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1 Introduction

Leverage plays an important role in explaining the cross-section of stock returns (Gomes and

Schmid, 2010; Garlappi and Yan, 2011; Livdan, Sapriza, and Zhang, 2009).1 It has also been

shown to be related to the volatility of the stock returns (Merton, 1974; Choi and Richard-

son, 2016). We show that firm leverage is an important determinant of the co-movement in

idiosyncratic stock return volatilities (IVOL) (Connor, Korajczyk, and Linton, 2006; Herskovic,

Kelly, Lustig, and Van Nieuwerburgh, 2016; Duarte, Kamara, Siegel, and Sun, 2014).2 Connor

et al. (2006) find strong common dynamics in a panel of idiosyncratic volatilities, and suggest

three potential explanations: “Something about the random technology generating firm-specific

cash flows, or the dynamic flow of information about these firm-specific cash flows, or investor’s

changing reaction to firm-specific news, must underlie this common component in the volatility

of asset-specific returns.” We provide evidence for an alternative explanation for the presence of

a common factor in idiosyncratic volatilities, namely common fluctuations in financial leverage.

Our simple explanation for the common movement in the cross-section of IVOL is motivated by

capital structure dynamics. We demonstrate that leverage and firm size determine the firms’

IVOL in a cross-section of firms whose capital structure adjusts imperfectly or infrequently to

shocks to firms’ asset values, which is a standard feature of many dynamic capital structure

models with adjustment costs, e.g., Goldstein, Ju, and Leland (2001), and Strebulaev (2007). In

these models, firms only update their capital structure once the leverage hits either an upper or

a lower boundary. In between refinancing epochs, the leverage ratio varies directly with changes

in the asset values as the nominal debt issued is fixed. To see how this set up leads to common

movement in the IVOL cross-section, suppose first that unlevered firms’ asset values follow a

standard CAPM model with constant idiosyncratic volatility. Returns on the firms’ equity in

this model equal the return on assets multiplied by the leverage ratio, and so the volatility of

equity returns will vary directly with leverage. The CAPM structure of asset returns implies

that leverage ratios tend to co-move, which in turn leads to co-movement in IVOL.

1Whenever we refer to leverage, we mean financial leverage, measured as market leverage unless specifically
indicated otherwise.

2In this paper, we follow the literature and refer to the volatility of residual stock returns in an asset pricing
model as “idiosyncratic volatility”. We stress that the notion “idiosyncratic” refers to the returns themselves not
being priced, but that does not rule out the volatility of those idiosyncratic returns displaying co-movement that
is potentially priced.
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Firm size plays a role in our model because of the default option embedded in levered equity,

the value of which is not homogeneous in firm value because it follows a power function.3 Equity

return volatility within a given refinancing cycle is determined by a time-varying scaling factor

which depends on the default option value. Under the dynamic debt restructuring setting, firms

with the same leverage can have different sizes because they have completed a different number

of refinancing cycles. In other words, the weights, and the IVOLs, is a function of both leverage

and size.

We operationalize our ideas within the dynamic capital structure framework of Goldstein et al.

(2001). This model and Fischer, Heinkel, and Zechner (1989) are the base models for many of the

more recent capital structure studies.4 The model of Goldstein et al. (2001) has the advantage

that it is homogeneous in firm value. In the model, a firm periodically levers up when its asset

value hits a threshold if it does not default before that. Its analytical simplicity enables us

to pinpoint the effects of the size and leverage both analytically and through simulation. We

show that (1) both the leverage and size affect the firm’s IVOL even under the assumption

of constant asset volatility, (2) the previously documented CIV factor Herskovic et al. (2016)

captures mainly the dynamics of the market average leverage level, and (3) the CAPM beta

and IVOL exhibit an inverse relation because they are both affected by the same underlying

force: leverage.

Motivated by the results of our theoretical model, we propose a three-factor model of equity

IVOL, augmenting the CIV factor with a leverage (LIV) and size (SIV) factor. We construct

the leverage factor (LIV) as the difference in IVOL between a portfolio of stocks with high

leverage and a portfolio of stocks with low leverage, and the size factor (SIV) as the difference

between the IVOL of the portfolio of small market cap stocks and the portfolio of large market

cap stocks. We argue that LIV and SIV capture the dynamics of the cross-sectional dispersion

in common IVOL, and show that the explanatory power of the CIV factor in the cross-section

stems from its correlation with the LIV and SIV factors.

To test our prediction, we sort stocks into 25 leverage and size portfolios.5 The three-factor

model indeed captures a large proportion of the time series variation of IVOL. At portfolio level,

3Note that the model is homogenous in firm value from one financing cycle to the next which facilitates solving
the dynamic model.

4For example, see Strebulaev (2007), Strebulaev and Yang (2013), among others.
5As a robustness check, we also consider IVOL portfolios and individual firms as test assets.
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most of the adjusted R-squared values are above 75 percent. At the firm level, the average

adjusted R-squared is 21 percent compared to just 15 percent using only the CIV factor.

More importantly, the loadings of CIV factor do not show any clear pattern across the different

portfolios, while the loadings on the LIV and SIV factors exhibit strong monotonic patterns

across portfolios. This result is not dissimilar to the way the three Fama-French factors explain

equity returns: the HML and SMB factors do a much better job explaining the cross-section of

returns than the market factor.

To further illustrate the relation between CIV and leverage, we first show that CIV itself is

strongly correlated with LIV and SIV. Then we provide evidence that LIV and SIV have ad-

ditional explanatory power above and beyond CIV, by regressing portfolio IVOL on CIV and

then regressing the residuals of that regression on LIV and SIV. We find that the loadings of

residuals on LIV and SIV are still significant. The converse is not true. Furthermore, we can

substitute the CIV with the IVOL of pure leverage-sorted portfolio only and the results still

holds: CIV has no explanation power for the residuals.

To see the application of our three-factor model, we return to the negative IVOL-return relation

first studied by Ang, Hodrick, Xing, and Zhang (2006). We show that this negative relation is

largely driven by the common component of the IVOL movement. Indeed, if we sort the stock

according to IVOL predicted by the three-factor model, the negative relation still holds. But if

we sort stocks according to the residuals of the regression of IVOL on the three factors, there

is no obvious pattern. Duarte et al. (2014) finds similar results by taking out the component

components in IVOL using Principal Component Analysis (PCA). What we show here is to

pinpoint the components through our three-factor model. This suggest an important condition

for any theoretical model that tries to explain the negative IVOL-return relation: it has to also

explain why it is the co-movement component of the IVOL, not the residual component. And

the common component is determined by firm’s size and leverage. To our knowledge, none of

the current theories explore this front.

Our theoretical model is not the first to embed the firm level dynamic capital structure model

in a CAPM setting. Strebulaev and Yang (2013) already uses this setup in their simulation

study of the firm leverage. However, their focus is a realistic quantitative study of firm capital

structure choices and credit spread. Our focus is on the equity returns. The simpler and more
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basic setup of Goldstein et al. (2001) that we use here shows that our message is general. More

surprisingly, using baseline parameters used in Goldstein et al. (2001), our simulations replicate

many quantitative results reported in Herskovic et al. (2016).

We contribute to the literature by providing a theoretical argument linking leverage and size

to the co-movement in firms’ IVOL. Empirically we show a three-factor model that capture a

large proportion of such IVOL co-movement. Our application of a three-factor model to the

IVOL-return relation implies that studies related to IVOL need to account for this dynamic

leverage-driven effect. Our work also provides theoretical and empirical support for recent work

arguing that asset pricing anomalies should be tested using unlevered returns as in Choi and

Richardson (2016) and Doshi, Jacobs, Kumar, and Rabinovitch (2016).

The remaining part of the paper is organized as follows. We first motivate, both empirically and

theoretically, how leverage drives IVOL in Section 2. Then we present the theoretical model

in Section 3. The results of the model motivate the usage of size and leverage as the factors,

which we empirically construct and test in Section 4. Section 5 applies the three factor to the

study of IVOL-return relation and Section 6 concludes. All the proofs are in the appendix.

2 IVOL, Leverage and Betas In the Cross-Section

We start by presenting some preliminary evidence, both empirical and theoretical, linking the

co-movement of IVOL documented in Herskovic et al. (2016) to firms’ leverage. In Table 1, we

use all firms listed on NYSE/NASDAQ/AMEX during the period 1963–2015.6 Every month

we compute the return IVOL relative to the CAPM and sort stocks into IVOL deciles. We

estimate CAPM beta using daily stock returns over the past 12 months. And we estimate

the firm’s IVOL loading on CIV by an unconditional regression of firm IVOL on CIV at the

monthly level over the full sample period. The CIV factor is calculated as the equal-weighted

cross-sectional average IVOL.

[ Table 1 ]

6As usual the data are from CRSP and Compustat and we focus on common stock (security code 10 and 11)
and exclude financial firms. We further get rid of penny stocks by requiring the stock prices to be at least $1.
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As one can see from the table, the average loadings of the individual IVOLs on the CIV factor

increases monotonically from 0.22 at the lowest IVOL decile to 3.23 at the highest IVOL decile.

This partly supports the claim made in Herskovic et al. (2016) that the CIV factor captures the

some cross-sectional variation in IVOL: higher IVOL is associated with higher loadings of the

portfolio IVOL on the CIV factor. To motivate that leverage drives firm-level IVOL and the

CIV factor loading, we also calculate the average market leverage of each decile. One can see

that it also monotonically increases with IVOL from 0.23 at the lowest IVOL decile to 0.33 at

the highest IVOL decile. Interestingly, the CAPM beta of portfolio returns also monotonically

increases with IVOL: from 0.88 at the lowest IVOL decile to 1.43 at the highest IVOL decile.

This monotonic increase in beta with IVOL is a standard result in a dynamic capital structure

model; CAPM beta is driven by the same force that drives the individual firms’ IVOL: (financial)

leverage.

Theoretically, the intuition behind the effect of leverage on the firms’ IVOL is the following.

Suppose the unlevered equity (asset) return between t to t+1, rAi,t+1, of firm i follows a CAPM,

rAi,t+1 = rf + βAi R
A
m,t+1 + εAi,t+1, (1)

where rf , RAm,t+1 are the risk-free rate and unlevered market return respectively, βA is the

unlevered equity (asset) beta, and εi,t+1 is the residual risk of the firm’s asset returns that are

uncorrelated across firms and the market.

If the firm has debt level Di,t at time t, one can show that the levered equity returns follow a

CAPM-like relation,

rEi,t+1 = rf +
Ai,t

Ai,t −Di,t
βAi R

A
m,t+1 +

Ai,t
Ai,t −Di,t

εAi,t+1, (2)

where Ai,t is the firm’s asset value. As long as the debt value is not just a constant proportion

of the firm’s asset value, the (idiosyncratic) levered equity returns are functions of the firm’s

leverage. Since asset returns and values are a function of the market factor, leverage will be

as well and therefore the volatility of idiosyncratic equity returns (IVOL) will have a common

factor structure. In the next section, we build a dynamic model to formalize this relation, and

show that both size and leverage affect both IVOL and the CAPM return beta.
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3 A Three-Factor IVOL Model of Equity Returns

The IVOL model builds on the single-firm framework of Goldstein et al. (2001) and embeds

its setup in a single-factor economy. The Goldstein et al. (2001) model incorporates both the

optimal leverage choices of a firm and dynamic updating of the capital structure. The driving

force for taking on debt is the tax shield, and the optimal leverage follows by trading off the tax

shield against the likelihood and cost of a default, as in many other dynamic capital structure

models (see for example, Strebulaev, Whited, et al. (2012) and references therein.). When the

firm asset value is high enough, the firm will lever up to capture more tax shield benefits. Since

the firm level analysis is very similar to that in Goldstein et al. (2001), we relegate detailed

derivations and proofs to Appendix A. Like Goldstein et al. (2001), we first consider a static

variant of the model in which firms issue a consol bond only once. The setting allows us to

focus on the intuition behind our results in a tractable setting, before moving on to the fully

dynamic set up.

3.1 Model Setup: One-Factor APT for Asset Return Processes

Consider a one-factor model for firm assets/cash flows. We assume that there are N firms,

indexed by i = 1, . . . , N , whose cum-dividend value processes follow

dVi(t) + δi(t)dt

Vi(t)
= (µi + δi)dt+ σi(ρidW (t) +

√
1− ρ2

i dZi(t)), i = 1, . . . , N, (3)

where δi(t) = δiVi(t) is the payout-value ratio, µi, δi, σi, ρi are all positive constants, and

W (t), Zi(t) are standard Brownian motions that are uncorrelated with each other, for all

i = 1, . . . , N . There exists a risk-free bond with constant risk-free rate r > 0. The parameter

ρi governs the relative importance of systematic and idiosyncratic shocks, while σi determines

the magnitude of the total asset volatility.

We assume that the APT holds and that the cross-section is sufficiently large for the Law of

Large Numbers to apply. In that case, the market return is only a function of the common

shock dW (t) and is the single pricing factor for asset returns. Define the value of the market

portfolio of the assets, Vm(t), the aggregate dividend, δm(t), and the portfolio weights, wAi (t)
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as

Vm(t) ≡
∑
i

Vi(t), δm(t) ≡
∑
i

δi(t), ωAi (t) ≡ Vi(t)

Vm(t)
,

then the cum-dividend market return of assets is given by

dVm(t) + δm(t)dt

Vm(t)
= rAm(t)dt+ σAm(t)dW (t),

where

rAm(t) ≡
∑
i

ωAi (t)(µi + δi), σAm(t) ≡
∑
i

ωAi (t)σiρi.

To make sure that the expected market return equals the risk-free rate under the risk-neutral

measure defined below, we define the (time-varying) market price of risk as

θAm(t) ≡ rAm(t)− r
σAm(t)

. (4)

Thus one can define a risk-neutral probability measure generated by the Brownian motion

dW̃ (t) ≡ dW (t) + θAm(t)dt, (5)

so that the market return is of the form

dVm(t) + δm(t)dt

Vm(t)
= rdt+ σAm(t)dW̃ (t). (6)

For firm i, we define the price of the idiosyncratic risk Zi as θAi . The Brownian motion under

the risk-neutral measure for individual firm i can then be written as

dZ̃i(t) ≡ dZi(t) + θAi dt. (7)

To prevent arbitrage, the expected return of each individual firm should equal r under this
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risk-neutral measure, or, equivalently,

µi + δi = r + σiρiθ
A
m + σi

√
1− ρ2

i θ
A
i . (8)

As pointed out in Cochrane (2005), individual θAi s can be anything for any finite set of securities.

In other words, idiosyncratic risk can be priced under a pure APT model. As a simplifying

assumption and to tie our hands as much as possible, we will assume that the single-factor APT

holds exactly at the firm level, i.e.,

θAi = 0 ∀i. (9)

Hence, idiosyncratic risk is not priced at the asset level, but we will show later that idiosyncratic

equity volatility can still be priced, driven by common movements in financial leverage. This

setup is not new in the literature (see for example, Strebulaev (2007)). However, to the best

of our knowledge, we are the first to use this setup to study the IVOL in equity returns. Now,

define the asset return beta as

βAi ≡
Cov(dVi(t)+δi(t)dtVi(t)

, dVm(t)+δm(t)dt
Vm(t) )

(σAm)2
=
σiρi
σAm

, (10)

then asset returns follow a CAPM where

µi + δi = r + βAi (rAm − r). (11)

3.2 Optimal Static Capital Structure for A Single Firm

Now we allow each firm to be able to borrow through a consol bond with coupon C per period.

We start by letting the firm decide the optimal capital structure only once in the beginning,

and will study the dynamic capital structure later. Denote the tax rates for interest payment,

dividend and corporate profits as τi, τd, and τc, respectively. So the effective rate for equity,

τeff is given by

1− τeff = (1− τc)(1− τd). (12)

When the firm defaults at asset value V , the deadweight default cost is proportional to firm

value V ; αV , where α > 0. The restructuring cost is also proportional to firm value V ; qV ,
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where q > 0. As shown in Goldstein et al. (2001) and Appendix A.1, the optimal capital

structure (coupon C∗) is given by (we drop the firm subscript i here for ease of exposition)

C∗ =
rV0

λ

[(
1

1 + x

)(
A

A+B

)] 1
x

, (13)

where

x =
1

σ2

(µ− σ2

2

)
+

√(
µ− σ2

2

)2

+ 2rσ2

 > 0,

λ =
x

1 + x
,

A = (1− q)(1− τi)− (1− τeff),

B = λ(1− τeff) (1− (1− q)(1− α)) .

For a given coupon C, the equity value at any point after the debt issuance and before any

default is given by

E(C, V ;VB) = Esolv = (1− τeff)

[
V − VB

(
V

VB

)−x
− C

r

(
1−

(
V

VB

)−x)]
, (14)

where

VB =
x

1 + x

C

r
≡ λC

r
. (15)

3.3 Equity Returns Under Static Capital Structure

Using the value for VB from (14), we can rewrite the equity values in terms of the optimal

coupon C∗ from (13)

E(V,C∗) = (1− τeff)

[
V +G

(
V

V0

)−x
− C∗

r

]
, (16)

where

G =
V0

x

[(
1

1 + x

)(
A

A+B

)]1+ 1
x

.

The three terms between brackets in (16) have clear economic meaning. The first term is the
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total value of the assets. The last term reflects the value of a risk-free bond with coupon rate

C∗. The second term contains the equity holder’s default option value. In the following we use

the above result to examine the properties of IVOL.

3.3.1 A Simplified Version

Consider a simplified version of (16), focusing on the first and the third term, and ignoring

the default option value. This is a formal version of the motivational example we discussed in

Section 2. In this case, we show analytically that leverage drives both the IVOL of the firms’

equity returns as well as their CAPM beta. We will highlight the three testable implications

from our framework: 1) the presence of a CIV factor, 2) a positive correlation between β and

IVOL, and 3) a positive correlation between leverage and IVOL. Denote this equity value as

Es and define Ds ≡ C/r as the face value of the consol bond (we use the superscript “s” to

distinguish the variables in this section from their counterparts in the full model to be studied

later),

Es(V ) ≡ (1− τeff)(V − C/r) ≡ (1− τeff)(V −Ds). (17)

The after-tax instantaneous dividend payoff to the equity holders, denoted as ∆(t), equals

(1− τeff)(δ(t)− C)dt. So the infinitesimal change in equity equals

(1− τeff)(dV + (δ(t)− C)dt) = (1− τeff) ([V (µ+ δ)−Dsr] dt+ V σdz) ,

where (we recover the subscript i here)

dzi(t) ≡ ρidW (t) +
√

1− ρ2
i dZi(t). (18)

The equity return process is given by

dEsi (t) + ∆i(t)dt

Esi (t)
≡rsi dt+ σsi

(
ρidW (t) +

√
1− ρ2

i dZi(t)

)
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with

rsi =
Vi(t)

Vi(t)−Ds
i

(µi + δi)−
Ds
i

Vi(t)−Ds
i

r,

σsi =
Vi(t)

Vi(t)−Ds
i

σi.

There are two sources of shocks to the firm-level equity returns; a systematic one associated

with W (t) and an idiosyncratic one associated with Zi(t). The IVOL of the equity return is

therefore given by

IV OLsi (t) = σsi

√
1− ρ2

i =
Vi(t)

Vi(t)−Ds
i

σi

√
1− ρ2

i .

From here we can see the potential appearance of a common factor in IVOL because of the

leverage term Vi(t)
Vi(t)−Ds

i
. Recall that Vi(t) contains the history of common shocks W (t). Ds

i is

fixed under the static capital structure setting we use in this section, and will be unchanged

during one refinancing cycle in the dynamic version we study in Section 3.4. We can contrast this

with the situation that Ds
i is proportional to Vi(t) for all t. In that setting, the coefficient of the

idiosyncratic risk becomes a constant, which would result in a constant idiosyncratic volatility.

The key insight of our model is that as long as the leverage varies over time and is at least in

part driven by shocks common to all firms in the cross-section, the idiosyncratic volatilities of

the equity returns exhibit common variation even if the idiosyncratic asset volatilities do not.

In this simple set up, IVOL is a positive monotonic transformation of leverage. We show below

that this is no longer always the case when we also take the value of the default option into

account.

It is important to note that the common variation does not stem from omitted risk factors.

All asset returns are driven by a single common factor which is correctly accounted for when

computing idiosyncratic return volatilities. The idiosyncratic shocks to firm asset values are

completely independent across firms. The common movement in IVOL shows up as a mul-

tiplicative factor for the firm-level asset idiosyncratic volatility. Thus, additive econometric

techniques such as principal component analysis (PCA) to adjust returns for risk will not be

able to uncover completely “additional factors” that capture this common variation.
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We can calculate directly the common factor defined in the empirical literature in this simple

case. If all firms have the same parameters, then the common idiosyncratic volatility factor

CIV as defined in Herskovic et al. (2016) equals a constant times the average leverage in the

economy,

CIV =
1

N

∑
i

σsi

√
1− ρ2

i = σ
√

1− ρ2
1

N

∑
i

Vi(t)

Vi(t)−Ds
i

.

Since ρ can be thought of as a scaled market beta, it is natural to assume it is positive. In that

case, the following holds.

Proposition 1. If all firms have identical parameters and ρi > 0 ∀i, then the covariance between

firm-level IVOL and the CIV factor is positive for all firms and is larger for more highly levered

firms.

We can show that the CAPM still holds for equity returns in this simple case. Furthermore,

IVOL is closely related to the equity beta. Define the market portfolio of equity as

Esm(t) ≡
∑
i

Esi (t) = (1− τeff)
∑
i

(Vi(t)−Ds
i ),

specify the relative weight of firm i as

wsi (t) ≡
Esi (t)

Esm(t)
=

Vi(t)−Ds
i∑

i(Vi(t)−Ds
i )
,

and define the market payout ratio as

∆m(t) ≡ (1− τeff)
∑
i

(δi(t)−Ds
i r).

Then the market portfolio of equity evolves as

dEsm(t) + ∆m(t)dt

Esm(t)
= rsm(t)dt+ σsm(t)dW (t),
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where

rsm(t) ≡
∑
i

wsi

(
Vi(t)

Vi(t)−Ds
i

(µi + δi)−
Ds
i

Vi(t)−Ds
i

r

)
,

= r +
Vm(t)

Esm(t)
(rAm − r),

σsm(t) ≡
∑
i

wsi
Vi(t)

Vi(t)−Ds
i

σiρi,

=
Vm(t)

Esm(t)
σAm.

The covariance between individual equity returns and the market equity returns is given by

Cov

(
dEsi (t) + ∆i(t)dt

Esi (t)
,
dEsm(t) + ∆m(t)dt

Esm(t)

)
=

Vi(t)

Vi(t)−Ds
i

σiρiσ
s
m(t),

Then the individual firm’s equity beta is given by

βsi (t) =
Cov

(
dEs

i (t)+∆i(t)dt
Es

i (t) , dE
s
m(t)+∆m(t)dt
Es

m(t)

)
(σsm(t))2

=
Vi(t)

Vi(t)−Ds
i

σiρi
σsm(t)

As a result, the expected stock return for firm i is

rsi (t) = r + βsi (t)(r
s
m(t)− r).

Note the appearance of Vi(t)
Vi(t)−Ds

i
in both IVOL and the equity beta of the firm. The following

cross-sectional result is immediate.

Proposition 2. If all firms have identical parameters, then the cross-sectional correlation be-

tween IVOL and the equity beta is positive.

The economic intuition for Proposition 2 is as follows. If the economy does poorly (well), then

all firms will tend to become more (less) levered. Hence, if the economy does poorly (well), then

IVOL will tend to increase (decrease) for all firms, and equity betas of relatively more-levered

firms will tend to increase (decrease), while the equity betas of relatively less-levered firms will

tend to decrease (increase). These effects are stronger the more the firm’s leverage differs from
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the market-average leverage.

3.3.2 Full Version

We now study the full equity value in (16), including the default option value given by the

nonlinear term V −x. The same results obtain as in the previous section and the basic intuition

about the common variation in the IVOL still holds, with leverage that linking IVOL and CAPM

beta. In addition, the size of the firm also comes into play in this setting.

Note that the value process Vi(t) and the constants Gi and Ci are all linear functions of the

initial firm value Vi(0). So to simplify the notation, in the following we scale them by the initial

firm value Vi(0). In other words, the equity value is given by

Ei(Vi, C
∗
i , Vi(0)) = (1− τeff)Vi(0)(Vi(t) +GiVi(t)

−xi −Ds
i ),

where Ds
i is defined as above. The equity return process is then given by

dEi(t) + ∆i(t)dt

Ei(t)
≡ rEi (t)dt+ σEi (t)(ρidW (t) +

√
1− ρ2

i dZi(t)),

where

∆i(t) = δiVi(t)− Ci,

and the expected return and volatility of equity are given by

rEi (t) = r +
Vi(t)

Vi(t) +GiVi(t)−xi −Ds
i

(µi + δi(t)− r)+

GiVi(t)
−xi

Vi(t) +GiVi(t)−xi −Ds
i

(
−xiµi +

1

2
xi(xi + 1)σ2

i − r
)
,

σEi =
Vi(t)(1− xiGiVi(t)−xi−1)

Vi(t) +GiVi(t)−xi −Ds
i

σi.

In this setup, IVOL equals

IV OLEi (t) = σEi

√
1− ρ2

i =
1− xiGiVi(t)−xi−1

1 +GiVi(t)−xi−1 −Ds
i /Vi(t)

σi

√
1− ρ2

i . (19)

In contrast to the simple version, IVOL is no longer a positive monotonic transformation of
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leverage. When leverage is sufficiently low, a lower leverage gives rise to a higher IVOL. This

can be seen from (19) as follows. Holding D/V constant, a higher asset value V implies a lower

V −x−1, yielding a higher IVOL. If a firm has the same leverage ratio D/V but with different

size V , then the relation between IVOL and leverage is not monotonic anymore. And this is

the case under the dynamic capital structure.

Just as in the simple version, when all firms have identical parameters the common idiosyncratic

volatility factor CIV equals a constant times the average leverage in the economy,

CIV (t) =
1

N

∑
i

σEi (t)
√

1− ρ2
i = σ

√
1− ρ2

1

N

∑
i

1− xGVi(t)−x−1

1 +GVi(t)−x−1 −Ds
i /Vi(t)

.

In this case, the constants x and G will be identical across firms as they only depend on

the parameters. As before, a sufficient condition for the covariance between any firm’s IVOL

(leverage) and the CIV factor to be positive is ρi > 0 ∀i. To see the relation between IVOL

and equity beta, we define the market portfolio of equity, the relative market cap of firm i, and

the market payout ratio as

Em(t) ≡
∑
i

Ei(t) = (1− τeff)
∑
i

Vi(0)(Vi(t)−Ds
i +GiVi(t)

−xi),

wEi (t) ≡ Ei(t)

Em(t)
=

Vi(0)(Vi(t)−Ds
i +GiVi(t)

−xi)∑
i Vi(0)(Vi(t)−Ds

i +GiVi(t)−xi)
,

∆m(t) ≡ (1− τeff)
∑
i

(δi(t)−Ds
i r).

The market return evolves according to

dEm + ∆mdt

Em
= rEmdt+ σEmdW (t),

where

rEm ≡
∑
i

ωEi r
E
i = r +

Vm
Em

(rAm − r) +
Vm
Em

(−Hm1 +Hm2 − rHm3),

σEm ≡
∑
i

ωEi σ
E
i ρi =

Vm
Em

(σAm − σm4),
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with

Hm1 ≡
∑
i

ωAi GiV
−xi−1
i xiµi,

Hm2 ≡
∑
i

ωAi GiV
−xi−1
i

[
1

2
xi(xi + 1)σ2

i

]
,

Hm3 ≡
∑
i

ωAi GiV
−xi−1
i ,

σm4 ≡
∑
i

ωAi GiVi(t)
−xi−1xiρiσi.

As we can see, the default option value affects both the market expected returns as well as the

market volatility. The covariance between firm-level equity returns and market equity returns

is given by

Cov

(
dEi(t) + ∆i(t)dt

Ei(t)
,
dEm(t) + δm(t)dt

Em(t)

)
=

1− xiGiV −xi−1
i

1 +GiV
−xi−1
i −Ds

i /Vi
σiρiσ

E
m.

The equity beta of firm i is again a product of the asset beta, the average leverage in the market

and the leverage of the firm,

βEi =
Cov

(
dEi(t)+∆i(t)dt

Ei(t)
, dEm(t)+∆m(t)dt

Em(t)

)
(σEm)2

=
1− xiGiV −xi−1

i

1 +GiV
−xi−1
i −Ds

i /Vi

σAm
σEm

βAi .

The relation between IVOL and the equity beta derived in the simple model still holds.

Proposition 3. If all the firms have identical parameters, then the cross-sectional correlation

between IVOL and the equity beta is positive.

3.4 Dynamic Capital Structure and Simulation Results

The results from the previous section allow us to study the common IVOL factor, the beta-

IVOL relation, and the leverage-IVOL relation. However, the capital structure in the static

model is not stationary which makes inference tricky. Specifically, without a second refinancing

boundary where the firm issues additional debt to increase leverage after firm value has increased

sufficiently, the average firm will become less and less leveraged over time as long as expected
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asset returns are positive. Introducing a second boundary VU gets around this problem. The

result is a stationary process for a firm: the return process for the firm will be identical during

the intervals between the firm hits any two successive VU before hitting VB. Again we follow

the analysis in Goldstein et al. (2001), and relegate details of the derivation to Appendix A.2.

Define e(V0) as the present value of all dividend claims, γ as the ratio of the firm value at two

consecutive restructuring epochs, pU (V ) as the present value of the contingent claim that pays

$1 when V hits VU before hitting VB, D0(V0) as the current debt value, and E(V0−) as the total

equity value at the moment the initial debt is issued. After the initial issuance of the debt, the

equity value at any time during the first period is given by

E(V ) = e0(V ) + γpU (V )E(V0−)− pU (V )D0(V0). (20)

The last term (pU (V )D0(V0)) is the debt value that the firm would need to pay in expectation

to the current debt holder to call back the debt.

The final step is to find the optimal capital structure, consisting of three values: the coupon C∗,

the refinancing boundary VU , and the bankruptcy boundary VB, or, equivalently, C∗, γ = VU/V0,

ψ = VB/V0. First we find the the optimal VB or ψ as a function of C and VU (or γ), and then

solve for C and γ. We illustrate the idea of upward-refinancing and the typical path of a firm’s

asset value in Figure 1.

[Insert Figure 1 here]

3.4.1 Simulation Setup

We conduct extensive simulation studies to analyze the relation between leverage and IVOL in

detail. The purpose of this exercise is twofold. First, we want to see quantitatively a standard

model can replicate some of the salient properties of the IVOLs observed from the data. Secondly

and more importantly, we want to find out whether there are any additional factors that can

affect empirically observed IVOLs.

To exhibit the explanation power of the model, we use the parameters proposed in the original
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paper of Goldstein et al. (2001), which we reproduce in Table 2.7 We do not attempt to

calibrate cross-sectional variation in asset volatilities or leverage ratios here, and study a set

of homogeneous firms. Firm heterogeneity is likely to give rise to more sophisticated relations

between IVOL, betas and returns. For example, if asset volatilities vary across firms then it

is much easier to let IVOL be a non-monotonic transformation of leverage. Our aim here is

to show that a number of documented stylized facts can be generated even when imposing the

additional restriction of homogeneous firms.

[Insert Table 2 here]

The initial payout ratio is δ/V0 = 0.035+0.65C/V0, so the drift of the payout flow rate µ equals

r − δ/V0 = 0.01 − 0.65(C/V0).8 We simulate a cross-section of 5,000 firms over a period of

50 years. We consider one time step as one day, one month as 21 days, and one year as 252

days. For each firm, the initial asset value is $100 and ρ = 0.5. This value of ρ implies that the

proportion of the total asset variance contributed by the common shock Z equals 25%. Equity

returns are computed as simple period-by-period returns. Table 2 provides an overview of the

parameter values.

3.4.2 Summary Statistics

To reduce the influence of a single history on our overall conclusions, we run repeated simulations

with the same initial setups 100 times and report the distributions of outcomes. Table 3 reports

the summary statistics of the simulation results.

[Insert Table 3 here]

The initial values in the first column reproduce the numbers reported in Table 4 of Goldstein

et al. (2001). For example, γ is 1.7, suggesting that the firm will wait until its value rises to

7We set the bankruptcy cost α at 5% as in Goldstein et al. (2001). We note that the bankruptcy cost used in
Leland (1994) is 50%. Given the other parameter values, such a high bankruptcy cost yields C∗ = 0 for all firms,
suggesting that the bankruptcy cost is so high that the tax shield benefit is insufficiently large to make up for it.

8At any given point in time in our simulations, prices are computed under the risk-neutral measure in which
any traded asset has an expected return equal to the risk-free rate. The dynamics of the firm asset value process
are generated from the objective distribution, imposing a risk premium on the process of the common asset return
factor W . This instantaneous drift of dV/V equals rf − (δ/V0) + θρσ where θ is the Sharpe ratio of the common
shock dW . We assume θ = 0.2 in our simulations.
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1.7 times its initial value and only then is it optimal to increase the firm’s leverage. The initial

leverage is 0.37.

The across-runs mean of the average asset value is $347.13, and the 5th and the 95th percentile

values are $139.83 and $871.46, respectively. The coupon payment grows from an initial value

of $1.85 to $7.53 on average, given the refinancing scaling factor γ is 1.7. The average monthly

return on equity is 1.06%. Whenever a firm goes bankrupt (Vt ≤ VB), we introduce a new

firm with the same initial values into the sample in the next month, so the sample size is very

stable.9

In Figure 2, we plot the time series of the main variables in the repeated simulations. The cross-

sectional average debt value increases gradually because of the upward refinancing strategy. The

equity value also increases over time. Leverage grows for approximately the first 10 years of a

simulation run. After that, the distribution of leverage becomes stable at around 48%. In this

paper, we report our main results using the samples with full simulation period. In unreported

results, we repeat our tests using the sample which excludes the first 10 years and retains the

remaining 40 years’ data, and the main conclusions reached in our paper are unchanged.

[Insert Figure 2 here]

3.4.3 Estimating IVOL

We follow the approach in Herskovic et al. (2016) to estimate IVOL as the annualized variance

of daily residual returns from an asset pricing model.10 The asset pricing models we examine to

determine residual returns are the CAPM and a five-factor principal component model (PCA),

where we re-estimate the principal components each calendar year.11 In both models, we exclude

observations with equity value below $1 or with a daily equity return greater than 300% to avoid

extreme IVOL estimates. We then construct firm-year estimates of IVOL over 50 years. We

exclude stocks with fewer than 100 trading days in a year. We also winsorize the top 0.5% of

9The average number of stocks reported in the tables is slightly smaller than the starting number of 5000.
This gap is due to the sample filters imposed during the estimation of IVOL.

10Many existing studies (e.g., Ang et al., 2006) compute the IVOL as the standard deviation of the residual
returns. We follow the approach in Herskovic et al. (2016) and use the variance. We find either measure of IVOL
does not change the results in our paper.

11We include only the stocks with full observations (252 days) within a year to ensure a balanced panel in the
principal component analysis.
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IVOL estimates in each year.

Consistent with Herskovic et al. (2016), the estimates from both models are very close. In Table

4, we show that the full panel correlations between the annual IVOL estimated from the CAPM

and PCA are highly correlated (99% on average across the simulation runs), and the main

summary statistics such as means and standard deviations are also very close. Anticipating the

results below where we show the strong co-movement in the cross-section of IVOL reaffirms our

point that the co-movement is not the result of a missing risk factor, which would have been

picked up by the PCA factors. In the following sections of the paper, we use the CAPM IVOL,

estimated yearly from daily returns. In the Internet Appendix we reproduce the analyses using

IVOL calculated from a model using principal components as factors, as well as using IVOL

calculated monthly from daily returns.

[Insert Table 4 here]

3.4.4 Average IVOL In the Time-Series and Pairwise Correlations

In our first analysis, we visually show the strong co-movement in IVOL by plotting the time-

series of average IVOL of stock portfolios. In each simulation run, we sort the stocks into

quintiles by different firm characteristics, such as market capitalization and financial leverage;

then we compute the equally-weighted average IVOL for each quintile. In Figure 2, we plot

the time-series of average IVOL for the portfolios sorted by size (Figure 2(a)) and by leverage

(Figure 2(b)) for a representative simulation run. The average IVOL of all size quintiles shows a

clear co-movement pattern. The average IVOL of leverage-sorted portfolios shows a very similar

co-movement pattern, except for the lowest leverage quintile whose average IVOL appears to

be flat over the full sample period.

[Insert Figure 2 here]

Next, we investigate the average pairwise correlations between the average IVOL of the portfolios

sorted by size or leverage. In Table 5, we report the results based on repeated simulation runs.

For each simulation run, we sort firms by size (or by leverage) into quintiles and compute the

average IVOL for each quintile in each year, then we compute the pairwise correlations of the
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average IVOL between the quintiles. Next, we compute the mean, 5th and 95th percentile values

of the correlations for each quintile pair across the simulation runs. For example, the number

in Column 4 and Row 1 in Panel A1 (size) of Table 5 shows that the mean correlation of

the average IVOL between the largest and second-largest size quintile is 0.93; the numbers in

brackets report the 5th and 95th percentile values of the correlation, 0.84 and 0.98, respectively.

[Insert Table 5 here]

In Panel A (size), the average pairwise correlations among average IVOL of the five size quintiles

range from 0.81 to 0.96, suggesting that the co-movement in IVOL is very strong. In Panel B

(leverage), the average pairwise correlations are also very high among the leverage quintiles 2 to

5. However, the pairwise correlation between the lowest leverage quintile with the other quintiles

is close to zero on average and is insignificantly different from zero. This finding suggests that

for the lowest leverage quintile, the average IVOL is essentially constant. This result supports

our hypothesis that time-varying financial leverage drives the co-movement in IVOL.

In Equation (19), we show how IVOL is determined by the firm’s financial leverage at the

beginning of the period, assuming a constant asset return volatility. Similarly, the equally-

weighted average IVOL of a portfolio formed in this section reflects the average leverage of

stocks in a portfolio. Therefore the co-movement in average IVOL is a result of time-varying

market-wide leverage, resulting from common shocks to firm value.

3.4.5 Explaining IVOL Using CIV

In our second test, we follow Herskovic et al. (2016), and run firm-by-firm time-series regressions

of a firm’s IVOL on the common factor in IVOL (CIV ), measured as the equally-weighted IVOL

in each cross-section. Hence CIV directly reflects the market equally-weighted average leverage

in our setup.12 In each simulation run, we run the time-series regression on each firm and

compute the R2. For each simulation run, we compute the average R2 and report the mean,

5th and 95th percentiles across the simulation runs in Table 6.

12Note that in our illustration model, e.g., in (19), IVOL is the product of leverage and asset return volatility.
If the asset return volatility is constant and identical across firms, then CIV is the equally-weighted average
leverage across all firms multiplied by the constant asset return volatility.
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[Insert Table 6 here]

In Table 6, Panel A row Levered, we show that when firms are levered, the common factor in

IVOL explains 25% of the time variation in individual IVOL on average, and the 5th and 95th

percentile values of average R2 in repeated simulations are 18% and 31% respectively.13 This

result suggests that a substantial proportion of the time-series variation in individual IVOL can

be explained by a single common factor.

To examine the relation between the common factor structure in IVOL and financial leverage,

we redo this analysis for an unlevered sample. In the unlevered sample, we use the same initial

parameter values and the same dynamics of V , but we force C and VB equal to zero for all

stocks throughout the simulation horizon, so the equity value E of a firm equals its asset value

V .14

As shown in Table 6, when we use the unlevered sample the average R2 reduces substantially to

only 2%, suggesting that the time variation in individual IVOL is unable to be explained by a

single factor, and also suggesting there is no common factor structure in IVOL when the firms

are unlevered.15

3.5 The Relation Between IVOL and Leverage

In the simple model, IVOL is a monotonic transformation of leverage. As shown in Section 3.3.2,

this is no longer true when the default option value is taken into account. In the simulations,

we confirm this as follows. First, each month we sort stocks into percentiles by end-of-month

leverage (D/(D + E)). For each of the 100 leverage-sorted portfolios, we compute the average

IVOL of all stocks in the portfolio over the next month, and then compute the time-series

average. We do this for each of the 100 simulation runs and report the average as well as the

5th and 95th percentiles across the simulation runs, for each portfolio, in Figure 3.

13The average R2 from our simulation data is smaller than the figure of 35% reported in Herskovic et al. (2016)
using empirical data. The magnitude of R2 depends on the initial parameter values used in our simulation. In
general, higher leverage would lead to a higher average R2. Our simulation exercise does not attempt to match
the empirical results in Herskovic et al. (2016).

14Firms do not achieve an optimal capital structure in this setup.
15The average R2 is theoretically identical to zero for the unlevered sample as long as we consider spot IVOL.

The non-zero average R2 obtains because we estimate IVOL annually and also keep the β constant during that
period. Using monthly betas and IVOL reduces the R2 to zero (up to two decimal places).
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In the case of dynamic capital structure, firms increase their debt level infrequently. Between

any two debt restructuring epochs, a firm starts with high leverage ratio D/V after increasing

the debt level. Subsequently, leverage decreases in expectation as firm value tends to increase

until the next debt restructuring. Thus a given leverage (or D/V ) includes firms with different

nominal debt levels and firm values. The larger the asset value, the lower V −x−1 will be, and

the higher IVOL will be. The combining effect of firm size V and leverage (or D/V ) will result

in a U-shaped relation between the cross-sectional average IVOL and leverage: at any moment

in time, at the higher end of D/V ratio distribution, the effect of the leverage dominates, and

the at the lower end of D/V ratio distribution, the effect of the size dominates. Both result in

higher average IVOL across firms under different resetting time.

4 Empirical Results

Motivated by the dynamic capital structure model and simulation results, we propose a three-

factor model to capture the cross-sectional IVOL variation with the following three factors:

CIV, leverage and size.16 We show that the CIV factor mainly captures the market wide average

leverage movements while the size and leverage factors capture the cross-sectional differences

in the common IVOL.

4.1 Data

The full sample includes all common stocks (SHRCD 10,11) listed on NYSE, AMEX and NAS-

DAQ stock exchanges (EXCHCD 1,2,3), from December 1961 to December 2015. We obtain the

stock return data from CRSP and obtain the financial data from COMPUSTAT. The Fama-

French factors are from Kenneth French’s website. To construct our sample, we apply a few

filters: (1) we exclude stocks with price below $5 before 2001 and below $1 since 2001 to elim-

inate the potential minimum tick size effect when estimating IVOL; (2) following Strebulaev

and Yang (2013), we exclude financial firms (SIC codes 6000-6999), and utility firms (SIC codes

4900-4999); we also exclude firms that with total book value of assets (COMPUSTAT item AT)

16There is a potential fourth factor: The debt restructuring frequency. As we have shown in the model,
the nonlinear effect between leverage and IVOL is from the fact that different firms are at different leverage
restructuring stages. However, the proxies for debt restructuring frequency are very noisy empirically. The few
we tried did not show much explanatory power with R-squared values smaller than 1 percent.
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of less than $10 million in inflation-adjusted year 2000 dollars; (3) we require the observations

to have valid IVOL, CAPM beta, market leverage and cash-adjusted leverage as defined below.

The annual IVOL is estimated as the standard deviation of the residual returns from Fama-

French three-factor regressions using daily returns within a calendar year. The CAPM beta is

estimated from CAPM model using daily returns over a calendar year. Following Strebulaev

and Yang (2013), we define the market leverage ratio of firm as

ML =
DLTT +DLC

DLTT +DLC + CSHO × PRCC F
, (21)

and the cash-adjusted market leverage ratio as

MLC =
DLTT +DLC − CHE

DLTT +DLC + CSHO × PRCC F
, (22)

where DLTT and DLC are the amount of long-term debt due in more than one year and the

amount of debt in current liabilities due within one year, respectively; CSHO is the fiscal year-

end number of shares outstanding, PRCC F is the fiscal year end common share price, and

CHE are cash holdings and short term investments at the end of the fiscal year. We exclude

all observations with missing data components.

We match the annual IVOL and CAPM beta with the leverage ratios from the last fiscal year-

end. The final sample includes 2278 firms per year on average. In the sub-sample where we

require a non-negative MLC, the sample size is 1460 firms per year on average.17

4.2 Factor Construction

The first factor is the CIV factor defined in Herskovic et al. (2016) as the equally-weighted

average of monthly IVOL across all firms. Two new factors are constructed from leverage (LIV)

and size (SIV) following the Fama and French (1993) methodology. More specifically, at the

end of June of each year t, we form three leverage sorted portfolios with 30-40-30% of all stocks,

respectively, based on the leverage of last fiscal year end; similarly, we measure the size at the

end of June of each year t, and form two size portfolios based on the NYSE breakpoints. The

17In unreported results, we also compute ML and MLC using quarterly data and estimate IVOL and CAPM
beta quarterly. These changes do not change the main findings.
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3 × 2 leverage-size portfolios are formed as the intersections of the three leverage and the two

size portfolios. Equally-weighted monthly IVOL on the portfolios are then computed from July

of year t to June of year t+ 1. LIV is the IVOL on the mimicking portfolio for leverage factor

in IVOL, is the difference each month between the simple average of the IVOL on the two high

leverage portfolios (high leverage and small, high leverage and big) and the simple average of

the IVOL on the two low leverage portfolios (low leverage and small, low leverage and big);

similarly, SIV is the IVOL on the mimicking portfolio for size factor in IVOL, is the difference

each month between the simple average of the IVOL on the three small portfolios (high leverage

and small, medium leverage and small, low leverage and small) and the simple average of the

IVOL on the three big portfolios (high leverage and big, medium leverage and big, low leverage

and big).

Table 7 shows the summary statistics of the three factors. CIV factor has the largest value

among the three factors, averaging 43 percent p.a., while SIV at 21 percent, indicating that at

least on average small firms have substantially higher IVOL than large firms. Surprisingly the

average value of LIV is only 2.6 percent, so on average the IVOL difference between low and

high leverage firms is small. This is driven by a substantial fraction of months in which the

high leverage portfolio IVOL is below the low leverage portfolio IVOL, with the 25th percentile

of the LIV distribution being smaller than zero. We also include the descriptive statistics of

IVOL for the low leverage and high leverage portfolios separately in Table 7. The IVOL of

high leverage portfolios (LIVH) are mostly higher than those of low leverage portfolios (LIVL).

However, there are some instances where the LIVL portfolio IVOL exceeds the LIVH portfolio

IVOL (the 99 percentile of LIVL is 82.29% compared with 72.17% of LIVH). We will discuss

the properties of the three factors in more details in the next section.

[Insert Table 7 here]

4.3 Playing Field

We use our three IVOL factors to analyse the IVOL for two sets of test assets. The first set

is 5-by-5 portfolios formed according to leverage and size. The second is individual IVOL at

firm level. The portfolio analysis aims to capture the common movement among the IVOL. It

has the advantage to have less noise. We also study the power of the three IVOL factors at
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individual firm level. We focus on the patterns of the cross-sectional loadings here.

Similar to the method we used in the last section, at the end of June of each year t, we form

5 leverage sorted quintiles across all the firms based on the leverage of last fiscal year end; we

also use the size at the end of June of each year t, and form 5 size quintiles based on the NYSE

breakpoints. The 5-by-5 leverage-size portfolios are formed as the intersections of the 5 leverage

and the 5 size portfolios.

Table 8 shows the summary statistics of the 25 portfolios. One can see that the IVOL is

monotonically decreasing with size, with monthly annualized IVOL of 50% for small stocks

and slightly over 20% for large stocks. However, the relation between IVOL and leverage is not

monotonic overall. IVOL decreases with leverage for large size portfolios, while it increases with

leverage for small size portfolios. One potential reason is that there are still some variation in size

within each size quintile and they vary with the leverage. For example, within the largest size

quintile, size varies by 50 percent (12.91 billion to 18.85 billion average size). The leverage, one

the other hand is much more homogeneous within each leverage quintile: the largest variation is

from the largest leverage quintile, which goes from 0.56 to 0.63. It would be ideal to increase the

number of portfolios. However, that would render some portfolios, in particular for the largest

size cells, too small to draw reliable inferences.18 We revert to additional firm level analyses to

show that our results are robust.

[Insert Table 8 here]

4.4 Time Series Regression: Portfolio Analysis

Our goal here is to explain the IVOL cross-section with three factors. Recall that Herskovic

et al. (2016) argue that the CIV factor itself accounts for the majority of the cross-sectional

variation in the IVOL common factor. Our model suggests that it is the leverage and size

factors that account for this. Thus the foremost issue is the relative performances between CIV

factor and the LIV/SIV factors. The second prediction from our model is that the loadings

on the LIV factor monotonically increase with leverage, while the loadings on the SIV factor

monotonically decrease with size. Finally, if our model is correct, the three factors can explain

18In the current sample, there are only 15 firms in the largest quintile with the highest leverage.
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a large proportion of the time variations of IVOL.

Table 9 shows our main empirical results. In this table, we report the results of the following

regression.

IV OLit = αi + βLi LIVt + βSi SIVt + βCi CIVt + εi,t. (23)

We report the regression coefficients and t-stats, as well as the adjusted R-squared.

[Insert Table 9 here]

The loadings on the LIV and SIV factors confirm to model predictions. Conditional on size, the

loadings on the LIV factor indeed increases monotonically with leverage. For the smallest size

portfolios, the loadings increase from -0.71 for lowest leverage portfolio to 0.63 for highest lever-

age portfolio. For the largest size portfolios, the loadings increase from -0.48 to 0.40 respectively.

Similarly, conditional on leverage, the loadings on the SIV factor decrease monotonically. For

the lowest leverage portfolios, the loadings decrease from 0.61 for the smallest size portfolio to

-0.64 to the largest size portfolio. Within the highest leverage portfolios, the loadings decrease

from 0.70 to -0.56 respectively. In terms of t-stats, most of the loadings are highly significant

with the exception of βLIV for the two middle leverage quintile portfolios. Interestingly, we can

compare this obvious monotonic pattern of the loadings with the size and leverage themselves

in the summary statistics. As observed above, the relation between IVOL and leverage is not

quite monotonic.

Loadings on the CIV factor have no obvious patterns and show relatively little cross-sectional

variation. In an unreported study when we run the regression of the IVOL of the 25 portfolios

on the CIV factor only, resulting in a monotonic relation between loadings and size/leverage.

Thus the CIV factor is dominated in the cross-section by the LIV and SIV factors.19

Finally, the time-series R-squared is around 70 to 80 percent, and increasing to about 95 percent

for the smallest size portfolios. In an unreported study when we use CIV factor only, the R-

squared is much lower at 40 to 60 percent on average while the largest R-square is about 90

19The patterns here are similar to the way the Fama-French three factors contribute to explaining the cross-
section of average returns. In that case, the market return does have the power in explaining the time-variation
of the returns if used as the single factor. However, it does not show up in the cross-section when size and book-
to-market factors: the market betas are more or less similar across the Fama-French size and book-to-market
sorted 25 portfolios.
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percent for the smallest size portfolios. In summary, at least at the portfolio level, our three-

factor model captures the average IVOL variation very well, and the LIV and SIV capture the

dispersion in the IVOL cross-section.

4.5 Time Series Regression: Firm Level Analysis

For robustness check, we repeat our exercise in the previous section at the firm level. In this

case, we run the regression of the firm level IVOL on CIV only and on three factors. Table 10

reports the results. Panel A reports the mean value and the distribution of the adjusted R-

squared for the single factor and 3-factor model. The average adjusted R-squared of single CIV

factor is 15%, while that of the 3-factor model is 21%.20. And the adjusted R-squared of 3-factor

is broadly larger than that of the single CIV-factor.

[Insert Table 10 here]

Panel B presents another way to show the performances of the three-factor model compared

with the single-factor model. Each month we sort all the stocks according to their IVOL into

deciles. Then we calculate the average adjusted R-squared for each decile and average over the

time. The three-factor model has a much larger adjusted R-squared between 22.5% to 24%

across all the deciles compared with 14% to 17% for the CIV factor only.

4.6 What Is the CIV Factor?

In the previous section, we show that the CIV factor, after introduction of LIV and SIV factors,

loses its explanatory power for the IVOL cross-section. This is consistent with our theoretical

argument and simulation results in Section 3. However, the IVOL loadings on CIV factor, at

both the portfolio and the firm level, are consistently large and significant in the data. In this

section, we want to explore further the relation between the CIV factor and the leverage.

First, we regress CIV on LIV and SIV and Table 11 shows the result. The time-series regression

coefficients are all highly significant and R-squared ranges from 58 percent for value-weighted

factors to 77 percent equal-weighted foctors. The high correlation between CIV and LIV/SIV

20Herskovic et al. (2016) reports around 30% R-squared using IVOL measured at an annual frequency.

29



factors underlines the explanation power of CIV factor on the cross-sectional IVOLs, which we

show disappears once we include LIV and SIV in the regression.

Recall in Table 7, the LIV factor has a much smaller value compared with the CIV and SIV

factors, while the average IVOL of H or L leverage portfolios are much closer. To see this more

closely, in Figure 4, we plot the time series of the three factors, as well as the average IVOL

values of H and L leverage portfolios. All five time-series move together except for the five-year

period between roughly July 1998 to July 2003. During this period, the average IVOL of low-

leverage portfolio exceeds that of high-leverage portfolio, resulting in negative values for the LIV

factor. This five-year period coincidences with the dot-com boom and subsequent burst, while

the large variations of IVOL were mainly driven by the low-leveraged dot-com companies as well

as sharp increases in IVOL at low-leverage industries such as high-tech and pharmaceuticals

during this period.

[Insert Figure 4 here]

With the above caveat in mind, we still want to show the role of leverage for the IVOL cross-

section. From Figure 4, we see that the average IVOL of either H or L leverage portfolios track

the CIV factor quite closely throughout. We can thus use either the average IVOL of either H

or L leverage portfolio instead of the CIV factor, and we hypothesize it should still be able to

explain the co-movement of IVOL in the cross-section.

To explore the explanatory power of the leverage and size, we conduct two separate analyses.

First, we show that LIV and SIV factors have additional explanation power over the CIV factor.

To do so, we run the following two-stage regressions and compare their R-squared. We first

run the regression of IVOL of the 25 leverage-size sorted portfolios on the CIV factor only.

In the second step we regress the residuals of that first-stage regression on the LIV and SIV

factors. Our model predicts that LIV and SIV should still have explanation power for the IVOL

cross-section after accounting for the CIV factor.

Table 12, panel A presents the results. One can see that the R-squared of the residuals regression

on LIV and SIV factors are still very high, ranging from 7% to 67%. All the regression coefficients

(unreported here) are highly statistically significant.
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[Insert Table 12 here]

Secondly, we argued before that the CIV factor mainly captures the effect of average leverage

on IVOL. Its explanation power in the cross-section mainly comes from its correlation with the

LIV and SIV. From the Figure 4, H or L co-moves very closely with the CIV factor. So we

hypothesize that either H or L can capture the effects of both the average leverage and the

cross-section together. To show this, we again conduct a two-step analysis. We first regress the

IVOL of the 25 size-leverage portfolios on the average IVOL of the H leverage portfolio only.

In the second step, we regress the residuals of the first step on the CIV factor.

Table 12, Panel B presents the results. We can see that CIV almost have no explanation power

for the IVOL cross-section after accounting for the H leverage portfolio influence. R-squared

ranges from zero to 2 percent for most of the regressions, and 4 or 5 percent for the smallest low

leverage portfolios. Furthermore we show this is mainly the effect from leverage. Panel C shows

this result. Here we use only SIV factor in the first stage regression, and regress the residual

IVOL on CIV factor still have large explanation power in terms of residual regression, with

R-squared ranging from 12% to 21%. In summary, our results indicate that the explanation

power of CIV factor in the cross-section is mainly from the leverage effect.

5 The IVOL Puzzle

So far we have demonstrated that the IVOL co-movement is driven by the three factors: CIV,

LIV and SIV. And LIV and SIV capture the cross-sectional IVOL variation. In this section,

we apply our factor structure model to the negative relation between IVOL and future returns

Ang et al. (2006). We find that the negative IVOL-return relation appears driven by the co-

movement component of the IVOL rather than the residual component.

Table 13 reports the current month IVOL and the next month return for various IVOL sorts.

Column 2 and 3 are the standard negative relation between IVOL and the next month returns.

Stocks are sorted in to deciles each month by their IVOL, and returns are measured in excess

of the risk free rate. There is not much difference in returns across the different deciles except

the highest IVOL decile, for which the return is extremely low next month as reported in Ang

et al. (2006).
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[Insert Table 13 here]

For each firm, we run a time-series regression of the previous 36 monthly IVOL on the CIV, LIV

and SIV factors. We then redo the portfolio formation by sorting stocks into deciles according

to their predicted IVOL or residual IVOL from the time-series regression. Column 4 and 5 in

Panel A of Table 13 show the results when stocks are sorted into deciles by regression residuals.

The average next-month return for these decile portfolios is now higher for the highest decile

than the lowest decile, in line with the Merton (1987) prediction.

In Column 6 and 7 of Table 13, stocks are sorted into deciles by their predicted IVOL. In this

case, the negative relation between IVOL and future returns is recovered. In fact, the average

return of highest predicted IVOL decile is extremely small, at -0.11% per month. In this table

we report the equal-weighted portfolio, the results for value-weighted are qualitatively similar.

The results in Table 13 suggest that the negative IVOl return relation is mainly driven by the

common component in IVOL and therefore that leverage and size play an important role.

6 Conclusion

We present, both theoretically and empirically, a three-factor model for the cross-section of

equity idiosyncratic volatility (IVOL). Theoretically we show that leverage and size affect a

firm’s equity IVOL when leverage is time-varying and affected by a common factor in asset

returns. This is true in a simple set up where firm asset returns follow a CAPM with constant

volatility. The three factors we propose are a leverage factor (LIV) and a size factor (SIV) in

addition to the CIV factor as introduced in Herskovic et al. (2016). The CIV factor captures the

market-wide average leverage effect. We show that when LIV and SIV are combined with CIV,

the three factors together capture a large proportion of co-movement in the IVOL cross-section,

and that LIV and SIV capture the cross-sectional dispersion.

Because of the highly nonlinear functional format of the IVOL, which is affected by a power

function of the firm value V , our construction of LIV and SIV cannot capture all the effects

from size and leverage. However, the potential improvements in including more factors seem to

be limited. Further work is needed to incorporate the nonlinear relation and potentially other

factors that may affect IVOL.

32



References

Ang, A., Hodrick, R. J., Xing, Y., Zhang, X., 2006. The Cross-Section of Volatility and Expected

Returns. The Journal of Finance 61, 259–299.

Choi, J., Richardson, M., 2016. The Volatility of a Firm’s Assets and the Leverage Effect.

Journal of Financial Economics 121, 254–277.

Cochrane, J., 2005. Financial markets and the real economy. Tech. rep.

Connor, G., Korajczyk, R. A., Linton, O., 2006. The common and specific components of

dynamic volatility. Journal of Econometrics 132, 231–255.

Doshi, H., Jacobs, K., Kumar, P., Rabinovitch, R., 2016. Leverage and the value premium.

Available at SSRN 2493903 .

Duarte, J., Kamara, A., Siegel, S., Sun, C., 2014. The Systematic Risk of Idiosyncratic Volatility.

Available at SSRN 1905731 .

Fama, E. F., French, K. R., 1993. Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33, 3–56.

Fischer, E., Heinkel, R., Zechner, J., 1989. Dynamic capital structure choice: Theory and tests.

The Journal of Finance .

Garlappi, L., Yan, H., 2011. Financial Distress and the Cross-section of Equity Returns. Journal

of Finance 66, 789–822.

Goldstein, R., Ju, N., Leland, H., 2001. An EBIT-Based Model of Dynamic Capital Structure*.

The Journal of Business .

Gomes, J. F., Schmid, L., 2010. Levered returns. The Journal of Finance 65, 467–494.

Herskovic, B., Kelly, B., Lustig, H., Van Nieuwerburgh, S., 2016. The common factor in idiosyn-

cratic volatility: Quantitative asset pricing implications. Journal of Financial Economics 119,

249–283.

Leland, H. E., 1994. Corporate Debt Value, Bond Covenants, and Optimal Capital Structure.

The Journal of Finance 49, 1213–1252.

33



Livdan, D., Sapriza, H., Zhang, L., 2009. Financially constrained stock returns. The Journal of

Finance 64, 1827–1862.

Merton, R. C., 1974. On the pricing of corporate debt: The risk structure of interest rates. The

Journal of finance 29, 449–470.

Merton, R. C., 1987. A simple model of capital market equilibrium with incomplete information.

The Journal of Finance 42, 483–510.

Strebulaev, I. A., 2007. Do Tests of Capital Structure Theory Mean What They Say? The

Journal of Finance 62, 1747–1787.

Strebulaev, I. A., Whited, T. M., et al., 2012. Dynamic models and structural estimation in

corporate finance. Foundations and Trends® in Finance 6, 1–163.

Strebulaev, I. A., Yang, B., 2013. The mystery of zero-leverage firms. Journal of Financial

Economics 109, 1–23.

34



Figure 1: Example of refinancing

In this figure we show a typical sample path of the firm value in our simulations. The firm is chosen from
the simulation of base sample. the initial value of firm is V0 = $100. Period 0 ends either by firm value
reaching the initial bankruptcy boundary V B∗

0 , at which point the firm declares bankruptcy, or by firm
value reaching V U0 = γ ∗ V0, at which point the debt is recalled and the firm again chooses an optimal
capital structure. Note that the initial firm value at the beginning of period 1 is V0 = V U0 = γV0.
Similarly, it’s optimal to choose V Un = γnV U0 and V Bn = γnV B0. The simulation runs for 50 years
with 12600 time steps in total.
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Figure 2: Comovement in portfolios’ average IVOL from one simulation run

We compute the annual IVOL as the residual return volatility from the CAPM using daily equity returns.
We construct the samples from repeated simulations on the optimal upward refinancing capital structure
model in Goldstein et al. (2001). In each simulation run, we sort the stocks by their size (measured
as equity value) or by financial leverage into quintiles, and then compute the average annual IVOL for
each quintile. The top and bottom plots show the average annual IVOL of the quintiles sorted by size
and leverage, respectively, for a typical simulation run. The parameter values used in the simulation are
included in Table 2.
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Figure 3: Simulated portfolios sorted by market leverage into percentiles

In this figure, in a given simulation run we sort the firms by market leverage ratios into percentiles each
year, and compute the cross-sectional average IVOL and market leverage ratio (Lev). We then calculate
the time-series average over the simulation period. We repeat this for 100 simulation runs and plot for
each of the 100 percentile portfolios the average leverage against average IVOL across the simulation
runs, as well as the 5th and 95th percentiles of IVOL.
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Figure 4: Time series of IVOL factors

In this figure we plot the time-series of the monthly values of CIV, SIV and LIV factors, as well as the
average IVOL of the high leverage and low leverage portfolios.
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Table 1: Statistics of portfolios sorted by IVOL

This table shows the average of IVOL, CAPM beta leverage and βCIV of the portfolios sorted by IVOL.
The annual IVOL is estimated as the standard deviation of the residual returns from Fama-French
three-factor regressions using daily returns within a calendar year. The CAPM beta is estimated from
CAPM model using daily returns over a calendar year. Market leverage ratio (ML) of firm is computed
as ML = (DLTT + DLC)/(DLTT + DLC + CSHO × PRCC F ) from the last fiscal year-end. βCIV

is computed as the loading of portfolio IVOL on the CIV factor. Sample period is from July 1961 to
December 2015. The following stocks are excluded from the sample: penny stocks (defined as the stocks
with prices below $5 before April 2001 and the stocks with prices below $1 after April 2001), financial
firms, utility firms and the firms with total book value of assets (COMPUSTAT item AT) of less than
$10 million in inflation-adjusted year 2000 dollars.

IVOL Rank IV OL βCAPM ML βCIV
1 0.12 0.88 0.23 0.22
2 0.19 1.03 0.22 0.35
3 0.23 1.13 0.23 0.46
4 0.27 1.21 0.23 0.57
5 0.32 1.27 0.24 0.70
6 0.37 1.34 0.24 0.84
7 0.44 1.39 0.25 1.02
8 0.52 1.42 0.26 1.27
9 0.66 1.45 0.28 1.68
10 1.14 1.43 0.33 3.23
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Table 2: Simulation parameter values

This table reports the parameter values used in the simulations of the Goldstein et al. (2001) model.

V0 = $100 Initial asset value

τc = 35% Corporate tax rate

τi = 35% Personal interest income tax rate

τd = 20% Personal dividend income tax rate

rf = 4.5% After tax risk free rate

σ = 0.25 Asset return volatility

α = 0.05 Bankruptcy cost

ε = 0.5 Tax shield effective rate when in default

q = 0.01 Restructuring (refinancing) cost rate

θ = 0.2 Sharpe ratio of the common shock dZ

P/E = 20 Price-to-earnings ratio

δ/V0 = 0.035 + 0.65C/V0 Payout ratio

ρ = 0.5 Relative importance of common shocks in total volatility

N = 5000 Number of firms in cross-section

T = 50 Number of years in simulation (12600 days)

Nsim = 100 Number of simulation runs
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Table 3: Summary statistics for the main variables in simulations

This table reports the initial value and the means of the main variables. We construct the sample
from repeated simulations on the optimal upward refinancing capital structure model in Goldstein et al.
(2001). Each simulation run includes 5000 initial firms over 50 years. In the column headed Initial
Value, we report the optimal initial value of coupon payment (C), bankruptcy boundary (VB) and
refinancing scaling factor (γ). γ is endogenously determined and remains constant. V is the asset value
of the firm. D and E are the market values of debt and equity, respectively. Leverage = D/(D + E).
Creditspread = [C/D− rf (1− τi)]×104. rE is the monthly equity return. Nstock is the average number
of stocks in the cross-section. In each simulation run, we compute the cross-sectional average for each
variable and average over the full time-series. Column “Realization” reports the mean, as well as the
5th and 95th percentile values (in brackets) for each variable across the simulation runs. The parameter
values used in the simulation are included in Table 2.

Variables Initial Value Realization

γ 1.70 1.70

V 100.00 347.13
[139.83, 871.46]

C 1.85 7.53
[3.36, 18.6]

D 20.92 80.43
[34.93, 199.05]

E 35.61 115.23
[43.69, 296.63]

Leverage 0.37 0.48
[0.44, 0.51]

Creditspread 193.57 260.89
[237.74, 282.97]

rE 1.06
[0.8, 1.29]

Nstock 5000 4928
[4860.84, 4978.03]
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Table 4: IVOL estimated from CAPM and PCA

In this table, we compare the annual IVOL estimated from CAPM and the IVOL estimated from Principal
Component Analysis (PCA). IVOL is estimated as the idiosyncratic variance of the equity returns from
CAPM or PCA using daily data. We report the mean of the average IVOL for both measures in repeated
simulations. The numbers in brackets are the 5th and 95th percentile values. Row CORR shows the full
panel correlations between the two measures of IVOL. We construct the sample from repeated simulations
on the optimal upward refinancing capital structure model in Goldstein et al. (2001). The parameter
values used in the simulation are included in Table 2.

IV OLCAPM IV OLPCA
MEAN 0.26 0.25

[0.21, 0.31] [0.20, 0.30]
STD 0.51 0.48

[0.38, 0.70] [0.36, 0.65]
CORR 0.99

[0.98, 0.99]
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Table 5: Pairwise correlations

This table reports the average pairwise correlations between the average annual IVOL of the portfolios
sorted by size or leverage. In each simulation run, we sort the firms by size (or by leverage) into quintiles
and compute the average IVOL for each quintile in each year, then we compute the pairwise correlations
of the average IVOL between the quintiles. We repeat this procedure across repeated simulation runs.
Next, we compute the mean, 5th and 95th percentile values (numbers in brackets) of the correlations for
each quintile pair across the simulation runs. We construct the sample from repeated simulations on the
optimal upward refinancing capital structure model in Goldstein et al. (2001). The parameter values
used in the simulation are included in Table 2.

A Size rank 1 2 3 4 5

1 1.00
2 0.95 1.00

[0.92, 0.97]
3 0.91 0.96 1.00

[0.84, 0.96] [0.92, 0.99]
4 0.87 0.91 0.94 1.00

[0.75, 0.95] [0.78, 0.97] [0.88, 0.98]
5 0.81 0.86 0.89 0.93 1.00

[0.62, 0.94] [0.65, 0.97] [0.75, 0.97] [0.84, 0.98]

B Leverage rank 1 2 3 4 5

1 1.00
2 0.13 1.00

[-0.36, 0.73]
3 0.06 0.97 1.00

[-0.53, 0.73] [0.95, 0.99]
4 0.10 0.94 0.98 1.00

[-0.51, 0.75] [0.9, 0.97] [0.97, 0.99]
5 0.01 0.85 0.91 0.94 1.00

[-0.50, 0.59] [0.71, 0.94] [0.79, 0.97] [0.86, 0.98]
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Table 6: Explaining firm-level IVOL using CIV

This table reports the results of using the common IVOL factor (CIV ) to explain the time-series variations
in firm-level IVOL. In each simulation run, we run time-series regressions IV OLi,t = ai+biCIVt+εi,t for
each individual stock over the full sample period and then compute the average R2 in the cross-section.
CIV is measured as the equally-weighted average IVOL. We report the mean of the average R2 in the
repeated simulation runs. The numbers in brackets are the 5th and 95th percentile values of R2. To
compare the relation between the common factor structure in IVOL and financial leverage, we refer to
our simulation sample as the “levered sample”. In the corresponding unlevered sample, we use the same
initial parameter values and the same dynamics of asset value V, but we force the coupon payment C
and the bankruptcy boundary VB equal to zero for all stocks throughout the simulation horizon. We
construct the sample from repeated simulations on the optimal upward refinancing capital structure
model in Goldstein et al. (2001). The parameter values used in the simulation are included in Table 2.

R2 â b̂

Levered 0.25 -0.14 1.87
[0.18, 0.31] [-0.25, -0.01] [1.35, 2.39]

Unlevered 0.02 -0.05 1.22
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Table 7: Summary statistics of the three IVOL factors

This table shows the summary statistics of the three factors CIV, SIV and LIV, as well as the two legs
of LIV: LIVH and LIVL. Section 4.2 shows the detailed approach to construct these factors.

Mean Median Std P99 P90 P75 P25 P10 P1

CIV 0.4355 0.3857 0.1298 0.8609 0.6191 0.5267 0.3364 0.3101 0.2833
SIV 0.2089 0.1913 0.0965 0.4642 0.3511 0.2723 0.1381 0.0967 0.0518
LIV 0.0258 0.0254 0.0621 0.1785 0.0872 0.0599 -0.0015 -0.0345 -0.2003
LIVH 0.3938 0.3678 0.1147 0.7217 0.5528 0.4521 0.3138 0.2813 0.2032
LIVL 0.3680 0.3311 0.1267 0.8229 0.5272 0.4260 0.2900 0.2584 0.1824
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Table 8: Summary statistics of the three IVOL factors in 5 × 5 leverage and size sorted
portfolios

This table shows the average IVOL, leverage and size of t×5 portfolios sorted by size and leverage. At the
end of June of each year t, we form 5 leverage sorted quintiles across all the firms based on the leverage
of last fiscal year end; we also use the size at the end of June of each year t, and form 5 size quintiles
based on the NYSE breakpoints. The 5 by 5 leverage-size portfolios are formed as the intersections of
the 5 leverage and the 5 size portfolios.

Size rank

Lev rank Small 2 3 4 Big

IVOL

Low 0.50 0.37 0.33 0.30 0.26
2 0.51 0.36 0.31 0.28 0.23
3 0.51 0.33 0.29 0.26 0.21
4 0.51 0.33 0.29 0.26 0.21
High 0.59 0.38 0.33 0.29 0.23

Leverage

Low 0.01 0.01 0.01 0.01 0.02
2 0.09 0.09 0.09 0.09 0.09
3 0.21 0.21 0.21 0.21 0.20
4 0.36 0.36 0.36 0.35 0.35
High 0.63 0.60 0.59 0.57 0.56

Size

Low 0.06 0.28 0.64 1.58 12.91
2 0.07 0.34 0.78 1.92 18.85
3 0.07 0.35 0.8 1.99 14.52
4 0.07 0.34 0.8 1.91 12.54
High 0.06 0.33 0.79 1.87 12.44

N

Low 321 103 61 43 35
2 327 105 68 54 55
3 280 88 70 59 66
4 309 89 62 51 43
High 376 65 37 26 15
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Table 9: Regression results of three-factor model

This table shows the regression results of IV OLit = αi + βL
i LIVt + βS

i SIVt + βC
i CIVt + εi,t.

Size rank Size rank

Lev rank Small 2 3 4 Big Small 2 3 4 Big

βLIV t(βLIV )

Low -0.71 -0.71 -0.68 -0.66 -0.48 -20.89 -21.5 -17.65 -18.71 -16.08
2 -0.29 0.08 -0.13 0.04 -0.07 -8.10 2.40 -4.66 1.58 -3.07
3 -0.02 0.24 0.21 0.21 0.09 -0.58 7.17 6.94 6.98 3.59
4 0.30 0.33 0.37 0.20 0.10 8.75 9.68 11.36 5.95 3.22
High 0.63 0.68 0.65 0.29 0.40 17.22 14.1 14.25 7.22 8.70

βSIV t(βSIV )

Low 0.61 -0.21 -0.55 -0.59 -0.64 18.16 -6.39 -14.62 -16.97 -21.81
2 0.48 -0.53 -0.63 -0.71 -0.61 13.59 -16.37 -22.36 -26.72 -25.61
3 0.57 -0.58 -0.66 -0.71 -0.74 16.53 -17.58 -22.10 -23.51 -28.99
4 0.46 -0.46 -0.74 -0.70 -0.68 13.66 -13.90 -23.34 -21.45 -22.88
High 0.70 -0.62 -0.70 -0.75 -0.56 19.37 -13.03 -15.53 -19.07 -12.31

βCIV t(βCIV )

Low 0.86 0.97 1.13 1.04 0.96 34.66 40.41 40.63 40.59 44.52
2 0.89 0.91 0.94 0.88 0.75 34.23 37.85 44.98 44.78 42.66
3 0.85 0.88 0.89 0.81 0.82 33.42 36.23 40.57 36.11 43.35
4 0.89 0.89 0.92 0.85 0.84 36.03 35.90 39.28 35.60 38.11
High 0.98 1.08 0.95 1.03 0.77 36.54 30.95 28.36 35.47 23.06

R2 N

Low 0.95 0.90 0.86 0.85 0.86 526 164 97 71 63
2 0.94 0.81 0.84 0.81 0.80 227 77 62 53 61
3 0.95 0.78 0.80 0.72 0.78 211 72 54 45 45
4 0.95 0.82 0.77 0.73 0.76 248 68 45 38 29
High 0.96 0.77 0.69 0.76 0.58 377 62 35 23 14
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Table 10: firm level IVOL regression on CIV and three factors

We regress the firms’ IVOL on CIV and the three factors at individual level, and report the R2. In
Panel A, we run firm level regression IV OLi,t = ai +βCIV,iCIVt +εi,t and IV OLi,t = ai +βCIV,iCIVt +
βSIV,iSIVt+βLIV,iLIVt+εi,t and record the R2 for each firm. This is unconditional full sample regression
for each firm. Then we report the distribution of the R2 in the cross-section, for regressions on CIV
only and for regressions on the three IVOL factors. In Panel B, we form the stocks by their IVOL in
each month into deciles (the composition of the decile portoflios may change over time). We report the
average R2 for each IVOL decile and finally we average over time.

Panel A Firm level

Mean P1 P5 P10 P25 P50 P75 P90 P95 P99

CIV 0.15 -0.06 -0.03 -0.01 0.02 0.10 0.24 0.38 0.47 0.62
3-factor 0.21 -0.12 -0.03 0.00 0.07 0.19 0.33 0.46 0.54 0.68

Panel B Average R2 of individual firms sorted into IVOL deciles

Low 2 3 4 5 6 7 8 9 High

CIV 0.14 0.15 0.16 0.16 0.17 0.17 0.17 0.16 0.16 0.15
3-factor 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23
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Table 11: CIV Regression on LIV and SIV Factors

This table reports the results from time-series regression of CIV on LIV and SIV. CIV = a+bLIV +cSIV
We report the results using LIV from different definitions of leverage and for both equal-weighted and
value-weighted portfolios. Specifically, Lev1 is the one defined in the main text, where the equity value
is calculated as the shares outstanding times the price at the end of last fiscal year from Compustat.
Lev2 uses the market cap at end of last calendar year using data from CRSP. Lev 3 uses the market cap
at the end of June this year using data from CRSP. t-stat are in the bracket.

a b c R-sq

Lev1-ew 0.1975 -0.4179 1.1904 0.7781
(34.3434) (-8.0099) (46.3380) .

Lev1-vw 0.0920 -0.40166 2.2363 0.5859
(7.3676) (-5.2586) (29.0201) .

Lev2-ew 0.1960 -0.3807 1.1934 0.7759
(33.8368) (-7.4366) (45.9622) .

Lev2-vw 0.0976 -0.4705 2.2011 0.5709
(7.7422) (-6.1731) (28.2505) .

Lev3-ew 0.1938 -0.2925 1.1940 0.7709
(33.0925) (-5.7026) (43.9899) .

Lev3-vw 0.0909 -0.5380 2.2250 0.5851
(7.3951) (-7.9540) (29.3863) .
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Table 12: R2 from two-stage regressions

This table reports the results from two-stage regression. In panel A, we first run the regression of IVOLs
of 5× 5 portfolios sorted by size and leverage on CIV factor only, then we regress the residuals of IVOLs
from the first regression on LIV and SIV factors, and then we report the R2 from the second regression.
Similarly, in panel B, we run regression on LIVH in the first stage, and then regress the residuals on
CIV in the second stage. In Panel C, we run regression on SIV in the first stage, and then regress the
residuals on CIV in the second stage.

Panel A Regress residuals from CIV on SIV and LIV

Size rank

Lev rank Small 2 3 4 Big

Low 0.33 0.56 0.59 0.67 0.65
2 0.27 0.45 0.45 0.41 0.43
3 0.08 0.11 0.22 0.16 0.25
4 0.18 0.07 0.11 0.11 0.15
High 0.43 0.13 0.14 0.09 0.07

Panel B Regress residuals from LIVH on CIV

Size rank

Lev rank Small 2 3 4 Big

Low 0.05 0.02 0.01 0.01 0.01
2 0.04 0.01 0.00 0.00 0.00
3 0.04 0.00 0.00 0.00 0.00
4 0.02 0.00 0.01 0.00 0.00
High 0.01 0.01 0.02 0.00 0.00

Panel C Regress residuals from SIV on CIV

Size rank

Lev rank Small 2 3 4 Big

Low 0.18 0.19 0.19 0.19 0.19
2 0.19 0.19 0.21 0.20 0.21
3 0.20 0.20 0.21 0.20 0.21
4 0.18 0.16 0.17 0.18 0.20
High 0.16 0.14 0.12 0.17 0.15
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Table 13: Revisit the result of IVOL puzzle

This table reports the next month return of the portfolios sorted by IVOL, IVOL predicted by three-
factor model and the residual IVOL from the model. In Panel A, we sort the firms into deciles by at the
end of month t by IVOL estimated over month t, then we compute the EW gross return in month t+1. In
Panel B and C, we run firm level regression IV OLi,t = ai +βCIV,iCIVt +βSIV,iSIVt +βLIV,iLIVt + εi,t.
To avoid looking ahead issue in computing IVOL-return relation, we do not run unconditional full sample
regression here, instead we use a rolling-window where the loadings are estimated using the monthly IVOL
and factors from month t-35 to t (36 months), and then use these loadings to compute the predicted
IVOL (the part explained by the factors) and the residual IVOL (the residual) in month t. Then we sort
the firms into deciles by predicted IVOL and resdiual IVOL seperately in to deciles, and then compute
their EW gross return in month t+1

Panel A IVOL Panel B Residual Panel C Predicted

Rank IV OL rt+1 IV OLR rt+1 IV OLP rt+1

1 0.12 1.08% 0.26 0.50% 0.18 1.18%
2 0.17 1.28% 0.25 1.00% 0.22 1.27%
3 0.21 1.25% 0.25 1.19% 0.25 1.37%
4 0.24 1.36% 0.25 1.28% 0.28 1.33%
5 0.28 1.31% 0.26 1.29% 0.31 1.38%
6 0.32 1.41% 0.28 1.38% 0.34 1.43%
7 0.37 1.22% 0.32 1.35% 0.38 1.39%
8 0.42 1.20% 0.37 1.37% 0.42 1.31%
9 0.51 0.97% 0.45 1.25% 0.46 1.01%
10 0.75 0.47% 0.69 0.92% 0.55 -0.11%
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Appendix A Model Derivation

We now proceed to derive the optimal capital structure of a single firm in the context of
Section 3.1. The model mainly follows Goldstein et al. (2001). First, we derive the solution to
the static capital structure model where only a bankruptcy boundary is present. Then we solve
the dynamic model which also features an upward refinancing boundary.

A.1 Static Capital Structure Model

Given the setup in Section 3.1, the cum-dividend expected return of any firm should be the
risk-free rate r under the risk-neutral measure,

dVi(t) + δi(t)dt

Vi(t)
= rdt+ σi

(
ρidW̃ (t) +

√
1− ρ2

i dZ̃i(t)

)
. (24)

To simplify the notation, we define for the firm i from now on in this section we will ignore the
subscript i):

dz̃(t) ≡ ρidW̃ (t) +
√

1− ρ2
i dZ̃i(t),

ν ≡ r − δi,
σ ≡ σi.

It follows that the asset process under the risk-neutral measure follows,

dV

V
= νdt+ σdz̃(t), (25)

with a total payout process that is proportional to the current asset value, δ(t) = δV (t).

For any claim on the asset value with intermediate payoff rate C, the value of the claim, F (V, t),
satisfies the following PDE

1

2
σ2V 2FV V + νV FV − rF + Ft + C = 0. (26)

Consider that the firm only issues a consol debt, thus the value function is time-invariant. The
resulting ODE becomes then

1

2
σ2V 2FV V + νV FV − rF + C = 0. (27)

For a homogeneous ODE with the term C, the solutions are of the form F (V ) = A1V
−y+A2V

−x,
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where

x =
1

σ2

(ν − σ2

2

)
+

√(
ν − σ2

2

)2

+ 2rσ2

 > 0,

y =
1

σ2

(ν − σ2

2

)
−

√(
ν − σ2

2

)2

+ 2rσ2

 < 0.

The only boundary in this set up is the default boundary, VB. For convenience, define the price
of a claim that pays $1 when the firm defaults as pB. Since there is no intermediate payment
for this claim, the general solution is given by

pB(V ) = A1V
−y +A2V

−x. (28)

Consider the boundary conditions, limV→∞ pB(V ) = 0, limV→VB pB(V ) = 1, the price is then
given by

pB(V ) =

(
V

VB

)−x
. (29)

Given this result, we now study the values of equity, debt and government claims, respectively.
We start by considering the holder receiving all the payouts as long as the firm does not default,
and zero in case of default. The value of the claim for this holder, denoted as Vsolv, should be
equal to the difference between the total value V and the value in case of default,

Vsolv = V − VBpB(V ). (30)

Next we consider the holder receiving all the coupons, constant C, if the firm does not default,
and zero if so. The value of a console bond with constant coupon C is given by C/r (recall we
are in the risk-neutral world). So the value of the holder, denoted as Vint, is given by:

Vint =
C

r
[1− pB(V )]. (31)

As such, we can easily write out the values accruing to the different claim holders who receive
payments when there is no default, and zero otherwise

Esolv(V ) = (1− τeff )(Vsolv − Vint),
Gsolv(V ) = τeff (Vsolv − Vint) + τiVint,

Dsolv = (1− τi)Vint,

where
τeff = (1− τc)(1− τd), (32)

and τi, τd, τc are the tax rates for interest, dividends and corporate profits, respectively.

We next study the value of different claim holders when there is a default. Recall that the PV
of contingent claim paying $1 in case of default is given by pB(V ). Given that the firm value
equals VB at default, the total PV of the claim to default is given by

Vdef (V ) = VBpB(V ). (33)
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The default value VB will be distributed to three parties: debt holders, government and
bankruptcy cost. Denote the proportional bankruptcy cost by α > 0, so that the PV of the
bankruptcy cost, BCdef (V ), equals

BCdef (V ) = αVdef (V ). (34)

The remaining value, (1 − α)VB, is distributed between the debt holder and the government
through tax. Here we assume that the tax rate is charged as a dividend payment. Then the
PVs of the default claims for the debt holder and government, respectively, equal

Ddef (V ) = (1− α)(1− τeff )Vdef (V ),

Gdef (V ) = (1− α)τeffVdef (V ).

The equity holder, of course, receives nothing in bankruptcy. So the total value of equity after
debt issuance is given by

E(C, V ;VB) = Esolv = (1− τeff )

[
V − VB

(
V

VB

)−x
− C

r

(
1−

(
V

VB

)−x)]
.

To obtain the optimal default value VB, we impose the smooth-pasting condition as usual,

0 =
∂E

∂V

∣∣∣∣
V=VB

.

Then the optimal V ∗B is given by

V ∗B =
x

1 + x

C

r
≡ λC

r
, with λ =

x

1 + x
. (35)

Note that the optimal default boundary is a function of the coupon payment C.

Given this, we can rewrite the value of the equity as

E(V,C, VB(C)) = (1− τeff )

[
V +

1

1 + x
λx
(
C

r

)x+1

V −x − C

r

]
.

The debt holder receives C as long as the firm does not default, and (1− α)(1− τeff )VB upon
default. So the value of the debt at any time is given by

D = Dsolv +Ddef ,

Let’s consider the optimal coupon. Before the issuance of the debt, the equity holder, owning
the whole firm, decides to issue the debt at the market value D(V0, C, VB(C)). There is also a
restructuring cost q, so the net value to the equity holder at time t = 0 is given by

(1− q)D(V0, C, VB(C)) + E(V0, C, VB(C)). (36)

The equity holder chooses the optimal capital structure (i.e., coupon C) by maximizing the
above value. It follows that

C∗ =
rV0

λ

[(
1

1 + x

)(
A

A+B

)] 1
x

, (37)
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where

A = (1− q)(1− τi)− (1− τeff ),

B = λ(1− τeff )(1− (1− q)(1− α)).

A.2 Dynamic Capital Structure Model

Let us start at time t = 0. Again it is convenient to define a series of contingent claims. Since
there are two boundaries now, we will have two contingent claims. Let pU (V ) denote the present
value of the contingent claim that pays $1 when V hits VU before hitting VB, and pB(V ) denote
the present value of the contingent value that pays $1 when V hits VB before hitting VU .

The value of the contingent claim pU (V ) can be shown to equal

pU (V ) = −
V −xB

Σ
V −y +

V −yB

Σ
V −x,

where

Σ ≡ V −yB V −xU − V −xB V −yU .

Similarly, the value of the contingent claim pB(V ) is given by

pB(V ) =
V −xU

Σ
V −y −

V −yU

Σ
V −x.

Note that the values of these two claims are intensity variables. In other words, if all the V ,
VB and VU are scaled up by a constant factor γ, the values do not change. This is the property
that we will use in the following.

Using the two contingent claim values, we can write the PV of other claims very easily. For
example, for a claim that pays δ(t) as long as V does not hit VU or VB and zero when hit, the
value is given by

V 0
solv = V − pB(V )VB − pU (V )VU .

Here the superscript 0 refers to the period starting at t = 0 before hitting either VU or VB.

The total PV of the claims paying upon hitting one of the boundaries are given by

V 0
def = pB(V )VB,

V 0
res = pU (V )VU .

Note that the sum of the total claims is equal to the total value V of the firm

V 0
solv + V 0

def + V 0
res = V.

The value of a claim that pays a constant interest C0 before hitting either boundary and zero
when any boundary is hit is given by

V 0
int =

C0

r
(1− pU (V )− pB(V )).
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Similar to the default boundary situation, different claim holders receive different claims when
either boundary is hit. As before, let α and q denote the default and restructuring cost,
respectively. Let us first consider the allocation of defaulting after the initial restructuring,
which is similar to the previous model after the debt issuance. In other words, we first allocate
the value V − pU (V )VU to different claim holders

d0(V ) = (1− τi)V 0
int(V ) + (1− α)(1− τeff )V 0

def (V ),

e0(V ) = (1− τeff )(V 0
solv(V )− V 0

int(V )),

g0(V ) = τeff (V 0
solv(V )− V 0

int(V )) + τiV
0
int + (1− α)τeffV

0
def (V ),

bc0(V ) = αV 0
def (V ).

Now we consider the restructuring branch. The discussion above is about the process after the
initial restructuring at V (0), which we denote as V 0

U . When the firm hits the next restructuring
boundary V 1

U , we define the constant:

γ ≡
V 1
U

V 0
U

.

Goldstein et al. (2001) show that V 1
B also scales up by γ, and also p1

B(V 1
U ) = p0

B(V 0
U ) and

p1
U (V 1

U ) = p0
U (V 0

U ). Since the optimal C∗ also scales up by γ, the above split among different
claims are identical in the next interval.

To summarize, initially the firm starts with V (0) = V 0
U . The firm then decides the capital

structure choice C0, and passes on the net proceeds of the debt issuance to to the initial equity
holder. Then the firm value process follows (3) until either (1) it hits the default boundary V 0

B,
or (2) it hits the restructuring boundary V 1

U = γV 0
U , which starts a new period.

Denote by e(V0) the present value of all claims e0, e1, e2, . . .:

e(V0) ≡ e0(V0)(1 + γpU (V0) + [γ2pU (V0)]2 + . . .

=
e0(V0)

1− γpU (V0)
.

During a restructuring, the current debt is called back and a larger amount of new debt is
issued. We assume that the debt is issued and called at par. Then the current value of the debt
is equal to the PV of the cash flow before hitting VU , d0(V0), plus the PV of the call value,
which is par

D0(V0) = d0(V0) + pU (V0)D0(V0).

It follows that

D0(V0) =
d0(V0)

1− pU (V0)
.

This debt issuance will be distributed to the equity holder, adjusting for the restructuring cost
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q. So the present value of all future adjustment costs is given by

RC(V0−) = qD0(V0)(1 + γpU (V0) + [γpU (V0)]2 + . . .

=
qD0(V0)

1− γpU (V0)
.

Putting everything together, the total value of the equity at the moment the initial debt is
issued, is given by

E(V0−) =
e0(V0) + d0(V0)− qD0(V0)

1− γpU (V0)
.

This is the sum of the present value of all future equity and debt claims net of the adjustment
cost.

Therefore, the following no-arbitrage condition holds, stating that the after issuance equity
value equals the before issuance equity value minus the (after restructuring cost) debt issuance

E(V0+) = E(V0−)− (1− q)D0(V0).

Also around the time of the second restructuring, the following condition should hold

E(VU−) = γE(V0−)−D0(V0).
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