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Abstract 

This study predicts forced CEO turnover with machine learning. In out-of-sample tests, our 

machine learning model substantially outperforms traditional models across different 

performance metrics. Machine learning’s predictions show evidence to support the strong-form 

RPE and reject the weak-form RPE in CEO dismissal process. Globally, performance related, 

incentive related, and risk-taking related features contribute the most in predicting forced CEO 

turnover. Locally, machine learning can deal with sophisticated interactions and nonlinearity 

among the features, especially detecting the skill-matching between CEOs and firms. Finally, 

this study reveals that CEO entrenchment leads to undervaluation of CEOs’ poor performance  

explaining why some CEOs are rarely fired. In addition, this study suggests that directors may 

misattributes financial distress to CEOs who should not be fired, to preserve their reputation and 

positions. 
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1.0 Introduction 

The topic of CEO dismissals has gained significant attention in financial academic research. 

Understanding the process and reasons for CEOs' removal is crucial, given the potential 

contribution of CEO skills to firm performance. Any inefficiencies in the removal process could 

negatively impact the success of the firm. Previous studies have extensively examined the 

mechanism and determinants of CEO dismissals, involving various dimensions such as firm 

characteristics, CEO attributes, corporate governance, and relative performance. The varied 

dimensions are not surprising, given the different underlying theories and variable selections. 

However, the limited number of variables and the frequent use of the logistic regression method1 

in prior literature may not fully capture the intricate and non-linear interactions among variables 

when predicting CEO dismissals. Consequently, the resulting outcomes are plausible and cannot 

distinguish which dimension dominates the board's consideration when removing CEOs.  

 

Recent advances have demonstrated that machine learning algorithms are better alternatives to 

traditional models in predicting uncommon firm-level phenomena, such as accounting fraud 

(Bao et al., 2020), future earnings change (Chen et al., 2022) and financial misstatement 

(Bertomeu et al., 2021). In this paper, we present a machine learning approach for identifying 

the critical features (equivalent to variables in econometrics) associated with forced CEO 

turnover and predicting such turnover events. The specific machine learning approach used in 

this paper is Gradient Boost Machines (GBMs), especially LightGBM, which is a tree-based 

machine learning model and belongs to ensemble learning family2.  

 

There are two major objectives for this study. For the first objective, this paper wishes to develop 

a model that can accurately predict as many forced CEO turnovers as possible. However, given 

the rarity of forced CEO turnover events, the dataset is likely to be imbalanced. While aiming 

for a high number of correctly predicted forced CEO turnovers (true positives), it is expected 

that there will be a high number of misclassifications (false positives). Therefore, it is important 

to carefully consider the trade-off between the number of true positives and the number of false 

positives when dealing with imbalanced classification problems. 

 

 
1 Logistic regression is widely used in forced turnover determination. Hazard model and probit regression are also 
applied in previous studies. 
2 This will be briefly discussed in our research design section. 
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For the second objective, this paper aims to validate and reconcile the determinants of forced 

CEO turnover and the related theory (i.e., relative performance evaluation theory) . First, in the 

LightGBM model with a large number of input variables, decision trees are iteratively added to 

improve performance. The model evaluates the contribution of each feature by analysing the 

split points on that feature. If the split point does not improve model performance, it suggests 

that the feature has low importance in predicting forced CEO turnovers. This helps to identify 

the most relevant features3, which can be used to confirm or refute the determinants of forced 

CEO turnover found in previous studies. Second, if the machine learning model is valid and 

outperforms traditional models, it is expected that the machine learning model’s predictions are 

more reliable than traditional models’ predictions. This enables an examination of previous 

relative performance evaluation evidence regarding CEO turnover, and help to either support or 

reject it. 

 

This study employs the LightGBM model to predict the binary target variable of forced CEO 

turnover, which indicates whether a CEO was fired in a given fiscal year. To evaluate the 

performance of the ML model, two high-profile traditional models are selected as benchmarks. 

Additionally, regularized logistic regression (LASSO4) is also applied using all features as input 

to compare with the LightGBM model. The first traditional model is developed by Bushman, 

Dai and Wang (2010). They adopt probit regressions to mainly examine the effects of individual 

and industrial volatilities on forced CEO turnover. The second traditional model is from Jenter 

and Kanaan (2015). They employ logit regressions to examine the impact of relative performance 

on forced CEO turnover.  

 

In out-of-sample results, this paper shows that the LightGBM model outperforms two traditional 

models as well as the LASSO model across three different performance metrics. Specifically, 

the LightGBM model achieves a significantly larger area under the Receiver Operating 

Characteristics curve (ROC AUC) and larger area under the Precision-Recall curve (PR AUC). 

The LightGBM model also outperforms the other models with the highest average Normalized 

Discounted Cumulative Gain at the top 3% of predictions (NDCG@3%), and this 

outperformance persists over years in test sample. Another way to evaluate the quality of our 

 
3 We use SHAP values (SHapley Additive exPlanations), which is introduced by (Lundberg & Lee, 2017), to 
measure the contribution of each feature.  
4 LASSO (Least Absolute Shrinkage and Selection Operator) is a simple machine learning model and a variant of 
Logistic regression model. It can regularize coefficients of variables by imposing penalties to shrink coefficients. 
This helps in improving model interpretability, reducing overfitting, and enhancing prediction accuracy, especially 
in situations where there are many potential features available. 
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machine learning model is to evaluate the way in which actual forced CEO turnover rate (the 

percentage of forced CEO turnover) increases related to predicted turnover probability. We 

divide the predicted turnover probabilities in deciles for all models. We find a similar trend 

across all models, whereby the actual turnover rate increases as the predicted probability decile 

increases. Our machine learning model outperforms the other models in predicting CEO turnover, 

with the lowest turnover rate of 1.33% in the bottom decile (decile 1) and the highest turnover 

rate of 16.96% in the top decile (decile 10).  

 

Our machine learning model has demonstrated superior predictive power across multiple 

evaluation methods. Given its accurate predictions, it is intriguing to investigate how these 

predictions can contribute to a better validation of previous CEO turnover related hypotheses 

and theories. Prior studies have indicated that firm performance, especially CEO-induced 

performance (idiosyncratic return) and industry-induced performance (peer return), plays an 

important role in predicting CEO turnover. In out-of-sample results, the average turnover 

probability predicted by our ML model successfully captures a significant declining trend across 

idiosyncratic return deciles, with an average predicted probability of 18.05% in the bottom decile 

(decile 1) and 8.48% in the top decile (decile 10). The two traditional models also capture such 

trend but it is not as pronounced. For industry-induced performance, the traditional models 

exhibit a slight declining trend (insignificant) in capturing industry-induced performance. 

Furthermore, our machine learning model's predictions demonstrate the ineffectiveness of 

industry-induced performance in predicting forced CEO turnovers. The results challenge the 

weak-form relative performance evaluation theory raised by Jenter and Kanaan (2015), while 

providing support for the strong-form relative performance evaluation theory. 

 

While traditional econometric modelling produces coefficient estimates for each feature, 

machine learning algorithms do not. However, SHAP values (SHapley Additive exPlanations) 

introduced by Lundberg and Lee (2017) can help to quantify the contribution of each feature to 

predicting forced CEO turnover. In terms of global contribution, we find that incentive-related 

features, market-based performance features, and risk-related features contribute most (in top 10 

important features) to predicting forced CEO turnovers. Accounting-based performance features, 

governance-related features and CEO background features do not hold significant importance in 

global contribution. The insignificance of certain features in global contribution does not 

necessarily imply their lack of importance locally. We take Microsoft and Computer Task Group 

as two examples to demonstrate how machine learning algorithms determine CEO dismissals 
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locally. We find that high (low) incentive payment, high (low) idiosyncratic return, low (high) 

risk-taking, and high (low) CEO power push down (up) the probability of CEO dismissal. 

Moreover, we find skill-matching between CEOs and firms reduce the probability of CEO 

dismissal. Specifically in the examples above, the CEO who works in computer software industry 

with a technology background is less likely to be fired. 

 

Finally, this paper partially reconciles two questions in firing process: why CEOs who are 

predicted to be dismissed are still in position and why CEOs who are not predicted to be 

dismissed but are fired. We find firms that have CEOs who have higher ownership and who are 

also the chairman of the board are likely to retain CEOs who are predicted to be dismissed. This 

pattern is consistent with the view that poor corporate governance reduces the turnover-

performance sensitivity. For CEOs who are not predicted to be fired but are fired, we find that 

those CEOs are less powerful and are in relatively large firms. However, those firms are facing 

financial distress. One potential explanation can be that the directors of poorly performing large 

companies may resort to firing CEOs to shield themselves from accountability and safeguard 

their positions and standing. 

 

The applications of machine learning techniques to finance and accounting research topics are 

under-exploited. This paper complements to this strand of papers, including but not limited to 

accounting fraud and financial misstatement detection (Bao et al., 2020; Bertomeu et al., 2021), 

asset pricing (Geertsema & Lu, 2023; Gu et al., 2020), director selection (Erel et al., 2021) and 

future earnings change (Chen et al., 2022). This paper utilizes the novel machine learning 

approach to deliver a comprehensive picture about the determinants of forced CEO turnovers. 

The results contribute to the literature on relative performance evaluation in CEO turnover 

decisions (e.g., Bushman et al., 2010; Eisfeldt & Kuhnen, 2013; Jenter & Kanaan, 2015; Jenter 

& Lewellen, 2021; Parrino, 1997) and literature on factors affecting turnover-performance 

sensitivity (e.g., Bhagat et al., 2010; Dikolli et al., 2014; Goyal & Park, 2002; Jagannathan & 

Pritchard, 2017; Kaplan & Minton, 2006, 2006; Liu, 2014, 2014; Weisbach, 1988). The partial 

reconciliation on firing process by using machine learning predictions in this paper also 

contributes to the literature on corporate governance and CEO entrenchment (e.g., Ertugrul & 

Krishnan, 2011; Hazarika et al., 2012; Taylor, 2010) 
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2.0 Related literature 

A significant portion of the extant literature has related firm performance5  to forced CEO 

turnover decisions. The key assumption on this relation is that boards regularly revise their 

evaluation of a CEO’s suitability in office based on performance signals that unfold over time. 

Gibbons and Murphy (1990) are the first to apply relative performance evaluation (RPE) theory 

in the context of CEO turnover decisions. They propose that boards efficiently incorporate 

performance information into the assessment of a CEO’s ability and follow an optimal dismissal 

decision rule based on this assessment. Their findings suggest that the optimal turnover decisions 

are solely associated with the performance relative to a benchmark6 (i.e., industry performance) 

that filters out the components of firm performance unrelated to managerial effort or ability. In 

other words, CEO dismissal decisions are solely influenced by the part of firm performance that 

reflects CEO efforts and ability (abnormal or idiosyncratic performance), rather than full industry 

performance (peer performance).  This type of RPE is referred to as strong-form RPE. Similar 

results for other samples and periods that support strong-form RPE have been reported by Parrino 

(1997), Huson et al. (2001), and Hazarika et al. (2012).  

 

Contrary to strong-form RPE, Jenter and Kanaan (2015) (hereafter, JK) argue that CEO turnover 

decisions actually follow a weak-form RPE approach. JK perform two-stage regressions to 

examine turnover-performance relation and decompose firm performance into two components 

in the first stage: idiosyncratic return (residual) and industry-induced return (expected return). 

According to JK’s findings, CEO dismissals conform to weak-form RPE because poor industry 

performance (e.g., industry downturn) provides more informative insights into the CEO's ability. 

Specifically, CEOs with poor performance are more likely to be dismissed in bad times, as 

underperformers is more revealing about deficiencies. Similar results related to weak-form RPE 

have also been documented by Eisfeldt and Kuhnen (2013), Gopalan, Milbourn and Song (2010), 

and Kaplan and Minton (2006). 

 

Similar findings regarding the negative relation between the likelihood of CEO dismissal and 

industry performance are also reported by Bushman, Dai and Wang (2010) (hereafter, BDW). 

Different from JK’s viewpoint, BDW focus on the impact of market turbulence (e.g., noise, 

 
5 Most common performance measures in CEO turnover literature are based on stock returns. Some studies also 
consider using accounting-based performance measures (e.g., Engel et al., 2003; Huson et al., 2001; Weisbach, 
1988) 
6 The common benchmark used to obtain abnormal performance is industry return. Some studies also consider 
marked-based benchmark, such as equal-/value-weighted market return or S&P 500 index return (e.g. Bushman et 
al., 2010; Kaplan & Minton, 2006) 
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economy-wide effects, etc.) on the ability of boards to identify underperforming CEOs. They 

incorporate additional two risk proxies to evaluate informativeness about boards learning CEOs’ 

talent. Specifically, BDW demonstrate that firm performance becomes more diagnostic to 

replace low-quality CEOs when the risk deriving from the uncertainty about the CEO’s talent 

(idiosyncratic risk) increases. On the other hand, boards become difficult to distinguish the talent 

of incumbents when the risk deriving from industry (peer risk) increases, leading to a decreased 

likelihood of CEO dismissal.  

 

The extant turnover-performance literature has reached a consensus that the performance 

attributed to the CEO’s ability and skills (idiosyncratic performance7) have robust impact on 

CEO turnover decisions8. However, the role of industry performance in CEO dismissal remains 

ambiguous. While BDW have replicated JK’s findings about the negative impact of industry 

performance on the likelihood of CEO dismissal, they consider this relation as a “conundrum” 

and indicate that “…… their tests do not provide convincing support for any of the proposed 

explanations for the industry effect on CEO turnover”. Furthermore, Fee et al. (2018) cast doubt 

on the relation between industry performance and CEO dismissal and find that the relation is 

unrobust for different timing conventions and modelling choices. Given the ambiguous evidence 

about the impact of industry performance on CEO dismissal (i.e., whether CEO dismissals follow 

strong-form RPE or weak-form RPE), this paper will construct machine learning model to 

predict forced CEO turnover and utilize the predictions from the model to examine the RPE 

theory. Additionally, the machine learning model will be benchmarked against the traditional 

models proposed by JK and BDW to demonstrate the accuracy and reliability of the predictions 

generated by the machine learning model. 

 

In addition to RPE theory, previous studies have looked into various factors in CEO dismissal 

decisions. These studies include the literature on corporate governance and the ways of CEO 

entrenchment investigate the factors such as CEO-founder status (e.g., Beneish et al., 2017; 

Bushman et al., 2010), CEO ownership (e.g., Denis et al., 1997; Goyal & Park, 2002; Hazarika 

et al., 2012), CEO duality (e.g., Goyal & Park, 2002; Hazarika et al., 2012) and board structure 

(e.g., Coles et al., 2014; Guo & Masulis, 2015; Kaplan & Minton, 2006; Weisbach, 1988); the 

literature on investigating the impact of CEO and firm characteristics on CEO turnover such as 

 
7 Early studies refer to industry-/market-adjusted performance as the performance attributed to the CEO’s ability 
and skills. 
8 See Fee et al. (2018) regarding the discussion about robust models of CEO turnover. 
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CEO age and tenue (e.g., Allgood & Farrell, 2000; Dikolli et al., 2014; Goyal & Park, 2002; 

Murphy & Zimmerman, 1993), CEO education background (e.g., Bhagat et al., 2010), CEO 

compensation (e.g., Campbell et al., 2011; Gao et al., 2012; Jochem et al., 2018; Laux, 2012), 

firm competition within industry (e.g. DeFond & Park, 1999; Goyal & Park, 2002), firm location 

(e.g., Jagannathan & Pritchard, 2017), and accounting performance (e.g., Engel et al., 2003; 

Farrell & Whidbee, 2003; Huson et al., 2001).  

 

Previous studies primarily concentrated on investigating and explaining CEO dismissals within 

sample under some specific assumptions and often emphasising on causal inferencing – 

explanatory modelling. Explanatory modelling aims to minimise the bias resulting from model 

misspecification to obtain the most accurate representation of the underlying theory. In contrast,  

predictive modelling, such as machine learning algorithms, aims to minimize out-of-sample 

prediction error, which encompasses the combined effect of bias and estimation variance 

resulting from using a sample to estimate model parameters. Given the underlying assumptions 

and the limited number of covariates in explanatory modelling, its predictive power might be 

limited, leading to predictions that lack practical insights 9 . This paper approaches CEO 

dismissals as a prediction problem, wherein boards must review CEOs’ suitability and make 

decisions to fire or not. Considering the potentially complex non-linearities and interactions 

among covariates in CEO dismissal decisions, a data-driven approach like machine learning 

algorithms is better suited for making accurate predictions. Therefore, in contrast to extant 

literature, the interest of this paper is to examine the relative importance of features associated 

with CEO dismissals and utilize the predictions produced by machine learning to provide 

practical insights in CEO dismissal process. 

 
3.0 Research design 

In this section, we divide our research design into two parts. The first part introduces the main 

machine learning model used in this study and discuss how we deploy our machine learning 

model. The second part describes the construction of our sample.  

 

 
9 For example, within the framework of efficient markets theory in finance, the inability to make accurate predictions 
about future outcomes is considered a fundamental premise. However, Moritz and Zimmermann (2016) employ 
machine learning to demonstrate that the historical returns of US firms possess substantial predictive capabilities 
concerning their future stock prices. 
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3.1 Machine learning model  

The primary machine learning algorithm utilized in this paper is the Gradient Boosting Machine 

(GBM), which falls under the ensemble learning framework. Ensemble learning is a technique 

in machine learning that combines multiple individual models, known as base estimators, to 

enhance prediction accuracy. Boosting is a widely adopted approach within ensemble learning. 

In boosting, the base estimators are trained sequentially, with each subsequent estimator focusing 

on the samples that were misclassified by the previous estimator, thereby improving the accuracy. 

Previous studies (e.g., Chen & Guestrin, 2016; Zhou, 2021) have also shown that ensembles 

usually outperform any single base estimator. LightGBM is one of the popular implementations 

utilizing boosting approach, with the properties of high speed and high accuracy. In this paper, 

the LightGBM model is employed to directly predict forced CEO turnover. 

 

Given the infrequent nature of forced CEO turnover events in each year, it is important to 

highlight the potential challenge of class imbalance in prediction tasks. The class imbalance may 

lead to machine learning models misclassifying a large amount of non-turnover instances as 

turnovers. Previous studies (e.g. Bao et al., 2020; Liu & Zhou, 2013) have proposed several 

methods to address this issue. These methods include resampling the dataset using sampling 

algorithms such as Synthetic Minority Oversampling Technique (SMOTE) and utilizing 

ensemble learning algorithms with variations like RUSBoost or AdaBoost. These methods 

essentially oversample or undersample the dataset to artificially balance the classes. However, 

these methods have a common premise that the input dataset must be complete without any 

missing values.  

 

In corporate finance research, where missing values are common, the implementation of these 

methods may be challenging. One plausible way is to drop observations with missing values, 

then implement resampling algorithms. However, dropping observations with missing values 

(list-wise deletion) means a substantial loss of data availability (losing about 1/3 of our sample 

size), leading to the loss of valuable information input and causing bias10. Another plausible way 

is to implement resampling algorithms after imputing missing values. However, simple 

imputation, such as zero, mean or median, may produce bias or unrealistic results on a high-

 
10 See Emmanuel et al. (2021) about a survey on missing data in machine learning. They indicate that if the sample 
size is not large or the missing values do not satisfy Missing Completely at Random (MCAR) assumption, then list-
wise deletion is not appropriate. There are three types of missingness. To understand the types of missingness, 
please refer to Emmanuel et al. (2021) and the course notes from the University of Michigan by Dr. Josh Errickson 
about multiple imputation (https://dept.stat.lsa.umich.edu/~jerrick/courses/stat701/notes/mi.html#types-of-
missing-data). 
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dimensional dataset (Emmanuel et al., 2021). Moreover, the advanced imputation techniques, 

such as multiple imputation, strongly rely on the assumption of Missing at Random (MAR) that 

the missingness is only related to the observable data. Considering some financial variables are 

missing due to Missing not at Random (MNAR)11, the resulting imputed dataset may not be 

representative of the true population. Consequently, performing resampling on an 

unrepresentative dataset can lead to unexpected bias in the analysis. 

 

This study intends not to drop any observations with missing values, as GBMs can handle 

missing values by ignoring them at a split point and then assigning them to a child node that 

reduces the loss. To address the class imbalance issue, this study plans to adjust hyperparameters 

of LightGBM, specifically the scale_pos_weight parameter, to assign a higher weight to the 

positive class (forced turnover events) during the training process. This weighting scheme helps 

the model to focus more on accurately predicting the minority class. Additionally, this study 

intends to control the updates made during the training by limiting the step size through the 

max_delta_step. This helps to prevent large and unstable changes and enhance convergence to 

predict more forced turnover events. 

 

Following the conventional approach used in prior studies (e.g., Bao et al., 2020; Erel et al., 

2021), this study employs a time-series based split for the sample, dividing it into three sets: 

training, validation, and test sets. The time periods for each set are as follows: the training set 

covers the years 1992-2008, the validation set covers 2009-2013, and the test set covers 2014-

2019. The proportions of the sample size allocated to each set are approximately 60% for the 

training set, 20% for the validation set, and 20% for the test set. The LightGBM model is initially 

trained on the training set using the specified hyperparameters. Subsequently, the model's 

performance is evaluated on the validation set to identify the optimal hyperparameters, ensuring 

the best performance for the given task. Finally, the trained model is implemented on the test set 

to assess its out-of-sample performance12. We select two traditional models proposed by JK and 

 
11  For example, Koh and Reeb (2015) indicate firms choose not to disclose R&D expenditures for strategic 
considerations so that they do not separate R&D expenses from other reported expenses, such as expenses shifting. 
The blank fields in some financial variables may not be due to random missingness, as they are actually not reported 
at discretion (MNAR). Therefore, imputation techniques cannot predict the missing values based on observable data. 
12 The number of estimators is determined by early stopping on validation set. A list of learning rate (learning_rate) 
including 0.01, 0.03, 0.05, 0.1, 0.3, a list of maximum number of leaves (num_leaves) including 29, 30, 31, 32, a 
list of class weight (scale_pos_weight) including 8, 10, 12, and the limit of  step size (max_delta_step) of 10 are 
input in the training process. The model performance for each combination of hyperparameters is evaluated on 
validation set to determine the optimal combination. The default settings of LightGBM are used for all other 
hyperparameters.  
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BDW as well as another simple machine learning model (LASSO) as benchmarks. To make 

results comparable across models, the benchmark models are evaluated using the same data splits 

to generate out-of-sample predictions13. All reported results in this study are based on the 

evaluation of the model on the test set. 

 
3.2 Sample selection 

This study focuses on predicting forced CEO turnovers using machine learning. The widely used 

CEO turnover classification strategy is based on the algorithm by Parrino (1997). However, the 

extant studies (e.g., Fee et al., 2018; Jenter & Lewellen, 2021; Taylor, 2010) raise concerns about 

the effectiveness of this classification strategy. Parrino’s strategy heavily rely on age cut-off, that 

is, categorizing the departures of CEOs above the age of 60 as voluntary CEO turnovers. 

However, it is possible for CEOs above the age of 60 to also be forced out due to factors such as 

lack of innovation or declining (or stagnant) performance, while firms possibly take “retirement” 

as an excuse for their CEOs’ departures to avoid negative impact on stock prices. This study, 

instead, uses an open-source CEO turnover dataset with available CEO classifications by Gentry, 

Harrison, Quigley and Boivie (2021). They classify all CEO turnovers from Execusomp based 

solely on SEC filings and media coverage without any age cut-off. It is less subjective and a 

more natural way to classify CEO turnovers, and less likely to cause any factitious results in later 

analysis. Appendix A shows classifications and definitions for CEO departures14. 

 

CEO and board information in this study is primarily obtained from two sources: Execucomp 

and BoardEx. The compensation-related data of CEOs, such as total compensation, salary, and 

bonuses, is sourced from Execucomp. CEOs’ attributes (e.g., age, gender, and nationality), CEO 

work history and education background, board size, and board independence are sourced from 

BoardEx. Firm fundamentals are sourced from Compustat. Appendix B provides a detailed 

description of the variables used in this study. A variable name with a suffix of “_r” means this 

 
13  LightGBM can handle missing values, but traditional models and LASSO cannot. To make results more 
comparable, we use IterativeImputer() in ScikitLearn to impute the dataset so that the number of observations 
trained, validated and tested are the same across all models. Although we have discussed that imputation may not 
be suitable for financial data, in unpresented results, there is no difference between list-wise deletion and imputation 
in terms of model performance. Therefore, the decision to use imputation allows for a fair and comparable evaluation 
of all models, even though it may not be the optimal approach for financial data. 
14  Since this paper studies forced CEO turnovers, we focus on classifications of code 3 (Involuntary – CEO 
dismissed for job performance) and code 4 (Involuntary - CEO dismissed for legal violations or concerns) and assign 
a dummy value of 1 to them. For non-turnovers, we assign a dummy value of 0 to them. Following BDW and JK, 
we exclude the firm-years of the rest types of CEO turnovers. In addition, we carefully and manually deal with code 
7, 8, and 9 by either deleting them or assigning 0 to them. 
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variable has been pre-processed with percentile-ranking15. A variable name with a suffix of “_l1” 

means this variable has been lagged by 1 year. 

Following Peters and Wagner (2014), we assign a value of one to the Forced dummy in the last 

fiscal year in which a dismissed CEO is in office for the greater part of the fiscal year. We use 

this timing convention, because, in the case of a transition within a fiscal year, ExecuComp 

records the compensation of the CEO who was in office for the greater part of that fiscal year 

(Peters and Wagner, 2014). Therefore, we can attribute the compensation data to a CEO in the 

same year. After carefully merging the data from different sources, the final sample of this study 

consists of 40,185 firm-year observations, spanning from 1992 to 201916. The distribution of 

CEO turnovers is shown in Table 1. 

Table 1: CEO turnover distribution 

Year Forced turnover (N) Voluntary turnover (N) Number of firms % Forced 
1992 3 16 855 0.35% 
1993 10 73 986 1.01% 
1994 13 101 1057 1.23% 
1995 13 98 1149 1.13% 
1996 22 148 1276 1.72% 
1997 20 143 1347 1.48% 
1998 23 184 1431 1.61% 
1999 38 207 1415 2.69% 
2000 55 185 1412 3.90% 
2001 36 118 1456 2.47% 
2002 53 130 1501 3.53% 
2003 36 162 1540 2.34% 
2004 50 206 1515 3.30% 
2005 49 153 1436 3.41% 
2006 44 217 1543 2.85% 
2007 60 189 1756 3.42% 
2008 60 152 1721 3.49% 
2009 51 134 1702 3.00% 
2010 42 176 1671 2.51% 
2011 40 189 1635 2.45% 
2012 44 160 1609 2.73% 
2013 41 167 1594 2.57% 
2014 50 192 1578 3.17% 

 
15 For variables such as firm size, sales and compensation-related variables, they are naturally growing even if the 
inflation is removed (e.g., the firm size of ten years ago is much smaller and totally different from the firm size 
now). Therefore, there exists a problem that the decision rules derived from training set may not apply to validation 
and test sets as we split the sample in time-series way. To alleviate this problem, we percentile-rank these variables 
year-by-year so that the values of these variables are shrunk to a range of 0 to 1, representing the relative position 
of a specific feature in the market for a specific year. 
16 We only drop observations that cannot be matched in all three sources of Compustat, Execucomp and BoardEx. 
We do not winsorize our sample as outliers is not a concern for a tree-based machine learning model. The target 
variable is a dummy variable (0 and 1) which does not include any outliers. In addition, the input variables are split 
based on a decision rule with a threshold, which can handle outliers robustly. 
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2015 50 205 1522 3.29% 
2016 50 195 1458 3.43% 
2017 42 181 1397 3.01% 
2018 59 171 1340 4.40% 
2019 73 173 1283 5.69% 
Total 1127 4425 40185 2.80% 

 

Since this study does not apply widely used approach to encode the types of CEO turnovers, this 

study replicates the models proposed by BDW and JK to show the robustness of using Gentry et 

al. (2021)’s turnover dataset. Table 2 provides summary statistics for our sample based on 

BDW’s model17. Relative to voluntary turnover sample, on average, forced turnover sample has 

lower idiosyncratic return (ret_idio_l1), lower ROA (roa_ind_adj_l1), lower CEO tenure 

(tenure), higher competition (competition_l1) and higher risk (risk_roa_l1). These findings are 

consistent with Bushman et al. (2010). There are also some differences. For example, in 

Bushman et al. (2010), the average of firm age for forced turnover sample is significant lower 

than voluntary turnover sample. However, in our sample, we do not find a significant difference 

in firm age. The might be due to using different CEO turnover classification scheme to classify 

CEO turnover.  

 

Table 2: Summary statistics - Bushman et al. (2010) 

 Voluntary turnover 
(N=3895) 

Forced turnover 
(N=1008) 

Control sample 
(N=30222) 

VarName Mean SD Median Mean SD Median Mean SD Median 
ret_idio_l1 -0.03 0.35 -0.04 -0.16 0.41 -0.15 -0.01 0.37 -0.02 
ret_peer_l1 0.21 0.26 0.19 0.18 0.28 0.16 0.20 0.27 0.20 
risk_idio_l1 0.34 0.19 0.30 0.39 0.20 0.35 0.35 0.20 0.30 
risk_peer_l1 0.17 0.08 0.15 0.18 0.08 0.15 0.17 0.09 0.15 

roa_ind_adj_l1 0.02 0.14 0.01 -0.01 0.17 0.00 0.02 0.14 0.01 
risk_roa_l1 2.48 5.34 1.12 3.17 4.78 1.67 2.29 4.68 1.09 
firmsize_l1 7.65 1.75 7.53 7.73 1.92 7.51 7.62 1.79 7.51 

ceoage 60.04 7.54 60.80 56.24 7.22 56.00 56.57 7.27 56.74 
tenure 9.84 7.95 7.84 6.66 6.05 5.00 7.91 7.49 5.67 

ceofounder 0.12 0.32 0.00 0.07 0.26 0.00 0.11 0.32 0.00 
competition_l1 251.76 275.85 172.00 283.25 355.17 178.00 254.01 293.05 171.00 

firmage 27.86 16.91 24.00 27.11 17.22 22.00 27.85 16.92 24.00 
 

Table 3 replicates the main regression results of BDW (Table 2 in their paper) and JK (Table 3 

in their paper) using our sample. The findings in BDW's model indicate a negative relation 

 
17 Since JK and BDW use similar variables, we only present the summary statistics for variables used in BDW’s 
model. The difference in sample size between our full sample and the sample in Table 2 is due to the exclusion of 
observations with missing values.  
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between idiosyncratic return, peer return, and peer risk with forced CEO turnover, while 

idiosyncratic return shows a positive relationship with forced CEO turnover, consistent with 

BDW's main findings. In JK's model, both idiosyncratic return and peer return exhibit a negative 

relationship with forced CEO turnover, aligning with the weak-form RPE theory proposed by 

JK. Furthermore, the significance levels of the key independent variables and control variables 

in Table 3 are similar to those reported in the original studies. By successfully replicating the 

results from two high-profile studies on forced CEO turnover, this study has demonstrated the 

robustness of the sample and the validity of using a different turnover classification scheme. 

 

Table 3: Replicated regression results 
This table replicates the main results of BDW (Table 2 in their paper) and JK (Table 3 in their paper). 

Dependent variable is a dummy indicator that equals 1 if a CEO is forced out, otherwise 0. The idiosyncratic 

return (ret_idio_l1), peer return (ret_peer_l1), idiosyncratic risk (risk_idio_l1) and peer risk (risk_peer_l1) are 

constructed based on BDW’s method. We employ BDW’s idiosyncratic returns and peer returns in JK’s model, 

as JK do not clearly specify how they construct their RPE variables. The definitions of the remaining variables 

are shown in Appendix B. 

 (1) (2) 
 Bushman et al. (2010) Jenter and Kanaan (2014) 

ret_idio_l1 -0.456*** -1.184*** 
 (-11.28) (-13.01) 

ret_peer_l1 -0.228*** -0.617*** 
 (-4.01) (-5.11) 

risk_idio_l1 0.488***  
 (7.22)  

risk_peer_l1 -0.307*  
 (-1.85)  

roa_ind_adj_l1 -0.065  
 (-0.83)  

risk_roa_l1 0.008***  
 (3.65)  

firmsize_l1 0.034***  
 (3.66)  

ceoage 0.003  
 (1.27)  

tenure -0.009*** -0.021*** 
 (-3.34) (-4.28) 

ceofounder -0.140**  
 (-2.43)  

competition_l1 0.000*  
 (1.77)  

firmage -0.002  
 (-1.58)  

ret_idio_l2  -0.297*** 
  (-3.04) 
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ret_peer_l2  -0.266** 
  (-2.14) 

retire_age  0.138 
  (1.14) 

high_ownership  -0.240 
  (-1.27) 

N 31230 31628 
N_forced 1008 1009 
N_control 30222 30619 

Model Probit Logit 
 

4.0 Results 

In this section, we present machine learning results on forced CEO turnover. First, we examine 

the model performance based on different performance metrics, benchmarked against two 

traditional models (from BDW and JK) and LASSO model (another machine learning model). 

Then, we utilize the machine generated predictions to examine previous CEO turnover 

hypotheses and theories, with a particular focus on RPE theory. Furthermore, this study 

quantifies global and local contribution of variables in predicting forced CEO turnovers. Finally, 

this study interprets the difference between machine predicted turnovers and actual turnovers 

through two questions: Why do CEOs often remain in their positions despite being predicted to 

be fired, and conversely, why are CEOs sometimes fired even when the predictions suggest they 

should not be. 

 

4.1 Model performance 

This study adopts four different performance metrics to evaluate model performance on test set. 

The first performance metric is widely used in binary classification problems – Receiver 

Operating Characteristic Area Under the Curve (ROC AUC). A ROC curve is a line representing 

the model’s diagnostic performance in terms of true positive rate and false positive rate at 

different prediction thresholds. AUC score is a metric to measure the area under ROC curve, 

representing the overall performance of a model. A larger AUC score, ranging from 0 to 1, 

indicates better predictive performance of the model. Figure 1.A shows that the overall 

performance of LightGBM outperforms traditional models with the largest ROC AUC score of 

0.74. The simple machine learning model, LASSO, also performs better than the two traditional 

models with a ROC AUC score of 0.68. JK’s model performs the worst with a ROC AUC score 

of 0.61, but still better than the random guessing (no-skill) score of 0.50. However, a higher ROC 
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AUC score may overestimate the predictive power or discrimination power for imbalanced data, 

as ROC AUC score mainly evaluates the overall performance of a model18. 

 

Figure 1.A: Receiver Operating Characteristic (ROC) curves 
This figure shows ROC AUC curves for different models and their respective AUC scores. False positive rate 

is the ratio of false positives (the number of no-turnovers that are falsely predicted as turnovers) to true 

negatives (the number of no-turnovers that are correctly predicted) plus false positives. True positive rate is 

the ratio of true positives (the number of forced turnovers that are correctly predicted) to true positives plus 

false negatives (the number of forced turnovers that are falsely predicted as non-turnovers). ROC AUC scores 

represent the areas under ROC curves, ranging from 0 to 1. A higher ROC AUC score means a better model 

performance. 

 
 

 

 

 

 

 

 

 
18 Appendix C presents the confusion matrices for the four models employed in this study. Although the two 
traditional models exhibit better performance than random guessing based on ROC AUC scores, they fail to predict 
any true positives, indicating limited predictive capability. Furthermore, while the LASSO model predicts more true 
positives compared to the LightGBM model and outperforms the traditional models, this increased number of true 
positives comes at a high expense of misclassifying non-turnovers as turnovers. 
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Figure 1.B Precision-Recall curves 
This figure shows PR AUC curves for different models and their respective AUC scores. Recall, also known as true 

positive rate, is the ratio of true positives (the number of forced turnovers that are correctly predicted) to true 

positives plus false negatives (the number of forced turnovers that are falsely predicted as non-turnovers). 

Precision is the ratio of false positives (the number of no-turnovers that are falsely predicted as turnovers) to 

false positive plus true positives. PR AUC scores represent the areas under ROC curves, ranging from 0 to 1. 

A higher PR AUC score means a better discrimination and predictive power on minority class (forced CEO 

turnover). 

 
Since the aim of using machine learning in this study is to predict as many forced CEO turnover 

firm-years as possible with misclassifying fewer non-CEO turnover firm-years, we utilize 

another performance metric to evaluate the trade-off between recall (true positive rate) and 

precision (true positives /(true positives + false positives)) – Precision-Recall Curve Area Under 

the Curve (PR AUC). Ideally, the study would like to have high recall and precision (successfully 

predicting positives with fewer false negatives and fewer false positives). However, this is 

extremely hard for imbalanced sample. PR curves focus on the model performance on predicting 

minority class (here, the forced CEO turnover class) by looking into the sensitivity between recall 

and precision at different prediction thresholds. As Figure 1.B shows, a high recall is 

accompanied by a low precision for traditional models as well as LASSO model, indicating that 

a high recall (predicting more true positives) brings a large number of false positives. However, 

ML model has a significant larger area under its PR curve (0.21) relative to the other models 

(0.11 for LASSO, 0.07 for BDW and 0.08 for JK), showing that the trade-off between recall and 
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precision for LightGBM model is less sensitive than for other models. The evidence suggests 

that LightGBM model has higher discrimination and predictive power than traditional models as 

well as LASSO. 

 

Following the approach of Bao et al. (2020), this study utilizes Normalized Discounted 

Cumulative Gain at the top k positions (NDCG@k) as the third performance metric to assess 

out-of-sample performance. NDCG@k is commonly employed to evaluate the quality or ranking 

performance of search engine algorithms or recommendation systems up to a specified cut-off 

point (k). Specifically, in this study, the task of predicting CEO turnovers can be viewed as a 

ranking problem, wherein the aim is to determine whether a CEO dismissal decision should be 

recommended or not. The evaluation of out-of-sample performance can be restricted to a limited 

number of observations with the highest predicted probability of forced CEO turnover, as the 

focus of this study lies on the predictive power concerning the minority class. Therefore, 

NDCG@k evaluates how well the dismissal recommendations provided by a model align with 

the actual turnovers19.  

 

We choose a cut-off of 3%, which represents the top 3% of out-of-sample firm-years with the 

highest predicted probability of forced CEO turnovers, to calculate the NDCG@3% scores. The 

reason for selecting 3% is that it aligns with the approximate percentage of forced turnovers 

observed annually. Following Bao et al. (2020), this study calculates NDCG@3% score annually 

during the test period. These individual NDCG@3% scores are then averaged to obtain an overall 

NDCG@3% score, which is used to evaluate the performance of a model. Panel A of Table 4 

indicates that the LightGBM model achieves the highest NDCG@3% score throughout the test 

sample period, suggesting that the LightGBM model consistently outperforms the other three 

models in every year of the out-of-sample period. Panel B of Table 4 provide a summary of the 

performance for different models used in this study. The average NDCG@3% score for each 

model is reported. Panel B shows the evidence that LightGBM model completely outperforms 

the other models across different performance metrics in predicting forced CEO turnovers, with 

the highest ROC AUC score, highest PR AUC score, and highest average NDCG@3% score20.   

 

 

 
19 Please refer to Bao et al., (2020)’s paper for a detailed explanation of NDCG@k. 
20 Appendix D provides the average NDCG scores under different cut-offs. LightGBM model still perform the best 
among the four models. 
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Table 4: NDCG@3% scores 
Panel A of this table shows the NDCG@3% scores across different years for different models. NDCG score ranges 

from 0 to 1. A higher NDCG score represent a better model’s ranking performance, i.e., a greater alignment between 

the predicted dismissals and the actual dismissals. Panel B of this table summarize the performance of different 

models based on ROC AUC, PR AUC, and average NDCG@3%. 

Panel A: NDCG@3% scores across different test years 
Year LightGBM LASSO BDW JK 
2014 0.44 0.23 0.06 0.07 
2015 0.43 0.22 0.12 0.10 
2016 0.35 0.23 0.10 0.14 
2017 0.20 0.00 0.02 0.07 
2018 0.45 0.30 0.15 0.18 
2019 0.53 0.27 0.15 0.16 

Panel B: A summary of performance metrics 
Model ROC AUC PR AUC NDCG@3% 

LightGBM 0.74 0.21 0.40 
LASSO 0.68 0.11 0.21 
BDW 0.63 0.07 0.10 

JK 0.61 0.08 0.12 
 

So far, this study has evaluated the out-of-sample performance for different models based on 

commonly used performance metrics in machine learning. However, another important aspect to 

consider is the relation between actual forced turnover rate and predicted forced CEO turnover 

probability. This can serve as an additional "performance metric" to evaluate the effectiveness 

of a model. Specifically, if a model can successfully classify forced CEO turnovers, it is expected 

that the forced turnover rate is extremely low (high) in the bottom (top) predicted probability 

decile. Deviation from this pattern would indicate an erroneous model, regardless of its 

performance in different performance metrics.  

 

Figure 2 illustrates the relation between predicted probability deciles and actual turnover rates 

for all models. It shows a pattern that the actual turnover rate increases as the predicted 

probability decile increases. However, JK's model performs poorly compared to other models, 

particularly in the lower deciles. The forced CEO turnover rate does not consistently rise as the 

predicted probability decile progresses from decile 1 to decile 7. 

 

On the other hand, LightGBM model consistently exhibits a rise in forced CEO turnover rates 

from decile 1 to decile 7, followed by a significant jump from decile 8 to decile 10. It also 

outperforms other models, with the lowest turnover rate of 1.33% in the first decile and the 
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highest turnover rate of 16.96% in the tenth decile. These findings provide additional evidence 

supporting the validity and predictive power of LightGBM model in predicting forced CEO 

turnovers. 

 

Figure 2: Forced CEO turnover rate versus predicted forced turnover probability 
This figure shows the forced CEO turnover rate across the 10 deciles of predicted forced turnover probability for 

LightGBM, LASSO and traditional models in the test period. The predicted probabilities are divided into 10 deciles 

every test year, ranging from low (decile 1) to high (decile 10). Within each decile, the percentage of forced CEO 

turnovers is calculated.  

 
4.2 RPE theory examination 

This subsection aims to investigate the widely used RPE theory in the context of determining 

forced CEO turnover. Previous studies have identified two primary variants of the RPE theory: 

strong-form RPE and weak-form RPE. The main distinction between these two forms lies in the 

consideration of industry-induced performance's impact on the probability of forced CEO 

turnover. 

 

Within the strong-form RPE assumption, CEO dismissals are exclusively determined by the 

CEO's individual performance, as measured by idiosyncratic return. Conversely, the weak-form 

RPE assumption acknowledges that CEO dismissals are contingent upon both the CEO-induced 

performance and industry-induced performance (peer return) (JK, 2015). Moreover, the effect of 

CEO-induced performance on CEO dismissals is influenced by the concurrent industry-induced 

performance.  
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Taking the advantage of the enhanced predictive power of LightGBM model, this subsection 

employs these more reliable and accurate predictions to conduct a two-fold investigation. Firstly, 

it examines the applicability of the RPE theory. Then, it identifies the specific form of the RPE 

theory. This study divides idiosyncratic returns into 10 deciles in each year of the test period. If 

the RPE theory is valid, it is expected that the forced CEO turnover rate and predicted forced 

CEO probability significantly decreases from the bottom decile to the top decile.  

 

This study will exclusively present the outcomes of LightGBM model. The results of the LASSO 

model will not be included, given the established superiority of LightGBM observed in previous 

analyses. Therefore, the results of LightGBM will serve as representative of the machine learning 

(ML) outcomes. For brevity, LightGBM model will be referred to as ML model in the later 

analyses. 

 

Since machine learning model does not provide coefficient estimates, this study plots forced 

CEO turnover rate and predicted forced CEO turnover probabilities across performance deciles 

to show turnover-performance relation. Panel A of Figure 3 illustrates an overall decline in the 

forced CEO turnover rate across idiosyncratic return deciles. Specifically, within the test set, 

there is a strong downward trend in the percentage of forced CEO turnover as CEO-induced 

performance increases from low (decile 1) to high (decile 6). In addition, a slight increase in the 

percentage of forced turnover is observed from decile 7 onwards. Given the significant negative 

relation between forced CEO turnover rate and CEO-induced performance, it is expected that a 

high (low) percentage of CEO turnover would correspond to a high (low) average predicted 

forced turnover probability. 

 

In Panel B, LightGBM model's average predicted forced turnover probability mirrors the trend 

presented in Panel A. Both traditional models exhibit a similar trend, where the average predicted 

probability decreases as CEO-induced performance increases. However, this trend is not as 

pronounced (declining from around 5% in decile 1 to around 2.3% in decile 10) compared to the 

over 7% decrease in the percentage of CEO turnover across performance deciles. Moreover, 

neither traditional model captures the slight increase in the forced turnover rate observed from 

decile 7. In summary, the predictions of ML model corroborate the RPE theory, indicating that 

outperforming CEOs are less likely to face dismissal. Furthermore, the findings also present 
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additional evidence supporting the superior predictive capability of ML model in predicting 

forced CEO turnover.  

 

Figure 3: CEO-induced performance and forced CEO turnover 
This figure shows forced CEO turnover rate and average predicted forced turnover probability across 10 deciles of 

idiosyncratic return (ret_idio_l1). Idiosyncratic returns are divided into 10 deciles in each year of the test period, 

ranging from low (decile 1) to high (decile 10). Within each decile, the percentage of forced CEO turnovers is 

calculated in Panel A, and the average of predicted forced CEO turnover probability is calculated in Panel B. 

 
Next, this study investigates the relation between forced CEO turnover and industry-induced 

performance to identify whether RPE theory in the context of forced CEO turnover follows 

strong form or weak form. We plot forced CEO turnover rate and average predicted forced CEO 

probability across 10 deciles of industry-induced performance (i.e., ret_peer_l1), ranging from 

low (decile 1) to high (decile 10). Under the strong-form assumption, there would be no 

discernible relation between industry-induced performance and forced CEO turnover. 

Conversely, according to the weak-form assumption (JK, 2015), a negative relationship would 

be expected between industry-induced performance and forced CEO turnover. 

 

Panel A of Figure 4 shows that there is no noticeable relation between forced CEO turnover rate 

and industry-induced performance. The CEO turnover rate varies from 3.2% to 6.3% across 

different deciles of industry-induced performance. Nevertheless, the absence of a significant 

relation does not fully imply the absence of any connection between the probability of forced 

turnover and industry-induced performance. This is because the probability of forced turnover 
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pertains to the risk faced by a CEO of being forced out, rather than the actual occurrence of 

forced turnover.  

 

Figure 4: Industry-induced performance and forced CEO turnover 
This figure shows forced CEO turnover rate and average predicted forced turnover probability across 10 deciles of 

industry-induced performance (ret_peer_l1). Industry-induced performance are divided into 10 deciles in each year 

of the test period, ranging from low (decile 1) to high (decile 10). Within each decile, the percentage of forced CEO 

turnovers is calculated in Panel A, and the average of predicted forced CEO turnover probability is calculated in 

Panel B, Panel C and Panel D.  

 
Panel C and Panel D show an overall declining pattern of average predicted probability across 

industry performance deciles, which is consistent with their finding of a negative coefficient on 

industry-induced performance. In particular, JK’s predictions in Panel D show a more distinct 

decreasing trend compared with BDW’s predictions in Panel C do. Because Panel C reveals a 
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lack of relation between the average predicted probability and industry-induced performance 

after decile 4. While both BDW and JK's predictions demonstrate an overall declining pattern in 

the average predicted probability, it is important to note that the magnitude of the decline is 

relatively modest. Specifically, the average predicted probability from BDW (JK)’s model 

decreases from a high of 3.1% (3.1%) to a low of 2.5% (2.6%), with only a difference of 0.6% 

(0.5%). However, this declining pattern is not as pronounced compared to the findings in their 

papers21. Furthermore, ML model’s predictions in Panel B do not exhibit a significant association 

with industry-performance deciles. This finding demonstrates that industry-induced performance 

does not negatively affect forced CEO turnover, which challenges the weak-form RPE theory 

that industry performance is not filter out in CEO dismissal decisions. 

 

The evidence from ML model’s predictions so far cannot fully reject weak-form RPE theory. JK 

find that “the peer performance effect on CEO turnovers is driven by boards removing many 

more underperforming (but not outperforming) CEOs in bad times than in good times”. If this is 

true, it is plausible that the inability of industry-induced performance in predicting forced CEO 

turnover with ML model is driven by CEO-induced performance. In line with JK's approach, we 

divide CEOs into outperformers and underperformers based on idiosyncratic return. If weak-

form RPE holds, we would expect to observe a declining trend of ML’s predicted probability 

across industry-induced performance deciles for underperformers (i.e., ret_idio_l1 <= 0), and no 

significant relation across industry-induced performance deciles for outperformers (i.e., 

ret_idio_l1 > 0). 

 

In Panel B and C of Figure 5, while the traditional models’ predictions show a relatively stronger 

(weaker) decreasing trend of forced turnover probability across industry-performance deciles for 

outperformers (underperformers), the magnitude of this decrease is also modest. For example, 

Panel C show a decrease of average predicted probability from 4.11% (2.37%) to 3.26% (2.03%) 

for underperformers (outperformers) across peer return deciles, with only a difference of 0.85% 

(0.34%). Moreover, in Panel A of Figure 5, the ML predictions clearly show that there is no 

 
21 In JK's findings, they observe a decrease of 1.93% in the forced turnover probability from the 10th percentile of 
industry-induced performance (value-weighted) to the 90th percentile of industry-induced performance. In BDW’s 
findings, they observe a one standard deviation increase in industry-induced performance associated with a greater 
than 0.9% decrease in the probability of forced turnover. In our test sample, the standard deviation of industry-
induced performance is 0.199, and the difference between decile 10 and decile 1 is 0.431, which exceeds more than 
two times the standard deviation. However, our results show that the decrease of forced turnover probability is much 
smaller than their findings, even the industry-induced performance increases by two standard deviations. Therefore, 
the decreasing pattern by JK and BDW’s predictions is not pronounced in this study. 
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relation between predicted probability and industry-induced performance for both outperformers 

and underperformers, contradicting weak-form RPE theory.  

 

Figure 5: Idiosyncratic performance, industry-induced performance and forced CEO 

turnover 
This figure shows average predicted forced turnover probability across 10 deciles of industry-induced performance 

(ret_peer_l1) for outperformers and underperformers. Outperformers are defined as CEOs with idiosyncratic returns 

higher than 0. Underperformers are defined as CEOs with idiosyncratic returns lower than 0. Industry-induced 

performance are divided into 10 deciles in each year of the test period, ranging from low (decile 1) to high (decile 

10). Within each decile, the average of predicted forced CEO turnover probability for outperformers and 

underperformers is calculated in Panel B, Panel C and Panel D. 
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Fee et al. (2018) highlight that the relation between turnover and industry-induced performance 

is weak and fragile when considering different timing conventions and sample selections. Their 

study reveals that weak or no relation exists between forced turnover and industry-induced 

performance when industry-induced performance is constructed based on yearly timing or when 

the sample size is limited. The findings from traditional models in Figure 4 and Figure 5 support 

this perspective, as they indicate a much smaller decrease in the average predicted probability in 

test set (i.e., a smaller sample size) compared to the reported results in BDW and JK's studies. 

This implies that the impact of industry-induced performance on forced CEO turnover is not 

robust. In addition, one common finding in Figure 5 is that the predicted probability for 

underperformers is consistently higher than outperformers across industry-induced performance 

deciles. This finding provides additional evidence that idiosyncratic performance plays a 

dominant role in CEO dismissal decisions, irrespective of industry circumstances. It further 

supports the strong-form relative performance evaluation (RPE) theory22. 

 

In summary, the predictions of our ML model provide evidence that higher idiosyncratic 

performance is linked to a reduced likelihood of dismissal, while industry-induced performance 

is disregarded in CEO dismissal decisions. In addition, idiosyncratic performance consistently 

dominates CEO dismissal decisions under different industry circumstances. These findings 

provide support for the strong-form relative performance evaluation (RPE) theory in the context 

of forced CEO turnover, thereby rejecting the weak-form RPE theory. 

 

4.3 Other plausible relations 

The reliable and accurate predictions from ML model enable to examine additional factors that 

have caught the attention of researchers concerning forced CEO turnover. In particular, this 

subsection will briefly discuss the impact of CEO power, CEO tenure, and compensation on 

forced CEO turnover. 

 

4.3.1 CEO power and forced CEO turnover 

Previous studies also examine the relation between CEO power and forced CEO turnover (e.g. 

Bushman et al., 2010; Hazarika et al., 2012; Jenter & Kanaan, 2015), especially the impact of 

CEO power on turnover-performance sensitivity (e.g., Denis et al., 1997; Goyal & Park, 2002). 

 
22 Following another way proposed by JK, we divide industry-induced performance into three groups (terciles) in 
each year: low, medium, and high. According to JK, turnover-performance relation is more sensitive in bad times 
than in good times. However, Figure E.1 in Appendix E shows that the turnover-performance sensitivities in the 
three groups are not significantly different, suggesting that weak-form RPE is not valid. 
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They find that powerful CEOs are less likely to be dismissed due to poor performance. This 

phenomenon can be attributed to the entrenchment effects resulting from the CEO power, which 

enables CEOs to exert influence over the board's decision-making process regarding dismissals. 

 

To examine this “CEO power hypothesis”, we follow previous studies to use three proxies to 

measure CEO power: CEO duality, CEO-founder status and a dummy value indicating whether 

CEO ownership is larger than 5% or not23. In addition, we construct a power indicator as another 

proxy that takes a value of 1 when a CEO holds both the positions of chairman and founder with 

a high ownership, otherwise 0. Figure 6 show the plots of ML’s predictions based on different 

CEO power proxies across idiosyncratic performance deciles.  

 

All panels in Figure 6 illustrate that the forced turnover probability of a powerful CEO displays 

lower sensitivity to performance, characterized by a slower decrease in the average predicted 

turnover probability across idiosyncratic return deciles. Moreover, when strictly classify CEO 

power based on the power indicator in Panel D, idiosyncratic performance show an inability in 

affecting CEO dismissal decisions for powerful CEOs. Therefore, ML model’s predictions 

corroborate the hypothesis that powerful CEOs are less sensitive to individual performance in 

dismissal decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
23 Following JK (2015) and Denis et al. (1997), we select a cut-off of 5% to classify CEOs into high-ownership 
group and low-ownership group. 
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Figure 6: CEO power and forced CEO turnover 
This figure shows ML’s average predicted forced turnover probability across 10 deciles of CEO-induced 

performance (ret_idio_l1) for powerful CEOs and normal CEOs. Powerful CEOs are defined as CEOs with high 

ownership, or chairman title, or founder title or power indicator equals 1.  CEO-induced performance are divided 

into 10 deciles in each year of the test period, ranging from low (decile 1) to high (decile 10). Within each decile, 

the average of predicted forced CEO turnover probability for powerful CEOs and normal CEOs is calculated. 

 
 

 
4.3.2 Tenure and forced CEO turnover 

The negative and significant relation between tenure and forced CEO turnover has been reported 

in the results of previous studies (e.g., BDW, 2010; JK, 2015; Dikolli et al., 2014; Jenter & 
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Lewellen, 2021). According to Hermalin and Weisbach (1998), CEO entrenchment may increase 

with tenure as the CEO strategically forms more alliances with directors or accumulates greater 

bargaining power. Specifically, CEOs with a longer tenure are more entrenched and less likely 

to be dismissed. This study utilizes ML model’s predictions to plot the relation between average 

predicted forced turnover probability and CEO tenure. CEO tenure is divided into seven bins: 

years 0-2, years 2-4, years 4-6, years 6-8, years 8-11, years 11-14, and over 14 years. Within 

each tenure bins, the average predicted probability is calculated. Panel A of Figure 7 shows that 

the predicted probability decreases as CEO tenure increases. This observed decreasing trend 

suggests that a longer tenure potentially enhances CEOs' entrenchment, leading to a lower 

likelihood of dismissal.  

 

There are two potential concerns regarding this decreasing pattern. First, Jenter and Lewellen 

(2021) indicates that the negative relation between tenure and forced CEO turnover probability 

is partially due to turnover classification scheme. Many turnover classification schemes 

categorize turnovers above a certain age cut-off (e.g., 60 years old) as "voluntary" (i.e., 

retirement). However, it is important to note that CEO tenure and age exhibit a strong positive 

correlation in the context of CEO turnover. This correlation leads to a mechanical reduction in 

forced turnovers as the tenure increases and more CEOs approach the retirement age. In this 

study, the turnover classification scheme does not rely on an age cut-off. In addition, the last 

column in Table 5 provides evidence that the percentage of forced CEO turnover does not 

decrease as the tenure increases. Therefore, the evidence suggests that the observed decreasing 

pattern in the predicted probability-tenure relation is unlikely to be a result of misclassifying 

CEO turnovers.  

 

The second concern is that the observed decreasing pattern in Panel A of figure 7 is possibly due 

to the entrenchment resulting from CEO power. CEO power and tenure are likely to be highly 

correlated, that is, powerful CEOs (e.g., founder CEOs) tend to have a longer tenure or CEOs 

become powerful as the tenure increases (e.g., become a chairman or seize more ownership). In 

Table 5, we find that the percentage of powerful CEOs (i.e., chairman CEOs and CEOs with a 

high ownership) increases as tenure increases, and founder CEOs tends to have a longer tenure.  

 

The power indicator this time is different. It is set to 1 if a CEO holds the position of chairman, 

or is the founder of the company, or possesses a high ownership. Otherwise, the indicator is set 

to 0. This setting is to fully distinguish powerful CEOs and normal CEOs. In Table 5, the 
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percentage of powerful CEOs based on power indicator also increases with tenure.  It is plausible 

that the observed decreasing pattern in Panel A is potentially driven by powerful CEOs that 

affects the board’s dismissal decisions, and CEO entrenchment may not be attributed to tenure. 

 

We plot ML model’s predictions based on different CEO power proxies across tenure bins to 

examine the relation between tenure and forced turnover probability. From Panel B to Panel D 

in Figure 7, the average predicted forced turnover probability shows a decreasing pattern as CEO 

tenure increases for normal CEOs. When we strictly exclude all powerful CEOs from the test 

sample, Panel E also shows a decreasing pattern in average predicted turnover probability for 

normal CEOs, ranging from a high of around 11% in the early tenure to a low of around 7% in 

the late tenure. For powerful CEOs, we do not find any specific pattern across tenue bins. 

Therefore, the findings in this subsection indicate that a longer CEO tenure can strengthen their 

position and reduce the likelihood of being dismissed, demonstrating an enhancement of CEO 

entrenchment. 

 

Table 5: Distribution of CEO power across tenure bins 
The table shows the percentage of powerful CEOs in each tenure bin based on four different CEO power proxies: 

CEO duality, CEO-founder status, high (low) ownership and power indicator. The last column shows the percentage 

of forced turnover in each tenure bin. 

Tenure bins CEO duality CEO founder CEO ownership Power 
indicator 

% Forced 
turnover 

(0.0, 2.0] 8.6% 1.1% 1.1% 0.2% 4.2% 
(2.0, 4.0] 21.8% 1.8% 1.7% 0.3% 4.5% 
(4.0, 6.0] 33.8% 2.3% 2.2% 0.4% 5.0% 
(6.0, 8.0] 41.0% 4.3% 2.4% 1.1% 4.8% 
(8.0, 11.0] 45.3% 7.0% 3.8% 1.8% 3.3% 
(11.0, 14.0] 53.6% 6.9% 7.1% 2.6% 4.3% 
(14.0, inf] 70.6% 25.8% 27.4% 10.6% 4.1% 
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Figure 7: Tenure and forced CEO turnover 
This figure shows ML’s average predicted forced turnover probability across 7 tenure bins. Powerful CEOs are defined as CEOs with high ownership, or chairman title, or founder 

title, or power indicator equals 1. The power indicator in this figure is set to 1 if a CEO holds the position of chairman, or is the founder of the company, or possesses a high 

ownership. Otherwise, the indicator is set to 0. Within each tenure bin, the average of predicted forced CEO turnover probability for powerful CEOs and normal CEOs is calculated 

in Panel B, C, D, and E. 
 



 32 

4.4 Feature contribution 

The contribution of a feature (i.e., a variable) can be assessed based on the magnitude and 

statistical significance of its coefficient estimates. However, for tree-based ML models the 

coefficient estimates are not available. To measure the contribution of the features, this study 

adopts SHAP values (SHapley Additive exPlanations) introduced by Lundberg and Lee (2017). 

 

A SHAP value of a specific feature for a specific observation (xi) is a measure of the average 

difference between the prediction made when including the feature (i.e., a full set of features) 

and the prediction made when excluding the feature (i.e., a set of features without xi), considering 

all possible combinations of other features (i.e., different orders of non-xi that input into a ML 

model). A positive SHAP value indicates that the feature positively contributes to the prediction, 

while a negative value suggests a negative contribution. The magnitude of the SHAP value 

indicates the strength of the feature's influence. 

 

The key advantage of SHAP values is their ability to provide both local and global 

interpretability. Locally, SHAP values explain the prediction of a specific observation by adding 

the sum of SHAP values of all features to a base value24. Globally, SHAP values summarize the 

overall impact of features across the entire dataset by averaging the absolute SHAP values25 for 

each feature across all instances, enabling insights into feature importance and model behavior. 

 

For tree-based classification models, the original SHAP values for each feature in each 

observation are calculated in the form of logarithm of odds ratio (log odds ratio). However, log 

odds ratios are not intuitive and not convenient to explain the contribution. To make the SHAP 

values more interpretable, this study transforms the original SHAP values into percentage form 

in two aspects. First, the original base value for predicting testing set is actually the log odds 

ratio of each prediction in training set, then taking average of these predictions. By transforming, 

the base value now is the average of predicted forced turnover probability from training set. The 

 
24 The base value is a starting point for a prediction without any features input. In other words, if an observation 
does not have any features available, the default prediction of that observation is the base value. The based value is 
the average of the training sample’s predictions. 
25 When assessing the global contribution of each feature, it is not appropriate to directly average the SHAP values 
for a specific feature across all observations. Consider a scenario with only two observations, ob1 and ob2. Suppose 
a particular feature has a positive 10% SHAP value for ob1 and a negative 10% SHAP value for ob2. This feature 
significantly influences the predictions for both ob1 and ob2. However, Simply averaging the SHAP values would 
result in a global contribution of 0, thereby obscuring the actual impact of this feature. Therefore, while global 
contribution can indicate the importance or magnitude of a specific feature, it cannot provide a definitive direction 
of its impact. 
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SHAP values in the test set now are also transformed to percentage form instead of log odds 

ratios. The local contribution becomes easier to interpret: for each observation in the test set, the 

difference between the base value and predicted probability equals the sum of the transformed 

SHAP values of all features (e.g., if ret_idio_l1 has a SHAP value of positive 10% for a specific 

observation, this means this feature increases the forced turnover probability by 10%). 

 

Second, to interpret the global contribution, we take absolute value of those transformed SHAP 

values and normalize the transformed SHAP values across features in each observation so that 

the SHAP values for all features of each observation can be aggregated to 100%. Then we take 

the mean value of each feature across the observations of testing sample and rank mean SHAP 

values from high to low. In this way, the mean value of absolute SHAP values across features 

can be added up to 100% and can be easily interpreted (e.g., if ret_idio_l1 has a mean SHAP 

value of 10%, this can be explained as this feature has a 10% contribution among all features in 

predicting forced turnover). 

 

4.4.1 Global contribution 

Figure 8 illustrates the top 10 features that have the greatest impact on predicting forced CEO 

turnover. Among these features, firm-related wealth, which represents the total value of the 

CEO's equity portfolio, stands out as the most influential feature. It contributes significantly 

more to the prediction of forced turnovers, with a SHAP value of 13%, which is more than twice 

the SHAP value of idiosyncratic return. On the one hand, increasing compensation or granting 

more deferred equity pay can be an effective method to retain talented executives (Jochem et al., 

2018; Mehran & Yermack, 1997). One the other hand, Peters and Wagner (2014) suggest that 

CEO turnover risk is priced in compensation. In addition, Gao et al. (2012) find that a pay cut is 

used an substitute for forced turnover, helping to explain the rarity of forced CEO turnover. In 

either case, it is likely that the level of compensation reflects the satisfaction of the board on 

CEO’s performance26. Idiosyncratic return is ranked in the second place following risk-taking 

incentive (i.e., vega) and bonus. In the top 10 feature importance, incentive related features, risk-

taking related features, performance-related features play an important role in predicting forced 

turnover. 

 

 

 
26 Figure E.2 in Appendix E shows a decreasing pattern of ML model’s predictions across firm-related wealth deciles, 
suggesting that CEOs having higher firm-related wealth are less likely to be dismissed.  
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Figure 8: Global contribution 

 
 

4.4.2 Local contribution 

We show two examples about how ML interprets feature importance in predicting forced 

turnover. The base value for predicting forced turnover in test set is 8.9%, which is the average 

of predicted probabilities of the training set.  

 

Figure 9.A shows an example of non-turnover in Microsoft in 2016. The waterfall plot exhibits 

10 most important features in predicting forced turnover probability. For the CEO who received 

high bonus and incentive pay, the forced turnover probability is reduced by 7% (0.05 + 0.02). a 

high idiosyncratic return also helps reduce forced turnover probability by 2%. CEO duality that 

equals 0 means the CEO is not chairman on the board. This increases the probability of being 

forced out by 1% as the CEO may not be powerful to affect the board’s decision of dismissal.  

 

Interestingly, ML model also detects the effect of background. Forced turnover probability is 

reduced by 2% for the CEO with technology background. This finding implies that skill-

matching between CEOs and firms affect forced turnover probability. Overall, the forced 
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turnover probability for the CEO in Microsoft is reduced by 7% from the base value to 1.9%, 

which indicates that the CEO is highly unlikely to be dismissed. 

 

Figure 9.A: Non-turnover example - Microsoft Corp. (GVKEY-12141, FF49-36) 

 
 

To demonstrate how ML can predict forced turnover and detect skill-matching, we provide 

another example of Computer Task Group in 2016. Both Computer Task Group and Microsoft 

operate in the Computer Software industry (the FF49 code is 36). Figure 9.B shows that the 

probability of forced turnover increases by 37% when there is low firm related wealth and a low 

salary. On the other hand, small firm size and non-Delaware incorporation 27  reduce the 

likelihood of forced turnover. Additionally, the figure also reveals that having a technology 

background reduces the probability of forced turnover, which indicates that ML can detect skill-

matching between CEOs and firms. In summary, the forced turnover probability for the CEO in 

Computer Task Group increased by 45% from the base value to 53.9%. Notably, this predicted 

probability of forced turnover was subsequently realized in the reality. 

 

 
27 Small firms are easier for CEOs to capture (e.g., Taylor, 2010). Delaware firms have a higher tendency to dismiss 
CEOs, irrespective of firm performance (Jagannathan & Pritchard, 2017). 
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Figure 9.B: Forced turnover example - Computer Task Group (GVKEY-3342, FF49-36) 

 
 
4.6 Machine predicted turnovers versus actual turnovers 

In this subsection, this study utilizes ML model’s predictions to partially reconcile two 

phenomena: why CEOs who are predicted to be dismissed are still in position (i.e., false positives) 

and why CEOs who are not predicted to be dismissed but are fired (i.e., false negatives).  

 

The pattern that CEOs who are predicted to be dismissed are still in position could be explained 

by two reasons: 1) Following competition theory, DeFond & Park (1999) find that the frequency 

of CEO turnover is greater in highly competitive industries than in less competitive industries. 

It is likely that those false positives are in low competitive environment, so that they have less 

likelihood to be replaced; 2) Based on previous corporate governance literature, these firms with 

false positives are likely to have problematic corporate governance, i.e., CEOs are entrenched. 

Consequently, these firms tend to undervalue CEOs’ performance and overvalue CEO power in 

dismissal decisions. 
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To explore the reason, we construct a sample consisting of the observations with ML’s predicted 

probabilities in the top deciles (i.e., decile 10 in Figure 2)28. This is to ensure that CEOs are at 

the same risk level of being dismissed, i.e., CEOs in decile 10 are highly likely to be dismissed 

and are all predicted to be dismissed now. Within the sample, we divide the CEOs into a 

treatment group that contains CEOs who are not dismissed (i.e., false positives) and a control 

group that contains CEOs who are dismissed (i.e., true positives). We compare treatment group 

to control group to explore which features affect dismissal decisions to deviate from the 

recommendation made by the ML model.  

 

Table 6 reports the characteristics for firms with true positives and firms with false positives. 

Compared to true positives, false positives have a higher ownership and are more likely to be a 

chairman, i.e., those CEOs are more powerful and entrenched. Additionally, we find that the 

mean ROE for treatment group is negative and significantly lower than the mean ROE for control 

group. Furthermore, despite the treatment group having a higher mean idiosyncratic return 

(industry adjusted ROA) compared to the control group, it is important to note that the 

idiosyncratic return (industry adjusted ROA) still exhibits a negative value. This suggests a poor 

CEO performance in the treatment group is undervalued in dismissal decisions. Conversely, we 

find that short-term liquidity measures (i.e., current_ratio_l1 and cash_ratio_l1) are likely to be 

overvalued in dismissal decisions, whereby they are significantly higher for treatment group than 

control group. However, we do not find any significant difference between treatment group and 

control group in the mean of competition measures (i.e., competition_l1, hhi_sale_l1, and 

hhi_mktval_l1). Taken together, these findings imply that the occurrence of false positives is 

mainly due to CEO entrenchment, where the interests’ misalignment exists between CEOs and 

shareholders in treatment group. Those CEOs are powerful and are likely to increase the liquidity 

to expropriate the benefits at the expenses of shareholders’ interests29, thereby affecting the 

dismissal decisions. 

 

 

 
28 We do not follow a random guessing threshold (i.e., 50%, which is used by ML models to label predictions) to 
classify forced CEO turnovers. The reason for this is that the threshold for dismissal can vary across firms, years, 
and industries. For example, technology firms, which often operate in highly dynamic and competitive environments, 
may have lower tolerance for underperformance or strategic missteps, leading to a lower dismissal threshold. On 
the other hand, utility firms, which operate in regulated and stable markets, may have different criteria for CEO 
dismissals, placing greater emphasis on long-term stability and regulatory compliance. 
29 For example, Elyasiani and Zhang (2015) indicate that entrenched CEOs “hold more liquidity because it helps 
reduce their firm’s risks, provides them with job and wealth security, and gives them discretion in pursuing personal 
objectives”. 
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The pattern that CEOs who are not predicted to be dismissed but are fired is under-explored in 

previous studies. Therefore, this study intends to explore it empirically using ML’s predictions. 

Similarly, we also construct a sample consisting of the observations with ML’s predicted 

probabilities in the bottom deciles (i.e., decile 1 in Figure 2). This time, all CEOs in decile 1 are 

predicted to be retained in their positions. Within decile 1, CEOs who are dismissed are labeled 

as false negatives and assigned to treatment group; CEOs who are not dismissed are labeled as 

true negatives and assigned to control group.  

 

Table 7 finds that the firms in treatment group face higher competition (i.e., lower market 

concentration) compared to firms in control group. For performance measures, both accounting-

based and market-based, we do not find any significant difference between treatment firms and 

control firms and those performance measures are positive. One exception is that the firms in 

treatment group are likely to be in financial distress, with significantly lower Altman Z-score 

(z_score_l1). For the CEOs in treatment group, they have a significantly lower ownership than 

the CEOs in control group, indicating that they are less powerful than the CEOs in control group. 

Although the firm size for treatment group is not significantly higher than for control group, the 

firm size is measured by percentile ranking and indicates that the average firm size of treatment 

group is relatively large (i.e., above 50% of firms). According to the findings in Table 7, the less 

powerful CEOs are likely to be misattributed for pushing their firms into financial distress. One 

plausible explanation could be that directors of poorly performing large firms may choose to 

dismiss CEOs to protect themselves from accountability and preserve their positions and 

reputations (Taylor, 2010).
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Table 6: A comparison between true positives and false positives 
This table reports the mean of performance, entrenchment, and firm-related features for firms in the test sample with CEOs whom our ML algorithm predicted would be dismissed 

but are retained (treatment group with false positives) and compares it to the mean for firms with CEOs whom our ML algorithm predicted would be dismissed and are dismissed 

in reality (control group with true positives). 

varname obs (control) mean (control) obs (treatment) mean (treatment) mean-diff p 
firmsize_l1_r 126 0.370 617 0.405 -0.035 0.223 

sales_l1_r 126 0.445 615 0.436 0.010 0.747 
tenure 126 5.230 617 5.464 -0.234 0.606 

ceoownership 126 0.007 617 0.012 -0.005*** 0.000 
ceoage 126 57.082 617 56.767 0.315 0.605 

ceofounder 126 0.032 617 0.037 -0.006 0.751 
ceoduality 126 0.183 617 0.250 -0.067* 0.085 

roe_l1 126 0.087 617 -0.111 0.198* 0.068 
current_ratio_l1 124 2.233 592 2.656 -0.422** 0.021 

cash_ratio_l1 124 0.852 592 1.204 -0.352** 0.014 
profit_cl_l1 124 0.376 592 0.483 -0.107 0.426 
z_score_l1 125 3.242 616 2.429 0.814* 0.077 

roa_ind_adj_l1 126 -0.045 617 -0.014 -0.032* 0.086 
competition_l1 126 256.992 617 295.511 -38.518 0.388 

risk_roa_l1 121 3.661 575 3.257 0.403 0.304 
ret_peer_l1 121 0.102 581 0.118 -0.016 0.407 
ret_idio_l1 121 -0.211 581 -0.116 -0.095** 0.019 

risk_peer_l1 121 0.155 581 0.164 -0.009** 0.037 
risk_idio_l1 121 0.380 581 0.363 0.017 0.368 
boardsize_l1 126 9.889 616 9.843 0.046 0.859 
inddir_pct_l1 126 0.853 616 0.857 -0.005 0.471 
hhi_sale_l1 126 0.090 617 0.081 0.009 0.207 

hhi_mktval_l1 126 0.103 617 0.092 0.011 0.230 
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Table 7: A comparison between true negatives and false negatives 
This table reports the mean of performance, entrenchment, and firm-related features for firms in the test sample with CEOs whom our ML algorithm predicted would not be 

dismissed but are dismissed (treatment group with false negatives) and compares it to the mean for firms with CEOs whom our ML algorithm predicted would not be dismissed 

and are still in the position (control group with true negatives). 

varname obs (control) mean (control) obs (treatment) mean (treatment) mean-diff p 
firmsize_l1_r 738 0.452 10 0.520 -0.068 0.409 

sales_l1_r 738 0.409 10 0.372 0.037 0.696 
tenure 738 8.997 10 8.583 0.414 0.796 

ceoownership 738 0.030 10 0.013 0.017*** 0.007 
ceoage 738 59.499 10 56.810 2.689 0.206 

ceofounder 738 0.110 10 0.100 0.010 0.925 
ceoduality 738 0.466 10 0.400 0.066 0.697 

roe_l1 738 0.141 10 0.090 0.051 0.373 
current_ratio_l1 655 2.879 7 3.128 -0.250 0.856 

cash_ratio_l1 655 1.157 7 1.210 -0.052 0.962 
profit_cl_l1 655 1.108 7 1.494 -0.386 0.596 
z_score_l1 738 5.213 10 1.375 3.838*** 0.000 

roa_ind_adj_l1 738 0.052 10 0.082 -0.030 0.626 
competition_l1 738 487.978 10 531.300 -43.322 0.835 

risk_roa_l1 592 1.083 6 0.679 0.403 0.142 
ret_peer_l1 597 0.113 7 0.023 0.091 0.380 
ret_idio_l1 597 0.122 7 0.118 0.003 0.947 

risk_peer_l1 597 0.154 7 0.172 -0.018 0.554 
risk_idio_l1 597 0.210 7 0.257 -0.047 0.397 
boardsize_l1 728 9.710 10 9.900 -0.190 0.824 
inddir_pct_l1 728 0.847 10 0.854 -0.007 0.825 
hhi_sale_l1 738 0.076 10 0.044 0.032*** 0.004 

hhi_mktval_l1 738 0.083 10 0.044 0.039*** 0.009 
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5.0 Conclusion 

This study uses a machine learning approach, i.e., LightGBM model, to directly predict forced 

CEO turnover. LightGBM model provides more reliable and accurate predictions, as it 

outperforms the traditional models as well as LASSO under multiple performance metrics. By 

utilizing machine learning’s predictions, this study provides new insights into the determinants 

of forced CEO turnover. First, this study validates the RPE theory and finds that CEO-induced 

performance is a robust determinant of forced CEO turnover. Second, this study rejects the weak-

form RPE theory raised by JK (2015). Instead, machine learning’s predictions support strong-

form RPE, where forced CEO turnover is irrelevant to industry-induced performance. Third, this 

study validates the effects of CEO power on turnover-performance sensitivity. In addition, this 

study demonstrates that entrenchment is enhanced as tenure increases and the entrenchment 

effects of CEO tenure is not resulted from turnover misclassification or CEO power. 

 

To interpret the machine learning model, this study utilizes SHAP value to quantify the 

contribution of each feature. Globally, we find that incentive related features, performance 

related features, and risk-taking related features play an import role in predicting forced CEO 

turnover. Locally, we find that machine learning can somewhat detect skill-matching between 

CEOs and firms, which provides additional evidence that machine learning can deal with high-

dimensional interactions and nonlinearities to improve the quality of a dismissal decision.  

 

Finally, this study explores two phenomena in CEO dismissal decisions: why CEOs who are 

predicted to be dismissed are still in position (i.e., false positives) and why CEOs who are not 

predicted to be dismissed but are fired (i.e., false negatives). In terms of false positives, we find 

that powerful and entrenched CEOs are likely to be retained, regardless of their poor performance. 

In terms of false negatives, we find that CEOs are likely to be dismissed in relatively larger firms 

that are facing financial distress, suggesting that the directors in large firms misattribute the poor 

performance to CEOs to preserve their reputations and positions. These findings suggest that 

some CEO dismissal decisions are suboptimal for shareholders but are value-maximizing for 

managers and directors. 

 

In conclusion, the study provides a comprehensive picture about how CEOs are dismissed. For 

researchers, this study helps to identify the most robust factors in predicting forced CEO 

turnovers. For practitioners, this study provides a novel machine learning method to complement 

and improve the quality of CEO dismissal decisions.
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Appendix A: CEO classifications and definitions 

Code Title Brief Description 

1 Involuntary - CEO death The CEO died while in office and did not have an opportunity to resign before health failed. 

2 Involuntary - CEO illness Required announcement that the CEO was leaving for health concerns rather than removed during a 
health crisis. 

3 

Involuntary – CEO dismissed 
for job performance 

The CEO stepped down for reasons related to job performance. This included situations where the 
CEO was immediately terminated as well as when the CEO was given some transition period, but 
the media coverage was negative. Often the media cited financial performance or some other failing 
of CEO job performance (e.g., leadership deficiencies, innovation weaknesses, etc.).   

4 

Involuntary - CEO dismissed 
for legal violations or concerns 

The CEO was terminated for behavioral or policy-related problems. The CEO's departure was 
almost always immediate, and the announcement cited an instance where the CEO violated 
company HR policy, expense account cheating, etc. 

5 

Voluntary - CEO retired 

Voluntary retirement based on how the turnover was reported in the media. Here the departure did 
not sound forced, and the CEO often had a voice or comment in the succession announcement. 
Media coverage of voluntary turnover was more valedictory than critical. Firms use different 
mandatory retirement ages, so we could not use 65 or older and facing mandatory retirement as a 
cut off. We examined coverage around the event and subsequent coverage of the CEO’s career 
when it sounded unclear.  

6 
Voluntary - new opportunity 
(new career driven succession) 

The CEO left to pursue a new venture or to work at another company. This frequently occurred in 
startup firms and for founders. 

7 
 Other 

Interim CEOs, CEO departure following a merger or acquisition, company ceased to exist, company 
changed key identifiers so it is not an actual turnover, and CEO may or may not have taken over the 
new company. 

8 Missing Despite attempts to collect information, there was not sufficient data to assign a code to the turnover 
event. These will remain the subject of further investigation and expansion. 
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9 
Execucomp error  

If a researcher were to create a dataset of all potential turnovers using execucomp (co_per_rol != 
l.co_per_rol), several instances will appear of what looks like a turnover when there was no actual 
event. This code captures those. 

 
Source: The user manual of CEO turnover dataset by Gentry et al. (2021) . 
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Appendix B: Variable list 

Variable name Definition  Source 
CEO level  
tenure Number of years on CEO position. Execucomp 
salary CEO annual salary (in thousands). Execucomp 
bonus CEO bonus (in thousands). Execucomp 

adjusted_tdc1 Total compensation (in thousands). Adjusted to align the pre-2006 with 
post-2006 compensation. Following Walker (2009). Execucomp 

stock_based_comp CEO stock awards (in thousands). Execucomp 
option_based_comp CEO option awards (in thousands). Execucomp 
equity_based_comp CEO stock awards plus option awards (in thousands). Execucomp 

delta 
Pay-performance sensitivity (in thousands). The change in the dollar 
value of the executive's wealth for a one percentage point change in 
stock price. Following Coles et al. (2006). 

Execucomp 

optiondelta 
Pay-performance sensitivity (in thousands). The change in the dollar 
value of the executive's option wealth for a one percentage point change 
in stock price. Following Coles et al. (2006). 

Execucomp 

sharedelta 
Pay-performance sensitivity (in thousands). The change in the dollar 
value of the executive's stock wealth for a one percentage point change 
in stock price. Following Coles et al. (2006). 

Execucomp 

firm_related_wealth The sum of the value of the stock and option portfolio held by the 
executive (in thousands). Following Coles et al. (2006). Execucomp 

vega 
Risk-taking incentives (in thousands). The change in the dollar value of 
the executive's wealth for a 0.01 change in the annualized standard 
deviation of stock returns. Following Coles et al. (2006). 

Execucomp 

ceo_turnover A dummy variable equals 1 if the CEO is dismissed, else 0. Gentry et al. (2021) 
forcedturnover A dummy variable equals 1 if the CEO is forced out, else 0. Gentry et al. (2021) 

voluntaryturnover A dummy variable equals 1 if the CEO voluntarily resign his/her job, 
else 0. Gentry et al. (2021) 

Female A dummy variable equals 1 if the CEO is Female, else 0. Execucomp & BoardEx 
foreign A dummy variable equals 1 if the CEO's nationality is not US. BoardEx 
ceoage CEO age. Execucomp & BoardEx 
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ceofounder A dummy variable equals 1 if the CEO is also the founder of the firm, 
else 0. Execucomp & BoardEx 

ceoduality A dummy variable equals 1 if the CEO is also the chairman of the firm 
in year t, else 0. Execucomp & BoardEx 

mba Equals 1 if the CEO holds an MBA degree. BoardEx 
ivyleague Equals 1 if the CEO graduated from an university in Ivy League. BoardEx 
phd Equals 1 if the CEO holds a PhD degree. BoardEx 

bkgdacademic 
Equals 1 if job history includes in title one of the following: "professor", 
"academic", "lecturer", "teacher", "instructor", "faculty", "fellow", 
"dean", "teaching". 

BoardEx 

bkgdfinance 

Equals 1 if job history includes in title one of the following: 
"underwriter", "investment", "broker",  "banker",  "banking", 
"economist", "finance", "treasure", "audit", "cfo", "financial", 
"controller", "accounting", "accountant", "actuary", "floor trader", 
"equity", "general partner", "market maker", "hedge fund". 

BoardEx 

bkgdhr Equals 1 if job history includes in title one of the following: "hr ", 
"recruitment", "human resource". BoardEx 

bkgdlaw Equals 1 if job history includes in title one of the following: "lawyer", 
"legal", "attorney", "judge", "judicial". BoardEx 

bkgdmanager 

Equals 1 if job history includes in title one of the following: "Manager", 
"VP", "President", "Director", "Administrator", "Administrative", 
"Executive", "COO", "Chief Operating", "Operation", "Secretary", 
"Founder", "Clerk", "Division MD", "Employer", "Associate", "Head of 
Division". 

BoardEx 

bkgdmarketing 

Equals 1 if job history includes in title one of the following: 
"Marketing", "Publisher", "MKTG", "Sales", "Brand Manager", 
"Regional Manager", "Communication", "Merchandising", "Comms", 
"Distribution", "Media". 

BoardEx 

bkgdmilitary 

Equals 1 if job history includes in title one of the following: "Captain", 
"Soldier", "Lieutenant", "Admiral", "Military", "Commanding", 
"Commander", "Commandant", "Infantry", "Veteran", "Sergeant", 
"Army". 

BoardEx 
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bkgdpolitician Equals 1 if job history includes in title one of the following: "Politician", 
"Senator", "Political", "Governor". BoardEx 

bkgdscience 

Equals 1 if job history includes in title one of the following: 
"Researcher", "Medical", "Doctor", "Scientist", "Physician", "Engineer", 
"Biologist", "Geologist", "Physicist", "Metallurgist", "Science", 
"Scientific", "Pharmacist". 

BoardEx 

bkgdtech 
Equals 1 if job history includes in title one of the following: 
"Technology", "Software", "Programmer", " IT ", "Chief Information 
Officer", "Database", "System Administrator", "Developer". 

BoardEx 

private Equals 1 if the CEO has work experience in private firms. BoardEx 
armedforces Equals 1 if the CEO has work experience in Armed Forces. BoardEx 
charities Equals 1 if the CEO has work experience in Charities. BoardEx 
clubs Equals 1 if the CEO has work experience in Club. BoardEx 
government Equals 1 if the CEO has work experience in Government. BoardEx 
medical Equals 1 if the CEO has work experience in Medical. BoardEx 
partnership Equals 1 if the CEO has work experience in partnership firms BoardEx 
quoted Equals 1 if the CEO has work experience in quoted firms BoardEx 
sporting Equals 1 if the CEO has work experience in Sporting. BoardEx 
universities Equals 1 if the CEO has work experience in Universities BoardEx 
job_intl  Equals 1 if the CEO has a job position outside the US. BoardEx 
job_intl_Africa Equals 1 if the CEO has a job position in Africa. BoardEx 
job_intl_Asia Equals 1 if the CEO has a job position in Asia. BoardEx 
job_intl_Europe Equals 1 if the CEO has a job position in Europe. BoardEx 
job_intl_North_America Equals 1 if the CEO has a job position in North America. BoardEx 
job_intl_South_America Equals 1 if the CEO has a job position in South America. BoardEx 
job_intl_Oceania Equals 1 if the CEO has a job position in Oceania. BoardEx 
ceoownership The percentage of shares owned by CEO. Execucomp 
Board level  
boardsize Number of direcors on the board. BoardEx 

inddir_pct 
The percentage of independent directors on the board. Based on the 
definition in WRDS, directors labeled as "Supervisory Director" are 
regarded as independent directors in BoardEx. 

BoardEx 
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E-index Entrenchment index ISS governance 
Firm level  

roa Return on assets (Income before extraodinary items divided by total 
assets). Compustat 

tangibility The total value of property, plant and eqquipment divided by total assets. Compustat 

roe Return on equity (Income before extraodinary items divided by value of 
common equity). Compustat 

firmsize Natural logarithm of total assets. Compustat 
m2b Market to book value. Compustat 

capex Capital expenditure divided by total assets (Missing values are replaced 
with 0). Compustat 

rdintensity Research and development expense divided by total assets (Missing 
values are replaced with 0). Compustat 

booklev Book leverage. Total debts divided by the sum of total debts and 
common equity. Compustat 

cashflow (EBITDA - tax payment - interest and related expense)/total assets. Compustat 

ceoso_e Equals 1 if the CEO is exempt from filing Certification Documents as 
required under section 302 of the Sarbanes-Oxley Act of 2002. Compustat 

ceoso_y Equals 1 if the CEO has filed Certification Documents as required under 
section 302 of the Sarbanes-Oxley Act of 2002. Compustat 

ceoso_n Equals 1 if the CEO has not filed Certification Documents as required 
under section 302 of the Sarbanes-Oxley Act of 2002. Compustat 

delaware Equals 1 if the firm is incorporated in Delaware. Compustat 
ebitda_at EBITDA/total assets Compustat 
sales Natural logarithm of net sales. Compustat 
dividends_at dividends/at Compustat 
divratio Dividends payment divided by EBITDA. Compustat 
divpayer Equals 1 if the firm pays dividends, else 0. Compustat 
current_ratio Current assets/Current liability Compustat 
cash_ratio Cash and short-term investments/Current liability Compustat 
profit_cl EBITDA/Current liability Compustat 
z_score Altman Z-score. Compustat 
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hhi_mktval Herfindahl-Hirschman Index on market value Compustat 
hhi_sale Herfindahl-Hirschman Index on market value Compustat 

roa_ind_adj Industry adjusted ROA (Industry classification is based on Fama-French 
49 industry classification). Compustat 

risk_roa 
The standard deviation of quarterly industry median adjusted earnings 
growth over the past four years (data should be at least 8 of 16 quarters 
available). 

Compustat 

Industry and market level  

ind_roa Industry median ROA(Industry classification is based on Fama-French 
49 industry classification). Compustat 

ret_idio_l1 
Regress individual firm daily returns on value-weighted industry returns 
in the fiscal year t-1. The annual idiosyncratic return is equal to firm 
annual return minus industry induced annual return. 

CRSP & Fama-French 49 industry returns 

ret_peer_l1 
Regress individual firm daily returns on value-weighted industry returns 
in the fiscal year t-1. The peer return is equal to annualised expected 
return. 

CRSP & Fama-French 49 industry returns 

risk_idio_l1 
Regress individual firm daily returns on value-weighted industry returns 
in the fiscal year t-1. The idiosyncratic risk is equal to the standard 
deviation of residuals. 

CRSP & Fama-French 49 industry returns 

risk_peer_l1 
Regress individual firm daily returns on value-weighted industry returns 
in the fiscal year t-1. The industry-related risk is equal to the standard 
deviation of industry-induced daily returns. 

CRSP & Fama-French 49 industry returns 

Miscellaneous  
gvkey Firm identifier from Compustat. Compustat 
cusip Firm identifier from Compustat. Compustat 
cik Firm identifier from Compustat. Also SEC firm identifier. Compustat 
companyid Firms identifier from BoardEx. BoardEx 
directorid Individual identifier from Boardex. BoardEx 
coperol Firm-executive unique identifier. Execucomp 
execid Individual identifier from Execucomp. Execucomp 
permno In this dataset, each firm is assigned with its main permno. CRSP 
ceo_dismissal Identifies whether the turnover is forced or voluntary. Gentry et al. (2021) 
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Appendix C: Confusion matrix 

Figure C.1.A: Confusion matrix for LightGBM model 

 
 

Figure C.1.B: Confusion matrix for LASSO model 
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Figure C.1.C: Confusion matrix for BDW model 

 
 

Figure C.1.D: Confusion matrix for JK model 
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Appendix D: NDCG scores under different cut-offs 

 

Model NDCG@1.0
% 

NDCG@2.0
% 

NDCG@4.0
% 

NDCG@6.0
% 

NDCG@10.0
% 

LightGB
M 0.58 0.47 0.36 0.37 0.42 

LASSO 0.28 0.24 0.20 0.23 0.27 
BDW 0.12 0.11 0.10 0.12 0.19 

JK 0.11 0.13 0.12 0.15 0.20 
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Appendix E: Additional tests 

Figure E.1: Turnover-performance sensitivity under different industry circumstances 

 
Figure E.2: CEO wealth and forced turnover 
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