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Natural Disasters and Corporate Default Risk 
 

 

Abstract 
 

We examine whether and how exposure to natural disaster intensity can affect a firm’s default 

risk. Using data on a large sample of US companies from 1994 to 2017, we document that firms 

headquartered in a location with higher exposure to natural disaster intensity are associated 

with higher default risk. This association is robust to various endogeneity tests and the 

alternative measures of natural disaster intensity and default risk. Furthermore, we find that 

firms’ lower financial accessibility, lower debt capacity, and higher operational risk aggravate 

this positive association. As a corollary to these findings, we also show that financial 

institutions charge higher spreads and demand unfavorable credit terms for firms with higher 

default risk resulting from an increased exposure to natural disaster intensity. Overall, these 

results collectively suggest the detrimental effect of natural disasters on a firm’s financial 

stability. These findings indicate that the current disaster assistance from government may be 

insufficient and, therefore, calls for more support to firms located in disaster affected and 

neighboring areas, as they are more likely to experience financial distress and default.   

 

Key words: default risk, financial distress, natural disaster, disaster intensity 

JEL Classifications: Q54, G12 
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Natural Disasters and Corporate Default Risk 
 

 

 

1. Introduction 

The significant climate changes such as global warming in the past decades have increasingly 

made natural disasters a threat to sustainable economy, business and human lives. Since 1980s, 

the occurrence of natural disasters and the resulting direct financial losses have increased by 

more than three times (Hoeppe, 2016).1 The World Bank (2016) estimates that, each year, 

natural disasters cost the global economy $520 billion and drive 26 million people back into 

poverty. 2  Spurred by climate change, a growing number of international environmental 

organizations (e.g., Intergovernmental Panel on Climate Change) warn that the frequency and 

magnitude of natural disasters are expected to grow significantly in the future (Field et al., 

2012). In addition, Weather Risk Management Association (2016) also cautions that the 

devasting economic consequences of natural disasters might eventually have substantial 

impacts on firms.  

 

Some anecdotal evidence suggests that natural disasters might lead to a systematic bankruptcy 

in local affected areas, firms’ default then triggers the wave of unemployment.3 For example, 

Warren (2005) uses data reported by Federal Reserve Bank of Boston and notes that the 

bankruptcy filing rate climbed by 50% in affected states, and the filing rate remained higher 

than that in the pre disaster period even three years after disasters. This anecdotal evidence 

suggests that natural disasters can increase the probability of a firm’s default and bankruptcy. 

However, to the best of our knowledge, the extant literature provides little or no empirical 

thorough evidence on the effect of a firm’s exposure to natural disaster intensity on its default 

risk. Thus, motivated by Baltas et al. (2021) who calls for more research on the effect of 

extreme hazards on financial markets is needed (especially on business failure, financing 

channels and/or resources damages), our research empirically examines whether and how a 

firm’s exposure to natural disaster intensity affects its default risk in the US.  

 
1 According to the Centre for Research on Epidemiology of Disasters (CRED), there were 7,347 major recorded 

disaster events claiming 1.23 million lives, affecting 4.2 billion people resulting in approximately $2.97 trillion 

in global economic losses during the period of 2000 to 2019. 
2 According to Boushey, Kaufman, and Zhang (2021), the economic damages from natural disasters have risen to 

over 100 billion dollars per year to US economy. 
3 ABC News indicates that Hurricane Katrina led to a wave of unemployment, in which 30% and 12% of jobs 

disappeared in the affected states of New Orleans and Louisiana, respectively (Herman, 2016). This substantial 

disappearance of jobs might have been due to firms’ systematic default/bankruptcy chaos after Hurricane Katrina. 
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We conjecture two competing hypotheses. Primarily, natural disasters could be considered as 

climate-related physical risks which destroy a firm’s physical capital and disrupt its normal 

operation. In this circumstance, a firm’s financial needs increase substantially (Baltas et al., 

2021). However, in the presence of higher information asymmetry and increased uncertainty 

after natural disasters, financial institutions either do not approve new lending or require higher 

premiums/unfavorable credit terms (Javadi & Masum, 2021). With insufficient internal funds 

(Brown et al., 2021; Baltas et al., 2021; Massa & Zhang, 2021), accepting such higher 

borrowing costs or unfavorable credit terms further causes natural disaster-prone firms to enter 

financial distress and exhibit higher default risk.  

 

Alternatively, natural disasters can cause managers to be more risk averse. This translates into 

more conservative corporate financing policy (i.e., lower leverage, more cash holdings) and 

pursuing higher financial flexibility (see, e.g., Bernile et al., 2017; Feng & Johansson, 2018). 

In the event of natural disasters, such firms can meet their financial needs with withheld 

cash/retained earnings rather than seeking external financing at increased costs. Therefore, 

natural disaster-prone firms have a lower likelihood of entering financial distress, leading to 

lower default risk. 

 

To test these alternative hypotheses, we employ the extensive panel data of publicly listed US 

firms from 1994 to 2017. Based on the Emergency Events Database (EM-DAT) maintained by 

the Centre for Research on the Epidemiology of Disasters (CRED), we construct a novel proxy, 

disaster frequency, which is the number of natural disasters that occurred in the state where a 

firm is headquartered during a given year. Following prior studies (see, e.g., Huynh et al., 2020; 

Javadi & Masum, 2021), we use state-level location to determine a firm’s exposure. The 

reasons are twofold. First, previous studies (see, e.g., Pirinsky & Wang, 2006; Chaney et al., 

2012) indicate that a firm’s operational facilities are usually in the same state as its headquarters 

but not necessarily in the same county. Thus, adopting a state-level location, it can mitigate 

misclassification. Second, the effect of natural disasters can spill over to neighboring 

areas/counties, lending support to the use of state-level measure. The default risk is measured 

by a well-known proxy of distance-to-default (DD) (Bharath & Shumway, 2008). By 

regressing natural disaster intensity on default risk and controlling for the set of control 

variables, fixed effects and clustering robust standard errors at multiple levels, our study 

consistently finds statistically significant and economically meaningful results that a firm 
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located in areas with higher exposure to natural disaster intensity is more likely to exhibit 

higher financial distress and default.  

 

We then employ an array of additional tests to mitigate concerns of potential endogeneity 

originating from sample selection and omitted variable bias. We replicate results by propensity 

score matched sample to rule out that the association is driven by underlying differences among 

firms located in areas with higher/lower exposure to natural disaster intensity. Our baseline 

results remain consistent to the use of entropy balanced sample, which can address the 

imbalance in covariates. Furthermore, we pass the Oster’s (2019) omitted variable bias test, 

suggesting the strong stability of our documented positive association between natural disaster 

intensity and a firm’s default risk. Finally, we employ a difference-in-differences (DiD) setup 

by using the relocation of a firm’s headquarters as a quasi-experiment. Consistent with our 

main findings, we show a substantial increase in a firm’s default risk after a relocation to a state 

with an increased natural disaster intensity compared to one that relocated in the state with 

decreased natural disaster intensity.  

 

We next evaluate the robustness of our results for alternative measures of natural disaster 

intensity and default risk. By following Javadi and Masum (2021), we construct two natural 

disaster severity variables based on financial loss and human loss obtained from SHELDUS 

database. 4  We consistently document a negative and statistically significant relationship 

between natural disaster intensity and distance-to-default, suggesting that firms with higher 

exposure to natural disaster severity have higher default risk. Several studies (see, e.g., Kabir 

et al., 2020; Atif & Ali, 2021) use credit default swap (CDS) spreads as an alternative proxy 

for default risk. Using CDS spreads with different maturities (1-year, 3-year, and 5-year), we 

also find a significantly positive relationship, indicating that firms with higher exposure to 

natural disaster intensity also pay higher CDS spreads. 

 

In cross-sectional tests, our study further investigates the circumstances under which the 

negative effect of natural disaster intensity on default risk is more concentrated. We find that 

this association becomes weaker if a firm has greater access to external finance, higher debt 

capacity and lower operational volatility. The underlying arguments are as follow: the 

financially unconstrained firms have less difficultly accessing external finance to meet 

 
4 Spatial Hazard Events and Losses Database that is administrated by Arizona State University. 
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financial needs in the event of natural disasters; Firms with higher debt capacity are less reliant 

on debt financing even during normal times, and therefore, financial institutions do not demand 

higher financing costs for financial flexible firms; Firms with lower operational volatility are 

less sensitive to natural disaster induced liquidity shock. This heterogeneity of documented 

association indicates the government that financial assistance can be prioritized to firms with 

higher financial constraints, lower debt capacity and higher operational risk.   

 

In terms of economic implications, we evaluate how financial institutions react to a firm’s 

negative exposure to natural disaster intensity. Using US syndicated loan data from DealScan, 

we find that financial institutions charge higher borrowing costs and require tighter financial 

covenants for firms that have higher default risk resulting from higher exposure to natural 

disaster intensity. However, we do not find a direct association between natural disaster 

intensity and loan price/non-price terms. This suggestive evidence indicates that debt market 

participants perceive the aftermath financial consequence of natural disaster intensity as one 

crucial component that shapes loan contracts.  

 

Our study makes several important contributions to the literature. First, we contribute to the 

fast-growing literature investigating which factors can determine default risk. Prior studies 

have predominantly established associations of default risk with a firm’s internal factors 

including financial leverage (Cathcart et al., 2020), debt maturity choices (Goyal & Wang, 

2013), mergers and acquisitions (Koerniadi et al., 2015), innovation (Hsu et al., 2015), stock 

liquidity (Broggard et al., 2017; Nadarajah et al., 2021), corporate governance (Ali et al., 2018; 

Baghdadi et al., 2020), ownership type (Kabir et al., 2020; Abinzano et al., 2021), ESG 

disclosure (Atif & Ali, 2021), and carbon emissions (Capasso et al., 2020; Kabir et al., 2021). 

Relatively, few studies have documented the critical role of external environment in affecting 

firm’s default risk such economic policy uncertainty (Nguyen et al., 2022). We extend this 

strand of literature by showing a statistically significant association between default risk and a 

firm’s exposure to natural disaster intensity. The abovementioned factors primarily come from 

a firm’s fundamentals and macroeconomic conditions. Our study is among the first to uncover 

the critical role of ecological factors (natural disaster intensity) in determining default risk for 

US firms.  

 

Second, our study also contributes to the credit risk literature. Prior studies identify that higher 

CDS spreads are associated with higher liquidity risk (Corò et al., 2013), excessive financial 
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leverage, lower profitability, and higher return volatility (Fu et al., 2021). Recently, Apergis et 

al. (2022) show that the COVID-19 pandemic increases a firm’s CDS spreads through 

increased financial distress. Our study complements and extends their work by showing that 

higher natural disaster intensity also leads to higher credit risk through a similar mechanism of 

financial distress. 

 

Third, our study complements the existing discussion of lenders’ views on climate risk. Javadi 

and Masum (2021) document a positive association between a firm’s climate risk and the cost 

of debt. Baltas et al. (2021) find that firms have limited access to conventional financing tools 

in the short term after natural disasters. Cevik and Miryugin (2022) show that the firms 

operating in countries with greater susceptibility to climate-related disruptions experience 

difficulty in access to debt financing even at higher interest rates. Our study takes another 

perspective and provides novel insights into the fact that debt market participants view a firm’s 

exposure to natural disaster intensity (and therefore default risk) as a relevant factor in 

determining borrowing costs and loan terms.  

 

Fourth, our study contributes to the literature on the role of climate-related physical risk in 

influencing firm-level outcomes. Recently, Pan and Qiu (2022) find a negative effect of acute 

physical risk from flooding on the performance of Chinese firms. Griffin et al. (2022) document 

a negative influence of chronic physical risk from extreme temperature heat spells on firm 

performance in the EU and UK. Likewise, Cevik and Miryugin (2022) show that the firms 

operating in countries with greater susceptibility to climate-related disruptions are less 

productive and profitable. Extending this stream of literature beyond financial performance, 

we show the devastating effect of natural disasters intensity on the likelihood of financial 

distress and default risk of US firms. Our study therefore provides an empirical support to the 

UN Sustainable Development Goal 13 which calls for urgent action to combat climate change 

and its devastating impacts. 

 

This study is organized as follows. Section 2 reviews the relevant literature and develops the 

hypotheses. Section 3 describes the data and methodology design. Section 4 presents the main 

empirical results of the association between natural disasters intensity and default risk. Section 

5 encapsulates the robustness analyses including endogeneity tests and alternative proxies. 

Section 6 covers the additional analyses examining the mechanisms and economic implications 

of the association. Finally, in Section 7, we offer concluding remarks.   
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2. Brief literature and hypotheses development  

 

2.1 Default risk 

Corporate default, by definition, occurs when the firm’s cash flows are insufficient to pay 

financial obligations as required (Zeitun et al., 2007). In general, the downward shift in the 

level of firm’s future cash flows or upward shift in the volatility of firm’s future cash flows 

increases the likelihood of the firm’s default (Ali et al., 2018). Avoiding a firm’s default is of 

paramount importance because of its devastating consequences. For example, Brogaard et al. 

(2017) suggest some devasting consequences if a firm defaults, including the interruption of 

the firm’s operations, adverse impact on a firm’s relationship with both customers and 

employees, and the potential legal costs. Since the development of structural model (i.e., 

Altman model), prior literature finds that a firm’s fundamental information (such as liquidity 

position, leverage, profitability, market value and the efficient use of assets) has strong power 

to forecast default risk (Altman, 1968). The market-based default measure of Merton’s distance 

to default model (Merton, 1974) further shows that a firm’s volatility is also important.  

 

Moreover, a fast-growing literature also suggests that the default risk of a firm increases with 

higher stock illiquidity (Brogaard et al., 2017; Nadarajah et al., 2021), lower innovation (Hsu 

et al., 2015), weaker corporate governance (Ali et al., 2018; Baghdadi et al., 2020),  lower ESG 

disclosure (Atif and Ali, 2021), more carbon emissions (Capasso et al., 2020; Kabir et al., 2021). 

Specifically, Brogaard et al. (2017) find that higher stock liquidity encourages investors to 

acquire information and trade on the market, leading to higher price efficiency. Since firms can 

make an effective investment decision based on signals conveyed from the stock market, they 

are expected to have higher and stable future cash flow, leading to lower default risk. Baghdadi 

et al. (2020) find that the board co-option (a proxy of weaker corporate governance) leads to 

the ineffectiveness of board monitoring, and therefore, a firm’s manager is likely to make 

arbitrary and erratic decisions. In this circumstance, such firms are expected to have higher 

financial performance volatility, leading to higher default risk. Similarly, Atif and Ali (2021) 

argue that a firm’s ESG disclosure reduces default risk can be explained by two perspectives. 

First, ESG disclosure reduces information asymmetry, suggesting a lower financing cost. 

Second, ESG disclosure are favored by capital participants, leading to a higher financial 

profitability and lower performance volatility. The common ground of the aforementioned 

factors is that they can ultimately directly or indirectly affect a firm’s performance volatility 
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(i.e., cash flow) and/or external financing condition. These two circumstances can drive a firm 

to enter financial distress and therefore default.  

 

In addition to internal factors causing firms to default, empirical studies have also shown the 

crucial role of external environment in the likelihood of firm’s survival. For instance, in a recent 

study, Nguyen et al. (2022) examine the association between economic policy uncertainty and 

a firm’s default risk. They find that in the heightened uncertainty related to economic policies, 

the firms tend to exhibit higher volatility of financial performance and cost of debt and a lower 

level of cash reserves and financial performance. Consequently, these changes in the firm’s 

fundamental factors in the presence of high economic policy uncertainty increase the firm’s 

likelihood of default.  

 

2.2 Natural disasters 

Prior literature notes that natural disasters can lead to substantial direct and indirect economic 

losses (Leaning & Guha-Sapir, 2013). For instance, Cavallo and Noy (2010) mention that 

natural disasters can cause significant damage to a firm’s fixed assets, inventories, raw 

materials, equipment, natural resources and so forth. Altay and Ramirez (2010) argue that 

natural disasters can destroy local infrastructure facilities, and therefore, the entire regional 

supply chain in both disaster-prone and neighboring areas can be interrupted. In such 

circumstances, a firm’s financial needs surge significantly during the post disaster period to 

repair its damaged assets and recover from operational interruptions, as evidenced by Belasen 

and Polachek (2008). From this regard, two competing views, namely financial distress and 

risk aversion, from traditional corporate finance and behavioral finance literature suggest 

different propositions for a firm’s response to a liquidity shortfall to avoid default in the times 

of natural disasters.   

 

2.2.1 Financial distress channel  

Extensive studies suggest that it is difficult for affected firms to use their internal sources (such 

as cash holdings and retained earnings) to meet abnormal financial needs resulting from natural 

disasters (see, e.g., Barrot & Sauvagnat, 2016; Brown et al., 2021). Instead, affected firms 

should seek for external financing. However, Baltas et al. (2021) argues that affected firms 

have substantially less access to conventional finance channels since a firm’s collateral (used 

to pledge a loan) is destroyed by natural disasters. To elaborate further, Massa and Zhang (2021) 

find that even large firms have to switch from bond financing to bank loans immediately after 
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natural disasters. This is because the systematic selling of bonds by bondholders after 

hurricanes, leads to substantially higher cost of issuing debt. In this context, both small and 

large firms heavily rely on bank borrowing after natural disasters, suggesting a substantial 

increase for local credit demand.  

 

In contrast, from the perspective of credit supply, natural disasters adversely impact local 

economic conditions (Hallegatte et al., 2007) and this uncertainty can impact financial 

institutions, as reflected by their higher sensitivity in approving new loans (Klomp, 2014). 

Recent studies from Koetter et al. (2020) and Duqi et al. (2021) further argue that information 

asymmetry increases after natural disasters because lenders have little knowledge about which 

firms’ assets are damaged or business operations are adversely affected. Thus, financial 

institutions increase the interest rates of business loans in natural disaster-prone areas to 

compensate for higher information asymmetry and increased volatility of collateral value 

(Brown et al., 2021; Javadi & Masum, 2021).  

 

In this circumstance where insurance is not viable (Ibragimov et al., 2008; Sharma & Rotthoff, 

2020) and government financial assistance is limited (Duqi et al., 2021), firms in disaster-prone 

areas have difficulty meeting financial needs with internal sources due to lower retained 

earnings and cash flow in normal periods (Hsu et al., 2018; Brown et al., 2021). In the presence 

of higher information asymmetry (Koetter et al., 2020; Duqi et al., 2021) during the post 

disaster period, financial institutions are likely to increase the cost of borrowing, provide 

unfavorable credit terms for such firms (Brown et al., 2021; Javadi & Masum, 2021; Massa & 

Zhang, 2021). Accepting such higher financing costs can lead to financial distress, increasing 

a firms’ probability to default. Hence, we propose our main hypothesis as follows: 

 

H1: Firms located in areas more exposed to natural disaster intensity are more likely to default 

2.2.2 Risk averse channel   

A strand of literature investigates how the occurrence of natural disasters alters an individual's 

risk perception. Dessaint and Matray (2017) investigate a firm’s reaction to liquidity shock 

arising from hurricanes. They observe that managers overreact to hurricanes by changing a 

firm’s cash holding policies. Specifically, firms located in both directly affected and adjacent 

areas significantly increase their cash holdings after hurricanes. Since hurricanes should not 

bring real liquidity shocks in adjacent areas, this phenomenon indicates that managers are risk 

averse in response to hurricanes (Dessaint & Matray, 2017).  
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Moreover, a growing number of studies (see, e.g., Cameron & Shah, 2015; Cassar et al., 2017) 

suggest a long-lasting change in the risk perceptions of individuals in the aftermath of natural 

disasters, becoming more risk averse. Bernile et al. (2019) find that experience with natural 

disasters can change managers' risk perceptions and therefore affect a firm's financing policy. 

For instance, CEOs who experienced natural disasters with severe consequences become more 

risk averse than CEOs who have not experienced a disaster or experienced a disaster with no 

profound impact. Bernile et al. (2019) further suggest that the phenomenon of risk averse can 

persist in either normal times or disaster periods for such firms. This can be reflected in various 

ways, including (but not limited to) more cash holdings, lower leverage, more usage of internal 

funds to meet financial needs and less engagement in risky acquisitions. Therefore, we argue 

that firms in natural disaster-prone areas are likely to have a lower level of risk-taking (Bernile 

et al., 2019) and higher degree of financial flexibility (Elnahas et al., 2018). 

 

In addition to aforementioned studies, Brown et al. (2021) provide more circumstantial 

evidence by exploring a firm’s financing behavior after natural disasters. They find that only 

financially inflexible firms withdraw more funds from credit lines and require higher credit 

allowances after natural disasters. Therefore, financially flexible firms do not intensively rely 

on bank financing in the response to higher financial needs resulting from natural disasters. 

This implies that such firms might use alternative financing approaches such as internal funds, 

to meet financial needs after natural disasters. In an extreme circumstance in which the internal 

funds are insufficient, Brown et al. (2021) also argue that financial institutions do not increase 

the cost of borrowing or request unfavorable credit terms for financially flexible firms after 

natural disasters. This is consistent with Lim and Nguyen (2020) who find financial institutions 

perceive a firm’s soft information as relevant factor in shaping a loan term.  

 

Based on the above discussion, as natural disasters can alter managers’ risk perceptions, we 

predict that increased cash holdings (and conservative financial policies) provide a buffer for 

higher uncertainty and raise financial needs in the event of natural disasters. In these 

circumstances, rather than seeking external finance with higher financing costs, such firms are 

likely to use their withheld cash/retained earnings to meet their financial needs, resulting in a 

lower default risk. Therefore, we propose our alternative hypothesis as follows: 

 

H2: Firms located in areas more exposed to natural disaster intensity are less likely to default 
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3. Research Method 

3.1 Data and sample 

We source natural disaster related data from EM-DAT5 by following prior literature (see, e.g., 

Yamaura, 2014; Baltas et al., 2021). Following default risk literature (Atif & Ali, 2021; Kabir 

et al., 2021; Nadarajah et al., 2021), we collect a firm’s default risk data from the Credit 

Research Initiative (CRI) database administrated by the National University of Singapore. The 

firm’s financial information and stock return data are acquired from the COMPUSTAT and 

CRSP US stock database, respectively.  

 

We begin by retrieving data on all US public firms that appeared in both COMPUSTAT 

Industrial files and CRSP stock files. We use the state name of each firm’s headquarters 

location as shown in COMPUSTAT to merge natural disaster data from EM-DAT. Since 

financial firms and utility firms are subject to different types of risk nature, we exclude firms 

from our sample if the SIC ranges from 40-49 and 60-69. After applying these selection rules, 

the final sample consists of 24,906 firm-year observations for 3,753 unique firms with 

headquarters located in 48 different US states for the period from 1994 to 2017.  

 

3.2 Measuring natural disaster intensity  

Prior natural disaster studies (see, e.g., Skidmore & Toya, 2002; Yamamura, 2014; Bernile et 

al., 2017) typically measure local natural disaster exposure by three observable variables: 

frequency, individuals affected, and economic consequence of disasters. Consistent with 

Yamamura (2014), we adopt natural disaster frequency (DisFreq) as the main proxy to measure 

natural disaster intensity. DisFreq is defined as the count of total natural disasters that occurred 

during year t in the state where firms’ headquarters are located. To increase interpretability, we 

then take the natural logarithm of DisFreq, namely, lnDisFreq. This is the most direct way to 

reflect natural disaster intensity, which one can see from two perspectives. First, compared to 

other measures (i.e., financial loss or individual affected), DisFreq is not affected by underlying 

characteristics across different states. For instance, as indicated by O'Brien et al. (2006), 

fatalities caused by natural disasters differ systematically between developed and developing 

regions. Second, our proposed DisFreq measure can capture not only disaster intensity but also 

severity. We exploit the recording threshold of EM-DAT, which requires that recorded natural 

 
5 EM-DAT is a global database that records natural disasters only if they meet at least one of following criteria: 

(1) more than 10 fatalities, (2) more than 100 people affected, (3) a declared state of emergency or (4) a call for 

international assistance. 
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disasters exceed a certain severity/magnitude. This can address the case of a high frequency 

but particularly low severity of natural disasters.  

 

3.3 Measuring default risk  

Our measure of default risk follows Bharath and Shumway (2008) who propose a reduced form 

of the Merton’s distance-to-default (DD) model. This naïve reduced model can capture the 

functional form of Merton’s model, while unknown parameters (firm value and volatility of 

firm) do not need to be solved by the iterative procedure. In doing so, Bharath and Shumway 

(2008) find that reduced model provides better out-of-sample forecast accuracy than Merton’s, 

and consequently has been adopted by extensive literature (see, e.g., Brogaard et al., 2017; 

Baghdadi et al., 2020; Nadarajah et al., 2021). In a conceptual framework, DD indicates the 

distance between the firm’s value of total assets and the book value of total liabilities in the 

next one year. A higher DD indicates that a firm’s value is substantially higher than its 

liabilities, signaling lower default risk and vice versa. A detailed methodology to derive DD 

has been documented in Appendix B.  

 

3.4 Measuring control variables  

We include a set of control variables, accounting for correlated omitted variables. First, 

following Brogaard et al. (2017) and Baghdadi et al. (2020), we control for return on assets 

(ROA), excess return (EXCESS), stock illiquidity (AMIHUD), cash dividend payout 

(Div/Assets), and interest coverage (Ln_IntCov). ROA is defined as earnings before 

extraordinary items relative to total assets. A higher ROA indicates higher profitability and thus 

the firm being more capable of repaying financial obligations, and therefore, a lower default 

risk. EXCESS is the difference between a firm’s annual stock return and CRSP value-weighted 

market return. Shumway (2001) suggests that firms with higher default risk are discounted by 

the capital market and therefore have lower excess returns. AMIHUD is computed as the annual 

average of the daily ratio of the absolute value of stock return divided by the dollar trading and 

amount, and then multiplied by 1 million (Amihud, 2002). A higher AMIHUD indicates higher 

stock illiquidity, leading to higher information asymmetry and lower governance quality 

(Brogaard et al., 2017). Therefore, AMIHUD is expected to be positively associated with 

default risk. Div/Assets is a firm’s cash dividend relative to total assets and is expected to be 

negatively associated with default risk. Ln_IntCov is the natural logarithm of interest coverage 

which reflects a firm’s cashflow to meet interest payments. Therefore, Ln_IntCov is expected 

to be negatively associated with default risk. 
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Furthermore, following prior studies (Hsu et al., 2015; Cathcart et al., 2020; Nadarajah et al., 

2021), we further control for firm size (SIZE), firm age (AGE), financial leverage (LEV), 

current ratio (LIQ), market-to-book ratio (MTB), firm innovation (R&D), gross sales (GROSS), 

tangibility (TANG), and stock return volatility (VOLAT). SIZE is defined as the natural 

logarithm of a firm’s total assets in book value. AGE is computed as the difference between 

the observation’s fiscal year and the year of the firm’s incorporation. Larger firms are more 

stable over time. Firms with a longer history have a greater ability to survive and accumulate a 

better reputation. Hence, SIZE and AGE are expected to have a negative association with 

default risk. LEV is defined as long-term debt to total assets, which is expected to have a 

positive association with default risk. LIQ is current assets over current liabilities, and a higher 

LIQ indicates a greater ability to repay short-term financial obligations. Thus, LIQ is expected 

to have a negative association with default risk. Firms having a higher MTB indicates greater 

growth opportunities, and therefore, such firms should be more profitable and face lower 

borrowing costs (Chen & Zhao, 2006). Therefore, MTB is expected to have a negative 

association with a firm’s default risk. Moreover, R&D is computed as the ratio of research and 

development expenses relative to total assets. Firms with either missing or do not report 

research and development expenses are assumed to be zero (Nadarajah et al., 2021). The market 

participants demand lower premium for innovative firms since innovative firms outperform 

than their competitors. GROSS is the natural logarithm of a firm’s gross profit that represents 

management efficiency. Thus, both R&D and GROSS are expected to have negative association 

with default risk. TANG can be defined as the ratio of net property planet and equipment over 

book value of total assets. Wang et al. (2017) argue that tangible assets depreciate less value 

than intangible assets if a firm defaults. Therefore, higher TANG is associated with lower 

default risk. VOLAT is the standard deviation of a firm’s stock returns in past 12 months based 

on daily data. The higher VOLAT indicates higher uncertainty, and therefore, a higher default 

risk.  

 

Finally, we include two state-level control variables. Ln_Gdpmill is the natural logarithm of 

the corresponding state’s GDP measured as in millions of US dollars. Ln_Popmill is the natural 

logarithm of the corresponding state’s total population measured in millions. These two state-

level controls can capture the observable underlying differences across states. However, they 

are, not necessarily causally associated with default risk. 
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3.5 Empirical model  

We formally investigate a firm’s exposure to natural disaster intensity on its default risk by 

estimating the following regression Eq. (1):  

 

𝐷𝐷𝑖,𝑡 =  𝛼 + 𝛽1𝑙𝑛𝐷𝑖𝑠𝐹𝑟𝑒𝑞𝑖,𝑡 +  𝛾 𝑍′𝑠 𝑖,𝑡 +  𝑌𝑒𝑎𝑟 𝐹𝐸 + 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝐹𝐸 + 𝑆𝑡𝑎𝑡𝑒 𝐹𝐸 + 𝜀𝑖,𝑡 (1) 

 

The unit observation is the firm-year. i indexes firm i and t indexes year t. The dependent 

variable is DD, a proxy for the firm’s default risk. A higher DD signals lower default risk and 

vice versa. The independent variable, lnDisFreq, is the natural logarithm of natural disaster 

frequency and proxies for natural disaster intensity in a given state where the headquarter of 

the firm i is located. Z is a list of control variables. The main coefficient of interest in our study 

is 𝛽1, which be interpreted as, ceteris paribus, the effect of a firm’s exposure to natural disaster 

intensity on its default risk.  

 

Our regression model includes year fixed effects, industry fixed effects and state fixed effects, 

capturing unobservable heterogeneity over time (i.e., economic shocks), time-invariant 

unobservable heterogeneity across different industries and states. We identify a firm’s industry 

by 2-digit standard industrial classification codes (SICs). Following Javadi and Masum (2021), 

we cluster robust standard errors at the firm-level since the effect of natural disasters correlates 

within firms. Finally, we winsorize all variables at both the of 1% and 99% levels to address 

outliers. 

 

4. Main results  

4.1 Summary statistics 

Table 1 reports descriptive statistics for all variables used in the baseline model. The mean of 

the natural disaster measure, DisFreq, suggests that there are 4.03 natural disasters occurring 

in the US on average each year during our sample period. This is consistent with Smith (2022), 

who reports a mean DisFreq of 4.83 from the 1980s to the 2000s. The default risk measure, 

DD, has a mean of 4.45, which is slightly lower but generally consistent with Atif and Ali 

(2021), who report a mean of 5.88. The dispersion can result from adopting different sample 

period and firms.  In terms of control variables, our study is consistent with and qualitatively 

similar to prior studies (see, e.g., Jiraporn & Lee, 2017; Broggard et al., 2017; Baghdadi et al., 



 16 

2020). This provides us confidence in the integrity of the data and representativeness of our 

sample.  

 

< Insert Table 1 Here > 

 

4.2 Baseline results 

In the baseline regression, we use lnDisFreq as the main measure for natural disaster intensity. 

All columns include year, industry, and state fixed effects, accounting for time-invariant 

unobservable heterogeneities across years, industries, and states. Specifically, in column (1), 

our study regresses DD on lnDisFreq and a set of firm-level control variables that are 

determinants of default risk. In column (2), our study further includes two more state-level 

control variables that capture the observable macroeconomic heterogeneities across states. In 

columns (1) and (2), following Javadi and Masum (2021), we cluster the standard errors at the 

firm level. Similarly, in column (3), we replicate our baseline regression but this time cluster 

the standard errors at both state and firm levels.6 Following Brown et al. (2021), who suggest 

that one-way (firm level) standard clustering is more conservative than two-way clustering, our 

study adopts the former methodology throughout the empirical analysis. The baseline results 

are presented in Table 2. 

 

The coefficient on lnDisFreq is negative and statistically significant, implying that default risk 

increases with a firm’s higher exposure to natural disaster intensity. A similar magnitude of 

lnDisFreq across different regression models, evidences the negative impact of natural 

disasters on the affected firms’ probability of default regardless of variation in model 

specifications. Focusing on the last two specifications, which have the richest controls and set 

of fixed effects, the effect of natural disaster intensity on default risk is not only statistically 

significant but also have reasonable economically meaningful, with a 1% increase in lnDisFreq 

associated with a decrease in DD of 0.0017. These results suggest that firms located in areas 

more exposed to natural disaster intensity are more likely to default, therefore, we accept H1.  

 
6 This two-way clustering is suggested by Javadi and Masum (2021) in their robustness test which can further 

account for the possibility that default risk correlates across firms in the same state. 
7 Since the baseline model is in linear-log (DD~lnDisFreq):  

∆𝐷𝐷 =  𝐵1 ln(𝐷𝑖𝑠𝐹𝑟𝑒𝑞 + ∆𝐷𝑖𝑠𝐹𝑟𝑒𝑞) − 𝐵1 ln(𝐷𝑖𝑠𝐹𝑟𝑒𝑞) , change in DD if lnDisFreq changes by ∆ ; 

 ∆𝐷𝐷 = 𝐵1 ln (
𝐷𝑖𝑠𝐹𝑟𝑒𝑞+∆𝐷𝑖𝑠𝐹𝑟𝑒𝑞

𝐷𝑖𝑠𝐹𝑟𝑒𝑞
), when 

∆𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟

𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟
 close to zero -> ln(1+x) ≈ x ; 

 
∆𝐷𝐷

100×
1%×∆𝐷𝑖𝑠𝑓𝑟𝑒𝑞

𝐷𝑖𝑠𝑓𝑟𝑒𝑞

=  
𝐵1

100
 , this can be interpreted as, when lnDisFreq increases by 1%, the DD changes by  

𝐵1

100
 

(that is -0.0775*0.01≈ -0.001).  
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In all specifications, most firm-level controls are statistically significant at a minimum of 5 % 

and have the expected sign, which is consistent with previous literature (see, e.g., Broggard et 

al., 2017; Baghdadi et al., 2020; Atif & Ali, 2021). For example, the larger and more profitable 

firms are less exposed to default risk, whereas more levered firms have higher default risk. 

Firms with higher MTB are valued more highly by investors and therefore are farther from 

financial distress and default.  

 

< Insert Table 2 Here > 

 

 

5. Robustness analyses  

 

5.1 Tests of endogeneity 

Our study documents significant and negative effect of a firm’s natural disaster intensity on 

default risk. However, there may be some unobservable, endogenous factors driving these 

effects which questions the reliability of analysis. In this section, we address these concerns 

and explore any possible endogeneity issues. 

 

5.1.1 Propensity score matched sample 

The potential source of endogeneity comes from self-selection bias, for example, firm’s choice 

of its headquarters location is not random. Bernstein et al. (2019) show that the price of 

properties located in the area less exposed to a rise in sea level is substantially higher than 

properties otherwise opposite. From this perspective, less profitable firms may be more likely 

to be located in more disaster-prone areas since they cannot afford the higher land price. In 

such circumstances, our documented results may be driven by systematic underlying 

differences (i.e., profitability) among firms located in more and less disaster-prone areas rather 

than a firm’s exposure to natural disaster intensity. 

 

To mitigate self-selection bias concern, we follow Atif and Ali (2021) and use propensity score 

matching (PSM). We first create an indicator variable for high natural disaster intensity 

(DHDisFreq), in which equals one if the DisFreq in a firm’s location is higher than median 
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DisFreq and zero otherwise8. Based on this indicator variable, we assign firms located in areas 

more (less) exposed to natural disasters to the treatment (control) group. Next, we run the logit 

regression for DHDisFreq with all firm-level control variables to estimate the PSM score. We 

use the nearest neighbour methodology (one-to-one), set the caliper at 0.01, and disable the 

option for replacement. After applying aforementioned filters, we still have a reasonable 

sample of 17,454 firm-year observations. We use PSM matched sample to replicate the baseline 

regression with the same controls and set of fixed effects. We cluster robust standard error at 

the firm level in column (1) and state-firm level in column (2) of Panel A, Table 3.  Following 

Atif and Ali (2021), we also implement a diagnostic test9 to check the matching quality and we 

report these results in Panel B and Panel C, Table 3.  

 

The coefficients on lnDisFreq remain negative and statistically significant at a 5% level in 

columns (1) and (2) of Panel A, Table 3. Results remain based on matched sample, suggesting 

that the negative effect on default risk is attributed by the difference of a firm’s exposure to 

natural disaster intensity, other than the systematic difference among a firm’s choice of location. 

Therefore, we mitigate the concern for self-selection bias. In addition, the matching quality is 

also satisfactory. Panel B and C of Table 3 indicate that all variables (except the DD) are 

indistinguishable between treatment and control groups. These results imply that matching 

quality is sufficient as all observable underlying differences are removed, and a firm’s 

characteristics cannot explain the choice of headquarters locations. Taken together, we show 

that the self-selection bias is not a concern in our study after the implementation of PSM.   

 

< Insert Table 3 Here > 

 

5.1.2 Entropy balanced sample 

Although PSM is a commonly approach used in casual inference, this approach may suffer 

from some limitations as noted by Shipman et al. (2017). They argue that PSM can raise a 

threat to external validity since observations can systematically be excluded due to the lack of 

 
8 We alternatively separate a firm located in high/low disaster-prone area based on the average DisFreq in each 

year. The results are consistent. 
9 In (unreported results), we also we run two logit regressions for DHDisFreq with all firm-level controls before 

and after matching. It shows that, before matching, the choice of location is associated with a systematic difference 

in a firm’s underlying characteristics. For example, less profitable, higher levered, or less innovative firms are 

more likely to be located in more disaster-prone areas. However, all coefficients become statistically insignificant 

after matching. Consistently, results reveal that pseudo-R squared reduces from 5% to 0.1% before and after 

matching. 
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matched counterfactuals (pairs). In order to solve such limitation, we follow Hainmueller (2012) 

to adopt entropy balancing method which directly focus on covariate balance and therefore 

reducing estimation error and model dependency.  

 

Similar to PSM, we assign firms located in areas more (less) exposed to natural disasters to the 

treatment (control) group based on median DisFreq. As advised by Hainmueller (2012), we 

reweight balance for first three moments (mean, variance, skewness) between treatment and 

control group, and we report the proof of balance in Panel A, Table 4. Then, we use entropy 

balanced sample to replicate the baseline regression with the same controls and set of fixed 

effects, and we report these results in Panel B, Table 4.  

 

The Panel A, Table 4 reveals that the mean, variance, and skewness for each covariate is 

balanced across the treatment and control group, after implementing the entropy balancing 

approach. Panel B, Table 4 shows that the coefficient on lnDisFreq remains negative and 

statistically significant at a 10% level. This is quantitatively similar and qualitatively consistent 

with baseline results (i.e., Table 2) and results replicated by propensity score matched sample 

(i.e., Table 3).  

 

< Insert Table 4 Here > 

 

5.1.3 Omitted variable bias: the use of Oster (2019) test 

The omitted variable bias is a common issue in empirical finance research. Conventionally, 

researchers rely on their own judgements to gauge the threat of omitted variable bias. We argue 

that the omitted variable bias is unlikely since we include 16 control variables (suggested from 

prior literature) along with various combinations of fixed effect(s). Since the exercise of 

judgement is subjective, we construct a formal test for omitted variable bias as introduced by 

Oster (2019). This novel approach has been extensively adopted by recent corporate finance 

studies (see, e.g., Bhabra et al., 2022; Chowdhury et al., 2022).  

 

 

Specifically, Oster (2019) develops an identified boundary through considering the stability of 

coefficient (inclusion/exclusion of controls), R-square of regressions and along with their 

movements. Altonji et al. (2019) argue that the null hypothesis in which the omitted variable(s) 
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drives the result can be rejected when the identified boundary does not include a zero. Based 

on Oster (2019), the identified boundary [β ̃, β*] can be derived as follow:  

 

β*=β~ -δ*[ β ̇- β ̃] (Rmax – R~)/(R~-R ̇ )       (2) 

 

 

where β ̃ and β ̇ are coefficients of research variable (lnDisFreq) predicted from the controlled 

and uncontrolled regressions. R~  and R ̇ are R-square of controlled and uncontrolled 

regressions. The controlled regression includes all control variables and combination of fixed 

effects, as per in baseline regression. Correspondingly, the uncontrolled regression excludes 

control variables and fixed effects. As Oster (2019) argues that the value of 1 is an appropriate 

cut-off for δ*, we therefore assume δ* equals 1. This indicates that observables are at least as 

important as unobservable. In default, the Rmax equals one (Oster, 2019). Under these 

assumptions, Oster (2019) argues that “only about 9 to 16 percent of results would survive”. 

Following Mian and Sufi (2014), we also adopt a conservative assumption in which Rmax = min 

(2.2 R~, 1). Furthermore, we follow Chowdhury et al. (2022) to relax assumptions for Rmax  to 

show that these results are not sensitive to the change of underlying assumptions. We present 

these results in Table 5, and it shows that the identified boundary in all scenarios does not 

include a zero. This suggests that omitted variable bias is highly unlikely in our baseline 

regression.   

< Insert Table 5 Here > 

 

5.1.4 Quasi-natural experiment with headquarters relocations  

Based on Hasan et al. (2017), the relocations of firms’ headquarters can provide an ideal 

empirical setting to test causal association since relocations can carry change in firm’s exposure 

to natural disaster intensity. Specifically, our study expects to observe that a firm’s default risk 

increases after relocating to a state with higher natural disaster intensity. In contrast, a firm’s 

default risk is expected to decrease if it relocates to a state with lower natural disaster intensity. 

From this perspective, the difference in default risk before and after firms’ relocations should 

be positive when firms relocate to more natural disaster-prone areas compared to firms 

relocating to less disaster-prone areas. 

 

We obtain a firm’s historical headquarters address from SEC filings. We define firms as 

relocating from a low (high) to a high (low) natural disaster intensity state when the DisFreq 



 21 

of a pre-relocation is lower (higher) than that of a post-relocation state. Following Hasan et al. 

(2017), our study excludes observations with multiple historical relocations to mitigate 

confounding event windows. We also exclude the year of relocation since a firm’s natural 

disaster intensity is changing. To allow sufficient time to observe this change, we require firms 

to have available data from four years before and after relocations. Based on the above selection 

criteria10, the final sample consists of 144 firm-year observations from 1994 to 2017. Of these, 

6 firms (48 firm-year observations) relocated from a less to a more natural disaster-prone state, 

whereas 12 firms (96 firm-year observations) relocated from a more to a less natural disaster-

prone state.  

 

We implement a difference-in-difference regression to test this causal effect. We modify the 

baseline regression by including three additional variables, namely, Post, DDisIncrease, and 

their interaction term (DDisIncrease*Post). The time indicator variable, Post, equals one for 

observations in the post-relocation period and zero for those in the pre-relocation period. The 

treatment indicator variable, DDisIncrease, equals one if a firm relocates to a more disaster-

prone state (treatment group), while it equals zero if a firm relocates to a less disaster-prone 

state (control group). We include the same set of controls and cluster standard errors at the firm 

level as in the baseline regression. Angrist and Pischke (2008) caution that fixed effects 

included in a difference-in-difference model cannot be affected by the treatment itself. 

Therefore, following a similar fashion as Hasan et al. (2017), we do not include year and state 

fixed effects since they are perfectly collinear with the time and treatment indicators.  

 

One concern regarding difference-in-difference test is that the change in default risk before and 

after relocations is potentially driven by underlying differences in firm characteristics other 

than changes in firm exposure to natural disaster intensity. To mitigate this endogeneity 

concern, following Atif and Ali (2021), we perform propensity score matching. We first run a 

logit regression to measure the propensity score based on several key firm characteristics. Due 

to limited sample size, we are unable to match based on the full baseline controls. Thus, we 

adopt one-to-one nearest neighbour to match firms relocating to a higher natural disaster 

intensity state (treatment group) with firms relocating to a lower intensity state (control group). 

This matching further reduces the sample to 104 firm-year observations.  

 
10 For example, imagine that firm A relocated its headquarters in 2005. In this circumstance, we require that there 

are no missing observations for both the period 2001-2004 and the period 2006-2009. 
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Panel A of Table 6 reports these difference-in-difference regressions results based on the 

unmatched sample in column (1) and the matched sample in column (2). The coefficients on 

the interaction term are -2.093 and -1.60, respectively, and they are statistically significant at a 

minimum of the 10% level. The negative coefficients imply that firms’ default risk increases 

significantly when they relocate to a more natural disaster-prone state compared with firms 

relocating to a less natural disaster-prone state. This evidence can support the causal effect of 

a firm’s exposure to natural disaster intensity on default risk. Panel B of Table 6 reports the 

results for the diagnostic test that assesses matching quality. The p-values of matching variables 

are higher than the threshold, suggesting that there is no significant underlying difference 

between the treatment and control groups across core firm characteristics (ROA, LEV, LIQ, 

SIZE, MTB) after matching. 

 

< Insert Tables 6 Here > 

5.2 Alternative measures 

 

5.2.1 Alternative measures of natural disaster intensity 

In the first robustness test, we propose alternative measures for a firm’s exposure to natural 

disaster intensity. The analyses thus far have been based on lnDisFreq obtained from the EM-

DAT database. Gall et al. (2009) criticize the inconsistency among different natural disaster 

databases. Therefore, we construct measures directly from an alternative source: the Spatial 

Hazard Events and Losses Database (SHELDUS). Specifically, FinLoss is the (natural 

logarithm of) the annual direct financial loss arising from crop and property damages by natural 

disasters. HumLoss is the (natural logarithm of) the total fatalities and injuries resulting from 

natural disasters, each state-year. They can better capture the severity of natural disasters.  

 

We replicate the baseline regression with these alternative measures and report the results in 

Table 7. The coefficients on the alternative measures are negative and statistically significant 

at a minimum of the 5% level in all specifications. All control variables also have the expected 

signs. The reported coefficients imply that, ceteris paribus, a 1% increase in natural disaster 
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severity, as reflected by FinLoss (HumLoss), is associated with a 0.0003 (0.0003)11 reduction 

in DD. These results indicate that the negative effect of natural disaster intensity on a firm’s 

default risk is robust to alternative measures, however, the economically magnitudes decrease 

in comparative with the use of lnDisFreq.  

 

< Insert Table 7 Here> 

 

5.2.2. Alternative measure of default risk 

As another robustness test, we alternatively measure a firm’s default risk by the natural 

logarithm of CDS spreads (ln_CDS). This is the annualized percentage of the notional value 

insured by CDS and we obtain data from CRI database12. A CDS contract can transfer a firm’s 

default risk from buyers to sellers for pre-determined period. In this regard, Das et al. (2009) 

view this spread as the price of default risk. Thus, a firm with higher default risk should be 

subject to higher spreads. The literature documents that firms trading CDS contracts have 

higher lending efficiency and are perceived to have lower risk since CDS contracts provide 

insurance-like tools (Saretto & Tookes, 2013). Moreover, Javadi and Masum (2021) provide 

further evidence that a firm’s exposure to climate risk is positively associated with the cost of 

bank loans but fail to extend this conclusion to firms with active CDS trading in the market. 

Thus, we expect that it should be more challenging to establish a statistically significant 

relationship than for DD. We investigate this issue by regressing ln_CDS on lnDisFreq. We 

utilize the same specification as in the baseline regression. The empirical results are reported 

in Table 8. In columns (1) through (3), we sequentially present the results for CDSs with 

maturities of one year, three years and five years.  

 

The coefficients on lnDisFreq across all columns are positive and statistically significant at the 

1% level. This implies that firms with greater exposure to natural disaster intensity pay higher 

spreads, which is the higher price for default risk. Since CDS spreads can also be viewed as a 

proxy for a firm’s credit risk, we can also conclude that firms with higher natural disaster 

 
11  

∆𝐷𝐷

100×
1%×∆𝐹𝑖𝑛𝐿𝑜𝑠𝑠 (𝑜𝑟 𝐻𝑢𝑚𝐿𝑜𝑠𝑠)

𝐹𝑖𝑛𝐿𝑜𝑠𝑠 (𝑜𝑟 𝐻𝑢𝑚𝐿𝑜𝑠𝑠)

=  
𝐵1

100
 , this can be interpreted as, when FinLoss(HumLoss) increases by 1%, the 

DD changes by  
𝐵1

100
 (for FinLoss, -0.033*0.01≈-0.0003, for HumLoss, -0.026*0.01 ≈-0.0003).  

 
12 It worth noticing that CRI database provides the actuarial spread for credit default swaps which is equivalent to 

CDS spread but ignoring the upfront fee since they assume the risk-neutral market. Existing default risk literature 

from Atif and Ali (2021) and Kabir et al. (2020) also assumes they are technically and theoretically identical. 
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intensity are associated with higher credit risk. By regressing on CDS contracts with different 

maturities, the empirical results suggest that the documented effect of natural disaster intensity 

on CDS spreads can be observed in both short and long term, although this effect becomes 

weaker in the long term. Finally, note that, in unreported results, we alternatively use natural 

disaster severity measures (FinLoss and HumLoss) to replicate this regression. Consistently, 

the coefficients on natural disaster severity measures are also positive and are statistically 

significant at a minimum of the 5% level, implying that a firm with higher exposure to disaster 

severity has the higher CDS spreads (higher default/credit risk). This further reflects the 

robustness of our documented association in the main results.  

 

< Insert Table 8 Here > 

 

6. Additional Analyses  

 

6.1 Mechanisms of the association  

 

6.1.1 Effect of financial access  

By definition, firms are financially constrained if they have limited or no access to external 

financing (Iliasov & Kokoreva, 2018). Prior studies (see, e.g., Musso & Schiavo, 2008; Kim et 

al., 2021) argue that financially constrained firms sell their assets at a discount to finance their 

normal operating activities. This eventually results in reduced firm value and weakens its 

ability to obtain external financing during a credit crisis. Moreover, financially constrained 

firms face underinvestment, where they are unable to invest in attractive projects with higher 

expected returns due to limited access to external finance. In the scope of our research, aligned 

with aforementioned studies, financially unconstrained firms located in natural disaster-prone 

areas should be expected to experience a less pronounced negative effect of natural disaster 

intensity on default risk. In this case, access to external finance is an important moderator.  

 

To investigate the role of a firm’s credit access, we employ two frequently adopted financial 

constraint measures: the KZ index (Kaplan & Zingales, 2000) and the WW index (Whited & 

Wu, 2006). A higher KZ (WW) index reflects a firm’s lower access to external finance and 

vice versa. Therefore, we define the indicator variable for a firm’s higher financial access 

(DHFinAcces) equals one if KZ (WW) index is lower than the industry-year median and zero 
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otherwise. The detailed variable definitions are documented in Appendix A. In this section, we 

rerun the baseline regression by adding this indicator variable (DHFinAcces) and its interaction 

term with natural disaster intensity (lnDisFreq*DHFinAcces). DHFinAcces is determined by 

the aforementioned proxies for finance access variable which takes the value 1 if firm’s finance 

accessibility is higher than year-industry median, 0 otherwise.  Consistently, we utilize same 

controls and set of fixed effects as in the baseline model.  

 

The results reported in Table 9 columns 1 and 2 show that the coefficients on the interaction 

term (lnDisFreq*DHFinAcces) are positive and statistically significant at least at the 10% level. 

Moreover, the coefficients on lnDisFreq remain negative and statistically significant at the 1% 

level. These results suggest that the negative effect of natural disaster intensity on default risk 

remains important even after controlling for a firm’s access to external credit. The positive 

interaction term, however, indicates that this effect becomes weaker for firms with higher 

access to external finance. Taken together, these results confirm that a firm’s access to external 

credit plays an important moderating role. 

 

<  Insert Table 9 Here > 

 

6.1.2 Effect of debt capacity  

In this section, our study investigates the moderating role of a firm’s debt capacity. Fahlenbrach 

et al. (2020) argue that the impact of a sudden negative cashflow shock is less negative on firms 

with greater debt capacity, as reflected by their employing lower leverage and less long-term 

debt. However, note that there is a substantial difference between financial access and debt 

capacity. Firms employing undesirable excessive leverage (lower debt capacity) are perceived 

to be riskier in the debt market. Fahlenbrach et al. (2020) provide an example that, although 

large firms have a higher level of financial access, they are still unable to absorb more debt if 

they have lower debt capacity. Hence, Fahlenbrach et al. (2020) find that the negative effect of 

COVID-19 on a firm’s stock return is more pronounced for firms with lower debt capacity but 

not for those with lower financial access. In our research context, firms located in more 

disaster-prone areas but with greater debt capacity can limit/reduce refinancing risk in the event 

of natural disasters. Alternatively, firms with lower debt capacity are exposed more to 

refinancing risk and thus face greater difficulty in financing their liquidity shortfalls. In this 

circumstance, we expect that firms with high (low) debt capacity are less (more) likely to face 

financial distress while facing natural disasters.  
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Following prior studies (Keefe & Yaghoubi, 2016; Fahlenbrach et al., 2020), we use three 

proxies to measure a firm’s debt capacity. The first proxy, LEV, evaluates a firm’s financial 

leverage in which debts consist of short- and long-term debt13. The second proxy, LLEV, further 

restricts the leverage to include only long-term debt. The final measurement is debt maturity 

(DebtMat), which counters the structure of a firm’s debt maturity. A lower DebtMat indicates 

a lower percentage of long-term debt out of total debt. The detailed definitions for each variable 

are documented in Appendix A. Similarly, we rerun the baseline regression by including an 

indicator variable for a firm’s debt capacity (DHDebtCap) and its interaction term (lnDisFreq* 

DHDebtCap). DHDebtCap is determined by the aforementioned proxies for debt capacity as 

which takes the value 1 if firm’s debt capacity is higher than year-industry median, 0 otherwise. 

Except for LEV, which is omitted from columns (1) to (2) to avoid multicollinearity, we use 

the same controls and set of fixed effects as in the baseline regression. 

 

The results are presented in columns (1) through (3) of Table 10. Consistent with earlier 

findings, coefficients on lnDisFreq are negative and statistically significant at the 1% level in 

all columns. As expected, coefficients on the interaction term across all specifications are 

positive and statistically significant at the 1% level except in column (3), which is significant 

at the 10% level. These results suggest that, given the same level of natural disaster intensity, 

firms with higher debt capacity have significantly lower exposure to default risk than firms 

without. Moreover, the magnitude of the coefficient on interaction term appears to be larger in 

column (2). This is consistent with the argument that firms have already employed higher levels 

of long-term debt find it more difficult to absorb more debt, in response to future cash flow 

shortfalls. It also clear that the magnitude of the interaction term is lower in column (3), where 

we use maturity structure. This suggests that the level of debt takes a more prominent position 

than the debt maturity structure (i.e., percentage of long-term debt) in moderating this 

association. Taken together, firms with a higher debt capacity are more capable of absorbing 

new debts during a liquidity shock and are therefore subject to the lower exposure to default 

risk than firms with lower debt capacity. 

 

< Insert Table 10 Here > 

 
13 In doing so, we can solve the critique that, by using data provided in COMPUSTAT, nonfinancial liabilities can 

be implicitly included as assets (Welch, 2007). 
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6.1.3 Effect of operational volatility  

In this section, we investigate the role of a firm’s operational volatility on the natural disaster-

default risk association. Javadi and Masum (2021) find that the positive association between 

climate change and the cost of bank loans is far more pronounced in industries with greater 

operational exposure. In our context, firms with greater exposure to operational risk are also 

more severely affected by natural disasters. For instance, Baltas et al. (2021) indicate that, in 

the event of natural disasters, a firm whose operations rely intensively on physical capital has 

substantial lower access to conventional finance channels. In this circumstance, firms with 

lower operational volatility and those located in natural disaster-prone areas should expect to 

have a less pronounced negative effect of natural disaster intensity on default risk. Thus, a 

firm’s operational volatility is also an important moderator.  

 

We use three measures to capture a firm’s operational volatility. Following Keefe and 

Yaghoubi (2016), the first proxy, CFVolat, is cash flow volatility in the broad sense which can 

assess a firm’s general risk. Following Dierker et al. (2015), the second proxy, OperaCFVolat, 

is operational cash flow volatility, which specifically targets a firm’s operation. The third proxy, 

OperaProfVolat, is operational profit volatility that can reflect a firm’s risk from the earning 

perspective. In a similar fashion, we rerun the baseline regression by adding an indicator 

variable for a firm’s operational volatility (DLvolat) and its interaction term 

(lnDisFreq*DLvolat). DLvolat is determined by the aforementioned proxies for operational 

volatility as which takes the value 1 if firm’s volatility is lower than year-industry median, 0 

otherwise. 

 

We present the results sequentially from columns (1) through (3) of Table 11. Consistent with 

earlier findings, the coefficients on lnDisFreq remain negative and statistically significant at 

least at the 5% level after controlling for a firm’s operational volatility. The coefficients on the 

interaction term in all columns are positive and statistically significant at a minimum of 10%. 

This implies that the negative effects of natural disaster intensity on default risk become weaker 

for firms with lower operational volatility. This could be explained by that such firms are less 

adversely affected by natural disasters due to less physical capital being exposed to natural 

disasters. Taken together, the positive coefficients on the interaction term confirm the 

moderating role of firm operational volatility.  
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< Insert Table 11 Here > 

 

6.2 Economic implications 

In this section, we attempt to investigate the economic implications of the association between 

natural disasters intensity and corporate default risk. One possible outcome is that firms located 

in natural disaster-prone areas have higher default risk and therefore face increased costs of 

debt or unfavourable credit terms from financial institutions. This outcome can lead such firms 

to enter deeper financial distress and therefore even more likely to default. Thus, our study 

proposes two propositions: such firms have higher financing costs and tighter initial financial 

covenants associated with syndicated loans. 

 

To verify these two propositions, our study first acquires US syndicated loan data from 

DealScan, which is managed by the Thomson Reuters Loan Pricing Corporation. DealScan 

provides price and nonprice data for syndicated loans at either the facility or package level. 

The unit observation is at the facility level, and they are then grouped into a deal. In this section, 

our study measures the cost of bank loans and tightness of covenants at the facility-year level. 

Our research uses COMPUSTAT-DealScan linking table provided by Chava and Robert (2008) 

to merge two databases. Following Javadi and Masum (2021), we drop observations if they 

have negative all-in-drawn spreads or financial leverage that is greater than one. This results in 

12,983 distinct facilities and 9,111 deals for 2,801 US firms. On average, firms in our sample 

typically have a loan size of 597 million, pay all-in-drawn spreads of 215 basis points, have a 

maturity of 42 months, and have 7 lenders participating. This is comparable with previous 

studies on the cost of bank loan (see, e.g., Fields et al., 2012; Javadi & Masum, 2021). 

 

Following prior studies (see, e.g., Fields et al., 2012; Javadi & Masum, 2021), we use the 

(natural logarithm of) all-in-drawn spreads, Ln_Spreads, to measure the cost of bank loans. 

This is the annual spread that firms paid over the London Bank Offered Rate. For the nonprice 

terms, a growing number of studies (see, e.g., Chava & Robert, 2008; Demiroglu et al., 2010) 

investigate the tightness of financial covenants rather than relying on counting the number of 

covenants. The philosophy behind this is that greater tightness of financial covenants can 

reduce a firm’s incentive to take excessive risk. However, a higher number of financial 
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covenants does not necessarily imply greater tightness if the associated financial covenants are 

loose14.  

 

Hence, we follow Chava and Robert (2008) who focus exclusively on the initial tightness of 

financial covenants for current ratio, net worth, and tangible net worth. The reasons are twofold. 

First, measurements of these financial covenants are standardized. Second, lenders have a 

higher propensity to impose tighter restrictions on a firm’s liquidity management capacity since 

natural disasters result cashflow shortfalls. Specifically, we construct the initial tightness ratio 

as the difference between a firm’s actual accounting number and initial covenant threshold 

divided by per standard deviation. A lower such ratio indicates greater initial tightness and vice 

versa.  

 

We regress Ln_Spreads on lnDisFreq, its interaction term (lnDisFreq*DHdefault) and a list of 

control variables. DHdefault is an indicator variable for high default risk which equals one if a 

firm’s DD is lower than the industry-year median, and zero otherwise. Similarly, for the initial 

tightness of financial covenants, we estimate a probit regression by replacing Ln_Spreads with 

DHTight, which is an indicator variable for high tightness which equals one if corresponding 

financial covenants are tighter than industry-year median, and zero otherwise. Consistently, we 

employ the same set of fixed effects and clustering methodology as but different controls than 

in the baseline regression. 

 

Since we investigate the cost of bank loans, we adopt a new set of control variables to better 

mitigate omitted variables. Following prior studies (see, e.g., Chen at al., 2020; Ambrocio et 

al., 2022), we first include a set of control variables associated with firm characteristics, 

including SIZE, ROA, LEV, MTB, AGE, EXCESS, TOBINQ, and AMIHUD. Following Javadi 

and Masum (2021), the second set of controls is associated with loan characteristics, which are 

the (natural logarithm of) loan size (Ln_LoanSize), number of lenders (Ln_Lenders), and loan 

maturity (Ln_Mat). Following Maskara (2010), we also include a list of indicator variables to 

control for a loan’s purpose and type. The detailed variable definitions are documented in 

Appendix A.  

 
14 Imagine that firm A with current tangible net worth of 20 (million in USD) and seek for loan A. Firm B with 

tangible net worth of 6 (million in USD) and seek for loan B. Lenders approve two loans and require both firms 

to hold at least 5 (million in USD) of tangible net worth. Although loan A and loan B have the same number of 

financial covenants, the tightness of loan B is more restrict than loan A. 
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The empirical results are presented in Table 12. In column (1), the coefficient on the interaction 

term (lnDisFreq* DHdefault) is positive and statistically significant at the 10% level. This 

suggests that firms with higher default risk resulting from increased natural disaster intensity 

face a higher cost of bank loans. The coefficient of 0.0558 indicates that, when lnDisFreq 

increases by 1%, a firm with higher default risk resulting from higher natural disaster intensity 

is charged 0.06% higher spreads than a firm otherwise with a lower default risk. This confirms 

that lenders recognize that a higher natural disaster intensity can lead to higher default risk and 

therefore charge higher premium. However, we do not find a direct association between natural 

disaster intensity and the cost of bank loan, given that the coefficient on lnDisFreq is 

statistically insignificant. In columns (2) through (3), the coefficients on the interaction term 

are also positive and statistically significant at the 10% level. This suggests that firms with 

higher default risk resulting from higher natural disaster intensity are more likely to be 

demanded for tighter initial financial covenants on current ratio or tangible net worth. Similarly, 

we cannot find a direct association between a firm’s natural disaster intensity and the tightness 

of financial covenants. In (unreported) results, we fail to find such a significant association 

with financial covenants on net worth. One possible explanation is that tangible assets can be 

sold in the event of financial distress to meet cashflow shortfalls. Consequently, lenders 

extensively target a firm’s ability to respond liquidity shocks (such as the current ratio, tangible 

net worth) which is a result of natural disasters. Taken together, these results provide suggestive 

evidence that firms with higher default risk resulting from higher natural disaster intensity not 

only experience the higher borrowing costs but also receive unfavourable credit terms.   

 

< Insert Table 12 Here > 

 

7. Conclusion  

This is the first study to examine the influence of ecological factor (i.e., natural disaster) on 

firm’s chances of failure (i.e., default risk) in the context of US. Consistent with our main 

prediction, we find that firms with greater exposure to natural disaster intensity are associated 

with increased default risk. We further show that this association is primarily driven by firms 

with lower financial accessibility, lower debt capacity and higher operational volatility. Our 

results can survive from a battery of additional tests, such as propensity score matching, 

entropy balancing method, Oster (2019) omitted variable bias test and quasi-experiment of 

headquarters’ relocations. In robustness tests, we also find that this association is not sensitive 
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to alternative  measures of natural disaster intensity and default risk. Finally, as an economic 

implication, we find that a firm with higher default risk resulting from increased exposure to 

natural disaster intensity can be requested for higher premium and tighter requirement of 

financial covenants by financial institutions.  

 

Our findings also have important policy implications. They suggest that firms located in areas 

with higher exposure to natural disaster intensity are more likely to experience financial distress 

and, therefore, default. We observe this association by adopting the state-level measure. This 

implies that this negative effect holds in the state-wide. Thus, policymakers should be aware 

that the negative effect of natural disaster intensity on firms is statewide rather than only in 

direct affected counties. Furthermore, we find that firms with higher default risk resulting from 

increased exposure to natural disaster intensity face higher external borrowing costs and 

receive unfavorable credit terms. Therefore, policymakers should distribute more disaster 

financial/loan assistance to firms located in both direct disaster-affected areas and their 

neighboring areas. In distribution of financial assistance, policymakers should assign higher 

priority to assist firms with lower financial accessibility, lower debt capacity, and higher 

exposure to operational risk since they are more pronounced to said negative effect. 

 

The possible extensions to our study include but are not limited to: (1) the investigation of 

disaster–default linkage using similar methodology in multi-countries accounting for 

institutional differences, (2) the exploration of the moderating role of corporate governance, 

ESG disclosure, and economic policy uncertainty in the disaster–default linkage, (3) the use of 

the natural disasters intensity in default prediction models as a key input to predict actual or 

ex-post default and bankruptcy events, (4) the potential extension of this research to financial 

firms or bank holding companies, and to other important features of capital markets such as 

stock liquidity. 
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Table 1 - Descriptive Statistics  

This table presents descriptive statistics for the sample of 24,906 firm-year observations excluding 

financial and utility firms. Columns (1) through (3) report the sample size, mean and standard deviation 

and columns (4) to (6) reports the 25%, 50% and 75% percentiles respectively. The definition for each 

variable has been documented in Appendix A. 

     N   Mean   SD   P25   Median   P75 

 (1) (2) (3) (4) (5) (6) 

DD 24,906 4.452 2.775 2.438 3.980 5.957 

DisFreq 24,906 4.030 2.545 2.000 4.000 5.000 

lnDisFreq 24,906 1.491 0.506 1.099 1.609 1.792 

SIZE  24,906 6.329 1.803 5.011 6.258 7.553 

ROA 24,906 0.050 0.068 0.020 0.051 0.085 

LEV 24,906 0.201 0.180 0.042 0.173 0.304 

R&D  24,906 0.025 0.044 0.000 0.000 0.030 

VOLAT 24,906 0.425 0.243 0.254 0.367 0.529 

AGE 24,906 22.399 15.878 9.000 18.000 33.000 

EXCESS 24,906 0.056 0.528 -0.256 -0.017 0.242 

TANG 24,906 0.272 0.214 0.107 0.213 0.376 

GROSS 24,906 5.303 1.751 4.002 5.249 6.490 

MTB 24,906 2.766 3.103 1.264 2.050 3.349 

LIQ 24,906 2.361 1.510 1.394 1.977 2.842 

AMIHUD 24,906 0.003 0.013 0.000 0.000 0.000 

Div/Assets 24,906 1.015 1.862 0.000 0.000 1.398 

Ln_Intcov 24,906 2.384 1.559 1.361 2.116 3.101 

Ln_Popmill 24,906 2.390 0.767 1.821 2.441 2.975 

Ln_Gdpmill 24,906 13.028 0.852 12.485 13.005 13.629 
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Table 2 - Baseline Regression  

This table presents regression results on the association between firm’s exposure to natural disaster 

intensity and default risk. Detailed variable definitions are provided in Appendix A. All regressions 

include year-, industry- and state-fixed effects. We cluster standard error at firm level in columns (1) 

through (2), and state-firm level in column (3). The p-value is reported in parentheses. ***, **, * 

denoted significance at 1%, 5%, and 10% level, respectively. 

 DD DD DD  
(1) (2) (3)  

 
   

lnDisFreq -0.0753** -0.0775*** -0.0775*** 

 (0.011) (0.008) (0.009) 

SIZE 0.1031** 0.1017** 0.1017** 

 (0.019) (0.020) (0.021) 

ROA 3.8215*** 3.8178*** 3.8178*** 

 (0.000) (0.000) (0.000) 

LEV -1.8190*** -1.8219*** -1.8219*** 

 (0.000) (0.000) (0.000) 

R&D 0.5494 0.5512 0.5512 

 (0.253) (0.249) (0.250) 

VOLAT -2.8273*** -2.8325*** -2.8325*** 

 (0.000) (0.000) (0.000) 

AGE 0.0068*** 0.0067*** 0.0067*** 

 (0.000) (0.000) (0.000) 

EXCESS 0.3253*** 0.3253*** 0.3253*** 

 (0.000) (0.000) (0.000) 

TANG 1.0626*** 1.0719*** 1.0719*** 

 (0.000) (0.000) (0.000) 

GROSS 0.2861*** 0.2878*** 0.2878*** 

 (0.000) (0.000) (0.000) 

MTB 0.0473*** 0.0472*** 0.0472*** 

 (0.000) (0.000) (0.000) 

LIQ 0.2546*** 0.2553*** 0.2553*** 

 (0.000) (0.000) (0.000) 

AMIHUD -7.3431*** -7.3313*** -7.3313*** 

 (0.000) (0.000) (0.000) 

Div/Assets 0.2312*** 0.2315*** 0.2315*** 

 (0.000) (0.000) (0.000) 

Ln_IntCov 0.2776*** 0.2776*** 0.2776*** 

 (0.000) (0.000) (0.000) 

Ln_Popmill  0.0926 0.0926 

 
 (0.867) (0.867) 

Ln_Gdpmill  -0.6335* -0.6335* 

 
 (0.079) (0.079) 

Constant 1.5122*** 8.5624** 8.5624** 

 (0.000) (0.019) (0.019) 

Year Fixed Effects YES YES YES 

Industry Fixed Effects YES YES YES 

State Fixed Effects YES YES YES 

Observations 24,906 24,906 24,906 

Adj. R2 0.62 0.62 0.62 

 

  



 39 

Table 3 - Natural Disaster Intensity and Default Risk (PSM Matching) 

Panel A of Table 3 presents OLS regression results on the association between a firm’s exposure to 

natural disaster intensity and default risk based on PSM matched sample. All regressions include year-, 

industry- and state-fixed effects. We cluster standard error at firm level in columns (1) and state-firm 

levels in column (2). Detailed variable definitions are provided in Appendix A. The p-value is reported 

in parentheses. ***, **, * denoted significance at 1%, 5%, and 10% level, respectively. Panels B and C 

present the mean difference of variables between treatment and control groups after PSM matching. 

Panel A – Regression   

 DD DD  
(1) (2)    

lnDisFreq -0.082** -0.082**  
(0.019) (0.018) 

SIZE 0.105** 0.105**  
(0.033) (0.032) 

ROA 3.849*** 3.849***  
(0.000) (0.000) 

LEV -1.873*** -1.873***  
(0.000) (0.000) 

R&D 0.499 0.499  
(0.394) (0.394) 

VOLAT -3.014*** -3.014***  
(0.000) (0.000) 

AGE 0.006*** 0.006***  
(0.001) (0.001) 

EXCESS 0.307*** 0.307***  
(0.000) (0.000) 

TANG 1.081*** 1.081***  
(0.000) (0.000) 

GROSS 0.272*** 0.272***  
(0.000) (0.000) 

MTB 0.079*** 0.079***  
(0.000) (0.000) 

LIQ 0.261*** 0.261***  
(0.000) (0.000) 

AMIHUD -6.538*** -6.538***  
(0.000) (0.000) 

Div/Assets 0.227*** 0.227***  
(0.000) (0.000) 

Ln_IntCov 0.288*** 0.288***  
(0.000) (0.000) 

Ln_Popmill 0.063 0.063 
 (0.921) (0.921) 

Ln_Gdpmill -0.61 -0.61 
 (0.159) (0.159) 
Constant 8.591** 8.591** 
 (0.049) (0.049)    
Year Fixed Effects YES YES 

Industry Fixed Effects YES YES 

State Fixed Effects YES YES 

Observations 17,454 17,454 

Adj. R2 0.627 0.627 
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Panel B – PSM estimator  

 Treated  Control Difference t-stat 

DD 4.6205 4.4753 0.1452 3.41*** 

     

Panel C – Mean Difference     

 Treated Control Difference t-values 

SIZE 6.4427 6.4468 -0.0041 -0.15 

ROA  0.0498 0.05018 -0.00038 -0.38 

LEV 0.20529 0.20574 -0.00045 -0.17 

R&D 0.02264 0.02204 0.0006 0.97 

VOLAT 0.41407 0.41573 -0.00166 -0.46 

AGE 23.176 23.202 -0.026 -0.10 

EXCESS 0.05228 0.05372 -0.00144 -0.19 

TANG 0.2737 0.27517 -0.00147 -0.45 

GROSS 5.3918 5.392 -0.0002 -0.01 

MTB 2.7726 2.7492 0.0234 0.50 

LIQ 2.355 2.3418 0.0132 0.59 

AMIHUD 0.00246 0.00244 0.00002 0.07 

Div/Assets 1.043 1.0612 -0.0182 -0.62 

Ln_IntCov 2.3854 2.3762 0.0092 0.40 

lnpopmill 2.53 2.5332 -0.0032 -0.29 

lngdpmill 13.185 13.187 -0.002 -0.21 
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Table 4 - Natural Disaster Intensity and Default Risk (Entropy balanced) 

Panel A of Table 4 presents the proof of convergence in mean, variance, and skewness for all variables 

after entropy balancing. Panel B of Table 4 reports OLS regression results on the association between 

a firm’s exposure to natural disaster intensity and default risk based on entropy balanced sample. All 

regressions include year-, industry- and state-fixed effects. We cluster standard error at firm level. 

Detailed variable definitions are provided in Appendix A. The p-value is reported in parentheses. ***, 

**, * denoted significance at 1%, 5%, and 10% level, respectively.  

Panel A - Entropy balancing quality  

First three moments before entropy balancing 

(Before) Treatment Group Control Group 

Variables Mean Variance Skewness Mean Variance Skewness 

SIZE 6.565 3.31 0.1696 6.183 3.161 0.2659 

ROA 0.0502 0.0043 -0.7443 0.0499 0.0048 -0.8031 

LEV 0.2089 0.0317 0.8876 0.1956 0.0325 1.042 

R&D 0.0218 0.0017 2.605 0.0265 0.0021 2.242 
VOLAT 0.4056 0.0539 1.552 0.4364 0.0620 1.481 

AGE 23.62 275.8 0.7221 21.65 236.2 0.8073 

EXCESS 0.0497 0.2574 1.753 0.0601 0.2919 1.757 

TANG 0.2853 0.0509 1.06 0.264 0.0425 1.128 

GROSS 5.486 3.109 0.2274 5.191 3.011 .2846 

MTB 2.863 10.21 2.639 2.831 10.49 2.45 

LIQ 2.329 2.215 1.977 2.379 2.315 1.976 

AMIHUD 0.0023 0.0001 7.07 0.0030 .0002 6.144 

Div/Assets 1.113 3.738 2.502 0.9539 3.277 2.868 

Ln_IntCov 2.391 2.392 0.9721 2.378 2.451 0.87 

Ln_Popmill 2.591 0.4995 -0.5358 2.269 0.6037 -0.0935 

Ln_Gdpmill 13.26 0.6467 -0.3025 12.88 0.7192 -0.1059 

 

First three moments after entropy balancing 

(After) Treatment Control 

Variables Mean Variance Skewness Mean Variance Skewness 

SIZE 6.565 3.31 0.1696 6.565 3.31 0.1696 

ROA 0.0502 0.0043 -0.7443 0.0502 0.0043 -0.7443 

LEV 0.2089 0.0317 0.8876 0.2089 0.0317 0.8876 

R&D 0.0218 0.0017 2.605 0.0218 0.0017 2.605 

VOLAT 0.4056 0.0539 1.552 0.4056 0.0539 1.552 

AGE 23.62 275.8 0.7221 23.62 275.8 0.7221 

EXCESS 0.0497 0.2574 1.753 0.0497 0.2574 1.753 

TANG 0.2853 0.0509 1.06 0.2853 0.0509 1.06 

GROSS 5.486 3.109 0.2274 5.485 3.109 0.2274 

MTB 2.863 10.21 2.639 2.863 10.21 2.639 

LIQ 2.329 2.215 1.977 2.329 2.215 1.977 

AMIHUD 0.0023 0.0001 7.07 0.0023 0.0001 7.07 

Div/Assets 1.113 3.738 2.502 1.113 3.738 2.502 

Ln_IntCov 2.391 2.392 0.9721 2.391 2.392 0.9721 

Ln_Popmill 2.591 0.4995 -0.5358 2.591 0.4995 -0.5363 

Ln_Gdpmill 13.26 0.6467 -0.3025 13.26 0.6472 -0.3025 
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Panel B – Regression  

 DD  
(1)   

lnDisFreq -0.058*  
(0.082) 

SIZE 0.072  
(0.141) 

ROA 3.888***  
(0.000) 

LEV -1.873***  
(0.000) 

R&D 0.746  
(0.169) 

VOLAT -3.051***  
(0.000) 

AGE 0.006***  
(0.002) 

EXCESS 0.317***  
(0.000) 

TANG 1.067***  
(0.000) 

GROSS 0.308***  
(0.000) 

MTB 0.068***  
(0.000) 

LIQ 0.258***  
(0.000) 

AMIHUD -7.295***  
(0.000) 

Div/Assets 0.237***  
(0.000) 

Ln_IntCov 0.288***  
(0.000) 

Ln_Popmill 0.09  
(0.891) 

Ln_Gdpmill -0.668  
(0.118) 

Constant 9.269**  
(0.029)   

Year Fixed Effects YES 

Industry Fixed Effects YES 

State Fixed Effects YES 

Observations 24,906 

Adj. R2 0.632 
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Table 5 – Oster (2019) omitted variable bias test 
This table presents assumptions used for Oster (2019) test and bounds for our research variable of 

lnDisFreq as shown in baseline regression.  

Dependent Variable=DD 

Independent Variable = lnDisFreq 

Oster (2019) 

Assumptions 
RMAX Identified Set Includes Zero 

δ = 1  

RMAX = min(1.25R̃,1) 
RMAX=min(1.25*0. 6254,1)=0.7818 [-0.2148, -0.0775] NO 

δ = 1 

RMAX = min(1.5R̃,1) 
RMAX=min(1.5*0. 6254,1)=0.9381 [-0.3519, -0.0775] NO 

δ = 1 

RMAX = min(1.8R̃,1) 
RMAX=min(1.8*0. 6254,1)=1 [-0.4062, -0.0775] NO 

δ = 1 

RMAX = min(2.0R̃ ,1) 
RMAX=min(2.0*0. 6254,1)=1 [-0.4062, -0.0775] NO 

δ = 1; 

RMAX = min(2.2R̃ ,1) 
RMAX=min(2.2*0. 6254,1)=1 [-0.4062, -0.0775] NO 

δ = 1 

RMAX = 1 
RMAX= 1 [-0.4062, -0.0775] NO 

Controlled Coefficient  -0.0775 Uncontrolled 

Coefficient  

0.4651 

Controlled R-square  0.6254 Uncontrolled  

R-square 

0.0071 
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Table 6 - Quasi-Experiment: Firm’s Relocations for Headquarters 

Panel A of this table reports the modified difference-in-difference analysis of firm’s exposure to natural 

disaster intensity on default risk based on firm’s relocations for headquarters. We use unmatched sample 

in column (1) and PSM matched sample in column (2). All regressions include industry fixed effects 

and cluster the robust standard error at firm-level. The p-value is reported in parentheses. ***, **, * 

denoted significance at 1%, 5%, and 10% level, respectively. Panel B of this table reports the diagnostic 

test for PSM matching quality.  

Panel A - DID   

 DD DD 

 (1) (2)    
Post 1.550*** 1.623** 

 (0.000) (0.010) 

DDisIncrease 0.751 2.241 

 (0.414) (0.315) 

DDisIncrease*Post -2.093*** -1.650* 

 (0.007) (0.064) 

SIZE 0.775 -0.256 

 (0.261) (0.832) 

ROA 6.736* 2.129 

 (0.069) (0.481) 

LEV -3.878 -3.790 

 (0.137) (0.195) 

R&D 0.94 22.910 

 (0.967) (0.324) 

VOLAT -2.660*** -3.047*** 

 (0.001) (0.001) 

AGE -0.017 -0.082 

 (0.412) (0.408) 

EXCESS 0.462 0.523 

 (0.416) (0.428) 

TANG 4.069 5.012 

 (0.179) (0.215) 

GROSS -0.385 -0.211 

 (0.600) (0.873) 

MTB -0.009 -0.054 

 (0.893) (0.164) 

LIQ 0.009 0.069 

 (0.927) (0.648) 

AMIHUD -51.994 -64.05 

 (0.265) (0.194) 

Div/Assets 0.01 -0.080** 

 (0.857) (0.017) 

Ln_IntCov 0.562*** 0.422** 

 (0.002) (0.045) 

Ln_Popmill -2.640* -1.896 

 (0.095) (0.477) 

Ln_Gdpmill 2.542* 1.873 

 (0.076) (0.433) 

Constant -25.977* -13.071 

 (0.085) (0.571)    
Industry Fixed Effects YES YES 

State Fixed Effects NO NO 

Year Fixed Effects NO NO 

PSM Matched NO YES 
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Observations 144 104 

Adj. R2 0.61 0.62 

 

Panel B - Diagnostic Test  

PSM – Mean Difference  

Variable Treated Control Difference t-values 

ROA .03647 .03495 0.001 0.33  

LEV .25797 .24845 0.009 0.80  

LIQ 2.0893 2.151 -0.061 0.83  

SIZE 6.2727 6.305 -0.032 -0.31  

MTB 2.3236 2.1965 0.127 0.74  
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Table 7 - Alternative Measures of Natural Disaster Intensity 

This table presents regression results on the association between firm’s exposure to natural disaster 

severity and default risk. Detailed variable definitions are provided in Appendix A. All regressions 

include year-, industry- and state-fixed effects. We cluster standard error at firm level. The p-value is 

reported in parentheses. ***, **, * denoted significance at 1%, 5%, and 10% level, respectively. 

 DD DD  
(1) (2)    

FinLoss -0.033***  
 

(0.000)  

HumLoss  -0.026** 

  (0.041) 

SIZE 0.111** 0.111**  
(0.01) (0.01) 

ROA 3.791*** 3.787***  
(0.000) (0.000) 

LEV -1.818*** -1.817*** 

 (0.000) (0.000) 

R&D 0.54 0.529 

 (0.246) (0.256) 

VOLAT -2.790*** -2.792*** 

 (0.000) (0.000) 

AGE 0.007*** 0.007*** 

 (0.000) (0.000) 

EXCESS 0.328*** 0.328*** 

 (0.000) (0.000) 

TANG 1.074*** 1.074*** 

 (0.000) (0.000) 

GROSS 0.277*** 0.277*** 

 (0.000) (0.000) 

MTB 0.047*** 0.047*** 

 (0.000) (0.000) 

LIQ 0.258*** 0.258*** 

 (0.000) (0.000) 

AMIHUD -6.557*** -6.578*** 

 (0.000) (0.000) 

Div/Assets 0.230*** 0.230***  
(0.000) (0.000) 

Ln_IntCov 0.275*** 0.275***  
(0.000) (0.000) 

Ln_Popmill -0.046 -0.044  
(0.930) (0.933) 

Ln_Gdpmill -0.454 -0.417  
(0.181) (0.220) 

Constant 7.231** 6.343*  
(0.036) (0.065) 

   

Year Fixed Effects YES YES 

Industry Fixed Effects YES YES 

State Fixed Effects YES YES 

Observations 27,278 27,278 

Adj. R2 0.62 0.62 
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Table 8 - Alternative Measure of Default Risk 

This table presents regression results on the association between firm’s exposure to natural disaster 

intensity and credit risk (CDS spreads). Columns (1) through (3) sequentially present regression 

results with maturity of CDS for one-year, three-year and five-year. Detailed variable definitions are 

provided in Appendix A. All regressions include year-, industry- and state-fixed effects. We cluster 

standard error at firm level. The p-value is reported in parentheses. ***, **, * denoted significance at 

1%, 5%, and 10% level, respectively. 

 Ln_CDS 
1 Year 

Ln_CDS 
3-Year 

Ln_CDS 
5-Year  

(1) (2) (3)     
lnDisFreq 0.080*** 0.063*** 0.051***  

(0.000) (0.000) (0.000) 

SIZE -0.027 0.003 0.012  
(0.313) (0.901) (0.513) 

ROA -3.464*** -2.589*** -2.111***  
(0.000) (0.000) (0.000) 

LEV 1.412*** 1.089*** 0.862*** 

 (0.000) (0.000) (0.000) 

R&D -0.533* -0.257 -0.161 

 (0.061) (0.293) (0.416) 

VOLAT 2.239*** 1.765*** 1.425*** 

 (0.000) (0.000) (0.000) 

AGE -0.003*** -0.004*** -0.003*** 

 (0.000) (0.000) (0.000) 

EXCESS -0.475*** -0.317*** -0.237*** 

 (0.000) (0.000) (0.000) 

TANG -0.832*** -0.659*** -0.526*** 

 (0.000) (0.000) (0.000) 

GROSS -0.111*** -0.111*** -0.089*** 

 (0.000) (0.000) (0.000) 

MTB -0.031*** -0.025*** -0.019*** 

 (0.000) (0.000) (0.000) 

LIQ -0.168*** -0.142*** -0.115*** 

 (0.000) (0.000) (0.000) 

AMIHUD 10.842*** 6.251*** 4.771*** 

 (0.000) (0.000) (0.000) 

Div/Assets -0.077*** -0.098*** -0.084***  
(0.000) (0.000) (0.000) 

Ln_IntCov -0.161*** -0.147*** -0.118***  
(0.000) (0.000) (0.000) 

Ln_Popmill -0.411 -0.156 -0.073  
(0.170) (0.560) (0.740) 

Ln_Gdpmill 0.194 0.18 0.147  
(0.335) (0.314) (0.314) 

Constant 1.543 2.102 2.476*  
(0.453) (0.246) (0.095) 

Year Fixed Effects YES YES YES 

Industry Fixed Effects YES YES YES 

State Fixed Effects YES YES YES 

Observations 24,912 24,912 24,912 

Adj. R2 0.61 0.61 0.61 
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Table 9 - Effect of Financial Access  

This table presents the regression results on the moderating effect of financial aceess on the association 

between firm’s exposure to natural disaster intensity and default risk. Detailed variable definitions are 

provided in Appendix A. All regressions include year-, industry- and state-fixed effects. We cluster 

standard error at firm level. The p-value is reported in parentheses. ***, **, * denoted significance at 

1%, 5%, and 10% level, respectively.  
DD 

 

 (1) 

                KZ Index 
(2) 

                WW Index     
lnDisFreq -0.1252*** -0.1205***  

(0.001) (0.001) 

lnDisFreq*DHFinAcces 0.1048** 0.0887*  
(0.033) (0.087) 

DHFinAcces -0.1521* 0.06  
(0.051) (0.483) 

SIZE 0.1012** 0.0531 

 (0.022) (0.254) 

ROA 3.8208*** 3.6827*** 

 (0.000) (0.000) 

LEV -1.8171*** -1.8134*** 

 (0.000) (0.000) 

R&D 0.5531 0.5506 

 (0.248) (0.250) 

VOLAT -2.8335*** -2.8320*** 

 (0.000) (0.000) 

AGE 0.0067*** 0.0068*** 

 (0.000) (0.000) 

EXCESS 0.3253*** 0.3249*** 

 (0.000) (0.000) 

TANG 1.0711*** 1.0804*** 

 (0.000) (0.000) 

GROSS 0.2883*** 0.2910*** 

 (0.000) (0.000) 

MTB 0.0472*** 0.0467*** 

 (0.000) (0.000) 

LIQ 0.2552*** 0.2548*** 

 (0.000) (0.000) 

AMIHUD -7.3333*** -7.4860*** 

 (0.000) (0.000) 

Div/Assets 0.2307*** 0.2324*** 
 (0.000) (0.000) 

Ln_IntCov 0.2773*** 0.2787*** 

 (0.000) (0.000) 
Ln_Popmill 0.0915 0.118  

(0.868) (0.830) 

Ln_Gdpmill -0.6272* -0.6289*  
(0.082) (0.081) 

Constant 8.5632** 8.7666**  
(0.019) (0.016)    

Year Fixed Effects YES YES 

Industry Fixed Effects YES YES 

State Fixed Effects YES YES 

Observations 24,906 24,906 

Adj. R2 0.62 0.62 
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Table 10 - Effect of Debt Capacity   

This table presents the regression results on the moderating effect that firm’s debt capacity has on the 

association between firm’s exposure to natural disaster intensity and default risk. Detailed variable 

definitions are provided in Appendix A. All regressions include year-, industry- and state-fixed effects. 

We cluster standard error at firm level. The p-value is reported in parentheses. ***, **, * denoted 

significance at 1%, 5%, and 10% level, respectively.  
 DD 

 (1) 

LEV 

(2) 

LLEV 
(3) 

DebtMat 
 

    
lnDisFreq -0.1393*** -0.1557*** -0.1050***  

(0.000) (0.000) (0.004) 

lnDisFreq*DHDebtCap  0.1465*** 0.1723*** 0.0812*  
(0.004) (0.001) (0.086) 

DHDebtCap 0.6184*** 0.5118*** 0.0565  
(0.000) (0.000) (0.444) 

SIZE 0.1456*** 0.1473*** 0.0927** 
 (0.001) (0.001) (0.034) 

ROA 3.6321*** 3.7729*** 3.7266*** 

 (0.000) (0.000) (0.000) 

R&D -0.2106 0.0315 0.9821** 

 (0.656) (0.947) (0.041) 

VOLAT -2.8213*** -2.8586*** -2.8771*** 

 (0.000) (0.000) (0.000) 

AGE 0.0095*** 0.0093*** 0.0093*** 

 (0.000) (0.000) (0.000) 

EXCESS 0.2824*** 0.3005*** 0.3320*** 

 (0.000) (0.000) (0.000) 

TANG 0.9509*** 1.0459*** 0.9368*** 

 (0.000) (0.000) (0.000) 

GROSS 0.2191*** 0.2319*** 0.2657*** 

 (0.000) (0.000) (0.000) 

MTB 0.0382*** 0.0395*** 0.0437*** 

 (0.000) (0.000) (0.000) 

LIQ 0.2198*** 0.2426*** 0.2456*** 

 (0.000) (0.000) (0.000) 

AMIHUD -5.7375*** -6.4848*** -7.3800*** 

 (0.000) (0.000) (0.000) 

Div/Assets 0.2145*** 0.2121*** 0.2253***  
(0.000) (0.000) (0.000) 

Ln_IntCov 0.2583*** 0.2679*** 0.3973***  
(0.000) (0.000) (0.000) 

Ln_Popmill -0.6769* -0.6184* -0.5858 

 (0.056) (0.082) (0.107) 
Ln_Gdpmill 0.2191 0.1866 0.1079 

 (0.690) (0.734) (0.848) 

Constant 8.3973** 7.6198** 7.5822**  
(0.019) (0.034) (0.039) 

Year Fixed Effects YES YES YES 

Industry Fixed Effects YES YES YES 

State Fixed Effects YES YES YES 

Observations 24,906 24,906 24,906 

Adj. R2 0.63 0.63 0.62 
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Table 11 - Effect of Operational Risk  

This table presents the regression results on the moderating effect of operational risk on the association 

between firm’s exposure to natural disaster intensity and default risk. Detailed variable definitions are 

provided in Appendix A. All regressions include year-, industry- and state-fixed effects. We cluster 

standard error at firm level. The p-value is reported in parentheses. ***, **, * denoted significance at 

1%, 5%, and 10% level, respectively.  
DD  

(1) 

CFVolat 

(2) 

OperaCFVolat  

(3) 

OperaProfVolat      
lnDisFreq -0.1071*** -0.1121*** -0.1195**  

(0.004) (0.002) (0.019) 

lnDisFreq*DLowvolat 0.0835* 0.0975** 0.1152*  
(0.099) (0.044) (0.062) 

DLowvolat 0.2866*** 0.2866*** 0.2634***  
(0.000) (0.000) (0.005) 

SIZE 0.0498 0.0592 -0.1583** 

 (0.260) (0.192) (0.019) 

ROA 4.0032*** 3.7920*** 4.2297*** 

 (0.000) (0.000) (0.000) 

LEV -1.8452*** -1.7344*** -1.9623*** 

 (0.000) (0.000) (0.000) 

R&D 0.9974** 1.5265*** -0.2832 

 (0.035) (0.002) (0.606) 

VOLAT -2.7144*** -2.6887*** -2.7050*** 

 (0.000) (0.000) (0.000) 

AGE 0.0049*** 0.0048*** 0.0036* 

 (0.002) (0.002) (0.078) 

EXCESS 0.3177*** 0.3323*** 0.3257*** 

 (0.000) (0.000) (0.000) 

TANG 1.0415*** 1.0023*** 1.0559*** 

 (0.000) (0.000) (0.000) 

GROSS 0.3088*** 0.3100*** 0.5295*** 

 (0.000) (0.000) (0.000) 

MTB 0.0497*** 0.0473*** 0.0434*** 

 (0.000) (0.000) (0.000) 

LIQ 0.2571*** 0.2549*** 0.2573*** 

 (0.000) (0.000) (0.000) 

Div/Assets 0.2365*** 0.2371*** 0.2677*** 

 (0.000) (0.000) (0.000) 

AMIHUD -7.3742*** -6.4763*** -9.0345*** 

 (0.000) (0.000) (0.000) 

Ln_IntCov 0.2711*** 0.2769*** 0.2432*** 
 (0.000) (0.000) (0.000) 

Ln_Popmill -0.5074 -0.6241* -0.0935 

 (0.157) (0.084) (0.835) 

Ln_Gdpmill -0.0697 -0.0773 0.187 

 (0.898) (0.889) (0.792) 

Constant 7.5190** 8.6668** 2.7411  
(0.039) (0.018) (0.547)     

Year Fixed Effects YES YES YES 

Industry Fixed Effects YES YES YES 

State Fixed Effects YES YES YES 

Observations 24,906 23,459 15,070 

Adj. R2 0.63 0.63 0.64 
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Table 12 – Economic Implications  

This table presents the regression results on the effect that firm’s exposure to natural disaster intensity 

has on the association between firm’s default risk and Ln(spreads) in column (1) and tightness of 

financial covenants in columns (2) through (3). Detailed variable definitions are provided in Appendix 

A. All regressions include year-, industry- and state-fixed effects. We cluster standard error at firm level. 

The p-value is reported in parentheses. ***, **, * denoted significance at 1%, 5%, and 10% level, 

respectively. 

 (1) OLS (2) Probit (3) Probit 

     Ln_Spreads DHTight 

 
   Current Ratio  Tangible Net -Worth     

lnDisFreq -0.0126 0.0605 - 0.4621 

 (0.609) (0.779) (0.323) 

lnDisFreq*DHdefault 0.0558* 0.4541* 1.0159* 

 (0.063) (0.071) (0.080) 

DHdefault 0.0705 -0.6205 -1.0295 

 (0.136) (0.152) (0.289) 

SIZE -0.1501*** 0.0115 -0.0987 

 (0.000) (0.908) (0.555) 

ROA -0.7400*** -2.0923*** -1.7063** 

 (0.000) (0.000) (0.035) 

LEV 0.8402*** -0.7970* 1.3079 

 (0.000) (0.063) (0.140) 

MTB -0.0003 0.0134 0.0153 

 (0.887) (0.322) (0.931) 

AMIHUD -0.1684 -0.5516 3.0733 

 (0.911) (0.895) (0.988) 

TOBINQ -0.1151*** -0.019 -0.1123 

 (0.000) (0.830) (0.977) 

EXCESS 0.0377** 0.0267 -0.1991 

 (0.017) (0.797) (0.275) 

LIQ -0.0257*** -0.4115*** -0.0906 

 (0.004) (0.000) (0.155) 

AGE -0.0053*** -0.0164** 0.0388*** 

 (0.000) (0.033) (0.002) 

Ln_LoanSize -0.0461*** -0.0785 0.3013 

 (0.001) (0.470) (0.212) 

Ln_Lenders -0.0412*** -0.08 -0.6674*** 

 (0.001) (0.499) (0.003) 

Ln_Mat 0.0186* 0.1144 -0.315 

 (0.078) (0.290) (0.126) 

DRevolver -0.1557*** 0.2596** 0.4666*** 

 (0.000) (0.022) (0.006) 
DPurp_Corppurp -0.9112*** 0.3743** 0.6675** 

 (0.000) (0.013) (0.037) 

DPurp_WorkingCap -0.8569*** -0.0133 0.3367 

 (0.000) (0.934) (0.230) 

DPurp_Merger -0.8591***   

 (0.002)   

DPurp_DebtPay -0.092   

 (0.579)   

OtherPurp -0.8037***   

 (0.000)   

Constant 7.0919*** -4.8839 -2.4464 

 (0.000) (0.203) (0.225)     



 52 

Year Fixed Effects YES YES YES 

Industry Fixed Effects YES YES YES 

State Fixed Effects YES YES YES 

Observations 22,662 838 299 

Adj. R2/ Pseudo R2 0.48 0.24 0.30 
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Appendix A – Variable Definitions 
 

Variable Definitions 

Default Risk Measures 

DD The distance to default: reduced form proposed by Bharath & Shumway 

(2008).  

CDS  Credit default swap spreads: the annualized percentage of the notional value 

insured. 

lnCDS The natural logarithm of credit default swap spreads. 

  

Natural Disaster Intensity Measures 

DisFreq Natural disaster frequency: the count of natural disasters occurred in state-

year.  

lnDisFreq The natural logarithm of natural disaster frequency. 

FinLoss Financial loss: the natural logarithm of direct recorded financial damages 
(sum of property and crop loss) resulting from natural disasters in state-year.  

HumLoss Human loss: the natural logarithm of recorded human affected (sum of 

injuries and fatalities) resulting from natural disasters in state-year.   

Control Variables   

ROA Return on assets: ratio of earnings before extraordinary items to total asset.  

GROSS Gross sales: the natural logarithm of gross sales.  

LEV Leverage: total long-term liabilities over book value of assets.  

LIQ Liquidity: the ratio of current assets over current liabilities.  

MTB Market to book ratio: book assets minus common equity plus the common 

share outstanding multiply by share price at end of fiscal year, then be 

divided by book assets.  

R&D Research and development ratio: research and development expenses over 

total Assets. The R&D sets to zero if they are missing or not be reported. 

EXCESS Stock excess return: the difference between the stock's annual return and 

CRSP value weighted return. 

VOLAT Stock return volatility: the standard deviation of stock returns in the past 12 

months.  

AGE Firm age: the number of years since a firm’s incorporation.  

SIZE Firm size: the natural logarithm of total assets in book value. 

AMIHUD Stock illiquidity ratio: the annual average of the daily ratio of absolute value 

of stock return divided by dollar trading volume, multiplied by one million.  

TANG Tangibility: the net property plant and equipment / total assets.  

Div/Assets Payout ratio: the cash dividend relative to total assets (multiply by 100). 

Ln_IntCov Interest coverage ratio: the natural logarithm of income before interest 

expenses relative to interest expenses. 

Ln_Popmill Population: the natural logarithm of total population (million) at state level. 

Ln_Gdpmill Economic performance: the natural logarithm of total GDP (million $US) at 
state level. 

Additional Variables  

DHDisFreq Indicator variable (=1 if the DisFreq in a firm’s location is higher than 

median DisFreq, =0 otherwise) 

DHFinAccess Indicator variable (=1 if firm’s financial accessibility is higher than year-

industry median, =0 otherwise). 

KZ Index  Kaplan and Zingales index: it can be measured as (-1.002* 

cashflowi,t/assetsi,t-1 - 39.368*dividendi,t/assets i,t-1 -1.315*cashi,t/assets i,t-1 + 

3.139*leveragei,t + 0.283*tobinqi,t). 

WW Index  Whited and Wu index: it can be measures as (-0.091*cashflow – 

0.062*Dividend + 0.021*long-term debt/assets + 0.102*firm’s two-digital 

SIC industry sales growth – 0.035*firm’s sales growth). 
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where Dividend is an indicator variable (=1 if a firm pays cash dividend, =0 

otherwise). 

DHDebtCap Indicator variable (=1 if firm’s debt capacity is higher than year-industry 

median, =0 otherwise). 

LEV Financial leverage: (long-term and short-term debt) / (long-term and short-

term debt + market value of equity). 

LLEV Long-term financial leverage: (total long-term debt) / (long-term debt + 

market value of equity). 

DebtMat Debt maturity structure: the percentage of debt that matures in three years. 

DLVolat Indicator variable (=1 if firm’s volatility is lower than year-industry median, 

=0 otherwise). 

CFVolat Cashflow volatility: the annualized standard deviation of a firm’s operating 

income before depreciation scaled by total assets and rolling for 20 quarters. 

OperaCFVolat Operational cashflow volatility: the annualized standard deviation of a firm’s 

operating cashflow and rolling for 20 quarters.  

OperaProfVolat Operational profit volatility: the annualized standard deviation for operating 
profit adjusted by assets and rolling for 20 quarters. 

Ln_Spreads All-in-drawn spreads: the natural logarithm of all-in-drawn spreads. 

Tight Tight of covenants: the difference between a firm’s actual accounting 

number and initial covenant threshold divided by the standard deviation of a 

certain accounting number. Lower this ratio indicates higher tightness. 

DHTight Indicator variable (=1 if financial covenants are tighter than year-industry 

median, =0 otherwise). 

DHdefault Indicator variable (=1 if firm’s default risk is higher than year-industry 

median, =0 otherwise). 

TOBINQ Tobin’s Q ratio: market value of assets over book value of assets  

Ln_LoanSize Loan size: the natural logarithm of loan size. 

Ln_Lenders Number of lenders: the natural logarithm of lenders in loan syndication. 

Ln_Mat Loan maturity: the natural logarithm of loan’s maturity (in months). 

DRevolver Loan type indicator (=1 if type of loan is revolver, = 0 otherwise) 

The revolver loan includes 364-day facility, Revolver/Line < 1 year, 

Revolver/Line P 1 year, Revolver/Term Loan, Bridge Loan, Demand Loan, 

Guidance Line (Uncommitted), Limited Line, Multi-Option Facility, or 

Standby Letter of Credit. 

DPurp_Corppurp Loan purpose indicator (=1 if purpose of loan is expenditure in general 

corporate, = 0 otherwise). 

DPurp_Workingcap Loan purpose indicator (=1 if purpose of loan is to raise working capital, 0 

otherwise). 

DPurp_Merger Loan purpose indicator (=1 if purpose of loan is to finance merge and 

acquisition, 0 otherwise). 

DPurp_DebtPay Loan purpose indicator (=1 if purpose of loan is to repay debt, 0 otherwise). 

OtherPurp Other purpose indicator (=1 if purpose of loan is not listed above, 0 

otherwise). 

Post Time indicator variable (=1 if observation in post-relocation period, 0 

otherwise). 

DDisasterIncrease Treatment indicator variable (=1 if a firm relocates to more disaster-prone 

state, 0 if a firm relocates to less disaster-prone state). 
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Appendix B – Distance-to-default (Bharath & Shumway, 2008) 

 

 

The first step is to assume that the face value of firm debt is equivalent to the market value of 

firm debt, which is denoted as:  

 

𝑀𝑎𝑟𝑘𝑡 𝑉𝑎𝑙𝑢𝑒 ( 𝐷) = 𝐹𝑎𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐷𝑒𝑏𝑡 (𝐹) 

 

The next step is to calculate the volatility of firm debt as follows: 

 

𝜎debt = 0.05 + 0.25 ∗ 𝜎 equity    (1) 

 

The third step is to derive the total volatility of the firm which considers both equity and debt. 

This calculation is as follows:  

 

𝜎𝑣 =
𝐸

𝐸+𝐹
 𝜎𝐸 +

𝐹

𝐸+𝐹
  (0.05 + 0.25 ∗  𝜎𝐸)  (2) 

 

The fourth step is to use the firm’s one-year historical return as a proxy for the expected return 

on firm assets. This can be denoted as:  

 

𝜇 = 𝑟i,t-1     (3)  

 

Since the above steps provide all of the inputs for Merton’s DD model, DD can be calculated 

as:  

 

𝐷𝐷 =  
ln[

𝐸+𝐹

𝐹
]+(𝑟i,t-1−0.5 𝜎𝑉

2) 𝑇

𝜎𝑉√𝑇
  (4) 

 

where E is a firm’s market value of equity and F is a firm’s face value of debt. 𝑟i,t-1 is the firm’s 

one-year historical stock return. 𝜎𝐸 is a firm’s return volatility during year t estimated from 

the monthly stock return from the previous year. 𝜎𝑣 can be calculated based on equation (1). 

The default setting for T is one year. 
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