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Abstract 

 

This study documents properties of market-wide corporate bond liquidity and 

suggests that liquidity risk is an important determinant of returns. In market 

downturns, transaction costs rise for sellers and fall for buyers. The negative 

relation between buyer and seller liquidity motivates a new across-measure 

liquidity factor that incorporates an asymmetric liquidity component. Shocks to 

market-wide liquidity explain a large fraction of bond return variation in the time 

series. Primarily driven by the asymmetric component, the liquidity factor attracts 

a cross-sectional risk premium that is robust to controls for credit, equity, and 

interest rate factors as well as the illiquidity level.  
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1. Introduction 

The systematic threat to financial markets arising from a liquidity crisis in U.S. corporate bonds 

has attracted increasing interest from policymakers, investors, and academic researchers over 

recent years. In March 2020, corporate bond mutual funds saw outflows exceeding $250 billion 

and dealers could not fully absorb the selling pressure (Sharpe and Zhou (2020)). The 

pandemic-induced shock to market-wide liquidity had a magnitude of approximately six 

standard deviations according to my estimates. This led to the creation of new facilities to 

stabilize the market, funded by the Federal Reserve and backed with equity invested by the 

U.S. Treasury Department. While the topic has proven systematically relevant, IOSCO (2019) 

points out that corporate bond market liquidity under stressed conditions remains understudied. 

 The contribution of this study to the literature is twofold. First, the paper adds to our 

understanding of the (non-normal) time series distribution of corporate bond liquidity, its 

conditional nature, its high degree of persistence, and its significant predictive power for 

returns. While some studies (e.g., Schestag, Schuster, and Uhrig-Homburg (2016)) benchmark 

different liquidity proxies, this study is the first to combine the information content of various 

measures into a common facet of corporate bond liquidity. I find that a newly proposed across-

measure liquidity risk factor, LRF, explains more variation in corporate bond market returns 

than any single liquidity measure previously documented in the literature. Second, the paper 

evaluates the asset pricing role of liquidity risk and finds that it is a dominant driver of returns 

in the time series and that the liquidity risk premium is statistically significant and 

economically meaningful in the cross-section of corporate bond returns.   

 The paper identifies an asymmetry between liquidity faced by buyers and sellers. The 

asymmetry is documented through a negative time series relation between buyer and seller 

liquidity as increasing transaction costs for customer sell orders are associated with decreasing 

transaction costs for customer buy orders and vice versa. In a market downturn, the conditional 

cost of selling more than doubles while the cost of buying falls by approximately 80%. This 

asymmetry is cyclical in nature as its magnitude crucially depends on financial market 

sentiment. The underlying mechanism is that in a bear market many investors want to sell, 

which makes it relatively difficult to liquidate corporate bonds but easy to buy them. 

Traditional bid-ask spread measures hardly capture the asymmetry in liquidity as they imply 
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that costs for buyer and seller-initiated trades are equal. Hence, my proposed factor 

incorporates symmetric and asymmetric liquidity components. LRF is defined as the average 

of the normalized innovation in the Roll (1984) spread and the normalized difference in sell 

and buy order price impact lambdas. Like in Brennan, Chordia, Subrahmanyam, and Tong 

(2012), the lambdas are estimated via an OLS regression that allows for an asymmetry in the 

price reaction function between buyer and seller-initiated order flow. 

The literature identifies two potential channels for the pricing of liquidity. First, 

illiquidity can be considered as a non-stochastic security characteristic that varies cross-

sectionally between bonds. According to Amihud and Mendelson (1986), a less liquid asset 

with the same promised cash flows, will trade less frequently, realize lower prices, and exhibit 

a higher characteristics risk premium. Second, as empirically documented by Pastor and 

Stambaugh (2003), a liquidity risk premium may arise from an asset’s return exposure to 

market-wide liquidity shocks due to the commonality in liquidity across individual securities. 

Acharya and Pedersen (2005) develop a liquidity-adjusted capital asset pricing model under 

time-varying liquidity conditions. In their framework, the required return of an asset depends 

on expected liquidity and covariances of its returns and liquidity with market returns and 

aggregate liquidity. While my study focusses on the latter channel of aggregate liquidity as a 

state variable in a factor pricing framework, I consider the liquidity characteristic as a control 

variable. The research questions for the asset pricing section of the paper are as follows: 

• Does liquidity risk explain variation in the time series of excess returns and what is the 

magnitude of the liquidity risk factor compared to other common risk factors? 

• What is the compensation (risk premium) for liquidity risk in the cross-section of 

corporate bond portfolios?  

I find that LRF not only explains more time series return variation than any other 

liquidity factor, but also dominates the economic and statistical significance of other common 

risk factors. The quantification of a cross-sectional price for liquidity risk, although 

consistently economically meaningful, depends on the model specification. My benchmark 

factor model estimates the annual liquidity risk premium at 3.63%. This magnitude drops by 
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almost 50%, but remains significant at the 5% level, when controlling for the liquidity 

characteristics premium.  

While the literature on the liquidity characteristic premium has established that illiquid 

bonds earn higher yield spreads (e.g., Chen, Lesmond, and Wei (2007), Bao, Pan, and Wang 

(2011), Dick-Nielsen, Feldhütter, and Lando (2012)), the literature is inconclusive on whether 

time-varying corporate bond market liquidity risk is priced. Lin, Wang, and Wu (2011) apply 

the idea of liquidity betas to corporate bonds. Like Pastor and Stambaugh (2003), they construct 

an aggregate liquidity risk factor and show that this state variable is priced in the cross-section 

of corporate bond returns. The authors report a 4% annualized average return premium for 

bond portfolios with high vs. low sensitivities to aggregate liquidity. In a more recent paper, 

Bai, Bali, and Wen (2019) identify common risk factors in the cross-section of corporate bond 

returns. The authors construct liquidity betas based on return differentials between illiquid and 

liquid bonds using a rolling liquidity beta estimation window for each individual bond. They 

find that liquidity risk (alongside downside and credit risk) attracts an economically and 

statistically significant risk premium. 

 However, the existence of a corporate bond liquidity risk premium is not universally 

accepted. Bongaerts, De Jong, and Driessen (2017) conduct asset pricing tests and, in line with 

my approach, define the liquidity factor as return sensitivity to aggregate liquidity shocks. The 

authors find that exposure to corporate bond liquidity shocks carries an economically negligible 

and negative risk premium. While they acknowledge that corporate bond liquidity shocks alone 

explain more than a quarter of the time series variation in corporate bond returns, they conclude 

that this risk is not priced. Choi and Yongjun (2018) test the integration of equity and corporate 

bond markets. They find that the risk premium for the bond liquidity factor is a small negative 

number and conclude that bond market liquidity tends not to be priced. 

 In addition to the development of a new liquidity measure, my data set and empirical 

methods differ from and thereby aim to contribute to a resolution of the literature’s conflicting 

interpretation of the corporate bond liquidity risk premium. First, most papers investigate only 

a small set of individual liquidity proxies, although each measure may just be a noisy estimate 

of a single underlying liquidity risk. My study tests the significance of a wide array of liquidity 

proxies and then constructs a superior systematic liquidity factor. Second, because my sample 
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covers a longer period than previous papers, it captures more liquidity crises. Third, while my 

main asset pricing tests assume a constant liquidity beta and risk premium, the paper also 

exploits the time variation in liquidity risk exposures to quantify the risk premium over shorter 

horizons. Fourth, predominantly due to the finite life of bonds, my portfolio-based asset pricing 

tests contain less noise than studies that estimate exposures at the security level. The choice of 

asset pricing factors emphasizes robustness and simplicity as opposed to an overfitted model. 

Although only containing liquidity, credit, equity, and interest rate risk factors, my four-factor 

benchmark model explains almost two thirds of the time series return variation of corporate 

bond portfolios. 

 

2. Institutional background, data description, and liquidity estimation 

With a market value of  $10.41 trillion in outstanding corporate bonds, which compares 

to a market capitalization of $32.80 trillion for stocks, the secondary market in corporate debt 

is an important component of the U.S. financial market.1 The level of trading costs in this 

relatively opaque and decentralized market, as measured by bid-ask spreads, is a multiple of 

the trading costs in the equity market and economically meaningful compared to total returns 

(e.g., Bessembinder, Spatt, and Venkataraman (2020)). Corporate bond trading primarily takes 

place in dealer-driven markets with electronic customer-to-customer trading platforms only 

making up a small but growing fraction of overall volume (O’Hara and Zhou (2021)). Although 

dealers have committed less market making capacity over the last decade, they still play a 

crucial role even though for an increasing proportion of trading they merely match customer 

buys and sells without taking bonds into inventory (e.g., Bao, O’Hara, and Zhou (2018)). 

This study uses transaction-level data of individual bonds from the TRACE Enhanced 

database from July 2002 to June 2020. TRACE contains data on price, volume, trade direction, 

security identifiers as well as trade date and time. I extract all trades in corporate bonds2 and 

apply the cleaning procedure of Dick-Nielsen (2009, 2014), which takes care of cancellations, 

 
1 Outstanding U.S. corporate bond volume is sourced from SIFMA (https://www.sifma.org/resources/ 

research/fixed-income-chart/) and equity market cap on all U.S. exchanges from Bloomberg. As of June 2020. 
2 My definition of corporate bonds is in line with the WRDS Corporate Bond Database manual and contains the 

following bond types:  US Corporate Convertible (CCOV), US Corporate Debentures (CDEB), US Corporate 

Medium Term Note (CMTN), US Corporate Medium Term Note Zero (CMTZ), or US Corporate Paper (CP). 
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corrections, reversals, and double counting of trade records. Further, I restrict the sample 

towards more liquid bonds to reduce measurement error in liquidity proxies. A return premium 

due to illiquidity should primarily depend on transaction costs incurred by marginal price 

setters. Hence, the focus of my study is on institutional investors and I remove retail-sized 

trades below $100,000 in value (as in Dick-Nielsen et al. (2012)). While this filter excludes 

71% of trades, the impact on traded volume is less than 1% in my sample. In addition, I require 

at least eight trades per bond each month and I remove primary market transactions. All filters 

are outlined in Appendix 1. 

 From a total of 28.04 million trades in 21,043 unique corporate bonds over 216 months, 

I estimate a set of eleven liquidity measures for each bond-month. I cast a wide net of liquidity 

proxies to increase robustness in the asset pricing tests of market-wide liquidity shocks. The 

choice of liquidity measures spans from popular symmetric liquidity proxies (e.g., Roll spread 

and Amihud’s (2002) ILLIQ measure) to asymmetric liquidity proxies (e.g., difference 

between buy and sell side transaction costs and price impact lambdas). All liquidity measures 

are defined in Appendix 2. On average, each liquidity measure is estimated over approx. 3,000 

bonds, each month. I trim bond-month liquidity measures at the 99% and 1% level to reduce 

the impact of outliers given bond-level liquidity estimates can be noisy. To estimate liquidity 

at the market level, I compute the mean of the bond-month liquidity measures each month. My 

proxy of aggregate liquidity is representative of a (weighted) average between investment 

grade (IG) and high yield (HY) markets, which make up 77.7% and 21.8% of my bond-month 

sample, respectively (the remainder of bonds are unrated). 

 Some of the roundtrip liquidity measures have similar magnitudes and the same unit. 

However, the ILLIQ measure as well as the price impact lambdas vary in magnitude and units 

from the other proxies. This can lead to difficulties when comparing or weighting a 

combination of the measures. Hence, after reporting summary statistics for the raw liquidity 

measures in section 3.1, I follow Korajczyka and Sadka (2008) and standardize all measures. I 

modify the measures to proxy liquidity (as opposed to illiquidity) by multiplying them with (-

1). Hence, when estimating liquidity betas of assets to liquidity shocks, a positive beta implies 

an increasing asset value when liquidity improves and vice versa. Let 𝐿𝑖∗ be the 𝑛 𝑥 𝑇 matrix 

of observation of the ith liquidity measure (i = 1, 2, …,11). Further, define µ𝑡−1
𝑖  and 𝜎𝑡−1

𝑖  as 
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the time series mean and the time series standard deviation of the aggregate liquidity measure 

i, estimated with the full sample up until month 𝑡 − 1 with at least one year of observations. I 

use past observations as opposed to the full sample mean and standard deviation to avoid a 

potential look-ahead bias. Then, 𝐿𝑖 is the 𝑛 𝑥 𝑇 matrix of observations of the ith standardized 

liquidity measure, defined as follows: 

 𝐿𝑡
𝑖 =  

𝐿𝑡
𝑖∗−µ𝑡−1

𝑖

𝜎𝑡−1
𝑖             (1) 

 

 While TRACE Enhanced is the primary data source, I make use of other data providers: 

Returns of fixed income benchmarks and macro as well as financial variables are compiled 

from the Bloomberg terminal. Fama-French and equity liquidity factors are sourced from 

WRDS. Interest rates are sourced from FRED and bond returns and security characteristics are 

sourced from WRDS Bond Returns. Prime dealer corporate bond inventory data comes from 

the New York Fed and monthly asset flows into corporate bond mutual funds is sourced from 

Morningstar Direct. SIFMA provides a time series of IG and HY debt issuance volumes.  

 

3. Analysis of the time series properties of corporate bond market liquidity  

3.1 Summary statistics 

 Table 1 reports that the popular Roll measure estimates the average bid-ask spread at 

61 bps. Its interquartile range is 41 bps to 71 bps in the time series. Roundtrip costs of 36 bps 

and 49 bps are implied by the regression-based half bid-ask spread and the one-way transaction 

cost measure, respectively.3 The imputed roundtrip cost (IRC) measure, which computes the 

spread between the daily minimum and maximum price for transactions of a given bond with 

identical notional quantity, has the lowest value of 30 bps. The measure primarily picks up 

principal trades in which dealers pass on bonds from one customer to another without taking 

the bond on inventory. These trades have low risk for brokers and attract lower transaction 

costs (see Bao et al. (2018)).  

An analysis of asymmetry in liquidity measures indicates that the sell side of transaction 

costs and price impact lambdas is statistically not different from the buy side at any 

 
3  The Roll spread is non-negative by construction and thus higher than the roundtrip costs implied by the 

regression-based bid-ask and transaction cost measures. 
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conventional level. Table 1 reports that aggregate sell costs demonstrate a 27% larger standard 

deviation than buy costs, which implies that the cost incurred for liquidating corporate bonds 

is more uncertain over time than the cost associated with buying bonds. In terms of magnitude, 

the buy and sell lambdas, correspond to a $110 and $90 price impact for a one million dollar 

buy and sell, respectively. The buy and sell lambda coefficient values are economically and 

statistically indistinguishable from zero, on average.4 I will later demonstrate that the time 

series variation of the liquidity asymmetry contains valuable information. The minimum 

aggregate buy cost and buy lambda are strongly negative and therefore imply that, in tail events, 

buyers receive compensation for providing liquidity. The maximum aggregate buy cost and 

buy lambda are less than half of the magnitude of the corresponding maximum sell-side 

measures, on average. This shows that extreme illiquidity penalizes sellers more than buyers, 

which is line with a downside characteristic of market liquidity. 

<Insert Table 1 here> 

 In addition to the first two moments of aggregate corporate bond liquidity levels, Table 

1 reports the third and fourth moments to assess the normality of the distribution. With an 

average of 2.0 across all measures, most are skewed towards the illiquid side. This 

characteristic is more pronounced for asymmetric proxies. Importantly, the buy transaction cost 

and buy lambda have the lowest magnitude in skewness and the buy cost distribution is skewed 

towards the side of lower transaction costs. While the average kurtosis of 17.0 across all 

illiquidity measures indicates materially fatter tails than implied by a normal distribution, the 

asymmetric proxies are again the outliers. Driven by the fat tails of the sell-side cost and lambda, 

these measures have extremely fat tails. The levels of skewness and kurtosis provide evidence 

of the downside characteristic embedded in the asymmetry between seller and buyer liquidity 

relative to symmetric liquidity proxies.5 Figures 1 and 2 graph a time series of symmetric and 

asymmetric liquidity measures, respectively. 

 
4 Two reasons explain lambdas close to zero: First, the return between two trades is regressed on the signed trade 

volume and the trade direction change indicator. Hence, the lambdas provide an estimate for the slope of the price 

function with respect to volume, only after controlling for the bid-ask bounce. Second, under normal market 

conditions, large bond trades attract better pricing than small trades due to the lower marketability of odd lot trades. 
5 The magnitude of non-normality in the asymmetric liquidity proxies is scaled down during the normalization 

process (Equation 1) because these measures demonstrate a comparatively high standard deviation, which serves 

as the denominator for the z-score. 
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<Insert Figure 1 and 2 here> 

 Pastor and Stambaugh (2019) note that a difficulty in assessing market liquidity and 

estimating liquidity betas arises from the rarity of liquidity crises. Liquidity betas are difficult 

to estimate in calm periods in which no crises occur. I circumvent this concern by using a long 

time series that contains two extreme liquidity shocks (financial crisis and pandemic sell-off) 

and by reporting conditional results for positive and negative financial market sentiments. I 

define bull and bear regimes as the subsamples of months where the S&P 500 total return is in 

the lowest and highest quartile of its monthly observations, respectively. The conditional means 

analysis (Panel B and C of Table 1) provides two main insights: First, as expected, illiquidity 

measures across the board are higher in bear than bull market periods. This finding underscores 

the pro-cyclicality embedded in market liquidity. Second, the average rise in asymmetric 

illiquidity measures conditional on a market downturn is more pronounced than the rise across 

symmetric illiquidity proxies. In a bear market, the sell-side transaction costs are approximately 

eleven times higher than the buy costs. This represents a 108% increase in bear market sell 

costs vs. the sell costs measured over the full sample. The symmetric transaction cost measure 

experiences a comparatively modest increase of 21% in bear markets. Similarly, the sell lambda 

exceeds the buy lambda as the buy lambda turns negative conditional on the bear market 

subsample. In such turbulent periods, buyers appear to act as providers (not consumers) of 

liquidity and get compensated with a negative price impact. These findings provide strong 

empirical support for the consideration of an asymmetry in buyer and seller liquidity when 

measuring corporate bond liquidity. In line with my findings, Choi and Huh (2019) report that 

customers increasingly provide liquidity and that conventional liquidity measures treat trades 

in which customers provide liquidity as trades in which customers demand liquidity.  

 The final six months of the sample period cover the pandemic-related sell-off and 

subsequent recovery in risk assets. O’Hara and Zhou (2020) find that during the crisis in March 

2020 there is heightened demand for liquidity and dealers shift from buying bonds to selling 

bonds, exacerbating market illiquidity. Because order flow tilts towards the customer-sell side, 

the authors note that obtaining information on both bids and asks is challenging during the sell-

off. While noting the one-sidedness of the market, they nevertheless use a symmetric 

transaction cost measure, which essentially averages buyer and seller costs.  
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My study provides new insights by splitting the transaction cost measure in O’Hara and 

Zhou (2020) into a buy and sell side to investigate the corporate bond liquidity crisis in March 

2020. Figure 3 shows that the average buy trade has a negative cost of -0.67% at the height of 

the crisis while sell costs climb to 2.18%. Hence, the liquidity asymmetry (sell costs net of buy 

costs) increases materially, which implies that the symmetric transaction costs reported in 

O’Hara and Zhou (2020) are largely driven by the sell side and therefore underestimate the true 

illiquidity faced by sellers. The same pattern prevails in October 2008 during the height of the 

financial crisis, where the average buy and sell trade incurs transaction costs of -3.57% and 

5.27%, respectively. Although neglected by previous corporate bond studies, the asymmetry 

between buyer and seller transaction costs appears too large in magnitude to be ignored. The 

observation of a negative price impact of a buy order during a bear market is not unique to 

corporate bond markets: Kwan, Philip, and Shkilko (2021) report that the price impact of a 

stock order can be opposite its direction, depending on the prevailing order book imbalance. 

<Insert Figure 3 here> 

 

3.2. Autocorrelation in aggregate liquidity  

 According to Acharya and Pedersen (2005), only persistent shocks to liquidity can lead 

to a theoretically justifiable risk premium for illiquidity. The autocorrelation function of 

various liquidity measures is reported in Figure 4. It turns out that liquidity conditions in the 

corporate bond market are very persistent. The symmetric liquidity proxies exhibit an average 

autocorrelation coefficient of +0.89 to their one month lagged observation. From there, the 

level of autocorrelation falls almost monotonically but remains at +0.76 across symmetric 

measures for a three-month lag. The persistence in aggregate liquidity only becomes 

statistically insignificant for a horizon beyond one year. These levels of autocorrelation in 

aggregate corporate bond liquidity are in line with the stock market, where most liquidity 

factors exhibit significant autocorrelations (Korajczyka and Sadka, 2008). 

The degree of persistence for asymmetric liquidity measures is materially lower. The 

one-month autocorrelation coefficient average is +0.46 and the persistence already becomes 

insignificant from the second month lag. This is unsurprising because the asymmetry computes 

seller liquidity relative to buyer liquidity. This difference is more dynamic than the highly 

autocorrelated level of transaction costs. The imbalance between buyer and seller-initiated 
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order flow, conceptually related to asymmetric liquidity measures, is not persistent over time 

with the one- and two-months lag correlation coefficients close to zero. The aggregate order 

imbalance measure, which is averaged across bonds each month, demonstrates its highest level 

of persistence at three- and twelve-months lags, hinting at quarterly and annual seasonality 

effects of one-sided order flow. By comparison, IG and HY market excess returns demonstrate 

autocorrelation of 0.22 and 0.30 at the one-month lag, respectively. Although this correlation 

drops close to zero in the second month and then remains insignificant at longer lags, the short-

term return persistence poses a challenge to the efficient market hypothesis. 

<Insert Figure 4 here> 

 The degree of persistence in (symmetric) liquidity measures motivates the application 

of an autoregressive model, which decomposes the liquidity observations into anticipated 

changes and unanticipated shocks. I use lagged market-wide liquidity observations to construct 

an out-of-sample prediction for each measure. Following Korajczyka and Sadka (2008), I 

estimate shocks (liquidity innovations) through the residuals of an AR(2) model, using two 

months of lagged liquidity observations as regressors. The resulting time series of liquidity 

shocks is shown in Figure 5. The residuals of the AR(2) regressions show no significant 

autocorrelation at conventional levels and thereby qualify as a proxy for liquidity surprises. 

<Insert Figure 5 here> 

 

3.3 Commonality across measures of liquidity 

 The focus of this section is to investigate the commonality between various market 

liquidity proxies to assess whether an across-measure factor may provide a more accurate 

estimate of the true systematic liquidity shock. I begin with an analysis of pair-wise correlations 

between the eleven liquidity measures as well as other financial and microstructure variables. 

This is followed by a principal component analysis (PCA) to formally test the degree of 

common systematic factors in the liquidity measures.  

 Table 2 reports pairwise time series correlations of market liquidity measures for the 

full sample (upper half) and for the bear market sample (lower half). The average pairwise 

correlation coefficient between the normalized innovation element of symmetric liquidity 

measures is +0.87. During bear market episodes, the across-measure correlations increase to 

even higher levels, which suggests common underlying factors in corporate bond liquidity 
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measures. The correlation coefficient between the normalized levels of the two asymmetric 

measures is similarly high at +0.85. The average correlation between levels of asymmetric 

liquidity and symmetric liquidity innovation is somewhat lower at +0.60. This indicates that 

symmetric and asymmetric proxies capture different aspects of liquidity but tend to deviate 

from their mean into the same direction.  

<Insert Table 2 here>  

 The buy cost and buy lambda are both significantly negatively correlated with their sell-

side counterparts. When sellers face low liquidity, buyers tend to benefit from high liquidity 

and vice versa. This aligns with the analysis of summary statistics (Table 1), which shows that 

buyers receive a compensation for liquidity provision at a time when market participants 

struggle to liquidate corporate bonds. This mechanism appears to be driven by the 

microstructure of debt markets, where customers, facilitated through dealers who prefer not to 

take bonds into inventory during times of stress, provide liquidity to each other. By contrast, 

in equity markets, where comparatively deep limit order books are the norm, Brennan et al. 

(2012) report the opposite relation: The time series variation of aggregate buy and sell lambdas 

is shown to have a positive correlation coefficient >0.99. In my corporate bond study, the sell-

side measures positively correlate with the symmetric measures, which indicates that the 

conventional (symmetric) measures are predominantly driven by the sell-side. Hence, 

commonly used symmetric liquidity measures may underrepresent true transaction costs when 

the lower sell-liquidity is averaged with the higher buy-liquidity. Given the negative relation 

between buyer and seller liquidity strengthens in the subsample of bottom-quartile stock market 

performance, just when liquidity conditions become more important to market participants, it 

appears necessary for the corporate bond literature to move beyond exclusively using proxies 

of (symmetric) roundtrip transaction costs. 

 Table 2 reports that market liquidity tends to improve with positive stock returns (S&P 

500) and stock market liquidity, as represented by the aggregate liquidity innovation factor of 

Pastor and Stambaugh. It deteriorates with increasing market volatility (VIX), and funding 

costs (LIBOR spread “Ted”). The magnitude of the correlation coefficients increases in the 

bear market sample, which implies a non-linear relation between bond liquidity and financial 

market sentiment. This is an undesirable property for investors as, conditional on market 
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downturns, corporate bond market liquidity deteriorates more than a linear model would 

suggest. In line with the above findings on liquidity asymmetry, buyer liquidity, as measured 

by the buy transaction cost and buy lambda measures, is negatively correlated with stock 

returns in the time series. Hence, it tends to be more expensive to buy when financial market 

sentiment is positive and vice versa. This finding aligns with the relation between the buy 

lambda and the order imbalance variable. An increase in order imbalance towards more 

customer buys than sells is associated with a decrease in the standardized buy lambda measure, 

which indicates a higher buy price impact at a time where buyers are the consumers of liquidity.  

 In addition to a subsample analysis, the downside risk embedded in corporate bond 

market liquidity is well-illustrated by the difference in correlation coefficients to upside and 

downside stock returns. I define the upside (downside) equity beta as the value of the S&P 500 

return in months of positive (negative) returns and zero otherwise. Across all measures, except 

for the two buyer liquidity proxies, the relation to the downside equity beta is stronger than to 

the upside. Unsurprisingly, the sell-side liquidity proxies have the strongest positive correlation 

to stock market returns within the negative subspace. The empirical downside characteristic 

observed in corporate bond liquidity provides theoretical support for its role as an asset pricing 

factor based on Bawa and Lindenberg’s (1977) framework of the mean-lower partial moment. 

 Large and abrupt outflows from corporate bond funds are considered a systematic risk 

for financial markets (e.g., Sharpe and Zhou (2020)) and accordingly Table 2 documents a 

positive association between net flows and market liquidity. The liquidity-flow relation is 

stronger for asymmetric liquidity proxies, which, by way of construction, better capture 

whether buyers or sellers are liquidity takers.6 I discover and document another dimension of 

corporate bond liquidity risk in Table 2. The relation between market liquidity shocks and the 

monthly change of the cross-sectional standard deviation of bond-month transaction cost 

measures is negative. In short, when market-wide liquidity deteriorates, the dispersion of the 

 
6 Appendix C provides additional information on the financial market and macro variables that drive market 

liquidity. A set of 10 variables explains 62% of the variation of liquidity shocks. For example, the spread between 

the yield in ten-year swaps and U.S. Treasury bonds, a proxy for an illiquidity premium of physical government 

bonds over the derivatives market, relates low liquidity in government bonds to low liquidity in corporate bonds.  
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liquidity conditions across individual bonds increases, possibly making it harder for investors 

to transact in specific bonds they hold or would like to acquire.   

 The results of the PCA indicate that the first principal component (PC1) explains 73% 

of the time series variation across the standardized symmetric liquidity innovations and the 

asymmetric liquidity levels. The first three principal components cumulatively explain 93% of 

the time series variation. Table 3 reports that the PC1 loadings are very similar across most 

liquidity proxies. The exception are buyer liquidity measures, which have the opposite sign on 

the PC1 loading. The PC2 loadings are consistent across most liquidity proxies but demonstrate 

more variation in magnitude. The PC2, which on a standalone basis explains 16% of the 

variation across measures, appears to be the differentiating factor between symmetric and 

asymmetric aspects of liquidity. Its loading is positive for symmetric proxies and negative for 

seller liquidity and asymmetric proxies.   

<Insert Table 3 here> 

 In conclusion, I document a strong positive correlation across the liquidity shock 

measures. I find evidence that surprises to market liquidity comove with stock returns and 

financial market sentiment indicators. This suggests that aggregate liquidity risk may be a 

priced factor. The PCA results provide evidence that the variation across liquidity measures is 

to a large extent driven by common systematic components. The dimensionality reduction 

procedure of the PCA also documents the differences between buyer and seller liquidity proxies 

and emphasizes that the asymmetry is driven by differing exposures to underlying systematic 

shocks. Therefore, an across-measure liquidity factor, which captures both symmetric and 

asymmetric liquidity, should provide a more accurate estimate of true liquidity shocks than 

each individual proxy on a standalone basis. Hence, I define my liquidity risk factor, LRF, as 

𝐿𝑅𝐹𝑡 =
1

2
𝜀𝑅𝑜𝑙𝑙,𝑡 +

1

2
𝜆𝑡

𝑆−𝐵,            (2)  

 

where 𝜀𝑅𝑜𝑙𝑙,𝑡 is the innovation element of an AR(2) model of the market-wide Roll spread and 

𝜆𝑡
𝑆−𝐵 is the level of lambda asymmetry estimated at the bond-level and aggregated at the market 

level. Both measures are normalized as shown in Equation (1). The Roll spread is 

recommended by Schestag et al. (2016) due to its ability to capture transaction costs. The 
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lambda asymmetry is chosen because it measures the difference in seller and buyer price impact 

while controlling for the symmetric bid-ask spread element (see Appendix B.2.1). 

 

3.4 The temporal relation between liquidity and credit returns 

 Having established a strong link between contemporaneous market returns and liquidity 

shocks, the natural question arises whether one can predict the other. For brevity and 

considering the high degree of commonality across most of the liquidity measures, I report 

results for two symmetric measures (Roll spread and transaction costs), two asymmetric 

measures (sell-buy asymmetry in transaction costs and lambdas), and LRF.  

Table 4 shows a significant positive correlation between contemporaneous corporate 

bond market returns and liquidity. Improving liquidity is associated with positive excess returns. 

This relation is stronger in the IG (ICE BofA US Corporate Index) than HY (ICE BofA US 

High Yield Index) market and stronger for asymmetric compared to symmetric liquidity 

proxies. Further, aggregate liquidity demonstrates a positive relation to future returns. The 

correlation to one-month forward returns is significant at the 1% level for most measures, 

stronger in the HY market, and strongest for asymmetric liquidity measures as well as LRF. 

Hence, a positive shock to liquidity in a given month is associated with positive excess returns 

in the coming month. The inverse relation, i.e., returns predicting liquidity, is significant at the 

5% level across most liquidity measures. However, because the cross-serial correlation 

coefficient has a smaller magnitude, the linear relation between returns and future liquidity 

appears modestly weaker than vice versa. This finding differs from the relation observed in the 

presumably more efficient (and liquid) stock market. Based on U.S. data from 1983 to 2000, 

Korajczyka and Sadka (2008), report that liquidity shocks appear uncorrelated with future 

returns but that liquidity shocks can be predicted by historical returns. 

<Insert Table 4 here>  

 The analysis above is set up with a one-month horizon. Figure 6 expands the 

predictability horizon to up to 12 monthly leads and lags of IG market excess returns. It 

becomes apparent that the cross-serial correlation coefficient quickly drops towards zero 

beyond one month, which indicates that shocks to liquidity do not demonstrate significant 

predictive power for longer term returns. 
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4. Asset pricing with liquidity factors 

4.1 The asset pricing model 

The above findings about the time series properties of the systematic corporate bond 

liquidity factor motivate an analysis of its effect on asset prices. The asset pricing model 

follows a standard risk factor approach. The benchmark model explains the test assets’ excess 

return over the risk-free rate with exposures to four factors. The main factor of interest is LRF, 

with credit, equity, and interest rate factors acting as controls.  

Credit risk is a common factor in corporate bond returns (e.g., Bai et al. (2019)) and is 

therefore included in my asset pricing model. The positive correlation between credit risk and 

illiquidity risk creates an endogeneity concern (reverse causality). Hence, instead of extracting 

a yield spread above a risk-free benchmark, which likely already contains a compensation for 

liquidity risk, I measure credit spreads from a credit default swap index (CDX). This derivative 

is a basket of North American single IG issuer credit default swaps. CDX are standardized 

instruments with large trading volumes and smaller bid-ask spreads compared to the average 

corporate bond (Boyarchenko, Gupta, Steele, and Yen (2018)) and a suitable proxy for liquid 

credit spreads. Specifically, my credit risk factor is the monthly change in a 5-year IG CDX 

contract. The factor is linearly related to an investable strategy of holding and rolling over CDX.  

Bongaerts et al. (2017) state that any reasonable corporate bond asset pricing model 

should have at least one market risk factor and I follow their approach to include an equity risk 

factor as measured by S&P 500 returns. Because fixed income securities should be sensitive to 

changes in the market yields, an interest rate risk factor, as measured by changes of the yield 

on U.S. Treasury securities at 7-year constant maturity, completes the list of betas. The 7-year 

maturity point is chosen because it lies between the median (5.6 years) and mean (8.7 years) 

time to maturity across the bond sample. All risk factors are normalized as shown in Equation 

(1) to allow for a comparison of magnitudes. For consistency, the rates and credit factors are 

multiplied by (-1), so that an increase in the risk factor corresponds to a positive corporate bond 

return impact. Fig. 7 plots the monthly time series of the four factors.  

 The security-level regression approach that is commonly used in the equity literature is 

arguably less suitable for bonds. Bonds have finite lives, whereas stocks are a perpetual claim 
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on a firm’s cash flow. This implies that individual bonds mechanically demonstrate time 

variation in betas while approaching maturity. In addition to the bond-specific economic 

rational, Pastor and Stambaugh (2019) provide support from an econometric perspective as 

they argue that portfolio betas to aggregate liquidity shocks contain less measurement error 

than beta estimates from single securities. Similarly, Lin et al. (2011) note a reduction of noise 

when empirically estimating factor exposures using portfolio as opposed to individual bonds. 

The construction of portfolio test assets in my analysis follows Bai et al. (2019), who double 

sort corporate bonds into quintiles based on the outstanding amount and time to maturity. This 

results in 25 portfolios with a reasonable variation in the liquidity dimension as issue size is a 

common proxy for liquidity (e.g., Bongaerts et al. (2017)). An advantage over previous studies 

is that I investigate liquidity risk over 18 years and thereby cover the pre- and post-Volcker 

rule era, which constitute differing market making environments. This is important as the 

existence (or lack of) a risk premium can hardly be proven with insufficient data.  

 The first step of the Fama-MacBeth (1973) asset pricing analysis is to investigate if the 

test assets have a statistically and economically significant loading on the risk factors. Hence, 

the equally weighted excess returns over the risk-free rate of bonds in portfolio i are regressed 

on the four risk factors and a constant. The total return of each corporate bond is sourced from 

WRDS Bond Returns. It is a combination of the monthly price change (using the last traded 

price within the last five trading days of the month) and the accrued coupon interest. The time 

series regressions with monthly (t) frequency are set up as follows: 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑡 = 𝛼𝑖 + 𝛽1,𝑖𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑝𝑟𝑜𝑥𝑦𝑡 +  𝛽2,𝑖𝐶𝑟𝑒𝑑𝑖𝑡 𝑟𝑖𝑠𝑘 𝑝𝑟𝑜𝑥𝑦𝑡  +

 𝛽3,𝑖𝐸𝑞𝑢𝑖𝑡𝑦 𝑟𝑖𝑠𝑘 𝑝𝑟𝑜𝑥𝑦𝑡 + 𝛽4,𝑖𝑅𝑎𝑡𝑒𝑠 𝑟𝑖𝑠𝑘 𝑝𝑟𝑜𝑥𝑦𝑡 + 𝜀𝑖,𝑡      (3) 

 

 The second step investigates if the factor loadings earn a cross-sectional risk premium. 

Hence, in the second stage, the betas from the first stage are regressed on the portfolios’ average 

excess returns over the full sample. The estimated coefficient loadings then represent lambdas 

(risk premia) for the systematic factor exposures.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖 = 𝜆𝛼 + 𝜆𝛽1
𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑏𝑒𝑡𝑎𝑖 +  𝜆𝛽2

𝐶𝑟𝑒𝑑𝑖𝑡 𝑏𝑒𝑡𝑎𝑖  +

 𝜆𝛽3
𝐸𝑞𝑢𝑖𝑡𝑦 𝑏𝑒𝑡𝑎𝑖 + 𝜆𝛽4

𝑅𝑎𝑡𝑒𝑠 𝑏𝑒𝑡𝑎𝑖 + 𝜀𝑖       (4) 
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 Assuming the model captures all relevant risk factors, the intercept term 𝜆𝛼  should be 

zero in theory but it is included in the regression specification to test its value empirically. The 

coefficients 𝜆𝛽1
, 𝜆𝛽2

, 𝜆𝛽3
, and 𝜆𝛽4

 measure the market prices of liquidity, credit, equity, and 

interest rate factor risks, respectively. The error term 𝜀𝑖 is the pricing error of portfolio i. The 

key research question is whether the liquidity risk premium, 𝜆𝛽1
, is significantly positive after 

controlling for liquid credit, equity, and rates risk exposures. 

 

4.2 Variance decomposition of corporate bond market excess returns 

 Before formally testing the significance of liquidity risk factors for the time series and 

cross-section of corporate bond portfolio returns, this section investigates the impact of 

liquidity shocks on the overall risk in IG and HY market returns as proxied by the same 

benchmarks as in section 3.4. To assess the magnitude of liquidity, credit, and equity risk, I 

decompose the realized volatility (annualized standard deviation) of excess returns over 

maturity-matched treasuries into risk factors. Because the market returns are measured in 

excess of the return of default risk-free bonds with the same maturity (as opposed to cash), they 

should not contain a term premium and the interest rate factor is not required.  

 Table 5 reports the coefficients and t-stats (Newey-West corrected with two monthly 

lags) as well as the model 𝑅2 of market excess return regressions. It stands out that just three 

(normalized) factors, namely liquidity, credit, and equity, can explain up to three quarters of 

the time series variation in corporate bond market excess returns. The model fits equally-well 

to IG and HY market benchmarks. In a horse race of liquidity measures, the chosen proxies all 

prove significant at the 1% level in the IG market, but some add more explanatory power than 

others. In the IG market, the incremental 𝑅2  is up to 7% and 11% for asymmetric and 

symmetric liquidity proxies, respectively. A combination of the two, as represented by LRF, 

achieves the highest incremental 𝑅2 and statistical significance of any liquidity measure. The 

dominance of LRF also holds in the non-IG market, where the factor has a higher economic 

and statistical significance than other liquidity proxies (Table 5 – Panel B). HY market returns 

are comparatively more sensitive to asymmetric liquidity proxies. While the innovation 

element of the symmetric Roll measure is not significant at the 5% level, the lambda asymmetry 
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is significant at the 1% level. This implies that the riskier segment of the bond market is more 

sensitive to asymmetric liquidity risk than to a shock in roundtrip transaction costs.  

<Insert Table 5 here> 

 In a comparison of coefficient values across the three risk factors in the IG market, the 

loadings on liquidity risk are larger than on credit and equity risk. Focusing on the LRF 

regression as the baseline (Table 5 – Panel A – column VII), this indicates a higher sensitivity 

of IG excess returns to a one standard deviation change in liquidity (89 bps) than to credit (40 

bps) and equity (36 bps) ceteris paribus.  

 The risk factor exposures, which conceptually correspond to the percentage market 

value allocation in the classical portfolio variance setup, can be used as inputs to compute their 

marginal risk contributions to market excess returns. For the decomposition of total volatility, 

where the comparability of the coefficient magnitudes is irrelevant, I use the original risk factor 

values as opposed to the normalized time series for liquidity, credit, and equity risk. This 

preserves the distribution of the raw risk factor observations and thereby increases the model’s 

explanatory power. This analysis identifies the marginal contribution to risk coming from each 

risk factor i and is computed from the covariance matrix of factor and market returns as well 

as the factor i’s weight 𝑤𝑖, and the market portfolio j’s volatility: 

𝑀𝐶𝑇𝑅𝑖 =
𝜕𝜎𝑗

𝜕𝑤𝑖
=

1

𝜎𝑗
∑ 𝑤𝑖𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑗) 

𝑛

𝑖
        (5) 

 

Figure 8 shows that the volatility of IG and HY market excess returns over maturity-

matched government bonds over the full sample period is 5.59% and 10.38%, respectively. The 

graph illustrates a decomposition of the total volatility into contributions from statistically 

significant risk factors (at the 1% level). The proxies for symmetric and asymmetric liquidity 

risk contribute 1.60% and 0.90% of volatility in the IG market, respectively. The asymmetric 

liquidity measure contributes 2.14% to HY market volatility, while the symmetric proxy is not 

significant at conventional levels. Hence, the combination of symmetric and asymmetric 

liquidity risks makes up 45% of the overall risk in IG and 21% of the overall risk in HY. The 

credit risk factor contributes 33% (35%) and equity risk contributes 13% (33%) of overall 

volatility in IG (HY). Only around 9% (IG) and 12% (HY) of the total volatility are not 
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explained by the above factors, as the regressions underlying Figure 8 report a model 𝑅2 of 

82% for IG and 78% for HY.  

<Insert Figure 8 here> 

 

4.3 Do exposures to liquidity risk drive variation in the time series of returns? 

 If liquidity, credit, equity, and rates risk capture the variation in corporate bond excess 

returns across the issue size and maturity spectrum well, the regressions specified in Equation 

(3) should yield reasonably high 𝑅2′𝑠 and significant coefficient values for most test assets. 

The time series regressions are estimated across the 25 test portfolios with 204 monthly 

observations and Newey-West corrected standard errors (with two lags). 

 The benchmark model in Panel A captures 64% of the portfolios’ time series return 

variation, on average. The distribution of 𝑅2′𝑠 is remarkably stable with only five of the 25 

portfolios demonstrating a value below 60%. All these five portfolios are in the lowest maturity 

quintile where risk factors naturally approach zero as the bonds near maturity.  

Panel B of Table 6 contains the average coefficient values for a simple three-factor 

model of only credit, equity, and rates risk. The average 𝑅2 drops to 45%, which implies an 

average incremental 𝑅2 of 19 percentage points for LRF relative to the three-factor model. The 

explanatory power and coefficient magnitude of LRF is higher across the test assets than the 

IG market benchmark. This is a function of the characteristics-sorting of bonds by issue size, 

which biases weight towards the smaller issue sizes that tend to demonstrate more liquidity risk 

exposure (Table 6 – Panel A). In contrast, the value-weighted benchmark biases weight towards 

the larger issue sizes that tend to demonstrate less liquidity risk exposure.7 An additional 

difference between the test assets and the benchmark is that the former only consist of bonds 

that are traded during the last five business days of a month while the latter contains all bonds 

that meet the index criteria. This implies that a fraction of bonds in the benchmark may be 

valued with stale prices. The smoothing bias in reported benchmark returns induced by a 

delayed or partial adjustment to market prices often arises in illiquid asset classes (e.g., Geltner 

(1991)) and can lead to downward biased volatility and liquidity beta estimates. 

 
7 Because my test assets are formed by ranking the outstanding amount of corporate bonds, the size distribution 

within each portfolio is almost uniform. The time series regression results are largely unchanged when value-

weighting (mean LRF exposure of 1.37) as opposed to equal-weighting returns (mean LRF exposure of 1.38). 
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<Insert Table 6 here> 

 While the strong explanatory power of the model is an assuring feature, the main 

interest lies in the statistical and economic significance of the coefficient values with a 

particular focus on LRF, the newly proposed liquidity risk factor. Indeed, LRF appears to be a 

significant driver of monthly corporate bond excess returns. The factor has an average t-statistic 

of 8.7. The t-statistics range from 4.2 to 15.7 and hence all test assets demonstrate liquidity 

sensitivity at the 1% level of significance. The average coefficient value implies +1.38% excess 

return impact for a one standard deviation improvement in aggregate liquidity. This is 

economically meaningful as it corresponds to 27% of the test assets’ mean annual excess return.  

 The t-statistics for equity and interest rate risk largely prove significant as their averages 

across the 25 test portfolios indicate significance at the 5% and 1% level, respectively. 

However, the distribution of t-statistics is not as stable for equity and interest rate risk as it is 

for the liquidity risk factor. At the 5% level, 60% and 68% of the test assets load statistically 

significant on equity risk and rates risk, respectively. The rates factor falls short of the 10% 

significance level for all portfolios in the lowest maturity quintile, which is intuitive as short-

dated bonds are less sensitive to shifts in the government bond yield curve. The credit risk 

factor is insignificant at conventional levels in this setting, but I will demonstrate its importance 

by varying the risk factor specification and set of test assets. The economic magnitude of the 

coefficients can be compared conveniently due to the normalization procedure embedded in 

the risk factors. An instantaneous one standard deviation move in liquidity, equity, and rates is 

associated with 138 bps, 26 bps, and 54 bps of corporate bond portfolio excess returns, 

respectively. 

The results in Table 6 are related to Table 8 in Bai et al. (2019), who suggest that their 

risk factor selection of the excess bond market return, a downside risk factor, a credit risk factor, 

and a liquidity risk factor substantially outperforms other models considered in the literature. I 

extract their risk factors and estimate time series regressions with my test assets.8 Over a period 

from July 2004 to December 2019, Panel C of Table 6 reports an average 𝑅2 of 72% for their 

four-factor model. A difference to their setup is that my benchmark model does not include a 

 
8 A time series of bond factors can be obtained from Professor Turan G. Bali’s website:  

https://sites.google.com/a/georgetown.edu/turan-bali/data-working-papers 
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corporate bond market factor. This aims to reduce multicollinearity concerns due to the same 

liquidity and credit premia being present in multiple independent variables. However, for 

comparability of my results with Bai et al. (2019) and due to its strong significance, I add a 

corporate bond market factor to my benchmark model (Table 6 - Panel D). This factor is 

computed each month as the average excess return over the risk-free rate of all bonds in the 

sample. Over the same period as in Panel C, my five-factor model records a modestly higher 

average 𝑅2 of 81%. The average corporate bond market coefficient is close to 1, which is 

intuitive given the aggregation of all portfolios adds up to the market. The other factor loadings 

can be interpreted as relative risk exposure compared to the market risk proxy and it is 

unsurprising that their mean coefficients are close to zero. The inclusion of the market risk 

factor not only increases the explanatory power of the model but also reduces the average 

intercept materially. Panel C and D estimate the alpha term at less than one basis point per 

month, which indicates a strong empirical performance of both models. 

 

4.4 Estimation of a liquidity risk premium in the cross-section 

 The previous section estimates liquidity betas for the test assets. In the second stage of 

a classical Fama-MacBeth (1973) asset pricing analysis, the focus now shifts to the question 

whether the risk factor exposures from the first stage can explain cross-sectional variation in 

portfolio excess returns. This is an important question because the mere statistical significance 

of risk factors identified through time series regressions neither proves that these factors earn 

a statistically significant risk premium, nor does it reliably quantify the magnitude of any such 

factor premium. Specifically, the main research question is whether investors earn a (positive) 

compensation for exposure to the liquidity risk factor after controlling for other risks.  

 The mean excess return over the risk-free rate for the 25 test portfolios, which averages 

0.42% per month (approx. 5.2% p.a.), is the dependent variable in the regression specified in 

Equation (4). Regression I of Table 7, which uses the risk factor loadings of the benchmark 

model (obtained in Panel A of Table 6), estimates the cross-sectional LRF risk premium at 22 

bps per month. With an average LRF exposure of 1.38, this results in an annual return 

contribution of 3.63% from liquidity risk. This corresponds to 71% of the average excess return. 

In addition to being economically meaningful, the liquidity risk premium is statistically 
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significant at the 1% level. Another perspective on the economic significance is that a one 

standard deviation change in LRF exposure is associated with an annualized return impact of 

1.55%. Looking at quintiles of high vs. low liquidity beta portfolios and multiplying the 

respective average liquidity beta with the price of liquidity risk, yields a return differential of 

4.53% attributable to the varying liquidity risk exposures. This is of moderately higher 

magnitude than the decile-based estimate of Lin et al. (2011), who report a return spread of 

about 4% annually for bonds with high relative to low sensitivities to liquidity. The cross-

sectional (normalized) equity risk premium is estimated at 16 bps per month, which 

corresponds to a return contribution of 0.52% p.a. under consideration of the average first stage 

factor loading. The equity risk premium is statistically significant at the 5% level.  

The model 𝑅2 of 88% is an assuring feature that the four factors in combination not 

only explain most of the return variation in the time series (Table 6 – Panel A) but that their 

loadings also explain the cross-sectional variation in portfolio returns. The overall model fit is 

good but not optimal as indicated by the intercept term, which is statistically significant at the 

5% level. However, given the intercept of 7.6 bps per month corresponds to less than a fifth of 

the portfolios’ average excess return, it is economically small. In summary, I find strong 

empirical evidence that liquidity risk exposure attracts a positive risk premium in the cross-

section of corporate bond returns. 

<Insert Table 7 here> 

The magnitude of return contribution from credit and rates risk is economically not 

meaningful in regression I. In regression II, I proceed with the second stage of the three-factor 

model (Table 6 – Panel B) to analyze the risk premia for credit, equity, and rates in the absence 

of the liquidity risk factor. I find that each of the three risk premia are significant at the 10% 

level once liquidity risk is omitted in the cross-sectional regression. The annual return 

contribution, based on the product of average factor exposures and price of risk, are 1.87%, 

1.61%, and 0.51% for credit, equity, and rates, respectively. However, due to LRF’s 

significance in regression I, even after controlling for credit, equity, and rates, and because the 

intercept is modestly higher and the model 𝑅2 marginally lower in regression II, the preference 

should be not to omit liquidity risk.  
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The results in Panel A and B of Table 6 indicate interaction effects between the four 

risk factors. This is not surprising as Table 2 suggests that market liquidity is related to financial 

market sentiment. Although the risk factors in this analysis have been chosen with 

consideration for multicollinearity and endogeneity, a particular concern is the time-series 

correlation between LRF and the credit (0.67) and equity (0.61) risk factors. I circumvent the 

concern that LRF may primarily pick up credit and equity risk by analyzing the component that 

is linearly unrelated to other risk factors in the model. To proxy for the component of liquidity 

risk that is unrelated to its embedded credit and equity risk, I regress the time series of LRF on 

monthly CDX changes and S&P 500 returns.9 I then extract the time series of the error term 

that sets the predicted value of LRF equal to its actual value and name it LRFidiosyncratic. This 

factor, which is orthogonal to the other factors in the model, remains significant at the 1% level 

with similar magnitude and only modestly lower incremental explanatory power than LRF 

itself in the time series of portfolio returns (Table 6 – Panel E). In the second stage Fama-

MacBeth (regression III of Table 7), the estimated cross-sectional liquidity risk premium for 

LRFidiosyncratic remains significant at the 1% level. Based on the average beta in the first stage, 

the return contribution from LRFidiosyncratic is 1.98% p.a., which is economically meaningful. 

The cross-sectional risk premium for credit and equity risk is positive and significant at the 5% 

level in this setup. This strengthens the evidence for a positive liquidity risk premium as it 

contains information beyond credit and equity risk premia and can coexist with other factors. 

Because LRF contains a symmetric and asymmetric component, the natural question 

arises whether the identified risk premium is primarily driven by the former or the latter. The 

model in Panel F of Table 6 includes both the market-wide Roll spread innovation and the level 

of aggregate lambda asymmetry. With a statistical significance at the 1% level, the asymmetric 

proxy dominates the symmetric liquidity proxy in the time series as the Roll spread innovation 

is insignificant at conventional levels. Under consideration of the average betas from the first 

stage, the second stage (Table 7 – regression IV) implies an annual return contribution of 3.66% 

from the asymmetric and 0.54% from the symmetric liquidity proxy. This suggests that the 

liquidity risk premium is predominantly driven by the asymmetric liquidity component. 

 
9 The OLS regression has 204 observations, a 𝑅2 of 50%, and credit and equity risk are both significant at the 

1% level with heteroscedasticity and autocorrelation robust standard errors using two monthly lags.  
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Due to the integration of corporate debt and equity markets, and because systematic 

liquidity shocks could affect multiple asset classes, the corporate bond literature commonly 

controls for equity market liquidity (e.g., Bai et al. (2019) and Choi and Yongjun (2018)). 

Bongaerts et al. (2017) report that the innovation element in equity liquidity is priced in the 

cross-section of characteristics-sorted corporate bond portfolios. To check whether this result 

holds in the presence of my newly proposed liquidity risk proxy, I repeat the first and second 

stage Fama-MacBeth regressions with the four-factor model and the Pastor-Stambaugh factor 

for aggregate stock liquidity innovation. The mean coefficient values and t-statistics of the first 

stage are reported in Panel G of Table 6. The bond liquidity factor, LRF, remains significant at 

the 1% level and has a modestly higher magnitude than in the baseline model in Panel A. The 

negative coefficient on equity liquidity shocks implies that corporate bond returns tend to go 

down when stock market illiquidity goes up. However, because the time series coefficient falls 

short of the 10% level of significance based on mean and median t-statistics, the relation is 

statistically weak at best. The cross-sectional regression V of Table 7 shows a positive price of 

risk for the equity liquidity beta. This is counterintuitive as the equity liquidity betas are all 

negative, one would require a negative price of risk to obtain a positive equity liquidity risk 

premium. The annualized return impact from equity liquidity risk exposure is -0.62% and 

significant at the 10% level. The time series and cross-sectional properties of LRF remain 

almost unchanged and therefore robust to the inclusion of the equity liquidity factor. 

Lastly, I test if conditional LRF loadings, estimated in the subsample of the lowest 

quartile of monthly equity returns, have explanatory power for returns. The time series analysis 

in Panel H of Table 6 indicates that the liquidity betas estimated in equity bear markets are 

quantitatively similar to the unconditional liquidity betas (Panel A) and remain significant at 

the 1% level. The economic and statistical significance of the liquidity risk premium, as 

estimated in regression VI of Table 7 with conditional betas and unconditional corporate bond 

portfolio excess returns, remains almost identical to the baseline result (regression I). 

 

4.5 The separation of liquidity level and liquidity risk  

The focus in the asset pricing section of this paper is to measure corporate bond 

portfolios’ factor exposures to market-wide liquidity shocks and to tests if these exposures are 
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priced cross-sectionally. So far, the level of illiquidity in the test assets is not considered. This 

is in line with Bai et al. (2019), who only control for security characteristics like illiquidity in 

the bond-level analysis but not in the portfolio asset pricing tests. In contrast, Bongaerts et al. 

(2017) control for a portfolio liquidity characteristic in the cross-section. 

In Panel I of Table 6, I start by adding the level of the market-wide (average) Roll 

spread to the time series regression. Indeed, the aggregate level of transaction costs has a 

positive loading that is significant at the 1% level. This implies higher returns when the level 

of illiquidity is high. The liquidity, equity, credit, and rates factors remain of similar magnitude 

and significance compared to the baseline model in Panel A, but the intercept turns from 

positive to negative (significant at the 5% level). This is not surprising as the level of aggregate 

transaction cost is persistent over time (see Figure 4) and therefore absorbs some of the loading 

of the regression intercept. The model 𝑅2 increases by almost 7%, which demonstrates a non-

negligible incremental explanatory power from the level of aggregate transaction costs.  

After finding evidence of significance in the time series, the question arises if the level 

of liquidity can explain the variation in test asset returns in the cross-section and if the liquidity 

characteristic may make the liquidity beta premium obsolete. The liquidity beta (0.90) and the 

liquidity characteristic (0.96) have a positive cross-sectional correlation with excess returns, 

which informally suggests that both may be priced. Equation (6) follow Bongaerts et al. (2017) 

and add each portfolios’ average transaction cost, as measured by the Roll spread, as control 

variable. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑖 = 𝜆𝛼 + 𝜆𝛽1
𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑏𝑒𝑡𝑎𝑖 +  𝜆𝛽2

𝐶𝑟𝑒𝑑𝑖𝑡 𝑏𝑒𝑡𝑎𝑖  +

 𝜆𝛽3
𝐸𝑞𝑢𝑖𝑡𝑦 𝑏𝑒𝑡𝑎𝑖 + 𝜆𝛽4

𝑅𝑎𝑡𝑒𝑠 𝑏𝑒𝑡𝑎𝑖 + 𝜆𝐶𝑅𝑜𝑙𝑙 𝑠𝑝𝑟𝑒𝑎𝑑𝑖 + 𝜀𝑖     (6) 

 

 Regression VII in Table 7 reports the prices of risk for the factors and the liquidity 

level characteristic, 𝜆𝐶 . The liquidity characteristic attracts a positive premium that is 

significant at the 1% level. The coefficient of 0.43 and the average transaction cost level of 

0.57% imply a liquidity level premium of 2.97% per year. The statistical and economic 

significance of the liquidity level effect leads to an approx. 50% reduction of the estimated 

liquidity risk premium from 3.63% in regression I to 1.83%. While smaller in magnitude, the 

liquidity risk premium remains economically meaningful and significant at the 5% level.  
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The finding of a coexistence of the liquidity characteristics and liquidity risk premium 

in the cross-section of corporate bond returns contrasts Bongaerts et al. (2017). The authors 

report that transaction costs are sufficient to explain cross-sectional return variation as they 

find a modestly negative and statistically insignificant risk premium of bond liquidity betas. I 

therefore repeat the above two-stage asset pricing test for their study period (2003 to 2013). 

Most likely due to the differences in the construction of the liquidity factor between the two 

studies, I estimate a positive, but smaller risk premium of 0.97% for LRF. Importantly, however, 

the t-statistic of LRF’s cross-sectional price of risk is only 0.87. Hence, from 2003 to 2013, I 

find support for Bongaerts et al. (2017), who report that the corporate bond liquidity risk 

premium is negligible from a statistical perspective. This suggests that the importance of the 

liquidity factor relative to the liquidity characteristic increases after 2013. 

 

4.6 Time-varying liquidity risk and expected returns  

 Because the previous analysis treats the betas and the associated risk premia as constant 

over time, I assess the robustness of my findings with rolling as opposed to pooled regressions 

over the full sample period. It appears reasonable to assume some degree of time variation in 

the sensitivity of corporate bond markets (and portfolios) to liquidity shocks. Further, the price 

investors assign to taking this risk may change over time.  

I follow Bai et al. (2019) and estimate the time-varying factor exposures each month 

for each test asset with a rolling 36-months window of observations. I use the first stage four-

factor model in Equation (3) for the rolling regressions. If LRF and the other factors truly 

capture systematic variation in corporate bond returns, exposures of test assets to these factors 

should predict cross-sectional differences in expected returns. Hence, the future cumulative 

three and twelve-months portfolio excess returns are the dependent variables in the second 

stage.10 The independent variables are the rolling factor exposures and the liquidity level. This 

procedure generates 56 quarterly or 14 annual non-overlapping cross-sections. Due to the 

overlap of the 36-months rolling betas in quarterly and annual cross-sections, I use a Newey-

West correction of standard errors with twelve and three lags, respectively. 

 
10 I focus on quarterly and annual future returns because monthly portfolio returns are noisier, but the main 

findings are similar for monthly cross-sections. 
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The repeated cross-sections not only capture time variation in risk premia but also have 

the advantage that the betas exhibit less cross-sectional correlation than over the full sample. 

This is particularly useful for the separation of liquidity risk from the liquidity level. The cross-

sectional correlation coefficient between the full sample liquidity betas and the level of average 

Roll spread for the 25 portfolios is 0.91. This indicates that a portfolio with high transaction 

costs also tends to have a high return sensitivity to market-wide liquidity shocks and hence it 

is difficult to disentangle the two effects. Based on the rolling variables, however, the 

correlation coefficient between LRF and the average Roll spread drops to 0.39, which implies 

that their time series variation is different. In short, as Bongaerts et al. (2017) note, the sample 

of cross-sections contains more information than a single full-sample cross-section. 

<Insert Table 8 here> 

The average intercept and slope coefficients of the cross-sectional Fama-MacBeth 

regressions are reported in Table 8. The previously reported finding of a liquidity risk premium 

over the full sample remains valid in a setting of rolling regressions and future returns. 

Regression II explains the three-months forward portfolio excess returns with the rolling four 

factors as well as the 36-months moving-average of the Roll spread. The cross-sectional price 

of liquidity risk is estimated at 55 bps and is significant at the 10% level. Multiplying the price 

of risk by an average LRF exposure of 1.89 based on the rolling time series regression, 

corresponds to an annual liquidity risk premium of 4.15%, which is modestly larger than 

estimated over the full sample. The annual cross-sections in regression IV, estimate the average 

liquidity risk premium at 3.14% and report significance at the 5% level.  

The model 𝑅2 in Table 8 is naturally lower than in Table 7 as the former predicts future 

returns while the latter is based on realization of factors and portfolio returns over the same 

period. Nevertheless, the explanatory power of the rolling risk factor loadings for future 

portfolio excess returns is relatively high at above 70%. Liquidity risk dominates other risk 

factors in explaining cross-sectional variation of future portfolio returns over short horizons. 

The equity and rates factors are insignificant at conventional levels and the credit risk factor 

just falls short of the 10% significance level. The annualized liquidity characteristics premium, 

although not significant at the 10% level, is estimated at 1.02% and 2.16% based on quarterly 

and yearly cross-sections, respectively.  
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In regression V, I test if quarterly changes (as opposed to the levels) of the rolling factor 

exposures explain the cross-sectional return variation of future returns. The results are 

consistent with regressions I to IV in a sense that changes in systematic liquidity risk exposure 

attract a liquidity risk premium. In addition, the quarterly change of the rolling Roll spread 

attracts a liquidity characteristics premium, which is significant at the 5% level. In summary, 

the analysis of time-varying factor exposures in corporate bond portfolios further strengthens 

the evidence gathered over the full sample from 2003 to 2020. The liquidity risk premium 

dominates other risk premia in terms of economic and statistical significance and can coexist 

with the liquidity characteristics premium.  

 

5. Robustness checks and additional analysis 

 The robustness checks tackle a few computational variations in estimating aggregate 

liquidity before testing the main result of time series and cross-sectional significance of 

corporate bond liquidity risk. To gauge market liquidity levels, I aggregate bond-month 

liquidity measures each month by computing their mean. Another approach, more 

representative of the average (traded) bond and less influenced by potential outliers, is to 

aggregate bond-month liquidity observations by their median. Due to the skewness towards the 

illiquid side of the distribution in the cross-section of bond-month observations, median 

roundtrip costs are lower than their mean-equivalents (median 44 bps vs. mean 61 bps for the 

Roll spread). To check whether LRF has similar explanatory power when estimated with a time 

series of normalized median liquidity proxies, I repeat the regressions in Table 5 Panel A with 

LRFMedian. I find that the coefficient estimates and the overall fit of the model are very similar 

(Table 9 – Panel A – regression I) and conclude that LRF is not sensitive to the aggregation 

procedure of individual bond liquidity observations to proxy market liquidity. 

 For ease of coefficient comparability, the regressions in Table 5 are estimated with 

normalized risk factors. While this mathematical operation aligns the measurement scale of the 

regressors, it modifies the original distribution of the explanatory variables by making the 

variances more uniform. In regressions II and III of Table 9 - Panel A, I find that the model 𝑅2 

for the Roll spread innovation and the lambda asymmetry measures increases by 6% on average 

(compared to the baseline model in Panel A of Table 5), when using the non-normalized time 
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series of explanatory variables. The t-statistics of the liquidity factors become even larger, 

thereby strengthening the evidence of significance of liquidity risk in the time series of 

corporate bond market returns. 

 It is well known that odd-lot trades with a volume from $100,000 to below $1,000,000 

incur higher transaction costs than larger institutional trades (e.g., O’Hara and Zhou (2021)). 

Hence, there may be a concern that my results are affected by relatively illiquid odd-lot trades. 

When I filter out trades below $1,000,000 volume, I reduce the trade count by 68% compared 

to my full sample (Appendix A). While average transaction costs are materially lower without 

odd-lot trades (e.g., Roll spread of 34 bps vs. 61 bps for the full sample), there is no material 

impact on the liquidity risk coefficients in the time series regressions (Table 9 – Panel A – 

regression IV). I conclude that LRF is robust to the exclusion of odd-lot trades. 

To test if the liquidity risk premium remains priced in the presence of the corporate 

bond market factor, I estimate the second stage regressions based on the first stage factor 

loadings in Panel C and D of Table 6. Using the factor loadings of my four-factor model and 

the bond market factor, regression I of Panel B of Table 9 reports that LRF remains significant 

at the 1% level with a quantitively similar risk premium as in the benchmark model. Regression 

II indicates that the liquidity risk factor of Bai et al. (2019) is not significant at conventional 

levels in the cross-section of my test assets’ returns. As a final step, I re-estimate Bai et al. 

(2019)’s model but replace their liquidity risk factor with LRF. Regression III shows that LRF’s 

cross-sectional price of risk is significant at the 1% level with a magnitude of 9 bps per month, 

while controlling for Bai et al. (2019)’s market, credit, and downside factors. This suggests that 

the combination of symmetric and asymmetric liquidity components in LRF leads to a superior 

liquidity risk factor. 

 My choice and definition of the of credit, equity, and rates risk factors are based on 

considerations for multicollinearity, the setup of the characteristics-sorted test assets and 

conceptually follow the related literature (e.g., default and term betas in Lin et al. (2011)). 

However, as is typical in asset pricing studies, I check the robustness of the risk premium of 

my newly proposed liquidity factor with the five-factor model (stock market return, size factor, 

book-to-market factor, the stock momentum factor, and the risk-free rate) of Fama and French 

(1993). Following Bai et al. (2019), I also add a corporate bond market factor. For brevity, I 
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focus on the cross-sectional results that are shown in regression IV of Panel B of Table 9. The 

estimated price for liquidity risk remains significant at the 1% level and is estimated at 19 bps 

per month, which is close to the 22 bps in the baseline regression I of Table 7. The higher 

model 𝑅2 and smaller intercept than in the benchmark model are primarily driven by the bond 

market factor. The equity market proxy remains priced although some of its premium appears 

to be absorbed by the bond market factor.  

 The cross-sectional asset pricing analysis in Table 7 contains a relatively small number 

of test assets (n=25). While there is a sufficient level of cross-sectional dispersion in LRF betas 

(standard deviation of 0.59), there may be concerns about the lower standard deviation of credit, 

equity, and rates betas (0.16, 0.15, and 0.42). The lower independent variation of the credit and 

equity loadings is a result of the test assets being obtained from characteristics-sorting by issue 

size (which correlates with bond liquidity) and maturity as opposed to credit risk (Lewellen, 

Nagel, and Shanken (2010)). Hence, I conduct an additional portfolio sort that is directly related 

to credit risk and conceptually aligned with the method used by Bongaerts et al. (2017). 

Specifically, I triple-sort bonds each month into six credit rating buckets (AAA & AA, A, BBB, 

BB, B, and CCC & lower) and maturity quintiles. The third sorting dimension is the liquidity 

level, where a bond is assigned to be below or above the median Roll spread in each rating-

maturity bucket. This results in 60 (6x5x2) test assets. The results of the first and second stage 

Fama-MacBeth asset pricing test are reported in Panel J of Table 6 and regression V of Panel 

B of Table 9, respectively. The standard deviation of the liquidity, credit, equity, and rates 

factor loadings increases to 0.74, 0.43, 0.81, and 0.58, respectively. This leads to economically 

more meaningful and statistically more significant risk premia for credit and interest rate risk 

exposures. My previously reported findings are robust as liquidity risk remains a significant 

driver of time series excess returns with an average t-statistic of 5.93 and 52 out of 60 portfolios 

demonstrating LRF significance at the 1% level. The price of liquidity risk remains statistically 

significant at the 10% level in the cross-section. While the annualized liquidity risk premium 

of 0.84% (based on an average first-stage LRF loading of 1.45) is lower than in the benchmark 

model, it remains economically meaningful.  
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6. Conclusion 

 Covering one of the longest time periods in the transactions-based corporate bond 

liquidity literature, this study contributes to our understanding of the time-varying nature of 

liquidity and documents its downside characteristic. The cost of illiquidity, particularly for 

sellers, is shown to depend crucially on financial market sentiment. The paper exposes a 

shortfall in relying exclusively on symmetric (roundtrip) liquidity proxies. It proposes a new 

microstructure liquidity measure with superior explanatory power that incorporates the 

asymmetry between the cost of selling and the cost of buying. The paper has implications for 

risk management and provides portfolio managers a measurable liquidity risk factor. My 

findings imply that a portfolio should be more averse to liquidity risk exposure if it is likely 

that corporate bonds need to be sold to raise cash just when markets are in a turbulent state. 

The study also indicates that there is merit for active investors to act as providers of liquidity 

when sell costs are high.  

 The paper investigates if aggregate liquidity shocks are a state variable that is priced in 

corporate bond returns. In the time series of corporate bond portfolio excess returns, shocks to 

aggregate liquidity make up a material fraction of the overall risk. The economic magnitude of 

exposure to liquidity risk trumps the exposure to credit, equity, and rates risks. In the cross-

sectional analysis, I find that corporate bond portfolios earn an economically meaningful risk 

premium as compensation for exposure to the liquidity risk factor. The covariance of corporate 

bond returns and market-wide liquidity shocks is significantly priced as liquidity risk matters 

over and above the effects of other risk factors, as well as the level of liquidity. The study 

contributes to the existing literature by documenting that the liquidity risk premium is primarily 

driven by the asymmetric liquidity risk component. While the estimated magnitude of the risk 

premium depends on the study period, the inclusion of a liquidity characteristics control, the 

choice of test assets, and to a lesser extent the choice of risk factor controls, the results 

consistently show that liquidity risk is priced in the corporate bond market. 
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Appendix A. Data filters for corporate bond trades in TRACE Enhanced 

 
 

Appendix B. Definitions of liquidity measures 

B.1 Symmetric liquidity measures 

B.1.1 Amihud’s (2002) ILLIQ measure 

ILLIQ, a price impact measure, averages the price change 𝑟𝑡  in relation to the trade volume 𝑄𝑡 . The ILLIQ 

measure is scaled by 10^6 and then multiplied by 10,000 to represent basis points.  

ILLIQ 𝑖 =
1

𝑁𝑡

∑
|𝑟𝑖,𝑡|

𝑄𝑖,𝑡

 =
1

𝑁𝑡

∑
|
𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 

𝑃𝑖,𝑡−1
|

𝑄𝑖,𝑡

 

𝑁

𝑡=1

𝑁

𝑡=1

 

 

B.1.2 Roll spread 

Roll’s (1984) measure is based on trade-by-trade data and calculated each bond-month by estimating the bid-ask 

spread from the autocorrelation in price changes of trade t in bouncing between the bid and ask side. If the 

autocorrelation is positive, I set the measure to zero. The measure is multiplied by 10,000 to represent basis points. 

𝑆𝑅𝑜𝑙𝑙,𝑖 = 2√−𝑐𝑜𝑣(∆𝑝%𝑖,𝑡 , ∆𝑝%𝑖,𝑡−1) 

 

B.1.3 Imputed Roundtrip Costs (IRC) 

The IRC measure, commonly used in bond markets, relies on identifying the daily minimum and maximum price 

for transactions of a given bond that is traded with identical notional quantity. It provides an estimated bid-ask 

spread by scaling the difference between the highest and lowest price of these trades. The measure is multiplied 

by 10,000 to represent basis points. 

Data cleaning procedure and transaction filters

Remaining trades

Reduction in 

trade count

Start with all corporate bond trades from TRACE Enhanced 124,085,346      

Data cleaning: Remove cancellations, corrections, reversals, and double 

counting. See Dick-Nielsen (2009, 2014)
106,278,529      -14.35%

Remove trades where reported price zero or negative 106,278,431      0.00%

Remove trades where dollar volume < USD 100,000* 30,849,090        -70.97%

Remove "special" trades (spcl_trd_fl ='Y') 30,739,239        -0.36%

Remove trades where commission incorporated in price 30,695,283        -0.14%

Remove trades without a change in price 30,616,484        -0.26%

Remove trades with an absolute price change >25% 30,607,695        -0.03%

Remove trades that are in the primary market (at issuance) 29,264,122        -4.39%

Remove trades where the reported price is below ten cents on the dollar 29,218,937        -0.15%

Remove bond-month observations where less than eight trades remain 

after all previous filters
28,043,921        -4.02%

Robustness: Remove trades where dollar volume < USD 1,000,000 and 

less than eight trades remain per bond-month after all previous filters
8,899,791          -68.26%

* This filter removes <1% of traded volume but a large number of retail-sized trades
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𝐼𝑅𝐶𝑖 =
1

𝑁𝑡
∑

𝑃𝑖,𝑡,𝑚𝑎𝑥− 𝑃𝑖,𝑡,𝑚𝑖𝑛 

𝑃𝑖,𝑡,𝑚𝑎𝑥

𝑁

𝑡=1
  

 

B.1.4 Transaction costs 

As in O’Hara and Zhou (2020), for each customer-dealer trade, transaction cost is calculated as follows: 

𝐶𝑜𝑠𝑡𝑖 = ln(
𝑇𝑟𝑎𝑑𝑒 𝑝𝑟𝑖𝑐𝑒𝑖 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑝𝑟𝑖𝑐𝑒𝑖
) 𝑥 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑔𝑛𝑖  

 

where 𝑇𝑟𝑎𝑑𝑒 𝑝𝑟𝑖𝑐𝑒𝑖  refers  to  the  transaction  price  for  trade i, 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑝𝑟𝑖𝑐𝑒𝑖 is  the transaction price of 

the prior trade in that bond in the interdealer market, and 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑔𝑛𝑖  is +1 for customer-buys and -1 for 

customer-sells. The transaction cost is then scaled by 10,000 to have the unit of basis points and averaged across 

all trade observations in a bond-month. I note that this number can be negative when customers buy (sell) below 

(above) the interdealer price. 

 

B.1.5 Bid-ask coefficient 

This is a coefficient obtained from a bond-month regression. For each bond i, for each calendar month, ∆p%i,t is 

a sample of the percentage changes in transaction prices over the month, qi,t
B  is the signed square root of traded 

volume of each customer buy order, and qi,t
S  is the signed square root of traded volume of sell orders. I use the 

square root of order flow because Hasbrouck and Seppi (2001) find that price impact is concave in trade size. The 

variable of interest, 𝛄, corresponds to half of the zero-quantity bid-ask spread as it captures the bid-ask bounce 

and dt is the direction of the buy (dt = 1) or sell (dt = −1) order. An interdealer trade is assigned dt = 0. The 

measure is multiplied by 10,000 to represent basis points. 

∆𝑝%𝑖,𝑡 = 𝜆𝑖
𝐵𝑞𝑖,𝑡

𝐵 + 𝜆𝑖
𝑆𝑞𝑖,𝑡

𝑆 + 𝜸𝒊(𝑑𝑖,𝑡 −  𝑑𝑖,𝑡−1)+ 𝜀𝑖,𝑡 

 

B.2 Asymmetric liquidity measures 

B.2.1 Lambda asymmetry 

A separate estimation of buy and sell side lambdas allows for an asymmetry in the price reaction function to buyer 

and seller-initiated order flow. The OLS set-up is described in B.1.5. The lambdas are scaled by 10^6. 

∆𝑝%𝑖,𝑡 = 𝝀𝒊
𝑩𝑞𝑖,𝑡

𝐵 + 𝝀𝒊
𝑺𝑞𝑖,𝑡

𝑆 + 𝛾𝑖(𝑑𝑖,𝑡 −  𝑑𝑖,𝑡−1)+ 𝜀𝑖,𝑡  

 

The lambda asymmetry is calculated, for each bond i, each month t, by subtracting average buy lambda from 

average sell lambda: 

𝜆𝑖,𝑡
𝑆−𝐵 =  𝜆𝑖,𝑡

𝑆 −  𝜆𝑖,𝑡
𝐵   

 

B.2.2 Transaction cost asymmetry 

Buy costs and sell costs are calculated like in B.1.4 with the subsample of buys and sells, respectively. The cost 

asymmetry is calculated, for each bond i, each month t, by subtracting average buy costs from average sell costs: 

𝐶𝑜𝑠𝑡 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑖,𝑡 =  𝐶𝑜𝑠𝑡𝑖,𝑡
𝑆 − 𝐶𝑜𝑠𝑡𝑖,𝑡

𝐵   

 

Appendix C. Determinants of contemporaneous market liquidity shocks 

This table presents time series OLS regression results of market liquidity shocks as the dependent variable. The 

choice of independent variables is informed by LASSO regressions. Specifically, the selected variables remain 

non-zero with a 𝐿1penalty parameter of 0.5 or higher. The libor_spread (TED spread) and swap_spread are 

sourced from Bloomberg. The swap spread subtracts the yield of the current 3 months T-Bill from the 3 months 
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USD LIBOR. Lg_fund_hy_ig is the natural logarithm of the monthly net asset flow into IG and HY U.S. corporate 

bond mutual funds (source: Morningstar). The global_carry_adv_change is the monthly change in yield spread 

advantage (over government bonds) of U.S. BBB corporate bonds over the average yield of European, UK, and 

Japanese BBB’s. Ig_issuance is the natural logarithm of the monthly new issuance of IG corporate bonds (source: 

SIFMA). Cp_spread is the spread in basis points of short-dated commercial papers over the risk-free rate (source: 

Bloomberg). Hy_cdx_level is the level of the “on the run” 5-year CDX contract on a basket of U.S. HY issuers 

(source: PIMCO). Before April 2005, the change in hy_cdx_level is estimated with a two-factor model on SPX 

and VIX. Lqd_volume_vs_6m_avg is the dollar trade volume of LQD, the largest corporate bond ETF, divided 

by its rolling six months average trade volume. Trading_cost_stddev_change is the monthly change of the cross-

sectional standard deviation of bond-month transaction cost measures. Ps_stocks_agg_liquidity_innov is the ‘non-

traded’ liquidity innovation factor from Pastor and Stambaugh. All coefficients except for equity liquidity were 

scaled up by 100. All liquidity measures are defined in Appendix B and winsorized at the 99% / 1% level. Each 

liquidity measure is normalized every month by its mean and standard deviation calculated up to the prior month 

(with at least one year of observations). To liquidity proxy innovation, the table uses the residuals of a second 

order autocorrelation model for each liquidity measure. T-statistics are reported in italics below each coefficient 

estimate. One, two, and three stars indicate significance at the 10%, 5%, and 1% level, respectively. Standard 

errors are heteroscedasticity and autocorrelation robust using two monthly lags. The sample includes all corporate 

bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the period July 

2003 until December 2019 (198 months). 

Market liquidity drivers (full sample)

Roll spread 

innovation

Cost 

innovation

Lambda 

asymmetry

Cost 

asymmetry

const 0.224 0.377*** 0.180 0.175

1.64 2.76 0.65 0.95

lqd_volume_vs_6m_avg -0.040 -0.071 -0.261* -0.473**

-0.23 -0.40 -1.69 -2.51

trading_cost_stddev_change -2.931*** -2.064*** -1.843** -0.815

-4.97 -4.89 -2.54 -1.39

lg_fund_hy_ig 0.498*** 0.528*** 1.366*** 1.276***

2.80 3.20 6.24 6.39

libor_spread -1.425* -0.997** -0.590 -0.535

-1.77 -2.15 -0.81 -0.58

global_carry_adv_change -0.0010*** -0.014*** -0.010*** -0.009***

-3.02 -6.37 -3.09 -3.04

ig_issuance 0.224** 0.203* -0.145 0.165

2.22 1.86 -1.11 1.49

cp_spread 0.869 0.412 0.194 -0.141

1.18 0.83 0.27 -0.16

hy_cdx_level -0.034* -0.064*** 0.016 -0.009

-1.80 -3.24 0.37 -0.24

ps_stocks_agg_liquidity_innov 4.600*** 2.772** -0.339 -0.418

2.60 2.04 -0.35 -0.60

swap_spread 0.216 -0.094 -0.669*** -0.701***

0.86 -0.62 -3.01 -3.15

Obs. 198 198 198 198

Adj. R-squ. 64.8% 64.8% 54.4% 64.2%
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Table 1 

Descriptive statistics of liquidity measures 

This table reports summary statistics for aggregate (mean) liquidity measures. Panel B (C) reports the conditional mean and standard deviation for the bear 

(bull) subsamples, which are defined as the S&P 500 total return being in the bottom (top) quartile of monthly observations. All liquidity measures are defined 

in Appendix B and winsorized at the 99% / 1% level. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the 

filtering process (Appendix A) for the period from September 2002 until June 2020 (214 months). 

 

 
 

 

 

Panel A: Summary statistics of market liquidity (full sample)

ILLIQ Roll IRC

Half B/A 

coefficient Cost Buy cost Sell cost

Cost 

asymmetry Buy lambda Sell lambda

Lambda 

asymmetry

Mean 143.53 60.62 30.15 17.98 24.69 23.58 25.98 2.88 0.11 0.09 -0.02

Std. Dev. 70.62 30.42 13.56 8.36 13.29 44.95 56.93 99.99 0.49 0.58 0.95

Min 72.79 29.23 14.06 7.78 12.83 -356.57 -75.17 -219.91 -2.35 -1.29 -2.69

Q0.05 79.73 32.82 16.35 9.99 14.70 -27.30 -30.08 -106.31 -0.52 -0.65 -1.39

Q0.25 99.42 40.89 21.02 12.90 16.99 5.44 -1.38 -41.24 -0.12 -0.22 -0.50

Median 125.13 51.52 26.49 15.76 20.53 22.86 17.10 -6.11 0.10 0.04 -0.09

Q0.75 164.42 71.02 34.82 20.70 27.29 43.52 38.58 33.33 0.30 0.30 0.37

Q0.95 273.00 127.24 63.37 31.67 44.79 84.64 88.43 115.10 0.89 0.80 1.28

Max 501.19 226.68 84.48 62.88 110.67 143.23 527.09 886.56 2.40 4.20 6.49

Skewness 2.45 2.16 1.62 2.42 3.31 -2.79 4.31 3.84 0.07 2.83 1.70

Kurtosis 10.35 8.79 5.41 10.87 16.77 26.85 33.41 32.54 8.72 19.31 13.97

Obs 214 214 214 214 214 214 214 214 214 214 214

Panel B: Conditional mean and standard deviation of market liquidity (bear stock market sample) 

Mean 171.78 73.07 34.39 21.14 29.95 4.86 54.13 49.87 -0.09 0.41 0.50

Std. Dev. 99.49 41.49 16.52 11.92 20.18 66.99 90.85 156.58 0.59 0.87 1.31

Panel C: Conditional mean and standard deviation of market liquidity (bull stock market sample) 

Mean 153.68 63.97 32.29 18.89 25.57 43.84 7.99 -35.41 0.36 -0.16 -0.52

Std. Dev. 66.58 29.52 15.11 7.69 11.36 38.03 37.76 72.65 0.54 0.46 0.81
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Table 2 

Commonality across liquidity measures 

This table reports the time series correlation of aggregate (mean) liquidity measures. The lower half of the table (shaded grey) reports the correlation for the 

bear subsample, defined as the S&P 500 being in its lowest quartile of monthly total returns, whereas the upper half of the table is computed across the full 

sample. SPX refers to the S&P 500 return. SPX up (down) is the SPX return if positive (negative) and zero otherwise. Given sample size, SPX up and down 

correlations are only computed for the full sample. VIX and Ted refer to the level of the VIX index and the Ted spread (source: Bloomberg). P-S stock liqu. 

innov. is the ‘non-traded’ liquidity innovation factor from Pastor and Stambaugh. Order imbalance is the monthly customer buy volume over total volume 

averaged across all bonds. Change cost std. dev. is the monthly change of the cross-sectional standard deviation of bond-month transaction cost measures. 

Fund net flow is the natural logarithm of the monthly net asset flow into IG and HY U.S. corporate bond mutual funds (source: Morningstar). Inventory 

change is the monthly change in the natural logarithm of the prime dealer inventory in IG and HY corporate bonds (source: NY Fed). All liquidity measures 

are defined in Appendix B and winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and standard deviation 

calculated up to the prior month (with at least one year of observations). To proxy innovation, the table uses the residuals of an AR(2) model for each liquidity 

measure. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the period 

July 2003 until June 2020 (204 months). The correlation coefficients for P-S stock liqu. innov. exclude the last six months of the sample due to data availability. 

Statistical significance of 5% and 1% correspond to correlation coefficients of 0.14 (0.28) and 0.18 (0.36) for the full (bear) sample, respectively.  
Time series correlations (upper half - full sample; lower half - equity bear market sample)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 ILLIQ innov. 1.00 0.94 0.88 0.86 0.89 -0.50 0.64 0.59 -0.28 0.68 0.56 0.48 0.25 0.54 -0.46 -0.56 0.45 0.09 -0.81 0.32 0.03

2 Roll spread innov. 0.97 1.00 0.91 0.88 0.88 -0.53 0.63 0.60 -0.35 0.69 0.61 0.48 0.25 0.54 -0.40 -0.53 0.44 0.12 -0.79 0.34 0.04

3 IRC innov. 0.91 0.95 1.00 0.84 0.81 -0.54 0.64 0.61 -0.36 0.64 0.58 0.46 0.23 0.52 -0.35 -0.51 0.45 0.09 -0.72 0.34 -0.01

4 B/A coefficient innov. 0.94 0.94 0.92 1.00 0.84 -0.50 0.59 0.56 -0.43 0.65 0.62 0.47 0.29 0.49 -0.33 -0.50 0.38 0.14 -0.72 0.33 0.00

5 Cost innov. 0.94 0.94 0.87 0.90 1.00 -0.58 0.70 0.66 -0.37 0.75 0.65 0.50 0.26 0.56 -0.44 -0.56 0.37 0.12 -0.76 0.33 0.06

6 Buy cost -0.54 -0.58 -0.56 -0.54 -0.63 1.00 -0.90 -0.97 0.70 -0.82 -0.87 -0.47 -0.34 -0.43 0.18 0.48 -0.17 -0.06 0.51 -0.50 0.02

7 Sell cost 0.66 0.68 0.67 0.68 0.74 -0.95 1.00 0.98 -0.55 0.84 0.80 0.50 0.27 0.55 -0.48 -0.73 0.29 0.00 -0.51 0.42 0.04

8 Cost asymmetry 0.62 0.65 0.63 0.63 0.70 -0.98 0.99 1.00 -0.63 0.85 0.85 0.50 0.31 0.51 -0.36 -0.63 0.24 0.03 -0.53 0.46 0.02

9 Buy lambda -0.20 -0.31 -0.36 -0.32 -0.31 0.75 -0.69 -0.72 1.00 -0.55 -0.86 -0.41 -0.43 -0.27 -0.09 0.22 -0.09 -0.16 0.39 -0.39 0.07

10 Sell lambda 0.81 0.84 0.77 0.80 0.88 -0.86 0.92 0.91 -0.54 1.00 0.90 0.56 0.33 0.59 -0.38 -0.55 0.22 0.13 -0.65 0.49 -0.01

11 Lambda asymmetry 0.64 0.71 0.68 0.69 0.74 -0.92 0.93 0.94 -0.81 0.92 1.00 0.56 0.43 0.50 -0.18 -0.45 0.17 0.16 -0.60 0.50 -0.04

12 SPX 0.57 0.57 0.56 0.58 0.67 -0.46 0.59 0.55 -0.20 0.64 0.52 1.00 0.82 0.85 -0.46 -0.36 0.21 0.17 -0.47 0.40 -0.06

13 SPX up 1.00 0.39 -0.03 -0.12 0.14 0.17 -0.26 0.39 -0.08

14 SPX down 1.00 -0.70 -0.47 0.21 0.12 -0.51 0.28 -0.02

15 VIX -0.53 -0.46 -0.42 -0.53 -0.58 0.39 -0.58 -0.51 0.12 -0.55 -0.42 -0.83 1.00 0.56 -0.25 0.03 0.24 0.02 -0.08

16 Ted spread -0.62 -0.63 -0.63 -0.72 -0.65 0.71 -0.85 -0.80 0.52 -0.76 -0.74 -0.60 0.63 1.00 -0.35 0.13 0.37 -0.13 -0.11

17 P-S stock liqu. innov. 0.56 0.54 0.60 0.56 0.45 -0.16 0.28 0.24 -0.24 0.34 0.30 0.34 -0.20 -0.35 1.00 0.02 -0.14 0.13 -0.02

18 Order imbalance 0.12 0.16 0.17 0.11 0.16 -0.07 0.04 0.06 -0.05 0.09 0.08 0.07 0.07 0.00 -0.07 1.00 -0.19 0.15 -0.29

19 Change cost std. dev. -0.93 -0.89 -0.86 -0.84 -0.91 0.65 -0.72 -0.70 0.22 -0.82 -0.65 -0.60 0.52 0.60 -0.37 -0.14 1.00 -0.28 0.06

20 Funds net flow 0.26 0.32 0.30 0.25 0.24 -0.38 0.27 0.32 -0.28 0.42 0.41 0.01 0.25 -0.10 0.13 0.13 -0.28 1.00 -0.12

21 Inventory change 0.00 0.02 -0.05 0.01 0.04 0.06 0.01 -0.02 0.19 0.08 -0.02 0.13 -0.13 -0.07 -0.17 -0.15 0.06 -0.07 1.00
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Table 3 

Principal component analysis of liquidity measures 

This table reports the loadings on each of the aggregate (mean) liquidity measures and the explanatory power of 

each component from a principal component analysis. All liquidity measures are defined in Appendix B and 

winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and standard 

deviation calculated up to the prior month (with at least one year of observations). To proxy innovation, the table 

uses the residuals of a second order autocorrelation model for each liquidity measure. The sample includes all 

corporate bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the 

period July 2003 until June 2020 (204 months). 

 

Principal component (PC) loadings

Liquidity Measure PC1 PC2 PC3 PC4 PC5

ILLIQ innov. -0.38 -0.37 -0.06 -0.09 0.26

Roll spread innov. -0.36 -0.31 0.07 -0.14 0.37

IRC innov. -0.25 -0.19 0.06 -0.41 0.26

B/A coefficient innov. -0.34 -0.25 0.34 -0.05 -0.57

Cost innov. -0.36 -0.22 -0.06 0.46 -0.42

Buy cost 0.24 -0.35 0.21 0.23 0.04

Sell cost -0.28 0.24 -0.40 -0.24 -0.23

Cost asymmetry -0.27 0.29 -0.32 -0.24 -0.15

Buy lambda 0.21 -0.46 -0.69 0.12 -0.03

Sell lambda -0.29 0.18 -0.21 0.57 0.32

Lambda asymmetry -0.28 0.33 0.21 0.29 0.21

Explained variance 72.5% 15.5% 5.1% 2.1% 1.5%

Cum. % explained 72.5% 88.1% 93.2% 95.2% 96.7%
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Table 4 

Lead-lag correlation between liquidity measures and returns 

This table reports the time series correlation of aggregate (mean) liquidity measures. The liquidity measures in this analysis are contemporaneous, whereas 

the IG and HY market excess returns have been lagged or advanced by one month. The IG and HY market excess returns over maturity-matched treasuries 

are represented by the ICE BofA US Corporate Index (C0A0) and ICE BofA US High Yield Index (H0A0), respectively. All liquidity measures are defined 

in Appendix B and winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and standard deviation calculated up to 

the prior month (with at least one year of observations). To proxy innovation, the table uses the residuals of a second order autocorrelation model for each 

liquidity measure. LRF is the average of the normalized Roll spread innovation and lambda asymmetry. The sample includes all corporate bond trades from 

TRACE Enhanced that are not removed in the filtering process (Appendix A) for the period July 2003 until May 2020 (203 months). Statistical significance 

of 5% and 1% correspond to correlation coefficients of 0.14 and 0.18, respectively. 

 

  

Lead-lag correlations

Roll 

spread 

innov.

Cost 

innov.

Lambda 

asym.

Cost 

asym. LRF

IG excess 

return

HY 

excess 

return

Lead IG 

excess 

return

Lead HY 

excess 

return

Lag IG 

excess 

return

Lag HY 

excess 

return

Roll spread innov. 1.00 0.88 0.61 0.60 0.92 0.76 0.61 0.09 0.28 0.13 0.14

Cost innov. 0.88 1.00 0.65 0.66 0.87 0.77 0.63 0.09 0.25 0.18 0.17

Lambda asymmetry 0.61 0.65 1.00 0.85 0.87 0.71 0.68 0.31 0.44 0.16 0.11

Cost asymmetry 0.60 0.66 0.85 1.00 0.79 0.66 0.65 0.19 0.34 0.42 0.41

LRF 0.92 0.87 0.87 0.79 1.00 0.82 0.71 0.21 0.39 0.16 0.14

IG excess return 0.76 0.77 0.71 0.66 0.82 1.00 0.88 0.22 0.30 0.21 0.23

HY excess return 0.61 0.63 0.68 0.65 0.71 0.88 1.00 0.24 0.30 0.30 0.30

Lead IG excess return 0.09 0.09 0.31 0.19 0.21 0.22 0.24 1.00 0.88 -0.02 -0.04

Lead HY excess return 0.28 0.25 0.44 0.34 0.39 0.30 0.30 0.88 1.00 0.04 -0.03

Lag IG excess return 0.13 0.18 0.16 0.42 0.16 0.21 0.30 -0.02 0.04 1.00 0.88

Lag HY excess return 0.14 0.17 0.11 0.41 0.14 0.23 0.30 -0.04 -0.03 0.88 1.00
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Table 5 

Risk factor regressions for IG and HY market 

This table reports time series regression results of IG (Panel A) and HY (Panel B) market excess returns over maturity-matched treasuries as the dependent 

variable. The IG and HY markets are represented by the ICE BofA US Corporate Index (C0A0) and ICE BofA US High Yield Index (H0A0), respectively. 

All liquidity measures are defined in Appendix B and winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and 

standard deviation calculated up to the prior month (with at least one year of observations). To proxy innovation, the table uses the residuals of a second order 

autocorrelation model for each liquidity measure. The liquidity risk factor, LRF, is the average of the normalized Roll spread innovation and lambda 

asymmetry. Credit is the normalized change in the “on the run” 5-year CDX contract on a basket of IG issuers and Equity is the normalized S&P 500 return. 

T-statistics are reported in italics below each coefficient estimate. One, two, and three stars indicate significance at the 10%, 5%, and 1% level, respectively. 

Standard errors are heteroscedasticity and autocorrelation robust using two monthly lags. The sample includes all corporate bond trades from TRACE 

Enhanced that are not removed in the filtering process (Appendix A) for the period July 2003 until June 2020 (204 months).  

 

 

I II III IV V VI VII

Constant 0.134* 0.065 0.119* 0.196*** 0.195*** 0.121 0.127**

1.95 0.90 1.88 3.15 3.06 1.54 2.20

Roll spread innov. 0.585*** 0.473***

4.89 3.37

Cost innov. 0.618***

5.34

Lambda asymmetry 0.599*** 0.410***

3.97 2.92

Cost asymmetry 0.458***

3.21

LRF 0.892***

7.57

Credit 0.768*** 0.454** 0.449*** 0.600*** 0.609*** 0.399** 0.403***

4.00 2.51 2.84 3.37 3.22 2.50 2.61

Equity 0.648*** 0.491*** 0.472*** 0.420*** 0.525*** 0.365*** 0.358***

3.88 4.16 3.71 3.06 4.07 2.85 2.97

Obs. 204 204 204 204 204 204 204

Adj. R-squ. 63.7% 73.1% 74.4% 70.4% 67.4% 75.8% 75.9%

Panel A: Risk factor regressions for IG credit excess returns
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I II III IV V VI VII

Constant 0.415*** 0.373*** 0.404*** 0.492*** 0.509*** 0.465*** 0.409***

3.39 2.92 3.35 4.21 4.59 3.47 3.60

Roll spread innov. 0.356* 0.170

1.78 0.65

Cost innov. 0.437**

2.55

Lambda asymmetry 0.747*** 0.679*

2.62 1.94

Cost asymmetry 0.715**

2.43

LRF 0.777***

4.33

Credit 1.179*** 0.988*** 0.954*** 0.969*** 0.930*** 0.897*** 0.861***

4.47 3.11 3.39 4.01 3.40 3.16 3.22

Equity 1.594*** 1.498*** 1.469*** 1.309*** 1.402*** 1.289*** 1.341***

5.62 5.75 6.03 5.76 7.41 5.76 5.76

Obs. 204 204 204 204 204 204 204

Adj. R-squ. 69.5% 70.3% 70.9% 72.4% 72.1% 72.5% 72.0%

Panel B: Risk factor regressions for HY credit excess returns
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Table 6 

Time series factor loadings of corporate bond portfolio returns 

This table reports time series OLS regression results of corporate bond portfolio excess returns over the risk-free 

rate as the dependent variable. The first digit of the test asset numbers in Panel A refers to amount outstanding (5 

= largest size quintile) and the second digit refers to the maturity quintile (5=longest maturity). The liquidity, 

credit, and equity risk factors are defined in Table 5. The rates factor is the normalized change in the yield on U.S. 

Treasury securities at 7-year constant maturity. Equity liquidity is proxied by the Pastor-Stambaugh factor for 

aggregate stock liquidity innovation. The Roll spread level is the time series of the aggregate (mean) Roll spread 

as defined in Appendix B. The idiosyncratic LRF component represents the error term in a regression of LRF on 

monthly CDX changes and S&P 500 returns. The symmetric and asymmetric liquidity components are the 

normalized Roll spread innovation and the normalized lambda asymmetry, respectively (defined in Appendix B). 

The conditional betas are estimated in the subsample of the S&P 500 being in its lowest quartile of monthly total 

returns. Standard errors are heteroscedasticity and autocorrelation robust using two monthly lags. The sample 

includes all corporate bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix 

A) for the period July 2003 until June 2020 (204 months). The sample period in Panels C and D is July 2004 to 

December 2019 and the sample period in Panel G is July 2003 to December 2019 due to data availability.  

 

 
 

 

Panel A: First stage Fama-MacBeth - Four-factor model 

Test asset Intercept β
LRF

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

11 0.38 0.55 -0.09 0.39 -0.05 204 47.4%

12 0.52 1.01 0.29 0.39 0.03 204 73.1%

13 0.59 1.39 0.27 0.38 0.11 204 76.6%

14 0.60 1.71 0.51 0.34 0.32 204 75.8%

15 0.72 2.20 0.15 0.42 0.86 204 76.9%

21 0.24 0.48 0.13 0.04 0.11 204 48.8%

22 0.37 1.42 -0.21 0.20 0.18 204 70.3%

23 0.46 1.37 0.30 0.41 0.37 204 72.7%

24 0.56 1.75 0.17 0.41 0.59 204 77.6%

25 0.63 2.27 0.11 0.02 1.17 204 72.5%

31 0.26 0.68 -0.01 0.05 0.11 204 35.4%

32 0.34 1.28 -0.03 0.16 0.29 204 70.7%

33 0.50 1.46 0.10 0.32 0.51 204 75.2%

34 0.52 1.53 0.20 0.23 0.91 204 76.0%

35 0.61 2.31 -0.06 -0.03 1.35 204 65.6%

41 0.18 0.53 -0.03 0.12 0.13 204 37.7%

42 0.35 1.03 0.02 0.13 0.35 204 62.2%

43 0.42 1.30 0.04 0.35 0.51 204 72.2%

44 0.50 1.83 -0.08 0.21 0.85 204 70.5%

45 0.60 2.41 -0.23 0.15 1.32 204 63.1%

51 0.18 0.39 0.01 0.22 0.29 204 27.2%

52 0.26 0.93 -0.04 0.28 0.47 204 59.4%

53 0.38 1.02 -0.01 0.54 0.58 204 68.0%

54 0.48 1.61 -0.09 0.45 0.94 204 71.9%

55 0.60 2.06 -0.03 0.36 1.31 204 61.6%

Mean coefficient 0.45 1.38 0.05 0.26 0.54 204 64.3%

Mean t-stat 5.36 8.66 0.21 2.29 3.66
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Panel B: First stage Fama-MacBeth - Three-factor model 

Intercept β
LRF

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.46 - 0.74 0.70 0.88 204 45.3%

Mean t-stat 4.74 - 3.69 4.00 4.67

Panel C: First stage Fama-MacBeth - Four-factor model of Bai et al. (2019)

Intercept β
MKTbond

β
DRF

β
CRF

β
LRF

Obs Adj. R-squ.

Mean coefficient 0.01 0.99 -0.03 0.17 0.09 186 72.4%

Mean t-stat 0.10 11.36 -0.63 2.87 1.35

Panel D: First stage Fama-MacBeth - Benchmark four-factor model and market factor

Intercept β
Bond mkt-rf

β
LRF

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.00 1.00 0.00 0.01 0.00 0.00 186 81.4%

Mean t-stat -0.01 9.51 -0.18 -0.06 0.19 -0.46

Panel E: First stage Fama-MacBeth - Idiosyncratic LRF component

Intercept β
LRF idio.

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.56 1.25 0.61 0.67 0.55 204 61.0%

Mean t-stat 6.41 7.13 3.68 5.73 3.63

Panel F: First stage Fama-MacBeth - Symmetric and asymmetric LRF components

Intercept β
LRF sym.

β
LRF asym.

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.60 0.17 1.60 -0.10 0.07 0.06 204 71.4%

Mean t-stat 6.64 0.93 7.61 -0.83 0.92 0.06

Panel G: First stage Fama-MacBeth - Four-factor model and equity liquidity innovation

Intercept β
LRF

β
Equ. Liq. Inno.

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.49 1.48 -3.81 0.04 0.26 0.50 198 61.5%

Mean t-stat 5.37 8.29 -1.62 0.17 2.32 3.62

Panel H: First stage Fama-MacBeth - Conditional (bear) factors

Intercept β
LRF

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.27 1.39 0.01 0.07 0.45 49 71.7%

Mean t-stat 0.65 7.32 -0.26 0.21 2.19

Panel I:  First stage Fama-MacBeth - Four-factor model and aggregate bond liquidity level

Intercept β
LRF

β
Credit

β
Equity

β
Rates

β
Roll (Market)

Obs Adj. R-squ.

Mean coefficient -0.51 1.61 -0.04 0.30 0.44 1.65 204 70.9%

Mean t-stat -2.30 9.23 -0.43 2.80 3.18 3.72

Panel J:  First stage Fama-MacBeth - Four-factor model (alternative test assets)

Intercept β
LRF

β
Credit

β
Equity

β
Rates

Obs Adj. R-squ.

Mean coefficient 0.52 1.45 0.22 0.59 0.31 204 55.1%

Mean t-stat 4.47 5.93 0.07 1.52 2.70
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Table 7 

Pricing liquidity in the cross-section of corporate bond portfolio returns 

This table reports cross-sectional OLS regression results of the mean excess portfolio return over the risk-free rate 

(dependent variable) on the risk factor loadings (independent variables). Factor loadings are calculated using time 

series regressions of portfolio excess returns on the risk factors (see Table 6). The liquidity, credit, equity, and 

rates as well as equity liquidity risk factors are defined in Table 5 and Table 6, respectively. Regression III uses 

the idiosyncratic LRF component, which represents the error term in a regression of LRF on monthly CDX spread 

changes and S&P 500 returns. The symmetric and asymmetric liquidity components are the normalized Roll 

spread innovation and the normalized lambda asymmetry, respectively (defined in Appendix B). The conditional 

betas are estimated in the subsample of the S&P 500 being in its lowest quartile of monthly total returns. The 

equal-weighted Roll spread at each month for all bonds in each portfolio is used in regression VII. T-statistics are 

reported in italics below each coefficient estimate. One, two, and three stars indicate significance at the 10%, 5%, 

and 1% level, respectively. The sample includes all corporate bond trades from TRACE Enhanced that are not 

removed in the filtering process (Appendix A) for the period July 2003 until June 2020 (204 months).  

 

Second stage Fama-MacBeth: Cross-sectional regressions

Regression I II III IV V VI VII

Four-factor 

model 

Three-factor 

model 

Idiosyncratic 

LRF

Sym. & asym. 

liquidity

Four-factors & 

Equ. Liqu.

Conditional 

(bear) betas

Characteristics 

premium

Intercept 0.076** 0.091*** 0.077** 0.077** 0.108*** 0.112*** -0.008

2.41 2.91 2.52 2.37 2.65 6.14 -0.25

λ
LRF

0.219*** 0.196*** 0.094**

6.73 5.07 2.23

λLRF idio.
0.132***

2.66

λLRF sym.
0.256***

3.31

λLRF asym.
0.191***

10.67

λ
LRF bear

0.216***

6.14

λ
Credit

0.138** 0.210*** 0.139** 0.146* 0.313*** 0.131*** 0.045

2.04 4.17 2.30 1.89 2.82 3.76 0.77

λEquity
0.164** 0.191*** 0.167*** 0.172** 0.171** 0.068 0.139**

2.42 2.84 2.58 2.20 2.29 1.56 2.44

λRates
-0.012 0.048* -0.029 -0.001 0.030 -0.005 -0.018

-0.25 1.86 -0.60 -0.02 0.53 -0.12 -0.50

λ
Equ. Liqu. Innov.

0.014*

1.79

λ
Roll level

0.431***

3.26

Obs. 25 25 25 25 25 25 25

Adj. R-squ. 88.2% 87.5% 88.8% 87.6% 82.4% 82.4% 92.7%
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Table 8 

Rolling risk factors and future corporate bond excess returns 

This table reports the mean coefficients of cross-sectional OLS regression results of three-months and twelve-

months forward cumulative portfolio excess returns over the risk-free rate (dependent variable) on rolling risk 

factor loadings (independent variables). The rolling factor loadings are calculated using 36-months rolling time 

series regressions of portfolio excess returns on the risk factors. The liquidity, credit, equity, and rates risk factors 

are defined in Table 5 and Table 6, respectively. The Roll level is the 36-months moving average of the Roll 

spread for each portfolio. The independent variables in regression V are the quarterly changes in the rolling risk 

factor levels. T-statistics are reported in italics below each coefficient estimate. One, two, and three stars indicate 

significance at the 10%, 5%, and 1% level, respectively. Standard errors are heteroscedasticity and autocorrelation 

robust using twelve lags for regressions I, II, and V and three lags for regressions III and IV. The number of 

observations relates to the number of non-overlapping cross-sections. The sample includes all corporate bond 

trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the period July 2003 

until June 2020 (204 months).  

 

 

  

Rolling risk factor model: Fama-MacBeth cross-sectional regression estimates

Regression I II III IV V

Dependent variable

Three-months 

ahead excess return

Three-months 

ahead excess return

Twelve-months 

ahead excess return

Twelve-months 

ahead excess return

Three-months 

ahead excess return

Independent variables Factor level Factor level Factor level Factor level QoQ factor change 

Intercept 0.300*** 0.092 1.559** 0.645 0.551

2.60 0.33 2.09 0.54 1.51

λ
LRF

0.673** 0.549* 2.678*** 1.658** 14.260*

2.45 1.80 2.82 2.42 1.84

λ
Roll level

0.441 3.744 25.324**

0.46 1.52 2.26

λ
Credit

-0.009 0.287 1.368 0.821 2.485

-0.03 1.33 1.52 1.14 0.67

λ
Equity

-0.055 -0.023 0.756 0.580 8.731

-0.16 -0.08 0.71 0.58 1.02

λ
Rates

0.015 0.131 -0.274 0.021 -0.006

0.05 0.42 -0.24 -0.52 0.00

Obs. 56 56 14 14 55

Adj. R-squ. 76.4% 79.0% 70.6% 73.4% 58.4%
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Table 9 

Additional analysis 

Panel A of this table reports time series regression results of IG market excess returns over maturity-matched 

treasuries (represented by the ICE BofA US Corporate Index (C0A0)) as the dependent variable. All liquidity 

measures are defined in Appendix B and winsorized at the 99% / 1% level. Except for regressions II and III in 

Panel A, each liquidity measure is normalized every month by its mean and standard deviation calculated up to 

the prior month (with at least one year of observations). To proxy innovation, the table uses the residuals of a 

second order autocorrelation model. The liquidity, credit, equity, and rates risk factors are defined in Table 5 and 

Table 6, respectively. Panel B reports cross-sectional OLS regression results of the mean portfolio excess return 

over the risk-free rate (dependent variable) on the risk factor loadings (independent variables). Factor loadings 

are calculated using the full sample time series regressions of excess returns on the risk factors. The risk factors 

in regressions I and II are obtained from Prof. Turan G. Bali’s website. The risk factors in regression IV of Panel 

B include the equal-weighted excess return of all bonds in the sample as a proxy for the corporate bond market 

factor. The regression also includes the Fama-French stock market return, size factor, book-to-market factor, the 

stock momentum factor, and the risk-free rate. The 60 test assets in regression V of Panel B are corporate bond 

portfolios triple-sorted by credit rating, maturity, and liquidity level. T-statistics are reported in italics below each 

coefficient estimate. One, two, and three stars indicate significance at the 10%, 5%, and 1% level, respectively. 

Standard errors in Panel A are heteroscedasticity and autocorrelation robust using two monthly lags. The 

transaction sample used for the liquidity measure computation in regression IV of Panel A is reduced to transaction 

volumes greater or equal to $1,000,000. The sample includes all corporate bond trades from TRACE Enhanced 

that are not removed in the filtering process (Appendix A) for the period July 2003 until June 2020 (204 months). 

The sample period for regression I to III of Panel B is July 2004 to December 2019.  

 

 
 

 

Regression I II III IV

LRFMedian

Non-normalized 

factors

Non-normalized 

factors

No odd-lot 

trades 

Constant 0.156** -0.008 0.014 0.150**

2.53 -0.15 0.21 2.50

Roll spread innov. 0.049***

6.94

Lambda asymmetry 0.562***

4.57

LRF 0.735*** 0.972***

5.52 7.19

Credit 0.548*** -0.061*** -0.071*** 0.398**

3.18 -4.31 -4.61 2.40

Equity 0.400*** 0.093*** 0.082*** 0.363***

3.38 3.93 2.78 3.22

Obs. 204 204 204 204

Adj. R-squ. 72.3% 79.8% 75.8% 74.5%

Panel A: IG return regressions with variation in method of risk factor computation
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Panel B: Second stage Fama-MacBeth cross-sectional regressions

Regression I II III IV V

Independent 

variables

Four factors & 

Bond mkt

Independent 

variables

Bai et al. 

(2019) factors

Bai et al. 

(2019) & LRF

Independent 

variables

Bond mkt & 

FF 5 factors

Independent 

variables

Four factors 

(alt. assets)

Intercept 0.081 Intercept 0.189*** 0.160*** Intercept 0.043 Intercept 0.195***

1.23 4.16 3.93 0.76 5.20

λ
Bond mkt-rf

0.349*** λ
MKTbond (Bai et al.)

0.162*** 0.191*** λLRF
0.186*** λLRF

0.049*

5.44 4.63 7.35 6.28 1.73

λ
LRF

0.192*** λ
DRF  (Bai et al.)

1.148*** 1.100*** λ
Bond mkt-rf

0.380*** λ
Credit

0.289***

3.82 7.48 4.95 6.72 4.88

λ
Credit

0.216** λ
CRF  (Bai et al.)

0.610*** 0.543** λ
Mktrf

0.594** λ
Equity

0.127***

2.52 6.06 2.52 2.48 2.89

λEquity
0.155** λ

LRF  (Bai et al.)
0.126 λ

Smb
0.228 λRates

0.215***

2.04 1.33 0.47 4.96

λRates
0.027 λLRF

0.089*** λ
Hml

0.670*

0.37 2.71 1.89

λRf
-0.101**

-2.23

λ
Umd

-0.196

-0.37

Obs. 25 25 25 25 60

Adj. R-squ. 82.5% 92.5% 92.0% 92.2% 67.5%
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Figure 1. Symmetric liquidity measures 

The figure shows aggregate (mean) symmetric liquidity measures. The vertical axis refers to transaction costs in basis points. All liquidity measures are 

defined in Appendix B and winsorized at the 99% / 1% level. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in 

the filtering process (Appendix A) for the period September 2002 until June 2020 (214 months). 
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Figure 2. Asymmetric liquidity measures 

The figure shows aggregate (mean) asymmetric liquidity measures. The left vertical axis refers to the difference between sell and buy costs in basis points. 

The right axis shows the difference in sell and buy lambda measures scaled by 10^6. All liquidity measures are defined in Appendix B and winsorized at the 

99% / 1% level. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the 

period from September 2002 until June 2020 (214 months). 
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Figure 3. Buyer and seller transaction costs during the COVID liquidity shock  

The bars in this chart shows the time series of the aggregate buy and sell costs over the period from December 2019 to June 2020. The line shows the aggregate 

transaction cost measure, which does not allow for asymmetric transaction costs between customer buys and sells. All liquidity measures are defined in 

Appendix B and winsorized at the 99% / 1% level. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the filtering 

process (Appendix A). 
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Figure 4. Autocorrelation in liquidity measures 

This figure plots the autocorrelation of aggregate liquidity measures as a function of monthly lags. All liquidity measures are defined in Appendix B and 

winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and standard deviation calculated up to the prior month 

(with at least one year of observations). Order imbalance is the monthly customer buy volume over total volume averaged across all bonds. The IG market 

excess return is proxied by the ICE BofA US Corporate Index (C0A0). The sample includes all corporate bond trades from TRACE Enhanced that are not 

removed in the filtering process (Appendix A) for the period September 2002 until June 2020 (214 months).
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Figure 5. Time series of liquidity shocks  

The figure shows the time series of shocks to aggregate liquidity. The shocks to symmetric liquidity (Roll spread) are estimated as the residuals of a second 

order autocorrelation model. The asymmetric liquidity shocks are the levels of the liquidity measure (lambda asymmetry). All liquidity measures are defined 

in Appendix B and winsorized at the 99% / 1% level. Each liquidity measure is normalized every month by its mean and standard deviation calculated up to 

the prior month (with at least one year of observations). The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the 

filtering process (Appendix A) for the period July 2003 until June 2020 (204 months). 
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Figure 6. Lead-lag correlations of aggregate liquidity shocks and market returns 

This figure plots the lead-lag correlation coefficient (vertical axis) between liquidity and IG market excess returns. The IG market excess return is 

represented by the ICE BofA US Corporate Index (C0A0) and lagged / advanced by up to 12 monthly observations. The liquidity shock is proxied by the 

liquidity risk factor, LRF, which is the average of the normalized Roll spread innovation and lambda asymmetry. All liquidity measures are defined in 

Appendix B and winsorized at the 99% / 1% level. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the 

filtering process (Appendix A) for the period July 2003 until June 2020 (204 months).
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Figure 7. Risk factors 

This figure plots the monthly time series of the three risk factors for liquidity, credit, and equity. Liquidity risk is proxied by the liquidity risk factor, LRF, 

which is the average of the normalized Roll spread innovation and lambda asymmetry. Credit risk is proxied by the normalized change in the “on the run” 5-

year CDX contract on a basket of IG issuers and equity risk is proxied by the normalized S&P 500 return. Each risk factor is normalized every month by its 

mean and standard deviation calculated up to the prior month (with at least one year of observations). The sample period is July 2003 to June 2020. 
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Figure 8. Decomposition of volatility into risk factor contributions 

The figure shows the contribution to overall volatility from statistically significant risk factors (at the 1% level). The IG and HY markets are represented by 

the ICE BofA US Corporate Index (C0A0) and ICE BofA US High Yield Index (H0A0), respectively. The factor weight is estimated through OLS regressions. 

The liquidity measures (Roll spread innovation and lambda asymmetry) are defined in Appendix B and winsorized at the 99% / 1% level. Credit risk (IG 

CDX change) is represented by the change in the “on the run” 5-year investment grade CDX contract and equity risk (SPX) is represented by the S&P 500 

return. The sample includes all corporate bond trades from TRACE Enhanced that are not removed in the filtering process (Appendix A) for the period July 

2003 until June 2020 (204 months). 


