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Abstract 

 

In this paper, we explore what factors drive expected corporate bond returns all over the world. 

With a novel dataset, and utilizing machine learning models, we find there is strong predictability 

of corporate bond returns in international markets. However, the documented factors that drive 

bonds in the U.S. and non-U.S. developed markets are substantially different from factors that 

impact bonds in the emerging markets, where inflation, downside risk, duration, illiquidity, and 

volatility are more influential. Moreover, U.S.-based equity and bond factors do not contribute 

predictive power to non-U.S. corporate bonds, indicating that international corporate bond markets 

are not well integrated. 
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1. Introduction 

This paper provides the first study on the cross-sectional predictability of corporate bond 

returns in international markets with machine learning techniques. Earlier work, in contrast, solely 

focuses on the U.S. market (Fama and French, 1993; Bai, Bali, and Wen, 2019; He, Feng, Wang 

and Wu 2021; Huang and Shi, 2021; Bali, Goyal, Huang, Jiang and Wen, 2022). We find strong 

evidence of international bond predictability and that non-U.S. corporate bonds, especially those 

issued by firms in emerging markets, are substantially different from U.S. corporate bonds in terms 

of return predictors. For example, inflation, downside risk, duration, illiquidity, and volatility are 

more important in non-U.S. markets than in the U.S. market. Moreover, U.S.-based asset pricing 

factors do not provide additional predictive power to returns of non-U.S. bonds. These results shed 

light on that international corporate bond markets are not well integrated, and thus, bond investors 

need to carefully account for local economic risks. 

There has been a lack of research in this area primarily because data of international 

corporate bonds are scarce. Only since recently, have researchers started investigating bond 

securities outside of the U.S. (Bekaert and De Santis, 2021; Li, Magud, and Werner, 2021). 

Presumably, the non-U.S. bond markets, particularly emerging markets, can be fundamentally 

different from the U.S. market, given more incomplete information, less investor protection, and 

lower financial stability. It is of critical importance for researchers and policymakers to understand 

how these markets differ from the U.S. and what determine their unique bond prices. This work is 

also of interests to practitioners, given that large asset management companies have started 

offering investment vehicles with exposure to international corporate bonds. 

Our paper utilizes a proprietary data from IHS Markit, including high-quality pricing 

information for a large set of international corporate bonds. We match this data with Bloomberg 
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and Datastream to obtain a unique dataset of approximately 13,000 corporate bonds issued by 

companies in 73 countries, for which we can observe bond returns (based on transactions or 

quotations), bond characteristics, stock pricing and characteristics (if existed), and macroeconomic 

fundamentals.1 The bond characteristics include (i) bond fundamental characteristics (i.e., age, 

illiquidity, and credit rating); (ii) return-based characteristics (i.e., short-term reversal, momentum 

and volatility); and (iii) exposures to some factors (i.e., MKT, SMB, HML, TERM, and DEF in 

Fama and French (1993)). The macro variables include exchange rate growth, GDP growth, 

inflation, geopolitical risk, economic policy uncertainty and world uncertainty. To the best of our 

knowledge, this is the largest and most comprehensive international data of corporate bonds ever 

examined in the literature. 

We apply cutting-edge machine learning techniques to our dataset to study the cross-

sectional predictability of corporate bond returns. Importantly, we aim to distinguish the 

predictability outside of the U.S. from that within U.S. We consider mainly 20 bond characteristics 

and 6 macroeconomic variables. We first categorize global corporate bond markets into three 

markets: U.S., non-U.S. developed, and emerging markets. Then, we follow Gu, Kelly, and Xiu 

(2020) to use various machine learning methods, including penalty estimation, dimension 

reduction approaches, regression tree models, and neural network based methods, to predict 

weekly bond returns, and compare the models’ performance with that of the ordinary least squares 

(OLS).  

We find that OLS fails to produce significant out-of-sample forecasting power for expected 

corporate bond returns in all markets, usually yielding a negative out-of-sample R-squared. 

 
1  The IHS Markit database has been employed to obtain information on corporate bond illiquidity (Friewald, 

Jankowitsch and Subrahmanyam 2012; Schestag, Schuster and Uhrig-Homburg 2016). For more information on the 

differences in commonly used corporate bond databases refer to Huang and Shi (2021). 
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However, all the machine learning models can greatly improve the predictive power and generate 

reasonable, positive 𝑅-squared both within and outside of the U.S. market. We further show that 

the improvement of the predictive power mainly comes from investment-grade bonds. The best 

machine learning models for non-U.S. bond markets are based on regression trees (for developed 

economies) and neural networks (for emerging markets).  

In portfolio analysis, we find that all the machine learning models, when being applied to 

the U.S. market, can generate both economically and statistically significant excess returns, 

ranging between 8.84 to 11.44 percent per year, and an annualized Sharpe ratio varying from 1.40 

to 1.86, from a long-short portfolio strategy. However, the OLS can only deliver annualized excess 

returns of around 7.28 percent and Sharpe ratio of 1.03. We find similar patterns for corporate 

bonds outside of the U.S., but the performance of OLS is much worse in emerging markets with 

annualized excess return of -2.08 percent and annualized Sharpe ratio of -0.33, respectively. 

However, machine learning models still generate positive annualized Sharpe ratio ranging from 

1.05 to 1.71. 

In addition, we find evidence that in different groups of countries, bond returns are 

determined by distinct characteristics and factors. Consistent with He et al. (2021) and Bali et al. 

(2022), our results indicate that short-term reversal and co-skewness are the most important drivers 

of corporate bond returns in U.S. Bond short-term reversal is also identified as a crucial predicting 

characteristic in non-U.S. developed markets, however, we find that momentum and duration are 

more influential outside of the U.S. Moreover, in emerging markets, half of the ten most important 

determinants for corporate bond returns are macroeconomic variables, including inflation, 

uncertainty, geopolitical risk, exchange rate growth and GDP growth, but this phenomenon does 

not hold for U.S. or other developed economies. Among the macro variables, inflation is the most 
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important factor. Other crucial characteristics that drive bond returns in emerging markets, but less 

so in U.S., include downside risk, duration, illiquidity, and volatility.  

The differential reliance on characteristics and factors of bond pricing suggests that 

international bond markets might not be integrated. To test for this hypothesis, we consider training 

our machine learning models with U.S. data to predict returns in the other two markets. Results 

show that in emerging economies, the U.S. trained models substantially underperform models 

trained by local data, both economically and statistically, for most of the machine learning models 

we consider. But in developed economies other than U.S., the U.S. trained models perform as well 

as models trained by local data. These results indicate that compared with other developed 

economies, emerging markets is much less integrated with U.S. 

To further illustrate the lack of cross-market integration of corporate bonds, we include 

exposure to U.S. equity and bond factors (MKT, SMB, HML, DEF and excess bond market return) as 

new characteristics for non-U.S. corporate bonds. We aim to examine whether the inclusion of 

such U.S. exposure can improve the performance of machine learning models to predict bond 

returns outside of the U.S. Results show that there is no significant difference in predicting 

performance between models with or without U.S. exposure, reinforcing our argument that 

international corporate bond markets may not be well integrated. 

Last, we investigate whether stock characteristics can help improve cross-sectional return 

predictability of corporate bonds. We further introduce 21 stock characteristics to our model, 

following Gu et al. (2020) and He et al. (2021), in addition to the existing bond and macro 

predictors. We find similar mixed results in all three markets. Most of machine learning models 

show no significant difference in predicting performance between models with and without stock 

characteristics. The predicting performance of several models even decreases after including stock 
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predictors. This result indicates that bond and macro variables play major roles in predicting future 

corporate bond returns in all of these three markets.  

This paper contributes to three strands of literature. First, our paper adds to the growing 

literature on predictability of corporate bond returns. The existing literature studies many bond 

characteristics including default and term betas (Fama and French, 1993; Gebhardt, Hvidkjaer, and 

Swaminathan, 2005), momentum (Jostova, Nikolova, Philipov, and Stahel, 2013), liquidity (Lin, 

Wang, and Wu, 2011; Bongaerts, De Jong, and Driessen, 2017), downside risk and short-term 

reversal (Bai et al., 2019), volatility (Bai et al., 2019; Chung, Wang and Wu, 2019; Bao, Chen, 

Hou and Lu, 2021), bond book-to-market ratio (Bartram, Grinblatt, and Nozawa, 2020), long-run 

consumption growth (Elkamhi, Jo, and Nozawa, 2021) and long-term reversal (Bali, 

Subrahmanyam, and Wen, 2021). However, all of these studies focus on the U.S. market. Few 

papers study international corporate bond markets. Internationally, Valenzuela (2016) documents 

that market liquidity contributes to credit spreads and Lee, Rizova, and Wang (2022) find that 

forward rates contain information about corporate bond returns. Bekaert and De Santis (2021) find 

that ratings, maturity and bond market beta are influential characteristics to explain corporate bond 

returns in major developed countries. In this paper, we use a novel data of international corporate 

bonds to conduct out-of-sample instead of in-sample tests. Goyal and Welch (2008) suggest that 

out-of-sample tests are the most rigorous evidence for return predictability. Additionally, we use 

machine learning techniques to deal with the concern of large number of variables. 

Second, this paper extends and complements the burgeoning literature that predicts asset 

returns with machine learning. Several studies have shown that machine learning does well in 

improving predicting performance and identifying influential predictors in the stock market (Feng, 

Giglio, and Xiu, 2020; Freyberger, Neuhierl, and Weber, 2020; Gu et al., 2020; Kozak, Nagel, and 
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Santosh, 2020; and Giglio, Liao, and Xiu, 2021; Leippold, Wang, and Zhou, 2021; Dong, Li, 

Rapach, and Zhou, 2022; He, Huang, Li and Zhou, 2022). Bianchi, Büchner, and Tamoni (2021) 

find that non-linear machine learning models such as regression trees and neural network 

outperform linear techniques to predict U.S. Treasury bond returns.  Several studies introduce 

machine learning methods to predict corporate bond returns in the U.S. market (Lin, Wu and Zhou, 

2018; He et al., 2021; Bali et al., 2022). Different from these studies, we use machine models and 

study corporate bond return predictability in international markets and find significant differences 

in return predictors among U.S., non-U.S. developed, and emerging markets.    

Last, our paper expands extant research on integration of international financial markets. 

There is a long debate on whether stocks are priced locally or globally. Most of these studies find 

that cross-sectional return can be better explained by local factors (Griffin, 2002; Bekaert, Hodrick, 

and Zhang, 2009; Hou, Karolyi, and Kho, 2011; Chaieb, Langlois, and Scaillet, 2021; Hollstein, 

2022). However, to our knowledge, Bekaert and De Santis (2021) is the only one examining 

integration of international corporate bond markets. Our paper differs from their paper in two ways. 

First, they only investigate the integration across major developed countries, while we include a 

large number of emerging markets. Second, we include a vast of bond, macro and stock 

characteristics utilizing machine learning models.  

 

2. Data and Methodology 

2.1. Data 

We obtain daily data on the pricing of corporate bonds from IHS Markit for the period 

from March 2016 to April 2019.2 Unlike transaction-level data used in the U.S. (i.e., TRACE), 

 
2 We exclude data before 2016 since bond valuations in earlier data are based on matrix pricing techniques rather 

than dealer quotes.  
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transaction price is usually unavailable for corporate bonds outside of U.S. and the price of Markit 

dataset is generally based on dealers’ quotes or asset pricing models such as matrix pricing. 

However, such prices have been viewed as fundamental valuation of bond prices (Schestag et al, 

2016). In addition to bid, mid, and ask prices, Markit data also includes multiple types of yields, 

and a variety of bond simple features such as coupon, bond grades (IG or HY) and issuers, and 

bond features that may need complex calculations such as duration and option-adjusted spreads. 

To obtain additional bond-level characteristics such as country of risk, equity international 

security identification number (ISIN), amount issued, and credit ratings, we link the Markit data 

to Bloomberg through each bond’s ISIN. To identify the country of origin of a bond and bonds’ 

market belong to, we use the country of risk as defined by Bloomberg.3 To compare corporate 

bonds across countries, we further create three categorical groups of countries or markets that 

allow for a fair comparison of bonds: U.S. market, non-U.S. developed market, and emerging 

market. 

[Insert Table 1 Here] 

To filter the data, we (1) keep bonds denominated in U.S. dollars, (2) drop duplicated bonds 

issued with the same bond ticker from Bloomberg, (3) drop bonds with amount issued less than 

10000 $, (4) drop bonds that are perpetual, inflation-adjusted, or defaulted, (5) drop bonds with 

maturity less than half a year, (6) drop bonds with midprice under $5 or above $1000, (7) drop 

bonds without rating, (8) drop bonds without equity ISIN, (9) keep only bonds with a fixed or zero 

coupon, and (10) winsorize raw bond return at the 2.5% and 97.5% levels to correct for potential 

data errors. Table 1 shows that our final sample includes 1,297,006 weekly observations for 13,219 

 
3 This approach takes into account the issuing company’s country of domicile, country of listing, country of largest 

revenue, and reporting currency (most important to least important). See the documents provided by Bloomberg L.P. 

for more details. 
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U.S. dollar corporate bonds, issued by 1,999 companies. 4  U.S. market, non-U.S. developed 

markets, and emerging markets account for 77%, 13% and 10% observations, respectively.  

Following Bai et al. (2019), the weekly bond return is calculated as: 

 𝑟𝑖,𝑡 =
𝑃𝑖,𝑡+𝐴𝐼𝑖,𝑡+𝐶𝑖,𝑡

𝑃𝑖,𝑡−1+𝐴𝐼𝑖,𝑡−1
− 1 ,                                                 (1) 

where 𝑃𝑖,𝑡 is midprice, 𝐴𝐼𝑖,𝑡 is accrued interest, and 𝐶𝑖,𝑡 is coupon payment for bond 𝑖 in week 𝑡. 

We denote 𝑅𝑖,𝑡 as bond 𝑖’s return in excess of U.S. risk-free rate in week 𝑡. Returns are calculated 

using the last available price observation of week 𝑡 (𝑃𝑖,𝑡) and the last available price observation 

of week 𝑡 − 1 (𝑃𝑖,𝑡−1) to allow for non-trading days.  

[Insert Table 2 Here] 

Table 2 reports the time-series average of the cross-sectional bond return’ distribution and 

characteristics. The average weekly bond return for U.S., non-U.S. developed, and emerging 

markets is 0.06 %, 0.05% and 0.07% respectively.  Compare to U.S. market, non-U.S. developed 

market shows lower credit risk (Rating 7.30 vs. 8.42), but emerging market has higher credit risk 

(Rating 9.86 vs. 8.42). The U.S. market has the longest time to maturity and largest downside risk, 

while emerging market shows the highest illiquidity among these three markets. U.S. bond market 

has large trading volume and thus is more likely to have extreme returns. 

Finally, we include 20 bond characteristics, 6 macro variables and 21 stock characteristics. 

Appendix A provides a detailed description of these 47 variables as well as data sources. We obtain 

stock pricing and trading information, and accounting variables from Datastream. We normalize 

all characteristics to zero mean and unit standard deviation by week for each of these three markets. 

For missing characteristics, we follow Bali et al. (2022) and Gu et al. (2020) to replace missing 

 
4 To estimate beta-related bond characteristics, we require at least 12 observations for each bond. 
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characteristics with the cross-sectional median value of these characteristics for each week. 

 

2.2. Machine Learning Models  

Following Bali et al. (2022) and Gu et al. (2020), we focus on five categories of machine 

learning models: OLS, penalized linear (LASSO, RIDGE and ENet), dimension reduction (PCR 

and PLS), regression trees (RF, GBRT), neural network (NN1, NN2 and NN3).5 We separate our 

full sample period into three disjoint time periods: (1) the first year as training period, 𝛵1, to 

estimate the model; (2) the second year as validation period, 𝛵2, to tune the hyperparameters; (3) 

the rest three quarters as test period, 𝛵3, for out-of-sample analysis and evaluation of the model’s 

performance. Due to limited computational resources and some of our characteristics updated 

quarterly, we retrain models quarterly instead of weekly. 

 

2.3. Out-of-sample Performance Evaluation 

Following Bali et al. (2022) and Gu et al. (2020), we use the out-of-sample R-squared 

(𝑅𝑂𝑂𝑆
2 ) to evaluate the predicting power of machine learning models for corporate bond returns: 

𝑅𝑂𝑂𝑆
2 = 1 −  

∑ (𝑅𝑖,𝑡−𝑅̂𝑖,𝑡)2
(𝑖,𝑡)∈𝛵3

∑ (𝑅𝑖,𝑡)2
(𝑖,𝑡)∈𝛵3

 ,                                        (2) 

Where 𝑅𝑖,𝑡  denotes actual bond excess returns and 𝑅̂𝑖,𝑡  denotes one-week-ahead predictions of 

bond 𝑖 in week 𝑡. This 𝑅𝑂𝑂𝑆
2  measures the proportional reduction in mean squared forecast error 

relative to a naive forecast of zero benchmark, assuming that the one-week-ahead expected bond 

return equals risk-free rate. 

To calculate the relative importance of different characteristics, we follow Gu et al. (2020) 

 
5 The detailed description of these methods and the choice of hyperparameter can be referred to Gu et al. (2020). 
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and first calculate the reduction of time-series average weekly R-squared (𝑅̅𝑂𝑂𝑆,𝑡
2 ) from setting all 

values of a given predictor to zero while keep the remaining predictors unchanged. Variable 

importance is then defined as the relative reduction of  𝑅̅𝑂𝑂𝑆
2 . In this way, the variable importance 

of the characteristic with lowest R-squared reduction is assigned to 0, while the characteristic with 

highest R-squared reduction has variable importance of 1. 

 

3. Empirical Results 

3.1. Predictability of Bond Characteristics and Macro Variables 

We first examine the predicting performance of machine learning models with 20 bond 

characteristics and 6 macro variables. Our main purpose is to verify whether the predicting 

performance based on Markit data in the international market is comparable to those in He et al. 

(2021) and Bali et al. (2022) which use transaction-level TRACE data for U.S. market.  

[Insert Table 3 Here] 

Table 3 reports the out-of-sample R-squared (𝑅𝑂𝑂𝑆
2 ) for all models. Panel A of Table 3 

presents 𝑅𝑂𝑂𝑆
2  in the U.S. market. The first row reports 𝑅𝑂𝑂𝑆

2  for all corporate bonds, and the 

second row and third row examine the predictive performance for investment-grade and non-

investment-grade bonds separately. For the full sample in the U.S. market, we find that the OLS 

model produces an 𝑅𝑂𝑂𝑆
2  of -2.67%, indicating that OLS’s forecasting power is worse than a naive 

forecast of zero benchmark. This is consistent with the findings in both Bali et al. (2022) and He 

et al. (2021). However, the other columns of first row indicate that machine learning improves 

predicting performance of OLS for all machine leaning models and has positive 𝑅𝑂𝑂𝑆
2  ranging from 

1.94% (NN1) to 3.27% (NN3). Compared to 𝑅𝑂𝑂𝑆
2  for all bonds, the results in the second row 

indicate that all machine learning models, except for NN1, have higher 𝑅𝑂𝑂𝑆
2  and thus generate 
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better predicting performance for investment-grade bonds. In contrast, all machine learning models, 

except for NN3, have negative 𝑅𝑂𝑂𝑆
2 , ranging from -0.83% for LASSO and ENet to -0.18% for 

NN2, for non-investment-grade bonds (third row of Table 3), and OLS still has the lowest 𝑅𝑂𝑂𝑆
2  (-

2.30%). This result indicates that even machine learning models fail to deliver significant out-of-

sample forecasting power for returns of non-investment-grade bonds. Consistent with He et al. 

(2021), we find better predictive performance for investment-grade bonds in the U.S. market. 

Panel B and Panel C of Table 3 report 𝑅𝑂𝑂𝑆
2  for non-U.S. market and emerging market 

respectively. Similar to the results of the U.S. market, we find that machine learning models 

perform better than OLS in terms of predicting performance and investment-grade bonds have 

better predicting power than non-investment-bond. Interestingly, we find that all machine learning 

models generate positive 𝑅𝑂𝑂𝑆
2 , ranging from 2.21% for RF to 2.78% for NN3, for non-investment-

grade bonds in the emerging market.  

 

3.2. Portfolios Analysis 

In addition to examining the predicting power of machine learning models for corporate 

bonds returns across markets, we further investigate the economic significance of machine learning 

models with portfolio analysis. Specifically, at the end of each week, we sort bonds in each of 

three markets into deciles based on the forecasts of bond returns for the next week, and then 

construct both value-weighted (amount issuance as weight) and equal-weighted long-short 

portfolios of corporate bonds. Table 4 presents value-weighted weekly portfolio performance for 

all bonds (including both investment-grade and non-investment-grade bonds). We report the 

average weekly return of decile 1 (“Low”) to decile 10 (“High”) and denote the long-short portfolio 

by “High-Low”. Annualized Sharpe ratio for long-short portfolios is also presented.  
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[Insert Table 4 Here] 

Panel A of Table 4 reports the results in the U.S. market. We find that long-short portfolio 

strategy based on the forecasts of machine learning models generates economically and 

statistically significant return performance with average weekly return ranging from 0.17% to 

0.22%. In contrast, the traditional OLS produces the smallest weekly return of 0.14% from the 

long-short portfolio strategy. Meanwhile, the results of annualized Sharpe ratios from the last 

column of panel A also indicate that machine learning models have better performance (i.e., higher 

Sharp ratio) than OLS. Among our ten machine learning models, LASSO and RIDGE are the top 

two best models, with the same weekly long-short portfolio average return of 0.22% (t-stat= 6.69 

and 3.89) and Sharpe ratio of 1.86 and 1.82, respectively.  

[Insert Table 5 Here] 

We find similar results, i.e., machine learning having better long-short performance than 

OLS, in non-U.S. developed market and emerging market as shown in panel B and panel C of 

Table 4. However, OLS performs extremely bad in emerging market, with the weekly long-short 

portfolio average return of -0.04% (t-stat= -0.60) and Sharp ratio of -0.33. When we use equal-

weighted portfolios, the results are qualitatively the same, which are shown in Table 5. 

 

3.3. Characteristic Importance across Markets 

We next identify bond characteristics and macro variables that are important to improve 

the predicting performance of machine learning models in each market. Specifically, following Gu 

et al. (2020), we first calculate the reduction of time-series average weekly R-squared (𝑅̅𝑂𝑂𝑆
2 ) from 

setting all values of a given predictor to zero, while keep the remaining predictors unchanged. 

Variable importance is defined as the relative reduction of 𝑅̅𝑂𝑂𝑆
2 . In this way, the variable 
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importance of the characteristic with lowest R-squared reduction is assigned to 0, while the 

characteristic with highest R-squared reduction has variable importance of 1. To get the overall 

rankings of characteristics across models, we rank the importance of each characteristic for each 

model and then average them into a single rank. Figure 1 to Figure 3 present the overall rankings 

of characteristics across models for U.S., non-U.S. developed and emerging markets, respectively. 

Each column corresponds to a predictive model, and color gradients within each column indicate 

the most influential (dark blue) to the least influential (white) characteristics.  

[Insert Figure 1 Here] 

Figure 1 shows that bond short-term reversal (REV_Bond) is identified as the most 

influential predicting determinant by all machine learning models except for neural network 

models (i.e., NN1, NN2 and NN3) in the U.S.. This finding is consistent with Bai et al. (2019) and 

He et al. (2021). Although time to maturity (MAT), bearing the highest overall rank in Bali et al. 

(2022), fails to be picked out as one of the five most important characteristics, we do find that it is 

the fourth most important predictor in their paper. Co-skewness (COSKEW) is identified as the 

second most important predictor in our paper. We also find that some exposure measures to 

common factors, including BETA_SMB, BETA_MKT, BETA_BMkt, BETA_TERM, are among the 

ten most important characteristics. 

[Insert Figure 2 Here] 

Figure 2 presents the overall rankings of characteristics in non-U.S. developed market. 

Similar to the results in U.S., bond short-term reversal (REV_Bond) is also identified as the most 

important predicting characteristic for machine learning models. Moreover, factor exposure 

(BETA_BMkt) and age (AGE) are also among the ten most important predictors. However, we find 

that four-week momentum (MOM4WBond) and interest rate risk measured by duration (DUR) are 
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the second and fourth most important predictors in non-U.S. developed market, while these two 

characteristics are ranked at the bottom in U.S. (Figure 1).  Meanwhile, some macro variables such 

as exchange rate growth (USExGrowth) and geopolitical risk (GPRChange) play relatively 

important role in improving the predicting power of machine learning models. 

[Insert Figure 3 Here] 

Figure 3 reports variable importance in emerging market. Very different from the 

characteristic rankings in U.S. or non-U.S. markets, inflation (CPIGrowth) is the most important 

predicting characteristic in emerging market. The other four most important predictors in emerging 

market are downside risk (VaR5), duration (DUR), illiquidity (ILLIQ_Bond) and volatility (VOL). 

Another notable result is that half of the ten most important determinants are macro variables, 

including inflation (CPIGrowth), world uncertainty (WUIChange), geopolitical risk (GPRChange), 

exchange rate growth (USExGrowth) and GDP growth (GDPGrowth). Emerging market and U.S. 

market only share inflation (CPIGrowth) and illiquidity (ILLIQ_Bond) in their ten most important 

predictors, while duration (DUR), inflation (CPIGrowth), geopolitical risk (GPRChange), 

exchange rate growth (USExGrowth) and value factor exposure (BETA_HML) are all identified as 

among the top ten important predictors in both emerging and non-U.S. developed markets. 

Overall, there are similarities in the return-characteristic relationship in U.S. and non-U.S. 

developed markets. For example, bond short-term reversal is the most important predicting 

characteristic in these two markets. However, this relationship is extremely different in U.S. and 

emerging markets, while emerging and non-U.S. developed markets share more similarities. 

Specifically, emerging and U.S. markets only share two of the most ten mort important predictors, 

and five predictors are the same for emerging and non-U.S. developed markets. In the emerging 

market, downside risk, interest rate risk, illiquidity and volatility play more significant role in 
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improving the predicting performance of machine learning models. Moreover, macro variables, 

especially inflation and world uncertainty, are more important in emerging market. 

 

3.4. Can U.S. Return-Characteristics Relationship be Applied to Other Markets? 

In the above subsection, we find that U.S. market shares much more important predicting 

determinants with non-U.S. developed market compared to emerging market. To further compare 

such difference among these three markets, following Choi, Jiang and Zhang (2022), we 

investigate whether models based on the information of characteristics in the U.S. market generate 

better performance in predicting corporate bond returns in the non-U.S. developed and emerging 

markets, instead of using information of characteristics of their own market.6 Specifically, we first 

estimate parameters and hyperparameters based on the training and validation sample in U.S., and 

then use these parameters and hyperparameters and predictor information of non-U.S. developed 

and emerging markets to estimate corporate returns in these two markets. To calculate the t-statof 

difference between market-specific and U.S. models, we report time-series average weekly  𝑅̅𝑂𝑂𝑆,𝑡
2  

rather than pooled 𝑅𝑂𝑂𝑆
2  of equation (1). 

[Insert Table 6 Here] 

Panel A of Table 6 presents the results for non-U.S. developed market. The first row reports 

𝑅̅𝑂𝑂𝑆,𝑡
2  based on market-specific model, and the second row shows the results using U.S. model. 

𝑅̅𝑂𝑂𝑆,𝑡
2  difference and its t-stat are presented in the third and forth row, respectively. We find that 

most market-specific models fail to significantly outperform their U.S. comparisons. Even the 

predicting performance is better, i.e., negative 𝑅̅𝑂𝑂𝑆,𝑡
2  difference, for most of machine models when 

 
6 Since U.S. exchange rate growth (USExGrowth) is not applicable for U.S. market, it is not included to predict 

corporate bond returns for non-U.S. developed and merging markets.  
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using U.S. parameters and hyperparameters (i.e., LASSO, RIDGE, ENet, PCA, PLS and GBRT), 

the results are not significant as t-stat indicated. Among all machine learning models, we only find 

that market-specific neural network models (NN2 and NN3) significantly outperform their U.S. 

comparisons, with the difference of 8.18% (t-stat=4.03) and 17.45% (t-stat=17.45), respectively.  

Panel B of Table 6 reports the results for emerging market. Quite different from the results 

in non-U.S. developed market, nine of eleven market-specific models significantly outperform 

their U.S. ones, with 𝑅̅𝑂𝑂𝑆,𝑡
2  difference varying from 1.90% (t-stat=2.81) for LASSO to 10.60% (t-

stat=3.14) for NN3. Overall, the results of Table 6 indicate that emerging market is more different 

from U.S. market in terms of return-characteristics relationship than non-U.S. developed market.  

 

3.5. Integration of International Bond Markets 

In the above two sections, we find that U.S. bond market is more relevant to non-U.S. 

developed market rather than emerging market with regard to variable importance and return-

characteristics relationship. In this subsection, we investigate cross-market integration for 

corporate bonds. In particular, we aim to examine whether information from U.S. market can 

improve the predicting performance for non-U.S. developed and emerging markets. In Figure 1, 

we show that bonds’ exposures to Fama and French (1993)’s five factors (especially SMB, MKT 

and TERM) and bond market factor constructed based on our data are significantly important to 

improve predicting performance in the U.S. market. Thus, we include bonds’ exposures to these 5 

U.S. factors (excluding TERM) as new characteristics to test whether these predictors improve our 

predictions of corporate returns in non-U.S. developed and emerging markets.7  

[Insert Table 7 Here] 

 
7 Due to a lack of information on returns of the long-term government bonds in non-U.S. markets, we have already 

applied U.S. TERM factor to construct BETA_TERM in both non-U.S. developed and emerging market.   
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The results from Panel A of Table 7 show that the predicting performance of OLS decrease 

once adding these five factor exposures with 𝑅̅𝑂𝑂𝑆,𝑡
2  difference of 0.41% (t-stat= 2.01). Half of our 

ten machine learning models i.e., LASSO, ENet, PCA, RF and GBRT) generate better predicting 

performance after adding the five U.S. factor exposures but none of them are significant. In 

contrast, we find a significant decrease of predictive power for RIDGE and NN1, with 𝑅̅𝑂𝑂𝑆,𝑡
2  

difference of 0.13% (t-stat= 2.02) and 0.52 (t-stat= 2.02), respectively.  Panel B of Table 7 reports 

the results for emerging market. Similarly, we find that the predicting performance of only half of 

our machine learning models (including LASSO, RIDGE, PLS, RF and NN1) improves when 

including U.S. factor exposures, but none of them are significant. Among the other half machine 

learning models, PCA, NN2 and NN3 has a significant decrease of predicting performance instead, 

with 𝑅̅𝑂𝑂𝑆,𝑡
2  difference ranging from 0.27% to 0.67%.  

In general, the results in Table 7 show that information from U.S. market fails to 

significantly improve the predicting performance for non-U.S. developed and emerging markets. 

This result indicates that international corporate bond market is not well integrated.  

 

3.6. Prediction Performance with Stock Characteristics 

So far we only use bond characteristics and macro variables to predict corporate bond 

returns. Equity characteristics may generate incremental prediction power for two reasons (Bali et 

al., 2022). First, both stocks and bonds represent claims on the same underlying assets of the firm; 

Second, bonds and stocks should be jointly priced based on the structural credit risk model of 

Merton (1974). To investigate the incremental role of characteristics, we add 21 more stock 

characteristics into our models by following He et al. (2021) and Gu et al. (2020).  

[Insert Table 8 Here] 
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The third row of Panel A of Table 8 presents that the predicting performance of most of 

our models improves after including stock characteristics, with 𝑅̅𝑂𝑂𝑆,𝑡
2  difference varying from -

0.08% for LASSO to -0.38% for NN3. However, only RIDGE, ENet and PLS models generate 

significant 𝑅̅𝑂𝑂𝑆,𝑡
2  difference, with 𝑅̅𝑂𝑂𝑆,𝑡

2  difference of -0.25% (t-stat= -4.86), -0.21% (t-stat= -

2.03) and -0.22% (t-stat= -2.03), respectively. Moreover, we find a significant deteriorated 

predicting performance for GBRT and NN1 models, with 𝑅̅𝑂𝑂𝑆,𝑡
2  difference of 0.24% (t-stat= 2.77) 

and 0.60% (t-stat= 1.76) respectively. In general, we fail to find consistent results of significant 

predicting improvement by including stock predictors across all models. This is consistent with 

the findings of He et al.  (2021) and Bali et al.  (2022). 

We also find similar mixed results for non-U.S. developed and emerging markets as 

presented in panel B and panel C of Table 8. Particularly, stock characteristics’ incremental 

predictive power relative to bond characterises and macro variables are only significant for two of 

eleven models (including OLS) in non-U.S. developed market (LASSO and ENet) and three in 

emerging market (RIDGE, PLS and NN1). 

 

4. Conclusion 

Growing number of studies have devoted to the cross-section of corporate bond returns in 

the U.S. market. However, limited data availability prevents research in international corporate 

bond market. With a novel international dataset, this paper is, to our knowledge, the first to 

introduce machine learning techniques to make a thorough analysis of the out-of-sample 

predictability of international corporate bond returns. We first divide international corporate bond 

market into three markets: U.S., non-U.S. developed and emerging. We find that machine learning 

models outperform traditional OLS in terms of out-of-sample predictability and long-short 
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portfolio strategy profits in all of these three markets.  

We also find that return predictors of corporate bonds in non-U.S. markets, especially in 

emerging market, are substantially different from U.S. market. Macroeconomic variables 

(especially inflation), downside risk, interest-rate risk, illiquidity, and volatility are more important 

to improve corporate return predictability in emerging market than in U.S. market, while short-

term reversal, co-skewness, exposure to size risk, and exposure to market risk are the most 

important predictors in U.S. Moreover, additional equity and bond factors (MKT, SMB, HML, 

DEF and excess bond market return) from U.S. market fail to enhance the predicting performance, 

indicating that international corporate bond markets are not well integrated.  
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Appendix: Characteristics Descriptions 
 

A. Corporate Bond Characteristics (20) 

1. Credit Rating (Rating). We obtain bond-level rating information from Bloomberg. Credit 

ratings are turned to conventional linear numeric scores where higher numerical score 

means higher credit risk (AAA = 1, AA+ = 2, …, C = 21). When two or more ratings are 

provided by Standard & Poor’s, Moody’s,  and  Fitch, the ratings are averaged. 

2. Time-to-maturity (MAT). The number of years to maturity. 

3. Age (Age). The number of years since bonds’ issuance. 

4. Duration (DUR). The Macaulay duration, obtained from IHS Markit data.  

5. Issuance size (Size). The natural logarithm of bond amount issued, obtained from 

Bloomberg. 

6. Illiquidity (ILLIQ_Bond). Following Amihud and Mendelson (1986), we first calculate 

relative bid-ask spread as ask price minus bid price, divided by average of bid and ask 

prices for each day. Then, we take the mean of daily values in a week to get a weekly 

illiquidity proxy for each bond. 

7. Volatility (VOL). We estimate historical volatility using daily return for past month. 

8. Skewness (SKEW). We estimate historical skewness using daily return for past month. 

9. Kurtosis (KURT).   We estimate historical Kurtosis using daily return for past month. 

10. Downside risk (VaR5). Following Bai et al. (2019), we measure downside risk of 

corporate bonds using the second lowest daily return observation over the past 36 trading 

days. For convenience of interpretation, we multiply the original measure by −1.   

11. Short-term reversal (REV_Bond). Following Lehmann (1990) and Avramov, Chordia, 

and Goyal (2006), we measure short-term reversal using bond return in previous week. 

12. Four-week momentum (MOM4Bond). Lagged 2-week to lagged 4-week cumulative 

weekly returns. 

13. Twelve-week momentum (MOM12Bond). Lagged 2-week to lagged 12-week cumulative 

weekly returns. 

14. Bond market beta (BETA_BMKT). Following Bali et al. (2022), we estimate bond market 

beta of individual bonds on bond market excess return using the rolling sample of the past 

26 weeks. Bond market excess return is computed as the value-weighted (amount issuance 

as weight) average returns of all corporate bonds for each of the three markets minus the 

risk-free rate. 

15. Market beta (BETA_MKT). Following Fama and French (1993), we estimate market beta 

of individual bonds on market factor obtained from French’s website using the rolling 

sample of the past 26 weeks. 

16. Size beta (BETA_SMB). Following Fama and French (1993), we estimate market beta of 

individual bonds on size factor obtained from French’s website using the rolling sample of 

the past 26 weeks. 

17. Value beta (BETA_HML). Following Fama and French (1993), we estimate market beta 

of individual bonds on value factor obtained from French’s website using the rolling 

sample of the past 26 weeks. 
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18. Term beta (BETA_TERM). Following Fama and French (1993) and Crawford, Perotti, 

Price III and Skousen (2019), we estimate term beta of individual bonds on TERM factor 

using the rolling sample of the past 26 weeks. TERM factor is defined as TERM = rSBTSY10 

– rf, where rSBTSY10 is the return on long-term government bonds based on SBTSY10 index 

(a 10-year constant-maturity price index) from Bloomberg. 

19. Default beta (BETA_DEF). Following Fama and French (1993) and Crawford et al. 

(2019), we estimate default beta of individual bonds on DEF factor using the rolling sample 

of the past 26 weeks. DEF factor is calculated as DEF = rSample- rSBTSY10, where rSample is the 

return on investment-grade corporate bonds with more than 10 years to maturity for each 

of the three markets, weighted by amount issued. 

20. Co-skewness (COSKEW). Following Boyer, Mitton, and Vorkink (2010), co-skewness is 

estimated based on the following rolling regressions of the past 26 weeks: 

 

 𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝑅𝑚,𝑡 + 𝛾𝑖𝑅𝑚,𝑡
2 + 𝜀𝑖,𝑡, 

where 𝑅𝑖,𝑡 is weekly excess return of bond i, 𝑅𝑚,𝑡 is weekly bond market excess return for 

each of the three markets, and 𝛾𝑖 is co-skewness (systematic skewness) of bond i. 

 

B. Macro variables (6) 

1. U.S. exchange rate growth (USExGrowth). The nominal U.S. dollar exchange rate 

weekly growth, obtained from Datastream. 

2. GDP growth (GDPGrowth). Quarter-over-quarter real GDP quarterly growth, obtained 

from IMF internal databases. 

3. inflation (CPIGrowth). Monthly inflation, obtained from IMF internal databases. 

4. Geopolitical risk (GPRChange). The log change of monthly geopolitical risk index from 

Caldara and Iacoviello (2022). 

5. Economic policy uncertainty (EPUChange). The log change of monthly economic policy 

uncertainty index from Baker, Bloom, and Davis (2016). 

6. World uncertainty (WUIChange). The log change of world uncertainty index from Ahir, 

Bloom and Furceri (2022). 

 

C. Stock Characteristics (21) 

Following He et al. (2021), we first construct 15 out of 20 stock characteristics based on the 

variable definitions from Hou, Xue and Zhang (2020).8 We also select several most important 

stock characteristics from Figure 5 of Gu et al. (2020).  

 

 

 

 

 
8 We obtain stock pricing and accounting information from Datastream rather than Compustat in He et al. (2021) 

and Hou et al. (2020), and our analysis is for weekly bond returns. We change the constructions slightly for some 

stock characteristics if needed. 
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C.1 Stock Characteristics from He et al. (2021) 

1. Standard Unexpected Earnings (SUE). The change of split-adjusted quarterly earnings 

per share from its value one year ago scaled by standard deviation of this change over the 

prior two years. 

2. Cumulative abnormal returns around earnings announcement dates (ABR). The 

cumulative abnormal stock daily return around the latest quarterly earnings announcement 

date. 

3. Revisions in analyst earnings forecasts (RE). The 6-month moving average of past 

changes in analysts’ forecasts. 

4. Twelve-week momentum (MOM12Stock). Lagged 2-week to lagged 12-week cumulative 

weekly returns. 

5. Book-to-Market (BM). Yearly book equity to weekly market equity. 

6. Earnings to price (EP). Quarterly earnings to weekly price. 

7. Cashflow to price (CFP). Quarterly cashflow to weekly price. 

8. Sales to price (SP). Quarterly sales to weekly price. 

9. Asset Growth Rate (AGR). Quarterly asset Growth Rate. 

10. Quarterly equity issuance (NI). Quarterly equity issuance. 

11. Return on asset (ROA). Quarterly return on quarterly asset. 

12. Market equity (ME). Weekly market equity. 

13. Stock variance (SVAR). We estimate historical volatility using daily return for the past 

month. 

14. CAPM beta (BETA). Following Fama and French (1993), we estimate market beta of 

individual stocks on value-weighted average market excess returns using the rolling sample 

of the past 26 weeks. 

15. Short-term reversal (REV_Stock). Following Lehmann (1990) and Avramov et al. (2006), 

we measure short-term reversal using the stock return in previous week. 

 

C.2 Stock Characteristics from Gu et al. (2020) 

1. Cumulative weekly returns on prior 2-4 weeks (MOM4Stock) 

2. Idiosyncratic risk (IDIOVOL). Standard deviation of residuals of weekly returns on 

weekly value-weighted market excess returns for past 26 weeks. 

3. Maximum daily return (MAXRET). Maximum daily return in a week. 

4. Amihud illiquidity (ILLIQ_Stock). Weekly average of daily absolute return divided by 

dollar volume. 

5. Bid-ask spread (BASPREAD). Weekly average of daily bid-ask spread divided by 

average of daily bid and ask price. 

6. Share turnover (TURN). Average weekly trading volume for most recent 3 weeks scaled 

by shares outstanding. 
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Figure 1: Characteristic Importance in the U.S. Market 

This figure presents the overall rankings of 20 bond characteristics and 5 macro variables (excluding 

USExGrowth) based on variable importance in each model in the U.S. market. To measure variable 

importance, we first calculate the reduction of time-series average weekly R-squared 𝑅̅𝑂𝑂𝑆,𝑡
2  from setting 

all values of a given predictor to zero, while keeping the remaining predictors unchanged. Variable 

importance is defined as the relative reduction of  𝑅̅𝑂𝑂𝑆,𝑡
2 . In this way, the characteristic with lowest R-

squared reduction has variable importance of 0, while the characteristic with highest R-squared reduction 

has variable importance of 1. To get the overall rankings of characteristics across models, we rank the 
importance of each characteristic for each model and then average them into a single rank. Columns 

correspond to individual models, and color gradients within each column indicate the most influential (dark 

blue) to least influential (white) characteristics.   
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Figure 2: Characteristic Importance in the Non-U.S. Developed Market 

This figure presents the overall rankings of 20 bond characteristics and 5 macro variables (excluding 

USExGrowth) based on variable importance in each model in the non-U.S. developed market. To measure 

variable importance, we first calculate the reduction of time-series average weekly R-squared 𝑅̅𝑂𝑂𝑆,𝑡
2  from 

setting all values of a given predictor to zero, while keeping the remaining predictors unchanged. Variable 

importance is defined as the relative reduction of  𝑅̅𝑂𝑂𝑆,𝑡
2 . In this way, the characteristic with lowest R-

squared reduction has variable importance of 0, while the characteristic with highest R-squared reduction 

has variable importance of 1. To get the overall rankings of characteristics across models, we rank the 
importance of each characteristic for each model and then average them into a single rank. Columns 

correspond to individual models, and color gradients within each column indicate the most influential (dark 

blue) to least influential (white) characteristics.
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Figure 3: Characteristic Importance in the Emerging Market 

This figure presents the overall rankings of 20 bond characteristics and 5 macro variables (excluding 

USExGrowth) based on variable importance in each model in the emerging market. To measure variable 

importance, we first calculate the reduction of time-series average weekly R-squared 𝑅̅𝑂𝑂𝑆,𝑡
2  from setting 

all values of a given predictor to zero, while keeping the remaining predictors unchanged. Variable 

importance is defined as the relative reduction of  𝑅̅𝑂𝑂𝑆,𝑡
2 . In this way, the characteristic with lowest R-

squared reduction has variable importance of 0, while the characteristic with highest R-squared reduction 

has variable importance of 1. To get the overall rankings of characteristics across models, we rank the 
importance of each characteristic for each model and then average them into a single rank. Columns 

correspond to individual models, and color gradients within each column indicate the most influential (dark 

blue) to least influential (white) characteristics.
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Table 1: Sample Distribution  

 

This table reports sample distribution for three markets, i.e., U.S. market, non-U.S. developed market, and 

emerging market. To identify the nationality of each bond, we obtain the country of risk from Bloomberg 
based on bond’s International Securities Identification Numbers (ISIN’s). Number of obs. indicates the 

number of weekly observations for each market. Number of bonds indicates the number of unique bond 

ISINs corresponding to each market. Number of companies indicates the number of unique equity ISINs 
corresponding to each market. Proportions of each of these three markets to the whole sample are reported 

in the parentheses. 

 

 Number of  
obs. 

Number of  
bonds 

Number of 
companies 

US 998,775 (77%) 9,869 (75%) 1,129 (56%) 

Non-U.S. developed 167,119 (13%) 1,849 (14%) 320 (16%) 

Emerging 131,112 (10%) 1,501 (11%) 550 (28%) 

Total 1,297,006 13,219 1,999 
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Table 2: Descriptive Statistics 

 

This table reports the number of bond-week observations, cross-sectional mean, median, standard deviation and percentiles of weekly corporate 

bond returns, credit rating, time to maturity, age, duration, size, illiquidity and downside risk in U.S. market (Panel A), non-U.S. developed market 
(Panel B) and emerging market (Panel C). Credit ratings are reported in conventional linear numeric scores where higher numerical score means 

higher credit risk (AAA = 1, AA+ = 2, …, C = 21). Size is the natural logarithm of amount issued. Following Amihud and Mendelson (1986), 

illiquidity is measured by relative bid-ask spread to actual spread, divided by average of bid and ask prices. Downside risk is proxied by 5% Value-
at-Risk (VaR ), i.e., the second lowest daily return over the past 36 trading days. 

   N Mean Media SD 1st p5 p25 p75 p95 99th 

Panel A: U.S. 

 Bond return (%, weekly) 998,775 0.06 0.04 0.56 -1.34 -0.81 -0.26 0.35 1.02 1.52 
 Rating (AAA = 1, AA+ = 2, etc.) 998,775 8.42 8.00 3.01 1.61 4.16 6.46 9.94 14.39 16.99 

 Time to maturity (years) 998,775 9.87 6.40 9.68 0.64 1.13 3.41 13.83 27.27 35.58 

 Age (years) 998,775 6.69 4.59 6.08 0.83 1.16 2.64 8.07 20.57 25.91 
 Duration 704,733 6.44 5.24 4.81 0.58 1.01 3.03 9.11 15.16 16.92 

 Size  998,190 5.52 6.05 1.82 0.48 1.33 5.35 6.61 7.60 8.05 

 Illiquidity 992,082 0.55 0.43 0.56 0.03 0.07 0.23 0.77 1.32 1.92 
 Downside risk (5% VaR) 992,082 0.58 0.45 0.56 0.00 0.05 0.23 0.81 1.43 2.49 

Panel B: Non-U.S. developed 

 Bond return (%, weekly) 167,119 0.05 0.03 0.48 -1.20 -0.68 -0.19 0.26 0.87 1.41 

 Rating (AAA = 1, AA+ = 2, etc.) 167,119 7.30 7.24 3.07 1.00 3.44 5.13 9.00 13.75 16.07 

 Time to maturity (years) 167,119 7.71 4.66 8.36 0.59 0.90 2.41 8.64 25.58 28.81 
 Age (years) 167,119 5.25 3.73 4.82 0.81 1.00 2.07 6.48 16.58 22.52 

 Duration 145,959 5.26 3.95 4.09 0.56 0.84 2.17 7.00 14.27 16.07 

 Size  167,119 6.38 6.60 1.18 1.02 4.22 6.12 7.04 7.61 7.98 
 Illiquidity 166,236 0.44 0.32 0.42 0.03 0.06 0.16 0.61 1.19 1.67 

 Downside risk (5% VaR) 166,236 0.48 0.34 0.57 0.01 0.06 0.17 0.63 1.31 2.11 

Panel C: Emerging 

 Bond return (%, weekly) 131,112 0.07 0.06 0.49 -1.24 -0.73 -0.14 0.28 0.94 1.49 
 Rating (AAA = 1, AA+ = 2, etc.) 131,112 9.86 9.97 3.33 3.68 4.63 7.39 12.05 15.56 17.65 

 Time to maturity (years) 131,112 5.85 3.81 7.23 0.60 0.91 2.19 6.44 23.20 28.12 

 Age (years) 131,112 4.19 3.51 3.50 0.82 1.03 1.97 5.03 9.95 20.79 
 Duration 126,827 4.18 3.37 3.29 0.47 0.78 1.94 5.35 12.31 15.21 

 Size  131,112 6.27 6.22 0.59 4.62 5.30 5.92 6.62 7.27 7.60 

 Illiquidity 130,402 0.63 0.52 0.76 0.06 0.11 0.32 0.75 1.40 2.92 

 Downside risk (5% VaR) 130,402 0.45 0.29 0.59 0.00 0.05 0.14 0.55 1.32 2.62 
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Table 3: Prediction Performance of Machine Learning Models 

 

This table reports out of sample prediction performance (𝑅𝑂𝑂𝑆
2 ) of machine leaning models in U.S. market (Panel A), non-U.S. developed market 

(Panel B) and emerging market (Panel C). We use 20 bond characteristics and 6 macro variables for non-U.S. developed market and emerging 

market, and 25 characteristics (excluding USExGrowth) for U.S. market. For each market, bonds are sorted into investment grade bonds (with ratings 

of 10 or below, i.e., BBB- or better) and non-investment grade (with ratings of 11 or higher, i.e., BB+ or worse). Machine learning models include 
OLS, LASSO, ridge regression (RIDGE), elastic net (ENet), principal component analysis (PCA), partial least square (PLS), random forest (RF), 

gradient boosted regression trees (GBRT) and neural networks with one to five layers (NN1–NN3). 

 

 OLS LASSO RIDGE ENet PCA PLS RF GBRT NN1 NN2 NN3 

Panel A: U.S.            

All bonds  -2.67 3.26 2.97 3.04 2.89 3.09 3.21 3.03 1.94 3.03 3.27 

Investment-grade -3.47 4.20 4.05 4.04 4.00 4.28 4.75 3.73 1.82 5.37 4.86 
Non-investment-grade -2.30 -0.83 -0.61 -0.83 -0.57 -0.77 -0.80 -0.64 -0.31 -0.18 0.23 

Panel B: Non-U.S. developed            

All bonds  -3.52 2.83 2.05 2.91 2.92 2.94 3.29 2.85 2.93 2.85 2.82 

Investment-grade -4.30 4.37 3.15 4.56 5.00 4.94 4.59 3.35 4.80 3.96 4.22 
Non-investment-grade -3.40 -1.81 -1.89 -1.84 -2.45 -3.19 -1.98 -1.85 -3.02 -1.50 -1.62 

Panel C: Emerging            

All bonds  -2.14 3.06 3.12 3.19 3.41 2.93 3.28 3.32 2.81 3.39 3.72 

Investment-grade -4.21 4.45 4.45 4.42 5.10 3.97 5.34 4.53 3.87 4.80 4.47 
Non-investment-grade 0.15 2.43 2.46 2.33 2.50 2.54 2.21 2.24 2.75 2.70 2.78 
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Table 4: Value-weighted Performance of Machine Learning Portfolios 

 

This table reports out of sample performance of prediction-sorted portfolios in U.S. (Panel A), non-U.S. developed market (Panel B) and emerging 

market (Panel C). We use 20 bond characteristics and 6 macro variables for non-U.S. developed market and emerging market, and 25 characteristics 
(excluding USExGrowth) for U.S. market. At the end of each week, we sort bonds into deciles based on each model’s one-week-ahead out-of-sample 

bond return predictions and construct value-weighted portfolio, using amount issued as weights. We report annualized Sharpe ratio of long-short 

portfolio and time-series average weekly returns for each decile and long-short portfolio. Newey-West t-stats for long-short portfolio returns are 
reported in the parentheses. 

 

 Low 2 3 4 5 6 7 8 9 High High-Low High-Low SR 

Panel A: U.S.             

OLS 0.02 0.08 0.10 0.10 0.09 0.09 0.10 0.11 0.13 0.16 0.14 (1.82) 1.03 

LASSO -0.02 0.06 0.08 0.10 0.08 0.08 0.09 0.12 0.15 0.20 0.22 (6.69) 1.86 

RIDGE -0.03 0.03 0.06 0.07 0.09 0.10 0.12 0.14 0.17 0.20 0.22 (3.89) 1.82 

ENet -0.01 0.07 0.09 0.09 0.09 0.08 0.08 0.11 0.14 0.19 0.21 (6.47) 1.73 
PCA -0.01 0.05 0.07 0.07 0.09 0.10 0.11 0.14 0.17 0.19 0.18 (6.42) 1.71 

PLS -0.01 0.05 0.06 0.07 0.10 0.10 0.13 0.14 0.17 0.19 0.20 (5.44) 1.88 

RF 0.00 0.02 0.05 0.10 0.10 0.08 0.08 0.11 0.15 0.23 0.22 (2.73) 1.62 
GBRT 0.04 0.04 0.08 0.09 0.07 0.08 0.08 0.10 0.15 0.24 0.19 (2.46) 1.40 

NN1 0.02 0.05 0.06 0.08 0.09 0.10 0.09 0.11 0.18 0.20 0.17 (4.88) 1.42 

NN2 0.01 0.04 0.05 0.07 0.08 0.10 0.10 0.13 0.18 0.21 0.19 (4.53) 1.63 

NN3 0.02 0.07 0.07 0.07 0.08 0.08 0.08 0.13 0.16 0.22 0.20 (5.60) 1.61 

Panel B: Non-U.S. developed 

OLS 0.05 0.06 0.08 0.08 0.08 0.08 0.08 0.06 0.10 0.15 0.11 (1.16) 0.87 

LASSO 0.04 0.05 0.06 0.06 0.08 0.08 0.09 0.10 0.15 0.17 0.15 (2.20) 1.19 

RIDGE 0.00 0.02 0.04 0.07 0.09 0.10 0.11 0.11 0.16 0.17 0.17 (1.64) 1.27 
ENet 0.04 0.04 0.06 0.06 0.08 0.07 0.08 0.11 0.14 0.17 0.14 (2.00) 1.11 

PCA 0.03 0.05 0.05 0.07 0.07 0.07 0.08 0.11 0.15 0.16 0.13 (1.62) 1.07 

PLS 0.02 0.04 0.06 0.06 0.07 0.09 0.09 0.10 0.17 0.18 0.16 (2.00) 1.40 
RF 0.05 0.04 0.05 0.07 0.09 0.09 0.08 0.06 0.08 0.22 0.18 (1.61) 1.32 

GBRT 0.05 0.05 0.05 0.07 0.10 0.10 0.07 0.08 0.08 0.19 0.13 (1.18) 1.00 

NN1 0.03 0.04 0.04 0.06 0.07 0.10 0.10 0.08 0.15 0.19 0.16 (2.22) 1.50 
NN2 0.02 0.04 0.05 0.06 0.08 0.10 0.09 0.10 0.12 0.20 0.16 (2.21) 1.48 

NN3 0.01 0.04 0.05 0.07 0.07 0.08 0.10 0.09 0.12 0.21 0.19 (2.64) 1.92 
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Panel C: Emerging 

OLS 0.18 0.13 0.10 0.11 0.07 0.06 0.08 0.06 0.11 0.15 -0.04 (-0.60) -0.33 

LASSO 0.05 0.06 0.07 0.08 0.08 0.10 0.12 0.14 0.15 0.18 0.14 (2.26) 1.06 

RIDGE 0.04 0.06 0.08 0.08 0.08 0.11 0.13 0.11 0.12 0.22 0.18 (2.57) 1.45 

ENet 0.05 0.06 0.07 0.09 0.07 0.11 0.11 0.14 0.15 0.18 0.14 (1.92) 1.05 
PCA 0.04 0.06 0.08 0.07 0.09 0.12 0.13 0.12 0.13 0.21 0.17 (2.74) 1.44 

PLS 0.05 0.07 0.08 0.09 0.09 0.10 0.12 0.12 0.10 0.21 0.15 (2.14) 1.23 

RF 0.05 0.08 0.07 0.07 0.10 0.10 0.11 0.14 0.14 0.22 0.18 (2.69) 1.31 
GBRT 0.07 0.08 0.09 0.05 0.07 0.09 0.12 0.11 0.17 0.21 0.16 (2.53) 1.17 

NN1 0.08 0.08 0.07 0.08 0.07 0.08 0.08 0.11 0.15 0.23 0.15 (2.92) 1.33 

NN2 0.07 0.06 0.07 0.09 0.10 0.09 0.10 0.10 0.13 0.24 0.19 (3.61) 1.65 

NN3 0.05 0.07 0.08 0.08 0.10 0.08 0.11 0.10 0.12 0.25 0.19 (3.31) 1.71 
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Table 5: Equal-weighted Performance of Machine Learning Portfolios 

 

This table reports out of sample performance of prediction-sorted portfolios in U.S. (Panel A), non-U.S. developed market (Panel B) and emerging 

market (Panel C). We use 20 bond characteristics and 6 macro variables for non-U.S. developed market and emerging market, and 25 characteristics 
(excluding USExGrowth) for U.S. market. At the end of each week, we sort bonds into deciles based on each model’s one-week-ahead out-of-sample 

bond return predictions and construct equal-weighted portfolio. We report annualized Sharpe ratio of long-short portfolio and time-series average 

weekly returns for each decile and long-short portfolio. Newey-West t-stats for long-short portfolio returns are reported in the parentheses. 
 

 Low 2 3 4 5 6 7 8 9 High High-Low High-Low SR 

Panel A: U.S.             

OLS 0.01 0.06 0.09 0.09 0.09 0.09 0.10 0.11 0.13 0.16 0.15 (2.05) 1.15 
LASSO -0.01 0.05 0.08 0.09 0.08 0.08 0.09 0.12 0.16 0.20 0.21 (7.49) 1.71 

RIDGE -0.02 0.03 0.05 0.06 0.08 0.10 0.12 0.14 0.17 0.19 0.22 (4.47) 1.70 

ENet -0.01 0.06 0.09 0.08 0.08 0.08 0.09 0.11 0.15 0.19 0.20 (7.24) 1.60 

PCA 0.00 0.04 0.06 0.06 0.08 0.10 0.12 0.13 0.16 0.18 0.17 (5.87) 1.49 
PLS -0.01 0.04 0.05 0.07 0.08 0.10 0.12 0.13 0.16 0.19 0.20 (6.15) 1.72 

RF 0.01 0.02 0.05 0.10 0.10 0.06 0.08 0.13 0.16 0.22 0.21 (2.99) 1.55 

GBRT 0.03 0.04 0.07 0.08 0.07 0.07 0.09 0.12 0.13 0.23 0.20 (2.60) 1.42 
NN1 0.03 0.06 0.05 0.06 0.08 0.09 0.09 0.11 0.16 0.19 0.16 (5.44) 1.26 

NN2 0.02 0.04 0.04 0.06 0.08 0.09 0.11 0.13 0.16 0.19 0.18 (5.80) 1.38 

NN3 0.02 0.05 0.06 0.07 0.08 0.09 0.09 0.11 0.15 0.22 0.20 (5.84) 1.50 

Panel B: Non-U.S. developed 

OLS 0.02 0.07 0.07 0.08 0.08 0.08 0.08 0.07 0.11 0.15 0.13 (1.64) 1.08 

LASSO 0.02 0.04 0.05 0.06 0.06 0.07 0.09 0.11 0.14 0.18 0.17 (2.65) 1.40 

RIDGE -0.01 0.02 0.04 0.06 0.08 0.09 0.12 0.12 0.14 0.17 0.18 (1.82) 1.32 

ENet 0.02 0.04 0.05 0.07 0.07 0.07 0.08 0.12 0.14 0.18 0.16 (2.43) 1.32 
PCA 0.01 0.05 0.05 0.07 0.07 0.08 0.09 0.11 0.14 0.16 0.15 (1.97) 1.23 

PLS 0.00 0.03 0.05 0.06 0.06 0.09 0.11 0.10 0.15 0.18 0.17 (2.21) 1.46 

RF 0.05 0.05 0.05 0.07 0.10 0.09 0.09 0.06 0.06 0.23 0.18 (1.61) 1.30 
GBRT 0.06 0.05 0.04 0.06 0.10 0.10 0.07 0.08 0.08 0.19 0.13 (1.14) 0.96 

NN1 0.03 0.04 0.04 0.06 0.07 0.09 0.09 0.09 0.13 0.19 0.16 (2.27) 1.46 

NN2 0.02 0.04 0.05 0.05 0.08 0.09 0.09 0.10 0.13 0.18 0.16 (2.26) 1.46 
NN3 0.02 0.04 0.05 0.06 0.07 0.07 0.09 0.10 0.13 0.20 0.18 (2.54) 1.80 
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Panel C: Emerging 

OLS 0.20 0.14 0.11 0.10 0.07 0.06 0.07 0.07 0.11 0.14 -0.06 (-0.91) -0.48 

LASSO 0.05 0.06 0.07 0.09 0.08 0.11 0.12 0.14 0.16 0.19 0.13 (2.15) 1.02 

RIDGE 0.04 0.06 0.08 0.09 0.08 0.12 0.14 0.12 0.12 0.22 0.18 (2.56) 1.45 

ENet 0.05 0.06 0.07 0.09 0.08 0.11 0.12 0.15 0.15 0.19 0.14 (1.83) 1.01 
PCA 0.04 0.06 0.08 0.08 0.10 0.13 0.12 0.11 0.14 0.22 0.18 (2.75) 1.45 

PLS 0.05 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.12 0.20 0.15 (2.2) 1.24 

RF 0.05 0.07 0.08 0.07 0.11 0.09 0.10 0.13 0.14 0.23 0.18 (2.69) 1.31 
GBRT 0.07 0.07 0.09 0.06 0.08 0.08 0.12 0.12 0.16 0.22 0.15 (2.47) 1.14 

NN1 0.09 0.08 0.07 0.08 0.08 0.08 0.10 0.12 0.14 0.23 0.14 (2.79) 1.22 

NN2 0.08 0.06 0.07 0.09 0.10 0.10 0.10 0.11 0.13 0.25 0.18 (3.37) 1.53 

NN3 0.06 0.07 0.08 0.08 0.09 0.09 0.11 0.12 0.13 0.24 0.18 (3.08) 1.57 
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Table 6: Prediction Performance of Machine Learning Models by Using U.S. Parameters 

 

This table reports out of sample prediction performance (𝑅𝑂𝑂𝑆
2 ) of machine leaning models in non-U.S. developed market (Panel A) and emerging 

market (Panel B) by using parameters based on the training and validation sample in U.S. market and their own markets. We use 20 bond 

characteristics and 5 macro variables (excluding USExGrowth). For each market, we report time-series average 𝑅̅𝑂𝑂𝑆,𝑡
2  using market-specific 

parameters and U.S. parameters, and the difference of these two 𝑅̅𝑂𝑂𝑆,𝑡
2 . Newey-West t-stats of 𝑅̅𝑂𝑂𝑆,𝑡

2  difference are reported in the parentheses. 

Machine leaning models include OLS, LASSO, ridge regression (RIDGE), elastic net (ENet), principal component analysis (PCA), partial least 
square (PLS), random forest (RF), gradient boosted regression trees (GBRT) and neural networks with one to five layers (NN1–NN3). 

 

 OLS LASSO RIDGE ENet PCA PLS RF GBRT NN1 NN2 NN3 

Panel A: Non-U.S. developed            

Market-Specific parameters -3.53 2.05 1.43 2.07 1.55 1.69 2.56 2.26 1.54 1.33 2.45 

U.S. parameters -3.58 2.43 2.07 2.11 1.94 2.13 1.85 2.52 -0.24 -6.85 -15.00 

Difference 0.05 -0.38 -0.65 -0.04 -0.39 -0.44 0.71 -0.26 1.78 8.18 17.45 

Diff (t-statistics) 0.06 -1.38 -0.96 -0.19 -0.91 -1.58 0.94 -0.86 1.22 4.03 4.86 

Panel B: Emerging            

Market-Specific parameters -2.70 2.49 2.43 2.47 2.63 1.70 2.75 2.74 2.18 2.98 2.66 

U.S. parameters -7.90 0.59 0.35 0.24 -0.46 -0.67 -0.18 2.55 -2.52 -4.00 -7.94 

Difference 5.19 1.90 2.08 2.23 3.09 2.37 2.93 0.19 4.70 6.98 10.60 
Diff (t-statistics) 4.91 2.81 1.92 2.85 2.80 2.38 1.13 0.43 2.81 3.41 3.14 
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Table 7: Prediction Performance of Machine Learning Models by Including U.S. Factors 

 

This table reports out of sample prediction performance (𝑅𝑂𝑂𝑆
2 ) of machine leaning models in non-U.S. developed market (Panel A) and emerging 

market (Panel B) by including bonds’ exposures to U.S. factors as new characteristics. The U.S. factors include MKT, SMB, HML, and DEF factors 

from Fama and French (1993), and bond market factor constructed in this paper. We use 20 bond characteristics, 5 macroeconomic variables and 

the newly added 6 factor exposures. For each market, we report time-series average 𝑅̅𝑂𝑂𝑆,𝑡
2  with and without U.S. factor exposures, and the difference 

of these two 𝑅̅𝑂𝑂𝑆,𝑡
2 . Newey-West t-stats for 𝑅̅𝑂𝑂𝑆,𝑡

2  difference are reported in the parentheses. Machine leaning models include OLS, LASSO, ridge 

regression (RIDGE), elastic net (ENet), principal component analysis (PCA), partial least square (PLS), random forest (RF), gradient boosted 

regression trees (GBRT) and neural networks with one to five layers (NN1–NN3). 

 

 OLS LASSO RIDGE ENet PCA PLS RF GBRT NN1 NN2 NN3 

Panel A: Non-U.S. developed            

Without U.S. Factor exposures -3.53 2.05 1.43 2.07 1.70 1.70 2.48 2.17 1.84 1.95 1.90 

With U.S. Factor exposures -3.94 2.05 1.31 2.08 1.86 1.67 2.52 2.24 1.32 1.31 1.23 

Difference 0.41 0.00 0.13 -0.01 -0.16 0.04 -0.04 -0.07 0.52 0.64 0.67 
Diff (t-statistics) 2.01 -0.18 2.02 -0.24 -0.97 0.53 -0.73 -1.60 2.10 1.41 1.38 

Panel B: Emerging            

Without U.S. Factor exposures -2.19 2.31 2.45 2.47 2.65 2.01 2.60 2.73 1.98 2.70 3.10 

With U.S. Factor exposures -2.47 2.31 2.50 2.47 2.39 2.03 2.68 2.67 2.35 2.03 2.76 
Difference 0.28 0.00 -0.04 0.00 0.27 -0.02 -0.09 0.05 -0.37 0.67 0.34 

Diff (t-statistics) 0.73 -1.06 -0.98 - 2.29 -0.20 -1.71 0.94 -1.58 3.10 3.05 
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Table 8: Prediction Performance of Machine Learning Models by Including Stock Characteristics 

 

This table reports out of sample prediction performance (𝑅𝑂𝑂𝑆
2 ) of machine leaning models in U.S. market (Panel A), non-U.S. developed market 

(Panel B) and emerging market (Panel C) by adding stock characteristics. We use 20 bond characteristics, 6 macro variables and 15 stock 

characteristics for non-U.S. developed market and emerging market, and 40 characteristics (excluding USExGrowth) for U.S. market. We report 

time-series average 𝑅̅𝑂𝑂𝑆,𝑡
2  with and without stock characteristics, and the difference of these two 𝑅̅𝑂𝑂𝑆,𝑡

2 . Newey-West t-stats for 𝑅̅𝑂𝑂𝑆,𝑡
2  difference 

are reported in the parentheses. Machine leaning models include OLS, LASSO, ridge regression (RIDGE), elastic net (ENet), principal component 

analysis (PCA), partial least square (PLS), random forest (RF), gradient boosted regression trees (GBRT) and neural networks with one to five layers 
(NN1–NN3). 

 

 OLS LASSO RIDGE ENet PCA PLS RF GBRT NN1 NN2 NN3 

Panel A: U.S.            

Without Stock Chas -2.43 2.77 2.46 2.60 2.31 2.29 1.66 2.44 0.95 1.74 1.66 

With Stock Chas -2.27 2.85 2.71 2.81 2.66 2.51 1.34 2.20 0.35 0.95 2.04 

Difference -0.17 -0.08 -0.25 -0.21 -0.35 -0.22 0.33 0.24 0.60 0.79 -0.38 

Diff (t-statistics) -1.30 -1.64 -4.86 -4.07 -0.56 -2.03 0.77 2.77 1.76 1.13 -0.52 

Panel B: Non-U.S. developed            

Without Stock Chas -3.53 2.05 1.43 2.07 1.70 1.70 2.48 2.17 1.84 1.95 1.90 

With Stock Chas -3.53 2.28 1.45 2.43 2.05 1.72 1.79 2.33 1.65 1.76 2.15 

Difference 0.00 -0.23 -0.02 -0.36 -0.36 -0.02 0.69 -0.16 0.19 0.19 -0.25 
Diff (t-statistics) -0.04 -2.63 -0.18 -3.09 -1.66 -0.14 0.56 -0.95 0.40 0.29 -0.42 

Panel B: Emerging            

Without Stock Chas -2.19 2.31 2.45 2.47 2.65 2.01 2.60 2.73 1.98 2.70 3.10 

With Stock Chas -2.09 2.35 2.60 2.46 2.82 2.32 2.99 2.71 2.61 3.32 3.04 
Difference -0.09 -0.04 -0.14 0.01 -0.16 -0.31 -0.39 0.02 -0.63 -0.62 0.07 

Diff (t-statistics) -0.37 -1.31 -2.57 0.49 -1.61 -2.13 -1.59 0.38 -2.09 -1.57 0.32 

 
 

 

 


