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Abstract

Under COVID-19 pandemic, social distancing is strictly controlled to reduce the spread of

the infectious disease. The demand of crude oil drops a lot with the sharp decline of mobility

at the beginning of the pandemic. Sudden decrease of demand and limited storage space

cause negative oil prices. The commonly used oil pricing models behave unsatisfying under the

infectious disease. This paper investigates how the pandemic affects the crude oil prices. We

first formulate the relationship between infection rate and social distancing, then we integrate

COVID-19 data into oil pricing. By applying this framework to US data, we use the model to

value future contracts and contrast its behavior with other classic models. The results show

that the COVID-19 statistics can significantly enhance the behavior of valuation for crude oil

futures and the pandemic has long-lasting effects for oil market.

Keywords: Crude Oil: Futures, COVID-19, Stochastic SIRD Model, Model Implementation
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1 Introduction

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), and first identified in Dec 2019, Wuhan, China. It globally

broke out from Feb 2020 and was announced as a pandemic by WHO on 11 March 2020. The

worldwide infection has caused millions of deaths, lock-down between countries, stock market crash,

and huge volatility of oil prices. Policymakers kept a strict social distancing to avoid further spread

due to the short of medical facilities and lack of full vaccination. At that time, citizens were

enforced to stay at home, plenty of flights suspended and even some cities were locked down. As a

consequence of the extremely crash in demand, a historic decrease of WTI crude oil price occurred

on April 20, which dropped by almost 300% and touched −37 dollar per barrel [10].

Bachelier is the first to model stochastic change in financial instrument prices using Brownian

Motion [7]. However, Bachelier model is barely used in commodity valuation. Black [9] introduces

Black model in 1976, which is widely used to price commodity option among practitioners. Gibson

and Schwartz developed Gibson and Schwartz two-factor model in 1990. This model [12] first

introduces instantaneous convenience yield into oil pricing, and assume it follows a Ornsteion-

Uhlenbeck process. Schwartz (1997) then extended the two-factor model to include stochastic

interest rates, and assume the interest rates follow a mean-reverting process [23]. However, the

commonly used classic models fail to price oil derivatives with negative spot price. The Chicago

Mercantile Exchange and Intercontinental Exchange announced changing Black model to Bachelier

model to price oil futures options [4, 5].

Some papers evaluate the relationship between the coronavirus disease and oil prices. [21] in-

vestigates how the COVID-19 pandemic and oil price news affect oil prices. [6] shows that the

coronavirus new infections have a marginal negative influence on the oil price in the long term.

Using some fractional integration techniques, Gil-Alana and Manuel [13] show that oil price series

is mean reverting, which indicates COVID-19 will be a transitory shock with long-lasting effects.

And some papers investigate the relationship between crude oil and stock markets under COVID-

19 [19, 22]. To the best of our knowledge, no research has developed an exact model to describe

how the COVID-19 pandemic affects oil prices, which motivates us to work on that.

Our paper uses SIRD model to show the current epidemiological situation. Then we propose a

new framework combining mobility and COVID-19 statistics into crude oil pricing. To see how the
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public mobility affects the oil prices, we raise two models. One includes mobility, while the other

doesn’t. Finally, we focus on the prediction of future prices. The empirical results of this paper

show that the performance of the model with mobility and COVID-19 statistics is superior to other

classic pricing models like Bachelier model and mean reversion model. Although the behavior of

other models are worse in pricing longer term future contracts, our model is still satisfying and

robust, which supports the long-lasting influence of the pandemic in crude oil market [13]. The

outstanding performance of the model integrated with mobility in pricing with different term also

supports that the significance of social distancing even with the relative high vaccine inoculation

rate [16].

The remainder of the article is organized as follows. In section 2, we incorporate social distancing

into stochastic epidemic model, and then implement this framework to US COVID-19 data. In

section 3, we derive two models to price crude oil, one includes COVID-19 statistics and mobility,

the other excludes mobility. In section 4, we estimate the parameters of the joint stochastic pricing

process introduced in section 3 over the coronavirus infection period. Then we apply the models

to value WTI oil futures and contrast their performances with Bachelier model and mean reversion

model. In section 5, we conclude the paper.

2 Stochastic Modeling of COVID-19

Kermack and Mckendrick [18] created SIR model in early 20th century, which is the deterministic

mathematical framework for epidemic diseases. Many derivatives of the basic model contain more

complicated compartments, such as those include births, deaths or immunity [8]. Varieties of

stochastic models are developed to forecast and control COVID-19. [11] uses worldwide infection

and death data to estimate a standard epidemiological model of COVID-19. [17] models the spread

by considering additional individual action, and [15, 20] investigate how the government’s control

policies affect the transmission. [14] builds a SIDARTHE model and suggests that social-distancing

measures and population-wide testing would be very necessary and effective ways to stop further

infections at the early stage. We model the COVID-19 process with the SIRD model instead of

other more complicated models after considering the availability of data and simplicity of framework

to price crude oil in section 3.
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2.1 SIRD Model and Mobility

In the SIRD model, the whole population is assigned to compartments with labels, S, I, R, D,

which represents the fractions of susceptible, infectious, recovered and deceased individuals due

to the epidemic, respectively. Therefore, we only require the data of total cases, active cases and

deaths of the coronavirus disease downloaded from Worldometer.info; see [3] .

The SIRD model uses the following system of differential equations:

dIt = (βSt − δ − γ)Itdt

dDt = δItdt

dRt = γItdt

dSt = βStItdt

(1)

where β, γ, δ are the rates of infection, recovery and mortality, respectively. And St, It, Rt, and

Dt are the susceptible, infectious, recovered and deceased rates, calculated by number of labeled

individuals divided by total population, with summation equal to 1:

It +Rt +Dt + St = 1 (2)

When the outbreak of COVID-19 occurred in the initial phase, many countries adopted strict

quarantine policies, some even locked down the entire city to keep the spread of the infectious

disease [24]. The vaccination for COVID-19 was available for the public from December 2020, and

22.6% people in the world has received at least one dose of the COVID-19 vaccine [1]. [16] shows

that only the single vaccination process cannot prevent COVID-19 resurgence but the integration of

vaccination and social distancing can achieve that. Thus, it’s reasonable to postulate the infection

rate of the susceptible population is dependent of mobility.

We assume that recovered people will get antibody against second infection, and the vaccination

effect to the pandemic situation has already been incorporated into the infection and death data.

The infection rate of the susceptible population, βSt, is defined as Bt in this paper. We put forward

two ways to predict COVID-19 statistics. One is that Bt is linearly associated with the moving

average of mobility ᾱt, as the social distancing control can reduce transmission to susceptible

population:

Bt = a0 + a1ᾱt + εt, εt ∼ N
(
0, σ2

ε

)
(3)
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where αt represents the mobility, εt represents the residual errors in (3). From SIRD framework

(1), It can be represented by the function of Bt:

It = It0e
∫ t
t0
Bs−δ−γds (4)

where t0 is the initial time. Thereafter, the COVID-19 statistics can all be expressed by functions

of Bt: 
It = It0e

∫ t
t0
Bs−δ−γds

Dt = Dt0 + δIt0
∫ t
t0
e
∫ s
0
Bτ−δ−γdτds

Rt = Rt0 + γIt0
∫ t
t0
e
∫ s
t0
Bτ−δ−γdτds

(5)

The other way to estimate COVID-19 statistics is to assume β as a constant, and It, Dt, Rt can be

estimated by It−∆t, Rt−∆t, Dt−∆t: 

St = St−∆t − βItSt∆t

Dt = Dt−∆t + δIt∆t

Rt = Rt−∆t + γIt∆t

It = 1− St −Rt −Dt

(6)

where t0 is the initial time and t−∆t ≥ t0.

2.2 US COVID-19 Data

Data of total cases, active cases and deaths of the coronavirus disease are downloaded from Worl-

dometer.info; see [3]. Bt is calculated by log( It+∆t

It
) + δ + r with collected data in the period from

2020-Feb-20 to 2021-Mar-22. We first regress Bt on the 5-day moving average mobility ᾱt and

conduct the Shapiro-Wilk normality tests with residuals εt. The linear relationship between the

infection rate to susceptible population and moving average mobility is only 0.05, and the residuals

are not normally distributed either. We also collect the mobility indices from Google Mobility [2]

across six different categories of places: retail and recreation, groceries and pharmacies, parks,

transit stations, workplaces, and residential. And then regress Bt on the 5-day moving average

mobility indices, which is written as ᾱMt =
[
ᾱRRt ᾱGPt ᾱPAt ᾱTSt ᾱWP

t ᾱREt

]T
. As shown

in table 2, the coefficients of determination is 0.57 with multiple mobility moving averages, which
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supports the linear association between Bt and public mobility, while the residuals of the regression

are not obey Gaussian distribution.

Table 1: Regression table of fitting Bt with single mobility moving

average

a0 a1 σε R2 p-value

0.1345 0.2648 0.1222 0.0566 <2.2e-16

OLS model: Bt = a0 + a1ᾱt + εt

The last column reports the p-value of the Shaprio-Wilk normality test of the

residuals. σε is the residual’s standard error.

Table 2: Regression table of fitting Bt with multiple mobility moving averages

a′0 a′1 a′2 a′3 a′4 a′5 a′6 σ′ε R2 p-value

0.3470 -0.5778 0.6556 -0.1425 1.7456 0.2487 3.1825 0.0829 0.5738 <2.2e-16

OLS model: Bt = a′0 + a′1ᾱ
RR
t + a′2ᾱ

GP
t + a′3ᾱ

PA
t + a′4ᾱ

TS
t + a′5ᾱ

WP
t + a′6ᾱ

RE
t + ε′t

The last column reports the p-value of the Shaprio-Wilk normality test of the residuals. σ′ε is the

residual’s standard error.

3 Price Crude Oil under Coronavirus Disease

We propose two oil pricing frameworks under coronavirus disease. One suggests crude oil spot price

is linearly associated with all the lagged COVID-19 statistics It−∆t, Rt−∆t, Dt−∆t, mobility αt−∆t

and the lagged oil price Pt−∆t, named SIRDMP model. The other excludes mobility, named SIRDP

model. We use mobility αt instead of its moving average as the market has immediate reaction to

public mobility change.

We postulate the regression models:

Pt = K0 +KPPt−∆t +Kααt−∆t +KIIt−∆t +KRRt−∆t +KDDt−∆t + et (7)

Pt = k0 + kPPt−∆t + kIIt−∆t + kRRt−∆t + kDDt−∆t + e′t (8)

The regression model can be written as follow if we use multiple mobility indices:

Pt = K̂0 + K̂PPt−∆t + K̂T
αα

M
t−∆t + K̂IIt−∆t + K̂RRt−∆t + K̂DDt−∆t + êt (9)
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for t = t0, t1, t2, ..., T . K0, KP , Kα, Kξ, KI , KR, KD are regression coefficients and et is the

error term for equation (7). k0, kP , kξ, kI , kR, kD are regression coefficients and e′t is the error

term for equation (8). K̂0, K̂P , K̂T
α ∈ R6, K̂ξ, K̂I , K̂R, K̂D are regression coefficients and êt is the

error term for equation (9). We exhibit the predicted oil prices from (7) and (8) by daily data to

show the ability to derive negative values of oil price of our framework. CME and ICE announced

changing Black-schole model to Bachelier model to price oil futures options [4, 5], as Black-schole

model cannot generate negative values with initial positive prices. Our framework conquers this

shortcoming and add more information about the carnivorous pandemic, which raises the accuracy

in pricing futures as shown in section 4.

Figure 1: Predicted values of oil price by equation (7) and equation (8) using weekly data and daily data, respec-

tively.

Table 3, 4 and 5 summarize the regression results. The coefficients of determination of oil spot

prices on all the above factors are above 0.88 without containing mobility, which shows that the

COVID-19 statistics, and spot prices have high explanatory and forecast power for oil pricing. R2

increase a little after including the effect of mobility. As we can see in table 3 and 4, relative weight

of lagged spot prices is largest, and COVID-19 statistics contributes almost evenly in the prediction

of oil prices. Table 5 shows that the summation of all relative weights of the factors in the mobility

indices is near to the relative weight of single mobility. Multicollinearity exists between the pricing

factors, which requires more cautions in explaining a single regression coefficient. Nevertheless,

multicollinearity won’t affect the crude oil price prediction as such relationship has already been

adjusted by the coefficients.
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Table 3: Regression table of fitting oil spot with lagged spot prices, mobility

and COVID-19 statistics.

(Intercept) Pt−1 αt−1 It−1 Rt−1 Dt−1

(R2 = 0.8937, p-value< 2.2e-16 )

coefficients 16.3389 0.5882 19.8127 216.0134 -261.8855 6624.8130

relative weight - 30.6303 14.6652 18.1498 17.6107 18.9441

multicollinearity - True False True True True

P-value reported in this table is from the Shaprio-Wilk normality test of the residuals.

Table 4: Regression table of fitting oil spot with lagged spot prices

and COVID-19 statistics.

(Intercept) Pt−1 It−1 Rt−1 Dt−1

(R2 = 0.8821, p-value< 2.2e-16 )

coefficients 4.9897 0.7898 -23.5064 -29.6306 7506.3508

relative weight - 45.0203 17.7387 17.8431 19.3978

multicollinearity - False True True True

P-value reported in this table is from the Shaprio-Wilk normality test of the

residuals.

Table 5: Regression table of fitting oil spot with lagged spot prices, mobility

indices and COVID-19 statistics.

(Intercept) Pt−1 It−1 Rt−1 Dt−1 RRt−1

(R2 = 0.8978, p-value< 2.2e-16 )

coefficients 17.2810 0.5463 310.1577 -278.1259 5608.5977 -9.2171

relative weight - 27.3997 17.8788 17.5478 18.5798 4.0981

multicollinearity - True True True True True

GPt−1 PAt−1 TSt−1 WPt−1 REt−1

coefficients - -7.4684 6.0790 26.2483 3.1478 1.5175

relative weight - 1.7810 2.5034 3.2326 3.0367 3.9419

multicollinearity - True True True True True

P-value reported in this table is from the Shaprio-Wilk normality test of the residuals.

3.1 SIRDMP Pricing Model with single mobility

To see the contribution of mobility to the prediction of COVID-19 statistics and crude oil prices,

we first build an oil pricing framework with public mobility αt, which is postulated to follow a
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mean-reverting process:

dαt = b(θα − αt)dt+ σαdWα (10)

For the SIRDMP model, we subtract Pt−∆t from equation (7) in both sides, then we can derive a

PDE for oil price Pt:

dPt = (θ1
P (t)− λ1Pt)dt+ σ1

P dWP (11)

where

θ1
P (t) = K0 +Kααt +KIIt +KRRt +KDDt (12)

and

dWP dWα = ρ1dt. (13)

As shown in section 2, all the COVID-19 statistics can be written as a function of Bt, and Bt

is predicted by moving average of mobility ᾱt. Thus, θP can be written as:

θ1
P (t) = K0 +Kααt +KIIt0e

∫ t
t0
Bs−δ−γds +KR(Rt0 + γIt0

∫ t

t0

e
∫ s
t0
Bτ−δ−γdτds)

+KD(Dt0 + δIt0

∫ t

t0

e
∫ s
0
Bτ−δ−γdτds)

(14)

where

Bt = a0 + â1

∫ t

t−h
αsds+ εt with â1 =

a1

h
(15)

and

αt = αt0e
−b(t−t0) + θα(1− e−b(t−t0)) + σα

∫ t

t0

e−b(t−s)dWα. (16)

The spot prices of crude oil PT has such closed-form solution:

P 1
T = Pte

−λ1(T−t) + e−λ
1T

∫ T

t

eλ
1sθ1

P (s)ds+ σ1
P

∫ T

t

e−λ
1(t−s)dWP . (17)

3.2 SIRDMP Pricing Model with mobility indices

If we use mobility indices αMt =
[
αRRt αGPt αPAt αTSt αWP

t αREt

]T
, the joint stochastic

process of Pt and αMt will be:

dαMt = µMα dt+ σMα dW
M
α (18)

dPt = (θ2
P (t)− λ2Pt)dt+ σ2

P dWP (19)

dWM
α dWP = ρM1 dt. (20)

9



θ2
P (t) = K̂0 + K̂T

αα
M
t + K̂IIt + K̂RRt + K̂DDt

= K̂0 + K̂T
αα

M
t + K̂IIt0e

∫ t
t0
B̂s−δ−γds + K̂R(Rt0 + γIt0

∫ t

t0

e
∫ s
t0
B̂τ−δ−γdτds)

+ K̂D(Dt0 + δIt0

∫ t

t0

e
∫ s
0
B̂τ−δ−γdτds)

(21)

where

B̂t = a′0 + âT1

∫ t

t−h
αMs ds+ ε′t with âT1 =

aT1
h

(22)

where â1 =
[
a′1 ... a′6

]T
, µMα =

[
b1(θRR − αRRt ) ... b6(θRE − αREt )

]T
, σMα =

[
σRR ... σRE

]T
,

ρM1 =
[
ρRR1 ... ρRE1

]T
, dWM

α =
[
dWRR ... dWRE

]T
are all column vectors with size six, and

WRR, WGP , ... , WRE are independent Wiener process.

Thus, PT can be solved by:

P 2
T = Pte

−λ2(T−t) + e−λ
2T

∫ T

t

eλ
2sθ2

P (s)ds+ σ2
P

∫ T

t

e−λ
2(t−s)dWP . (23)

3.3 SIRDP Pricing Model

For the SIRDP model, we exclude the influence of mobility, then we can deduce a SDE of oil prices

from equation (8):

dPt = (θ3
P (t)− λ3Pt)dt+ σ3

P dWP (24)

where

θ3
P (t) = k0 + kIIt + kRRt + kDDt (25)

and

St = St0 − βIt0St0(t− t0)

Dt = Dt0 + δIt0(t− t0)

Rt = Rt0 + γIt0(t− t0)

It = 1− St −Rt −Dt. (26)

In this case, the spot prices of crude oil PT can be solved as:

PT = Pte
−λ3(T−t) + e−λ

3T

∫ T

t

eλ
3sθ3

P (s)ds+ σ3
P

∫ T

t

e−λ
3(t−s)dWP . (27)
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3.4 Future Pricing

We could get the future prices of the crude oil by taking the expectation of the spot prices at

maturity T:

F (Pt, T ) = Et(PT )

For the SIRDMP pricing model with single composite mobility, future price can be shown to

be:

F1(Pt, αt, It, t, T ) = e−λ
1(T−t)Pt + (1− e−λ

1(T−t))c1 + (e−b(T−t) − e−λ
1(T−t))

Kα(αt − θα)

λ1 − b

+ e−λ
1TKIIt

∫ T

t

eλ
1sf(s)ds+ e−λ

1T (KDδ +KRγ)It

∫ T

t

∫ s

t

eλ
1sf(τ)dτds

(28)

where the above functions and constants have the form:

c1 =
K0 +KDDt +KRRt +Kαθα

λ1
,

f(s) = exp
(
(a0 − δ − r + θαâ1h)(s− t) +

1

2
σ2
ε (s− t)2 − â1

b2
(αt − θα)(1− ebh)(1− e−b(s−t))

+
â2

1h
2

b2
((s− t) +

1

2b
(1− e−2b(s−t))− 2

b
(1− e−b(s−t)))

)
.

For the SIRDMP pricing model with multiple mobility, future price can be shown to be:

F2(Pt, α
M
t , It, t, T ) = e−λ

2(T−t)Pt + (1− e−λ
2(T−t))c2 +

6∑
i=1

(e−b
i(T−t) − e−λ

2(T−t))
Ki
α(αit − θiα)

λ2 − bi

+ e−λ
2TKIIt

∫ T

t

eλ
2sf(s)ds+ e−λ

2T (KDδ +KRγ)It

∫ T

t

∫ s

t

eλ
2sf(τ)dτds

(29)

where the above functions and constants have the form:

c2 =
K̂0 + K̂DDt + K̂RRt + K̂T

α θ
M
α

λ2
,

f(s) =

6∑
i=1

exp
(
(a′0 − δ − r + θiαâ

i
1h)(s− t) +

1

2
(σ′ε)

2(s− t)2 − âi1

bi
2 (αit − θiα)(1− eb

ih)(1− e−b
i(s−t))

+
(âi1)2h2

bi
2 ((s− t) +

1

2bi
(1− e−2bi(s−t))− 2

bi
(1− e−b

i(s−t)))
)
.

where bi is the ith term from b̂ =
[
b1 b2 b3 b4 b5 b6

]T
, θiα is the ith term from θMα =[

θRR ... θRE

]T
, Ki

α, âi1, αit, are the ith term from K̂T
α , âT1 ,αMt , θMα , respectively.
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For the SIRDP pricing model, future price is shown to be:

F3(Pt, It, Rt, Dt, St, t, T ) = e−λ
3(T−t)Pt + (1− e−λ

3(T−t))(c3 − c4t)

+ c4
(
(T − 1/λ3)− (t− 1/λ3)e−λ

3(T−t)) (30)

where the above constants have the form:

c3 = k0 + kDDt + kRRt + kIIt,

c4 = It
(
kI(βSt − δ − γ) + kDδ + kRγ

)
.

4 The Performance of the Two Models in Futures Pricing

4.1 Estimation of the Parameters

In order to apply the SIRDMP model and SIRDP model in derivatives pricing, we require to

estimate all the parameters in the joint stochastic process (10,11), (18, 19) and process (24). For

SIRDMP model with composite mobility, K0, KP , Kα, KI , KR, KD are regression coefficients

for linear regression (7), and a0, a1, σε are the coefficients and standard deviation of residuals for

equation (3), the values of the parameters are already presented in table 1 and table 3. For the

model with multiple mobility, coefficients are exhibited in table 2 and 5. For SIRDMP model, these

parameters are estimated by the same way, and the values of k0, kP , kI , kR, kD have been shown

in table 4.

The mortality rate δ and recovery rate γ are the coefficients of the discretized approximations

of equation (1):

Dt −Dt−∆t = δIt−∆t + η′t (31)

Rt −Rt−∆t = γIt−∆t + η′′t (32)

And the rate of infection β is the coefficient of regressing Bt on St:

Bt = βSt + η′′′t (33)

where ηt, η
′
t, η
′′
t are the error terms.

Furthermore, since the mobility αt are postulated to follow OU process, we estimate θα by

directly taking average of mobility over the period for futures pricing, and estimate b by using the
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linear discretized approximation of SDE (10):

αt − αt−∆t = φ+ b(θα − αt−∆t) + ηt (34)

where ηt represents residuals.

Since the stochastic dynamics of oil spot price Pt depends on not only the spot price itself, but

also COVID-19 statistics, storage change and mobility, λ is adjusted to fit the future prices.

4.2 Comparison with Other Classic Models

After the crude oil price touching a negative value, the CME and ICE changed Black-Schole model

to Bachelier model to price oil futures options [4,5], hence we use the standard Bachelier model for

comparison. The oil prices obtain the following stochastic process under Bachelier model:

dPt = κ1Ptdt+ σ1dWB (35)

Then we can get the solution of the above SDE (35) :

PT = Pte
κ1(T−t) + σ1

∫ T

t

eκ1(T−s)dWB (36)

The future price is calculated by:

F3(Pt, t, T ) = Pte
κ1(T−t) (37)

And κ1 can be estimated by the regression model:

Pt − Pt−∆t = ζ + κ1Pt−∆t + η̂t (38)

where η̂t is the error term.

As shown in equation (36), negative value of oil price can be derived if the standard error σ1 is

large enough. However, as we can see from (37), the sign of the future price is always consistent

with the spot price. The standard Bachelier model will always fail for the prediction when oil price

is negative but future price is positive as what happened in 2020 April.

In our pricing framework, the stochastic process of the oil price has similar format with mean-

reverting process, while the mean part is replaced by a function with information of previous oil

prices, COVID-19 statistics and mobility. As a consequence, we also use mean reversion model

for comparison. [13] suggests that oil price series displays mean reversion by using long memory
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techniques, which accords with the choice of mean reversion model. The mean-reverting model

process is:

dPt = κ2(µ− Pt)dt+ σ2dWM (39)

Then we can get an explicit solution of the above equation:

PT = Pte
−κ2(T−t) + µ(1− e−κ2(T−t)) + σ2

∫ T

t

e−κ2(T−s)dWM (40)

The future price is calculated by:

F4(Pt, t, T ) = Pte
−κ2(T−t) + µ(1− e−κ2(T−t)) (41)

The parameter µ can be estimated by the average of oil prices, and speed of mean reversion κ2

can be estimated by the regression model:

Pt − Pt−∆t = ψ + κ2(θP − Pt−∆t) + η̃t (42)

where η̃t is the error term.

As shown in (40) and (41), mean-reverting model supports negative spot price and inconsistency

of the sign between spot price and future price.

Table 6: Estimation of parameters for SIRDMP model,

SIRDP model, Bachelier model and mean-reverting

model.

δ γ β λ1 λ2 λ3

8.9979e-05 0.0068 0.0678 0.20 0.18 0.05

θα b κ1 κ2 µ h

-0.2648 0.0141 -0.0648 0.0648 40.9281 0.0137

θRR θGP θPA θTS θWP θRE

-0.1937 -0.0592 0.1319 -0.3260 -0.2937 0.0959

b1 b2 b3 b4 b5 b6

0.0406 0.1000 0.0110 0.0332 0.1056 0.0753

Table 6 summarize the estimation of parameters of SIRDMP model, SIRDP model, Bachelier

model and mean reversion model. Parameters displayed in table 1-5 have not been included in
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Figure 2: Performance of SIRDMP model, SIRDP model, Bachelier model and mean-reverting model in pricing

futures with maturity 2021-04-21, 2021-08-21, 2021-12-21, respectively.
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Table 7: Summary statistics on the four models’ pricing errors in predicting future

prices.

Model SIRDMCP1 SIRDMCP2 SIRDCP Bachelier Mean-Reverting

Maturity: 2020-04-21

MSE -0.8228 -0.9960 -4.0998 -4.2244 -3.0252

RMSE 4.3251 4.4938 7.2792 7.4503 6.4502

Maturity: 2020-08-21

MSE -0.5273 -0.7509 -4.8963 -5.7768 -3.3072

RMSE 4.1066 4.2898 8.0233 8.5447 6.7009

Maturity: 2020-12-21

MSE -0.0106 -0.2781 -5.4259 -6.6229 -3.3288

RMSE 3.9373 4.1122 8.7491 9.4445 7.0574

MPE is the mean pricing error in dollars: MPE = 1
N

∑N
n−1(F̂n − Fn)

RMSE is the root mean squared error in dollars: RMSE =
√

1
N

∑N
n−1(F̂n − Fn)2

SIRDMP1 is the model with single mobility and SIRDMP2 is the model with multiple mobility

indices.

table 6. Table 7 shows the summary statistics on pricing errors of SIRDMP model, SIRDP model,

Bachelier model and mean reversion model in predicting future prices with distinct maturities.

SIRDMP1 is the model with single mobility and SIRDMP2 is the model with multiple mobility

indices. Figure 2 gives visual exhibitions. As shown in table 7, the pricing performances of SIRDMP

model are much satisfactory than SIRDP model, Bachelier model and mean reversion model, which

shows the contribution of mobility in predicting the oil future prices. And the goodness of prediction

is almost same using single mobility or multiple mobility indices in pricing. The magnitudes of

mispricing for futures with maturity in 2021-12-21 are only 0.02% for SIRDMP1 model, while the

magnitudes increase to 16.17% and 8.14% for Bachelier model and mean reversion model. The errors

of pricing for the two classic models increase as the maturity of the futures contracts is lengthened,

while the pricing performances of SIRDMP model is still robust. According to the results reported

in this section, the integration of COVID-19 statistics and mobility to oil pricing framework can

significantly raise the performance in valuing futures contracts. Our suggested models have high

explanatory for oil spot prices and high forecast power for oil futures. The goodness of our proposed

model in pricing futures with long maturities also exhibits that the COVID-19 pandemic has long-

lasting effect for the oil market.

16



5 Conclusion

This paper suggests a new framework of combining stochastic SIRD model with crude oil pricing

model during the COVID-19 pandemic. We find that the COVID-19 statistics and public mobility

significantly enhance the fittings of oil pricing. We model Bt (βSt), the infection rate of susceptible

population, by two ways, one assumes Bt is a function of public mobility, the other simply assumes

β is a constant. After that, we raise SIRDMP model and SIRDP model, and get the solution of oil

future prices with the proposed models. Compared to other classic models, the pricing performances

of SIRDMP model is much more satisfying during the pandemic crisis. The propose that integrating

COVID-19 statistics into crude oil pricing is useful for investors to further improve their crude oil

trading strategies. We also discover that the COVID-19 statistics are significantly related to the

volatility of crude oil, which encourages us to further study the crude oil option pricing during

coronavirus disease.
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