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The Determinants of Liquidity in Decentralized Lending 

Abstract 

Decentralized Lending is a new concept in finance. Based on blockchain and smart contracts, the 

innovative design of DeFi lending allows pseudonymous participants to lend and borrow money 

on a large scale without the need for financial intermediaries. Although in the theory of financial 

intermediation, DeFi Lending is claimed to have certain advantages; it has multiple hurdles to 

overcome. In contrast to traditional banks, where governments can bail out, or deposit insurance 

can work, DeFi, as an unregulated market, must deal with illiquidity problems. Moreover, it is 

considered a main source of financial instability because of the increasing connection between 

cryptocurrency and traditional financial products. Given that the main reason for these lending 

platforms' instability is the liquidity shortage, this study investigates the interconnectedness of 

liquidity between DeFi Lending platforms and the determinants affecting liquidity in DeFi 

Lending. While many studies have approached this issue at a conceptual level or using aggregate 

data, this study aims to explore DeFi lending using transaction-level blockchain data. This study 

applies the time-varying parameter vector autoregression (TVP-VAR) to measure the liquidity 

connectedness between DeFi Lending platforms, and then the ARDL model and a novel dynamic 

ARDL simulation are employed to find the factors that affect liquidity in the DeFi Lending 

platform. The results indicate that even DeFi Lending platforms are highly competitive to each 

others, it has an extreme liquidity connectedness and Aave is founded to be the net transmitter of 

liquidity spillovers to other DeFi platforms. The finding also shows that the market power of users 

and interest rate are two main entrain points that should be looked at in the design of DeFi lending 

to manage the liquidity in these platforms. 
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1. Introduction: 

Historically, intermediaries have played a crucial role within traditional financial markets (CeFi). 

They serve as brokers and agents of trust, settlement, liquidity and security. As the complexity of 

the financial system increases, the range and value of intermediaries have risen throughout the 

years to fulfill those requirements. Since the 2008 Global Financial Crisis, greater focus has been 

placed on recognizing the inefficiencies, inequity gaps, and hidden risks of the CeFi system 

(Adrian et al., 2018). Decentralized Finance (DeFi) was created to offer financial services free 

from central intermediaries, which are similar to and potentially beyond current ones provided by 

traditional financial systems (Wharton 2021). The roots of DeFi come from the idea of Bitcoin. 

Based on the technology behind Bitcoin, Ethereum was created with the functions of smart 

contracts1 to host programs being added, which means that Ethereum allows software developers 

to make blockchain-based decentralized applications for financial services (Buterin, 2014). The 

rise of many Blockchain platforms such as Polygon, Solana, Polkadot, Cardano, and Binance 

Smart Chain with functions like Ethereum has created a new financial system called DeFi. DeFi 

is considered to have the potential to reduce and/or transform the role of financial intermediaries 

(Grassi et al. 2022; Harwick & Caton, 2020; Kumar et al.,2020). There are different financial 

services similar to traditional intermediaries that DeFi can provide. Among them, Decentralized 

Lending and Borrowing (DeFi Lending) platforms are the most prominent protocols in the DeFi 

ecosystem. DeFi Lending, for the first time, allows pseudonymous participants to lend and borrow 

money on a large scale without the need for financial intermediaries (Schär, 2021). They have 

locked in the highest proportion of the value in the DeFi ecosystem, with around $25.68 billion of 

the total $70 billion at the time of writing (Defilama.com). Their goal is to mimic the functions of 

traditional banks, one of the most important financial intermediaries of the conventional financial 

system. More recently, Grassi et al. (2022) highlighted the need to look carefully at the lending 

sector of DeFi, among other points, to DeFi.  

DeFi, in general, or DeFi Lending, also play an important role in the recent growth of the 

cryptocurrency market (Gogel, 2021). According to coinmarketcap.com, there were 22,131 

 
1 Smart contracts, which are integrated in blockchains, allow the two parties to enforce the contractual terms 
of an agreement automatically despite the absence of the third party Zheng, Z., Xie, S., Dai, H.-N., Chen, 
W., Chen, X., Weng, J., & Imran, M. (2020). An overview on smart contracts: Challenges, advances and 
platforms. Future Generation Computer Systems, 105, 475-491. . 
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cryptocurrencies on 27th December 2022. The cryptocurrency market has seen exponential growth 

in recent years and soaring investments by individual investors and traditional financial 

institutions. However, the DeFi lending or cryptocurrency market has many limitations related to 

extreme price volatility, usability, fraud, and regulatory uncertainty (Chen & Bellavitis, 2020; 

Lucey et al., 2022). DeFi lending platforms stand at the centre of the recent crypto turmoil, which 

created concerns about rampant speculation and financial instability (Aramonte et al., 2022). In 

2022, the collapse of Anchor on the Terra blockchain shook confidence and stopped the rapid 

ascent of crypto lending. The instability of DeFi lending could lead to many harmful consequences.  

In contrast to traditional banks, where governments can bail out, or deposit insurance can work, 

DeFi, as an unregulated market, must deal with illiquidity problems. As the illiquidity problem 

occurs in DeFi Lending platforms, there is no intervention of regulatory authority (i.e., Deposit 

insurance as introduced in the seminal paper of Diamond and Dybvig (1983)). Participants in these 

platforms could suffer a significant loss due to limited regulation related to financial consumer 

protection. Moreover, the composability property in DeFi and the increased correlation of crypto 

assets and DeFi with traditional financial markets through new emerging products such as 

stablecoins raises the risk of contagion not only from DeFi to the cryptocurrency market but also 

from cryptocurrency to traditional financial markets  (IMF, 2022; Gottlich, 2022; OECD 2022). 

Non-bank financial intermediaries such as DeFi lending are considered potential primary sources 

of financial instability because of the increasing connection with traditional financial products and 

the possibility of spillovers of investor sentiment between asset classes (BIS, 2022). 

One of the main reasons for these lending platforms' instability is the liquidity shortage (Aramonte 

et al., 2022). In traditional banks, suppose banks cannot ensure the appropriate funding liquidity. 

In that case, it can face the problem of liquidity risk, bank runs and can spread through the financial 

network, which can end up in a collapse of the financial system, i.e. systemic risk (Allen & Gale, 

2004; Diamond & Rajan, 2005). Similar to the definition of funding liquidity in banks, funding 

liquidity in DeFi lending is understood as the ability of lending platforms to settle the obligations 

of borrowers and lenders (Gudgeon, Werner, et al., 2020). Liquidity risk in DeFi is “the possibility 

that there will be insufficient funds or assets available to realize the value of a financial asset. 

Failure of liquidity for a borrower means the position is involuntarily liquidated and the available 

assets allocated to owners or creditors. Insufficient liquidity also magnifies market inefficiencies” 

(Wharton 2021). This risk is also called “Protocol debt” for a DeFi lending platform. By running 
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a simulation, Gudgeon, Perez, et al. (2020a) provide evidence that the failure of a DeFi lending 

protocol may lead to transmission mechanisms and lend itself to systemic risk, leading to a 

decentralized financial crisis. This is analogue to the 2008 financial crisis; however, one distinctive 

property in DeFi could make the systemic risk in DeFi even more severe than the traditional 

financial system, which is composability. Therefore, funding liquidity is crucial to the stability of 

DeFi Lending platforms in particular and the whole market. However, this instability risk may be 

reduced through logical governance and carefully designed incentives to maintain stable liquidity 

(Wharton 2021).  

Given the importance of liquidity in DeFi lending, some papers approach different aspects related 

to liquidity in lending (Bartoletti et al., 2021; Castro et al., 2021; Gudgeon, Perez, et al., 2020a; 

Gudgeon, Werner, et al., 2020; Saengchote, 2021a; Xu & Vadgama, 2022). However, little 

attention has been paid from the literature to quantify the liquidity connectedness between DeFi 

Lending platforms and study the determinants affecting the liquidity in DeFi Lending to 

understand the source of liquidity risk. This study contributes to the literature by investigating the 

interconnectedness of liquidity between DeFi Lending platforms, applying the theoretical 

framework in traditional lending to DeFi lending and addressing their differences to investigate 

the factors affecting liquidity in DeFi lending.  

2. Literature Review 

2.1. Liquidity Connectedness in DeFi Lending 

DeFi lending has one distinctive property compared to CeFi Lending: composability. 

Composability is “the ability to build a complex, multi-component financial system on top of 

crypto-assets” (Gudgeon, Perez, et al., 2020a, p. 1). This property is often compared with the 

metaphor ‘Money Lego’ (Popescu, 2020) which promises to solve the lack of interoperability 

problem in CeFi. One of the main problems of banking system design is siloed and suffers high 

switching costs. Different institutions have their own ledgers and are not interoperable; thus, 

moving capital and value across silos can be unduly lengthy and complicated (Chen & Bellavitis, 

2020; Harvey et al., 2021). In contrast, the DeFi system is highly interoperable, allowing for 

seamless capital flow across different institutions and borders. The composability property of DeFi 

enables any individual to integrate, fork, or rehash multiple protocols to create entirely new 

applications. This flexibility creates an open financial system that allows for an unprecedented and 
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ever-expanding variety of financial services (Schär, 2021). For example, supplied positions cannot 

be repurposed for other investment opportunities in centralized banking. In contrast, tokenized 

positions via cTokens (Compound) or aToken (Aave) can be used to turn statics into yield-

generating assets (Harvey et al., 2021).   

However, composability property also brings concern about systematic risk. A major downside of 

composability is that an intertwined system of debts and obligations is created (Gudgeon, Perez, 

et al., 2020a). For example, DAI - a stablecoin cryptocurrency created in MakerDAO2 can be used 

as collateral in other protocols such as Compound3, dY/dX4, or Uniswap5. The interconnectedness 

between DeFi projects allows risk transfer from one project to another and expands outward 

(Harvey et al., 2021). Also, DeFi services are not limited to countries or business segments but 

operate in a worldwide marketplace. Moreover, one of the significant issues in DeFi is that there 

is no circuit breaker; thus, the government cannot step in to stop the trading of assets, for example. 

Therefore, the systemic defaults due to contagion in DeFi maybe even more server than CeFi.  

As aforementioned, the interconnectedness between DeFi projects allows risk transfer from one 

project to another and expands outward (Harvey et al., 2021). In traditional finance, the financial 

network structure has received significant attention from academic literature. Allen and Gale 

(2004) suggest that liquidity services can serve as a potential source of contagion risk among 

banks, with the potential for liquidity shocks to trigger the collapse of entire financial systems 

(Diamond & Rajan, 2005). Lee (2013) argue that the complex interconnectivity makes liquidity 

an issue that affects the entire system. Elliott et al. (2014) and Acemoglu et al. (2015) find that the 

structure of an interbank network can significantly impact systemic risk, which in turn can 

influence the contagion of liquidity shocks. DeFi Lending is claimed to be even more interoperable 

than banks; therefore, it is essential to measure the connectedness between DeFi lending platforms 

and to see how it can affect the systematic risk of the entire system. Consequently, we can evaluate 

 
2 The Maker Foundation. 2019. MakerDAO. https://makerdao.com/en/. MakerDAO provides a decentralized 
stablecoin called DAI that is pegged to the US dollar, while still functioning financially similar to a lending 
and borrowing platform 
3 Compound Finance. 2019. Compound Finance. https://compound.finance/. Compound is a lending market 
that offers several different ERC-20 assets for borrowing and lending. 
4 dYdX. 2020. dYdX. https://dydx.exchange/. dYdX is divided into two sub-protocols, one for trading, 
borrowing, lending and one that also supports futures markets. 
5 Uniswap is a decentralized exchange (DEX) and was first launched on November 2, 2018 on the Ethereum 

mainnet 

https://makerdao.com/en/
https://compound.finance/
https://dydx.exchange/
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the benefits and drawbacks of this new property in DeFi. To the best of our knowledge, this is the 

first study to examine this topic. 

2.2. Determinants of Funding Liquidity in DeFi Lending 

In traditional finance, many factors can affect the funding liquidity of a bank. This study applies 

ideas in theoretical and empirical research on the traditional market to DeFi lending but also 

addresses differences between these two. 

Interest Rate 

According to the financial liberalization hypothesis, McKinnon (1973) and Shaw (1973) argue that 

interest rate ceilings in the current financial systems distort credit allocation and may lead to 

underinvestment in profitable projects. Therefore, the financial sector should be liberalized for the 

interest rate to be determined by the interplay of demand and supply. Based on the Rational choice 

theory, the interest rate will incentivize borrowers to repay or borrow the loan that maximizes their 

utility. In this case, the interest rate will affect the deposits and loans, thus affecting funding 

liquidity.  

The McKinnon-Shaw hypothesis was criticized by Stiglitz and Weiss (1981) and Besley (1994), 

who believe that interest rates cannot function as an allocator of credit. Due to the information 

asymmetry, interest rates may act as a screening device, and borrowers willing to pay high-interest 

rates may undertake riskier projects. This could decrease the bank’s profit due to default; thus, 

banks prefer to ration credit rather than adopt risky borrowers. In this case, the interest rate cannot 

be used to equate the supply and demand of loanable funds, and credit rationing occurs. Both 

theoretical and empirical studies have shown that credit rationing causes financial constraints for 

firms, and on an aggregate level, this can result in lower overall economic growth  (Amable et al., 

2004; Banerjee & Moll, 2010; Bencivenga & Smith, 1993; Craig et al., 2007; Yu & Fu, 2021).  

In traditional banks, banks have the power to control loanable funds. In contrast to DeFi lending, 

no intermediaries exist to control deposits and loans to extract high economic rent. Another 

distinction is that central banks in traditional finance primarily set interest rates via a base rate and 

function as a key lever in managing credit in economies (i.e., Federal Reserve Board, Bank of 

England). There is a strand of literature on the role of monetary policy transmission and bank 

lending channels in both theoretical and empirical (Bernanke & Blinder, 1988, 1992; Bernanke & 
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Gertler, 1995; Brissimis & Delis, 2009; Ehrmann et al., 2001; Ehrmann & Worms, 2004). Recent 

studies show that banks may aggressively expand liquidity creation after the central bank relaxes 

monetary policy by cutting interest rates (Berger & Bouwman, 2017; Beutler et al., 2020; Dang & 

Huynh, 2022; Hussain & Bashir, 2019; Zhang & Deng, 2020). In contrast, interest rates in DeFi 

lending are determined algometric by the supply and demand for each token.  

The mechanism used to set these rates is a crucial aspect of protocol design because it provides 

the preconditions to reach the equilibrium and ensure the funding liquidity of the protocol 

(Gudgeon, Werner, et al., 2020). The interest rate models employed by the DeFi lending protocol 

can be classified into three categories: linear, nonlinear, and kinked rates (Gudgeon, Werner, et 

al., 2020). Popular protocols like Compound or Aave often use the kinked interest rate model. The 

idea is that if the utilization of the pool, which is used to measure funding liquidity, is above the 

optimum (predetermined utilization rate for each token), then the borrowing rate rises sharply to 

discourage further borrowing and encourage the payment of outstanding loans. On the other hand, 

a utilization below the optimum is accompanied by a low borrowing rate to encourage further 

borrowing. This mechanism is quite similar to the financial liberalization hypothesis of McKinnon-

Shaw (1973). Therefore, DeFi lending is an ideal example to empirically test the financial 

liberalization hypothesis to see whether interest rates can play the role as it is expected without the 

need for a central third party to adjust the funding liquidity. The first hypothesis is then formulated 

as follows: 

H1: Interest rate (Variable borrow rate) has a significant impact on the funding 

liquidity of DeFi Lending. 

Market Power of Users  

According to Shepherd (1970, p. 3), "Market power is the ability of a market participant or group 

of participants (persons, firms, partnerships, or others) to influence price, quality, and the nature 

of the product in the marketplace".  

Most of the studies in traditional finance are concerned with intermediaries' monopoly or oligopoly 

power. This is a market with the "absence of competition", creating a situation where a few specific 

person or enterprise is the only supplier of a particular thing, therefore dominating a market. In the 

banking industry, market power received significant attention in the literature. There are two 
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opposite views on the role of the concentrated banking sector on financial stability. In the 

conventional credit market, almost all transactions have to go through financial intermediaries like 

banks. Therefore, banks have the market power to control financial transactions.  In turn, bank 

market power can lead to an oligopoly market with imperfect competition, resulting in inefficient 

usage of market liquidity. Thus, utilitarian societal welfare is not maximized. On the one hand, 

concentrated banking systems could increase market power and enhance bank profits, thus, 

providing a “buffer” against adverse shocks. In addition, supervision of a few banks in a 

concentrated will be easier and more effective than lots of banks in a diffuse banking system, thus 

cognition risk and the probability of systemic crisis less pronounced in a concentrated banking 

system (Besanko & Thakor, 1995; Boot & Greenbaum, 1993; Hellmann et al., 2000; Matutes & 

Vives, 2000). According to Allen and Gale (2000), the U.S is an example supporting the 

“concentration–stability” view because a financial system with lots of banks in the U.S shows 

much greater financial instability in history than Canada or the U.K, where a few larger banks 

dominate the banking system. On the other hand, the “concentration–fragility” view argues that 

banks in concentrated systems are considered “too important to fail”; thus, they tend to receive 

larger subsidy policies. This support intensifies risk-taking incentives and increases the probability 

of banking system fragility and systemic distress (De Nicoló et al., 2006; Mishkin, 1999).  

In contrast with monopoly or oligopoly, the market might face a monopsony or oligopsony 

problem, which relates to a few entities' control of a market to purchase a good or service, therefore 

a few sellers dominating a market. This situation is quite similar to the case of DeFi lending 

platforms. In contrast to CeFi, DeFi protocols are highly competitive to offer better services for 

users. The open-source blockchain and smart contracts' public nature allow users to identify flaws 

and inefficiencies in a DeFi project and “forked away” by copying and improving the flawed 

project (Harvey et al., 2021). Therefore, the market power of the platform is not likely to occur in 

DeFi. However, this can transmit to the market power of users, which is often measured as the 

percentage of funds in the platform that a user address hold. Some empirical papers in DeFi lending 

find that most supplied funds are controlled by a tiny number of user accounts. For example, only 

three accounts in Compound control about 50.3% of the total value locked DAI. Likewise, the 

same number of accounts control 60.0% and 47.3% for ETH and USDC, respectively (Gudgeon, 

Werner, et al., 2020). Saengchote (2021a) also shows that the distribution of accounts in the 

Compound platform is skewed, with the top 100 depositors and borrower addresses accounting for 
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75% and 78% of all deposits and loans, respectively. This high concentration of buyers can result 

in an oligopsony problem, where buyers pay lower prices than what would be found in perfect 

competition. This leads to resources not being allocated appropriately and producers receiving less 

income from their products. In DeFi lending, a few users could drastically diminish liquidity or 

cause full illiquidity even in times of high liquidity (Gudgeon, Werner, et al., 2020). In this case, 

oligopsony may be a problem in the DeFi market, affecting funding liquidity. Will the 

decentralisation goal still occur if major users have market power in DeFi lending? Or does it just 

transfer from the government to big players? Therefore, the oligopsony issues deserve strong 

consideration in the DeFi lending industry and policy debates; however, very few studies 

specifically address this problem to date. Based on the above argument, this study postulates that 

the concentration of the fund in user accounts may affect funding liquidity in DeFi lending. Hence, 

the second hypothesis is as follows: 

H2: The market power of users has a significant impact on the funding liquidity of DeFi 

lending. 

Protocol Depositor 

Depositors in DeFi lending platforms deposit their tokens to a liquidity pool. In exchange, they 

will receive equal claim tokens minted by the pool. This token proves that they have made a deposit 

and can be used to redeem the same type of token that was initially put into the pool. If someone 

wishes to withdraw their deposits, they must transfer the claim tokens back to the liquidity pool. 

The role of depositors is to supply the fund to the pools; therefore, similar to traditional banks, 

when there are more depositors, it can increase banks' liquidity. In contrast, in the case of a bank 

run (Diamond & Dybvig, 1983), the cascade withdrawal of depositors will cause bank liquidity 

shortages, leading to bank failure. 

Because of the inability to collect users' data across banks, this indicator has not been tested in 

empirical studies in traditional banks (Ghenimi et al., 2020; Moussa, 2015; Vodova, 2011). 

However, in blockchain, information is publicly available (Chen & Bellavitis, 2020); therefore, 

we can easily know the number of depositors in each protocol. As the number of depositors varies, 

it can affect the liquidity provided in the market, thus, affecting the liquidity in lending pools. 

Hence, the thirds hypothesis is as follows: 
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H3: The number of protocol depositors significantly impacts the funding liquidity of 

DeFi lending. 

Protocol Borrower 

Borrowers in DeFi lending platforms can initiate loans from a liquidity pool if only they lock in 

enough collateral. The collateral will be locked in the loan duration. When they borrow from a 

liquidity pool, the liquidity of the token in that pool will decrease if everything stays the same. 

Therefore, as the number of borrowers increases or decreases, it can also affect the liquidity in 

lending pools. Hence, the fourth hypothesis is as follows: 

H4: The number of protocol borrowers significantly impacts the funding liquidity of 

DeFi lending. 

3. Data and Methodology 

3.1. Data Collection 

This research focuses on DeFi lending platforms. At the time of writing, the most prominent 

lending platforms are Aave ($15.7 billion), Maker ($13.19 billion), and Compound ($10.83 billion) 

(defipulse.com). The total value locked in these protocols accounts for approximately 60% of the 

market size in the DeFi Lending market (defilama.com); therefore, this study will focus on these 

three platforms to investigate the liquidity connectedness between them. We collect the aggregate 

daily liquidity of these platforms on all chains. We collect the aggregate daily liquidity of these 

platforms on all chains. The data is collected through API from tokenterminal.com and 

defillama.com. This study chose the sample period starting from the launch of Aave V26 to ensure 

time consistency across platforms. Aave V2 launched in December 2020; therefore, to reduce the 

uncertainty of the first-month transfer from Aave V1 to Aave V2, the sample is from 1/1/2021 to 

30/12/2022. 

As our first analysis of liquidity connectedness shows that Aave is the net transmitter of liquidity 

spillovers in the DeFi lending market, the second part investigates the determinants of funding 

 
6 Aave began as ETHLend in 2017 after it raised $16.2 million in an Initial Coin Offering (ICO) to create a decentralized 
peer-to-peer lending platform. Later, they rebranded to Aave when they switched to a liquidity pool model. Aave 
launched the Aave Protocol in 2020, an open-source and non-custodial liquidity protocol where users can earn 
interest on deposits and borrow assets. Aave introduces several innovative features in V2, such as 
swapping collateral assets and repaying debts with collateral assets, making it industry standard. 
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liquidity in the Aave lending platform. Aave is the largest DeFi lending platform, measured by the 

total value locked. Aave provides services on multiple blockchains; however, Ethereum is the most 

popular and attracts the largest transaction. Therefore, this study focuses on Aave on the Ethereum 

blockchain. This study chooses five cryptocurrencies, including Wrapped Bitcoin (WBTC), 

Wrapped Ether (WETH), and three stablecoins (DAI, USDC, USDT), because they represent over 

80% of the market size in the platform. For example, these coins account for approximately 89% 

of the market size in Aave as of Jan 24, 2022 (aave.com). Therefore, the findings of this study can 

apply to the DeFi lending sector of other platforms with a similar mechanism. 

The data of the studied DeFi lending platforms, such as the total amount borrowed, total supply, 

interest rate, number of depositors, and borrowers, are publicly available in Ethereum's blockchain. 

The transaction data (i.e., interest rate) accrued based on floating rates every block (i.e.,15 

seconds). Since the data is stored as transactions in the ledger, different solutions have come out 

to ease fetching and querying this data. Some papers (Faqir-Rhazoui et al., 2021; Gudgeon, 

Werner, et al., 2020; Schär & Gronde, 2021) have used The Graph7. The Graph is a popular 

protocol for Ethereum-based Decentralized applications as it indexes blockchain data and makes 

the associated databases accessible through an API. This data can be queried using the GraphQL 

language8. In essence, blockchain is open-source, allowing anyone to crawl the same data and 

check the reliability and validity of that data. Similar to the first research question, this study chose 

the sample period starting from the launch of Aave V2. The sample period is from 1/1/2021 to 

31/7/2022. This study will collect 5-minute, hourly, and daily data transactions for studied 

variables of each coin in the platform in the sample period. 

As discussed in the literature, we will divide the sample into the bull and bear markets phase based 

on the Crypto Fear and Greed Index from Alternative.me9. This index is developed by gathering 

data on the emotions and sentiments of investors from five different sources, including volatility, 

market momentum, social media, dominance, and trends. The index ranges from 0 (extreme fear) 

to 100 (extreme greed). A high index level may indicate that investors are greedy and bullish on 

 
7 https://thegraph.com/ 
8 https://graphql.org/ 
9 https://alternative.me/crypto/fear-and-greed-index/ 

https://thegraph.com/
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the market. In contrast, a low index level may show investors are concerned about the market's 

instability. Therefore, the bull and bear market phases are divided as in Figure 1 below. 

[Insert Figure 1 here] 

3.2. Variables Measurements 

In traditional finance, the Basel Committee of Banking Supervision defines funding liquidity as 

“the ability to fund increases in assets and meet obligations as they come due, without incurring 

unacceptable losses” (BCBS 2008, p.1). The International Monetary Fund (IMF) defines funding 

liquidity as “the ability of a solvent institution to make agreed-upon payments in a timely fashion” 

(IMF 2008, p. 11). In traditional banking and finance, there are various methods to measure 

funding liquidity in banks (i.e., Berger & Bouwman, 2009; Boudt et al., 2017; Holmström & 

Tirole, 1998). However, these comprehensive measures rely on the balance sheet and how loans 

are classified, which may not be suitable for DeFi lending. 

Similar to the definition of funding liquidity in traditional banks, funding liquidity in DeFi lending 

is understood as the ability of lending platforms to settle the obligations of borrowers and lenders 

(Gudgeon, Werner, et al., 2020). According to Gudgeon, Werner, et al. (2020), the available 

liquidity in a DeFi lending pool is measured by the difference between the total supply and total 

borrows of funds in the protocol. Recent papers in the DeFi literature also use this method to 

measure the funding liquidity in the DeFi lending pool (Cirikka, 2021; Gudgeon, Perez, et al., 

2020a; Sun, 2022). Therefore, this study chooses available liquidity in DeFi Lending platforms as 

the measurement of funding liquidity in these protocols for investigating the liquidity 

connecnessted between DeFi Lending platforms. The following equation express the measurement 

of funding liquidity. 

Funding liquidity – Method 1:  

Funding liquidityt = Total depositt  - Total borrowt 

where Funding liquidityt is the available liquidity of a DeFi lending platform on date t. Total 

depositt is the average value of funds locked into the protocol's smart contracts on date t. Total 

borrowt is the average value of outstanding borrows on the protocol on date t. 
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For the next part of my research, as other variables in our model are rate variables, another 

measurement that can also be used to measure the liquidity in DeFi Lending is the Utilization rate. 

These two measurements can be used interchangeably in the previous research (Cirikka, 2021; 

Gudgeon, Perez, et al., 2020a; Sun, 2022). In essence, this calculation is still based on the total 

deposit and total borrow for each token in the lending pool.  

Funding liquidity – Method 2: Utilization rate of token i at time as follow: 

Utilizationratei,t = Total borrowi,t/ Total depositi,t 

where Total borrowi,t represents the total amount borrowed of token i at time t, Total depositi,t is 

the total amount supply of token i at time t in the lending pool.  

The Utilization rate method is quite similar to the LDR (loan to deposit) ratio often used in banking 

research (i.e., Marozva, 2015; Van den End, 2016). As this rate is close to 1, the lending pool 

experiences periods of near-illiquidity and all supplied funds are almost loaned out. The value of 

these two measurements is the opposite, which can be observed clearly in Figure 10 and Figure 

11. 

The measurement of other variables in our analysis is explained in Table 1. 

[Insert Table 1 here] 

3.3. Method 

3.3.1. Time-varying Parameter VAR (TVP-VAR) Model 

The most popular econometric method for examining connectedness is one proposed by (Diebold 

& Yilmaz, 2009). Diebold and Yilmaz (2009) introduce a connectedness index derived from a 

Cholesky-type VAR model's factor error variance decomposition (FEVD). Diebold and Yilmaz 

(2012) further developed the connectedness index by introducing two improvements to the 

technique proposed in their 2009 paper. First, the generalized VAR framework is used to replace 

the Cholesky-type VAR, thus eliminating the issue of variable ordering when obtaining variance 

decompositions from the VAR model. The second improvement is the introduction of net 

connectedness and directional connectedness between markets, as opposed to the prior framework, 

which only considered total connectedness. Diebold and Yılmaz (2014) then demonstrated how 

their proposed measures of connectedness are related to crucial connectedness measurements in 
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network theory. This method is employed to track contagions in a predetermined network to 

mitigate the adverse effects caused by a specific economic shock. 

However, the Diebold and Yilmaz (2009, 2012, 2014) approach has one limitation: it depends on 

a randomly chosen rolling window size of the changing connectedness. To address this issue, 

Antonakakis et al. (2020) proposed using the mean squared prediction error of the applied rolling 

window VAR to select the best window size. Antonakakis et al. (2020) combine the TVP-VAR 

method of Koop and Korobilis (2013) with the connectedness index computation of Diebold and 

Yilmaz (2009, 2012, 2014) to overcome the shortcomings of the rolling-window approach. This 

method is more advantageous than the rolling-window approach in at least three ways. First, it 

eliminates the necessity of deciding upon a window size which is usually an arbitrary decision 

without any statistical basis. Second, it prevents the loss of observations which would be equal to 

the width of the window size as opposed to the rolling sample analysis. Third, the Kalman Filter 

is used to generate coefficients that are matched to every piece of data in the sample, whereas the 

rolling window technique does not allow for the recognition of data points that cause a spike or 

decrease in the connectedness index within a given window. 

Therefore, this study takes advantage of the time-varying parameter VAR (TVP-VAR) model of 

Antonakakis et al. (2020) to look into liquidity connectedness across the three main DeFi Lending 

platforms. The following present the TVP-VAR connectedness approach in combination with 

Diebold and Yilmaz’s original technique.  

The TVP-VAR(p) model can be expressed as: 

𝑦𝑡 = 𝛽𝑡𝑥𝑡−1 + 𝜖𝑡                              𝜖𝑡|𝐹𝑡−1~𝑁(0, 𝑅𝑡)                                  (1) 

𝑣𝑒𝑐(𝛽𝑡) = 𝑣𝑒𝑐(𝛽𝑡−1) + 𝑣𝑡                       𝑣𝑡|𝐹𝑡−1~𝑁(0, 𝑆𝑡)                                 (2) 

in which 𝑦𝑡 and 𝑥𝑡−1 = [𝑦𝑡−1, … , 𝑦𝑡−𝑝]′ represent 𝑁 × 1 and 𝑁𝑝 × 1 dimensional vectors, 

respectively. 𝛽𝑡 is an 𝑁 ×𝑁𝑝 dimensional time-varying coefficient matrix, 𝜖𝑡 is an 𝑁 × 1 

dimensional vector of error disturbance with a corresponding 𝑁 × 𝑁 time-varying variance-

covariance matrix, 𝑅𝑡. 𝑣𝑒𝑐(𝛽𝑡), 𝑣𝑒𝑐(𝛽𝑡−1), 𝑆𝑡 is an 𝑁2𝑝 × 𝑁2𝑝 dimensional matrix. and 𝑣𝑡 are 

𝑁2𝑝 × 1 dimensional vectors.  
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The next step is to use the Wold representation theorem to transform the TVP-VAR into a 

TVP-VMA, which will allow for the calculation of the generalized impulse response functions 

(GIRF) and the generalized forecast error variance decomposition (GFEVD) (Koop et al., 1996; 

Pesaran & Shin, 1998): 

𝑦𝑡 = ∑ 𝐿′𝑊𝑡
𝑗
𝐿𝜖𝑡−𝑗

∞
𝑗=0                                                                                    (3) 

𝑦𝑡 = ∑ 𝐴𝑖𝑡𝜖𝑡−𝑗
∞
𝑗=0                                                                                          (4) 

where 𝐿 = [𝐼𝑁 , … , 0𝑝]′ is an 𝑁𝑝 × 𝑁 dimensional matrix, 𝑊 = [𝛽𝑡; 𝐼𝑁(𝑝−1), 0𝑁(𝑝−1)×𝑁] is an 

𝑁𝑝 × 𝑁𝑝 dimensional matrix.  

The GIRFs represent the response of all variables to a shock in variable i by computing the 

differences between a J-step-ahead forecast with and without the shock. The calculation is as 

follows: 

𝐺𝐼𝑅𝐹𝑡(𝐽, 𝛿𝑗,𝑡, 𝐹𝑡−1) = 𝐸(𝑌𝑡+𝐽|𝜖𝑗,𝑡 = 𝛿𝑗,𝑡, 𝐹𝑡−1) − 𝐸(𝑌𝑡+𝐽|𝐹𝑡−1)                                    (5) 

𝜑𝑗,𝑡
𝑔 (𝐽) =

𝐴𝐽,𝑡𝑆𝑡𝜖𝑗,𝑡

√𝑆𝑖𝑗,𝑡

𝛿𝑗,𝑡

√𝑆𝑖𝑗,𝑡
              ,              𝛿𝑗,𝑡 = √𝑆𝑖𝑗,𝑡                               (6) 

𝜑𝑗,𝑡
𝑔 (𝐽) = 𝑆

𝑗𝑗,𝑡

−1 2⁄ 𝐴𝐽,𝑡𝑆𝑡𝜖𝑗,𝑡                                                                            (7) 

Where J is the forecast horizon, 𝛿𝑗,𝑡 represents selection vector, which has the value of one on the 

j-th position and zero otherwise, 𝐹𝑡−1 is the information set up to time 𝑡 − 1, and 𝜑𝑗,𝑡
𝑔 (𝐽) represents 

the GIRFs of variable j,  

Then, GFEVD is calculated, which is the amount of variation that one variable has on other 

variables. The calculation is given by: 

�̃�𝑖𝑗,𝑡
𝑔 (𝐽) =

∑ 𝜑𝑖𝑗,𝑡
2,𝑔𝐽−1

𝑡=1

∑ ∑ 𝜑
𝑖𝑗,𝑡
2,𝑔𝐽−1

𝑡=1
𝑁
𝑗=1

                                                                      (8) 

where ∑ �̃�𝑖𝑗,𝑡
𝑔 (𝐽)𝑁

𝑗=1 = 1 and ∑ �̃�𝑖𝑗,𝑡
𝑁 (𝐽)𝑁

𝑖,𝑗=1 = 𝑁. Then, the total connectedness index (TCI) is built 

based on the GFEVD: 

𝐶𝑡
𝑔(𝐽) =

∑ �̃�𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑖,𝑗=1,𝑖≠𝑗

∑ �̃�
𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑖,𝑗=1

× 100 =
∑ �̃�𝑖𝑗,𝑡

𝑔
(𝐽)𝑁

𝑖,𝑗=1,𝑖≠𝑗

𝑁
× 100                    (9) 
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Next, this connected approach allows investigation of how a shock in one variable spills 

over to other variables. First, we can define the total directional connectedness TO others, which 

means the shock transmitted from variable i to all other variables j. 

𝐶𝑖→𝑗,𝑡
𝑔 (𝐽) =

∑ �̃�𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑖,𝑗=1,𝑖≠𝑗

∑ �̃�
𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑗=1

× 100                                                       (10) 

Second, we can define the total directional connectedness FROM others, which means the 

shock that variable i receives from all other variables j. 

𝐶𝑖←𝑗,𝑡
𝑔 (𝐽) =

∑ �̃�𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑖,𝑗=1,𝑖≠𝑗

∑ �̃�
𝑖𝑗,𝑡
𝑔

(𝐽)𝑁
𝑗=1

× 100                                                       (11) 

Finally, the net total directional connectedness can be calculated by subtracting the total 

directional connectedness TO others from the total directional connectedness FROM others: 

𝐶𝑖,𝑡
𝑔
= 𝐶𝑖→𝑗,𝑡

𝑔 (𝐽) − 𝐶𝑖←𝑗,𝑡
𝑔 (𝐽)                                                       (12) 

The net total directional connectedness of variable i can be understood as its influence on 

the analyzed network. If 𝐶𝑖,𝑡
𝑔

 is positive, then this suggests that variable i has a greater effect on the 

network than it is affected by it, meaning that it is a shock transmitter. In contrast, if 𝐶𝑖,𝑡
𝑔

 is negative, 

then variable i is more influenced by the network, making it a shock receiver. 

3.3.2. An autoregressive distributed lag (ARDL) model 

For investigating the determinants of funding liquidity in Aave, the endogeneity issue is 

particularly relevant for our time series data, as the variables may be determined simultaneously. 

An Autoregressive distributed lag (ARDL) is a least-squares regression that includes lags of the 

dependent variable and explanatory variables. A key advantage of the ARDL approach is that it 

allows treating all the variables series as potentially endogenous (Pesaran & Shin 1999). This 

method is used due to several proven advantages over other methods to deal with time-series data, 

such as Vector Autoregression (VAR) or co-integration techniques. The ARDL model allows 

dealing with data that have a mixture of orders of integration (i.e., I(0) and/or I(1)), which are 

usually present when a structural break problem occurs. Therefore, the ARDL approach 

circumvents the pre-testing issues that require variables already classified into standard 

cointegration, I(0) or I(1) (Pesaran et al., 2001). Moreover, Pahlavani et al. (2005) argue that the 
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ARDL model helps avoid making many difficult choices, such as the order of VAR, the treatment 

of deterministic elements, and the optimal number of lags to be used. The reason is that the ARDL 

technique's estimation procedure allows the utilization of various optimal numbers of lags for 

different variables in the model. The results of unit root tests are presented in Table 5, revealing 

that the variables are a mix of orders of integration I(0) and I(1)) and none of the variables is I(2). 

Therefore, according to Shrestha and Bhatta (2018), this study applies the ARDL model. 

The ARDL model for this study can be defined as follows: 

FLi,t = β0 + ∑ γi𝑃
𝑖=1 FLi,t-i  + ∑ ∑ 𝑿𝑖𝑗,𝑡−𝑖

𝑞𝑗
𝑖=1

𝑘=1
𝑗=0

’ βj, i + Ɛt     (I) 

where FLi,t denotes the current value of funding liquidity of cryptocurrency "i" at time t. Where its 

number of lags is represented by p – past value of funding liquidity. p is optimal lag length which 

is determined by information criteria such as SIC (Schwarz Information Criterion) or AIC (Akaike 

information criterion). Current and past values of independent variables, including the variable 

borrow Interest rate (IR), Market power of users (HHI), number of depositors (De), and borrowers 

(Bo), are represented by the matrix X, where the number of lags of current and past values of each 

variable is represented by qk. In our analysis, the past value of funding liquidity and the current 

and past values of explanatory variables (i.e., VB, HHI, De, Bo) function as dynamic regressors 

of the current funding liquidity value. 

Bounds test for co-integration 

The ARDL method also allows assessing simultaneously the short-term and long-term coefficients 

associated with the studied variable. The dynamic relationship between the dependent variable and 

explanatory variables can be analyzed using an ARDL model, which can then be converted into a 

long-run representation (Pesaran et al., 2001). Therefore, this study further performs the ARDL 

bounds test to check whether the variable has a long-term cointegration.  

Novel dynamic ARDL simulation 

In addition to understanding the factors that affect the funding liquidity of the DeFi Lending 

platform, this study examines the impact of shocks on that liquidity. The simulation can be a good 

source for policy consideration. Therefore, we apply the novel dynamic ARDL simulation (Jordan 

& Philips, 2018) to capture the future shocks of the market power of users and variable borrow 

rates variables on the DeFi Lending platform's liquidity. The application of novel dynamic ARDL 
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simulation to our data followed the steps proposed by Jordan and Philips (2018) and the guidelines 

from Sarkodie and Owusu (2020). Figure 2 below illustrates the steps used in carrying out the 

empirical analysis.  

[Insert Figure 2 here] 

4. Results and discussion 

4.1. Liquidity Connectedness between DeFi Lending platforms 

4.1.1. Descriptive statistics 

Figure 3 exhibits the evolution of the liquidity series of three main DeFi lending platforms 

during the sample period. We observe the common patterns between time series during the 2021-

2022 period. MakerDAO has the largest available liquidity, followed by Aave and then 

Compound. All platforms witnessed a sharp decrease in available liquidity in the second half of 

2022, which is quite similar to the cryptocurrency market volatility during this time. 

[Insert Figure 3 here] 

The first requirement to conduct the TVP-VAR method is to ascertain whether these three liquidity 

series are stationarity. As our variables are not stationary according to the unit root test statistics 

developed by Elliott et al. (1996), we use their first-differenced series, which can be seen as a 

percentage change of these variables. Figure 4 illustrates the pattern of these series. 

[Insert Figure 4 here] 

Table 2 reports the summary statistics of the transformed series. The variance shows that liquidity 

in MakarDAO is the most volatile variable, while Aave's liquidity is the least volatile. Next, the 

Skewness and Kurtosis tests show that all of the series are leptokurtic and significantly right-

skewed. The Jarque and Beranormality test shows that all variables are not normally distributed. 

The ERS test indicates that all series are stationary at 1% significance level. Therefore, these series 

meet the requirement to conduct the TVP-VAR method and can be used in level to compute the 

FEVD for building dynamic liquidity connectedness indices. Finally, we find evidence suggesting 

that series are autocorrelated and exhibit ARCH/GARCH errors, making a TVP-VAR model with 

time-varying covariances an appropriate choice to estimate interlinkages between the considered 

variables. 
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[Insert Table 2 here] 

4.1.2. The dynamic liquidity spillovers among DeFi Lending platforms 

Table 3 reports the average liquidity connectedness analysis results from the TVP-VAR 

model. 

[Insert Table 3 here] 

Table 3 reports the average funding liquidity variations of any DeFi Lending protocol due to cross-

protocol liquidity connectedness during the studied period is 42.97. Figure 5 displays a graphical 

plot of how the TCI has changed over time. This index is relatively high over time and spikes to 

over 70 in some period, which indicate extreme liquidity connectedness across different DeFi 

lending platforms, which confirms the composability of DeFi. The TCI values were above the 

sample average in late 2021 and most of the time in 2022, a period of high volatility in the 

cryptocurrency market. This indicates that the liquidity connectedness across DeFi platforms was 

very responsive to uncertain events in the cryptocurrency market.  

[Insert Figure 5 here] 

Total directional liquidity connectedness TO other platforms 

The results in Table 3 indicate that Aave is the largest transmitter of liquidity spillovers to other 

platforms (Total TO value is 52.49%), while the transmitter of Compound and MakerDAO are 

lower, with a value of 31.21% and 45.21%, respectively. Figure 6 shows the evolution of each 

total directional liquidity connectedness to the other platforms during the sample period. We can 

see that Aave has been actively transmitting its liquidity shocks to different DeFi Lending markets, 

while Compound's influence is comparatively insignificant. 

[Insert Figure 6 here] 

Total directional liquidity connectedness FROM other platforms 

Table 3 results show that MakerDAO receives the highest average liquidity spillovers from other 

DeFi Lending markets, with a value of 48.93% of its 10-day-ahead FEVD being caused by shocks 

in Aave and Compound. The second greatest receiver of liquidity spillovers is Aave (Total FROM 

value is 41.3%), and the last is Compound (Total FROM value is 38.67%). Figure 7 plots the 

evolution of each total directional liquidity connectedness from the other platforms during the 
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sample period. The figure reveals that MakerDAO had the highest absorption of liquidity 

spillovers compared to the Aave and Compound platforms. 

[Insert Figure 7 about here] 

Net liquidity connectedness 

Table 3 and Figure 8 show that Aave is the net transmitter of liquidity spillovers, whereas 

Compound and MakerDAO serve as net receivers. Only the NET value of Aave is positive 

(11.19%), whereas the NET value of Compound and MakerDAO are (-7.47%) and (-3.72%), 

respectively. These results mean that Compound receives 7.47% more liquidity spillovers than it 

transmits, while the corresponding number for MakerDAO is 3.72%. Figure 8 also shows that the 

Net total directional connectedness index for Aave was greater than zero throughout the sample 

period, whereas the corresponding value for Compound and MakerDAO are negative in most of 

the given time. This result is also described visually in Figure 9 

[Insert Figure 8 here] 

[Insert Figure 9 here] 

In sum, we can see that liquidity in all DeFi Lending platforms is highly interconnected, which 

brings concern about systematic risk because it allows for risk transfer from one project to another 

and expands outward. Therefore, DeFi Lending may also face a similar problem as traditional 

banks as Allen and Gale (2004) suggest that liquidity services can serve as a potential source of 

contagion risk among banks, with the potential for liquidity shocks to trigger the collapse of entire 

financial systems (Diamond & Rajan, 2005). In the case of DeFi Lending, Aave (one of the largest 

total value locked DeFi Lending protocols) is founded to be the net transmitter of liquidity 

spillovers to other DeFi platforms (Figure 9), and the total connectedness index is relatively high 

over time with the average value of 64.46%.  

This result contributes to the literature on the spillover effect in the new emerging financial market 

– DeFi (Cevik et al., 2022; Karim et al., 2022; Piñeiro-Chousa et al., 2022; Qiao et al., 2023; 

Ugolini et al., 2023; Umar et al., 2022). While previous studies focus on the connectedness 

between DeFi tokens to other financial asset classes such as cryptocurrencies, NFTs, stock, oil, 

and gold, this research focuses on the connectedness within the DeFi ecosystems. While the 
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composability of DeFi has been discussed extensively in the literature (Meegan & Koens, 2021; 

Saengchote, 2021b; Schär, 2021; Tolmach et al., 2021; von Wachter et al., 2021), limited research 

quantifies the composability property of DeFi. This study is the first to apply the time-varying 

parameter vector autoregression method (TVP-VAR) of Antonakakis et al. (2020) to quantify the 

degree of liquidity connectedness across DeFi Lending platforms over time. The research results 

show that liquidity in DeFi Lending is extremely interconnectedness. These findings align with 

the literature on liquidity in the traditional market. In both DeFi and CeFi markets, liquidity is 

always an important concern for high connectedness (Allen & Gale, 2004; Diamond & Rajan, 

2005; Elliott et al., 2014). Although DeFi protocols are highly competitive to offer better services 

for users, investors, designers, and governance token holders should aware that protocols are 

connected at a high level. Therefore, the shocks to one platform could lead to contagion risk to the 

DeFi system. Therefore DeFi users should be aware of the potential systematic risk in this entire 

new ecosystem. Moreover, as discussed above, the increasing connection between DeFi and the 

traditional financial market (BIS 2022, OECD 2022) potentially causes instability in the financial 

market. Therefore, policymakers should be aware of this source of risk when making decisions.  

4.2. Determinants of Liquidity in Decentralized Lending 

4.2.1. Descriptive statistics   

[Insert Table 4 here] 

Table 4 shows descriptive statistics of variables for 5-minute transaction data. Because the sample 

period is from 1/1/2021 to 31/7/2022, therefore, there are 166,167 observations during that period. 

The mean utilization rate variable of USDT is the highest (0.8023), followed by USDC and DAI, 

with values of 0.7566 and 0.7144, respectively. In contrast, the mean utilization rate of WBTC and 

WETH is much lower, with values of 0.0460 and 0.1376, respectively. This result is suitable with 

the value of available liquidity for WBTC and WETH pool, which is relatively much higher than 

for three stablecoins. One of the reasons is that both WBTC and WETH pools have the highest 

number of depositors but relatively low borrowers.  

[Insert Figure 10 here] 

[Insert Figure 11 here] 
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The value of two liquidity measurements, as mentioned in Section 3.2, is the opposite. Figures 10 

and 11 illustrate the available liquidity (measurement of funding liquidity used in the first part of 

our analysis) and the utilization rate  (measurement of funding liquidity used in the second part of 

our analysis) for five studied tokens in Aave, respectively. As we can see, for three stablecoins 

(USDC, USDT, DAI), as available liquidity in liquidity pools will be low, the utilization rate 

should be high and close to 1. In contrast, for WETH and WBTC, the available liquidity is 

relatively high; therefore, the utilization rate is quite low. 

4.2.2. Stationary test 

To deal with time series data, we first need to know the type of data to find the suitable method 

(Shrestha & Bhatta, 2018). Therefore, this study first examines the stationary existence of the 

studied variables. We applied two unit root tests, including the Phillips and Perron - PP test 

(Phillips & Perron, 1988) and the Augmented Dickey-Fuller – ADF test (Dickey & Fuller, 1979). 

The results of unit root tests are presented in Table 5, revealing that variables used in model I are 

a mix of orders of integration I(0) and I(1). And none of the variables is I(2) because both the ADF 

and PP test for the first-difference variables shows no unit root at 1% significance level. Therefore, 

as discussed in the research method, this study applied the ARDL model. 

[Insert Table 5 here] 

4.2.3. ARDL model estimation and cointegration test 

Bounds test for co-integration 

The following step in the ARDL method is the bounds test to check whether the variable has a 

long-run cointegration. The Bounds test is used to analyze the relationship between variables in 

the long run. This is completed by performing a joint significance F-test on the coefficients of 

variables associated with lagged levels. Co-integration means that the variables move together and 

do not diverge from the long-run equilibrium over time. Table 6 shows the results of the calculated 

F-statistics from the bounds test (Pesaran et al., 2001) for co-integration analysis with unrestricted 

constant and no trend for the 5-minute data. The F-statistic results in Table 6, being above the 

upper bound critical value for all tokens, allow us to reject the null hypothesis of no existence of 

the long-run relationship. These results imply that there is an existence of co-integrating 

relationships, which suggests that the connection between the variables has been substantial over 



24 
 

the studied period. Consequently, independent factors have critical roles in influencing the funding 

liquidity of each token in the long run. Almost the pattern in the short run still exists in the long 

run. 

[Insert Table 6 here] 

Table 7 shows the short-run relationship of the concerned independent variables 

[Insert Table 7 here] 

The results from Table 7 show that the market power of users has a significant impact on the 

funding liquidity of each token pool in the DeFi Lending platforms. This result confirms the H2 

hypothesis that the market power of users had a significant effect on funding liquidity in DeFi 

Lending platforms. For DAI and USDC, the sign of coefficients is negative in the bull market and 

positive in the bear market. In contrast, for USDT, the sign of coefficients is positive in the bull 

market and negative in the bear market. The coefficients of WETH and WBTC are relatively low 

(nearly zero) compared to the three stablecoins, indicating that the market power of users in these 

two lending pools is less significant. This result is quite explicable with the fact that the HHI index 

of these two tokens is lower than 1500 during almost the sample period, indicating a competitive 

marketplace (Figure 12). Therefore, when the market power of the user is low, it will have less 

impact on the funding liquidity of the pool. In contrast, three stablecoins have the HHI index at 

the level of moderately concentrated and highly concentrated at some specific time; therefore, the 

market power of users in these platforms will have a higher impact on liquidity compared to WETH 

and WBTC.  

[Insert Figure 12 here] 

Even to be claimed as a decentralized system, the centralized property still exist in other forms in 

DeFi. The HHI index provides evidence that the oligopsony problem exists in the DeFi Lending 

market. In contrast with the monopoly problem that often exists in the traditional financial market, 

DeFi protocols are highly competitive to offer better services for users. However, this can transmit 

to the oligopsony problem, which is the market power of users. This paper is among the first to 

measure the market power of users index in DeFi Lending and investigate their impact on the 

platform’s liquidity. The results show that the higher the market power of users, the higher effect 

it has on the liquidity of DeFi Lending, and the magnitude of the impact is even higher in the bear 
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market than in the bull market. Therefore, during the market uncertainty period, the market power 

of users is a big concern for the liquidity problems in the DeFi market.  

These results align with the stream of literature that argues that a form complete “decentralization” 

of finance may hard to fully achieved and is ultimately chimerical because finance involves 

irreducible dilemma aspects, even in simple and direct forms; it cannot be done purely 

algorithmically (Harwick & Caton, 2020; Zetzsche et al., 2020). Brown & Oates (1987) argue that 

a fully decentralized system will be suboptimal and may need central participation in their 

particular use case. The evidence shows that inefficiency problems still exist in the DeFi market. 

Interest rate  

The analysis results show that the variable borrow rate positively impacts the utilization rate for 

all tokens. Therefore, interest rates variable have a negative impact on the funding liquidity of 

DeFi Lending. These findings mean that the higher borrowing rate does not lower the Utilization 

rate for each token in the DeFi Lending pool. Therefore, the result rejects the first hypothesis (H1). 

At the same time, the magnitudes of coefficients are higher in the bear than in the bull market.  

From the research results of the interest rate factor, we should be aware that the current purely 

algometric interest model in DeFi Lending is inefficient in controlling liquidity. Although 

increasing the borrowing rate could lower liquidity in the long term through the simulation results, 

the immediate impact of this interest rate model is the opposite. Even though DeFi is claimed to 

be a financial liberalization market in which the interest rate is adjusted due to the supply and 

demand of loanable funds, this interest rate model does not work as expected. One possible reason 

for the inefficiency of obtaining optimal supply and demand based on the interest rate is the 

existence of investor behavior. The explanation for that can be based on the prospect theory, also 

known as the loss-aversion theory, developed by Daniel Kahneman and Amos Tversky in 1979. It 

aims to explain how people act rather than what decisions they would make if they were perfectly 

rational (as rational choice theory proposes). The concept of prospect theory states that investors 

have different reactions to gains and losses, with a greater emphasis placed on potential gains than 

losses. When given the option between two equal choices, an investor is more likely to select the 

one associated with possible profits since losses cause a more significant emotional impact. People 

may not always be risk-averse and tend to be more afraid of risk in profit rather than the risk of 
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losing money. People opt for taking a risk rather than accepting certain losses to elude any damage. 

They are willing to gamble and believe they will not suffer any repercussions. 

This theory explains the phenomenon of the irrational behavior of investors. As the borrowing rate 

increases, if the borrower repays the loan immediately, they have to bear the transaction fee and 

loss the potential gain in other investments (if the health factor does not exceed the limit to activate 

the automated liquidation). Therefore, the current interest rate model does not work effectively to 

control the liquidity in the pool. This result is in line with the literature that has looked into the 

behavior of investors when it comes to investing in cryptocurrencies. These studies have found 

that investors engage in herding behavior rather than being rational and are influenced by the hype 

surrounding cryptocurrencies. This leads to irrational investment decisions that affect other 

investors who invest in cryptocurrencies without considering the underlying fundamentals (Ajaz 

& Kumar, 2018; Bouri et al., 2018; Jalal et al., 2020; Vidal-Tomás et al., 2019). The empirical 

evidence shows that the assumption of financial liberalization with everything pure algometric 

seems hard to be achieved in the DeFi market. The reason is that due to prospect theory, irrational 

behavior exists in the cryptocurrency market, making the predesigned interest model not follow 

the rational choice theory to ensure the liquidity of platforms. 

Depositor & Borrower 

For the number of depositors variable, the results show a similar pattern for all tokens, the number 

of depositors in each token pool has a negative impact on the Utilization rate, meaning that an 

increase in the number of depositors in the lending pool leads to a decrease in the Utilization rate, 

increase the funding liquidity. These findings confirm the third hypothesis (H3). In contrast, for 

the number of borrowers variable, the results show that the number of borrowers in each token 

pool has a positive impact on the Utilization rate, meaning that an increase in the number of 

borrowers in the lending pool leads to an increase in the Utilization rate, lower the funding 

liquidity. These results confirm the fourth hypothesis (H4). 

Moreover, the magnitudes of coefficients of the two variables for the three stablecoins are higher 

than for WETH and WBTC, which means the change in the number of depositors and borrowers 

has more impact on the funding liquidity of these stablecoins than for WETH and WBTC. One 

possible reason is that both WBTC and WETH pools have many depositors, which is much higher 

than the number of borrowers, and the availability of liquidity in these pools is relatively high; 



27 
 

therefore, the change in the number of depositors and borrowers has not much impact of the 

funding liquidity.  

4.2.3. Robustness checks and diagnostic measures 

As mentioned above, the endogeneity problem is a major concern in our model due to the potential 

correlation between the explanatory variable and the error term. Unobserved heterogeneity or 

omitted variables can cause this issue. To deal with this, Pesaran & Shin (1999) declared that if 

the ARDL model does not have any residual correlation, endogeneity is less of a problem. In order 

to check the residual correlation, this study applies the popular Breusch-Godfrey LM statistics test. 

The results of LM tests shown in table 7 do not indicate autocorrelation in the error term; therefore, 

endogeneity is not an issue for our model. At the same time, Pesaran & Shin (1999) have noted 

that the appropriate lag order in the ARDL model can address both serial correlation and 

endogeneity issues.  

In addition, cumulative sum tests for the parameter are conducted to investigate if there is any 

structural change in the estimated coefficient over time. The result from the cumulative sum test 

revealed that the statistic of the estimates does not surpass the 95% confidence boundary, 

suggesting that the estimated coefficient over time remains stable (Table 7). 

This study also uses both 5-minute and 1-hourly data for analysis. The analysis results from 1-

hourly data, as reported in Table 8 and Table 9, show a similar pattern to the analysis of 5-minute 

data and the results continue to hold.  

[Insert Table 8 here] 

[Insert Table 9 here] 

 

4.2.4. Dynamic ARDL simulations 

This section discusses the result of the market power of user simulation and variable borrow rate 

simulation using a novel dynamic ARDL simulation. In this case, we use the daily data to capture 

the impact of counterfactual shock in the long run. In this simulation, we assume that the time at 

which the shock occurs is 15 days after, and the total range of the simulation is 50 days. 
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For the case of market power of user simulation, other variables are constant, and the simulation 

is based on a + 30% change in the HHI index, which means that the level of concentration can 

increase to the next level (i.e., from competitive marketplace to moderately concentrated or from 

moderately concentrated to highly concentrated). The outcome of the dynamic ARDL parameters 

is presented in Figure 13. 

[Insert Figure 13 here] 

For USDC, USDT, and WETH, the counterfactual shock immediately impacts the utilization rate, 

which means that a shock that increases the concentration of users, leading to immediate lower 

liquidity. For DAI, for the first five days, it has no impact, but after that, it also lowers the liquidity. 

For WBTC, one month later, we can see the effect of the shock, and it is also relatively low. 

For the case of variable borrow rate simulation, other variables are constant. The simulation is 

based on a + 30% change in the variable borrow rate, which means that when the token's price has 

a high fluctuation, interest rates have to be adjusted according to the supply and demand of the 

token. The borrowing rate must be increased to encourage people to repay the loans to increase 

liquidity. The outcome of the dynamic ARDL parameters is exposed in Figure 14.  

[Insert Figure 14 here] 

5. Conclusion  

This study contributes to the existing DeFi literature by providing the first empirical evidence on 

the connectedness between DeFi Lending platforms and the determinants that affect the liquidity 

in DeFi Lending. 

As mentioned in the introduction, one of the main differences between DeFi and CeFi is that DeFi 

is an unregulated market. Therefore, as the illiquidity problem occurs in DeFi Lending platforms, 

there is no intervention of regulatory authority (i.e., a bailout from governments or Deposit 

insurance as introduced in the seminal paper of Diamond and Dybvig (1983)). Therefore, the 

empirical research questions evaluate the importance of liquidity in DeFi Lending platforms and 

find internal factors that can be adjusted through governance and the design of the DeFi platform 

to stabilize liquidity. 
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Our results demonstrated that one drawback of the DeFi Lending system compared to the 

traditional system is the extreme liquidity connectedness between DeFi lending platforms, given 

that this property has many benefits for improving interoperability in the financial market. In the 

case of DeFi Lending, Aave (one of the largest total value locked DeFi Lending protocols) is found 

to be the net transmitter of liquidity spillovers to other DeFi platforms, and the total connectedness 

index is relatively high over time, with the average value of 64.46%. 

DeFi, as an unregulated market, must deal with illiquidity problems without the intervention of 

regulatory authorities. Therefore to find the solution to stabilize the liquidity in DeFi lending to 

reduce the risk for users, we need to understand the factors that can impact the liquidity in DeFi 

Lending. Our results indicate that the interest rate and the market power of users are two main 

entrain points that should be looked at in the design of DeFi lending to manage the liquidity in 

these platforms. Designers should be aware that the pure algometric interest model in DeFi 

Lending is not as efficient as expected due to the irrational behavior of investors in the 

cryptocurrency market. Besides, the amount of funds each user can hold should be considered 

carefully. The counterfactual shock simulation also suggests that an unexpected event can 

significantly affect the platform's liquidity. 

Moreover, due to the extreme interconnectedness between DeFi lending protocols, as 

demonstrated above, it can face the problem of systematic risk. Therefore, users should be careful 

while using these services. Governance token holders and regulators should consider these factors 

in the platforms' stability management. By focusing on internal factors that can be adjusted through 

governance and design of the platform, this study, in particular, is a good complement to other 

research focus on external factors such as price volatility (Cirikka, 2021; Gudgeon, Perez, et al., 

2020b). So combined with previous studies, this study provides a complete picture of the 

determinants that affect funding liquidity in DeFi Lending. 

Lastly, our results align with the literature that supposes purely "decentralization" of finance may 

be hard to fully achieve (Harwick & Caton, 2020; Zetzsche et al., 2020). Therefore, it is essential 

to regulate DeFi in an appropriate way to deal with its decentralized nature. DeFi can only replace 

intermediaries if it performs functions similar to and better than traditional ones. At the moment, 

DeFi Lending still has inherent problems that need to address.  
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Table 1. Variable measurement 

Variable Notation Measurement 

Dependent variable 

Funding Liquidity (FL)  AL Available liquidityt = Total depositt  - Total 

borrowt 

In which, Funding liquidityt is the available 

liquidity of a DeFi lending platform on date t. 

Total depositt is the average value of funds locked 

into the protocol's smart contracts on date t. Total 

borrowt is the average value of outstanding 

borrows on the protocol on date t. 

 U Utilizationratei,t = Total borrowi,t/ Total depositi,t 

where, Total borrowi,t represents the total amount 

borrowed of token i at time t, Total depositi,t is the 

total amount supply of token i at time t in the 

lending pool. 

Independent variables 

Interest rate VB Collect from the platform in percentage (APY). 

There are three types of interest rate in Aave, 

including: deposit rate, stable borrow rate, 

variable borrow rate10. This study use the variable 

borrow rate to match with the hypothesis. 

Market power of users HHI The Herfindahl-Hirschman Index (HHI) is a 

common measure in order to assess the level of 

industry/sectoral concentration. This index has 

been applied in many industry and research. This 

study applies the HHI index to estimate the user 

 
10 https://docs.aave.com/risk/v/aave-v2/liquidity-risk/borrow-interest-rate 
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concentration level in DeFi lending protocol. 

Formula: 

           HHI = 𝑠1
2 + 𝑠2

2+…+ 𝑠𝑛
2 

where 

𝑠𝑖: the percentage amount of a token hold by 

depositor i compared to the total amount of that 

token in the lending pool. 

n: number of accounts have token deposit in the 

pool. 

HHI Index can vary from close to 0 to 10,000. A 

lower values on the HHI indicates a less 

concentrated market; a HHI value of less than 

1,500 is seen as a competitive market, between 

1,500 and 2,500 is considered moderately 

concentrated, and above 2,500 is highly 

concentrated. 

Protocol depositors De The logarithm of total numbers of depositors in 

the lending pool for each token. 

Protocol borrowers Bo The logarithm of total numbers of borrowers in the 

lending pool for each token. 
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Table 2: Summary statistics 

 

 

AAVE Compound MakerDAO 

Mean -0.004 -0.002 0.001 

Variance 0.023 1.184 1.256 

Skewness 0.411*** -0.124 0.398*** 

 
(0.000) (0.171) (0.000) 

Ex.Kurtosis 8.197*** 349.643*** 355.670*** 

 
(0.000) (0.000) (0.000) 

JB 2058.674*** 3708265.383*** 3837217.479*** 

 
(0.000) (0.000) (0.000) 

ERS -8.511*** -17.411*** -20.455*** 

 
(0.000) (0.000) (0.000) 

Q(10) 36.001*** 178.369*** 187.791*** 

 
(0.000) (0.000) (0.000) 

Q2(10) 195.060*** 181.726*** 181.798*** 

 
(0.000) (0.000) (0.000) 

Notes: *, **, and *** denote significance at 10%, 5% and 1% significance levels respectively. 

Skewness is tested using the D'Agostino (1970) test; Kurtosis: Anscombe and Glynn (1983) test; 

JB: Jarque and Bera (1980) normality test; ERS: Elliott et al. (1996) unit root test; Q(10) and 

Q2(10): Fisher and Gallagher (2012) weighted portmanteau test. 
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Table 3: Average Liquidity Connectedness from TVP-VAR Model 

 From (i) 

Total FROM To (j) AAVE Compound MakerDAO 

AAVE 58.70 15.35 25.96 41.30 

Compound 19.42 61.33 19.25 38.67 

MakerDAO 33.07 15.86 51.07 48.93 

Total TO 52.49 31.21 45.21 128.91 

NET  11.19 -7.47 -3.72 64.46/42.97 

cTCI/TCI 

Notes: AAVE, Compound and MakerDAO is the funding liquidity measure for AAVE, Compound 

and MakerDAO platforms, respectively. Each column of Table 3 corresponds to the forecast error 

variance that has been contributed to a single variable from the other variables, and each row 

shows the individual contribution of each variable to the forecast error variance of all other 

variables in the network. Total TO is the total directional connectedness TO others, which means 

the spillovers from variable i to all other variables j, excluding its own spillovers. Total FROM 

indicates the total directional connectedness FROM others, which means the shock that variable 

i receives from all other variables j, excluding its own spillovers. Net connectedness (NET) is 

computed by subtracting the Total FROM from the Total TO amount. Values reported in the Table 

are average variance decompositions based on 10-step ahead forecasts from a TVP-VAR model 

with lag length chosen via the Bayesian information criterion (BIC). Total Connectedness Index 

(TCI) is the value in bold.  
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Table 4: Descriptive statistics (5-minute data) 

Token Variable Obs Mean Std. Dev. Min Max 

DAI U 166,167 0.7144 0.1491 0.1931 0.9997 

AL 166,167 275,000,000 162,000,000 6,655 506,000,000 

HHI 166,167 0.1327 0.0580 0.0219 0.2825 

VB 166,167 6.46 6.90 1.65 78.90 

De 166,167 3653.00 1033.60 612 4443 

Bo 166,167 1881.65 521.45 311 2390 

USDT U 166,167 0.8023 0.1254 0.3634 1 

AL 166,167  169,000,000 123,000,000   0                   607,000,000  

HHI 166,167 0.1362 0.0506 0.0350 0.3343 

VB 166,167 7.31 8.52 1.79 64.00 

De 166,167 2052.60 715.60 268 2695 

Bo 166,167 2233.32 717.41 292 2915 

USDC U 166,167 0.7566 0.1853 0.1848 1.0000 

AL 166,167 622,000,000 425,000,000 112 1,560,000,000 

HHI 166,167 0.1021 0.0649 0.0105 0.2819 

VB 166,167 6.02 6.97 1.29 64.00 

De 166,167 4723.50 1735.83 445 6795 

Bo 166,167 4372.49 3128.54 409 13874 

WBTC U 166,167 0.0460 0.0261 0.0137 0.2426 

AL 166,167 1,150,000,000 564,000,000 47,600,000 2,250,000,000 

HHI 166,167 0.0829 0.0392 0.0205 0.2109 

VB 166,167 0.57 0.32 0.17 2.99 

De 166,167 1778.26 552.63 369 2309 

Bo 166,167 227.81 69.83 37 331 

WETH U 166,167 0.1376 0.1433 0.0140 0.4983 

AL 166,167 2,980,000,000 2,190,000,000 48,300,000 9,090,000,000 

HHI 166,167 0.0569 0.0318 0.0095 0.1150 
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VB 166,167 1.06 0.78 0.18 3.83 

De 166,167 7818.15 3098.28 972 12729 

Bo 166,167 758.86 311.41 128 1373 

Notes: U, AL, VB, HHI, De, and Bo indicate available liquidity in each lending pool, utilization 

rate in each lending pool, variable borrow interest rate, market power of users, numbers of 

depositors, and numbers of borrowers in each lending pool for each token, respectively. Measures 

of these variables are defined in Table 1.  

 

Table 5: Unit Root Test Results (5-minute data) 

DAI 

Variable Level.ADF Δ.ADF Level.PP Δ.PP 

FL -2.299 -457.642*** -1.830 -458.234*** 

VB -18.582*** -458.347*** -16.647*** -459.853*** 

HHI -2.079 -383.160*** -2.322 -384.089*** 

De -30.574*** -397.951*** -25.902*** -406.236*** 

Bo -19.202*** -395.354*** -15.785*** -404.249*** 

 

USDC 

Variable Level.ADF Δ.ADF Level.PP Δ.PP 

FL -1.587 -436.232*** -1.427 -435.996*** 

VB -22.891*** -468.467*** -19.343*** -475.554*** 

HHI -1.238 -364.907*** -1.548 -367.645*** 

De -19.579*** -395.737*** -16.362*** -403.276*** 

Bo   39.615 -236.233*** 12.198 -363.932*** 

 

USDT 

Variable Level.ADF Δ.ADF Level.PP Δ.PP 

FL -8.841*** -435.407*** -5.391***   -437.807*** 

VB -29.503*** -432.858***      -25.954***     -441.022*** 

HHI -3.066 -407.398*** -3.666   -407.501*** 

De -15.994*** -404.533*** -13.642    -410.528*** 

Bo -19.398***    -388.931*** -14.833*** -404.447***     
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WBTC 

Variable Level.ADF Δ.ADF Level.PP Δ.PP 

FL -1.405 -33.269*** -1.244   -83.043*** 

VB -4.697***    -400.343*** -5.658*** -407.327*** 

HHI -1.498   -27.600*** -0.363 -71.667*** 

De -13.229*** -404.524*** -12.258*** -406.032*** 

Bo -3.808*** -407.701*** -3.809*** -407.701*** 

 

WETH 

Variable Level.ADF Δ.ADF Level.PP Δ.PP 

FL -0.147   -370.374*** -0.549   -375.941*** 

VB   -2.290 -366.254***   -2.797 -371.055*** 

HHI -1.812 -465.796*** -1.701 -462.843*** 

De -14.921*** -388.269*** -12.104*** -397.293*** 

Bo -0.459   -408.783***   -0.458 -408.800*** 

Notes: Level.ADF and Δ.ADF represent the level and first-difference of the Augmented-Dickey 

Fuller unit root test (Dickey & Fuller, 1979); Level.PP and Δ.PP represent the level and first-

difference of Phillips-Perron unit root test (Phillips & Perron, 1988). ***denotes rejection of the 

null hypothesis of no unit root at 1% significance level. FL, VB, HHI, De, and Bo indicate funding 

liquidity in each lending pool, variable borrow interest rate, market power of users, numbers of 

depositors, and numbers of borrowers in each lending pool for each token, respectively. Measures 

of these variables are defined in Table 1.  

Table 6. Linear ARDL model: Bounds test for co-integration analysis (5-minute data) 

 
Market Phase F_statistic 

Critical 
value 
Significance 

Bounds 

 
I0 
Bound 

I1 
Bound 

DAI 

Bull 1 986.724 
10% 2.448 3.507 
5% 2.863 3.995 
1% 3.746 5.013 

Bear 1 1023.927 
10% 2.448 3.507 
5% 2.863 3.995 
1% 3.746 5.013 

Bull 2 485.818 
10% 2.449 3.507 
5% 2.864 3.995 
1% 3.746 5.013 

Bear 2 1570.139 
10% 2.45 3.507 
5% 2.865 3.995 
1% 3.747 5.012 

USDC 
Bull 1 952.695 

10% 2.448 3.507 
5% 2.863 3.995 
1% 3.746 5.013 

Bear 1 292.235 10% 2.447 3.507 
5% 2.862 3.995 
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1% 3.745 5.014 

Bull 2 420.974 
10% 2.449 3.507 
5% 2.864 3.995 
1% 3.747 5.013 

Bear 2 5136.233 
10% 2.45 3.507 
5% 2.865 3.995 
1% 3.747 5.012 

USDT 

Bull 1 1084.889 
10% 2.448 3.507 
5% 2.864 3.995 
1% 3.746 5.013 

Bear 1 432.726 
10% 2.447 3.507 
5% 2.862 3.995 
1% 3.744 5.014 

Bull 2 349.012 
10% 2.448 3.507 
5% 2.863 3.995 
1% 3.745 5.013 

Bear 2 804.663 
10% 2.449 3.507 
5% 2.864 3.995 
1% 3.746 5.012 

WETH 

Bull 1 339.029 
   

5% 2.863 3.995 

1% 3.745 5.013 

Bear 1 5695.532 
10% 2.449 3.507 

5% 2.865 3.995 

1% 3.747 5.013 

Bull 2 1479.931 
10% 2.449 3.507 

5% 2.864 3.995 

1% 3.747 5.013 

Bear 2 3350.87 
10% 2.45 3.507 

5% 2.865 3.995 

1% 3.748 5.012 

WBTC 

Bull 1 475.272 
10% 2.448 3.507 

5% 2.863 3.995 

1% 3.746 5.013 

Bear 1 356.852 
10% 2.448 3.507 

5% 2.864 3.995 

1% 3.746 5.013 

Bull 2 587.891 
10% 2.449 3.507 

5% 2.865 3.995 

1% 3.747 5.013 

Bear 2 14730.43 
10% 2.459 3.507 

5% 2.865 3.995 

1% 3.748 5.012 
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Table 7. Linear ARDL model for 5-minute data 

DAI – 5m 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI -0.265*** 1.469*** 0.858*** 0.783*** 

  (0.031) (0.084) (0.034) (0.002) 

VB 0.294*** 0.594*** 0.293*** 20.634*** 

  (0.005) (0.014) (0.008) (0.234) 

De -0.021 -0.460** -0.134** 0.268*** 

  (0.107) (0.189) (0.056) (0.021) 

Bo 0.313*** 0.134 0.263*** 0.054*** 

  (0.071) (0.165) (0.090) (0.014) 

Observations 37,980 21,854 32,797 73,421 

R2 0.833 0.587 0.673 0.994 

Adjusted R2 0.8324 0.586 0.6723 0.9939 

Diagnostic tests 

LM test 0.7204 0.8418 0.8801 0.7833 

CUSUM Stable Stable Stable Stable 

 

USDC – 5m 

  Bull 1 Bear 1 Bull 2 Bear 2 

HHI -0.287*** 0.193*** -0.240*** 0.086*** 

  (0.063) (0.022) (0.020) (0.001) 

VB 0.198*** 0.281*** 0.195*** 19.189*** 

  (0.005) (0.025) (0.006) (0.120) 

De -0.387*** -0.417*** -0.378*** 0.054*** 

  (0.107) (0.160) (0.040) (0.012) 

Bo 0.305*** 0.843*** 0.267*** 0.001 

  (0.092) (0.159) (0.052) (0.003) 

Observations 37,983 21,852 32,812 73,401 
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R2 0.640 0.223 0.835 0.997 

Adjusted R2 0.639 0.220 0.834 0.997 

Diagnostic tests 

LM test 0.7234 0.1187 0.9189 0.7262 

CUSUM Stable Stable Stable Stable 

 

USDT - 5m 

  Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.223*** -0.623*** 0.459*** -1.546*** 

  (0.018) (0.055) (0.039) (0.045) 

VB 0.248*** 0.223*** 0.243*** 0.355*** 

  (0.006) (0.011) (0.008) (0.014) 

De -0.261* -0.450 -0.161 -2.934*** 

  (0.145) (0.373) (0.494) (0.535) 

Bo 0.785*** 0.899*** 0.640 1.265*** 

  (0.128) (0.289) (0.494) (0.427) 

Observations 37,984 21,852 32,796 73,397 

R2 0.664 0.558 0.549 0.482 

Adjusted R2 0.663 0.555 0.548 0.481 

Diagnostic tests 

LM test 0.9383 0.3185 0.6203 0.2215 

CUSUM Stable Stable Stable Stable 

 

WETH - 5m 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.012*** 0.007*** 0.004*** -0.293*** 

  (0.002) (0.000) (0.000) (0.044) 

VB 5.384*** 8.037*** 7.398*** 4.730*** 

  (0.131) (0.080) (0.086) (0.077) 
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De 0.001 0.003*** 0.004*** -0.080 

  (0.001) (0.001) (0.001) (0.114) 

Bo 0.000 0.000 0.000** 0.110*** 

  (0.000) (0.000) (0.000) (0.009) 

Observations 37,980 21,865 32,796 73,421 

R2 1.000 1.000 1.000 0.235 

Adjusted R2 1.000 1.000 1.000 0.234 

Diagnostic tests 

LM test 0.6017 0.6852 0.3311 0.458 

CUSUM Stable Stable Stable Stable 

 

WBTC - 5m 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.0002*** -0.0005*** 0.0020*** 0.0011*** 

  (0.000) (0.000) (0.000) (0.001) 

VB 7.104*** 7.807*** 6.239*** 8.118*** 

  (0.155) (0.185) (0.133) (0.030) 

De 0.0002*** 0.0000 0.0008*** 0.0010*** 

  (0.000) (0.000) (0.000) (0.000) 

Bo 0.0000 0.0000 0.0000** 0.0002*** 

  (0.000) (0.000) (0.000) (0.000) 

Observations 37,982 21,865 32,818 73,424 

R2 1.0000 1.0000 1.0000 0.9998 

Adjusted R2 1.0000 1.0000 1.0000 0.9998 

Diagnostic tests 

LM test 0.9999 0.9976 0.7091 0.9723 

CUSUM Stable Stable Stable Stable 

The dependent variable is funding liquidity of each token pool in the DeFi Lending platform, which 

is measured by the Utilization rate for that token. HHI, VB, De, and Bo indicate market power of 

users, variable borrow interest rate, numbers of depositors, and numbers of borrowers in each 
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lending pool for each token, respectively. Measures of these variables are defined in Table 1. 

Standard errors are reported in parentheses. *, **,and *** indicate significance levels of the 

coefficients at the 10%, 5% and 1% levels, respectively.   

 

Table 8. Linear ARDL model: Bounds test for co-integration analysis (1-hour data) 

  

Market 

Phase 
F_statistic 

Critical 

value 

Significance 

Bounds 

I0 

Bound 

I1 

Bound 

DAI 

Bull 1 818.391 10% 2.451 3.509 

    5% 2.867 3.998 

    1% 3.753 5.020 

Bear 1 1312.646 10% 2.453 3.511 

    5% 2.870 4.001 

    1% 3.758 5.025 

Bull 2 1823.057 10% 2.452 3.510 

    5% 2.868 3.999 

    1% 3.754 5.021 

Bear 2 420.215 10% 2.450 3.508 

    5% 2.865 3.996 

    1% 3.749 5.016 

USDC 

Bull 1 2656.624 10% 2.452 3.509 

    5% 2.868 3.998 

    1% 3.754 5.019 

Bear 1 469.405 10% 2.453 3.511 

    5% 2.870 4.001 

    1% 3.758 5.025 

Bull 2 303.064 10% 2.448 3.509 

    5% 2.864 3.999 

    1% 3.750 5.022 

Bear 2 882.565 10% 2.451 3.508 
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    5% 2.866 3.996 

    1% 3.750 5.016 

USDT 

Bull 1 645.906 10% 2.450 3.509 

    5% 2.866 3.998 

    1% 3.752 5.020 

Bear 1 269.691 10% 2.450 3.511 

    5% 2.867 4.001 

    1% 3.755 5.026 

Bull 2 581.269 10% 2.451 3.509 

    5% 2.868 3.999 

    1% 3.754 5.021 

Bear 2 2115.454 10% 2.451 3.508 

    5% 2.867 3.996 

    1% 3.751 5.016 

WETH 

Bull 1 5.70E+06 10% 2.452 3.509 

    5% 2.868 3.998 

    1% 3.754 3.754 

Bear 1 972.949 10% 2.453 3.511 

    5% 2.870 4.001 

    1% 3.758 5.025 

Bull 2 1.05E+07 10% 2.450 3.509 

    5% 2.866 3.999 

    1% 3.753 5.021 

Bear 2 2307.254 10% 2.451 3.508 

    5% 2.867 3.996 

    1% 3.751 5.016 

WBTC 

Bull 1 542.647 10% 2.450 3.509 

    5% 2.866 3.998 

    1% 3.752 5.020 

Bear 1 1.18E+10 10% 2.453 3.511 
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    5% 2.870 4.001 

    1% 3.758 5.025 

Bull 2 192.765 10% 2.448 3.509 

    5% 2.864 3.999 

    1% 3.750 5.022 

Bear 2 9.80E+06 10% 2.451 3.508 

    5% 2.867 3.996 

    1% 3.751 5.016 

 

 

 

Table 9. Linear ARDL model for 1-hourly data 

DAI – 1 hour 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI -0.294*** 1.608*** 0.485*** 0.050*** 

  (0.028) (0.075) (0.053) (0.004) 

VB 0.028*** 0.308*** 0.293*** 22.584*** 

  (0.004) (0.011) (0.006) (0.057) 

De -0.193*** -0.600*** -0.085 0.281*** 

  (0.074) (0.134) (0.112) (0.057) 

Bo 0.395*** 0.185* 0.139* 0.163*** 

  (0.074) (0.073) (0.058) (0.028) 

Observations 3,164 1,822 2,734 6,116 

R-squared 0.899 0.783 0.842 0.996 

Adj R-squared  0.899 0.783 0.842 0.996 

Diagnostic tests 

LM test 0.5274 0.6343 0.1966 0.2363 

CUSUM Stable Stable Stable Stable 
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USDC – 1 hour 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI -0.139** 0.213*** -0.110*** 0.135*** 

  (0.070) (0.025) (0.038) 0.005 

VB 0.194*** 0.194*** 0.188*** 23.520*** 

  (0.004) (0.016) (0.006) 0.034 

De -0.311*** -0.446*** -0.367** 0.098*** 

  (0.079) (0.105) (0.195) (0.017) 

Bo 0.500*** 0.308*** 0.379*** 0.001 

  (0.073) (0.091) (0.140) (0.003) 

Observations 3,166 1,822 2,731 6,117 

R-squared 0.808 0.564 0.850 0.999 

Adj R-squared  0.808 0.563 0.849 0.999 

Diagnostic tests 

LM test 0.5354 0.881 0.8147 0.5118 

CUSUM Stable Stable Stable Stable 

 

USDT – 1 hour 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.144*** -0.618*** 0.536*** -1.810*** 

  (0.046) (0.088) (0.064) (0.042) 

VB 0.199*** 0.219*** 0.281*** 0.403*** 

  (0.004) (0.013) (0.009) (0.013) 

De -0.255** 0.137 -0.340 -3.769*** 

  (0.128) (0.311) (0.333) (0.354) 

Bo 0.445*** 0.830*** 0.569* 1.137*** 

  (0.104) (0.261) (0.335) (0.287) 

Observations 3,164 1,821 2,733 6,118 

R-squared 0.848 0.749 0.753 0.757 
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Adj R-

squared  0.847 0.747 0.753 0.756 

Diagnostic tests 

LM test 0.4972 0.1602 0.3003 0.653 

CUSUM Stable Stable Stable Stable 

 

WETH – 1hour 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.0178*** 0.0066*** 0.0070*** -0.3789*** 

  (0.0034) (0.0002) (0.0003) (0.0505) 

VB 8.1384*** 8.1426*** 8.1417*** 5.7584*** 

  (0.0030) (0.0012) (0.0023) (0.1228) 

De 0.0014 0.0026*** 0.0017*** -0.0668 

  (0.0011) (0.0005) (0.0005) (0.1352) 

Bo -0.0002 0.0000 0.0000 0.2101*** 

  (0.0004) (0.0001) (0.0001) (0.0328) 

Observations 3,166 1,822 2,728 6,118 

R-squared 1.000 1.000 1.000 0.654 

Adj R-

squared  1.000 1.000 1.000 0.653 

Diagnostic tests 

LM test 0.7947 0.8504 0.7732 0.9131 

CUSUM Stable Stable Stable Stable 

 

WBTC – 1hour 

VARIABLES Bull 1 Bear 1 Bull 2 Bear 2 

HHI 0.0003*** -0.0005*** 0.0028*** 0.0011*** 

  (0.0000) (0.0000) (0.0001) (0.0001) 

VB 8.1256*** 8.1255*** 8.1412*** 8.1211*** 
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  (0.0001) (0.0001) (0.0013) (0.0022) 

De 0.0002*** 0.0000 0.0020*** 0.0009*** 

  (0.0000) (0.0000) (0.0002) (0.0004) 

Bo 0.0000** 0.0000 0.0001 0.0002* 

  (0.0000) (0.0000) (0.0001) (0.0001) 

Observations 3,163 1,822 2,730 6,118 

R-squared 1.000 1.000 1.000 1.000 

Adj R-

squared  1.000 1.000 1.000 1.000 

Diagnostic tests 

LM test 0.7912 0.6786 0.1479 0.3548 

CUSUM Stable Stable Stable Stable 

The dependent variable is funding liquidity of each token pool in the DeFi Lending platform, which 

is measured by the Utilization rate for that token. HHI, VB, De, and Bo indicate market power of 

users, variable borrow interest rate, numbers of depositors, and numbers of borrowers in each 

lending pool for each token, respectively. Measures of these variables are defined in Table 1. 

Standard errors are reported in parentheses. *, **,and *** indicate significance levels of the 

coefficients at the 10%, 5% and 1% levels, respectively.   
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Figure 1: Crypto Fear and Greed Index 

 

Market Phase Period 

Bull 1 1/1/2021 – 12/05/2021 

Bear 1 13/05/2021 – 27/07/2021 

Bull 2 28/07/2021 – 18/11/2021 

Bear 2 19/11/2021 – 31/07/2022 

Data Source: https://alternative.me/crypto/fear-and-greed-index/ 

 

 

Figure 2: Empirical scheme 

 

 

https://alternative.me/crypto/fear-and-greed-index/
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Figure 3: Funding Liquidity in top three Lending protocols 

 

Figure 4: First difference of Funding Liquidity variable in the top three Lending protocols 

 

Figure 5: Dynamic total connectedness 

 

Notes: The graph plots the evolution of the total directional connectedness index (TCI) of the three 

DeFi Lending platforms - Aave, Compound, MakerDAO, as determined by the TVP-VAR model 

with lag length as selected by the Bayesian information criterion (BIC). 

 



55 
 

Figure 6: Total Directional Liquidity Connectedness TO other platfoms 

 
Notes: This graph plots the evolution of the total directional liquidity connectedness of each of the 

three DeFi Lending platforms (i.e., Aave, Compound, MakerDAO) TO the other two markets, as 

determined by the TVP-VAR model with lag length as selected by the Bayesian information 

criterion (BIC). 

Figure 7: Total Directional Liquidity Connectedness FROM other platforms 

 

Notes: This graph plots the evolution of the total directional liquidity connectedness of each of the 

three DeFi Lending platforms (i.e., Aave, Compound, MakerDAO) FROM the other two markets, 

as determined by the TVP-VAR model with lag length as selected by the Bayesian information 

criterion (BIC). 
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Figure 8: Net total directional connectedness 

 

Notes: This graph plots the evolution of the net directional liquidity connectedness of each of the 

three DeFi Lending platforms (i.e., Aave, Compound, MakerDAO), calculated by subtracting the 

FROM directional connectedness from the TO directional connectedness as determined by the 

TVP-VAR model with lag length as selected by the Bayesian information criterion (BIC). 

Figure 9: Network plot in liquidity spillovers 

 

Notes: This figure illustrates the net directional spillovers among all possible pairs of variables. 

The blue color node shows that a variable is a net transmitter of shocks to other variables, while 

yellow nodes indicate that it is a receiver of shocks from other variables. The thickness of the 

arrows reflects the magnitude of the average spillover between each pair. This was determined 

based on the generalized forecast error variance decomposition (GFEVD) from the estimation of 

TVP-VAR model with 10-step ahead forecasts. The lag length is selected by the Bayesian 

information criterion (BIC). 
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Figure 10: Utilization rate for each token in Aave 

 

 

Figure 11: Available liquidity for each token in Aave 
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Figure 12: HHI Index 

 

HHI < 1,500: competitive marketplace 

HHI: 1,500 - 2,500: moderately concentrated 

HHI > 2,500: highly concentrated 
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Figure 13. Counterfactual shock in predicted HHI using dynamic ARDL simulations. 

DAI USDC USDT 

   
 

WBTC WETH 

  

Note: Dots show average predicted value. Shaded lines show (from darkest to lightest) the 75, 90, 

and 95 percent confidence intervals 
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Figure 14. Counterfactual shock in predicted variable borrow rate using dynamic ARDL 

simulations 

DAI USDC USDT 

   
 

WBTC WETH 

  

Note: Dots show average predicted value. Shaded lines show (from darkest to lightest) the 75, 90, 

and 95 percent confidence intervals 

 

 


