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Abstract

This paper considers how reference health influences medical spending and decreasing

health and their interaction with consumption and investment choices. We focus on the reference

point’s adaptiveness in a dynamic model of an agent facing a series of health shocks. The agent

trades off current consumption against out-of-pocket medical costs and the expected lifetime

utility stream while optimizing portfolio composition. While a static reference point implies

heavy medical spending, an adaptive reference health reduces medical spending while boosting

consumption, assets and, lifetime utility.
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1 Introduction

Benchmark values influence the economic decisions of individuals. People judge a stock trade as a

gain or a loss relative to the original purchase price of the stock or judge their wages against the

salaries of their peers. Such benchmark values, or reference points, form a fundamental building

block of behavioral economics and descriptive theories of choice under risk, such as prospect theory

and cumulative prospect theory by Kahneman and Tversky (1979) and Tversky and Kahneman

(1992) and the models of reference-dependence of Köszegi and Rabin (2006, 2007).

This paper considers how reference points influence medical spending and decreasing health

over the lifetime, and their interaction with intertwined economic choices such as consumption and

investment. Our particular focus lies on the adaptiveness of the reference point: as health and wealth

evolve with a sizable random component, we consider the dynamics of an adaptive reference point

that evolves with the individual health decay. Hugonnier, Pelgrin, and St Amour (2013) model and

empirically confirm the interdependence of health and asset holdings. Yogo (2016) documents that

stochastically decaying health and out-of-pocket health expenditures significantly affect household

investment decisions. Mortality and decaying health also influence insurance and annuitization

choices in behavioral settings (Gottlieb, 2012; Reichling and Smetters, 2015).

The first contribution of this paper is a dynamic model of medical spending, health, consumption,

and investment choices that features both static and adaptive health reference levels. An agent faces

a series of health shocks, for which he or she incurs out-of-pocket medical costs. At every shock,

the agent’s choice of how much to spend on medication on the one side allows to recover the health

damage partly, but on the other side limits the assets available for future medical expenditure and

consumption. Additionally, the agent continuously selects consumption and invests the remaining

assets in a risky and risk-free asset in proportions of his or her choice.
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The second contribution of our paper is the mechanism of health reference updating. As the

health decays with every shock, depending on the adaptiveness of the reference health, the agent

either still judges her health against the original health before the shock or adapts the reference

health downward to include the new, after-shock health level. In an extreme case, that agent perfectly

adapts to the after-shock health level, that is, the new health level does not pose a loss to the agent.

For not perfectly adaptive reference health, any health loss considers a permanent disutility, as the

perceived quality of life diminishes.

The agent’s instantaneous utility poses our third contribution. The agent, at every point in

time, considers the following trade-off: The continuous adjustment of both consumption and the

investment portfolio composition determines the agent’s instantaneous utility, which depends on

both the current consumption as well as the health and reference health level. High health allows

the agent to enjoy consumption more, whereas high reference health decreases the consumption

utility, as the agent considers his current health status as a loss. The agent balances this utility

against his postulated after-shock utility stream: based on his reference adaption, the agent judges

his future lifetime utility stream and a bequest utility, and how the current choices affect it. We

design a particular utility function to capture the empirically derived properties of health references

on consumption, health, and medical spending by Harris and Kohn (2018).

We characterize the agent’s expected lifetime utility in a continuous-time optimal control

framework. Our utility function allows us to derive the special cases of critical, that is, terminally ill

health, and the boundary case of no health shocks, in semi-closed form. We further characterize the

optimal controls and the expected lifetime utility as an ordinary differential equation expanding

Merton (1969) and provide an efficient numerical scheme to determine the general solution.

In our numerical analysis, we show that a static reference point implies a strong desire to limit

health reductions already at high health levels. Consequently, the agent spends much on medication
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in the early periods. Compared to the case of a static reference point, the adaptive reference agent

obtains a much more rectangularized utility. Because the reference health reflects that previous

health levels become unattainable, focusing on achieving more realistic health levels and accepting

them as sufficient enhances the utility of consumption and the current health status, that is, the

psychological flexibility allows the agent to feel better. This agent’s ability to adapt to decreasing

health allows him or her to draw high utility from consumption and limit medical spending. This

medical spending profile not only allows the agent to spend less on medication over the lifetime,

but it also enhances the enjoyability of life itself as the agent feels better after a heath shock.

2 A model of stochastic health decay and life-time portfolio

choices

This section outlines our model. We set off by describing the agent’s health decay and how it

is influenced by medical expenditure. Then, we turn to the agent’s choice problem consisting

of medical and financial investments, and consumption choice. Following that, we introduce the

health-reference-dependent utility specification and discuss the interaction of risk aversion with

health preferences.

2.1 Health decay and medical spending

Consider an agent who faces stochastically decaying health H, which starts at an initial level of

H0 > 0 at the starting time t = 0. In random intervals, his health drops by a random shock θ that

occurs with a probability of λ (H) in an instantaneous time step [t, t +dt]. Better health reduces the

likelihood of a health shock, that is, the intensity λ (H) decreases in H. The random shock has a

support Θ = [θ ,θ ] with 0 < θ < θ and a distribution Fθ . A point process Nt announces the health
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shocks, which are independent and identically distributed. The jump times Tn of the point process

Nt capture the times of individual health shocks, while θn denotes their magnitude. Death occurs if

the health falls below a critical value HD, with 0 < HD < H0. The time of death is the stopping time

TD = inf{t ≥ 0 : Ht ≤ HD} = inf{Tn : HTn ≤ HD} . (1)

Once a health shock occurs, the agent may seek treatment. Treatment improves health by

investing in medication k ≥ 0 that increases it by V (k,θ) ≥ 0. The resulting total health change

at the shock equals V (k,θ)− θ . No medication has no effect, that is, V (0,θ) = 0. Medication

has a positive and marginally decreasing treatment effect. Specifically, marginal benefits are

strictly positive at zero medication, and zero for infinite medication, yielding limk→0Vk(k,θ)> 0

and limk→∞Vk(k,θ) = 0. Heavier health shocks imply higher benefits of medication, that is,

Vk,θ (k,θ)> 0. Despite medication, health shocks leave some lasting damage εH > 0, which bounds

the medical impact from below as

θ −V (k,θ)≥ εH . (2)

To be specific, for a given health shock θ and amount k spent on the related medical treatment,

we consider the following concrete functional form1 of the treatment effect V (k,θ):

V (k,θ) = (θ − εH)
(

1− e−
k
θ

)
. (3)

This medication effect does not distinguish health differences of the agent. Appendix I.2 presents

an extension to a health-dependent minimal lasting damage εH(h).

1This specification can be generalized. We discuss this in Appendix I.1.
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The net health shock equals

θ −V (k,θ ,h) = θ e−
k
θ + εH(h)

(
1− e−

k
θ

)
. (4)

Consequently, the original health level H0 > 0 decays at some point to the death threshold HD as a

consequence of the health shocks. Overall, the health process evolves as follows:

Ht = H0−
Nt

∑
n=1

(θn−V (kn,θn,HTn−)) . (5)

2.2 Financial investment and consumption

Besides managing his health and medical expenditure, the agent invests his assets and spends money

on consumption. Between health shocks, his wealth is invested in an asset portfolio X that contains

a risk-free and a risky asset as in Merton (1969). He consumes at a rate ct . The risky asset follows a

geometric Brownian motion, which implies the portfolio dynamics

dXt = (at(µ− r)+ r)Xtdt− ctdt +atσXtdW, X0 = x > 0. (6)

Here, at is the (potentially time-dependent) investment strategy that splits the assets between the

risk-free return r and the risky return µ > r. The risky part of the portfolio depends on the risk

represented by the Brownian motion W scaled by the volatility σ > 0. Accounting for his medical

spending at the health shocks, we obtain the overall wealth as

Xt = x+
∫ t

0
(Xs [as (µ− r)+ r]− cs) ds+

∫ t

0
Xs as σ dWs−

Nt

∑
n=1

kn . (7)

The agent has limited liability, that is, his wealth cannot fall below zero, giving Xt > 0.
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2.3 Agent decisions, health reference, and utility

The above model presents a stochastic control problem to the agent. He controls his financial

investment, consumption and medical spending to maximize his lifetime utility. Death is certain,

as every health shock leaves some permanent damage. After a finite number of health shocks, the

agent dies. Medical spending defers death,2 but its costs limit the agent’s consumption and financial

investment.

The agent draws utility from consumption and health over his lifespan. He values health Ht both

in absolute terms and relative to a reference level Bt , that is, the agent’s utility is ut(ct ,Ht ,Bt) at

time t. The agent forms an expectation of his future consumption and health based over his expected

lifetime. Formally, (H,B,X) is a controlled process, and with control (a,c,k), the agent’s lifetime

utility equals

J(h,b,x;a,c,k) = E(h,b,x)

[∫ TD

0
e−ρ tut(ct ,Ht ,Bt)dt

]
+E(h,b,x)

[
e−ρTDUD(XTD)

]
(8)

with ρ > 0 as the discount rate. It consists of the actual expected lifetime utility in the first term and

the expected utility of the random bequest wealth XTD which appears at the random death time TD

in the second term. The agent evaluates the bequest utility based on his or her current health and

reference point. This implies that the assessment of the death utility may change. At the time of

dealth TD, the death utility UD(x) captures the agent’s bequest motive as the total expected utility

beyond his or her death assumed for the heirs as

UD(x) = E(h,b,x)

[∫
∞

TD

e−ρ (t−TD)u(cD(x),h,b)dt
]
, (9)

2A potential extension of our model is to allow for spending on a healthy life style that at a cost decreases the
intensity of the health shock process. Then the agent faces the trade-off between reducing the frequency of health
shocks and treatment of them.
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where the consumption cD(x) depends exclusively on the bequest wealth x which at the time of

death is known. We assume that after TD a risk-free value preserving strategy is implemented

0 !
= dXt = (r Xt− cD(Xt))dt ⇐⇒ cD(x) = r x ,

that is, the death utility is the utility of the certain consumption stream left to the heirs by investing

all assets in the risk-free asset and immediately consuming the interest. Note that the utility of this

stream falls below the utility while being alive.

In line with Harris and Kohn (2018) and Schünemann, Strulik, and Trimborn (2017) who

consider that individuals’ health references are formed with their past health realizations, we

propose the following health reference updating rule

Bt∈[Tn,Tn+1) = (1−ω)BTn−1 +ωHTn, with T0 = 0 and Bt∈[0,T1) = H0. (10)

Here, ω ∈ [0,1] measures the speed of the health reference updating. The agent starts with his

initial health level as his health reference and updates it along his health changes at health shocks.

Every health shock updates his health reference by averaging the previous reference level and the

updated after-shock health level with weights ω and 1−ω , respectively. There are two extreme

reference updating cases: First, with ω = 0, the agent benchmarks his health to the initial level over

his lifetime reference point Bt = H0. Second, with ω = 1, the agent instantly updates his reference

following health changes, that is, his health reference coincides with his health level Bt = Ht . By

iterating, the agent’s reference health depends on the health history as follows

Bt = (1−ω)Nt H0 +
Nt

∑
n=1

(1−ω)Nt−n
ωHTn. (11)
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Now, we specify the agent’s utility drawing from his consumption and health, both in absolute

terms and benchmarked to a reference level. Taking the empirically identified signs of the marginal

cross-utilities of consumption, health, and reference health by Harris and Kohn (2018), which are

uCH < 03, uCB > 0 and uHB > 0, we define the utility function

u(c,h,b) =
(ceh−b)1−γ

1− γ
, (12)

with γ > 1 is the risk-aversion parameter. The agent enjoys more consumption and better health,

however, their marginal effects decrease, that is uC > 0, uH > 0, uCC < 0, and uHH < 0. With

uCH < 0, the agent sees consumption and health as substitutes: When the agent is at a worse health

stage, he or she feels more compensated by additional consumption, and at the same time, his or her

additional health improvement matters more when he or she already has less to consume. The health

reference, which reveals the agent’s health history, also affects the marginal benefits from additional

consumption and health: With uCB > 0 and uHB > 0, a higher health trajectory lets the agent enjoy

additional consumption and health more. Nevertheless, the health reference is a benchmark based

on which the agent evaluates his current health. A higher reference level has a negative effect on the

agent’s utility, that is uB < 0.

Moreover, the above utility (12) implies constant relative risk-version of γ > 1 in consumption

and constant absolute risk-aversion of γ − 1 > 0 in health. The consumption loss the agent can

tolerate grows proportionally to his total consumption, however, the tolerated health loss stays

constant across different health stages. The lower the risk aversion parameter, the lower the

minimum negative utility is, making living less attractive. Intuitively, when γ is closer to 1, the

agent is more risk-neutral to any health loss, then giving up life becomes less unacceptable.

3In Harris and Kohn (2018), uCH < 0 was identified for high compsumption, while for low consumption, they found
uCH > 0. To be comparable to Hugonnier, Pelgrin, and St Amour (2013) which assumes health and consumption are
substitutes, we adopted uCH < 0 to define the utility function in this paper.
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We rewrite the utility function (12) as

u(c,h,b) =
c1−γ

1− γ
K(h,b,γ), (13)

where K(h,b,γ) = e(h−b)(1−γ). Plugging this into the death utility equation (9) gives

UD(x) = E(h,b,x)

[∫
∞

TD

e−ρ (t−TD)
(rx)1−γ

1− γ
e(h−b)(1−γ) dt

]
=−e(h−b)(1−γ) x1−γ

ρ

r rγ (γ−1)
.

Hence, the lifetime utility in equation (8) can be rewritten to

J(h,b,x;a,c,k) = E(h,b,x)

[∫ TD

0
e−ρ tut(ct ,Ht ,Bt)dt

]
− e(h−b)(1−γ)

ρ

r rγ (γ−1)
E(h,b,x)

[
e−ρ TDX1−γ

TD

]
(14)

The development of the asset portfolio, the stochastic health decay, and the reference level are

Markovian. The health process is a point process; consequently, the health decay is memoryless.

The expected time until the next health shock only depends on the intensity λ (H). The actual time

elapsed since the last health shock carries no information. This structure implies that the agent’s

decisions are also Markovian: they depend only on the information at the current time in the form of

the agent’s current health, reference level, and financial wealth. The historical development of how

he reached this state is irrelevant. In particular, the only driver of the agent’s choices is the current

status of the state space (H,B,X). This includes the health status Ht carries the interpretation of

proximity to death, whereas physical age plays no role, in line with the findings of Zweifel, Felder,

and Meiers (1999) and Zweifel, Felder, and Werblow (2004).

10



3 Optimal medical spending, investment, and consumption

The specified model implies two choices the agent faces. First, he considers how much to spend on

medication once a health shock arrives. Second, he selects a consumption and investment strategy

between health shocks. The two choices are interconnected: Medical spending restores his health

at the expense of future consumption. However, higher health makes future consumption more

enjoyable. Higher consumption brings immediate utility now but limits both potential future medical

spending and indirectly the consumption utility via lower health. The investment choice trades off

the chances that the higher and riskier return of the risky asset offers in obtaining more money for

consumption and medical spending on average, accompanied by the risk of lower returns in some

cases.

Consider the medical spending choice first. Health is constant between the health shocks at Tn

and decreasing. Thus, we focus first at the shock times Tn, and consider the choice at this point

in time. At Tn the agent knows the health level h and wealth x just before the health shock θn

with observable magnitude θn arrives. The choice of amount kn spent on medication results in a

remaining life time utility of

J(h−θn +V (kn,θn,h), f (h,b,ω,θ ,kn),x− kn;a,c,k) . (15)

Selecting a medical spending of kn to threat health shock θn restores the health by V (kn,θn,h), but re-

duces the wealth, and, subsequently, the future spending ability by kn. The function f (h,b,ω,θ ,kn)

determines the formulation of health reference. Specifically, it is the weighted average of the

reference before the shock and the updated new health level at the shock: f (h,b,ω,θ ,kn) =

(1−ω)b+ω(h−θn +V (kn,θn,h)) with ω ∈ [0,1]. An ω = 1 implies that the agent’s reference
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health perfectly adapts following health shocks and his medication investment decisions at the

shocks, consequently, he optimizes his choices based on this adapted health reference.

We now turn to the optimization. Denote by k?(h,b,x,θn,ω;a,c,k) the argument maximiz-

ing (15) at (h,b,x) for shock size θn in the case of ω , given the subsequent strategy (a,c,k).

Suppose that an optimal strategy (a?,c?,k?) exists with value function

U(h,b,x) = sup
(a,c,k)

J(h−θ +V (k,θ ,h), f (h,b,ω,θ ,k),x− k;a,c,k) , (16)

then k? depends on (h,b,x), θ , and ω and satisfies

k?(h,b,x,θ ,ω) = argmax0≤k≤xU(h−θ +V (k,θ ,h), f (h,b,ω,k),x− k) .

Since X ≥ 0, we have that k ≤ x, and thus k?(h,b,x,θ ,ω) exists given U and V are sufficiently

smooth but may not be unique.4 We summarize our result in the following proposition.

Proposition 1. For our given assumptions, the (possibly not unique) optimal medical expenditure

choice exists and is characterized as

k?(h,b,x,θ ,ω) = argmax0≤k≤xU(h−θ +V (k,θ ,h), f (h,b,ω,k),x− k) . (17)

We formalize the agent’s value function for any given health and wealth level, that is, we write

his utility as a combination of his present utility from his current consumption and investment

choice, and an expectation of his future utility. At any time t where no health shock takes place and

4In case k?(h,b,x,θ ,A) is not unique, a criterion has to be postulated in order to select a specific maximizing
argument. Motivated by prolonging life, the maximal expenditure k for can be taken yielding the highest post-shock
health level.
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for starting value (h,b,x), the value function U can be written as

U(h,b,x) = E(h,b,x)

[∫ T1

0
e−ρ tu(ct ,h,b)dt

]
+E(h,b,x)

[
e−ρ T1

U(h−θ1 +V (k?(h,b,XT1,θ1,ω),θ1,h), f (h,b,ω,k?(h,b,XT1,θ1,ω)),XT1− k?(h,b,XT1,θ1,ω))
]
.

(18)

The first part of the utility is the agent’s expected stream of utility from his current consumption

choice, discounted by his time preference parameter, for his current health up to the next health

shock. The second part is the expected value of his future utility at the next health shock based on

his optimal medical spending choice. For any potential health shock magnitude, the agent selects

an optimal spending that trades off this future consumption ability against his health loss for this

particular shock.

The above equation uses time homogeneity. Since T1 is an exponential random time with

intensity λ and the distribution of the next health shock θ1 is given by Fθ , we integrate both

quantities out as these are independent of the Wiener process W driving the agent’s wealth process,

that is,

U(h,b,x) = E(h,b,x)

[∫
∞

0
e−[ρ+λ (h)] tu(ct ,h,b)dt

]
+E(h,b,x)

[∫ ∞

0
e−[ρ+λ (h)] t

λ (h)∫
U(h−θ +V (k?(h,b,Xt ,θ ,ω),θ ,h), f (h,b,ω,k?(h,b,Xt ,θ ,ω)),Xt− k?(h,b,Xt ,θ ,ω))dFθ (θ)dt

]
.

(19)

To simplify the following discussion, we define the expected future utility, given the optimal medical

spending choice, at the next health shock by integrating over the health shock distribution Fθ as
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follows:

U(h,b,x)=
∫

U(h−θ +V (k?(h,b,x,θ ,ω),θ ,h), f (h,b,ω,k?(h,b,x,θ ,ω)),x−k?(h,b,x,θ ,ω))dFθ (θ) .

(20)

The quantity U(h,b,x) is calculated based on (U(h′,b′, ·)){h−ε(h)≥h′≥HD, b′=(1−ω)b+ωh′}. Also, h

and b act as parameters and we can characterize U(h,b,x) for fixed h and b, and variable x using

optimal control arguments, that is, the Hamilton Jacobi Bellman formalism.

Fix h and b and let x ≥ 0 be variable, then assume that U(h′,b′,x) is given for h′ ≤ h− ε

and b′ = (1−ω)b+ωh′, where ε is the minimal effect of a health shock given the best possible

medication, see (2). From there and using (17), the optimal medication expense k?(h,b,x,θ ,ω)

can be derived for h′ ≤ h− ε and b′ = (1−ω)b+ωh′, and all x≥ 0 as well as θ in the support of

health shock distribution Fθ . Hence U(h,b,x) can be computed for all x≥ 0 based on (20).

We can now write the value function as

U(h,b,x) = E(h,b,x)

[∫
∞

0
e−[ρ+λ (h)] t (u(ct ,h,b)+λ (h)U(h,b,Xt)) dt

]
. (21)

Standard arguments allow us to integrate until infinity, but adjust the discount factor to account

for the probability of a health shock. The first term now is the stream of the discounted utility

of consumption for a given health level and a given reference point, and the second term is the

expected utility at the next health shock, weighted with the instantaneous probability for it. For this

to hold, the optimal holding in the risky asset a? and the optimal consumption c? are characterized

using the Hamilton-Jacobi-Bellman equation

0 = max
(a,c)

A U(h,b,x)+u(ct ,h,b)+λ (h)U(h,b,x)− [ρ +λ (h)]U(h,b,x) . (22)
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The generator of the wealth process in between health shocks A is

A g(x) = (x [a(µ− r)+ r]− c+)gx(x)+
1
2

a2
σ

2 x2 gxx(x) . (23)

The first order conditions determine the optimal strategies

a?(h,b,x) =
µ− r
σ2

Ux(h,b,x)
−xUxx(h,b,x)

, c?(h,b,x) =
(

Ux(h,b,x)
K(h,b,γ)

)− 1
γ

.

The value function U , for fixed h, satisfies

0 =
1
2
(µ− r)2

σ2
Ux(h,b,x)2

−Uxx(h,b,x)
+ r xUx(h,b,x)+

γ

1− γ
Ux(h,b,x)

γ−1
γ K(h,b,γ)

1
γ

+λ (h)U(h,b,x)− [ρ +λ (h)]U(h,b,x) .

We collect our results in the following proposition.

Proposition 2. For our given assumptions, the optimal investment and consumption choices are

a?(h,b,x) =
µ− r
σ2

Ux(h,b,x)
−xUxx(h,b,x)

, c?(h,b,x) =
(

Ux(h,b,x)
K(h,b,γ)

)− 1
γ

. (24)

The value function is characterized through the ordinary differential equation

0 =
1
2
(µ− r)2

σ2
Ux(h,b,x)2

−Uxx(h,b,x)
+ r xUx(h,b,x)+

γ

1− γ
Ux(h,b,x)

γ−1
γ K(h,b,γ)

1
γ

+λ (h)U(h,b,x)− [ρ +λ (h)]U(h,b,x) . (25)
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4 Critical health and no health shocks

In this section, we consider two interesting special cases. First, we analyze the choices of a critically

ill agent, and second turn to the case if health shocks do not exist. These special cases provide

useful boundaries and benchmark values for the previously discussed general case.

4.1 Special case: Critical health

An interesting special case is the one where the agent is critically ill, which we define as a health

level at which any further health shock immediately implies death despite any medical treatment.

We now turn to analyze the utility and optimal choice in this state.

To define this critical health area, first fix h and note that for h≤HD the health level is below the

death threshold and hence TD = 0 giving U(h,b,x) =UD(x) for all x≥ 0, as we assume γ > 1. The

utility of death is fixed. Moreover, the expected future utility after any health shock for a critically

ill agent is also fixed. Hence, for a critical health level h with

HD < h≤ HD + εH , (26)

we have that U(h,b,x) =UD(x,h,b), for all x≥ 0, as the next health shock leads to death regardless

of the spending on health. In this case, the ordinary differential equation has a semi-closed-form

solution.

Proposition 3. For a critically ill agent, given that

ρ +λ (h)
γ

− 1
2
(µ− r)2

σ2
1− γ

γ2 − r
1− γ

γ
−> 0
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holds, the value function U(h,b,x) is of the form

U(h,b,x) = G(h,b)x1−γ , (27)

with G(h,b) determined, setting L(h,b) = ((1− γ)G(h,b))−
1
γ (noting that G < 0), with L > 0, by

0 =
1
2
(µ− r)2

σ2
(1− γ)

γ
+ r (1− γ)− [ρ +λ (h)]+ γ L(h,b)e−

1−γ

γ
(h−b)+

λ (h)r
ρ rγ

L(h,b)γ ,

which has a unique solution. The optimal consumption and investment choice become

a? =
µ− r
σ2γ

, c? =
(
(1− γ)G(h,b)

K(h,b,γ)

)− 1
γ

x.

Medical spending equals k? = 0, because medication cannot provide further help.

The proof of this proposition is presented by Appendix II.1.

4.2 Special case: No health shock

A further benchmark case is the one where health shocks are not possible. This case is a gen-

eralization of the famous Merton (1969) investment problem, however with a health-dependent

utility function. It represents an upper bound of the agent’s utility because medical spending is

not necessary, leaving the agent free to maximize his consumption utility over his infinite lifetime.

It also allows us to measure to which degree medical spending can help the agent to achieve this

utopic case.

Consider the agent’s utility U(h,b,x). In a world without any health shocks, that is, for λ (h) = 0,

for all h, we obtain an upper bound U(h,b,x). However, then we are in the standard setting and the

17



upper bound is of the form U(h,b,x) = G(h,b)x1−γ , for x≥ 0, and some G(h,b) depending on the

health and reference level h and b. We obtain the following result.5

Proposition 4. In case that there is no health shock, for our given assumptions, the optimal

investment and investment choices are

a?(h,b,x) =
µ− r
σ2

1
γ
, c?(h,b,x) =

(
ρ

γ
− 1

2

(
µ− r

σ

)2 1− γ

γ2 − r
1− γ

γ

)
x. (28)

The agents value function equals U(h,b,x) = G(h,b)x1−γ , for x≥ 0, and

G(h,b) =
K(h,b,γ)

(1− γ)
(

ρ

γ
− 1

2
(µ−r)2

σ2
1−γ

γ2 − r 1−γ

γ

)γ . (29)

The proof of this proposition is collected by Appendix II.1.

5 Numerical analysis

This section discusses how reference-dependence health affects economic choices. First, we present

the base-case parametrization of our model. The focus then lies on the agent’s optimal choice for

the benchmark case. The next section considers how the reference adaption influences choices.

Numerically, we use a standard Euler-scheme to solve the second-order ordinary differential

equation in Proposition 2 in Equation (25). Appendix IV collects the technical details of the

discretization and derivation of necessary boundary conditions. Table 1 collects the economic

parametrization of the base case. The numerical parametrization is presented in Table IV.1 in

Appendix IV.

5In the current situation U is not important as its weight λ = 0.
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Table 1: Model parameters for the base case.

Parameter Value Parameter Value

Risk-free rate r = 3% Death threshold HD = 2
Risky asset return µ = 6% Initial health H0 = 10
Volatility σ = 10% Health shock intensity λ = 0.32%
Risk aversion γ = 1.5 Minimal health shock θ = 0.5
Initial reference point B0 = 10 Maximal health shock θ = 2.0
Discount parameter ρ = 3% Minimal damage εH = 0.25
Reference weight ω ∈ [0,1]

5.1 Static reference dependence

Consider first the case of a purely static reference dependence of the agent’s health assessment,

similar to the analysis by Harris and Kohn (2018). The agent evaluates his health development

against the initial health, making a deteriorating health a sequence of losses. Figure 1 displays a

sample path of overall utility (Panel 1a), health (Panel 1b), and assets (Panel 1c) developments,

accompanied by the agent’s optimal consumption (Panel 1d), investment (Panel 1e), and accumulated

medical spending (Panel 1f). The solid black line represents the case of optimal medication, whereas

the dashed grey line considers the same path without any medication.

Unsurprisingly, medical spending enhances both the instantaneous utility and health at every

time step in this example. It mitigates the health shocks’ damages and keeps health high; see

Panel 1b. Although this spending reduces both the agent’s assets and consumption (Panels 1c and

Panel 1d), the higher health overcompensates the utility loss from consumption. In this benchmark

case, the agent has a static reference health level that equals the initial health. This implies a strong

desire to limit health reductions already at high health levels. Consequently, the agent spends much

on medication for large shocks as these allow a substantial recovery of the health; see Panel 1f and

Panel 1b. For small shocks, the agent refrains from medication as these shocks cause relatively

less damage that can be recovered. Finally, as health deteriorates, the agent increases his fraction
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(a) Utility (b) Health (c) Assets

(d) Consumption (e) Investment (f) Medical spending

Figure 1: Sample path, static reference health. This figure shows a sample development of utility (Panel 1a), health,
(Panel 1b), assets (Panel 1c), consumption (Panel 1d), investment (Panel 1e), and accumulated medical spending
(Panel 1f). Each graph shows the case of optimal medication (solid black line) and without medication (dashed grey
line). The reference point does not update, that is ω = 0. All other parameters are as in Table 1.

of risky investments but generally remains below the one without medication ( Panel 1e). The

investment in risky assets is driven by two channels: First, the fraction invested risky increases in

wealth. Second, for a given wealth level, the appetite for investment risk is non-linear in health: As

the health deteriorates, the agent reduces the risky investment. As health becomes critically low,

risky investments raise again.

While Figure 1 illustrates the agents behavior for a specific example, Figure 2 presents a more

general perspective from a Monte Carlo sample, that averages 10,000 paths at each time step. Each

Panel in Figure 2 presents the equivalent information to Figure 1 for the averaged paths. We see

that the averaging confirms the intuition from our previous analysis. Medical spending significantly

boosts both the utility at any given time and consequently the life-time utility (Panel 2a). This effect

is intimately connected to the agent’s health: as the health remains high longer (Panel 2b), it allows
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(a) Utility (b) Health (c) Assets

(d) Consumption (e) Investment (f) Medical spending

Figure 2: Overall development, static reference health. This figure shows a average development of utility (Panel 2a),
health, (Panel 2b), assets (Panel 2c), consumption (Panel 2d), investment (Panel 2e), and accumulated medical spending
(Panel 2f). Each graph shows the case of optimal medication (solid black line) and without medication (dashed grey
line) for a Monte Carlo time-step-by- time-step averaging. The reference point does not update, that is ω = 0. All other
parameters are as in Table 1.

the agent to draw a sufficiently high utility from health that offsets the reduction in consumption

spending to cover health care (Panel 2d). The agent also raises the fraction invested in risky assets

as health decreases but remains below the no-medication case (Panel 2e).

5.2 Adaptive reference health

We now consider the case of an adaptive reference health level, that is, the agent’s reference health

perfectly adapts to the new health level. Consequently, the agent’s optimal choices reflect this

adaption. To visualize the influence of an adaptive reference health on the agent’s utility and choices,

Figure 3 presents the same sample path as in the previous section; however, the solid line now
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(a) Utility (b) Health (c) Assets

(d) Consumption (e) Investment (f) Medical spending

Figure 3: Sample path, adaptive and static reference health. This figure shows a sample development of utility
(Panel 3a), health, (Panel 3b), assets (Panel 3c), consumption (Panel 3d), investment (Panel 3e), and accumulated
medical spending (Panel 3f). Each graph shows the case of an adaptive reference health (solid black line) and a
stationary reference health (dashed grey line). The reference point updates with ω = 1. All other parameters are as in
Table 1.

displays the case of a fully adaptive reference health, whereas the dashed line stands for the case of

a stationary one. Similarly, Figure 4 presents the matching averaged Monte Carlo sample.

For the path presented in Figure 3, the agent obtains a steady high utility until late in life.

Compared to the case of a static reference point, the adaptive reference agent obtains a much more

rectangularized utility (Panel 3a): While the static reference point causes a steadily decreasing

utility profile, the adaptive reference agent enjoys high utility until the last few health shocks. This

agent’s ability to adapt to decreasing health allows him or her to draw high utility from consumption

(Panel 3d), as lower medical spending (Panel 3f) boost his assets. This medical spending profile not

only allows the agent to spend less on medication over the lifetime, it also focuses on the treatment

of health shocks late in life. It implies that an agent with an adaptive reference health lives a slightly

shorter but substantially happier life because of his psychological flexibility. The agent further
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(a) Utility (b) Health (c) Assets

(d) Consumption (e) Investment (f) Medical spending

Figure 4: Overall development, adapting and static reference health. This figure shows a average development of
utility (Panel 4a), health, (Panel 4b), assets (Panel 4c), consumption (Panel 4d), investment (Panel 4e), and accumulated
medical spending (Panel 4f). Each graph shows the case of an adaptive reference health (solid line) and a stationary
reference health (dashed line) for a Monte Carlo time-step-by-time-step averaging. The reference point updates with
ω = 1. All other parameters are as in Table 1.

invests slightly riskier compared to the static reference health agent (Panel 3e). The investment risk

tends to go down as the health decreases.

The agent’s adaptive reference point systematically boosts the utility, particularly when health

is failing (Panel 4a). Because the reference health reflects that previous health levels become

unattainable, focusing on achieving more realistic health levels and accepting them as sufficient

enhances the utility of consumption and the current health status, that is, the psychological flexibility

allows the agent to feel better. The adaptive reference point shifts medical spending over time.
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6 Conclusion

In this paper, we build a dynamic model of reference health and study how it affects medical

spending, lifetime health, consumption, assets, and investments. We incorporate adaptiveness of

this reference health, that is, the reference point changes with the agent’s decaying health over time.

Adaptive reference health meaningfully adjusts lifetime medical spending by reducing medical

spending. It slightly reduces the agent’s life span by shifting resources from medical spending to

consumption which the agent enjoys more because a failing health does not cause a strong disutility.

In contrast, the agent with static health reference maintains near optimal health as long as possible

at the price of a lower consumption and assets.

Our analysis leaves some model extensions to future research. One possibility is the inclusion

of investment in sport or illness prevention instead of medication: This type of health investment is

working on slowing down its natural decay. We can consider including this type of investment and

allow it to influence either the likelihood of health shocks or the health damage boundaries of health

shocks at a cost. Furthermore, the model can feature the fear of death. To include a fear of death

analysis, the death utility can vary in a non-positive value range, reflecting different levels of fear to

study their impacts on the agent’s optimal decisions.

References

Gottlieb, Daniel (2012). “Prospect Theory, Life Insurance, and Annuities”. Working Paper, Wharton

School, University of Pennsylvania.

Harris, M. C. and J. L. Kohn (2018). “Reference health and the demand for medical care”. In: The

Economic Journal 128.615, pp. 2812–2842.

24



Hugonnier, Julien, Florian Pelgrin, and Pascal St Amour (2013). “Health and (Other) Asset Hold-

ings”. In: Review of Economic Studies 80, pp. 553–710.

Kahneman, Daniel and Amos Tversky (1979). “Prospect Theory: An Analysis of Decision under

Risk”. In: Econometrica 47.2, pp. 263–292.

Köszegi, Botond and Matthew Rabin (2006). “A Model of Reference-Dependent Preferences”. In:

The Quarterly Journal of Economics 121.4, pp. 1133–1165.

— (2007). “Reference-Dependent Risk Attitudes”. In: American Economic Review 97.4, pp. 1047–

1073.

Merton, Robert C. (1969). “Lifetime Portfolio Selection under Uncertainty: The Continuous-Time

Case”. In: Review of Economics and Statistics 51.3, pp. 247–257.

Reichling, Felix and Kent Smetters (2015). “Optimal Annuitization with Stochastic Mortality and

Correlated Medical Costs”. In: American Economic Review 105.11, pp. 3273–3320.

Schünemann, Johannes, Holger Strulik, and Timo Trimborn (2017). “Going from bad to worse:

Adaption to poor health, health spending, longevity, and the value of life”. In: Journal of

Economic Behavior & Organization 140, pp. 130–146.

Tversky, Amos and Daniel Kahneman (1992). “Advances in Prospect Theory: Cumulative Repre-

sentation of Uncertainty”. In: Journal of Risk and Uncertainty 5.4, pp. 297–323.

Yogo, Motohiro (2016). “Portfolio Choice in retirement: Health risk and the demand for annuities,

housing, and risky assets”. In: Journal of Monetary Economics 80, pp. 17–34.

Zweifel, Peter, Stefan Felder, and Markus Meiers (1999). “Ageing of Population and Health Care

Expenditure: A Red Herring?” In: Health Economics 8, pp. 485–496.

25



Zweifel, Peter, Stefan Felder, and Andreas Werblow (2004). “Population Ageing and Health

Care Expenditure: New Evidence on the “Red Herring””. In: The Geneva Papers on Risk and

Insurance 29.4, pp. 652–666.

26



Reference Health and Investment Decisions
Appendix

Chunli Cheng Christian Hilpert Alexander Szimayer Peter Zweifel

December 8, 2022

List of Appendices

Appendix I Medical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Appendix II Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Appendix III Theoretical boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Appendix IV Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1



Appendix I Medical Treatment

This appendix collects two extensions that generalize the impact of medication by allowing for

more complicated relations between money and health improvements and health-dependent health

improvements.

I.1 Generalized treatment impact

For a given health shock θ and amount k spent on the related medical treatment, the effect of the

treatment V (k,θ) can be captured by the following general parametrization:

V (k,θ) = (θ − εH)(1− e−κ θ δ k) , (I.1)

where δ ∈ R and κ > 0. The net health shock is then

θ −V (k,θ) = θ e−κ θ δ k + εH (1− e−κ θ δ k) . (I.2)

The amount k0.5(θ) that is required to halve a given health shock θ , with θ > 2εH , is

k0.5(θ) =
θ−δ

κ
ln

2θ −2εH

θ −2εH
. (I.3)

From there we see that δ shapes the relationship between wealth and health. For δ = −1, the

monetary costs for halving a given health shock is proportional to the extent of the health shock

itself. For δ <−1, these costs are over-proportionally increasing. Whereas for δ >−1, the opposite
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holds. Setting κ = 1 without loss of generality, as we can affect the scale by the choice of Fθ , and

δ =−1, to keep things simple, we obtain the specification in the main paper.

I.2 Health-dependent treatment impact

So far, for a given health shock θ , the health improvement from a given amount of medical

spending κ is the same for the agent no matter in which health stage he is after experiencing the

health shock. One way of including that the medical benefits differ in the health level is to reform

the lasting damage εH to be health-dependent ε(h), where h is the health level just before the health

shock. To be specific, we consider that ε(h) decreases in health: The lower the health, the more

lasting damage the agent incurs. We update the medical treatment effect (3) accordingly as follows:

V (k,θ ,h) = (θ − ε(h))(1− e−
k
θ ). (I.4)

Consequently, we can update the derivatives to be

Vk(k,θ ,h) =
θ − ε(h)

θ
e−

k
θ and Vkk(k,θ ,h) =−

θ − ε(h)
θ 2 e−

k
θ , (I.5)

which increase and decrease in health, respectively. The medication effect specification (I.4)

presents that a given amount of medical spending bring more benefits to a healthier agent. It tells

that compared to seeking medical treatment immediately, postponing it till a later less healthy stage

requires more medical spending for retaining a fixed amount of health recovery.

Here we can consider a simple functional form of ε(h) = ε

1+h , ε > 0, with which we write

V (k,θ ,h) =
(

θ − ε

1+h

) (
1− e−

k
θ

)
. (I.6)
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To ensure positive health improvement from positive medication at any health h and health shock θ

level, ε shall be set to guarantee ε

1+HD
< θ .

Appendix II Special Cases

This appendix collects the derivations of various special cases.

II.1 Derivation for critically ill agent

Given the agent is critically ill, the value function U(h,b,x) is of the form

U(h,b,x) = G(h,b)x1−γ , (II.1)

with G(h,b)> 0 for γ > 1. To see this, follow the ansatz (II.1) with partials

Ux(h,b,x) = (1− γ)G(h,b)x−γ and Uxx(h,b,x) =−γ(1− γ)G(h,b)x−γ−1 . (II.2)

Plugging the latter in (25) yields

0 =
1
2
(µ− r)2

σ2
(1− γ)2 G(h,b)2 x−2γ

γ(1− γ)G(h,b)x−γ−1 +(r x+βh)(1− γ)G(h,b)x−γ

+
γ

1− γ
K(h,b)

1
γ ((1− γ)G(h,b)x−γ)

γ−1
γ

− [ρ +λ (h)]
[
G(h,b)x1−γ

]
−λ (h)

r
ρrγ(γ−1)

G(h,b)−1e(h−b)(1−γ) ,
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To simplify, we divide by K(h,b)x1−γ

0 =
1
2
(µ− r)2

σ2
1− γ

γ
+ r (1− γ)+ γ

(
K(h,b)

(1− γ)G(h,b)

) 1
γ

− [ρ +λ ]− λ re(h−b)(1−γ)

ρrγ(γ−1)
G(h,b)−1 .

Rearranging gives

ρ +λ

γ
− 1

2
(µ− r)2

σ2
1− γ

γ2 − r
1− γ

γ
+

(
K(h,b)

(1− γ)G(h,b)

) 1
γ

− λ re(h−b)(1−γ)

ρrγ(γ−1)
G(h,b)−1

Set L(h,b) = ((1− γ)G(h,b))−
1
γ (noting that G(h,b)< 0), then L(h,b)> 0 and

ρ +λ

γ
− 1

2
(µ− r)2

σ2
1− γ

γ2 − r
1− γ

γ
+(K(h,b))

1
γ L(h,b)− λ re(h−b)(1−γ)

ρrγ
L(h,b)γ , (II.3)

which has exactly one positive solution.

Appendix III Theoretical boundaries

From the derivation of the no-medication case in the previous subsection, the boundary conditions

follow immediately

0 = lim
x↘0

U(h,b,x)≤ lim
x↘0

U(h,b,x)≤ lim
x↘0

U(h,b,x) = 0 ,

and since U(h,b,x)≤U(h,b,x) but also U(h,0) = 0 =U(h,0), we must have

∞ = lim
x↘0

Ux(h,x)≤ lim
x↘0

U(h,b,x)≤ ∞ .
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Table IV.1: Computational parameters for the base case.

Parameter Value Parameter Value

Health steps 41 Asset steps 101
Health step size 0.25 Minimal asset value 0.5
Reference grid steps 41 Reference step size 0.25
Health shock grid steps 7 Health shock step size 0.25
Minimal asset value 0.5 Maximal asset value 5.0

We summarize the boundary conditions as follows

lim
x↘0

U(h,b,x)≤ lim
x↘0

U(h,b,x) = 0 , (III.1)

lim
x↘0

Ux(h,b,x)≥ lim
x↘0

Ux(h,x) = +∞ . (III.2)

Appendix IV Numerical Method

Recall that γ > 1. How to obtain the function U(h,b,x) and based on this the optimal strategy

(a?,c?,k?)?

For h≤ HD the value function is set to the death utility, that is, UD(h,b,x), for all x≥ 0. For the

poor health states, HD < h≤HD+εH , U is given by (II.1) with G(h,b) determined in equation (II.3).

For h > HD + εH , U is computed using the already known U(h′,b,x,) for h′ ≤ h− εH where

simultaneously the optimal health expenditure k?(h,b,x,θ) is solved for using (17). The value

function U(h,b,x) is computed using the PDE (25). Then this step is repeated when increasing h.

The structure of the value function in (II.1) is in general not preserved when U(h,b,x) is computed,

thus no closed-form solution exists.
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Let us denote the domain the distribution Fθ describing the health shocks by [θ ,θ ], with

εH ≤ θ < θ . Thus, if a health shock occurs, its smallest possible impact θ exceeds the value εH .

Define the grid of the state space (h,b,x) by the respective mesh ∆h and ∆x. For Nx let

xi = i∆x , for i = 0, . . . ,Nx . (IV.1)

For Nh and Nh define

hi = HD + i∆h , for i =−Nh, . . . ,0, . . . .,Nh . (IV.2)

Similarly,

bm = HD +m∆h , for m = 0, . . . .,Nh . (IV.3)

Health states below the death threshold HD are required for a formal reason. In case a health shock

for h ≈ HD occurs, the utility is recursively calculated by jump conditions from utility at states

with a lower health level. Thus Nh = θ/∆h such that HD−Nh ∆h = HD−θ covering the biggest

possible health shock θ from the lowest alive state HD. Next, the support [θ ,θ ] of the health shock

distribution Fθ is discretized by

θi = i∆h , for i = Nθ , . . . ,Nθ , (IV.4)

with (Nθ −1)∆h < θ ≤ Nθ ∆h and Nθ ∆h < θ ≤ (Nθ +1)∆h. The corresponding probabilities are

determined by

pi = P(θi−0.5∆h < θ ≤ θi +0.5∆h) , for i = Nθ +1, . . . ,Nθ −1 , (IV.5)

7



and pNθ
= P(θ ≤ θNθ

−0.5∆h) as well as pNθ
= P(θNθ

−0.5∆h < θ).

We initialize the numerical approach by observing that in death states hi ≤ HD, or, i≤ 0

Û(hi,bm,x j) =UD(hi,bm,x j) , for i =−Nh, . . . ,0, m = 0, . . .Nh, and j = 0, . . . ,Nx . (IV.6)

Also, for the zero wealth state x0 = 0, the agent has zero utility as no further consumption can be

financed, that is,

Û(hi,bm,x0) = 0 , for i = 1, . . . ,Nh and m = i, . . . ,Nh. (IV.7)

The second step of the initialization is to look at poor health levels hi, with HD < hi ≤ HD + εH

according to (26). The approximation of the value function Û follows from (II.1) and is given by

Û(hi,bm,x j) = G(hi)x1−γ

j , for i = 1, . . . ,N?
h ,m≥ i, . . . ,N?

h , and j = 1, . . . ,Nx , (IV.8)

where G has the discrete version

G(hi,bm) =
K(hi,bm,γ))

(1− γ)
(

ρ+λ

γ
− 1

2
(µ−r)2

σ2
1−γ

γ2 − r 1−γ

γ

)γ , for i = 1, . . . ,N?
h m≥ i, . . . ,Nh, (IV.9)

and N?
h is characterized by ∆h(N?

h −1)< θ ≤ ∆hN?
h .

The next major step is to solve the differential equation (25) in x for each given h and b

numerically. This requires the computation of the health jump effect given by U along the lines of

(20) beforehand, which in turn is based on the optimal investment in medical treatment k? given a

health shock as outline in (17).
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To address the latter define for a given health shock θ = i∆h, with i = Nθ , . . . ,Nθ the investment

k j(θi) to generate a beneficial effect on the health level of magnitude j ∆h by

kl(θi) = θi ln
θi− εH

θi− εH− l ∆h
, for l = 0, . . . ,Nk(θi) , (IV.10)

with θi− εH − ∆h < Nk(θi)∆h ≤ θi− εH , such that V (kl(θi),θi) = l ∆h, or, equivalently, θi−

V (k j(θi),θi) = (i− j)∆h. Preparing the numerical equivalent to (17) define

l?(hi,bm,x,θ j,ω) = argmax
l=0,...,Nk(θ j)

Û(hi−θ j +V (kl(θ j),θ j), f (hi,bm,ω,kl(θ ,x− kl(θ j)) , (IV.11)

where Û is interpolated linearly in x. In case the maximum in (IV.11) is not unique, the largest

expense is selected resulting in the longest life with identical utility. The numerical equivalent to

(17) is thus

k?(hi,bm,x,ω,θ j) = kl?(hi,bm,x,ω,θ j)(θi) . (IV.12)

Then, for (hi,bm,x j) = (i∆h,m∆h, j ∆x), the numerical version of (20) becomes

Û(hi,bm,x j)=
Nθ

∑
l=Nθ

Û((i−l+l?(hi,x j,θl))∆h,(1−ω)m∆h+ω(i−l+l?(hi,x j,θl))∆h,x−k?(hi,x j,θl)) pl ,

(IV.13)

where Û is interpolated linearly in x. Now, we are equipped to solve the second order ordinary

differential equation (25). For doing so, we need two boundary conditions.

IV.1 Boundary Conditions

The boundary conditions U(h,0+) = 0 and Ux(h,0+) = +∞ in (III.1) and (III.2), respectively,

cannot be used directly for the numerical approach. Instead, we focus on the case of vanishing wealth.
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Then, based on the discussion in Section III, it is reasonable to assume U(h,b,x) ≈ G(h,b)x1−γ

with partial derivative in wealth dimension Ux(h,b,x)≈ (1− γ)G(h,b)x−γ . Vanishing wealth in

the discretized setup is given by x = ∆x = x1. For i = N?
h +1, . . . .,Nh, we approximate

Û(hi,x1) = G(hi,bm)x1−γ

1 and Ûx(hi,x1) = (1− γ)G(hi,bm)x−γ

1 . (IV.14)

Thus, (IV.14) are the needed boundary conditions, that are specified in terms of G(hi,bm). The

general ordinary differential equation in Proposition 2 becomes

0 =
1
2
(µ− r)2

σ2
1− γ

γ
x1−γ

j G(hi,bm)+ rG(hi,bm)x
1−γ

j +
γ

1− γ
K(hi,bm)

1
γ ((1− γ)G(hi,bm))

γ−1
γ

+λ (hi)U(hi,bm,x j)− (ρ +λ (hi))G(hi,bm)x
1−γ

j

Here, the expected after shock utility U(hi,bm,x j) is iteratively determined as before. Then, the

value of G(hi,bm) is solved numerically.
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