i,t,6m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.212 0.267 0.000 0.081 0.811 0.526

H0: Ẽ[ε̃3i,t,6m] = 0 and Ẽ[r2m,t,6mε̃i,t,6m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.337 0.273 0.008 0.276 0.873 0.245

H0: Ẽ[ε̃3i,t,6m] = 0, Ẽ[rm,t,6mε̃i,t,6m] = 0 and Ẽ[r2m,t,6mε̃i,t,6m] = 0

Mean Std 5% quantile Median 95% quantile Proportion of p ≤ 0.1

0.177 0.242 0.000 0.054 0.743 0.579

Note: This table presents summary statistics of p-values of joint test. The mean

(Mean), standard deviation (Std), fifth percentile (5% quantile), median (Median),

and 95th percentile (95% quantile) values of the cross-sectional distribution of p-

values as well as the proportion of firms with p-values less equal than 0.1 for each

test are calculated.
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Figure 1: Time series of cross-sectional mean of gross return of individual stocks, implied
volatility, minimum and maximum moneyness of individual stock options for horizons of
1 and 6 months
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Figure 2: Time series of cross-sectional mean of individual option-implied moments versus
index option-implied moments
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Figure 3: Histogram of estimated option-implied betas by CCJV’s zero idiosyncratic
skewness assumption with 30-day and 182-day option maturities
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Figure 4: Time series of cross-sectional mean of estimated option-implied betas by CCJV’s
zero idiosyncratic skewness assumption with 30-day and 182-day option maturities
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Figure 5: Histogram of conditional variance and fourth central moment of idiosyncratic
shock implied by option-implied betas given CCJV’s zero idiosyncratic skewness assump-
tion with 30-day and 182-day option maturities
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Figure 6: Histogram of unconditional skewness implied by option-implied betas given
CCJV’s zero idiosyncratic skewness assumption with 30-day and 182-day option maturi-
ties
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Figure 7: Option-implied beta with zero-skewness assumption versus option-implied beta
without zero-skewness assumption
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Figure 8: Histogram of p-values for univariate test
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Figure 9: Histogram of p-values for joint test
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