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Abstract

This paper proposes machine learning-based option pricing models that incorporate
firm characteristics. We employ two semi-parametric models, one that uses machine
learning to predict the implied volatility and the other to correct the pricing error
of the Black-Scholes model and use 114 firm characteristics as well as option-related
variables as the input features. Tested on the stock options in the US market, we find
that both models outperform a parametric model even without firm characteristics,
and firm characteristics significantly enhance the performance of these models. Id-
iosyncratic volatility, share price, market equity, illiquidity, and firm age are found to
be the most important features.
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1 Introduction

Options valuation has garnered significant attention in the field of finance, both from

theoretical and practical perspectives. Academics are intrigued by the potential for a robust

option pricing model to shed light on financial market operations, while market makers aim

to use an efficient pricing model to determine prices in the derivatives market. The Black-

Scholes (BS) model (Black and Scholes, 1973) is the earliest and most well-known option

pricing model. Despite its simplicity, it provides a good estimate of option prices and remains

as one of the most important option pricing models. The BS model relies on the assumption

that stock returns are normally distributed and have constant volatility over time. However,

there is abundant evidence that stock returns have a fat-tailed distribution and exhibit

time-varying volatility. To account for the non-normality of stock returns, Corrado and Su

(1996) augment the BS model with skewness and kurtosis. To account for the time-varying

volatility, Heston (1993) and Hagan, Kumar, Lesniewski, and Woodward (2002) propose

stochastic volatility models, which assume the volatility to be a random variable. These

models allow a more realistic representation of the underlying asset’s volatility and provide

more accurate pricing of options. For American options, which face premature exercise

and dividend payment issues, tree-based (Cox, Ross, and Rubinstein, 1979; Boyle, 1986)

or Monte Carlo simulation-based (Broadie and Glasserman, 1997; Longstaff and Schwartz,

2001; Andersen and Broadie, 2004) methods have been proposed. A closed-form solution can

also be obtained for an American option in case of known absolute dividends (Roll, 1977;

Geske, 1979; Whaley, 1981) or proportional dividends (Villiger, 2006).

The majority of option pricing research including those mentioned above adopts a para-

metric method, i.e., they assume a certain distribution for the underlying asset return and

derive the fair price of the option under the no-arbitrage condition. While parametric mod-

els are preferable as they are established on a solid economic foundation and often allow an

analytic option pricing formula, the reality could deviate from their underlying assumptions,

and parametric models often struggle to fit the actual option prices observed in the market.
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More recently, machine learning-based models have been proposed as an alternative ap-

proach. These models have the ability to capture the nonlinear and complex relationships

between option prices and their underlying factors, making them more flexible than tradi-

tional parametric models. Machine learning-based models can be categorized into two types:

non-parametric and semi-parametric models. Non-parametric models are agnostic about the

economic theory behind option pricing and predict the option price by learning purely from

the data the relationship between the input variables and the option price. One of the earli-

est studies in this category is work of Hutchinson, Lo, and Poggio (1994), which treats option

pricing as a regression problem. They demonstrate that the learning network is superior to

traditional parametric methods in option valuation. With advances in machine learning al-

gorithms, researchers have proposed ways to improve the generalization of a neural network,

such as Bayesian adjustment, early stopping, and bagging, which allow more robust pricing

of options (Gençay and Qi, 2001). Gradojevic, Gençay, and Kukolj (2009)) use modular

neural networks to improve prediction performance, while Liang, Zhang, Xiao, and Chen

(2009) use a combination of neural networks and support vector regression to reduce pricing

errors in traditional option pricing methods such as Monte Carlo simulation, binomial trees,

and finite difference methods.

Non-parametric models can fit the data flexibly without making any assumptions about

option value. However, the very flexibility can be toxic and expose the models to the risk

of overfitting. Semi-parametric models address this risk by combining a parametric model

with machine learning. Guided by economic theory, a semi-parametric model can fit the

data with a more parsimonious structure. One approach is to employ machine learning

to predict unobservable variables such as implied volatility, which are then used as input

to a parametric model. Andreou, Charalambous, and Martzoukos (2006) and Andreou,

Charalambous, and Martzoukos (2010) predict volatility for the BS model and volatility,

skewness, and kurtosis for Corrado and Su (1996)’s model via a neural network and use

them as input to the corresponding parametric option pricing model. The other approach
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corrects the pricing error of a parametric model using machine learning. Lajbcygier and

Connor (1997) employ neural networks to correct the pricing error of the BS model.

An advantage of machine learning is that it can accommodate any features that po-

tentially carry information about the option price. However, previous studies exclusively

use only option-related variables, such as the underlying asset price, strike price, time-to-

maturity, risk-free rate, and implied volatility. Although the theory states that the option

price should be fully described by these variables, the actual price can also be affected by

other factors such as the investors’ view on the underlying asset. For individual stock options,

the actual option price can be higher than the theoretical value if the investors’ sentiment

toward the underlying firm’s future growth is positive. Inspired by this idea, we aim to es-

tablish an option pricing model that incorporates additional factors other than the variables

used in a parametric model. Without prior knowledge about what other factors could affect

the option price, we employ a large set of firm characteristics published in the literature that

can potentially carry information about the firm’s financial health and future performance,

and hence have an impact on the option price. To the best of our knowledge, this research

is the first of its kind that incorporates firm characteristics in option pricing.

We employ two semi-parametric methods to incorporate firm characteristics. The first

model is based on Andreou et al. (2010)’s generalized parametric function (GPF) model,

which employs machine learning for the prediction of implied volatility. The second model

is based on Lajbcygier and Connor (1997)’s hybrid (HBD) model, which employs machine

learning for pricing error correction. These models are compared against a parametric bench-

mark model. We choose as the benchmark Dumas, Fleming, and Whaley (1998)’s determin-

istic volatility function (DVF) model as it is widely used as a benchmark owing to its ability

to effectively deal with the volatility smile and its ease of use (Christoffersen and Jacobs,

2004; Berkowitz, 2009; Christoffersen, Heston, and Jacobs, 2009).

We evaluate the models using individual stock options in the US market from 1996 to

2021. As to the firm characteristics, we choose 114 firm characteristics from Jensen, Kelly,
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and Pedersen (2021) after removing firm characteristics with many missing values. We first

find that the semi-parametric models, GPF and HBD, outperform the benchmark, DVF,

even before incorporating firm characteristics. The root mean square errors (RMSEs) of

GPF and HBD are respectively 2.447 and 2.527, whereas that of DVF is 5.799. Second, firm

characteristics can further improve the performance of GPF and HBD: the RMSEs of the

two models are reduced to 2.064 and 2.110, respectively. GPF consistently renders a smaller

error than HBD. We conjecture that this is because the range of implied volatility is narrower

than the range of option price residual, making a more stable prediction possible. We assess

the models with various subsets of options defined by the option type, time-to-maturity,

and moneyness, and find that the models perform consistently across these options groups.

The usual option features such as time-to-maturity and moneyness are the most important

features for pricing options, but firm characteristics are also deemed to play a non-trivial

role. Firm characteristics collectively have a feature importance score of 17 out of 100 in

HBD. In particular, idiosyncratic volatility, share price, market equity, illiquidity, and firm

age turn out to be the most important firm characteristics in option pricing.

The contribution of this paper is twofold. First, we integrate firm characteristics in

option pricing and demonstrate that they can enhance option pricing performance. We also

identify firm characteristics that are deemed to add the most value. The second contribution

is that we evaluate the performance of machine learning-based models for individual stock

options. Previous studies employ machine learning mostly to price European index options.

However, a machine learning-based model is more suitable for stock options for the following

reasons. Stock options are American options and are more challenging to price using a

parametric model. Investors’ view on the underlying firm’s growth can affect their early

exercise decision. Firm-specific factors are also likely to be important pricing factors that

cannot be captured by a parametric model. Finally, there are a significantly larger amount

of stock option data than index option data. A large amount of data is crucial for a machine

learning algorithm to generalize without overfitting. We show that the proposed models can
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successfully price individual stock options.

This paper is structured as follows. Section 2 describes the option pricing models used

in this study, Section 3 details the data and methodology for the empirical analysis, Section

4 presents the empirical results, Section 5 runs robustness tests, and Section 6 concludes.

2 Models

2.1 Parametric model

The BS pricing formula for an option without dividends is given by

CBS = SN(d)−Xe−rTN
(
d− σ

√
T
)
, (1)

PBS = −SN(−d) +Xe−rTN
(
−d+ σ

√
T
)
, (2)

d =
ln
(
S
X

)
+ rT +

(σ
√
T)

2

2

σ
√
T

, (3)

where CBS and PBS are the price of a call and a put option, respectively, S is the spot price

of the underlying stock, X is the strike price of the option, T is the time to maturity, r is the

continuously compounded risk-free interest rate, σ is the stock return’s volatility, and N(·)

denotes the standard normal cumulative distribution. We first use the BS model to derive

the implied volatility. To find the implied volatility, we solve an optimization problem that

has the following form:

Lossi = min(Priceobs,i − Priceest,i)
2 (4)

, where the Priceobs,i is the market price of option i, Pricepre,i is the estimated price of

option i.

We then use as a benchmark Dumas et al. (1998)’s DVF model, which incorporates
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regression-based implied volatility into the BS model. The DVF model aims to capture the

curvature of the volatility smile and the term effect by assuming that the implied volatility

is a quadratic function of moneyness and maturity:

σDV F = max
(
0.01, a0 + a1K + a2K

2 + a3T + a4T
2 + a5KT

)
, (5)

where K = S/X denotes moneyness.1 We calibrate the DVF function daily by fitting it to

the implied volatility observed in the previous 10 days.

2.2 GPF model

Andreou et al. (2010) propose a semi-parametric option pricing model (GPF model) and

show that it exhibits an enhanced pricing performance when applied to index options. The

GPF model predicts unobservable option variables (volatility for the BS model and volatility,

skewness, and kurtosis for Corrado and Su (1996)’s model) via a neural network and uses

them as input to the corresponding parametric option pricing model. An advantage of the

GPF model is that it combines the benefits of both parametric and nonparametric methods.

The parametric model provides a theoretical framework for option pricing, while the machine

learning algorithm generates a more accurate prediction of the input variables. By combining

these two approaches, the GPF model can effectively address the limitations of traditional

parametric and nonparametric methods in option pricing. The GPF model is flexible and

can be adapted to meet the needs of different option pricing scenarios, making it a versatile

tool for option pricing research.

For our study, we extend the GPF model in several ways. The original GPF model is

a one-step approach, where the machine learning algorithm is trained so that the option

pricing error is minimized: the loss function is defined as the mean square error of the option

1 Dumas et al. (1998) use strike price instead of moneyness. We test both versions and choose moneyness
as it gives better results. Andreou, Charalambous, and Martzoukos (2014) also use moneyness.
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price. The loss function we optimize in the GPF is shown in Equation 6

Loss(GPF ) = min
N∑
i=1

(σobs,i − σpre,i)
2 (6)

, where i is the i-th observation, N represents total observations. σobs,i represents the ob-

served implied volatility of option i derived from the market price using the binomial model,

and the σpre,i represents the predicted implied volatility of option i.

A downside of this approach is that the objective function becomes highly nonlinear

as it involves the parametric option pricing model. We mitigate this issue by training the

machine learning algorithm so that the distance between the predicted volatility and the

implied volatility is minimized. The implied volatility is derived from the market price using

the BS formula. The predicted volatility is then used as input to the BS model to obtain

the option price. We also replace the neural network with CatBoost, a gradient boosting

method, as gradient boosting methods have shown superior performance in many machine

learning competitions.2 Most importantly, besides the option-related features, we include

firm characteristics as additional input features to the machine learning algorithm. As to

the option-related features, we use K,K2, T, T 2, KT , and σimp, where σimp is the average of

the implied volatilities of all the options with the same underlying asset over the past 10

days. Figure 1 describes the schematic structure of the GPF model.

[Insert Figure 1, here]

2.3 Hybrid model

The hybrid model (HBDmodel) proposed by Lajbcygier and Connor (1997) also combines

the advantages of a parametric option pricing model and machine learning to improve option

pricing accuracy. However, it is different from GPF in that it predicts the pricing error of

a parametric model via machine learning. HBD first calculates the option price using a

2 More details of CatBoost can be found in the Appendix B.
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parametric model such as the BS model. This model price is then contrasted with the

market price to obtain the pricing error (residual). A machine learning algorithm is then

employed to predict the residual. The final option price is the sum of the model price and

the predicted residual. The loss function we optimize in the HBD is shown in Equation 7

Loss(HBD) = min
N∑
i=1

(redisualobs,i − residualpre,i)
2 (7)

, where i is the i-th observation andN represents the total number of observations. redisualobs,i

represents the observed pricing residual calculated using the market price of the option minus

the parameter model-based option price of option i, and redisualpre,i represents the predic-

tion pricing residual calculated using the market price of the option minus the predicted

option price of option i.

We extend the HBD model by incorporating firm characteristics and employing CatBoost

instead of a neural network. Figure 2 describes the schematic structure of the HBD model.

[Insert Figure 2, here]

3 Data and Methodology

3.1 Option data

Option data are obtained from OptionMetrics’ IvyDB US and cover the options in the

US market from 1996.01 to 2021.12. As we need the first two years of the sample to train

the machine learning-based models, we set the out-of-sample period to be from 1998.01 to

2021.12. The dataset includes the best bid and ask prices of all options at the close of each

trading day, as well as the ticker of the underlying stock, option ID, issue date, expiration

date, strike price, volume, and open interest. Following Dumas et al. (1998), we define the

option price as the midpoint of the bid and ask prices to reduce the estimation noise of

implicit parameters. The underlying stocks’ prices are collected from the Securities table in
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OptionMetri cs’ IvyDB US, and the 3-month Treasury bill rate, which is used as a proxy for

the risk-free rate, is obtained from the St. Louis Federal Reserve Economic Data. Following

Bakshi, Cao, and Chen (1997) and Andreou et al. (2010), we filter the option data using the

following criteria.

1. Options with a trading volume of less than 100 are eliminated as they are deemed to

be illiquid and their prices may not represent the actual market price.

2. The time to maturity should be at least six days and no longer than 365 days as options

near expiration may induce liquidity-related biases.

3. Options with price quotes less than 0.1 are eliminated.

4. The moneyness of an option should be between 0.8 and 1.2.

5. Options with missing or abnormal implied volatility are eliminated: Some options have

abnormal prices that lead to abnormal implied volatilities.

After filtering, the final data set contains 16,050,622 observations. Sample characteristics

of the dataset are reported in Table 1 and 2. Table 1 shows that there are more observations of

out-of-the-money options than in-the-money options and more observations of call options

than put options. The volatility smile is observed in all maturity groups and it is more

pronounced in the near-term options. Table 2 reports the number of options per underlying

stock year by year. The number of options per stock has increased over time. On average

the average number of options increases from 3 in 1996 to 13 in 2021. However, the median

number of options remains small at 3 even in 2021, while the maximum number of options

increases to 339, which implies that there are only a handful number of stocks with many

options and the rest have only a few options associated with them.

[Insert Table 1, here]

[Insert Table 2, here]
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3.2 Firm characteristics

Firm characteristics play an important role in understanding the performance of firms

and their prospective growth. Since options are derived from the underlying asset, their

prices reflect the market’s expectation of the firm’s future performance, and it is expected

that the firm characteristics can provide valuable information for option pricing. Therefore,

we aim to explore the impact of firm characteristics on the option price and measure the

additional information they provide.

We use 114 firm characteristics that include accounting ratios, momentum features, stock

return volatility, and other characteristics related to the firm’s operation, growth, risk, and

performance. These characteristics are selected from the comprehensive list of firm charac-

teristics in Jensen et al. (2021) after eliminating firm characteristics with more than 20%

missing values. We fill the remaining missing values with the cross-sectional median value fol-

lowing Gu, Kelly, and Xiu (2020). These firm characteristics are generated using PyAnomaly,

a powerful Python library for firm characteristics generation and asset pricing study.3 The

package provides easy access to various financial data sources and ensures data accuracy and

consistency. The list of the firm characteristics with their description can be found in the Ap-

pendix. The exact definitions of the firm characteristics can be found in Jensen et al. (2021)

or the references therein. In order to avoid forward-looking bias, the firm characteristics in

month t− 6 are matched with the option data in month t.

3.3 Models and evaluation metrics

We compare the out-of-sample option pricing performance of the following five models:

the DVF model (DVF), the GPF model without firm characteristics (GPF), the GPF model

incorporating firm characteristics (GPFf ), the hybrid model without firm characteristics

(HBD), and the hybrid model incorporating firm characteristics (HBDf ).

The volatility function of the DVF model is calibrated daily, whereas the machine

3 https://pyanomaly.readthedocs.io/en/latest/index.html
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learning-based models are trained once a month to reduce the computational cost. The

models are trained using the past 24 month data, of which the first 21 months are used as

the training set and the remaining three months are used as the validation set. We avoid

hyperparameter tuning and use the default hyperparameter values of CatBoost so as to

evaluate the models from a conservative perspective.

The models are evaluated using the following error measures: root mean square error

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). In

addition, we employ the model confidence set (MCS) of Hansen, Lunde, and Nason (2011)

to compare the models. The purpose of the MCS is to provide a measure of uncertainty in

the model by identifying a range of models that are consistent with the data. The MCS is

implemented through the following steps.

1. Estimate the parameters of a candidate model using the maximum likelihood or some

other estimation technique.

2. Calculate the test statistic for the candidate model, which measures the goodness of

fit of the model to the data.

3. Using the test statistic, determine the critical value that corresponds to a certain level

of confidence. This critical value can be used to determine the MCS.

4. Evaluate the candidate model by comparing its test statistic to the critical value. If

the test statistic is less than the critical value, the model is considered to be a good fit

and is included in the MCS.

5. Repeat steps 1-4 for multiple candidate models to form the MCS.

The MCS is similar to a confidence interval, meaning that it contains the best model with

100(1 − α)% confidence. As α decreases, the number of models in the MCS increases, just

like the size of a confidence interval. The primary output is a set of p-values, with a small

p-value indicating that a model is less likely to belong to the MCS. We report the p-values

of the models in the empirical analysis.
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4 Empirical Analysis

We evaluate the out-of-sample performance of the models using the error metrics defined

in the previous section. We first compare the pricing errors of all options and then examine

the pricing errors of different subsets defined by option type, moneyness, and maturity

to validate the consistency of the pricing performance. We also identify informative firm

characteristics by analyzing feature importance.

4.1 Pricing performance

4.1.1 All options

Table 3 reports the pricing performance of the models evaluated using all options. First,

comparing the three models that do not incorporate firm characteristics, DVF, GPF, and

HBD, we find that GPF performs best, followed by HBD. The RMSEs of GPF, HBD, and

DVF are 2.447, 2.527, and 5.799, respectively. The superiority of GPF is also reflected in

the other error measures. It is notable that the machine learning-based models can reduce

the pricing error almost by half. This result suggests that employing machine learning can

effectively reduce pricing error, and the GPF architecture is more effective than that of HBD.

When firm characteristics are incorporated, both GPF and HBD yield smaller pricing er-

rors: the RMSEs of GPFfand HBDfare respectively 2.064 and 2.110, which are considerably

smaller than those of GPF and HBD. Firm characteristics improve the pricing performance

of both GPF and HBD by about 16%, making GPFf the best performer among all five mod-

els, followed by HBDf . The MCS p-value indicates that GPFf is the only model that is

included in the MCS.

The reason for the superior performance of GPF over HBD appears to be related to the

way it integrates machine learning. GPF predicts implied volatility via machine learning

while HBD predicts residual. The same error in implied volatility can lead to an error of

different magnitudes in option price depending on the moneyness and the maturity of the
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option. This added complexity makes the prediction of pricing residual more challenging.

[Insert Table 3, here]

4.1.2 Call vs put options

Table 4 reports the pricing performance of the models for call options (Panel A) and

put options (Panel B) separately. It shows that the differences in pricing errors between

call options and put options are almost negligible, and GPFfand HBDf remain as the best

performers for both types of options. For instance, the RMSEs of GPFf , HBDf , GPF, and

HBD for call options are 2.067, 2.131, 2.442, and 2.520, respectively, while the RMSEs for

put options are 2.061, 2.079, 2.455, and 2.538. These models significantly outperform DVF

for both option types, whose RMSE is 5.933 for call options and 5.592 for put options. This

result suggests that machine learning can enhance the pricing performance for both option

types and the performance can be further improved by incorporating firm characteristics.

The smaller MAPE of put options can be attributed to the fact that the prices of out-of-the-

money put options are higher than the prices of out-of-the-money call options in our sample,

as shown in Table 1. Out-of-the-money options are cheaper and bear larger percentage errors.

The higher prices of out-of-the-money put options result in smaller overall percentage errors.

[Insert Table 4, here]

4.1.3 Different moneyness options

It is well known that implied volatility differs across moneyness, the phenomenon known

as volatility smile or smirk, and moneyness can have a significant impact on option pric-

ing performance. For instance, in-the-money options may require larger price adjustments

compared to out-of-the-money options as the former is more likely to be exercised prior to

maturity, whereas the latter may be held to maturity. To examine the impact of moneyness

on option pricing, we analyze the models’ performances for different moneyness options.
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Table 5 reports the pricing errors for each moneyness group. GPFf is the best performer

for most moneyness groups with the lowest RMSEs: 2.004 for DOTM, 1.943 for OTM,

2.119 for JOTM, 2.588 for ATM, 2.008 for JITM, 1.650 for ITM, 1.615 for DITM. It only

ranks second for ATM options, for which HBDfperforms best with an RMSE of 2.556.

HBDf is the second-best performer in terms of RMSE. It is notable that the benchmark

DVF model has a significantly larger error for DOTM options, whereas the proposed models

perform consistently across all moneyness groups. Moreover, the performance improvement

by firm characteristics is particularly evident when pricing out-of-the-money options. This

result suggests that firm characteristics can explain volatility smile to some extent. Given

the larger trading volume of out-of-the-money options (as evidenced by support) and the

fact that investors commonly use these options as a form of protection due to their lower

cost, accurate pricing of these options is of greater significance than that of in-the-money

options. Out-of-the-money options are also more difficult to price due to volatility smile.

Both GPFfand HBDfexhibit greater performance improvement when pricing these options.

[Insert Table 5, here]

4.1.4 Different maturity options

Table 6 reports the pricing performance of the models for different maturity groups.

Again, GPFfperforms best in all maturity groups in terms of RMSE, followed by HBDf ,

GPF, and HBD. The errors tend to increase with time to maturity. The RMSE of DVF

increases dramatically from 3.572 (Near-term) to 12.419 (Long-term). In contrast, the pro-

posed models perform consistently throughout the maturity groups and the error increases

with maturity only moderately. For instance, the RMSE of GPFf increases from 2.038 (Near-

term) to 2.465 (Long-term). Moreover, firm characteristics appear to have a more significant

impact on options with longer maturities. For near-term options, the RMSE of GPF is re-

duced by 11.93% when firm characteristics are incorporated, whereas it is reduced by 20.81%

for mid-term options, and by 23.92% for long-term options. Similarly, the RMSE of HBD is
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reduced by 14.91% for near-term options, by 17.72% for mid-term options, and by 21.67% for

long-term options. Investors who trade long-term options are likely to trade options based

on the growth perspective of the underlying firm rather than for speculation. Therefore, firm

characteristics are expected to carry more explanatory power for long-term options.

[Insert Table 6, here]

4.1.5 Year-by-year performance

Table 7 reports the MAPEs of each model year by year over the out-of-sample period.

We report MAPE instead of RMSE or MAE because both option prices and (absolute) errors

increase with time and therefore it is difficult to compare the performance across years with

absolute error metrics. As before, GPFfand HBDfoutperform GPF and HBD, respectively,

and DVF performs worst. The proposed models perform particularly well in comparison to

DVF in recent years when there are significantly more options in the market. For instance,

the MAPEs of GPFfand DVF in 1998 are 0.160 and 0.306, respectively, whereas those in

2021 are 0.248 and 0.681. The improved performance in recent years can be attributed to

the increased volume of the training set. Machine learning algorithms learn patterns from

historical data and having a large amount of data for training is critical to avoid overfitting

and make more accurate predictions.

The increasing trend of pricing errors corresponds to the growth of trading volume. As

more participants engage in the options market and trading activity intensifies, prices can

swing more due to more frequent changes of demand and supply dynamics. Increased liq-

uidity also allows for quicker transactions and increased price sensitivity to new information.

These factors can contribute to the increasing trend of pricing errors.

[Insert Table 7, here]
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4.2 Importance of firm characteristics

CatBoost provides the importance of each input feature as a score that adds up to 100

based on their contribution to prediction. Figures 3 and 4 present the 20 most important

features in GPFfand HBDf , respectively. The scores in the figures are the average scores of

all monthly training results. Although not reported here, we fine that the importance scores

are stable over the sample period.

Figure 3 shows that the option-related variables, σimp, K2, K, KT , T 2, and T , are

the most important features. In particular, σimp has an average score of 38, which is con-

siderably higher than the other features’ scores. This is an expected result as the target

variable of the machine learning algorithm in GPFf is implied volatility. The option-related

variables collectively have an importance score of 94 and the rest 6 is distributed across

firm characteristics. Among firm characteristics, idiosyncratic volatility (ivol capm 252d),

share price (price), market equity (market equity), year-1-lagged annual return (seas 1 1an),

illiquidity (ami 126d), and firm age (age) are some of the most important features. In partic-

ular, idiosyncratic volatility has the highest score of 0.569, which suggests that idiosyncratic

volatility carries information about implied volatility. Share price is also identified as an

important feature with an importance score of 0.510. This result suggests that moneyness

(share price divided by strike price) alone is not sufficient to describe the role of strike price

and share price in option value, but they interact in a more complex manner in determining

option price.

Figure 4 reveals that the option-related variables are also the most important features

in HBDf . However, their importance scores are lower and firm characteristics play a more

important role with an aggregate score of 14 in HBDf . This is because the machine learning

algorithm in HBDfpredicts the residuals from the BS model. Share price, idiosyncratic

volatility, illiquidity, market equity, and firm age (age) are the most important features among

firm characteristics. The fact that these firm characteristics are identified as important

features in both models implies that they are not picked by chance but do contain information
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about the option price.

[Insert Figure 3, here]

[Insert Figure 4, here]

5 Robustness tests

5.1 Training models for each option group

As shown in Table 1, the distribution of the sample is highly imbalanced across different

option groups, e.g., there are significantly more near-term options than long-term options.

The imbalance in the training set can lead to a biased result as the algorithm may prioritize

minimizing the pricing error of near-term options over long-term options. If the relationship

between the input and the output is different between these two option groups, training one

model for all options will result in a relatively poor performance for long-term options. On the

other hand, training a machine algorithm individually for each option group can suffer from a

small data problem, which can cause overfitting. The small data problem can be particularly

severe in the early years of the sample, where available options are significantly fewer. To

test the trade-off between the data imbalance problem and the small data problem, we train

the models individually for each option group and compare the results with those from the

previous one-model-fits-all case. The results are presented below. Overall, it appears that

the relationship between the input features and the option price is not so distinctive across

different types of options to require training the models individually for each group, and

training one model for all types of options is adequate.

5.1.1 Call vs put options

Table 8 reports the pricing performance of the models that are trained on call and put

options individually. The proposed models yield slightly smaller errors when trained individ-
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ually. For call options, the RMSEs of GPFfand HBDfare reduced from 2.067 to 2.011 and

from 2.131 to 2.075, respectively, and for put options, the RMSEs are reduced from 2.061 to

1.996 and from 2.079 to 2.020. Although the improvements are minor, the result suggests

that it is worth training the models separately for each option type.

[Insert Table 8, here]

5.1.2 Different moneyness options

Table 9 reports the pricing performance of the models that are trained on different mon-

eyness groups individually. In some groups, e.g., DOTM and ATM, training the models

individually renders better results, but in other groups, the results are mixed. It appears

that dividing the sample into many groups results in not enough sample size for each group

and the benefit of specifying a model for each group cannot dominate the small data problem.

[Insert Table 9, here]

5.1.3 Different maturity options

Table 10 reports the pricing performance of the models that are trained on different

maturity groups individually. The models perform slightly better for near-term and mid-

term options, e.g., the RMSEs of GPFfand HBDfare respectively 2.020 and 2.033 for near-

term options when trained individually, whereas they are 2.038 and 2.038 when trained using

the entire sample. However, the models perform worse for long-term options when trained

individually. The poor performance can be attributed to the small sample size of long-term

options.

[Insert Table 10, here]
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6 Conclusion

This paper proposes machine learning-based option pricing models that incorporate firm

characteristics. Individual stock option prices can be affected by the prospects of the underly-

ing firm and our aim is to assess whether firm characteristics can enhance the pricing of stock

options. We employ two semi-parametric models, a varient of Andreou et al. (2010)’s gen-

eralized parametric function model (GPF) and a varient of Lajbcygier and Connor (1997)’s

hybrid model (HBD), and evaluate them using individual stock options in the US market in

the period from 1996 to 2021. The results suggest that both GPF and HBD are effective in

pricing American options and firm characteristics can significantly improve the performance

of these models. Between the two models, GPF consistently performs better. Among the

firm characteristics, idiosyncratic volatility, share price, market equity, illiquidity, and firm

age are found to be the most important features in predicting option prices. We contribute to

the option pricing literature by making the first attempt to incorporate firm characteristics

into option pricing and demonstrating its effectiveness.
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Figures

Figure 1. GPF model structure.

Figure 2. HBD model structure.
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Figure 3. Feature importance score of the 20 most important features in GPFf .

Figure 4. Feature importance score of the 20 most important features in HBDf .
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Tables

Table 1. Characteristics of option data
This table describes the characteristics of the option data. The data is obtained from OptionMetrics’
IvyDB US and cover the stock options in the US market from 1996.01 to 2021.12. ‘Price’, ‘Implied
volatility’, and ‘Observations’ respectively refer to the average price, average implied volatility, and
the number of observations in each subset.

A. Call options

Moneyness DOTM OTM JOTM ATM JITM ITM DITM

S/X 0.80-0.90 0.90-0.95 0.95-0.99 0.99-1.01 1.01-1.05 1.05-1.10 1.10-1.20

Near-term (6-60 days)

Price 1.368 1.752 2.578 4.359 5.620 7.488 10.407

Implied volatility 0.857 0.550 0.391 0.346 0.415 0.566 0.813

Observations 909,057 1,245,376 1,722,750 916,423 904,543 457,659 312,472

Mid-term (60-180 days)

Price 2.388 3.121 4.568 6.798 7.412 8.791 11.118

Implied volatility 0.484 0.361 0.325 0.327 0.353 0.404 0.493

Observations 634,289 571,393 512,475 225,180 273,762 176,100 152,272

Long-term (181-365 days)

Price 3.979 5.029 6.864 9.321 9.818 11.090 13.623

Implied volatility 0.365 0.315 0.307 0.316 0.332 0.355 0.397

Observations 242,345 167,661 134,502 58,768 74,067 53,679 54,388

B. Put options

Moneyness DITM ITM JITM ATM JOTM OTM DOTM

S/X 0.80-0.90 0.90-0.95 0.95-0.99 0.99-1.01 1.01-1.05 1.05-1.10 1.10-1.20

Near-term (6-60 days)

Price 1.510 1.935 2.726 4.242 5.321 7.298 11.360

Implied volatility 0.782 0.543 0.400 0.353 0.426 0.597 0.921

Observations 745,650 894,463 1,175,816 655,465 628,517 289,699 165,035

Mid-term (60-180 days)

Price 2.700 3.497 4.593 6.084 6.490 7.449 9.980

Implied volatility 0.470 0.387 0.351 0.345 0.371 0.432 0.550

Observations 364,882 288,937 281,504 143,189 180,036 107,844 84,358

Continued on the next page
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Long-term (181-365 days)

Price 4.784 5.782 7.112 8.939 8.863 9.545 12.803

Implied volatility 0.380 0.353 0.341 0.341 0.357 0.385 0.442

Observations 136,102 88,593 78,961 40,505 55,059 39,844 37,614
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Table 2. Number of options per stock
This table describes the descriptive statistics of the number of options per stock in each year in the
sample period.

Year No. firms No. options

Mean Std Min 25% 50% 75% Max

1996 142 3 4 1 1 2 3 28

1997 163 4 5 1 1 2 4 38

1998 175 4 6 1 1 2 5 35

1999 185 5 6 1 1 2 5 41

2000 197 5 7 1 1 2 6 42

2001 206 5 6 1 1 2 6 33

2002 206 5 6 1 1 3 6 33

2003 226 5 6 1 1 3 7 31

2004 258 5 6 1 1 3 7 32

2005 282 6 6 1 1 3 8 39

2006 314 7 7 1 1 3 9 51

2007 350 7 8 1 1 4 9 64

2008 344 7 9 1 2 4 9 69

2009 336 7 10 1 2 4 9 69

2010 328 8 10 1 1 4 10 78

2011 335 9 14 1 1 4 11 152

2012 308 9 18 1 2 4 11 251

2013 338 9 17 1 1 4 10 225

2014 356 9 18 1 1 3 9 256

2015 349 8 19 1 1 3 7 246

2016 353 8 16 1 1 3 7 180

2017 396 8 17 1 1 3 7 177

2018 445 9 21 1 1 3 7 212

2019 448 9 21 1 1 3 7 207

2020 497 12 28 1 1 3 9 317

2021 615 13 30 1 1 3 9 339
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Table 3. Pricing performance for all options
This table presents the out-of-sample pricing errors of each model for all the options in the sample.
The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’, ‘MAE’, and ‘MAPE’ respectively
refer to the root mean square error, the mean absolute error, and the mean absolute percentage
error, and ‘MCS-p’ refers to the p-value of the model confidence set test. The details of each model
can be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

RMSE 2.064 2.110 2.447 2.527 5.799

16,050,622
MAE 0.593 0.601 0.671 0.679 1.337

MAPE 0.219 0.226 0.248 0.237 0.494

MCS-p .0001 0.016 0.000 0.000 0.000
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Table 4. Pricing performance for call and put options
This table presents the out-of-sample pricing errors of each model for call and put options. The
out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’, ‘MAE’, and ‘MAPE’ respectively refer
to the root mean square error, the mean absolute error, and the mean absolute percentage error,
and ‘MCS-p’ refers to the p-value of the model confidence set test. The details of each model can
be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

A. Call options

RMSE 2.067 2.131 2.442 2.520 5.933

9,631,300
MAE 0.591 0.598 0.673 0.683 1.336

MAPE 0.228 0.235 0.261 0.251 0.517

MCS-p 1.000 0.008 0.000 0.000 0.000

B. Put options

RMSE 2.061 2.079 2.455 2.538 5.592

6,419,322
MAE 0.596 0.607 0.669 0.672 1.339

MAPE 0.206 0.213 0.227 0.216 0.459

MCS-p 1.000 0.008 0.000 0.000 0.000
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Table 5. Pricing performance for different moneyness options
This table presents the out-of-sample pricing errors of each model for different moneyness options.
The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’, ‘MAE’, and ‘MAPE’ respectively
refer to the root mean square error, the mean absolute error, and the mean absolute percentage
error, and ‘MCS-p’ refers to the p-value of the model confidence set test. The details of each model
can be found in Section 3.3.

Model GPFf HBDf GPF HBD DVF Support

A. DOTM

RMSE 2.004 2.108 2.418 2.420 8.483

2,993,209
MAE 0.570 0.593 0.672 0.658 1.811

MAPE 0.350 0.372 0.439 0.403 1.002

MCS-p 1.000 0.01 0.000 0.000 0.000

B. OTM

RMSE 1.943 2.010 2.345 2.390 3.905

3,207,739

MAE 0.564 0.579 0.656 0.654 1.040

MAPE 0.300 0.313 0.344 0.325 0.523

MCS-p 1.000 0.009 0.000 0.000 0.000

C. JOTM

RMSE 2.119 2.138 2.544 2.627 5.029

3,855,525
MAE 0.615 0.619 0.703 0.713 1.260

MAPE 0.230 0.232 0.245 0.241 0.491

MCS-p 1.000 0.010 0.000 0.000 0.000

D. ATM

RMSE 2.588 2.556 2.995 3.234 6.395

2,016,292
MAE 0.745 0.735 0.815 0.859 1.561

MAPE 0.159 0.157 0.154 0.159 0.354

MCS-p 1.000 0.007 0.000 0.000 0.000

E. JITM

RMSE 2.008 2.048 2.333 2.407 5.197

2,082,314
MAE 0.581 0.586 0.642 0.651 1.224

MAPE 0.093 0.093 0.094 0.094 0.196

MCS-p 1.000 0.006 0.000 0.000 0.000

Continued on the next page
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F. ITM

RMSE 1.650 1.726 1.889 1.933 3.722

1,100,709
MAE 0.490 0.498 0.527 0.534 0.970

MAPE 0.062 0.062 0.062 0.062 0.124

MCS-p 1.000 0.006 0.000 0.000 0.000

G. DITM

RMSE 1.615 1.743 1.839 1.882 5.520

787,063
MAE 0.476 0.490 0.497 0.508 1.372

MAPE 0.047 0.048 0.046 0.046 0.122

MCS-p 1.000 0.009 0.000 0.000 0.000
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Table 6. Pricing performance for different maturity options
This table presents the out-of-sample pricing errors of each model for different maturity options.
The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’, ‘MAE’, and ‘MAPE’ respectively
refer to the root mean square error, the mean absolute error, and the mean absolute percentage
error, and ‘MCS-p’ refers to the p-value of the model confidence set test. The details of each model
can be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

A. Near-term

RMSE 2.038 2.038 2.314 2.395 3.572

10,855,219
MAE 0.592 0.593 0.653 0.657 1.095

MAPE 0.249 0.257 0.282 0.266 0.499

MCS-p 1.000 0.008 0.000 0.000 0.000

B. Mid-term

RMSE 1.987 2.112 2.509 2.567 7.275

3,928,374
MAE 0.548 0.569 0.651 0.660 1.543

MAPE 0.159 0.164 0.178 0.177 0.467

MCS-p 1.000 0.009 0.000 0.000 0.000

C. Long-term

RMSE 2.465 2.643 3.240 3.374 12.419

1,246,944
MAE 0.732 0.773 0.891 0.920 2.791

MAPE 0.147 0.154 0.165 0.166 0.526

MCS-p 1.000 0.013 0.000 0.000 0.000
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Table 7. Pricing performance in each year
This table presents the MAPE of each model year by year. The out-of-sample period is from 1998.01
to 2021.12. ‘RMSE’, ‘MAE’, and ‘MAPE’ respectively refer to the root mean square error, the mean
absolute error, and the mean absolute percentage error, and ‘MCS-p’ refers to the p-value of the
model confidence set test. The details of each model can be found in Section 3.3.

Year GPFf HBDf GPF HBD DVF Support

1998 0.160 0.160 0.165 0.164 0.306 186,489

1999 0.138 0.143 0.145 0.140 0.268 213,207

2000 0.146 0.143 0.144 0.146 0.267 247,356

2001 0.156 0.158 0.152 0.156 0.357 239,132

2002 0.163 0.170 0.164 0.165 0.406 259,130

2003 0.168 0.166 0.157 0.155 0.580 295,923

2004 0.147 0.146 0.146 0.145 0.592 354,210

2005 0.158 0.158 0.167 0.166 0.407 414,818

2006 0.155 0.157 0.166 0.167 0.320 518,190

2007 0.170 0.167 0.174 0.174 0.352 610,940

2008 0.168 0.176 0.178 0.174 0.354 627,255

2009 0.168 0.177 0.161 0.158 0.472 639,593

2010 0.175 0.181 0.169 0.165 0.798 652,750

2011 0.178 0.186 0.202 0.193 0.481 761,466

2012 0.195 0.203 0.222 0.212 0.461 700,098

2013 0.213 0.221 0.247 0.238 0.554 763,040

2014 0.218 0.216 0.253 0.239 0.514 784,004

2015 0.229 0.239 0.267 0.259 0.398 740,237

2016 0.267 0.272 0.297 0.287 0.469 712,374

2017 0.268 0.272 0.313 0.299 0.619 805,788

2018 0.250 0.258 0.310 0.297 0.412 1,018,956

2019 0.312 0.321 0.368 0.360 0.494 1,070,071

2020 0.278 0.295 0.322 0.298 0.446 1,491,641

2021 0.248 0.259 0.290 0.263 0.681 1,943,954
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Table 8. Pricing performance of individual models for call and put options
This table presents the out-of-sample pricing errors of the models that are trained on call and put
options individually. The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’, ‘MAE’, and
‘MAPE’ respectively refer to the root mean square error, the mean absolute error, and the mean
absolute percentage error, and ‘MCS-p’ refers to the p-value of the model confidence set test. The
details of each model can be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

A. Call options

RMSE 2.011 2.075 2.450 2.532 5.933

9,631,300
MAE 0.585 0.591 0.679 0.685 1.336

MAPE 0.228 0.229 0.258 0.248 0.517

MCS-p 1.000 0.008 0.000 0.000 0.000

B. Put options

RMSE 1.996 2.020 2.465 2.550 5.592

6,419,322
MAE 0.586 0.600 0.670 0.675 1.339

MAPE 0.200 0.210 0.225 0.216 0.459

MCS-p 1.000 0.008 0.000 0.000 0.000
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Table 9. Pricing performance of individual models for different moneyness options
This table presents the out-of-sample pricing errors of the models that are trained on different
moneyness options individually. The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’,
‘MAE’, and ‘MAPE’ respectively refer to the root mean square error, the mean absolute error, and
the mean absolute percentage error, and ‘MCS-p’ refers to the p-value of the model confidence set
test. The details of each model can be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

A. DOTM

RMSE 1.995 2.026 2.368 2.437 8.483

2,993,209
MAE 0.568 0.561 0.655 0.658 1.811

MAPE 0.376 0.365 0.419 0.397 1.002

MCS-p 1.000 0.163 0.000 0.000 0.000

B. OTM

RMSE 1.986 1.988 2.323 2.389 3.905

3,207,739
MAE 0.564 0.557 0.647 0.648 1.040

MAPE 0.305 0.299 0.334 0.321 0.523

MCS-p 1.000 0.884 0.000 0.000 0.000

C. JOTM

RMSE 2.117 2.182 2.553 2.577 5.029

3,855,525
MAE 0.605 0.605 0.698 0.695 1.260

MAPE 0.225 0.222 0.239 0.233 0.491

MCS-p 1.000 0.004 0.000 0.000 0.000

D. ATM

RMSE 2.447 2.485 2.978 3.019 6.395

2,016,292
MAE 0.701 0.698 0.812 0.807 1.561

MAPE 0.148 0.144 0.153 0.149 0.354

MCS-p 1.000 0.204 0.000 0.000 0.000

E. JITM

RMSE 2.023 2.035 2.376 2.437 5.197

2,082,314
MAE 0.570 0.581 0.634 0.641 1.224

MAPE 0.089 0.090 0.091 0.091 0.196

MCS-p 1.000 0.801 0.000 0.000 0.000

F. ITM

Continued on the next page
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RMSE 1.702 1.709 1.940 2.025 3.722

1,100,709
MAE 0.467 0.471 0.512 0.529 0.970

MAPE 0.057 0.057 0.058 0.059 0.124

MCS-p 1 0.819 0.000 0.000 0.000

G. DITM

RMSE 1.601 1.645 1.897 2.051 5.520

787,063
MAE 0.435 0.446 0.476 0.510 1.372

MAPE 0.042 0.043 0.042 0.044 0.122

MCS-p 1.000 0.058 0.000 0.000 0.000
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Table 10. Pricing performance of individual models for different maturity options
This table presents the out-of-sample pricing errors of the models that are trained on different
maturity options individually. The out-of-sample period is from 1998.01 to 2021.12. ‘RMSE’,
‘MAE’, and ‘MAPE’ respectively refer to the root mean square error, the mean absolute error, and
the mean absolute percentage error, and ‘MCS-p’ refers to the p-value of the model confidence set
test. The details of each model can be found in Section 3.3.

GPFf HBDf GPF HBD DVF Support

A. Near-term

RMSE 2.020 2.033 2.316 2.400 3.572

10,855,219
MAE 0.589 0.589 0.650 0.652 1.095

MAPE 0.255 0.255 0.279 0.281 0.499

MCS-p 1.000 0.008 0.000 0.000 0.000

B. Mid-term

RMSE 1.966 2.003 2.513 2.560 7.275

3,928,374
MAE 0.546 0.550 0.649 0.649 1.543

MAPE 0.155 0.160 0.174 0.172 0.467

MCS-p 1.000 0.009 0.000 0.000 0.000

C. Long-term

RMSE 2.643 2.774 3.167 3.359 12.419

1,246,944
MAE 0.753 0.765 0.885 0.925 2.791

MAPE 0.147 0.148 0.165 0.167 0.526

MCS-p 1.000 0.073 0.001 0.001 1.000
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Appendices

A. Firm characteristics

Abbreviation Description Author Year Journal

age Firm age Jiang, Lee, and Zhang 2005 RAS

aliq at Asset liquidity to book assets Ortiz-Molina and Phillips 2014 JFQA

ami 126d Illiquidity Amihud 2002 JFM

at be Book leverage Fama and French 1992 JF

at gr1 Asset growth Cooper, Gulen, and Schill 2008 JF

at me Assets-to-market Fama and French 1992 JF

at turnover Capital turnover Haugen and Baker 1996 JFE

be gr1a Chage in common equity Richardson et al. 2005 JAE

be me Book-to-market Rosenberg, Reid, and

Lanstein

1985 JF

beta dimson 21d Dimson Beta Dimson 1979 JFE

betadown 252d Downside beta Ang, Chen, and Xing 2006 RFS

bev mev Book-to-market enterprise value Penman, Richardson, and

Tuna

2007 JAR

bidaskhl 21d High-low bid-ask spread Corwin and Schultz 2012 JF

capx gr1 CAPEX growth Xie 2001 AR

cash at Cash-to-assets Palazzo 2012 JFE

chcsho 12m Net stock issues Pontiff and Woodgate 2008 JF

coa gr1a Change in current operating assets Richardson et al. 2005 JAE

col gr1a Change in current Ooperating liabilities Richardson et al. 2005 JAE

cop at Cash-based operating profitablility Ball et al. 2016 JFE

cop atl1 Cash-based operating profits to lagged assets Ball et al. 2016 JFE

coskew 21d Coskewness Harvey and Siddique 2000 JF

cowc gr1a Change in net non-cash working capital Richardson et al. 2005 JAE

dbnetis at Net debt finance Bradshaw, Richardson,

and Sloan

2006 JAE

debt me Debt to market Bhandari 1988 JFE

dgp dsale Gross margin growth to sales growth Abarbanell and Bushee 1998 AR

div12m me Dividend yield Litzenberger and Ra-

maswamy

1979 JF

dolvol 126d Dollar trading volume Brennan, Chordia, and

Subrahmanyam

1998 JFE

dolvol var 126d Volatility of dollar trading volume Chordia, Subrahmanyam,

and Anshuman

2001 JFE
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dsale drec Sales growth to receivable growth Abarbanell and Bushee 1998 AR

ebit bev Return on net operating assets Soliman 2008 AR

ebit sale Profit margin Soliman 2008 AR

ebitda mev Enterprise multiple Loughran and Wellman 2011 JFQA

emp gr1 Employment growth Belo, Lin, and Bazdresch 2014 JPE

eqnetis at Net equity finance Bradshaw, Richardson,

and Sloan

2006 JAE

eqnpo 12m Composite equity issuance Daniel and Titman 2006 JF

eqnpo me Net payout yield Boudoukh et al. 2007 JF

eqpo me Payout yield Boudoukh et al. 2007 JF

f score Piotroski F-score Piotroski 2000 AR

fcf me Cash flow-to-price Lakonishok, Shleifer, and

Vishny

1994 JF

fnl gr1a Change in financial liabilities Richardson et al. 2005 JAE

gp at Gross profits-to-assets Novy-Marx 2013 JFE

gp atl1 Gross profits-to-lagged assets Novy-Marx 2013 JFE

inv gr1a Inventory change Thomas and Zhang 2002 RAS

iskew capm 21d Idiosyncratic skewness (CAPM) Bali, Engle, and Murray 2016 BOOK

iskew ff3 21d Idiosyncratic skewness (FF3) Bali, Engle, and Murray 2016 BOOK

iskew hxz4 21d Idiosyncratic skewness (q-factor) Bali, Engle, and Murray 2016 BOOK

ivol capm 21d Idiosyncratic volatility (CAPM) Ang et al. 2006 JF

ivol capm 252d Idiosyncratic volatility Ali, Hwang, and Trombley 2003 JFE

ivol ff3 21d Idiosyncratic volatility (FF3) Ang et al. 2006 JF

ivol hxz4 21d Idiosyncratic volatility (q-factor) Ang et al. 2006 JF

lnoa gr1a Change in long-term net operating assets Fairfield, Whisenant, and

Yohn

2003 AR

lti gr1a Chagne in long-term investments Richardson et al. 2005 JAE

market equity Market equity Banz 1981 JFE

mispricing mgmt Mispricing factor: Management Stambaugh and Yuan 2016 RFS

mispricing perf Mispricing factor: Performance Stambaugh and Yuan 2016 RFS

ncoa gr1a Change in non-current operating assets Richardson et al. 2005 JAE

ncol gr1a Change in non-current operating liabilities Richardson et al. 2005 JAE

netdebt me Net debt-to-price Penman, Richardson, and

Tuna

2007 JAR

netis at Net external finance Bradshaw, Richardson,

and Sloan

2006 JAE

nfna gr1a Change in net financial assets Richardson et al. 2005 JAE

ni be Return on equity Haugen and Baker 1996 JFE

ni inc8q Number of consecutive quarters with earnings

in...

Barth, Elliott, and Finn 1999 JAR

Continued on the next page

39



ni me Earnings to price Basu 1983 JFE

niq at Quarterly return on assets Balakrishnan, Bartov, and

Faurel

2010 JAE

niq at chg1 Change in quarterly return on assets Balakrishnan, Bartov, and

Faurel

2010 JAE

niq be Return on equity (quarterly) Hou, Xue, and Zhang 2015 RFS

niq be chg1 Change in quarterly return on equity Balakrishnan, Bartov, and

Faurel

2010 JAE

niq su Earnings surprise Foster, Olsen, and Shevlin 1984 AR

nncoa gr1a Change in net non-current operating assets Richardson et al. 2005 JAE

noa at Net operating assets Hirshleifer et al. 2004 JAE

noa gr1a Change in net operating assets Hirshleifer et al. 2004 JAE

oaccruals at Operating accruals Sloan 1996 AR

oaccruals ni Percent operating accruals Hafzalla, Lundholm, and

Van Winkle

2011 AR

ocf at Operating cash flow to assets Bouchard et al. 2019 JF

ocf at chg1 Change in operating cash flow to assets Bouchard et al. 2019 JF

ocf me Operating Cash flows to price Desai, Rajgopal, and

Venkatachalam

2004 AR

op at Operating profits-to-assets Ball et al. 2016 JFE

op atl1 Operating profits-to-lagged assets Ball et al. 2016 JFE

opex at Operating leverage Novy-Marx 2011 JFE

prc highprc 252d 52-week high George and Hwang 2004 JF

price Share price Miller and Scholes 1982 JPE

qmj Quality minus Junk: Composite Assness, Frazzini, and Ped-

ersen

2018 RAS

qmj growth Quality minus Junk: Growth Assness, Frazzini, and Ped-

ersen

2018 RAS

qmj prof Quality minus Junk: Profitability Assness, Frazzini, and Ped-

ersen

2018 RAS

qmj safety Quality minus Junk: Safety Assness, Frazzini, and Ped-

ersen

2018 RAS

resff3 12 1 12 month residual momentum Blitz, Huij, and Martens 2011 JEF

resff3 6 1 6 month residual momentum Blitz, Huij, and Martens 2011 JEF

ret 1 0 Short-term reversal Jegadeesh 1990 JF

ret 12 1 Momentum (12 month) Jegadeesh and Titman 1993 JF

ret 12 7 Intermediate momentum (7-12) Novy-Marx 2012 ROF

ret 3 1 Momentum (3 month) Jegadeesh and Titman 1993 JF

ret 6 1 Momentum (6 month) Jegadeesh and Titman 1993 JF

ret 9 1 Momentum (9 month) Jegadeesh and Titman 1993 JF
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rmax1 21d Maximum daily return Bali, Cakici, and Whitelaw 2011 JFE

rmax5 21d Highest 5 days of return Bali, Brown, and Tang 2017 JFE

rmax5 rvol 21d Highest 5 days of return to volatility Assness et al. 2020 JFE

rskew 21d Return skewness Bali, Engle, and Murray 2016 BOOK

rvol 21d Return volatility Ang et al. 2006 JF

sale bev Asset turnover Soliman 2008 AR

sale gr1 Annual sales growth Lakonishok, Shleifer, and

Vishny

1994 JF

sale me Sales to price Barbee, Mukherji, and

Raines

1996 FAJ

saleq su Revenue surprise Jegadeesh and Livnat 2006 JFE

seas 1 1an Year 1-lagged return, annual Heston and Sadka 2008 JFE

seas 1 1na Year 1-lagged return, nonannual Heston and Sadka 2008 JFE

sti gr1a Change in short-term investments Richardson et al. 2005 JAE

taccruals at Total accruals Richardson et al. 2005 JAE

taccruals ni Percent total accruals Hafzalla, Lundholm, and

Van Winkle

2011 AR

tangibility Tangibility Hahn and Lee 2009 JF

tax gr1a Tax expense surprise Thomas and Zhang 2011 JAR

turnover 126d Share turnover Datar, Naik, and Radcliffe 1998 JFM

turnover var 126d Volatility of share turnover Chordia, Subrahmanyam,

and Anshuman

2001 JFE

zero trades 126d Zero-trading days (6 months) Liu 2006 JFE

zero trades 21d Zero-trading days (1 month) Liu 2006 JFE

zero trades 252d Zero-trading days (12 months) Liu 2006 JFE
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B. CatBoost

The machine learning algorithm we employ is CatBoost proposed by Prokhorenkova, Gusev,

Vorobev, Dorogush, and Gulin (2018). CatBoost is an ordered boosting algorithm based on a

gradient boosting decision tree. The CatBoost algorithm starts by initializing a set of decision

trees, known as the base predictors. In each iteration of the algorithm, a new decision tree is added

to the set of base predictors, taking into account the residuals from the previous iteration. The

residuals are computed as the difference between the true target values and the predictions from

the current set of decision trees. The algorithm continues to add decision trees until a stopping

criterion is met, such as reaching a maximum number of trees or a minimum improvement in the

residuals.

CatBoost is advantageous for regression problems due to its ability to handle data with different

data types and missing values in a way that does not require preprocessing or feature engineering.

Additionally, CatBoost uses an ordered boosting technique, which is known to be effective for

regression problems as it allows for quick convergence and reduces overfitting. The use of oblivious

decision trees as the basic predictor also contributes to CatBoost’s performance as these trees are

able to capture complex nonlinear relationships in the data. These features combined together make

CatBoost an attractive choice for regression problems, particularly when working with datasets that

are challenging to preprocess or engineer. The core concepts used in CatBoost include the following:

• Gradient boosting: CatBoost is based on gradient boosting, a technique that uses an

ensemble of weak learners (usually decision trees) to create a strong model. Gradient boosting

is used to minimize the loss function by updating the model iteratively based on the gradient

of the loss.

• Decision trees: CatBoost uses decision trees as the base model in its ensemble. Decision

trees split the feature space into regions and make predictions based on the observations in

those regions.

• Oblivious trees: CatBoost uses oblivious trees, a type of decision tree that is not affected
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by the order of the features. This helps to reduce the correlation between trees and make the

predictions more stable.

• Gradients and loss function: CatBoost calculates gradients for each observation based on

the current prediction and actual value, and updates the model to minimize the loss function.

The loss function measures the difference between the prediction and actual value and is used

to determine how much the model should be updated at each iteration.

• Boosting iterations: CatBoost iteratively updates the model by adding trees that fit the

residuals until the loss function reaches a minimum. The final prediction is made by combining

the predictions from all the trees in the ensemble.

The process of CatBoost regression is as follows. Let (X, y) denote the training set, where X is

a N ×K matrix of input features for N samples and K features, and y is a N -dimensional vector of

target values. The objective is to find a function F (X) that minimizes the cost function J(y, F (X)),

which is the root mean square error in our task. In each iteration t, t = 1, 2, ..., T , the algorithm

trains a new decision tree gt(X) to approximate the negative gradient of the loss function with

respect to the current model Ft−1(X). The model is then updated by the following equation:

Ft(X) = Ft−1(X) + ηgt(X), t > 1, (8)

where η is a learning rate. When t = 1, F1(X) is set to be g1(X).
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