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Abstract

We identify a feedback loop between fire sales and equity option returns. The de-

mand effect of fire sales induced by mutual fund extreme outflows decreases delta-

hedged put option returns by 4–10% per year and increases the expensiveness by

2.5%. We address endogenous concerns using instrumental variable and difference-

in-differences designs. The demand effect is more substantial under equity illiquidi-

ties than volatility, distress, sustainability risks, or short-sale constraints. Option re-

turns also have anticipation effects on predicting fire sales, where information leakage

in derivatives markets exacerbates extreme outflows.

Keywords: Fire sale, mutual funds, option, demand, feedback loop

JEL: G13, G14, G23



1 Introduction

Fire sales are so intense and widespread that they distort markets and elevate uncer-

tainty to impair efficiency. Literature has documented a long-lasting negative effect

of fire sales on financial asset prices in stock and bond markets (Coval and Stafford,

2007; Huang, Ringgenberg, and Zhang, 2019; Falato et al., 2021). Recent fire sales in

financial institutions, tightly intertwined with tremendous derivatives trading, de-

pict another perspective: Derivatives markets magnify fire sales, which induce sub-

sequent turbulence.1

This paper identifies a feedback loop to illustrate the effect between fire sales and

derivatives. We first provide new evidence connecting mutual fund fire-sale pressure

to delta-hedged at-the-money put option returns (i.e., demand effect). We then show a

negative relationship of option returns on subsequent levels and probabilities of fire

sales (i.e., anticipation effect). Figure 1 illustrates the feedback loop of fire sale pressure

through derivatives markets. Using the mutual fund fire-sale pressure measure MF-

Flow defined as total fractions of stock share value held by mutual funds experiencing

extreme outflows (Edmans, Goldstein, and Jiang, 2012), we estimate the relationship

between the MFFlow and puts returns from 1996 to 2018.

(Insert Figure 1 Here)

The importance of focusing on mutual fund fire sales is as follows. First, flow-

induced fire sales are exogenous and uninformed. Second, most mutual funds, es-

pecially active domestic equity funds, have little exposure to derivatives (Koski and

Pontiff, 2002); thus, we can ease the strategic allocation to derivatives markets which

mechanically alter option returns. Third, mutual funds’ leverage and margin require-

ments are less severe; hence, these restrictions do not directly affect the feedback

1 The sudden implosion of Archegos Capital Management in late March 2021 and the subsequent
fire sales are accompanied by options market fluctuation. For example, ViacomCBS, one of Archegos’
heavily held stocks, its near-the-money put option returns decrease −32.73%. Moreover, meme stocks
roared in January 2021 are fueled by colossal trading in the options market. This meme boom is
followed by a heavy loss in Melvin Capital Management and the bankruptcy of White Square Capital.
The bankruptcy of Long-Term Capital Management is another earlier example of hedge funds with
the astronomical sum of derivative contracts and intertwining with other institutions, leading to the
severe fluctuation in institutional holdings and financial markets.
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loop. Derivatives markets provide a laboratory environment because first, it is debat-

able whether derivatives stabilize or exaggerate market fluctuation. Second, options

trading is forward-looking; thus, its price reflects the arbitrageur reactions and infer-

ence on subsequent uncertainty. Lastly, using delta-hedged returns, we can alleviate

the contamination of turbulent market conditions.

Options contracts are sorted into quintiles at the end of the month using univariate

portfolio analysis based on the previous quarter MFFlow. The result reveals a nega-

tive cross-sectional relation between MFFlow and delta-hedged option returns using

open-interest- and equal-weighted schemes. For open-interest-weighted portfolios,

the average return spread between the high and low quintiles is −0.42% per month

or 5.0% per year. Risk-adjusting returns with exposure to a conditional version of

Carhart (1997), macroeconomic, and tail risk factors produce a spread between the

extreme quintiles of −0.84% per month or −10.1% per year. Our multivariate regres-

sion method uses panel regressions with multiple fixed effects and double clusters.

Coefficient estimates indicate that one standard deviation increase in MFFlow is asso-

ciated with a reduction in weekly average option returns of two basis points, ceteris

paribus (equivalently, −3.9% per year, and comparably, size has an annualized 0.8%

effect). These results establish the demand effect that an increase in mutual fund

fire-sale pressure corresponds to a lower expected option return.

To address the endogenous concerns of MFFlow, we employ the instrumental vari-

able regression method by adopting two alternative fire-sale measures suggested by

Wardlaw (2020). The second-stage results support our baseline evidence, suggest-

ing that our empirical test is less biased by endogenous issues. We also investigate

the mandatory portfolio disclosure as the natural experiment and apply difference-

in-differences design in a three-year window around the event. Since more portfolio

disclosures impose more frequent pressure from fund fire sales to the options mar-

ket, we define a high-MFFlow dummy as those greater than the median MFFlows and

a post-period dummy if the month is after 2004. We find that the diff-in-diff term

is negative, suggesting that higher fire-sale pressure after the policy would induce

a larger demand effect on option prices, leading to even lower delta-hedged option
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returns.

To demonstrate alternative explanations to the demand effects of MFFlow on op-

tion returns, we examine risk-based and limit of arbitrage (friction-based) explana-

tions. We take idiosyncratic volatility, credit downgrading, and sin stock dummy as

the proxies for volatility, distress, and sustainability risks. The short interest rate, the

Amihud illiquidity, and the option bid-ask spread measure short-sale constraints and

illiquidity frictions. We find that the interaction of these alternative explanatory vari-

ables and MFFlow has no power to predict option returns, suggesting that fire-sale

pressure affects option prices through the demand effect channel.

In addition to options returns, we investigate fund fire-sale pressure on option ex-

pensiveness. We define expensiveness as the spread between an at-the-month option’s

implied volatility and reference volatility. For simplicity, we take historical volatil-

ity, calculated using prior 365-day returns, as the reference volatility. Consistent with

Garleanu, Pedersen, and Poteshman (2009), the demand effect due to fire sales signif-

icantly increases option expensiveness.

We further shed light on the anticipation effect of option returns on fund fire sales.

Using OLS and logit regressions, one unit standard deviation increase in option re-

turns is associated with 0.4% lower fire sale pressure and 0.02% less severe fire sale

events. To identify the mechanism of the anticipation effect, we discuss the infor-

mation leakage in derivatives and use introducing weekly options as a natural ex-

periment. Investors have more prompt information sources when a stock has a new

weekly options series in the derivatives market after 2010. The at-the-money put op-

tion contracts would have a lower anticipation effect. Due to the staggering feature

of introducing weekly options, our first DID design focuses on a three-year window

around 2010, when the introduction began. We define a weekly option dummy if a

standard option series is accompanied by a weekly option and define a post-period

dummy if the year is after 2010. Our second design constructs cohorts upon a new

weekly option being introduced and select control groups using propensity score

matching within the same 2-digit industry with similar βs, size, and book value-

to-market value of equity ratios. Then we restrict the cohort DID specification to a
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12-month window. Both DID designs support our OLS results, suggesting that the

anticipation effect is essential to connect the options market to fund flows, as well as

information leakage in exacerbating extreme outflow.

Lastly, we perform robustness tests of demand and anticipation effects of MFFlow.

We verify that split sample into non-extreme market conditions based on the VIX

index and market portfolio returns, high-low sentiment months, January and other

months, and 5-year partitions. These subsamples do not change the main results. To

address the concern that liquidity in the options market concentrates on only a few

option series, we use options trading volume as a weight variable in all regressions

and find that the coefficients are slightly lower but statistically indifferent and sig-

nificant. We also consider mutual fund performance persistence and cash holdings.

To argue that fire sale pressure does not inherit from fund performance, we focus on

fire sale events in funds with persistent high abnormal returns. To identify if fire-sale

pressure from cautious mutual funds with high cash holdings has little impact, we

use average cash holdings from those mutual funds that hold a specific stock as a

weight variable in all regressions. These alternatives do not change our main results.

The paper is related to several strands of literature. First, the recent financial crisis

and collapse of financial institutions have highlighted the importance of understand-

ing the impact of fund fire sales on the financial markets (Shleifer and Vishny, 2011).

In the equity market, Coval and Stafford (2007) show that U.S mutual funds re-

deem investments due to funding shocks originating from extreme outflows, and

these forced redemptions significantly affect domestic equity prices. Greenwood and

Thesmar (2011) argue that if a highly volatile fund holds a stock, then this stock is

more fragile. The international return comovement in equity markets also inherits

from flows to funds (Jotikasthira, Lundblad, and Ramadorai, 2012). In contrast to the

fast-growing body of work in equity markets, relatively little empirical work mea-

sures fire-sale effects in the options market. We fill the gap in the literature by linking

mutual fund fire sales to option prices. We further complement the literature by con-

necting fire sale and spillover effects with the anticipation effect through derivatives

in a feedback loop (See, Duarte and Eisenbach (2021); Falato et al. (2021)).
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Second, our paper is relevant to demand-based option pricing theory. Bollen and

Whaley (2004) find that the downward sloping implied volatility depends on net

public demand for a particular option series. Garleanu, Pedersen, and Poteshman

(2009) demonstrate a positive relationship between net demand of dealers and op-

tion expensiveness and risk premium. Similarly, Muravyev (2016) shows demand

for options and the resulting inventory risk significantly affects option prices. Chen,

Joslin, and Ni (2018) also consider supply shocks to intermediary constraints. Unlike

these seminal papers, we identify a demand effect on derivative prices due to fire-sale

pressure in the equity market.

Third, regarding the anticipation effects of the derivative market, some studies

have examined the role of derivatives markets on return prediction and corporate val-

uations. For example, Cao, Simin, and Xiao (2020) use the implied volatility spread

between at-the-money calls and puts to predict up to six-month aggregate equity

market returns. Pan and Poteshman (2006) show option volumes predict near future

individual stock returns. There are also studies about the positive influence of op-

tions trading volume on Tobin’s q (Roll, Schwartz, and Subrahmanyam, 2009) and

corporate innovation (Blanco and Wehrheim, 2017). However, the direct implication

of option returns on fire sales is rare, which is essential to understand the integra-

tion of financial markets and regulate alternative financial tools to maintain stability

among financial intermediation.

Finally, our paper is related to option return predictability. Volatility significantly

predicts option returns (Goyal and Saretto, 2009; Cao and Han, 2013). Cao et al. (2021)

further examine the relation between option returns and a series of stock character-

istics. Boyer and Vorkink (2014) find that the ex-ante skewness of an option has a

significant effect on option returns. Ramachandran and Tayal (2021) connect short-

sale constraints and find that option returns are higher with tighter restrictions on

underlying mispriced stocks. Our paper complements this literature by addressing

whether flow-induced pressure predicts option returns.

The rest of this paper is organized as follows. Section 2 describes the data and

the econometric specification, Section 3 presents the main results, Section 4 reports
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robustness tests, and Section 5 concludes the paper.

2 Data and specification

To assess the effect of mutual fund flows on option returns, we compile data on the

mutual fund holdings, option prices, and firm characteristics. This section presents

the data and describes the econometric methods.

2.1 Delta-hedged option returns

The data on options are from the OptionMetrics database. The data contain informa-

tion on the U.S. equity option market and includes daily closing bid and ask quotes

on American options and their implied volatilities and Greeks (deltas, gammas, ve-

gas) from January 1996 through December 2018. We use closing bid-ask midpoints

as a proxy for option prices. The implied volatility and Greeks are calculated using a

binomial tree model.

We filter out irregular individual put options to minimize the impact of record-

ing errors. First, we eliminate illiquid options, including those with zero trading

volumes, zero open interests, and zero implied volatilities on one particular day. Sec-

ond, we restrict options with reasonable bid and ask prices. The filters include (1) the

option bid price is higher than its ask price, (2) the option bid-ask spread is higher

than $1/8, and (3) the option price does not violate the option valuation.2 We retain

firms listed on NYSE/AMEX/NASDAQ from 1996 to 2018 and drop financial (Stan-

dard Industry Classification (SIC) codes 6000–6999), utilities (4900–4999), and public

administration firms (9000–9999). Lastly, we delete option contracts with dividend

payments within a month to maturity to avoid look-ahead bias.

Following Goyal and Saretto (2009), we construct portfolios of options and their

underlying stocks. Delta-hedged put positions are obtained by buying one put con-

tract and short-selling delta shares of the underlying stock. Our delta-hedged port-

2 We restrict put options such that strike prices are higher than option prices, and P ≥ max(0, K−
S, e−r f×TK− S), where P is the put option price.
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folios are held until expiration and not rebalanced during the holding period. These

portfolios are formed based on information available on the first trading day (usually

a Monday) immediately following the expiration Saturday or Friday of the month. To

have a continuous-time series with constant maturity, we only consider options that

expire next month. We then select the closest to at-the-money (ATM) contracts among

these options with one month to maturity. Since it is not always possible to select op-

tions with moneyness, defined as the ratio of the strike price to the stock price, exactly

equal to one, we keep options with moneyness between 0.7 and 1.3. Thus, for each

stock and each month in the sample, we select the put contract closest to ATM and

expire next month. After next month’s expiration, we select a new put contract which

is at that time closest to ATM and has one month to expiration. For each month, to

get comparable delta-hedged returns, we divide monthly returns by the number of

weeks before maturity. We use this weekly delta-hedged option returns (retopt) in

most of our regression studies.

2.2 Mutual fund fire sale pressure

Coval and Stafford (2007) examine the return patterns of stocks sold by mutual funds

with large outflows. They show that the selling behavior results in significant down-

ward price pressure but is unrelated to firms’ fundamentals and takes multiple months

to reverse.

Edmans, Goldstein, and Jiang (2012) propose a measure of mutual fund fire-sale

pressure to be constructed in such a way as to exclude any potential information ef-

fects implied by the act of selling by funds. They use the extreme outflows of a group

of mutual funds scaled by the percentage of the mutual fund portfolio represented

by each stock. They then sum the scaled flow measure over mutual funds that expe-

rience large outflows and scale the price pressure by the dollar volume of the stock

over the quarter. This measure, denoted by MFFlow, captures the total dollar amount

of each stock sold by these funds, scaled by its dollar volume if all the funds were to

sell their stocks in proportion to their initial holdings.
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The first component of this measure is the net dollar flow to each mutual fund in

the quarter (Fj,q), which is defined as

Fj,q = TNAj,q − (1 + retj,q)TNAj,q−1

Other components are the percentage of the holding value of fund j in each stock

i to total net assets under management of fund j at the end of the previous quarter

(si,j,q−1), the dollar volume of each stock over the quarter (Dvoli,q), the shares held by

each fund at the end of the last quarter (Sharesi,j,q−1), the price of the stock at the end

of the last quarter (prci,q−1), and the total net asset under management of each fund

at the end of the last quarter (TNAj,q−1). The definition of MFFlow is

MFFlowi,q =
N

∑
j=1

|Fj,q| × si,j,q−1

Dvoli,q

=
N

∑
j=1

|Fj,q| × Sharesi,j,q−1 × prci,q−1

TNAj,q−1 × Dvoli,q
(1)

where si,j,q−1 =
Sharesi,j,q−1×prci,q−1

TNAj,q−1
and conditional on the outflow of fund j being

greater than 5% of total assets,
|Fj,q|

TNAj,q−1
> 5%. We take the summation over all mutual

funds with stock i in their holding portfolios, j = 1, · · · , N. | · | is the absolute value

operator.

The measure calculates percentage holdings of each fund at the beginning of a

quarter and multiplies by the flow over quarter q scaled by the dollar volume over

quarter q. In the calculation, only extreme outflows ( |F|TNA > 5%) are considered be-

cause these are the funds most likely to be forced into a “fire sale” of their holdings.

Because fund flows are measured as a net change, flow Fj,q is always negative. We

take the absolute value of fund net flow; thus MFFlow is also consistently positive

by construction. As a result, stocks with a higher value of MFFlow experience more

significant outflow pressure and should see a more considerable fire-sale-pressure-

induced decrease in stock returns over the quarter.

Figure 2 presents the cumulative abnormal stock returns around the fire-sale event
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window. Abnormal return is defined as the difference between stock returns and the

market portfolio return. The event study window is selected following Coval and

Stafford (2007); that is, 12 months before and 24 months after fire sales. The shadow

area is the even period (0 to 2). It shows that abnormal returns fluctuate around zero

before a fire sale and jump upon the event happens. It takes around two years for

stocks to rise back to the zero level, and the returns hit bottom during the quarter

after the event. The pattern is similar to Figure 2 in Edmans, Goldstein, and Jiang

(2012).

(Insert Figure 2 Here)

Our mutual fund data comes from the CRSP Survivorship Bias-Free Mutual Fund

Database and Thomson Reuters s12 holding files. CRSP Mutual Fund Database in-

cludes fund net returns, total net asset under management, annualized fees, invest-

ment objectives, and other fund characteristics. We merge the CRSP database with

stock holdings in Thomson Reuters s12 files using MFLINKS. Our sample covers the

time between 1995 and 2018. We focus on actively managed domestic equity mutual

funds, for which the holdings data are complete and reliable. The sample is filtered

using investment objective codes. We eliminate index funds, exchange-traded funds,

balanced funds, bond funds, international funds, and sector funds. Mutual funds of-

ten have multiple share classes, which differ only in the fee structure and the target

clientele. We aggregate all subclasses into a single fund using their lagged TNA. El-

ton, Gruber, and Blake (2001) show that the returns on small funds are biased in the

CRSP database. We delete observations with end-of-month TNA smaller than $15

million. To reduce the effect of incubation bias (Evans, 2010), we also remove obser-

vations earlier than the initial offer date. We also exclude funds that hold fewer than

ten stocks and delete held stocks with a price lower than $2. Lastly, we obtain stock

prices, total shares outstanding, and trading volumes from CRSP monthly stock price

data.
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2.3 Control variables

The accounting and stock data are from Compustat and CRSP, and Cahart four factors

and risk-free interest rates from Ken French’s data library. We exclude firms located

or incorporated outside the United States and observations with either negative or

missing total assets, shareholder’s equities, and the book value of equities. We further

remove observations with an end-of-month stock price lower than $2.

Existing studies (see for example, Goyal and Saretto (2009); Cao and Han (2013);

Cao et al. (2021)) have identified multiple stock and option characteristics that affect

option returns. Following these studies, the first set of characteristics is related to the

option’s liquidity and volatility. Volume/open interest is the ratio of daily option trad-

ing volume of an option contract to total open interest for the same contract. bid-ask

spread is computed as the difference between the closing ask and bid quotes scaled by

the midpoint quote. HV− IV is the difference between the option’s historical volatil-

ity (HV) and implied volatility (IV). We compute HVs based on daily returns over

a 365-day interval. OptionMetrics provide IVs. Gamma is the derivative of the op-

tion deltas to the stock price, which captures the exposure to realized volatilities, and

Vega is the derivative of the option price to volatility, which captures the exposure to

implied volatilities.

The second set includes underlying stock variables. β is estimated using the

CAPM model with prior 36-month stock and market excess returns with at least 30

non-missing observations. Size is the natural logarithm of market capitalization of

the underlying stock (in millions of dollars). Book-to-market ratio is the ratio of equity

book value to equity market value. 12-month momentum is the cumulative return over

the past twelve months. 1/stock price is the inverse of adjusted end-of-month stock

prices. Excess stock return is defined as the end-of-month delisting adjusted returns

minus the risk-free interest rate. Idiosyncratic volatility is the standard deviation of the

residuals, calcuated from regressions of monthly stock returns on the Carhart (1997)

four factors over the previous 36 months with non-missing 30 observations. HHI

is the Herfindahl-Hirschman index, calculated as the 2-digit industry summation of
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squared firm-to-industry sales.

(Insert Table 1 Here)

Our final put option sample includes 4,506 stocks and is composed of 186,493

monthly delta-hedged put option portfolios with moneyness in range [0.823, 1.189]

and mean 0.995 (median 0.997). We present the mean, standard deviation, minimum,

25th percentile (P25), median (P50), 75th percentile (P75), maximum, skewness, and

kurtosis for delta-hedged weekly average returns, MFFLow and other firm-specific

attributes in Table 1.

MFFlow has a mean equal to 0.34%, implying that a hundred dollar traded in a

stock contains $0.34 fire-sale induced trading. The minimum value of is almost 0

and the maximum value is 4, indicating that there has been a sample stock for which

the fire-sale induced trading consists of as much as 4% of its dollar trading volume

and a stock whose induced trading is approximately zero due to its holding shares in

mutual funds are low. Thus, MFFlow has a positively skewed and leptokurtic distri-

bution with a skewness statistic of 4.22 and a kurtosis statistic of 24.29. The average

weekly delta-hedged option return is −0.11% and its median is −0.37%. The average

option has option trading volume-to-open interest of 0.62, gamma of 0.12, vega of

4.72, bid-ask spread of 0.18, and HV−IV being −0.66%. Underlying stock, on aver-

age, has β equal to 1.33, 4.06 billion dollars in size, book-to-market ratio being 0.39,

price of $4.76, 0.91% excess stock return, idiosyncratic volatility based on Carhart four

factor model being 0.11, and Herfindahl-Hirschman index (HHI) being 0.06.

2.4 Specification

To estimate the relation between delta-hedged option returns and mutual fund flows,

we consider the following baseline specification:

retopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t (2)
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where retopt
i,t is the weekly average delta-hedged put option returns in month t, fol-

lowing Goyal and Saretto (2009) and defined on every third Friday with one month

to maturity and moneyness close to at-the-money options. MFFlowi,t−1 is defined as

in Edmans, Goldstein, and Jiang (2012), where the extreme outflow is categorized as

the absolute value of flow to the total net asset under management greater than 5%,

and the selling pressure is the sum of fractions of holding values times flows to dollar

value ratio of stock in all funds. Therefore, the coefficient, β, shows the impact of a

mutual fund fire sale on subsequent delta-hedged option returns.

Under different specifications, XXXi,t−1 contains option and stock control variables

of firm i at month t− 1. ξi and ξt are firm and time (year-month) fixed effects. We in-

clude firm-specific dummy variables to control time-invariant, unobserved firm char-

acteristics that impact option prices. We include time fixed effects to control for time-

varying shocks that influence options. We estimate standard errors in Eq. (2) allowing

for industry and time double clustering, that is, correlation in the error terms within

an industry over time.

We scale all variables by their standard deviation. The advantage of this scaling is

that the magnitude of the estimated coefficients is directly informative about the eco-

nomic significance. By construction, a negative and significant β measures that a one

standard deviation increase in outflows, because of mutual fund fire sales, negatively

affect option returns.

3 Empirical results

This section estimates the effect of mutual fund fire-sale pressure on subsequent

delta-hedged option returns using portfolio analysis and regressions. We apply the

value of raw variables in the portfolio analysis, and we use standardized variables in

regressions for each firm using a monthly window.

3.1 Demand effects: Fire-sale pressure on option returns
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3.1.1 Portfolio analysis

At the end of each month, put options are sorted into quintiles based on mutual fund

fire-sale pressure in the previous quarter. For each quintile-month, we calculate open

interest-weighted and equal-weighted average portfolio delta-hedged returns in ex-

cess of the risk-free rate, retopt − r f , as well as the difference in average returns be-

tween the extreme quintiles (H−L). Next, we calculate the time-series average return

for each of the portfolios. In the portfolio analysis, we primarily use monthly option

returns to match with monthly factors; the results are similar using weekly average

returns in the subsequent month.

We also measure risk-adjusted returns for each portfolio as the alpha (α) from

a time-series regression of portfolio excess returns on various factors. Since option

payoffs inherit non-linear patterns, we include various stock and macroeconomic

factors. The alternative factors include the Carhart four factors (Carhart, 1997), the

conditional Carhart four factors (Ferson and Schadt, 1996), the macro-bond factors

(Ludvigson and Ng, 2009), the Carhart plus left tail momentum factors (LTM, Atilgan

et al. (2020)), the Carhart plus LTM and macroeconomic risk factors (Bali, Brown, and

Caglayan, 2014), and the conditional version of all factors. In Appendix Table A.1,

we describe definitions and sources of these factors. The Carhart four-factor model,

for example, includes the market excess returns (retm − r f ), size (SMB), value (HML),

and momentum (MOM) factors. We estimate time-series regressions for each quintile

portfolio p and the H−L portfolio using the Carhart model, as well as the other five

models listed above:

retopt
p,t − r f ,t = αp + βmkt(retm,t − r f ,t) + βsmbSMBt + βhml HMLt

+βmomMOMt + εp,t, p = 1, · · · , 5, H− L (3)

Table 2 presents average excess returns and risk-adjusted returns for open interest-

weighted (Panel A) and equal-weighted (Panel B) portfolios. We report the Newey

and West (1987) t-statistics with a lag order of 12 months to account for potential au-

tocorrelation and heteroskedasticity. In Panel A, the lowest fire-sale pressure quintile
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has an average excess return of −0.51% in the month following portfolio formation.

The highest pressure quintile has an average excess monthly return of −0.93%. The

difference in excess returns between these quintiles is −0.42% per month (−5.0% per

year) and is significant at the 1% level. These results indicate that expected delta-

hedged option returns are lower on average for firms experiencing high pressure

than low pressure.

(Insert Table 2 Here)

The following six columns report risk-adjusted returns estimated using various

factor models. After controlling for exposure to market, size, value, and momentum

risk factors, the risk-adjusted return of the H−L spread portfolio remains economi-

cally and statistically significant: the monthly four-factor α spread is −0.33% with a

t-statistic of −2.24 and the monthly conditional four-factor α spread is −0.37% with

a t-statistic of −2.42. We find qualitatively similar adjusted returns in the Carhart

model with the left tail momentum, and the macroeconomic risks factor. The spread

is larger using the macro-bond factor model (−0.684% per month). Last, the condi-

tional all-factors α spread between the high and low quintiles is −0.84% per month

or −10.1% per year.

Table 2 Panel B reports equal-weighted portfolio results. The high quintile has an

average excess return of −0.94%, and the low quintile has an average excess return

of −0.50% per month. The average monthly return of the H−L portfolio is −0.43%.

The average differences between the high and low quintiles of four-factor, conditional

four-factor, and conditional all-factor αs are −0.36%, −0.41%, and −0.87% per month

(−4.32%, −4.92%, and −10.4% per year). Thus, we find the results based on option

interest-weighted portfolios, and those based on equal-weighted portfolios are qual-

itatively similar.

The results of portfolio sorting show that firms experiencing higher fire-sale pres-

sure have lower future option returns relative to low pressure. These predictions im-

ply that pressure is associated with lower expected returns and risk-adjusted returns.

The H−L spreads in option interest-weighted and equal-weighted returns are eco-
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nomically and statistically significant, even after controlling for exposure to several

sources of systematic risk. Any quintiles do not drive the return differences solely.

Instead, average returns and alphas decrease almost monotonically as pressure in-

creases across quintiles. These results suggest that demand effects due to fire-sale

pressure predicts lower returns.

3.1.2 Baseline regression results

In this section, we examine the relationship between the fire-sale pressure and sub-

sequent option returns using Eq. (2). We apply the panel regression with multiple

fixed effects and double clusters (Petersen, 2009). This approach is appropriate for re-

gression analysis because it accounts for firm-individual and time-varying effects and

heteroscedasticity and autocorrelation in residuals in a given month across industries.

To facilitate interpretation and comparison of estimated coefficients, we standardize

all variables to a mean of zero and one standard deviation. Therefore, each coefficient

can be interpreted as unit changes in option returns with one unit standard deviation

of an independent variable change.

(Insert Table 3 Here)

Table 3 reports estimated coefficients, t-statistics (in brackets), and the adjusted

R2 for each specification. We begin with a univariate regression of option returns

on MFFlow in Column (1). The coefficient from this regression is negative and sig-

nificant at the 1% level (β = −0.016). The reported univariate coefficient estimate

can be interpreted as the average return decreases associated with a one standard

deviation increase in the fire-sale pressure. Columns (2) and (3) include different con-

trol variables. After controlling for option (in Column (2)) and stock (in Column (3))

characteristics, coefficients on the fire-sale pressure remain negative and statistically

significant, −0.012 and −0.017 (t-statistic= −2.29 and −3.13). Lastly, in Column (4),

we include all control variables, and the coefficient is economically and statistically

significant (−0.019 with t-statistic= −3.54).3

3 We use firm and time fixed effects with industry and time double clustering standard errors in
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Concerning the control variables, the signs of the coefficient estimates generally

follow past studies’ findings (for example, Goyal and Saretto (2009)). Options with

smaller bid-ask spread, higher gamma and vega, and higher HV−IV predict higher

delta-hedged returns. The coefficient of volume-to-open interest ratio is insignificant.

The significant coefficient estimates indicate that stocks with the lower β, larger size,

higher book-to-market ratio, higher momentum, higher past stock price, lower past

stock returns, and lower idiosyncratic volatility are associated with higher expected

option returns. The coefficient estimates for HHI are negative but insignificant.

Because the explanatory variables are standardized, the coefficient estimates re-

ported in Table 3 can be compared to get a sense of the relative economic importance

of each of the variables in explaining next month returns. Based on the coefficient

estimates in Column (4), the Option gamma carries the most substantial explanatory

power for next month’s returns. An increase of one standard deviation increases next

month’s return by 0.09% on average, all else equal. Increases of one standard de-

viation in Option vega, HV−IV, 1/stock price, idiosyncratic volatility, Size, and MFFlow

are associated with average cross-sectional differences in expected monthly return of

0.066%, 0.065%, −0.064%, −0.060%, 0.050%, and −0.019%, respectively, holding all

other variables constant. Thus, even after controlling for several well-known return

predictors, the explanatory power of the mutual fund fire-sale pressure for expected

returns is still economically significant (52×
(
−0.019×2.06

0.57

)
= −3.6% per year), sug-

gesting that the demand effect from fire-sale pressure is economically significant.

3.2 Endogeneity

Wardlaw (2020) argues that the standard Edmans, Goldstein, and Jiang (2012) ap-

proach to computing the outflow-induced fire-sale pressure produces a measure that

is a direct function of a stock’s actual realized return during the outflow quarter,

which might include information on fundamentals. Thus, Wardlaw decomposes the

most of our regressions. The appendix confirms the results using (1) firm-time double clusters and
(2) industry×time fixed effects. We further report the Fama-MacBeth regression with Newey-West
standard error adjustment results in Appendix Table A.1.
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pressure variable and finds that it relates to subsequent stock returns and prices,

potentially affecting option prices. We investigate the endogenous biases by two

identification designs: the instrumental variable regression and the difference-in-

differences design.

3.2.1 Modified mutual fund flows: Instrumental variables

To address endogeneity, we instrument the mutual fund fire-sale pressure by isolating

fire sales from fundamental shocks. We apply two alternative measures proposed by

Wardlaw (2020) as instruments for MFFlow:

Instrument 1: Flow-to-Volumei,t =
N

∑
j=1

|Fj,t|
TNAj,t−1

×
Sharesi,j,t−1

Voli,t
(4)

Instrument 2: Flow-to-Sharesi,t =
N

∑
j=1

|Fj,t|
TNAj,t−1

×
Sharesi,j,t−1

Shares Outstandingi,t
(5)

Empirical Design In the first-stage regression, we regress MFFlow on Flow-to-volume

and Flow-to-shares outstanding plus control variables and fixed effects. We estimate

MFFlowi,t = a0 + b1Flow-to-volumei,t + b2Flow-to-shares outstandingi,t

+cXXXi,t + ξi + ξt + ηi,t (6)

where Flow-to-volumei,t and Flow-to-shares outstandingi,t are defined in Eq. (4) and (5).

XXXi,t contains option and stock control variables of firm i at t. ξi and ξt are firm- and

time-fixed effects. Standard errors are clustered at the industry and time levels. In

Appendix Table A.8, we report the first-stage regression results using all specifica-

tions. There is no evidence of weak identification based on Stock-Yogo F-statistics

(p = 0.000), and the t-statistics of instruments are larger than six (the t-statistics of

Flow-to-volume is even greater than 105).

In the second-stage regression, we replace MFFlowi,t−1 in Eq. (2) with the fitted

value from the first-stage regression Eq. (6), M̃FFlowi,t−1, which gives us the specifi-
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cation:

retopt
i,t = α + βM̃FFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t (7)

where εi,t and ηi,t are assumed to be independent. The second-stage regression results

are reported in Table 4 Panel A. The first column estimates the monthly instrumental

variable regression of the delta-hedged puts return on the fitted MFFlow without any

controls. In this specification, we find a negative and significant relation between the

fire-sale pressure and option returns, and the coefficient is quantitatively larger than

that in Column (1) of Table 3 (−0.024 and −0.016). The estimate is significant at 1%

level (t-statistic = −5.55). Columns (2) to (4) of Table 4 contain results of specifications

with different controls. The estimates are consistently negative and larger than those

in OLS estimates. The coefficient for MFFlow with all controls in Column (4) is−0.028

(t-statistic = −7.05).

The IV estimates are consistently higher than those using OLS regressions. It im-

plies that the original MFFlow includes current stock price and return information

that leads to higher option returns. This measurement error in fire-sale pressure

downward biases the OLS estimate of the treatment effect. OLS estimates are thus

smaller than IV estimates. Moreover, omitted variables could be negatively corre-

lated with the fire-sale pressure, which would also lead to a downward bias in the

OLS estimate of the MFFlow coefficient.

Exclusion Restriction Condition The exclusion restriction requires that Flow-to-volume

and Flow-to shares outstanding has no direct effect on subsequent delta-hedged option

returns (i.e., other than through fire-sale pressures). While the exclusion restriction

cannot be tested directly, its validity can be supported using out-of-sample evidence.

If the exclusion restriction is violated, fire-sale pressures affect option returns through

channels other than the demand channel. Such alternative channels should be appar-

ent when exploring Flow-to-volume and Flow-to-shares outstanding outside the fire-sale

pressure occasion where demand is less severe.
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Therefore, we select stocks whose holding funds experience modest outflows (no

less than −1%). To avoid the contamination of fire sale related stocks, we restrict

“ non-overlapping” stocks held only by funds with modest outflows. The assump-

tion is that funds with near-zero outflows have little pressure on stock prices; thus,

demand effects are insignificant. Using this setting as a placebo test and reporting re-

sults in Appendix Table A.9, we find that flow pressure due to the low negative fund

flows do not predict significant negative put option returns.

Selection bias: Is fire-sale pressure mechanical? Mutual fund extreme outflows

decrease stock prices significantly (Edmans, Goldstein, and Jiang, 2012). Stock re-

turns plunge into negative regime upon the occurrence of fire sales (See Fig. 2). The

fire-sale pressure on option returns thus might inherit selection bias from negative

stock returns, rather than the demand effects as predicted by Garleanu, Pedersen, and

Poteshman (2009), where end-users in derivatives demand more options and change

the returns. The question is whether selection bias mechanically leads to the negative

relation.

We use Heckman (1979)’s two-step correction method to address the issue, i.e.,

the selection step and the instrumental estimation step. The selection dummy is one

if the underlying stock return is negative, and zero otherwise. Using the estimates

from the selection step, we can compute the Inverse Mills Ratio, and we include it

as an explanatory variable in our second-stage regression using Eq. (7). Suppose the

coefficient β is negative and statistically significant, as well as quantitatively simi-

lar with estimates in Table 4. In that case, we conclude that selection bias does not

drive the demand effect. In Appendix Table A.10, we document the evidence and

show that the instrumental variable regression results are not influenced by selection

bias. Furthermore, Appendix Table A.7 investigates the alternative that lower stock

returns (or stock price) mechanically change the option returns. The insignificance of

coefficients on the variable Ψ = {stock returns, stock price} eliminate the possibility.
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3.2.2 Natural experiment: Mandatory Portfolio Disclosure

In May 2004, the Investment Company Act of 1940 mandated that individual mutual

funds complete and file portfolio disclosure forms (Form N-CSR and N-Q) at the end

of each fiscal quarter. Mandatory disclosure of institutional investors’ portfolio hold-

ings is a crucial part of securities market regulation. SEC introduced the regulation

to address concerns that lower frequent disclosures provided limited information be-

cause these disclosures were stale and could hide their investment strategies. More

frequent disclosure allows investors to make informed asset allocation decisions. The

regulation facilitated the monitoring of fund managers and their influence on the

market by providing more information about stocks holdings. Therefore, the policy

change provides a quasi-natural experiment.

Our identification design relies on the informational benefit of providing more

frequent portfolio disclosures. Research has shown that portfolio disclosures contain

valuable information and help infer market efficiency and corporate myopia (Agar-

wal, Vashishtha, and Venkatachalam, 2017). We argue that because of the elimination

of opacity through more frequent portfolio disclosures, market participants can iden-

tify the stocks affected by mutual fund fire-sale pressures. They can promptly hedge

against the shock by entering option contracts. Therefore, the demand for options

would be higher, and the option returns would be lower.

Empirical Design The policy was introduced in May 2004. Since the SEC allows

for less than 60-day delay to publish the disclosure files, we implement our regres-

sions by skipping observations in 2004 and focusing on a three-year monthly window

around 2004 (2001 to 2007). We design the difference-in-differences strategy as the

interaction between higher than median MFFlow fund flow dummy D(MFFlow >

Median) and the post-period dummy D(After 2004:5).

retopt
i,t = α + δD(MFFlow > Median)i,t−1 × D(After 2004:5)t−1

+βD(MFFlow > Median)i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t (8)
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(Insert Table 4 Here)

Results are reported in Table 4 Panel B. The fifth column estimates the difference-

in-differences regression of the delta-hedged return on MFFlow without any controls.

We identity a negative and significant relation between the option returns and the

intersection of the dummy of MFFlow begin higher than its median and the post

mandatory disclosure period dummy, which can be interpreted as 4.2 basis points

lower in returns after the policy change (equivalently, 52×
(
−0.042×2.06

0.57

)
= −7.9%

per year), more than doubled the effect using the OLS estimation in Table 3 (i.e.,

−0.019 or −3.6% per year). The coefficient on MFFlow is marginally similar to that

in Column (1) of Table 3 (−0.018 and −0.016). The estimate is significant at 1% level

(t-statistic= −3.13). Columns (2) to (4) of Table 4 contain results of specifications with

different controls. The estimates are consistently negative and similar to those in OLS

estimates. The results suggest that given a shock that provides more information and

frequency about fire sales, derivatives react more severely.

Placebo test Agarwal, Vashishtha, and Venkatachalam (2017) investigate the 1985

inverse policy shock as a placebo test. However, due to the data restriction, we can-

not trace back equity option returns beyond 1996. Instead, we randomly assign the

mandatory portfolio disclosure policy shock to different years. The assumption is

that other years than 2004 would have no shock on fire sales and there would be no

result of the demand effect.

We select three pseudo policy years: (1) 1999, five years before 2004, (2) 2009,

five after 2004, and (3) 2014, ten years after 2004. Then we report the difference-

in-differences estimates within a 3-year window corresponding to each of the above

three pseudo policy years. Table A.11 shows the results and implies that none of these

placebo tests have significant coefficients on the diff-in-diff term. Thus, the disclosure

frequency change is an exogenous quasi-natural experiment setting.

Falsification test: Parallel and reversal The investigation on parallel trend assump-

tion and reversal effects after the pressure has three implications. First, it is essential
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for identification since diff-in-diff estimators attribute any differences in trends be-

tween treated and control firms that coincide with the fire-sale pressure to option

return changes. So if treated and control groups started on different trends, our es-

timates could be biased. Second, a significantly persistent estimate suggests a ro-

bust demand effect in the treatment group which will not diminish or reverse shortly.

Third, we need to verify if option returns significantly decrease after, not before, the

fire-sale pressure. It provides evidence that this relation is not due to investors who

can time the demand effect; thus, we can isolate the confounding effects by deterio-

rating firm, fund, or market conditions (omitted variables).

Appendix Figure A.1 illustrates the test results. First, the coefficients in the month

before the mandatory portfolio disclosure are not statistically significant (t = 0.59,

t = −1.24, and t = 0.37 for three months before the event month). It means that

pre-trends do not differ significantly between treated and control groups. Second,

additional leading dummies test for possible post-shock reversals. Over the next four

months, coefficients are insignificantly positive at first (2004:6) and statistically sig-

nificant and negative in the following months. Four months after the disclosure, op-

tion return is 0.26% lower relative to control firms, which is statistically significant

(p = 0.00). It indicates that the diff-in-diff estimate is persistent.

3.3 Alternative explanations

In this subsection, we investigate two potential alternative explanations to the neg-

ative relationship between fire-sale pressures and option returns: risk-based and

friction-based channels. We include an interaction term between mutual fund fire-

sale pressure and an explanatory variable Φ. If the coefficient on this interaction term

is significant, then the demand effect may coincide or undermine the alternative ex-

planations.
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3.3.1 Risks: Volatility, distress, and sustainability

The evidence that option returns are more sensitive to fire-sale pressure could arise if

a stock has different risk exposures. This explanation is reminiscent of the empirical

option returns literature that argues that the volatility and distress risk significantly

affect option returns (Bakshi and Kapadia, 2003; Goyal and Saretto, 2009; Cao and

Han, 2013; Vasquez and Xiao, 2020; Cao et al., 2021).

First, the story developed in our paper potentially generates return predictability

in options due to the changes in risks or uncertainties, rather than experiencing fire-

sale pressure. We try to isolate risks of volatilities or distresses. Volatility risk is the

dummy that equals one if idiosyncratic volatility is higher than the cross-sectional

median, Φ = D(IVOL ≥ Med). We define the idiosyncratic volatility as the standard

deviation of the residuals of the Carhart four-factor model using 36-month delist-

ing adjusted stock returns with a minimum of 30 observations. Distress risk is the

dummy that equals one if a firm’s credit rating is downgraded, Φ = D(Downgrade).

We collect the firm’s credit rating information from the S&P credit rating database.

We identify the risk explanations by interacting mutual fund fire-sale pressure with

risk measures. If the demand effect is inherited from risks, the estimated coefficient

of the interaction term is significant; thus, the risk-based explanation dominates the

demand effect of fire-sale pressures. The results are provided in the first two columns

of Table 5; that is, the coefficients of MFFlow×Φ are insignificant.4 Notably, higher

volatility risk hurts delta-hedged put option returns (β2 = −0.045 with t = −5.32),

implying that higher volatility would further boost prices but lower returns. The

negative coefficients of MFFlow are consistent with the demand effect. Yet, the higher

probability of credit downgrading has a marginally significant positive effect on re-

turns (β2 = 0.015 with t = 1.74).

Second, institutional investors seek to incorporate environmental, social, and gov-

ernance (ESG) into their investment process. Sustainability considerations lower ex-

pected returns because investors enjoy holding ESG assets to hedge climate risk.

4 The results are similar if we use the raw idiosyncratic volatility.
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However, these assets outperform when positive shocks hit the ESG factor (Hong and

Kacperczyk, 2009; Pástor, Stambaugh, and Taylor, 2020). Therefore, firms focusing on

ESG could survive mutual fund fire sales, and the marginal effect on option prices

could be limited. To isolate the ESG risk effect, we include the sin stock dummy,

which equals one if a firm produces alcohol, tobacco, and gaming and zero other-

wise. We concentrate on the interaction between mutual fund pressure and the sin

stock dummy. The hypothesis is that if ESG risk explains the demand effect of fire-

sale pressure on option returns, the interaction should yield a significantly positive

coefficient, and the fire sale pressure should become insignificant. We report the re-

sults of the sin stock dummy in the third column of Table 5. The ESG risk does not

change the mutual fund fire-sale pressure estimate, similar to the volatility and dis-

tress risks. The MFFlow has quantitatively the same coefficient as in Table 3, and the

interaction is insignificant. Moreover, the sin stock dummy has almost no effect on

option returns, suggesting either mutual funds hold little sin stocks in their portfo-

lios, as documented in Hong and Kacperczyk (2009), or options of sin stocks seldom

respond to unexpected shocks from mutual funds.

3.3.2 Frictions: Short-sale constraints and liquidity

Another potential reason that delta-hedged put option returns are responsive to mu-

tual fund fire-sale pressure is relevant to market frictions. In this subsection, we dis-

cuss two possible frictions.

First, Ramachandran and Tayal (2021) find that delta-hedged put option returns

are sensitive to the short-sale constraints in stocks; particularly, average put option

returns are negative and monotonically decreasing in constraint measures. To iso-

late the effect of short-sale constraints, we define short interest rate (SII) as the ratio

between the monthly short interest to the total shares outstanding, where a higher

SII implies lower short constraints. We define a constraint indicator D(SII ≤ Med)

that equals one if SII is smaller than the cross-sectional median and zero otherwise.

If short friction is essential to explain the demand effect, the interaction between fire-

sale pressure and the short constraint dummy would be significantly negative. The
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results are in the fourth column of Table 5; that is, MFFlow × Φ are insignificant

(t = 0.05). Consistent with Ramachandran and Tayal (2021), the short constraint

dummy has a significantly negative estimate (β2 = −0.032 with t = −3.86).

Second, liquidity is an important determinant of asset prices, especially in the

options market, where liquidity concentrates in large-size stocks. Therefore, we con-

sider two liquidity measures in both stocks and options markets. The first one is the

Amihud illiquidity measure (Amihud, 2002), which captures how illiquid stock is

based on its price impact:

illiqi,t =
1

Dt

Dt

∑
d=1

|retstock
i,d,t |

DVoli,d,t

where illiqi,t is the Amihud illiquidity measure of stock i in the month t, retstock
i,d,t is the

daily delisting adjusted stock return of stock i on date d in the month t, DVoli,d,t is the

dollar value of stock i on date d in the month t, and Dt is the total number of trading

days in the month t. The second is the options market liquidity, defined as the bid-

ask spread scaled by their midpoint using daily closing quote bid and ask prices of

options contracts used to construct the delta-hedged portfolio:

Spreadopt
i,t =

Bid pricei,t −Ask pricei,t

Midpoint of bid and ask pricesi,t

The last two columns of Table 5 document the estimated coefficients on the inter-

action of liquidity friction measures and the fire-sale pressure. Notably, only the Ami-

hud illiquidity interaction has a significantly positive estimate, implying that given

the fire-sale pressure, if the underlying stock is less liquidity, that is, higher Amihud

illiquidity, investors will yield higher option returns. If we consider the partial effect

of the pressure, which is captured by ∂retopt

∂MFFlow = β1 + δ× Φ, then one percent stan-

dard deviation increase in the Amihud illiquidity would yield a net effect on option

return of −0.016% ( = −0.031 + 0.015). However, options market illiquidity does not

have a significant effect on this interaction (t = 0.67).

(Insert Table 5 Here)
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In a word, alternative explanations based on risks and frictions do not significantly

explain the relationship between mutual fund fire-sale pressure and option returns.

3.4 Demand Effects: Fire-sale pressure on option expensiveness

Bollen and Whaley (2004) demonstrate that changes in implied volatility correlate

with signed option volume. Garleanu, Pedersen, and Poteshman (2009) use unique

option trading data to identify the net demand in index and equity stocks options

from aggregate positions of dealers and end-users. They discuss whether option de-

mand affects the overall level (i.e., expensiveness) of option prices.

We complement these studies by investigating the relationship between the de-

mand induced by mutual fund fire-sale pressure and the implied volatility. Following

Garleanu, Pedersen, and Poteshman (2009), we define the equity option expensive-

ness as the difference between the implied volatility and reference volatility, in which

we use historical volatility.

expensiveopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t (9)

where expensiveopt
i,t is the difference between implied volatility and historical volatil-

ity during the past 365 days. MFFlow and XXX are defined as in Eq. (2), except that

we drop HV−IV from XXX because it is almost the same as expensiveness according to

their definition. We include firm and time fixed effects and calculate standard errors

clustering by industry and time levels.

Table 6 Columns (1) to (4) report the expensiveness results. We begin with a uni-

variate regression of option expensiveness on MFFlow in Column (1). The coefficient

of this regression is positive and significant at 1% level (t-statistic = 6.30). The esti-

mate indicates that one standard deviation increase in MFFlow predict 0.03% higher

expensiveness (equivalently, 12×
(

0.031×13.69
2.06

)
= 2.47% per year). Columns (2) and

(3) include different control variables. After controlling for option (in Column (2))

and stock (in Column (3)) characteristics, the coefficients on the fire-sale pressure re-

mains positive and statistically significant, 0.034 and 0.027 (t-statistic = 6.67 and 5.93).
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The economic significance of fire-sale pressure in Columns (2) and (3) is similar to the

univariate regression result.

Lastly, in Column (4), we include all control variables, and the coefficient is eco-

nomically and statistically significant (0.041 with t-statistics 7.50). Based on the coeffi-

cient estimates in Column (4), Option gamma carries the most substantial explanatory

power for the next month option expensiveness and is marginally larger than the co-

efficient of MFFlow. Thus, after controlling for several well-known return predictors,

the explanatory power of the mutual fund fire-sale pressure on the expensiveness is

still economically significant, suggesting that the demand effect from fire-sale pres-

sure strongly influences the equity stock option expensiveness.

(Insert Table 6 Here)

Garleanu, Pedersen, and Poteshman (2009) further discuss that the net demand

effect is more substantial among more actively traded options, measured by the op-

tions trading volume. Nevertheless, mutual fund-initiated pressure is orthogonal to

derivatives by construction; thus, the marginal effect of the pressure on high trad-

ing volume options might be insignificant. We include an interaction of MFFlow and

trading volume:

expensiveopt
i,t = α + βMFFlowi,t−1 + δMFFlowi,t−1 ×Voli,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

where Voli,t−1 is the individual option i’s trading volume at time t. The coefficient

of interest is δ on the interaction term between MFFlow and Vol, which measures

the marginal effect of the activeness in options trading on the demand effect. We

also include firm and time fixed effects and report the t-statistics calculated using the

clustered standard errors at the industry and time levels.

Table 6 Columns (5) to (7) document the coefficients of trading volume. The es-

timate of the interaction term is consistently insignificant. This finding supports the

hypothesis that the demand effect does not react to trading activeness. However, the

coefficients of trading volume are positive and significant at 1% because greater op-

tion activity should positively correlate with more capital running to option market-
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making and a smaller price impact per unit of options demand.

In Appendix Table A.3, we document the robustness tests, including (1) firm-time

double clustering, (2) time-varying industry fixed effects, (3) instrumental variable

regression using Flow-to-volume and Flow-to-shares outstanding, and (4) Fama-MacBeth

regression results.

3.5 Anticipation effects: From options to mutual fund fire-sales

This subsection attempts to estimate the anticipation effect – the impact of delta-

hedged put option returns on the mutual fund fire-sale pressure.

3.5.1 OLS and logit results

We regress subsequent fire-sale pressure on delta-hedged put option returns, option,

and firm-specific control variables, and a set of firm and time fixed effects to investi-

gate the feedback effects. Therefore, we identify the effect of option returns on fire-

sale pressure levels and probabilities. The specification is:

OLS: MFFlowi,t = α + βretopt
i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

logit: D(MFFlow ≥ Median)i,t = δ0 + δ1retopt
i,t−1 + δXXXi,t−1 + ξt + ηi,t

(10)

where MFFlowi,t is defined as in Edmans, Goldstein, and Jiang (2012), the selling

pressure is categorized as the absolute value of flow to the total net asset under man-

agement greater than 5%. retopt
i,t−1 is the weekly average delta-hedged option returns,

defined as Goyal and Saretto (2009) on every third Friday with one month to ma-

turity and moneyness close to at-the-money options. Therefore, the coefficient, β,

shows the impact of delta-hedged option returns on subsequent mutual fund fire

sales. XXXi,t−1 contains all option and stock control variables of firm i at t− 1. ξi and

ξt are firm and time fixed effects, respectively. We include firm-specific dummy vari-

ables to control time-invariant, unobserved firm characteristics that impact options

prices. Time-fixed effects control for time-varying shocks that influence options. We

allow for industry and time double clustering of standard errors, allowing for corre-
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lation in the error terms within an industry over time.

We further define a dummy variable, where D(MFFlow ≥ Median)i,t = 1 if the

fire sale is higher than the cross-sectional median in time t and zero otherwise. In

the logit regression, we include time-fixed effects and cluster the standard error at

the firm level. The marginal effects are evaluated at the median of independent vari-

ables, and we calculate standard errors using the delta method. Lastly, to account for

multiple comparisons, we adjust p-values based on the upper limits of the Bonferroni

inequality.

Since fire sale is of quarterly frequency and the option return is monthly, in ad-

dition to the monthly frequency regression as in previous sections, we also examine

Eq. (10) at a quarterly frequency. We use the same fire sale each month within a

quarter for the monthly regression, and we use average independent variables in the

quarterly regression.

(Insert Table 7 Here)

Table 7 quantifies the extent to which option returns affect mutual fund fire sales,

with the left panel being OLS regression evidence and the right panel reporting marginal

effects of the logit regression. One unit increase in option returns will decrease the

level of a flow-induced fire sale by 0.46% per month in Column (1) without controls

(equivalently, 12× 0.459×0.57
2.06 = 1.5% per year). The effect is stronger with all stock

and option control variables (i.e., 0.659% per month given one unit increase in option

returns, or 2.2% per year). The probability of a stock confronted with higher than

the median fire sale events is higher, i.e., 0.1%–0.3% higher. In Panel B, we report the

quarterly frequency results, and they are like the monthly evidence.

Other untabulated variables generate signs consistent with the literature; for ex-

ample, a firm with a higher β, larger market capitalization, lower book-to-market

ratios, and lower idiosyncratic volatilities would suffer lower fire sale pressure. We

conclude that worse option returns are associated with severe fund outflows and gen-

erate higher fire sales. Next, we discuss the source of this anticipation effect and

provide a reasonable explanation to complete the feedback loop between derivatives
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markets and mutual fund flow-induced fire sales.

3.5.2 Connection to theories: Mechanism of anticipation effects

There has been a long history of discussion about what causes and amplifies fire sales.

The literature identifies three main channels: limits of arbitrage (Shleifer and Vishny,

1997; Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2008), adverse selection

(Malherbe, 2014; Dow and Han, 2018; Kuong, 2021), and information constraints. Kr-

ishnamurthy (2010) emphasizes information amplifiers through opacity, complexity,

and uncertainty. New shocks imply market participants have a short time to formu-

late valuation, risk management, and hedging models, leading to information leakage

in the market.

However, the information channel and the importance of derivatives in fire sales

are less discussed. Barbon et al. (2019) find fire sales are exaggerated by informa-

tion leakage through brokers who intermediate large portfolio liquidation trading.

In terms of derivatives, Biais, Heider, and Hoerova (2021) find that the information

constrained-efficiency works in risk-management subject to incentive constraints. The

reason is that those who will be hurt in a fire sale can write an insurance contract with

those who benefit in a fire sale. Therefore, derivatives provide information concern-

ing fire sales.

Besides collateral and balance sheet information from firms and intermediaries,

investors can directly gather market public and forward-looking information from

derivatives markets. Whenever they identify potential negative signals to the mar-

ket, they would precautiously reallocate their capital, such as redeeming mutual

fund shares. Therefore, information leakage between derivatives and mutual fund

investors contributes to the anticipation effects, which completes the feedback loop.

3.5.3 The source of anticipation effects: Information leakage

Derivatives market movement being associated with worse fire sales inherits from

information leakage. We identify the causal relationship between options returns

30



and fire sale pressures by exploiting the introduction of weekly options as a positive

shock to a firm’s information environment.

The Chicago Board Options Exchange (CBOE) introduced the weekly options for

individual stocks in 2010.5 These weekly options are distinguished from traditional

options in terms of shorter maturities with more prompt information (Andersen,

Fusari, and Todorov, 2017; Oikonomou et al., 2019). The introduction is a quasi-

natural experiment because the exchange selects individual equities to issue weekly

options, and the decisions on which firms to include were staggered over time. We ex-

pect that the introduction of weekly options improves the information environment;

thus, the information leakage of derivatives would be limited.

We propose two continuous difference-in-differences designs. First, we define the

treatment group as firms that introduced weekly options after 2010 within a three-

year window (i.e., our identification strategy applies 2007–2013). We label this design

as DID. The specification therefore is:

MFFlowi,t = α + δretopt
i,t−1 × D(Weekly options)i,t−1 + β1retopt

i,t−1

+β2D(Weekly options)i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t (11)

where D(Weekly options)i,t−1 is the dummy of firm introducing weekly options. retopt
i,t−1

is the weekly average delta-hedged option returns. The continuous diff-in-diff term

is the interaction between the option return retopt
i,t−1 and the weekly option dummy

D(Weekly options)i,t−1; thus, the coefficient of interest is δ, which captures the effect

of changes in the information environment on derivatives and fire sale pressure. We

expect δ > 0 if introducing weekly options provides more forward-looking informa-

tion to investors such that the information leakage is alleviated. XXXi,t−1 contains all

option and stock control variables of firm i at t− 1. ξi and ξt are firm and time-fixed

5 CBOE first introduced weekly options based on indexes (SPX, XSP, OEX, and XEO) in October
2005, which are one-week options as opposed to traditional options that have a life of months or years
before expiration. From June 25 to July 5, 2010, CBOE introduced weekly options based on individual
equities (GLD, XLF, EEM, C, BAC, AAPL, BP, F, and GOOG). Since 2010, weekly options have grown
sharply, with premium and risk strategies driving demand. Weekly expirations accounted for 28% of
total volume in 2017, a 5-year compound average growth rate of nearly 18%. There are 526 stocks with
weekly expirations (11% of the total) representing a range of index, ETF, and single stock instruments.
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effects, respectively. We allow for industry and time double clustering of standard

errors.

Table 8 Panel A reports the DID results. We find that, on average, firm-level fire

sale pressure is higher after introducing weekly options. The estimates without con-

trols, reported in column (1), indicate that, after the introduction, treated firms expe-

rience fire sale pressure by an average of 0.65% more than control firms, given one

unit weekly average option returns (equivalently, 12× 0.648×0.57
2.06 = 2.15% per year).

The treatment effect is robust under different specifications in Columns (2) to (4) with

various control variables. It shows that after introducing weekly options, investors

can gather more prompt information through derivatives markets by observing op-

tion returns. They can better predict whether they should redeem shares in funds or

adjust their portfolio weights in equities. Hence, the natural experiment provides in-

formation leakage in the anticipation effect, which helps complete the feedback loop.

We can also conclude that derivatives markets play an essential role in affecting fire

sales in the financial market.

Delta-hedged returns have consistently adverse effects on subsequent fire sales.

However, the introduction of weekly option dummy insignificantly affects fire sales,

suggesting that the information in short-term options mainly diffuses through market

trading rather than the financial instruments themselves.

(Insert Table 8 Here)

Second, due to the staggered introduction of weekly options, we apply a difference-

in-differences design in cohorts. For each introduction event after 2010 (until 2018),

we construct a cohort of treated and control firms using firm-time observations for

the twelve months before and the twelve months after each introduction. That is, we

construct the cohort in a twelve-month window for each event. Hence, firms within

a cohort are relatively comparable. Firms are not required to be in the sample for the

entire two years around each event. We match each of these firms with a control firm

in the same 2-digit SIC industry using a propensity score matching approach that

matches the β, market capitalization, and book-to-market ratio. The matching pro-
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cess yields a sample of 338 unique pairs of treated and control firms. We then pool

the data across cohorts, i.e., across all new introductions, and estimate the average

treatment effect. We label this design as Cohort. The specification is

MFFlowi,c,t = α + δretopt
i,t−1 × D(Weekly options)i,t−1 + β1retopt

i,t−1

+β2D(Weekly options)i,t−1 + γXXXi,t−1

+ξi × ξc + ξt × ξc + ηi,c,t (12)

We include firm-cohort fixed effects, ξi × ξc, and time-cohort fixed effects, ξt × ξc.

The firm- and time-fixed effects varying by cohort are more conservative than simple

fixed effects. We further weight the regression using propensity matching scores.

Finally, to account for potential covariance among outcomes within the same industry

and over time, we cluster the standard errors at the industry and date level.

The estimates in Panel B of Table 8 show that the introduction of short-term op-

tions still has a positive effect on subsequent higher fire sale pressures. When we

zoom in on comparable pairs of treated and control firms, the treatment effect is rel-

atively immune to firm heterogeneity and industry confounding factors. The results

are more substantial in Column (5), i.e., given one unit option return, the fire sale pres-

sure would be 9.15% more severe after the introduction of weekly options. The results

are robust if we add stock and option characteristics control variables in Columns (6)

to (8). Like the DID design results, delta-hedged option returns predict significantly

lower fire sales, and the introduction dummy has an insignificant effect. Lastly, the

results imply conservative fixed effects have a marginal impact on our main results,

suggesting that the information leakage contributes to the anticipation effect.

In conclusion, we complete the feedback loop by examining the introduction of

weekly options to investigate the information leakage in the anticipation effect.
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4 Robustness tests

This section analyzes the robustness of demand and anticipation effects under alter-

native sample conditions, trading liquidity, and mutual fund features.

4.1 Subsamples

Fire sales are typically related to the downside market (Shleifer and Vishny, 2011).

Thus, we examine whether our results hold under normal economic conditions. We

also consider the impact of investor sentiment and anomalies seasonality. Lastly,

to address the time-varying concerns, we partition the sample into successive five-

year subsamples. In all subsample tests, we include firm and industry×month (time-

varying industry) fixed effects and cluster standard errors at the firm and date levels

such that our estimates are even more robust and conservative than main results.

Exclude extreme VIX change The first subsample excludes all months with sig-

nificant changes in the VIX index, defined as differences in VIX of higher than 90

percentile over time. This filter removes about 10% of the sample.

We exclude extreme VIX change months to restrict significant market movement

effect to investors’ demand. The aim is to alleviate macroeconomic confounding fac-

tors that affect firm fundamentals (e.g., financing constraints) and mutual fund in-

vestment opportunities (e.g., funding liquidity).

We find that the demand effect in this restricted sample is −0.02%, comparable

to the baseline results (−0.019%). The magnitude of instrumental variable regres-

sion coefficients on MFFlow is also not appreciably affected (−0.026 vs. −0.028).

Similarly, the anticipation effect yields quantitatively indifferent results with those

in non-restrictive sample estimates (−0.698 vs. −0.655). If anything, the coefficient of

expensiveness test is lower after excluding the months of large changes in VIX (0.022

vs. 0.041).
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Exclude extreme market moves We also restrict the sample in the months without

extremely large or small market returns, i.e., top and bottom ten percentiles. Thus,

we eliminate not only the downside market, which might coincide with fire sales, but

also the extreme upside market when investors can actively reallocate their capital

and place unexpected buying and selling pressures on mutual funds. The results are

similar to baseline evidence and also the VIX subsample.

Investor sentiment Investors’ behavioral bias towards options with low underly-

ing prices is more substantial when the overall sentiment in the markets is high. Han

(2007) finds that S&P 500 index option volatility smile is steeper, and the risk-neutral

skewness of monthly index return is more negative when market sentiment becomes

more bearish. We split the sample by higher and lower than the median of sentiment

index, which is the aligned investor sentiment proposed by Huang et al. (2014). We

find that both demand and anticipation effects are of similar estimated coefficients

in the low sentiment sample. The demand effect on returns is lower in the high sen-

timent sample, yet the options are more expensive when confronted with fire-sale

pressures in the high sentiment months. Nevertheless, the demand effect of option

returns remains highly significant in times of high market sentiment as well. More-

over, the anticipation effect is not significant in the high sentiment sample, suggesting

that mutual funds experience no fire sales directly related to option return changes.

(Insert Table 9 Here)

Turn-of-the-year effect Small stocks tend to outperform in January (Reinganum,

1983) and stock anomalies are more likely to concentrate in January rather than other

months. Therefore, we separate the sample into January and the other months. The

evidence in Table 9 Columns (5) and (6) reveal some differences in option returns in

January versus non-January months. For example, OLS regressions in Panel A show

that non-January observations on average have a lower demand effect than January

observations. However, the difference is not statistically significant (F-statistics =

1.16 with p-value = 0.29). Similarly, the difference between January and non-January
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estimates in the anticipation effect is statistically indifferent (F-statistics = 2.93 with

p-value = 0.10). The differences in instrumental variable regression and expensive-

ness regression are significant (F-statistics = 3.17 with p-value = 0.09 and F-statistics

= 8.86 with p-value = 0.01), implying that option trading in January tends to more

sensitive to demand effects.

Subperiods: Expansions and recessions Lastly, we arbitrarily split the entire sam-

ple into five-year stratifications. We find similar significant results across these sub-

periods and recessions in the sample 1996–2001 and 2007–2012.

4.2 Trading volumes in option market: Liquidity effects

The option market is less liquid than equity and Treasury bond markets; thus, whether

fire-sale information could promptly spread among investors is unclear. Due to low

liquidity, demand and anticipation effects might mechanically raise from delayed

market movement, rather than a reaction to fire-sale pressure. Current analysis uses

an equal-weighted scheme and assign more emphasis to non-liquid options, which

biases the results by incorporating unobservable market frictions.

Therefore, we consider the trading volume as a weight variable in all regressions.

The aim is to assign higher weights to liquid options and identify demand and an-

ticipation effects using more liquid options with efficient information diffusion. We

select trading volume as a weight variable for simplicity, and the results are similar

and significant if we use open interest. If liquidity drives demand and anticipation

effects, we expect the estimates in all analyses are lower, since these illiquid options

have less importance; otherwise, our results are robust. We also include firm and

industry×month (time-varying industry) fixed effects and cluster standard errors at

the firm and date levels, which are more conservative than our main specifications.

Panel A in Table 10 reports the weighted regression results. The estimates are

relatively larger than baseline coefficients. For example, in Column (2), the OLS de-

mand effect coefficient is−0.023, more prominent than that in the baseline regression

(−0.019). The instrumental variable regression with trading volume as weight also
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yields higher coefficients (−0.034 vs. −0.028). Similarly, we find that the anticipation

effect is more substantial (−0.956 vs. −0.655). The robustness tests illustrate stronger

estimates, even though these differences are insignificant (F-statistics≤ 1). Expen-

siveness has a lower demand effect (0.014 vs. 0.041). It suggests that liquid options

are better at incorporating market information and adjusting their implied volatilities

relative to the references. In a word, liquidity does not drive our main results.

(Insert Table 10 Here)

4.3 Mutual fund characteristics

4.3.1 Mutual fund persistence

High abnormal performance attracts subsequent fund inflows (for example, Coval

and Stafford (2007)). Fire sales hence occur with lower probability and have less im-

pact on the market. Therefore, demand and anticipation effects might be diminishing

with persistent mutual fund performance.

We analyze whether persistent outperformed mutual fund fire-sale pressure has

no demand and anticipation effects. We first calculate mutual fund monthly Carhart

(1997) four-factor αs using prior 36-month excess returns with at least 30 non-missing

observations. Then, we select funds whose αs are in the top two quintiles for succes-

sively three months (a quarter). Lastly, we calculate the fire-sale pressure measure

using these outperformed mutual funds.

Panel B in Table 10 shows the results. We include firm and time-varying industry

fixed effects and cluster standard errors at the firm and date levels. Demand effect

and anticipation effect are still significant, though the magnitudes are smaller. For

example, the OLS estimate of demand effect with all controls in Column (2) is −0.011

(t-statistics=−2.25), lower in economic and statistical levels than baseline results in

Table 3 (−0.019, t-statistics=−3.54). This evidence suggests that fire-sale pressure has

a more negligible demand effect on option prices when a mutual fund has persistent

outperformance. Nevertheless, the results are statistically significant.
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4.3.2 Fund cash holdings

Mutual funds can take actions to prevent the effect of fire-sale pressures by hold-

ing more cash in their portfolios. Cash holdings also allow managers to make quick

investments in attractive stocks without costly fire sales. Cash holdings allow mu-

tual funds to reduce the damage from fire sales by directly providing liquidity be-

fore redemption or portfolio rebalancing, especially with unexpected shock to non-

fundamental firm values.

Mutual funds with higher cash holding exert better managerial skills (Simutin,

2013). We expect fire sales do not affect stocks if high-cash-holding funds hold them;

thus, demand effects and anticipation effects are less significant. We analyze how

average cash holding in mutual funds would affect their stock performance in the

derivative market.

We first take an average of the percentage invested in cash for each mutual fund

that holds a particular firm in our sample. If a fund does not report its cash holdings

in its portfolio, we delete this observation directly, which reduces 21% observations.

Then, we assign the average cash as a weight for each firm-option observation in the

regression analysis, providing that firms held by higher cash holding funds weigh

higher. Panel C in Table 10 shows the results. Firm and time-varying industry fixed

effects are included and standard errors are clustered at the firm and date levels. We

find that other things equal, the coefficient is very similar between the cash-weight

estimation and baseline results. Therefore, cash holdings in mutual funds do not

affect our results.

5 Conclusion

The paper identifies a feedback loop and studies the demand and anticipation effects

of mutual fund fire-sale pressure and option prices. Using both portfolio analysis and

regression methods, we identify a demand effect of mutual fund fire sale pressures

on the equity option returns, which decreases delta-hedged put option returns by
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4–10% per year. Demand effects due to extreme mutual fund flows also increase

the expensiveness by 2.5% per year. We find that equity illiquidity contributes to

the negative relation between mutual fund fire-sale pressure and option returns; yet,

risks like stock idiosyncratic volatilities, distress risk due to the credit downgrading,

and sustainability risks, i.e., whether a stock belongs to a sin stock category, cannot

explain the effect. Moreover, short-sale constraints cannot explain the demand effect

in fire sales.

To migrate the endogeneity issue, we apply the instrumental variable and difference-

in-differences designs. Using two alternative exogenous fire-sale pressure measures

suggested by Wardlaw (2020) as the instrumental variables, we find that the results

are robust and the effect is quantitatively similar. We also employ the mandatory

portfolio disclosure in May 2004 as a natural experiment and investigate the demand

effect. We find that with more frequent informational disclosure, the demand effect

of fire-sale pressure on delta-hedged put option returns is stronger.

Lastly, we investigate the anticipation effect from put option returns on the level of

fire-sale pressure, i.e., 1 unit increase in delta-hedged put option returns is associated

with 0.4% higher subsequent fire-sale pressure. Using the introduction of weekly op-

tions after 2010, which represents higher level of information flow in the market, the

difference-in-differences results suggest information leakage in exacerbating extreme

outflows.
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Figure 1
Amplified fire sales through derivatives markets in a feedback loop.
The figure illustrates that initial fire sale pressure (negatively) affects prices in derivatives markets.
The changes in derivative prices further cast (negative) effects on subsequent fire sales, which fi-
nalizes a feedback loop. Demand and anticipation effects are presented by two anecdotal exam-
ples: (1) Demand effect: ViacomCBS held by Archegos Capital Management after its meltdown in
March 2021, and (2) Anticipation effect: the bankruptcy of White Square Capital due to the turbu-
lence of the option-fueled Gamestop in June 2021. The positive feedback loop is accomplished
when both demand and anticipation effects have same impact directions.

Derivatives marketsFire sale Fire sale

Feedback loop (+++)

ViacomCBS/Archegos GME/White SquareExample:
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Figure 2
Cumulative stock returns around mutual fund fire-sale pressure.
The figure shows the monthly cumulative market adjusted stock returns around mutual fund fire-
sale pressure. We construct the pressure following Edmans, Goldstein, and Jiang (2012) and the
gray area represents the fire-sale window. The sample period is 1996:01 to 2018:12.
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Table 1. Summary Statistics.
The table reports summary statistics of key variables in the paper, including means (Mean), stan-
dard deviations (Std), quartiles (P25, P50, and P75), minimum and maximum (Min and Max),
skewness (Skew), and kurtosis (Kurt). The table summarizes the dependent variable, delta-
hedged weekly returns (%), defined as Goyal and Saretto (2009) on every third Friday with one
month to maturity and moneyness close to at-the-money put options, and then take the weekly
average. The key independent variable is MFFlow, defined as in Edmans, Goldstein, and Jiang
(2012), where the fire-sale pressure is categorized as the absolute value of flow to the total net
asset under management greater than 5%. We include the following option characteristics: option
moneyness (Moneyness) defined as the ratio between strike price and underlying stock prices, op-
tions trading volume-to-option interest ratio (Volume/option interest), gamma, vega, options bid-
and-ask spread scaled by the midpoint of the closing quoted bid and ask prices (Option bid-ask
spread), and historical volatility calculated using 365 days minus implied volatility (HV−IV). Un-
derlying stock characteristics include market beta calculated using prior 36-month excess stock
returns (β), natural logarithm of market capitalization ($ million, Size), firm book value of eq-
uity to market value of equity ratio (Book-to-market ratio), long-term momentum using cumulative
stock returns from t − 1 to t − 12 (12-month momentum), inverse of stock price (1/stock price), ex-
cess stock returns, idiosyncratic volatility calculated as hte standard deviation of residuals using
36-month prior excess stock returns in the Carhart (1997) four-factor model (idiosyncratic volatil-
ity), and Herfindahl-Hirschman index (HHI) based on industry concentration based on sales. See
Appendix Table A.2 for variable definitions. The sample consists of all NYSE/AMEX/NASDAQ
common stocks with stock prices greater than $2 at the end of each month. We also require liquid
options contracts with non-zero trading volume, open interest, and implied volatility, and option
prices satisfy the pricing boundary. The sample period is 1996:1 through 2018:12.

Mean Std Min P25 P50 P75 Max Skew Kurt

Delta-hedged weekly returns (%) -0.11 2.06 -4.81 -1.21 -0.37 0.60 9.87 1.63 8.59
MFFlow (%) 0.34 0.57 0.00 0.05 0.16 0.37 4.00 4.22 24.29
Moneyness 1.00 0.05 0.82 0.97 1.00 1.02 1.19 0.22 5.43

Volume/open interest 0.62 1.84 0.00 0.04 0.14 0.45 15.00 6.08 43.58
Option gamma 0.12 0.09 0.01 0.06 0.10 0.15 0.50 1.87 7.41
Option vega 4.72 4.27 0.36 2.01 3.61 5.98 29.41 2.68 13.19
Option bid-ask spread 0.18 0.19 0.01 0.07 0.12 0.21 1.20 2.88 13.17
HV−IV (%) -0.66 13.69 -54.45 -6.61 -0.50 5.16 46.97 -0.16 6.33

β 1.33 0.84 -0.22 0.76 1.20 1.76 4.12 0.92 4.04
Size 8.31 1.73 3.71 7.11 8.24 9.50 12.38 0.03 2.83
Book-to-market ratio 0.39 0.32 -0.30 0.19 0.32 0.53 1.76 1.54 6.64
12-month momentum 0.21 0.61 -0.75 -0.14 0.11 0.39 3.43 2.25 11.07
Idiosyncratic volatility 0.11 0.06 0.03 0.06 0.09 0.13 0.31 1.24 4.50
1/stock price 0.04 0.04 0.00 0.02 0.03 0.05 0.25 2.60 11.26
Excess stock returns 0.01 0.13 -0.37 -0.06 0.01 0.07 0.48 0.33 4.89
HHI 0.06 0.06 0.02 0.03 0.04 0.07 0.37 2.88 12.30
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Table 2. Univariate sorting on delta-hedged put returns by MFFlow.
The table presents the univariate sorting on delta-hedged put returns (% monthly) by mutual fund
fire-sale pressure, constructed following Edmans, Goldstein, and Jiang (2012). Panel A reports
open interest weighted portfolio excess returns and risk-adjusted returns, and equal-weighted
results are in Panel B. Column (1) reports raw excess returns, defined as the difference between
delta-hedged puts returns and risk-free interest rate. Columns (2) and (3) report unconditional
and conditional Carhart (1997) four-factor model αs. Column (4) uses Ludvigson and Ng (2009)
macro bond factors, including eight factors plus cubic in the first factor formed from a large macro
dataset, estimated using the principal components analysis (PCA). Columns (5) and (6) add left
tail momentum, LTM (Atilgan et al., 2020), and macroeconomic risk index, Macro (Bali, Brown,
and Caglayan, 2014). Column (7) includes all conditional Carhart factors, macro bond factors, left
tail momentum, and macroeconomic risk index. See Appendix Table A.1 for factor definitions and
sources. “Low” and “High” contain underlying put options experiencing relatively low and high
mutual fund pressures. “H−L” is the portfolio spread between high- and low-pressure groups.
The standard errors are adjusted based on Newey and West (1987) with 12 lags, and we report t-
statistics in the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance levels,
respectively. The sample is from 1996:01 to 2018:12.

(1) (2) (3) (4) (5) (6) (7)
Excess Conditional Bond Carhart Carhart+LTM Conditional
Return Carhart Carhart Macro +LTM +Macro ALL

Panel A: Open interest-weighted Portfolio

Low -0.508*** -0.531*** -0.562*** -0.360 -0.472** -0.451** -0.611***
[-2.90] [-3.14] [-2.85] [-1.60] [-2.57] [-2.43] [-2.71]

2 -0.490*** -0.527*** -0.492*** -0.409** -0.449*** -0.425** -0.716***
[-2.94] [-3.22] [-2.63] [-1.97] [-2.61] [-2.54] [-3.22]

3 -0.539*** -0.540*** -0.562*** -0.523*** -0.502*** -0.480*** -0.901***
[-3.45] [-3.39] [-3.10] [-3.06] [-2.83] [-2.72] [-5.70]

4 -0.766*** -0.730*** -0.757*** -0.819*** -0.685*** -0.661*** -1.147***
[-4.72] [-4.41] [-4.13] [-3.79] [-3.65] [-3.52] [-5.03]

High -0.925*** -0.863*** -0.927*** -1.044*** -0.787*** -0.768*** -1.448***
[-4.95] [-4.53] [-4.79] [-4.74] [-3.49] [-3.35] [-6.38]

H−L -0.416*** -0.333** -0.365** -0.684*** -0.315* -0.317* -0.837***
[-2.61] [-2.24] [-2.42] [-3.52] [-1.86] [-1.90] [-3.90]

Panel B: Equal-weighted Portfolio

Low -0.504*** -0.524*** -0.546*** -0.336 -0.456** -0.434** -0.570***
[-2.90] [-3.16] [-2.81] [-1.55] [-2.56] [-2.40] [-2.64]

2 -0.464*** -0.498*** -0.461** -0.361* -0.424** -0.400** -0.650***
[-2.77] [-3.06] [-2.46] [-1.75] [-2.48] [-2.42] [-2.95]

3 -0.505*** -0.503*** -0.528*** -0.499*** -0.461** -0.440** -0.874***
[-3.18] [-3.11] [-2.86] [-2.81] [-2.54] [-2.41] [-5.16]

4 -0.735*** -0.694*** -0.718*** -0.769*** -0.647*** -0.624*** -1.091***
[-4.66] [-4.34] [-4.01] [-3.63] [-3.61] [-3.46] [-4.88]

High -0.936*** -0.883*** -0.954*** -1.036*** -0.813*** -0.794*** -1.435***
[-5.17] [-4.76] [-5.08] [-4.84] [-3.75] [-3.61] [-6.67]

H−L -0.432*** -0.359** -0.408*** -0.700*** -0.357** -0.360** -0.865***
[-2.79] [-2.48] [-2.87] [-3.73] [-2.22] [-2.27] [-4.32]
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Table 3. Mutual fund fire-sale pressure and put option delta-hedged returns:
Demand effects.
The table presents the effects of the fire-sale pressure from mutual fund flows on the put option
delta-hedged returns using the double-clustered panel regression:

retopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

where retopt
i,t is the weekly average delta-hedged put option returns, defined as Goyal and Saretto

(2009) on every third Friday with one month to maturity and moneyness close to at-the-money
put options. MFFlowi,t−1 is defined as in Edmans, Goldstein, and Jiang (2012), where the fire-sale
pressure is categorized as the absolute value of flow to total net asset under management greater
than 5%. XXX includes option and stock characteristics. See Appendix Table A.2 for definitions. All
variables are winsorized at 1% level and standardized to have mean zero and standard deviation
one. All regressions include firm (ξi) and month (ξt) fixed effects and the standard errors are
clustered at industry and date levels, and we report t-statistics in the bracket under coefficients. *,
**, *** represent 10%, 5%, and 1% significance levels, respectively. The sample is from 1996:01 to
2018:12.

(1) (2) (3) (4)

MFFlow -0.016*** -0.012** -0.017*** -0.019***
[-2.74] [-2.29] [-3.13] [-3.54]

β -0.015** -0.014*
[-2.11] [-1.91]

Size 0.118*** 0.050**
[6.13] [2.09]

Book-to-market ratio 0.012** 0.011**
[2.40] [2.24]

12-month momentum 0.016** 0.017**
[2.08] [2.16]

1/stock price -0.006 -0.064***
[-0.40] [-3.45]

Excess stock returns -0.007 -0.012**
[-1.44] [-2.45]

Idiosyncratic volatility -0.049*** -0.060***
[-5.27] [-6.76]

HHI -0.007 -0.009
[-0.83] [-0.93]

Volume/open interest -0.001 -0.001
[-0.31] [-0.64]

Option bid-ask spread -0.023*** -0.018***
[-4.84] [-3.83]

Option gamma 0.041*** 0.091***
[5.04] [7.88]

Option vega 0.093*** 0.066***
[8.43] [5.86]

HV−IV 0.065*** 0.065***
[7.05] [7.33]

Constant -0.006*** -0.005*** -0.011*** -0.009***
[-497.44] [-7.87] [-10.15] [-5.72]

N 186,127 186,127 186,127 186,127
Adj. R2 0.099 0.105 0.102 0.108
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Table 4. Mutual fund fire-sale pressure and put option delta-hedged returns:
Endogeneity.
The table addresses the endogenenity concerns of the fire-sale pressure from mutual fund flows on
the put option delta-hedged returns using the instrumental variable method and the difference-
in-differences design with the double-clustered panel regressions. The instrumental variable
method uses two instruments, Flow-to-volume and Flow-to-Shares outstanding, and the two-stage
least square regressions are:

2nd: retopt
i,t = α + βM̃FFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

1st: MFFlowi,t−1 = a0 + b1Flow-to-volumei,t−1 + b2Flow-to-shares outstandingi,t−1

+cXXXi,t−1 + ξi + ξt + ηi,t

where M̃FFlowi,t−1 is the first-stage fitted value. The sample is from 1996:01 to 2018:12. The
difference-in-differences design is based on a three-year window around the mandatory portfolio
disclosure in May 2004:

retopt
i,t = α + δD(MFFlow > Median)i,t−1 × D(After 2004:5)t−1 + βD(MFFlow > Median)i,t−1

+γXXXi,t−1 + ξi + ξt + εi,t

where the dummy D(After 2004:5)t−1 is one if the month is after May 2004 and is zero otherwise.
Discrete treatment dummy D(MFFlow > Median)i,t−1 is one if MFFlow is higher than sample
median and zero otherwise. The diff-in-diff term is D(MFFlow > Median) × D(After 2004:5).
The sample is from 2001:01 to 2007:12 without year 2004. retopt

i,t is the monthly delta-hedged option
returns, defined as Goyal and Saretto (2009) on every third Friday with one month to maturity and
moneyness close to at-the-money put options. MFFlowi,t−1 is defined as in Edmans, Goldstein,
and Jiang (2012), where the fire-sale pressure is categorized as the absolute value of flow to total
net asset under management greater than 5%. XXX includes option and stock characteristics. See
Appendix Table A.2 for definitions. All variables are winsorized at 1% level and standardized
to have mean zero and standard deviation one. The regression includes firm (ξi) and month (ξt)
fixed effects and the standard errors are clustered at industry and date levels, and we report t-
statistics in the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance levels,
respectively.

Panel A Panel B
Instrumental variables Difference-in-differences

(1) (2) (3) (4) (5) (6) (7) (8)

MFFlow -0.024*** -0.022*** -0.025*** -0.028*** -0.018*** -0.010* -0.015** -0.014**
[-5.55] [-5.43] [-6.35] [-7.05] [-3.13] [-1.70] [-2.55] [-2.15]

D(MFFlow>Median) -0.042** -0.030* -0.031* -0.030*
×D(After 2004:5) [-2.51] [-1.86] [-1.92] [-1.76]

D(MFFlow>Median) -0.006 -0.002 -0.021 -0.018
[-0.43] [-0.13] [-1.55] [-1.24]

Stock controls NO NO YES YES NO NO YES YES
Option controls NO YES NO YES NO YES NO YES
N 186,127 186,127 186,127 186,127 53,147 53,147 53,147 53,147
Adj. R2 0.000 0.007 0.004 0.011 0.083 0.096 0.092 0.102
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Table 5. Mutual fund fire-sale pressure and put option delta-hedged returns:
Alternative explanations.
The table presents alternative explanations to the effects of the fire-sale pressure from mutual fund
flows on the put option delta-hedged returns using the double-clustered panel regression:

retopt
i,t = α + δMFFlowi,t−1 ×Φi,t−1 + β1MFFlowi,t−1 + β2Φi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

where the alternative explanatory channel variable Φi,t−1 includes (1) risks, i.e., volatility risks
(higher than the median idiosyncratic risk dummy D(IVOL ≥ Med)), distress risks (credit down-
grading dummy D(Downgrade)), and ESG risks (sin stock dummy D(Sin stock)), and (2) frictions,
i.e., short-sale constraints (lower than the median short interest rate D(SII ≤ Med)), stock illiq-
uidity (higher than the median Amihud illiquidity D(Liq ≥ Med)), and option illiquidity (higher
than the median bid-ask spread D(Spd ≥ Med)). retopt

i,t is the monthly delta-hedged option re-
turns, defined as Goyal and Saretto (2009) on every third Friday with one month to maturity and
moneyness close to at-the-money put options. MFFlowi,t−1 is defined as in Edmans, Goldstein,
and Jiang (2012), where the fire-sale pressure is categorized as the absolute value of flow to total
net asset under management greater than 5%. XXX includes all option and stock characteristics and
all regressions contain these control variables. See Appendix Table A.2 for definitions. All vari-
ables are winsorized at 1% level and standardized to have mean zero and standard deviation one.
All regressions include firm (ξi) and month (ξt) fixed effects and the standard errors are clustered
at industry and date levels, and we report t-statistics in the bracket under coefficients. *, **, ***
represent 10%, 5%, and 1% significance levels, respectively. The sample is from 1996:01 to 2018:12.

(1) (2) (3) (4) (5) (6)
Φ = D(IVOL≥Med) D(Downgrade) D(Sin stock) D(SII≤Med) D(Illiq≥Med) D(Spd≥Med)

MFFlow -0.019*** -0.019*** -0.019*** -0.018*** -0.031*** -0.022***
[-3.35] [-3.77] [-3.56] [-3.11] [-5.74] [-4.10]

MFFlow×Φ 0.003 0.006 0.007 0.000 0.015*** 0.004
[0.63] [0.65] [0.36] [0.05] [3.02] [0.67]

Φ -0.045*** 0.015* 0.000 -0.032*** 0.030*** -0.018**
[-5.32] [1.74] [0.00] [-3.86] [3.06] [-2.11]

N 186,127 186,127 186,127 186,127 186,127 186,127
Adj. R2 0.108 0.108 0.108 0.109 0.108 0.108
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Table 6. Mutual fund fire-sale pressure and put option expensiveness.
The table presents the effects of the fire-sale pressure from mutual fund flows on the put option
excess-implied expensiveness using the double-clustered panel regression:

expensiveopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

where expensiveopt
i,t is the monthly difference between put option implied volatility and historical

volatility, defined in Garleanu, Pedersen, and Poteshman (2009). MFFlowi,t−1 is defined as in
Edmans, Goldstein, and Jiang (2012), where the fire-sale pressure is categorized as the absolute
value of flow to total net asset under management greater than 5%. XXX includes option and stock
characteristics. See Appendix Table A.2 for definitions. Columns (1) to (4) investigates the demand
effect on expensiveness, and Columns (5) to (7) include option trading volume and its interaction
with MFFlow. All variables are winsorized at 1% level and standardized to have mean zero and
standard deviation one. All regressions include firm (ξi) and month (ξt) fixed effects and the
standard errors are clustered at industry and date levels, and we report t-statistics in the bracket
under coefficients. *, **, *** represent 10%, 5%, and 1% significance levels, respectively. The sample
is from 1996:01 to 2018:12.

(1) (2) (3) (4) (5) (6) (7)

MFFlow 0.031*** 0.036*** 0.007 0.019*** 0.031*** 0.006 0.016**
[5.68] [6.23] [1.26] [2.96] [4.96] [0.90] [2.21]

MFFlow×Volume 0.003 0.001 0.002
[1.18] [0.45] [0.93]

Volume 0.018*** 0.024*** 0.021***
[5.22] [8.86] [8.49]

β -0.032*** -0.049*** -0.033*** -0.050***
[-3.25] [-4.56] [-3.29] [-4.55]

Size -0.098*** -0.160*** -0.104*** -0.171***
[-3.82] [-5.75] [-3.87] [-5.93]

Book-to-market ratio -0.042*** -0.030** -0.041*** -0.030**
[-3.84] [-2.34] [-3.66] [-2.23]

12-month momentum 0.058*** 0.058*** 0.060*** 0.060***
[3.26] [3.21] [3.40] [3.32]

1/stock price 0.106*** 0.414*** 0.107*** 0.411***
[7.23] [12.40] [7.28] [12.36]

Excess stock returns -0.055*** -0.051*** -0.053*** -0.049***
[-6.22] [-5.69] [-6.01] [-5.51]

Idiosyncratic volatility -0.283*** -0.337*** -0.289*** -0.342***
[-21.37] [-24.71] [-21.34] [-24.75]

HHI 0.009 -0.008 0.005 -0.011
[0.51] [-0.40] [0.30] [-0.61]

Volume/open interest 0.003 0.002 -0.006* -0.010***
[1.48] [0.77] [-1.84] [-3.56]

Option bid-ask spread 0.049*** -0.005 0.053*** -0.001
[6.28] [-0.49] [7.03] [-0.11]

Option gamma -0.215*** -0.468*** -0.213*** -0.465***
[-9.19] [-10.49] [-9.15] [-10.48]

Option vega -0.135*** -0.112*** -0.132*** -0.107***
[-8.53] [-8.59] [-8.65] [-8.46]

Constant 0.017*** 0.020*** 0.033*** 0.053*** -0.012* -0.009* 0.015***
[215.50] [25.01] [20.40] [30.39] [-1.89] [-1.84] [3.90]

N 187,022 187,022 187,022 187,022 187,022 187,022 187,022
Adj. R2 0.444 0.466 0.473 0.526 0.466 0.475 0.528
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Table 7. Mutual fund fire-sale pressure and put option delta-hedged returns:
Anticipation Effects.
The table presents the anticipation effects of the put option delta-hedged returns on (1) the fire-sale
pressure using the double-clustered panel regression:

OLS: MFFlowi,t = α + βretopt
i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

where MFFlowi,t−1 (multiplied by 100) is defined as in Edmans, Goldstein, and Jiang (2012),
where the fire-sale pressure is categorized as the absolute value of flow to total net asset under
management greater than 5%, and (2) the probability of fire-sale pressure from mutual fund flows
higher than the cross-sectional median using logit regression

Logit: D(MFFlow ≥ Median)i,t = α + δretopt
i,t−1 + γXXXi,t−1 + εi,t

where D(MFFlow ≥ Median)i,t is the dummy of fund i confronted with an extreme flow-induced
fire sale event that is more severe than cross-sectional median at time t. retopt

i,t−1 is the monthly
delta-hedged option returns, defined as Goyal and Saretto (2009) on every third Friday with one
month to maturity and moneyness close to at-the-money put options. The data frequency includes
monthly (matching quarterly MFFlow with monthly returns) and quarterly (aggregate returns and
other variables to quarterly and match with fire sales). XXX includes option and stock characteristics.
See Appendix Table A.2 for definitions. All variables are winsorized at 1% level. The OLS regres-
sion includes firm (ξi) and month (ξt) fixed effects, and standard errors are clustered at industry
and date levels. The logit regression results report the marginal effect and the Bonferroni stan-
dard errors at the median of all independent variables. We report t-statistics in the bracket under
coefficients. *, **, *** represent 10%, 5%, and 1% significance levels, respectively. The sample is
from 1996:01 to 2018:12.

Fire sale: OLS Prob(Fire sales): logit
Levels Marginal effects at median

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Monthly frequency

retopt -0.459* -0.373 -0.484** -0.655*** -0.026*** -0.009 -0.020*** -0.025***
[-1.98] [-1.60] [-2.25] [-2.91] [-4.34] [-1.56] [-3.38] [-4.27]

Controls NO Option Stocks ALL NO Option Stocks ALL
Firm FE YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
Adjusted R2 0.521 0.521 0.528 0.528
Pseudo R2 0.009 0.017 0.074 0.076

Panel B: Quarterly frequency

retopt -0.723* -0.617 -0.633 -0.777* -0.038*** -0.009 -0.017* -0.021**
[-1.67] [-1.43] [-1.53] [-1.85] [-3.89] [-0.94] [-1.79] [-2.23]

Controls NO Option Stocks ALL NO Option Stocks ALL
Firm FE YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
Adjusted R2 0.498 0.498 0.505 0.505
Pseudo R2 0.009 0.021 0.087 0.08852



Table 8. Mutual fund fire-sale pressure and put option delta-hedged returns:
Anticipation effects natural experiments.
The table presents the anticipation effects of fire-sale pressure from mutual fund flows on put
option delta-hedged returns using (monthly) double-clustered panel regression:

DID: MFFlowi,t = α + δretopt
i,t−1 ×D(Weekly Option)i,t−1 + βretopt

i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

Cohort: MFFlowi,c,t = α+ δretopt
i,t−1×D(Weekly Option)i,t−1 + βretopt

i,t−1 +γXXXi,t−1 + ξi× ξc + ξt× ξc + εi,c,t

where MFFlowi,t−1 is defined as in Edmans, Goldstein, and Jiang (2012), where the fire-sale pres-
sure is categorized as the absolute value of flow to total net asset under management greater than
5%. retopt

i,t−1 is the monthly delta-hedged option returns, defined as Goyal and Saretto (2009) on
every third Friday with one month to maturity and moneyness close to at-the-money options.
In difference-in-differences specification, D(Weekly Option)i,t−1 is the dummy of introducing a
weekly option for stock i at time t− 1, and the DID term is the interaction between option returns
and weekly option dummy with experiment window 2010:01–2015:12. The Cohort DID specifi-
cation is similar where c represents each cohorts, which is defined as 12-month window before
and after introducing weekly options. XXX includes option and stock characteristics. See Appendix
Table A.2 for definitions. All variables are winsorized at 1% level. The DID regression includes
firm (ξi) and month (ξt) fixed effects and the Cohort DID regression includes firm×cohort (ξc) and
time×cohort (ξc) fixed effects. All standard errors are clustered at industry and date levels, and
we report t-statistics in the bracket under coefficients. We multiple coefficients by 100. *, **, ***
represent 10%, 5%, and 1% significance levels, respectively. The sample periods are listed in the
table.

Panel A: Difference-in-differences Panel B: Cohort DID
(1) (2) (3) (4) (5) (6) (7) (8)

retopt -0.648* -0.644* -0.789** -0.991*** -4.567** -4.005** -5.578** -5.902**
[-1.71] [-1.70] [-2.20] [-2.79] [-2.47] [-2.54] [-2.45] [-2.50]

retopt×D(Weekly Option) 7.405*** 7.329*** 7.493*** 7.442*** 9.151** 8.569** 10.314** 9.724**
[3.04] [3.00] [3.12] [3.22] [2.33] [2.60] [2.27] [2.38]

D(Weekly Option) 5.996 5.811 7.821 6.839 -1.969 -1.386 -2.406 -2.799
[0.96] [0.94] [1.30] [1.12] [-0.32] [-0.21] [-0.34] [-0.39]

Stock controls NO NO YES YES NO NO YES YES
Option controls NO YES NO YES NO YES NO YES
Firm FE YES YES YES YES NO NO NO NO
Time FE YES YES YES YES NO NO NO NO
Firm×Cohort FE NO NO NO NO YES YES YES YES
Time×Cohort FE NO NO NO NO YES YES YES YES
N 51,743 51,743 51,743 51,743 6,061 6,061 6,061 6,061
Adj. R2 0.614 0.614 0.618 0.619 0.707 0.718 0.725 0.735
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Table 9. Subsample tests
The table reports subsample test results. Panel A reports OLS results of the demand effect in Eq.
(2), while Panel B is the second-stage results using the instrumental variable regression in Eq. (7).
Panel C regresses expensiveness on MFFlow using Eq. (9). Panel D displays the anticipation effect
results using Eq. (10) and multiples coefficients by 100. Column (1) restricts samples to months
with non-extreme VIX index (lower than 90 percentile). Column (2) consists of months whose
market returns are within top and bottom ten percentiles. Columns (3) and (4) are subsamples
partitioned into higher and lower than the median of the investor sentiment defined in Huang
et al. (2014). Columns (5) and (6) are samples of non-January and January observations. Columns
(7) to (10) separate the sample every five years, where Columns (7) and (9) include the NBER re-
cession periods. All regressions include firm and time-varying industry fixed effects. All standard
errors are clustered at firm and date levels, and we report t-statistics in the bracket under coeffi-
cients. *, **, *** represent 10%, 5%, and 1% significance levels, respectively. The sample is from
1996:01 to 2018:12.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VIX MKT HSent LSent Non-Jan Jan 96–01 02–06 07–11 12–18

Panel A: OLS retopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

MFFlow -0.020*** -0.020*** -0.011 -0.022*** -0.016*** -0.030** -0.023* -0.016** 0.004 -0.024***

[-4.52] [-4.74] [-1.38] [-4.24] [-3.10] [-2.35] [-1.97] [-2.39] [0.26] [-3.17]

N 167,014 148,074 92,848 91,775 168,880 15,213 34,821 43,049 47,662 59,071

Adj. R2 0.119 0.110 0.174 0.121 0.157 0.102 0.087 0.116 0.259 0.133

Panel B: Instrumental variable retopt
i,t = α + βM̃FFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

MFFlow -0.026*** -0.028*** -0.023*** -0.028*** -0.025*** -0.046*** -0.035*** -0.024*** -0.015 -0.029***

[-6.58] [-6.94] [-4.18] [-5.96] [-6.31] [-3.98] [-3.90] [-3.75] [-1.65] [-4.06]

N 167,014 148,074 92,848 91,775 168,880 15,213 34,821 43,049 47,662 59,071

Adj. R2 0.011 0.012 0.012 0.011 0.011 0.010 0.023 0.020 0.014 0.013

Panel C: OLS expensivenesi,t = α + βMFFlowi,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

MFFlow 0.022*** 0.021*** 0.028*** 0.016** 0.024*** -0.001 0.030*** 0.030*** 0.021** 0.022***

[4.64] [4.39] [5.02] [2.55] [5.38] [-0.12] [3.18] [3.25] [2.14] [3.35]

N 167,014 148,074 92,848 91,775 168,880 15,213 34,821 43,049 47,662 59,071

Adj. R2 0.559 0.522 0.636 0.472 0.570 0.531 0.478 0.475 0.760 0.475

Panel D: OLS MFFlowi,t = α + βretopt
i,t−1 + γXXXi,t−1 + ξi + ξt + εi,t

retopt -0.698*** -0.619** -0.246 -0.689** -0.498** -2.155** 0.371 0.312 -1.153*** -0.947***

[-3.04] [-2.28] [-0.77] [-2.36] [-2.10] [-2.23] [0.89] [0.85] [-2.79] [-2.67]

N 165,330 145,994 91,904 90,813 167,849 14,418 34,741 42,770 42,113 63,150

Adj. R2 0.548 0.547 0.553 0.607 0.548 0.533 0.518 0.706 0.677 0.581
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Table 10. Robustness tests.
The table reports robustness test results. Panel A uses option trading volumes as the weight
variable in regressions to incorporate options trading liquidity effects. Panel B selects persistent
outperformed mutual funds whose Carhart (1997) four-factor αs are in the top two quintiles in the
past quarter, and we calculate fire-sale pressure using these funds. Panel C calculates the average
percentage investment in cash holdings among mutual funds that hold a specific stock and uses
the average cash holding as the weight variable in regressions. Columns (1) to (6) report demand
effects using Eq. (2) and (9), where Columns (1) to (4) regress option returns and Columns (5)
and (6) regress expensiveness on MFFlow. Columns (3) and (4) apply the instrumental variable
regression method using Eq. (7). The last two columns report the anticipation effect and multiple
coefficients by 100; regress MFFlow on option returns using Eq. (10). The odd columns have no
controls, and the even columns include all control variables. All regressions include firm and time-
varying industry fixed effects. All standard errors are clustered at firm and date levels, and we
report t-statistics in the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance
levels, respectively. The sample is from 1996:01 to 2018:12.

Demand Anticipation
OLS IV Expensive OLS

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: option trading volume as weights

MFFlow -0.014* -0.023*** -0.026*** -0.034*** 0.023*** 0.014*
[-1.78] [-2.91] [-3.69] [-5.06] [3.01] [1.78]

retopt -0.506* -0.956***
[-1.67] [-3.10]

All controls NO YES NO YES NO YES NO YES
N 87,094 87,094 87,094 87,094 87,094 87,094 86,067 86,067
Adj. R2 0.213 0.223 0.000 0.012 0.590 0.657 0.620 0.629

Panel B: Mutual funds with persistent outperformance

MFFlow -0.011** -0.011** -0.017*** -0.011** 0.018*** 0.013***
[-2.25] [-2.30] [-4.81] [-2.30] [4.10] [3.16]

retopt -0.877** -0.900**
[-2.23] [-2.26]

All controls NO YES NO YES NO YES NO YES
N 151,032 151,032 151,032 151,032 151,032 151,032 151,032 151,032
Adj. R2 0.155 0.163 0.000 0.010 0.530 0.598 0.430 0.435

Panel C: Mutual funds cash holding as weight

MFFlow -0.011* -0.015** -0.020*** -0.015** 0.032*** 0.023***
[-1.77] [-2.56] [-4.09] [-2.56] [5.18] [4.05]

retopt -0.707** -0.902***
[-2.31] [-2.97]

All controls NO YES NO YES NO YES NO YES
N 147,902 147,902 147,902 147,902 147,902 147,902 147,902 147,902
Adj. R2 0.183 0.190 0.000 0.009 0.565 0.634 0.608 0.617
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Appendix

A Variable definitions and sources

Table A.1. Definitions and variable names of risk factors used in the portfolio
analysis.

Factors Definitions and variable names

(1) (2) (3) (4) (5)

Carhart1 retm − r f size value momentum

(×4) MKT SMB HML MOM

Conditional2 Carhart Carhart r f×MKT dy×MKT tms×MKT d f s×MKT

(×8) Treasury bill rate dividend yield term spread default spread

Macro bond factors3 F1 to F8 Cubic of F1

(×9) F3
1

Carhart + LTM4 Carhart left tail momentum

(×5) LTM

Carhart+ LTM Carhart LTM PCA of GARCH residuals of macro variables

+ macro risk5 (×6) macro risk

All Conditional Macro bond LTM macro risk

(×19) Carhart

Data sources:

1 Ken French: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
2 Amit Goyal: http://www.hec.unil.ch/agoyal/.
3 Sydney Ludvigson: https://www.sydneyludvigson.com/data-and-appendixes.
4,5 Turan Bali: https://sites.google.com/a/georgetown.edu/turan-bali/data-working-papers.
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Table A.2. Variable definitions and sources.

Variable name Definition Source

Delta-hedged returns

We select an option contract for each month with the closest moneyness
to at-the-money and one month to expiration. Option contracts have
non-zero trading volume, open interest, and implied volatility. We also
require option prices to satisfy boundary conditions. All options are ex-
pired on the third Friday every month. Delta-hedged return is defined as
the expiration payoff (max(ST − K, 0)) minus delta×stock price, scaled
by option price, which is the midpoint of the closing quoted bid and ask
prices.

OptionMetrics,
CRSP

Expensiveness
Implied volatility provided by OptionMetrics minus a reference volatil-
ity, which is the historical volatility calculated using prior 365-day re-
turns.

OptionMetrics

MFFlow

If a mutual fund experiences an extreme outflow, i.e.,
|Fjt |

TNAj,t−1
> 5%,

then we consider its fire-sale pressure. For each holding of this mutual
fund, we calculate the stock holding value (Sharesi,j,t−1 × prci,t−1) to to-
tal asset under management (TNAj,t−1) fraction at t − 1 (si,j,t−1), and
time this fraction with the fund’s aboslute flow at t (|Fj,t|) and scale by
stock dollar volume at t (DVOLi,t). Then, for each stock, sum this ratio
over all funds.

Thomson Reuters,
CRSP

Flow Total net assets under management minus current period fund returns
times lagged TNA. CRSP

Flow-to-volume Similar with MFFlow but does not include stock prices. Thomson Reuters,
CRSP

Flow-to-shares outstanding Similar with Flow-to-volume but replace volume in the denominator
with shares outstanding.

Thomson Reuters,
CRSP

Moneyness Option strike price divided by stock price at expiration. OptionMetrics
Volume/open interest Option trading volume divided by option open interest. OptionMetrics
Option gamma Derivative of delta to stock price. OptionMetrics
Option vega Derivative of the option price to implied volatility. OptionMetrics

Option bid-ask spread Difference between bid and ask prices, divided by the midpoint of the
closing quoted bid and ask prices. OptionMetrics

HV−IV
Historical volatility calculated using previous 365 days stock returns mi-
nus implied volatility calculated using the binomial tree mode and pro-
vided by OptionMetrics.

OptionMetrics

β
The coefficient on market excess returns in the CAPM model using 36-
month prior monthly stock excess returns with at least 30 non-missing
observations.

CRSP, Ken French

Size
Natural logarithm of market capitalization (in million dollar), where
market capitalization is calculated as stock price times its adjusted to-
tal shares outstanding.

CRSP

Book-to-market ratio Stock book value of equity divided by market value of equity. Compustat
12-month momentum Stock cumulative returns over t− 12 to t− 1. CRSP
1/stock price The inverse of stock prices. CRSP
Excess stock returns Delisting adjusted monthly stock return minus risk-free interest rate. CRSP, Ken French

Idiosyncratic volatility
The standard deviation of residual time series estimated from a Carhart
four-factor model (MKT, SMB, HML, and MOM) using prior 36-month
stock excess returns with 30 non-missing observations.

CRSP, Ken French

HHI Square of the ratio between individual firm sale and 2-digit industry
sum of sales, and sum over all firms within this 2-digit industry. Compustat

Credit downgrading dummy An indicator equal to one if a firm’s S&P credit rating is lower than its
previous available rating. Capital IQ

Sin stock dummy An indicator equal to one if a company’s primary industry classification
is in smoke or tobacco, beer or alcohol, or gaming. Compustat

Short interest rate (SII) Monthly short interest divided by total shares outstanding. CRSP, Compustat

Amihud illiquidity

Monthly sum of daily absolute delisting adjusted returns divided by
daily dollar volume, scaled by multiplying 106 and requiring monthly
five non-missing returns and volumes for NYSE/AMEX stocks and at
least 50 number of trades for NASDAQ stocks.

CRSP

Sentiment

Aggregate investor sentiment measure constructed using closed-end
fund discount rate, share turnover, number of IPOs, first-day returns
of IPOs, dividend premium, and equity share in new issues based on
partial least square to eliminate a common noise component.

Guofu Zhou’s web-
site
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A Robustness tests

In this section, we provide robustness tests to the baseline model.

A.1 Demand effects: Delta-hedged put option returns

A.1.1 Additional fixed effect and cluster combinations

We estimate Equation (2), and we use firm fixed effects, time fixed effects, and/or

industry×time fixed effects and double clustered standard errors at the firm and time

level. Explanatory variables are standardized to facilitate interpretation of the coeffi-

cient estimates.

A.1.2 Fama-MacBeth regression

We investigate the results of average coefficients estimated using Fama-MacBeth re-

gressions. To be comparable to the portfolio analysis results, we use raw values of

all variables, and use monthly delta-hedged put option returns as the explanatory

variable. In the first stage, we estimate monthly cross-sectional regressions of excess

option returns in month t on values of mutual fund fire-sale pressures and control

variables measured in month t− 1. The cross-sectional model estimated at the end of

each month t is

retopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + εi,t, ∀ i, t = 1, · · · , T

In the second stage, we calculate the time-series averages of the cross-sectional regres-

sion coefficient estimates. Table reports average slope coefficients, Newey and West

(1987) t-statistics (in bracket), and the average adjusted R2 for each specification.

(Insert Table A.1 Here)

A.1.3 Long-horizon prediction

(Insert Table A.2 Here)

A.2 Demand effects: Expensiveness

(Insert Table A.3 Here)
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A.3 Anticipation effects: Robustness tests

(Insert Table A.4 Here)

A.4 Spillover effects: Fire-sale pressure on peer option returns

We define firms in the same 2-digit industry classification as peer firms. We then

regress peer firms’ option returns on the fire-sale pressure of a firm, which primarily

evaluates the spillover effect of fire sales.

(Insert Table A.5 Here)

A.5 Alternative fire-sale pressure definitions

A.5.1 Bottom flow ranks

We sort and rank mutual funds into ten groups and select the bottom group.

A.5.2 Other flow thresholds

We select flow thresholds being 10% and 15%.

(Insert Table A.6 Here)

A.6 Do option price determinants dominate fire sales?

(Insert Table A.7 Here)

B Additional results for identification designs

B.1 Instrumental variable regressions

We present some additional empirical results along with instrumental variable re-

gressions, including first-stage results, the exclusion restriction assumption placebo

test, and the selection bias.
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B.1.1 First-stage results

(Insert Table A.8 Here)

B.1.2 Placebo tests

(Insert Table A.9 Here)

B.1.3 Selection bias results

Mutual fund extreme outflows decrease stock prices significantly (Edmans, Gold-

stein, and Jiang, 2012). According to demand-based option pricing theory, fire-sale

pressure effect on option returns might inherit selection bias due to negative stock

returns. The question is whether selection bias mechanically leads to the negative

relation.

To address the issue, we use Heckman (1979)’s two-step correction method. The

first step involves estimating a selection equation.

selection dummyi,t = a0 + b1 × Flow-to-volumei,t + b2 × Flow-to-shares outstandingi,t

+cXXXi,t + ξi + ξt + φi,t (13)

where selection dummyi,t is a dummy that equals one if a stock return is negative and

zero otherwise. Using the estimates from the selection dummy, we can compute the

Inverse Mills Ratio and include it as an explanatory variable in our second-stage re-

gression using Eq. (7). If the coefficient β is negative and statistically significant, as

well as quantitatively similar with estimates in Table 4, we conclude that selection

bias does not drive the demand effect.

(Insert Table A.10 Here)

B.2 Difference-in-differences placebo tests

(Insert Figure A.1 Here)

(Insert Table A.11 Here)
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C Additional summary statistics

(Insert Table A.12 Here)

(Insert Table A.13 Here)

(Insert Figure A.2 Here)

D Buy pressures: Extreme inflows

(Insert Table A.14 Here)

D.1 Put options

(Insert Table A.15 Here)

D.2 Call options

(Insert Table A.16 Here)
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Figure A.1
Falsification test of difference-in-differences estimation: Parallel trend and re-
versal.
The figure presents the estimated coefficients (δk) of the following regression:

retopt
i,t = α +

4

∑
k=−3

δkλi,t+k × D(MFFlow > Median)i,t−1 + βD(MFFlow > Median)i,t−1

+ξi + ξind × ξt + εi,t

where λi,t+k is an indicator that equals one if event time = t and zero otherwise, where t is the
period when treatment occurs (2004:5) and t− 1, for example, is period before treatment (2004:4).
Following the recommendations in Gormley and Matsa (2016), we do not include any control vari-
ables but add industry×time fixed effects (ξind × ξt) to address time-varying industry variations.
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Figure A.2
Time series: Mutual fund flow and delta-hedged option returns.
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Table A.1. Robustness tests: Clusters, fixed effects, and Fama-MacBeth results.
The table presents the robustness test results of baseline regression using panel regressions:

Panel: retopt
i,t = α + βMFFlowi,t−1 + γXXXi,t−1 + FEi,t + εi,t, ∀ i, t

in Columns (1) to (4), where FEi,t represents different combinations of fixed effects. Columns
(1) and (2) include firm and time fixed effects and estimate standard errors using firm and time
double clustering. Column (3) and (4) include firm and industry×time fixed effects and report
industry and time double clustering. In Columns (5) and (6), we use Fama-MacBeth regression,
where the first step is

Fama-MacBeth: retopt
i,t = at + bt MFFlowi,t−1 + ccctXXXi,t−1 + ei,t, ∀ i, t = 1, 2, · · · , T

estimated for each cross-sectional observations in time t = 1, 2, · · · , T. The second step is to take
sample average of estimated coefficients in the first step and report standard errors corrected for
heteroskedasticity and autocorrelation using Newey and West (1987) an optimal order of lags.
retopt

i,t is the monthly delta-hedged put option returns, defined as Goyal and Saretto (2009) on
every third Friday with one month to maturity and moneyness close to at-the-money options.
MFFlowi,t−1 is defined as in Edmans, Goldstein, and Jiang (2012), where the fire-sale pressure is
categorized as the absolute value of flow to total net asset under management greater than 5%. XXX
includes option and stock characteristics. See Appendix Table A.2 for definitions. All variables
are winsorized at 1% level and standardized to have mean zero and standard deviation one. We
report t-statistics in the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance
levels, respectively. The sample is from 1996:01 to 2018:12.

Firm and time clusters Industry×time FE Fama-MacBeth
(1) (2) (3) (4) (5) (6)

MFFlow -0.016*** -0.019*** -0.013** -0.016*** -0.024*** -0.025***
[-3.05] [-3.68] [-2.44] [-3.06] [-3.31] [-3.17]

β -0.014** -0.014* 0.004
[-2.06] [-1.94] [0.57]

Size 0.050** 0.054** -0.025***
[2.33] [2.14] [-3.16]

Book-to-market ratio 0.011** 0.011** 0.010*
[2.04] [2.52] [1.94]

12-month momentum 0.017** 0.017** 0.001
[2.47] [2.54] [0.13]

1/stock price -0.064*** -0.066*** -0.118***
[-4.58] [-3.68] [-7.18]

Excess stock returns -0.012** -0.013** -0.014
[-2.28] [-2.60] [-1.59]

Idiosyncratic volatility -0.060*** -0.059*** -0.032**
[-6.65] [-7.56] [-2.54]

HHI -0.009 -0.003 0.009***
[-1.00] [-0.05] [2.80]

Volume/open interest -0.001 -0.001 0.011*
[-0.59] [-0.31] [1.95]

Option bid-ask spread -0.018*** -0.016*** -0.036***
[-3.61] [-3.18] [-5.54]

Option gamma 0.091*** 0.091*** 0.117***
[10.64] [7.21] [6.65]

Option vega 0.066*** 0.070*** 0.053***
[8.08] [5.98] [3.74]

HV−IV 0.065*** 0.067*** 0.079***
[7.55] [8.61] [12.50]

Constant -0.006*** -0.009*** -0.006*** -0.009*** 0.002 0.002
[-185.37] [-7.21] [-54.61] [-4.57] [0.10] [0.06]

Firm FE YES YES YES YES – –
Time FE YES YES NO NO – –
Industry×Time FE NO NO YES YES – –
N 186,127 186,127 184,174 184,174 186,493 186,493
Adj R2 0.099 0.108 0.141 0.150 – –
Average R2 – – – – 0.006 0.108
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Table A.2. Long horizon demand effects.

2 quarters 3 quarters 4 quarters
(1) (2) (3) (4) (5) (6) (7) (8) (9)

OLS IV Expense OLS IV Expense OLS IV Expense

MFFlow -0.007* -0.007* 0.021*** 0.006 0.006 -0.008** -0.003 -0.002 -0.005
[-1.83] [-1.87] [4.28] [0.71] [0.62] [-2.60] [-0.48] [-0.31] [-1.46]

β -0.012* -0.012* -0.053*** -0.009* -0.009* -0.045*** -0.011** -0.011** -0.043***
[-1.77] [-1.77] [-5.04] [-1.79] [-1.79] [-4.64] [-2.02] [-2.01] [-4.32]

Size 0.063** 0.063** -0.158*** 0.153*** 0.153*** -0.188*** 0.149*** 0.149*** -0.192***
[2.64] [2.64] [-5.43] [5.89] [5.86] [-4.13] [6.00] [6.05] [-4.12]

Book-to-market ratio 0.010** 0.010** -0.028** 0.006 0.006 -0.030** 0.009** 0.009** -0.030**
[2.24] [2.24] [-2.19] [1.59] [1.59] [-2.33] [2.62] [2.61] [-2.29]

12-month momentum 0.019** 0.019** 0.057*** 0.020*** 0.020*** 0.026 0.018*** 0.018*** 0.029
[2.41] [2.41] [3.28] [3.23] [3.23] [1.18] [2.96] [2.96] [1.29]

1/stock price -0.058*** -0.058*** 0.426*** -0.009 -0.009 0.357*** -0.010 -0.010 0.359***
[-3.17] [-3.18] [11.97] [-0.60] [-0.60] [11.10] [-0.74] [-0.74] [11.49]

Excess stock returns -0.010** -0.010** -0.052*** -0.005 -0.005 -0.057*** -0.008* -0.008* -0.057***
[-2.06] [-2.06] [-6.22] [-1.25] [-1.25] [-5.55] [-1.90] [-1.91] [-5.17]

Idiosyncratic volatility -0.056*** -0.056*** -0.331*** -0.044*** -0.044*** -0.286*** -0.041*** -0.041*** -0.277***
[-6.61] [-6.63] [-24.77] [-5.91] [-5.89] [-17.78] [-4.79] [-4.79] [-17.49]

HHI -0.005 -0.005 -0.011 -0.000 -0.000 -0.013 -0.002 -0.002 -0.012
[-0.58] [-0.58] [-0.56] [-0.04] [-0.04] [-0.82] [-0.33] [-0.33] [-0.75]

Volume/open interest -0.001 -0.001 0.002 -0.001 -0.001 0.003 -0.001 -0.001 0.003
[-0.47] [-0.47] [0.84] [-1.53] [-1.53] [1.59] [-1.54] [-1.54] [1.63]

Option bid-ask spread -0.017*** -0.017*** -0.006 -0.001 -0.001 0.005 -0.001 -0.001 0.007
[-3.48] [-3.48] [-0.67] [-0.11] [-0.11] [0.41] [-0.11] [-0.11] [0.55]

Option gamma 0.093*** 0.093*** -0.471*** 0.054*** 0.054*** -0.407*** 0.056*** 0.056*** -0.413***
[7.70] [7.71] [-10.18] [4.68] [4.67] [-6.89] [4.64] [4.64] [-7.23]

OPtion vega 0.064*** 0.064*** -0.111*** 0.013 0.013 -0.035** 0.012 0.012 -0.035**
[5.59] [5.59] [-7.55] [1.37] [1.37] [-2.09] [1.35] [1.34] [-2.14]

HV−IV 0.064*** 0.064*** 0.048*** 0.048*** 0.047*** 0.047***
[7.34] [7.33] [5.17] [5.17] [5.03] [5.03]

Constant -0.010*** 0.048*** -0.017*** 0.034*** -0.016*** 0.028***
[-6.19] [27.38] [-12.03] [16.89] [-12.37] [16.29]

Firm FE YES YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES YES
N 186,758 186,758 186,758 186,422 186,422 186,422 186,213 186,213 186,213
Adj. R2 0.106 -0.012 0.527 0.079 -0.016 0.482 0.083 -0.016 0.485
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Table A.3. Expensiveness robustness tests.
The table presents the robustness test results of baseline regression using panel regressions:

Panel: expensivenessi,t = α + βMFFlowi,t−1 + γXXXi,t−1 + FEi,t + εi,t, ∀ i, t

in Columns (1) to (6), where FEi,t represents different combinations of fixed effects. Columns
(1) and (2) include firm and time fixed effects and estimate standard errors using firm and time
double clustering. Columns (3) and (4) include firm and industry×time fixed effects and report
industry and time double clustering. Columns (5) and (6) report the second-stage estimation using
instrumental variable regression using firm and time fixed effects and standard errors clustered
at industry and time levels. In Columns (7) and (8), we use Fama-MacBeth regression, where the
first step is

Fama-MacBeth: expensivenessi,t = at + bt MFFlowi,t−1 + ccctXXXi,t−1 + ei,t, ∀ i, t = 1, 2, · · · , T

estimated for each cross-sectional observations in time t = 1, 2, · · · , T. The second step is to take
sample average of estimated coefficients in the first step and report standard errors corrected for
heteroskedasticity and autocorrelation using Newey and West (1987) an optimal order of lags.
expensivenessi,t is the monthly option expensiveness measure, defined as the difference between
at-the-money implied volatility and a reference volatility (historical volatility). MFFlowi,t−1 is
defined as in Edmans, Goldstein, and Jiang (2012), where the fire-sale pressure is categorized as
the absolute value of flow to total net asset under management greater than 5%. XXX includes option
and stock characteristics. See Appendix Table A.2 for definitions. All variables are winsorized at
1% level and standardized to have mean zero and standard deviation one. We report t-statistics in
the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance levels, respectively.
The sample is from 1996:01 to 2018:12.

Firm-time clusters Industry×time FE IV Fama-MacBeth
(1) (2) (3) (4) (5) (6) (7) (8)

MFFlow 0.030*** 0.041*** 0.029*** 0.040*** 0.016*** 0.006 0.038*** 0.004
[6.34] [8.66] [6.03] [6.95] [4.33] [1.10] [3.71] [0.39]

β -0.126*** -0.108*** -0.050*** -0.104***
[-10.10] [-8.93] [-4.56] [-6.41]

Size -0.060* -0.063** -0.161*** -0.044***
[-1.95] [-2.17] [-5.77] [-3.07]

Book-to-market ratio -0.035*** -0.017 -0.031** 0.000
[-3.01] [-1.22] [-2.38] [0.03]

12-month momentum 0.022** 0.008 0.058*** 0.075***
[2.07] [0.47] [3.15] [6.55]

1/stock price 0.360*** 0.378*** 0.409*** 0.539***
[16.46] [10.46] [12.33] [23.56]

Excess stock returns -0.052*** -0.028***
[-5.92] [-3.97]

Idiosyncratic volatility -0.340*** -0.316***
[-24.11] [-19.90]

HHI -0.008 -0.001
[-0.42] [-0.22]

Volume/open interest 0.004* 0.003 0.002 0.002
[1.87] [1.29] [0.83] [0.57]

Option bid-ask spread 0.011** 0.002 -0.005 -0.017**
[2.39] [0.19] [-0.49] [-2.16]

Option gamma -0.430*** -0.458*** -0.467*** -0.564***
[-25.82] [-10.02] [-10.56] [-22.48]

Option vega -0.109*** -0.101*** -0.112*** -0.147***
[-9.77] [-11.04] [-8.62] [-15.03]

Constant 0.018*** 0.039*** 0.017*** 0.039*** -0.022 -0.015
[343.76] [24.61] [177.64] [22.71] [-0.31] [-0.24]

Firm FE YES YES YES YES YES YES – –
Time FE YES YES NO NO YES YES – –
Industry×Time FE NO NO YES YES NO NO – –
N 186,127 186,127 184,174 184,174 186,127 186,127 186,493 186,493
Adj. R2 0.445 0.499 0.492 0.546 -0.022 0.130 – –
Average R2 – – – – – – 0.008 0.281
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Table A.4. Anticipation effect robustness test.
The table presents the robustness test results of baseline regression using panel regressions:

Panel: MFFlowi,t = α + βretopt
i,t−1 + γXXXi,t−1 + FEi,t + εi,t, ∀ i, t

in Columns (1) to (4), where FEi,t represents different combinations of fixed effects. Columns
(1) and (2) include firm and time fixed effects and estimate standard errors using firm and time
double clustering. Column (3) and (4) include firm and industry×time fixed effects and report
industry and time double clustering. In Columns (5) and (6), we use Fama-MacBeth regression,
where the first step is

Fama-MacBeth: MFFlowi,t = at + btretopt
i,t−1 + ccctXXXi,t−1 + ei,t, ∀ i, t = 1, 2, · · · , T

estimated for each cross-sectional observations in time t = 1, 2, · · · , T. The second step is to take
sample average of estimated coefficients in the first step and report standard errors corrected for
heteroskedasticity and autocorrelation using Newey and West (1987) an optimal order of lags.
MFFlowi,t is defined as in Edmans, Goldstein, and Jiang (2012), where the fire-sale pressure is
categorized as the absolute value of flow to total net asset under management greater than 5%.
retopt

i,t−1 is the weekly delta-hedged put option returns, defined as Goyal and Saretto (2009) on
every third Friday with one month to maturity and moneyness close to at-the-money options. XXX
includes option and stock characteristics. See Appendix Table A.2 for definitions. All variables
are winsorized at 1% level and standardized to have mean zero and standard deviation one. We
report t-statistics in the bracket under coefficients. *, **, *** represent 10%, 5%, and 1% significance
levels, respectively. The sample is from 1996:01 to 2018:12.

Firm and time clusters Industry×time FE Fama-MacBeth
(1) (2) (3) (4) (5) (6)

retopt -0.004* -0.006*** -0.004* -0.006*** -0.013*** -0.006*
[-1.84] [-2.60] [-1.81] [-2.72] [-3.30] [-1.66]

β 0.009 -0.001 0.010
[1.10] [-0.08] [1.08]

Size -0.364*** -0.384*** -0.399***
[-3.50] [-3.33] [-16.61]

Book-to-market ratio -0.008 -0.013 -0.030**
[-0.51] [-0.84] [-2.40]

12-month momentum -0.009 -0.004 0.025**
[-1.45] [-0.66] [2.41]

1/stock price -0.150*** -0.150*** -0.125***
[-5.88] [-4.95] [-6.57]

Excess stock returns -0.005 -0.003 0.006
[-1.25] [-0.69] [1.31]

Idiosyncratic volatility -0.129*** -0.119*** -0.240***
[-7.76] [-6.02] [-15.20]

HHI -0.035** -0.009 0.006
[-2.47] [-0.12] [0.80]

Volume/open interest 0.002 0.003 0.007**
[0.76] [1.33] [2.50]

Option bid-ask spread 0.013*** 0.013** 0.021***
[3.10] [2.50] [2.75]

Option gamma 0.042*** 0.035** 0.105***
[3.03] [2.44] [7.58]

Option vega 0.048* 0.056** 0.032***
[1.90] [2.23] [3.74]

HV−IV -0.001 -0.004 0.003
[-0.11] [-0.62] [0.37]

Constant 0.009*** 0.024*** 0.006*** 0.023*** -0.089* -0.094**
[2,564.43] [5.09] [331.93] [4.00] [-1.69] [-1.98]

Firm FE YES YES YES YES – –
Time FE YES YES NO NO – –
Industry×Time FE NO NO YES YES – –
N 184,289 184,289 182,303 182,303 184,623 184,623
Adj. R2 0.509 0.517 0.527 0.534 – –
Average R2 – – – – 0.005 0.199
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Table A.5. Spillover effects.

OLS IV Expensive
(1) (2) (3) (4) (5) (6)

MFFlow 0.008** 0.006** 0.007* 0.005* 0.007*** 0.010**
[2.25] [2.07] [1.95] [1.68] [2.84] [2.55]

Volume/open interest 0.011 0.011 -0.012
[1.15] [0.80] [-1.36]

Option bid-ask spread -0.045*** -0.045** -0.094***
[-4.50] [-1.99] [-5.28]

Option gamma 0.121 0.121*** -0.899***
[1.49] [3.07] [-7.00]

OPtion vega 0.019 0.019 -0.263***
[0.34] [0.71] [-2.77]

HV-IV 0.052*** 0.052***
[3.23] [2.66]

beta -0.025** -0.025 -0.104***
[-2.10] [-1.61] [-6.61]

Size 0.014 0.014 -0.112***
[0.46] [0.50] [-3.58]

Book-to-market ratio -0.012 -0.012 0.005
[-0.50] [-0.64] [0.17]

12-month momentum 0.009 0.009 0.024
[0.36] [0.40] [0.99]

1/stock price -0.123** -0.123*** 0.865***
[-2.64] [-2.85] [15.38]

Excess stock returns 0.022 0.022 0.021
[1.33] [1.43] [1.19]

Idiosyncratic volatility -0.022* -0.022 -0.269***
[-1.72] [-0.92] [-8.56]

HHI -0.135* -0.135** -0.116
[-1.86] [-2.21] [-1.54]

Constant -0.072*** -0.057 0.231*** 0.097***
[-1,195.42] [-1.55] [7,463.08] [2.88]

N 505,070 505,070 505,070 505,070 505,070 505,070
Adj. R2 0.100 0.115 -0.008 0.008 0.202 0.391

11



Table A.6. Alternative fire-sale pressure definitions: Flow ranking and differ-
ent flow thresholds.

Demand Anticipation
OLS IV Expensive OLS

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Bottom flow decile

MFFlow -0.013*** -0.014*** -0.020*** -0.022*** 0.026*** 0.016***
[-2.69] [-3.37] [-5.73] [-7.43] [6.80] [3.23]

retopt -0.003 -0.004*
[-1.27] [-1.79]

All controls NO YES NO YES NO NO NO YES
Firm FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
N 176,519 176,519 176,519 176,519 176,519 176,519 174,867 174,867
Adj. R2 0.101 0.110 -0.023 -0.013 0.458 0.537 0.424 0.432

Panel B: Flow threshold −10%

MFFlow -0.011** -0.013** -0.018*** -0.019*** 0.024*** 0.014***
[-2.15] [-2.63] [-4.67] [-5.89] [6.23] [2.87]

retopt -0.001 -0.002
[-0.48] [-0.78]

All controls NO YES NO YES NO NO NO YES
Firm FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
N 169,118 169,118 169,118 169,118 169,118 169,118 168,327 168,327
Adj. R2 0.103 0.112 -0.024 -0.013 0.467 0.544 0.412 0.420

Panel C: Flow threshold −15%

MFFlow -0.014*** -0.015*** -0.018*** -0.018*** 0.019*** 0.010**
[-3.58] [-4.25] [-5.31] [-6.26] [4.70] [2.31]

retopt 0.001 0.000
[0.34] [0.10]

All controls NO YES NO YES NO NO NO YES
Firm FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
N 146,812 146,812 146,812 146,812 146,812 146,812 146,554 146,554
Adj. R2 0.108 0.117 -0.026 -0.016 0.493 0.568 0.357 0.362
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Table A.7. Delta-hedged put option returns and underlying stock returns and
prices during fire sale pressure.

Ψ = Stock returns Stock prices
(1) (2) (3) (4) (5) (6) (7) (8)

Ψ -0.002 -0.009 -0.003 -0.010* -0.000 -0.000 -0.000 -0.000
[-0.36] [-1.60] [-0.57] [-1.79] [-0.96] [-0.86] [-1.08] [-0.95]

MFFlow×Ψ -0.003 -0.003 0.000 0.000
[-1.06] [-1.27] [1.34] [1.15]

MFFlow -0.017*** -0.015*** -0.017*** -0.014**
[-3.32] [-2.99] [-3.05] [-2.63]

β -0.026*** -0.027*** -0.027*** -0.027***
[-3.88] [-3.95] [-3.96] [-4.01]

Size 0.151*** 0.150*** 0.146*** 0.145***
[7.65] [7.56] [7.15] [7.07]

Book-to-market ratio 0.012** 0.012** 0.011** 0.011**
[2.54] [2.49] [2.33] [2.27]

12-month momentum 0.011 0.010 0.012 0.011
[1.48] [1.43] [1.64] [1.60]

Constant -0.006*** -0.014*** -0.006*** -0.014*** -0.006*** -0.014*** -0.006*** -0.013***
[-68.88] [-13.11] [-41.45] [-13.15] [-2,545.05] [-12.77] [-228.94] [-12.58]

N 187,022 187,022 187,022 187,022 187,022 187,022 187,022 187,022
Adj. R2 0.098 0.101 0.098 0.101 0.098 0.101 0.098 0.101
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Table A.8. First-stage regression results.
The table presents the first-stage regression results of instrumental variable method of fire-sale
pressure from mutual fund flows on put option delta-hedged returns. The instrumental variable
method is based on two instruments, Flow-to-volume and Flow-to-Shares outstanding, and the first-
stage least square regressions are:

MFFlowi,t−1 = a0 + b1Flow-to-volumei,t−1 + b2Flow-to-shares outstandingi,t−1

+cXXXi,t−1 + ξi + ξt + ηi,t

MFFlowi,t−1 is defined as in Edmans, Goldstein, and Jiang (2012), where the extreme outflow is
categorized as the absolute value of flow to total net asset under management greater than 5%.
XXX includes option and stock characteristics. See Appendix Table A.2 for variable definitions. All
variables are winsorized at 1% level and standardized to have mean zero and standard deviation
one. The regression includes firm (ξi) and month (ξt) fixed effects and the standard errors are
clustered at industry and date levels, and we report t-statistics in the bracket under coefficients. *,
**, *** represent 10%, 5%, and 1% significance levels, respectively. We also report p-values of the
weak identification test (Stock-Yogo) and the overidentification test (Hansen J) statistics.

(1) (2) (3) (4)

Flow-to-volume 0.920∗∗∗ 0.919∗∗∗ 0.921∗∗∗ 0.920∗∗∗

[114.25] [114.12] [116.46] [116.42]
Flow-to-shares outstanding 0.075∗∗∗ 0.075∗∗∗ 0.073∗∗∗ 0.073∗∗∗

[6.60] [6.61] [6.44] [6.52]
β -0.001 -0.000

[-0.74] [-0.07]
Size 0.003 0.016∗∗∗

[0.61] [2.77]
Book-to-market ratio -0.001 -0.001

[-0.93] [-1.20]
12-month momentum -0.004∗∗∗ -0.005∗∗∗

[-3.59] [-4.04]
1/stock price 0.003 -0.010∗∗∗

[1.22] [-2.82]
Excess stock returns -0.035∗∗∗ -0.034∗∗∗

[-13.18] [-13.19]
Idiosyncratic volatility -0.003 0.003∗

[-1.62] [1.85]
HHI 0.000 0.001

[0.08] [0.70]
Volume/open interest -0.002∗∗∗ -0.001∗∗∗

[-4.25] [-3.29]
Option bid-ask spread -0.005∗∗∗ -0.003∗∗∗

[-5.48] [-3.62]
Option gamma 0.016∗∗∗ 0.020∗∗∗

[9.16] [7.81]
Option vega -0.001 -0.002

[-1.01] [-1.10]
HV-IV -0.018∗∗∗ -0.016∗∗∗

[-8.95] [-10.22]
N 186,127 186,127 186,127 186,127
Stock-Yogo 0.000 0.000 0.000 0.000
Hansen J test 0.000 0.000 0.000 0.00014



Table A.9. IV placebo tests.

(1) (2) (3) (4)
1st 2nd 1st 2nd 1st 2nd 1st 2nd

MFFlow 0.048 0.037 0.051 0.041
[1.22] [1.02] [1.26] [1.07]

Flow-to-volume 0.994∗∗∗ 0.993∗∗∗ 0.994∗∗∗ 0.997∗∗∗

[19.85] [19.57] [20.01] [19.91]
Flow-to-shares outstanding 0.034 0.035 0.033 0.032

[0.59] [0.60] [0.59] [0.55]
β -0.005 0.092∗∗∗ -0.006 0.079∗∗

[-0.59] [2.88] [-0.78] [2.45]
Size 0.012 0.207 0.087 0.226∗

[0.37] [1.52] [1.62] [1.88]
Book-to-market ratio 0.001 -0.090 -0.003 -0.077

[0.15] [-1.56] [-0.40] [-1.50]
12-month momentum -0.001 -0.049 0.001 -0.040

[-0.05] [-0.95] [0.13] [-0.79]
1/stock price 0.002 -0.078 0.000 -0.171∗∗∗

[0.17] [-1.55] [0.04] [-3.86]
Excess stock returns -0.009∗∗∗ -0.036 -0.009∗∗∗ -0.034

[-2.79] [-1.30] [-3.08] [-1.30]
Idiosyncratic volatility -0.011 -0.129 -0.012∗ -0.143

[-1.41] [-1.25] [-1.71] [-1.40]
HHI 0.025 0.121 0.020 0.116

[1.12] [1.00] [1.22] [0.99]
Volume/open interest 0.001 -0.004 0.001 -0.005

[0.61] [-0.14] [0.65] [-0.18]
Option bid-ask spread 0.000 0.021 0.000 0.027

[0.09] [0.73] [0.06] [0.98]
Option gamma 0.008∗ 0.074 0.018∗∗∗ 0.185∗∗

[1.70] [1.12] [3.64] [2.45]
Option vega -0.026∗∗ 0.119∗ -0.049∗∗ 0.051

[-2.16] [1.96] [-2.46] [0.97]
HV−IV -0.002 0.155∗∗∗ -0.004 0.122∗∗∗

[-0.48] [3.40] [-0.79] [2.86]
Firm FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES YES YES YES YES
N 3152 3152 3152 3152
Adj. R2 0.000 0.017 0.008 0.026
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Table A.10. Selection bias

(1) (2) (3)
Probit OLS IV

MFFlow 1.433*** -0.021*** -0.025***
[24.54] [-4.42] [-6.36]

Flow-to-volume -1.366*** – –
[-24.94]

Flow-to-shares outstanding -0.044*** – –
[-3.97]

β -0.011* -0.013* -0.013*
[-1.91] [-1.70] [-1.69]

Size -0.076*** 0.055** 0.053**
[-16.45] [2.26] [2.21]

Book-to-market ratio -0.024*** 0.013*** 0.013***
[-3.64] [2.67] [2.67]

12-month momentum -0.008** 0.018** 0.018**
[-2.01] [2.33] [2.31]

1/stock price -0.063*** -0.064***
[-3.40] [-3.43]

Excess stock returns -0.008 -0.008
[-1.58] [-1.61]

Idiosyncratic volatility -0.061*** -0.062***
[-6.92] [-7.00]

HHI -0.009 -0.009
[-1.00] [-1.01]

Volume/open interest -0.001 -0.001
[-0.53] [-0.53]

Option bid-ask spread -0.017*** -0.017***
[-3.72] [-3.71]

Option gamma 0.089*** 0.089***
[7.74] [7.76]

Option vega 0.066*** 0.067***
[5.88] [5.91]

HV−IV 0.067*** 0.066***
[7.52] [7.51]

Inverse Mills Ratio -0.058*** -0.059***
[-2.73] [-2.74]

Constant -0.232*** -0.009***
[-3.26] [-5.71]

Observations 186,493 186,127 186,127
Industry FE YES – –
Firm FE – YES YES
Time FE YES YES YES
Pseudo R-squared 0.136 – –
Adjusted R-squared – 0.109 -0.011
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Table A.11. DID placebo event time.

T = 1999:05 2009:05 2014:05
(1) (2) (3) (4) (5) (6)

D(MFFlow>Median) 0.015 -0.002 -0.002 0.003 -0.002 -0.001
×D(After T) [0.50] [-0.08] [-0.07] [0.11] [-0.08] [-0.04]

D(MFFlow>Median) -0.028 -0.003 -0.018 -0.027 -0.018 -0.028
[-1.06] [-0.13] [-0.86] [-1.41] [-1.06] [-1.64]

MFFlow -0.021* -0.017 0.012 0.008 -0.009 -0.015
[-1.92] [-1.59] [0.81] [0.54] [-0.95] [-1.57]

β -0.041* -0.019 -0.028
[-1.81] [-1.34] [-1.66]

Size 0.252** -0.028 0.039
[2.00] [-0.49] [0.54]

Book-to-market ratio 0.063*** 0.014 0.027***
[2.95] [1.24] [3.14]

12-month momentum -0.027* -0.007 -0.010
[-1.94] [-0.56] [-0.80]

1/stock price -0.052 -0.111*** -0.092**
[-1.03] [-6.24] [-2.12]

Excess stock returns -0.023** -0.032*** -0.004
[-2.08] [-2.99] [-0.57]

Idiosyncratic volatility -0.115*** -0.094*** -0.116***
[-3.97] [-4.65] [-5.00]

HHI -0.011 0.005 -0.027
[-0.33] [0.20] [-0.49]

Volume/open interest -0.002 -0.004 -0.003
[-0.25] [-0.95] [-0.75]

Option bid-ask spread 0.012 -0.008 -0.017*
[0.83] [-0.61] [-1.95]

Option gamma 0.176*** 0.100*** 0.125***
[4.76] [4.63] [6.23]

Option vega 0.264*** 0.110*** 0.039**
[7.02] [3.33] [2.61]

HV−IV 0.088*** 0.065*** 0.017
[4.93] [3.11] [0.97]

Constant -0.004 0.143*** 0.021*** 0.034*** -0.021*** -0.092***
[-1.01] [8.02] [3.00] [2.72] [-5.61] [-7.57]

N 36,028 36,028 48,929 48,929 42,274 42,274
Adj. R2 0.068 0.089 0.175 0.185 0.064 0.075
Firm FE YES YES YES YES YES YES
Time FE YES YES YES YES YES YES
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Table A.12. Delta-hedged option return summary statistics by year.

Year Mean Std P50 Year Mean Std P50

1996 -0.057 2.20 -0.385 2008 0.237 3.01 -0.333
1997 -0.005 2.27 -0.352 2009 -0.526 2.12 -0.759
1998 0.191 2.52 -0.235 2010 -0.302 1.62 -0.444
1999 0.088 2.72 -0.366 2011 -0.302 1.79 -0.506
2000 -0.215 2.88 -0.632 2012 -0.173 1.25 -0.309
2001 -0.166 2.64 -0.535 2013 -0.188 1.43 -0.345
2002 -0.330 2.39 -0.653 2014 -0.060 1.62 -0.254
2003 -0.270 1.85 -0.463 2015 -0.079 1.75 -0.305
2004 -0.213 1.74 -0.380 2016 -0.264 1.67 -0.436
2005 -0.048 1.73 -0.262 2017 -0.114 1.64 -0.292
2006 -0.129 1.68 -0.325 2018 0.153 1.91 -0.150
2007 0.052 1.96 -0.232
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Table A.14. Summary statistics: Buy pressure.

Mean Std P25 P50 P75 N
Panel A: Call options under buy pressure

Delta-hedged weekly returns (%) -0.18 2.37 -1.38 -0.43 0.61 226,787
MFFlow (%) 0.39 0.74 0.06 0.16 0.40 226,787
Moneyness 1.01 0.05 0.98 1.00 1.03 226,787

Volume/open interest 0.49 1.34 0.04 0.13 0.37 226,787
Option gamma 0.13 0.09 0.07 0.10 0.16 226,787
Option vega 4.46 4.01 1.90 3.34 5.64 226,787
Option bid-ask spread 0.19 0.20 0.08 0.13 0.22 226,787
HV−IV (%) 0.49 13.46 -5.63 0.29 6.19 226,787

β 1.34 0.84 0.77 1.20 1.77 226,787
Size 8.09 1.75 6.87 8.02 9.29 226,787
Book-to-market ratio 0.40 0.32 0.19 0.33 0.54 226,787
12-month momentum 0.21 0.61 -0.14 0.11 0.40 226,787
1/stock price 0.05 0.04 0.02 0.03 0.06 226,787
Excess stock returns 0.01 0.13 -0.06 0.01 0.08 226,787
Idiosyncratic volatility 0.11 0.06 0.07 0.09 0.14 226,787
Herfindahl-Hirschman index 0.06 0.06 0.03 0.04 0.07 226,787

Panel A: Call options under buy pressure

Delta-hedged weekly returns (%) -0.11 2.07 -1.21 -0.37 0.60 188,025
MFFlow (%) 0.34 0.63 0.05 0.15 0.36 188,025
Moneyness 1.00 0.05 0.97 1.00 1.02 188,025

Volume/open interest 0.62 1.82 0.04 0.14 0.45 188,025
Option gamma 0.12 0.08 0.06 0.10 0.15 188,025
Option vega 4.68 4.23 1.99 3.58 5.95 188,025
Option bid-ask spread 0.18 0.19 0.07 0.12 0.21 188,025
HV−IV (%) -0.64 13.71 -6.61 -0.49 5.20 188,025

β 1.34 0.84 0.76 1.20 1.76 188,025
Size 8.29 1.74 7.08 8.23 9.49 188,025
Book-to-market ratio 0.39 0.32 0.19 0.32 0.53 188,025
12-month momentum 0.21 0.62 -0.14 0.11 0.39 188,025
1/stock price 0.04 0.04 0.02 0.03 0.05 188,025
Excess stock returns 0.01 0.13 -0.06 0.01 0.07 188,025
Idiosyncratic volatility 0.11 0.06 0.06 0.09 0.13 188,025
Herfindahl-Hirschman index 0.06 0.06 0.03 0.04 0.07 188,025
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Table A.15. Buy pressure and put option delta-hedged returns: Demand and
anticipation effects.

Demand Anticipation
OLS IV Expensive OLS

(1) (2) (3) (4) (5) (6) (7) (8)

MFFlow -0.017*** -0.028*** -0.024*** -0.035*** 0.016** 0.011**
[-4.74] [-8.41] [-5.87] [-9.31] [2.40] [2.63]

retopt -0.005 -0.009***
[-1.64] [-3.33]

β -0.015** -0.016** -0.052*** -0.035***
[-2.17] [-2.21] [-4.99] [-4.80]

Size 0.043* 0.040 -0.176*** -0.428***
[1.76] [1.65] [-6.29] [-4.09]

Book-to-market ratio 0.012** 0.012** -0.027** -0.003
[2.47] [2.46] [-2.02] [-0.20]

12-month momentum 0.019** 0.019** 0.060*** 0.020**
[2.24] [2.27] [3.35] [2.08]

1/stock price -0.071*** -0.072*** 0.405*** -0.169***
[-3.87] [-3.95] [12.56] [-4.45]

Excess stock returns -0.011** -0.011** -0.050*** 0.023***
[-2.12] [-2.13] [-5.70] [5.55]

Idiosyncratic volatility -0.059*** -0.059*** -0.344*** -0.117***
[-6.73] [-6.81] [-25.43] [-7.33]

HHI -0.007 -0.007 -0.010 -0.026*
[-0.83] [-0.84] [-0.55] [-1.76]

Volume/open interest -0.002 -0.002 0.002 -0.000
[-1.00] [-1.01] [0.69] [-0.18]

Option bid-ask spread -0.017*** -0.017*** -0.008 0.021***
[-3.51] [-3.47] [-0.78] [5.37]

Option gamma 0.090*** 0.090*** -0.468*** 0.056***
[8.09] [8.16] [-10.33] [4.70]

Option vega 0.067*** 0.068*** -0.110*** 0.098***
[5.91] [5.95] [-8.82] [3.91]

HV−IV 0.066*** 0.066*** -0.000
[7.79] [7.79] [-0.04]

Constant -0.006*** -0.008*** 0.019*** 0.054*** 0.014*** 0.033***
[-66.00] [-4.96] [852.48] [30.05] [548.07] [7.72]

N 187,675 187,675 187,675 187,675 187,675 187,675 184,796 184,796
Adj. R2 0.098 0.109 -0.023 -0.011 0.441 0.524 0.491 0.501
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Table A.16. Buy pressure and call option delta-hedged returns: Demand and
anticipation effects.

Demand Anticipation
OLS IV Expensive OLS

(1) (2) (3) (4) (5) (6) (7) (8)

MFFlow -0.020*** -0.029*** -0.028*** -0.038*** 0.019*** 0.011**
[-5.60] [-8.05] [-6.91] [-9.37] [2.84] [2.53]

retopt -0.007** -0.011***
[-2.26] [-3.73]

β -0.014** -0.015** -0.056*** -0.035***
[-2.24] [-2.30] [-5.61] [-4.68]

Size 0.021 0.018 -0.153*** -0.447***
[0.83] [0.69] [-6.15] [-4.57]

Book-to-market ratio 0.013*** 0.013*** -0.025* -0.004
[2.87] [2.85] [-1.82] [-0.27]

12-month momentum 0.017** 0.017** 0.060*** 0.018**
[2.19] [2.23] [3.42] [2.36]

1/stock price -0.072*** -0.074*** 0.398*** -0.171***
[-4.76] [-4.88] [12.77] [-4.87]

Excess stock returns -0.006 -0.006 -0.056*** 0.022***
[-1.10] [-1.12] [-6.85] [5.86]

Idiosyncratic volatility -0.061*** -0.062*** -0.357*** -0.112***
[-7.35] [-7.48] [-27.28] [-7.77]

HHI -0.005 -0.005 -0.014 -0.034**
[-0.49] [-0.50] [-0.86] [-2.53]

Volume/open interest 0.001 0.001 0.018*** -0.001
[0.30] [0.29] [8.63] [-0.50]

Option bid-ask spread -0.034*** -0.034*** -0.046*** 0.013***
[-8.43] [-8.37] [-11.34] [3.09]

Option gamma 0.073*** 0.074*** -0.436*** 0.054***
[6.65] [6.72] [-11.00] [6.11]

Option vega 0.060*** 0.061*** -0.104*** 0.099***
[5.68] [5.73] [-8.24] [4.34]

HV−IV 0.072*** 0.072*** -0.001
[10.81] [10.79] [-0.13]

Constant -0.003*** -0.005*** 0.022*** 0.053*** 0.012*** 0.030***
[-27.56] [-2.92] [950.38] [34.53] [268.64] [8.20]

N 226,521 226,521 226,521 226,521 226,521 226,521 223,076 223,076
Adj. R2 0.093 0.103 -0.020 -0.009 0.413 0.497 0.489 0.500
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