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Abstract

The default of a Nasdaq Clearing Commodities member in 2018 and the ongoing

COVID-19 pandemic underscore the importance of a holistic risk management

practices by central counterparties to forestall the loss spread throughout the

entire system. This paper investigates the systemic impact of central clearing

in the presence of counterparty credit risk by utilizing a statistical model of a

financial network in which edge weights represent the sensitivities of one partic-

ipant’s failure to its counterparties’ default likelihood. The reduced-form model

specifies the mechanism of systemic risk concentration under central clearing in

that the introduction of a central counterparty into a market redistributes the

probability mass of the systemic failure from the center of the distribution into

its tail. Numerical illustrations with a novel importance sampling technique

shed light on a policy-oriented implication towards regulating the adverse de-

pendence between risk concentration under central clearing and the resiliency

of the financial system via proper margin policies at a collective level.
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1. Introduction

The origins of central counterparty clearing (CCC) can be traced back to the

beginning of the modern banking system in the 18th century to exchange checks

and coins. Such a method of clearing was, of course, prone to error and abuse.

However, around 1770, bank clerks in London began to meet at Five Bells, a

tavern on Lombard Street, to exchange all their checks and settle their balances

in cash (Nevin & Davis, 1970). In the 19th century, CCC arrangements became

popular in produce and stock exchanges in the U.S. and Europe (Emery, 1896).

In today’s financial markets, CCC arrangements are used to settle transactions

for various derivatives, securities and money markets. They operate by inserting

a central counterparty (CCP) between every pair of market participant.

Systemic risk often refers to the likelihood of observing a cascade of failures

in the financial system. Central clearing has been introduced to mitigate such a

risk by isolating financial institutions from their counterparty credit risk. As a

result, recent financial regulations have pushed for the introduction of CCPs into

various markets to reduce complexity and enhance transparency and stability.

Nevertheless, by becoming a nexus of netting and the sole absorbent of default

impacts, the default of the CCP may cause uncontrollable credit risk propaga-

tion through the centralized network. In this regard, the default of a Nasdaq

Clearing Commodities member in 2018 and the ongoing COVID-19 market tur-

bulence underscore the importance of a holistic risk management practices by

CCP’s to forestall the loss spread at the systemic level.

This paper investigates the trade-o� between the system-wide cost and ben-

efit of central clearing when considering counterparty default risk. While CCPs

are intended to reduce systemic risk in the financial system, the centralized ap-

proach inherent in CCC arrangements can also lead to a concentration of risk

for financial markets. In other words, CCPs are systemically important inter-

connectors in the financial system as their operations transform systemic risk.

It is noteworthy that the introduction of a CCP into a market redistributes

the probability mass of system-wide defaults from the center of the distribution
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into its tail. In other words, the centrality of a CCP leads to concentration

of risk accompanied by contagion e�ects based on mutually strengthening in-

teractions with the source of systematic risk. We use a probability measure

change technique to drive the distributional changes of aggregate default rate

induced by the introduction of the CCP and initial margin schemes. Trade-o�s

often appear between a CCP’s benefit from margin collection, isolating clearing

members (CMs) from other CMs’ defaults and the cost of joining the central

clearing. For example, reducing the first moment of the total number of defaults

under a central clearing arrangement often has an adverse e�ect on its tail risk.

We provide meaningful implications by showing how the design of margin policy

can mitigate CCP-driven systemic risk concentration.

Du�e & Zhu (2011) pioneered the research on central clearing and its netting

e�ciency. They show that aggregate expected exposure may arise from central

clearing as a trade-o� result in a model in which multilateral netting through

the CCP deprives netting opportunities across non-centrally cleared contracts.

Research from Cont & Kokholm (2014) relax the strong assumptions in Du�e &

Zhu (2011) and derive more plausible conditions of e�cient multilateral netting.

Another study by Menkveld (2017) employs the framework of Du�e & Zhu

(2011), and turns the focus onto the total exposure of the CCP against CMs to

investigate how the concentration of positions can cause distress to the CCP.

Additionally, Garratt & Zimmerman (2020) look into the mean-variance of the

expected exposure under financial network structures, revealing that there is a

strict subset relation among networks.

This strand of literature recognizes the vital role of CCPs in mitigating and

managing systemic risk; however, there has been no serious investigation on

the likelihood of systemic default clustering under central clearing. Our study

attempts to fill this gap by specifying a stochastic default intensity model. Our

proposed model framework sheds light on the impact of introducing central

clearing into the financial market of participants in the presence of counterparty

default risk. Specifically, we posit a network in which edge weights represent the

exposure that is the total potential losses incurred from counterparties’ defaults
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without netting. Under a bilateral arrangement, we assume that those exposures

determine the sensitivities of one counterparty’s failure to another participant’s

default. In turn, the (potentially dynamic) interdependency drives the contagion

in this network with defaults jointly correlated via an intensity-based model.

It is worthwhile to mention that the general description of the bilateral model

provides su�cient details so that a meaningful central clearing entity (i.e., CCC)

can be introduced in the system. Accordingly, we apply a well-defined intensity-

based default model under central clearing. The procedure entails a change of

measure under which one can appropriately address systemic contribution of

CCP in the system as a whole, and the probability measure change is driven by

the likelihood ratio of the modified measure under CCC divided by the original

probability measure under the bilateral arrangement. We highlight that the

bilateral and CCC models are consistent in a way that direct comparisons can

be analyzed in the context of risk concentration.

The central quantity of our investigation is the distribution of the aggregate

default rate, defined as the number of defaults divided by the total number of

participants in the system. The statistical properties of the total number of de-

faults for a fixed time horizon can be deduced via Monte Carlo (MC) simulation

in the setting of bilateral and centrally cleared markets with the application of a

novel importance sampling technique for tail probability estimation. Our find-

ings indicate that introducing a CCP to a bilateral counterparty arrangement

has non-trivial e�ects on the tail distribution of the aggregate default rate.

Moreover, this tail distribution shows non-trivial dependence on the margin

policy along with the protocol for CCP default proceedings. Our intensity-based

network model allows the framework under which trade-o�s arise before and

after the introduction of central clearing. In this context, we further investigate

the optimal risk management of the CCP in totalizing and minimizing systemic

risk in order to provide meaningful implication by showing how we can mitigate

the CCP-driven systemic risk concentration.

Our main findings show that systemic trade-o�s may appear under the cen-

tral clearing scheme as reducing the first moment of the aggregate default rate
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often has an adverse e�ect on the tail risk and vice versa. Central clearing

is more likely to decrease the mean of the aggregate default rate if the CCP

protects survivors against counterparties’ defaults. However, the delayed de-

fault feedback may cause the clustering of failures once the CCP defaults. As

a price for lowering the average default rate in regular time, a systemic risk

concentration arises. Given a reasonable choice of preference parameter sets

governing the policymaker’s priorities over di�erent goals to achieve, constant

and/or countercyclical margin schemes generally dominate a procyclical margin

scheme. Moreover, as the survivor probability of the CCP is backed better by

the constant and countercyclical margin schemes, there remain less reasons to

adhere to procyclical margin schemes.

2. Preliminaries

Consider a measure space (�, F) equipped with a right continuous and com-

plete information filtration F = {Ft}tØ0. We suppose that there are n œ N

participants in a financial market. Let ·i represents the time of default of the

ith participant. We further assume {·i}
n
i=1 are almost surely distinct and totally

inaccessible F≠stopping times.1 Each participant i is associated with a default

indicator process N i defined by

N i
t = 1{·iÆt}, (1)

where t Ø 0 and 1A is the indicator of A œ F .

We take the financial regulators’ point of view in that the primary consid-

eration in our analysis is to quantify and manage systemic risk. Specifically, we

search for the likelihood of an event that a certain fraction of the total popula-

tion in our consideration defaults. Giesecke & Kim (2011) propose measures of

systemic risk based on the number of failures of firms in the financial system.

1Stopping time · is totally inaccessible if P(· = ·ú < Œ) = 0 for all predictable stopping
times ·ú.
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They define the systemic risk as the conditional probability that a su�ciently

large fraction of the total population in the financial system fails to meet their

obligations. This definition of systemic risk is based on the actual failures of

participants in the financial system, enabling the analyses of the impact on

surviving participants’ risk stemming from the defaulters’ spillover e�ect. Ac-

cordingly, we define the system-wide default counting process given by

Ct =
nÿ

i=1
N i

t . (2)

For a given risk horizon T > 0, the central quantity of interest is the distribution

of the aggregate default rate in the system given by

DT = CT

n
œ [0, 1] , (3)

where the DT represents the fraction of the defaulting members in the entire

system by time T . Notably, the right tail distribution of DT quantifies the sys-

temic risk, as the conditional probability that a certain fraction of participants

defaults (e.g., widely accepted tail risk measures include Value-at-Risk (VaR)

and Expected Shortfall (ES)). In the following sections, we derive the distri-

butions of DT under various financial networks and compare them to find the

systemic optimal choice of the clearing scheme.

2.1. Networked market, exposures and defaults

Total inaccessibility of the default times presumes that the credit events

come as a surprise to the observer who sees only the information in the mar-

ket filtration F. The defaults, however, must be positively correlated with the

default sensitivities, as feedback exposures, of the market participants to one

another. We will suppose the gross exposures, the total potential losses in-

curred from counterparties’ defaults without netting, is modeled by a càdlàg

nonnegative process

”ij
t Ø 0 for i, j = 1, · · · , n t Ø 0. (4)
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The underlying network on n vertices is then characterized by a directed graph

with edge weights specified by
Ó

”ij
t

Ôn

i,j=1
at each time t. In particular, ”ij

t = 0

implies that at time t no directed edge exists from vertex j to i, equivalently i

has no exposure against j. Further, at time t the respective netted exposure of

i to j is max
1

”ij
t ≠ ”ji

t , 0
2

.

Totally inaccessible stopping times admit an intensity under mild conditions.

In particular, we suppose each N i
t admits an intensity ⁄i

t, i.e.,

N i
t ≠

⁄ t

0
⁄i

sds (5)

is a P≠martingale for a nonnegative process, where P is a probability measure

associated with the financial network
Ó

”ij
t

Ôn

i,j=1
.2 We assume ⁄i

t to be càdlàg

for the time being. This P≠intensity model does not assign a direct economic

interpretation to its variables. Instead, we regard it more as a statistical model

with parameters fit to market data.

In this financial market, the default of one participant is transmitted through

a network of exposures. In this regard, we take the
)

⁄i
*n

i=1 to be of the form

⁄i
t =

Q

aXi
t +

nÿ

j=1
f

1
”ij

t , N j
t

2
R

b !
1 ≠ N i

t

"
i = 1, · · · , n, (6)

where each Xi is a nonnegative càdlàg process and f
1

”ij
t , N j

t

2
is the feedback

of j’s default to the survivor i. For example, letting f
1

”ij
t , N j

t

2
= ”ij

t N j
t implies

a default of participant j will impact the intensity of participant i by ”ij
t > 0 for

t Ø ·j . To reflect the one-time nature of the default events, we multiply 1 ≠ N i
t

to make the defaulter’s intensity zero after the default. Typically, in credit risk

applications, Xi
t = wiYt + Zi

t for some wi
Ø 0, a combination of a common

factor Yt and an idiosyncratic factor Zt. This specification is su�ciently general

to accommodate virtually any model used in practice. For instance, the time

2Notice that the financial network structure determines the default propagation mecha-
nism and the likelihood of the defaults of participants as well.
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dependence of ”ij
t allows us to model mean-reverting and non-mean-reverting

jumps. We place no assumptions, aside from path regularity, on the
)

Xi
t

*n

i=1

nor the
Ó

”ij
t

Ôn

i,j=1
.

2.2. Bilateral arrangement and central clearing

Under a bilateral arrangement, we posit a network of exposure with no

restriction on connectivity between any pair of participants. That is, any pair

of i and j in the network do not need an intermediary to have exposure against

each other. We denote the probability measure under such a network by B.

Under a bilateral arrangement, we suppose each N i
t admits an B≠intensity bi

t,

i.e.,

N i
t ≠

⁄ t

0
bi

sds (7)

is a B≠martingale. Then, we introduce a special market participant, a non-

operating CCP, indexed by i = 0 which under B will be held separate from the

other market participant.3 Its default intensity may be taken as

b0
t = X0

t

!
1 ≠ N0

t

"
, (8)

for some càdlàg, nonnegative process X0
t . Note that under B, the CCP has no

network relationship with any of the participants.

With the inauguration of central clearing, we let all bilateral clearing par-

ticipants become a clearing member and novate their contracts with the CCP,

resulting in each ”ij
t breaking into ”i0

t and ”0j
t . With default protocols of central

clearing, the change of clearing scheme amounts to a transformation of default

likelihoods of participants and associated probability measures. Under the cen-

tral clearing associated with a new probability measure C, we posit N i
t admits

a C≠intensity ci
t.

3The existence of a non-operating CCP and its default likelihood are assumed for measure
change. An event that cannot occur in a probability space cannot occur in an equivalent
probability space.
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2.3. Measure change

Adopting Theorem 3.1 of Giesecke & Shkolnik (2020), we define LT

!
= dC

dB
"

as the Radon-Nikodym derivative (or likelihood ratio) which drives the change

of probability measure from B to C given by

LT = exp
A

nÿ

i=0

⁄ T

0

!
bi

s ≠ ci
s

"
ds ≠ N i

T log
!
bi

·i≠
/ci

·i≠

"
B

. (9)

The likelihood ratio LT satisfies EB (LT ) = 1 and EB (LT |A) = C(A)
B(A) for A œ F

under mild conditions; see Giesecke & Shkolnik (2020) for technical details.

One of the primary intentions of central clearing is to control the propagation

of defaults, lowering the expected default rate for a given horizon. However, the

risk does not vanish itself but only shift toward some other occasions. If a central

clearing redistributes the probability mass of DT from the center into its (right)

tail, a systemic risk concentration occurs. Specifically, the risk concentration

from central clearing can be defined as the maximal monotonic increase in the

right tail of the DT distribution caused by moving from bilateral clearing into

central clearing. It is noteworthy that LT shapes the distributional change of

DT induced by the introduction of CCP.

3. A system-level cost-benefit analysis

As the CCP insulates CMs from their counterparties defaults under its

tenure, a default feedback is less prone to propagate through the financial net-

work of exposure and the expected aggregate default rate can be lowered by

central clearing to some extent. However, any form of risk does not vanish away

by itself but only transfer to others in a re-packaged form. A possible scenario is

that central clearing redistributes the probability mass of the aggregate default

rate from the center to its right tail by delaying the impact of CMs’ defaults

until it is resumed to bilateral clearing upon the CCP’s default. Such a sys-

temic risk concentration can be mitigated by well-designed collateral schemes
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Figure 1: An illustration of systemic risk concentration from central clearing

Note. This figure illustrates the mechanism of systemic risk concentration from central

clearing. On the left panel, which depicts the probability distributions of DT under

each clearing scheme, the increase in probability on the left-side of the distribution is

noticeable. It appears the right tail distribution under bilateral clearing has higher

probabilities than that under central clearing. The right panel, in contrast, highlights

that the introduction of a central counterparty into a market redistributes the prob-

ability mass of the systemic failure from the center of the distribution into its right

tail.

that carefully redistributes likelihoods of the aggregate default rate from the

right tail.

3.1. Modeling the impact of margin policy

The standard risk management tools against counterparties defaults are pre-

cautionary capital reserves such as margin requirements and loss mutualization

funds. Initial margin is known to be the most e�ective and in fact, most widely

used. Of course, the initial margin scheme has its benefit and cost at the same

time. Initial margin reduces the counterparty credit risk exposure as the de-

faulter pays a part of exposure up-front while it comes as a cost by imposing

additional capital burden which increases the default likelihood of the margin

payer. We model these two aspects of initial margin on default likelihoods in

our intensity model.

9



When modeling and searching for the optimal initial margin policy, one

should bear in his mind about the procyclicality of initial margin. As most

risk-based initial margin schemes impose less in a calm market but more in a

distressed market, those margin schemes act as amplifiers of margin payers’ risk

and become the potential triggers of systemic events. In this paper, we specify

initial margin schemes cyclical to systemic risk cycle and look into their impact

on the aggregate default rate distribution, especially by looking at its mean and

tail probabilities.

We define three types of initial margin policies based on the cyclicality of

the scheme to the systemic risk cycle. The margin rate µ œ [0, 1] specifies the

percentage of the sensitivity of ⁄i
t to j’s default that is reduced by posted initial

margins. The notional amount of initial margin is the margin rate times the

size of exposure of counterparty to the margin payer. The constant margin rate

is defined by

÷t = µ, (10)

the procyclical margin rate is defined by

÷t = µDt (11)

and the countercyclical margin rate is defined by

÷t = µ (1 ≠ Dt) (12)

for some constant µ > 0.

3.2. Default intensities under bilateral arrangement

We make virtually no modeling assumptions on the bilateral market (under

B) except the default transmission channel in Eq. (6). When passing to cen-

tral clearing (under C), at least some modeling is inevitable. First, we posit

a static network of exposure
Ó

”ij
t

Ôn

i,j=1
drawn from i.i.d. uniform distribution

over [0, 0.5]. This simplifies the default feedback model and scales back the mag-

10



nitude of impact on the survivors’ intensity. The intensity of market participant

i = 1, · · · , n is defined as

bi
t(÷) =

A
Xi

t +
nÿ

j=1
e≠Ÿ(t≠·j) (1 ≠ ÷t) ”ij

t N j
t +

nÿ

j=1
e≠Ÿt÷t”

ji
t

1
1 ≠ N j

t

2 B
!
1 ≠ N i

t

"
,

(13)

where Xi
t is the baseline intensity and e≠Ÿ(t≠·j) captures an exponential decay

impact of the default of j on bi
t(÷) for ·j Æ t with a half-life period parameter

Ÿ > 0. We let Xi
t follow a square-root di�usion process to maintain intensities

positive. Note the initial margin mainly reduces the magnitude of feedback from

defaulted CMs by 1 ≠ ÷t while it imposes additional burden toward surviving

counterparties. The intensity of a non-operating CCP is defined in Eq. (8).

3.3. Default intensities under central clearing

Before characterizing intensities under central clearing, we need to clarify

the default proceedings under central clearing. We assume that under CCP’s

tenure, all payments of defaulted contracts are guaranteed by the CCP; thereby

the default impact is absorbed by the CCP and the surviving counterparty is

insulated. Meanwhile, bilateral clearing resumes once the CCP defaults, and

the resulting withheld defaulted contracts are also returned to the original obli-

gators. Under such a model, the CCP no longer insulates its members from each

other’s defaults and may impose initial margin policies that lead to postponed

shocks.

Default intensity of the CCP under central clearing is given by

c0
t (÷) =

A
X0

t +
nÿ

i=1
e≠Ÿ(t≠·i) (1 ≠ ÷t) ”0i

t N i
t

B
!
1 ≠ N0

t

"
, (14)

where ”0i
t =

qn
j=1 ”ji

t by the definition of central clearing. The intensity of
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clearing member i is defined by

ci
t(÷) =

A
Xi

t + N0
t e≠Ÿ(t≠·j)

nÿ

j=1
(1 ≠ ÷t) ”ij

t N j
t +

nÿ

j=1
’”ij

t

1
1 ≠ N j

t

2
+

nÿ

j=1
e≠Ÿt÷t”

ji
t

B
!
1 ≠ N i

t

"
,

(15)

where ’ œ [0, 1] is the attrition rate of central clearing. ’ represents the fraction

of surviving CMs’ exposure su�ering the losses when resuming the bilateral

arrangement. The rest 1 ≠ ’ of each contract resumes bilateral clearing without

su�ering the losses.

It is noteworthy that the additional capital burden materializes in CMs’

intensities and the delayed default feedback decreased by the margin rate as

well. The selection of initial margin policy shapes the probability measure under

central clearing. Interestingly, such shocks implied by well-designed margin

policies could mitigate the propagation of systemic risk at the macro level,

which will be shown in the numerical section.

3.4. Multi-objectives in a downside risk framework

A policymaker may be concerned about the multifaceted consequence of

introducing central clearing. By selecting a central clearing margin policy, de-

noted by ÷, a policymaker seeks to minimize a set of M nonnegative objective

functions f1(÷), · · · , fM (÷). We consider the following marginal objectives.

It is desirable to minimize the mean of DT given by

nÿ

k=0

k

n
P

3
DT = k

n

---- ÷

4
. (16)

From a macro-prudential perspective, the policymaker should be more con-

cerned about the failure of an abnormally large portion of the total population

in the system. With the predetermined critical level c œ [0, 1], the probability
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of DT exceeding the threshold is given by

nÿ

kØcn

P
3

DT = k

n

---- ÷

4
. (17)

The conditional mean of DT exceeding the threshold c œ [0, 1] is given by

EP (DT |DT Ø c) . (18)

The policymaker could also consider quantile-based tail-risk measures to sum-

marize the information in the right tail of the distribution of DT . The widely

accepted VaR at level – œ (0, 1) is defined with a discrete distribution by

VaR–(÷) = min
I

x Ø 0 :
nÿ

k=x

P
3

DT = k

n

---- ÷

4
Æ 1 ≠ –

J
. (19)

Subsequently, the definition of ES is given by

ES–(÷) = 1
1 ≠ –

⁄ 1

–
VaR—(÷)d—, (20)

which can be computed with a discrete distribution as

ES–(÷) = (1 ≠ Ê–)
ÿ

k>VaR–(÷)

k

n
P

3
DT = k

n

---- ÷

4
+ Ê–VaR–(÷), (21)

where Ê– is given by

Ê– = 1
1 ≠ –

Q

a
ÿ

kÆVaR–(÷)

P
3

DT = k

n

---- ÷

4
≠ –

R

b . (22)

The failure of the CCP is another concern of the policy maker in that its failure

has a direct impact on the CM’s default risk. The probability of a default of

the CCP is given by

C (·0 Æ T |÷) . (23)
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Note that the CCP may default under a bilateral arrangement in our model,

but no meaningful interpretation can be drawn from the event.

3.5. A min-max goal programming formulation

In general, the multi-objective optimization problem does not have a solution

satisfying all goals simultaneously. In this context, goal programming (GP) can

provide a reasonable compromise by balancing the trade-o� between the multiple

objectives. Our GP formulation proceeds in two steps. The policymaker first

finds the stand-alone optimal mth goal given by

Gı
m = min {fm(÷) : ÷ œ H} , (24)

where H is a set of various central clearing margin policies under consideration.

Then, the policymaker obtains the unwanted squared relative deviations

dm(÷) =
3

fm(÷) ≠ Gı
m

GÕ
m ≠ Gı

m

42
œ [0, 1], (25)

where GÕ

k is the worst mth goal given by

GÕ

m = max {fm(÷) : ÷ œ H} . (26)

The policymaker finally considers the optimization problem given by

min
÷œH

C(÷; “), (27)

where the preference-weighted systemic cost function C(÷; “) is given by

C(÷; “) =
Mÿ

m=1
“mdm(÷) (28)

for a nonnegative preference parameter set “ = (“1, · · · , “M ), which governs

the policymaker’s priorities over di�erent goals to achieve. The systemic cost

function C(÷; “) is the weighted sum of squared deviations from stand-alone
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goals. The min-max GP formulation was introduced by Flavell (1976). Note

that we assume no individual objective has priority order over one another but

has a preference weight over one another.

4. Numerical results

This section illustrates our numerical analyses in the GP formulation as

described in Section (3.5). After the description of our setup of MC simulation

with conditional importance sampling, we discuss the trade-o� impact of the

initial margin policy by redistributing risk among participants in the system.

Subsequently, alternative tail risk specification confirms and substantiates the

interpretation of our numerical results.

4.1. Simulation setup

We consider n = 20 market participants, all potentially central CMs, which

approximates the size of the primary dealers in the U.S. repo market.4 The risk

horizon is T = 1 year. The parameters of Yt and Zi
t satisfy the Feller condition

to ensure that Xi
t = wiYt +Zi

t > 0 holds almost surely. The selected parameters

model a high credit quality system with B(DT = 0) = 0.1743735. We further

assume the attrition rate of central clearing, ’ = 0.5.

We perform Monte Carlo (MC) simulation to estimate the distribution of

DT . Since the events that significant portions of the total population default

are extremely rare, a high computational cost is required to obtain reliable

estimates with naive MC simulation. For this reason, we apply a conditional

importance sampling technique to reduce the simulation variance significantly

for tail probability estimation; see Kim & Shkolnik (2020) for details. Our

estimation results are based on the conditional importance sampling scheme

with 107 replications.

4As of July 2017, ICE CDS Clearing maintains 30 clearing members in the U.S. market,
whereas 22 members interface between the CCP and clients for ICE Clear Europe’s CDS
clearing operation.
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We formulate the multiple objectives balancing problem with equal prefer-

ence weight on each marginal objective. The choice of marginal objectives is

mean, ES95%, ES99.9% and the default probability of the CCP. ESs at two dif-

ferent significance levels are used to consider tail and extreme tail risk of DT

distribution simultaneously. As the default probability of the CCP may cause

a rippling cascade, this probability should be considered together with other

marginal risk management objectives.

The policymaker may set a threshold level of the default rate as a criterion

towards preemptive actions. For instance, the conditional mean of the aggregate

default rate on it exceeding a certain threshold level and the triggering prob-

ability can be an alternative tail risk measure. In e�ect, the probability that

the aggregate default rate exceeds 1/3 of the total population is much less than

1% in our simulation setting. Figure 4 illustrates each of the risk management

goals alongside various margin rates under consideration.

4.2. Main findings and implications

Figure 2 shows the e�ect of central clearing by graphically representing the

conditional expectations of likelihood ratios on initial margin scheme and aggre-

gate default rate. The domain where the conditional expectation is higher than

1 indicates the increase of the probability mass of DT , vice versa. We verify

that the margin rates lower than 0.1 cause systemic risk concentration in all ini-

tial margin policy specifications by lowering the mean and increasing the right

tail of DT . However, as the margin rate increases, constant and countercyclical

margin schemes lower the mean and the right tail probabilities at the same time.

The cost of these risk reduction is imposed on the left tail distribution of DT ,

which increases the chance of any defaults. Procyclical schemes also subdue the

mean of DT while it intensifies the cost to the right tail extremely as the margin

rate increases.
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Figure 2: Likelihood ratios across various initial margin policies under central clearing

Note. These figures illustrate the e�ect of central clearing by showing the conditional

expectations of likelihood ratios on initial margin scheme and aggregate default rate.

In each panel, the conditional expectations characterize the risk concentration. The

domain where the conditional expectation is higher than 1 indicates increases of the

probability mass of DT , vice versa. Interestingly, as the margin rate increases, constant

and countercyclical margin schemes lower the mean and the right tail probabilities at

the same time. Procyclical scheme also subdue the mean of DT while it intensifies the

cost to the right tail extremely.
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Figure 3: The transformations of the aggregate default rate distributions from central
clearing

Note. These figures illustrate the risk concentration of the aggregate default rate

distributions from central clearing under di�erent initial margin schemes. The prob-

ability redistributions, thereby risk concentrations, are determined by the conditional

expectation of likelihood ratios as illustrated in Figure 2.
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Table 1: Summary statistics of the aggregate default rate distributions

Clearing Scheme
Margin Rate 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bilateral
Arrangement

Constant

Mean 0.0919 0.1062 0.1198 0.1328 0.1451 0.1569 0.1681 0.1788 0.1891 0.1989 0.2082
Stdev 0.0695 0.0729 0.0755 0.0775 0.0789 0.0799 0.0805 0.0808 0.0809 0.0807 0.0804

Skewness 0.7697 0.6653 0.5786 0.5044 0.4395 0.3814 0.3285 0.2795 0.2334 0.1894 0.1468
Kurtosis 3.6660 3.5111 3.4180 3.3678 3.3495 3.3562 3.3839 3.4301 3.4934 3.5733 3.6699

Procyclical

Mean 0.0919 0.0923 0.0928 0.0932 0.0936 0.0940 0.0944 0.0949 0.0953 0.0957 0.0961
Stdev 0.0695 0.0699 0.0703 0.0707 0.0711 0.0715 0.0719 0.0722 0.0726 0.0730 0.0734

Skewness 0.7697 0.7706 0.7714 0.7721 0.7728 0.7733 0.7737 0.7741 0.7744 0.7746 0.7747
Kurtosis 3.6660 3.6613 3.6564 3.6512 3.6458 3.6401 3.6343 3.6282 3.6219 3.6154 3.6087

Countercyclical

Mean 0.0919 0.1058 0.1188 0.1311 0.1428 0.1538 0.1642 0.1742 0.1836 0.1926 0.2012
Stdev 0.0695 0.0725 0.0747 0.0764 0.0775 0.0782 0.0786 0.0788 0.0787 0.0785 0.0781

Skewness 0.7697 0.6653 0.5802 0.5089 0.4478 0.3943 0.3466 0.3035 0.2639 0.2269 0.1920
Kurtosis 3.6660 3.5178 3.4337 3.3932 3.3841 3.3992 3.4340 3.4858 3.5529 3.6346 3.7305

Central
Clearing

Constant

Mean 0.0859 0.0874 0.0889 0.0905 0.0920 0.0935 0.0950 0.0965 0.0980 0.0994 0.1009
Stdev 0.0634 0.0637 0.0641 0.0645 0.0648 0.0652 0.0655 0.0658 0.0661 0.0664 0.0667

Skewness 0.7371 0.7214 0.7058 0.6904 0.6751 0.6600 0.6451 0.6304 0.6158 0.6014 0.5872
Kurtosis 3.7594 3.7200 3.6816 3.6442 3.6078 3.5723 3.5379 3.5044 3.4718 3.4401 3.4093

Procyclical

Mean 0.0859 0.0859 0.0860 0.0860 0.0861 0.0861 0.0862 0.0862 0.0863 0.0864 0.0864
Stdev 0.0634 0.0634 0.0635 0.0635 0.0636 0.0636 0.0637 0.0637 0.0638 0.0638 0.0639

Skewness 0.7371 0.7370 0.7370 0.7369 0.7368 0.7368 0.7367 0.7367 0.7366 0.7365 0.7365
Kurtosis 3.7594 3.7567 3.7540 3.7513 3.7486 3.7460 3.7433 3.7407 3.7380 3.7354 3.7328

Countercyclical

Mean 0.0859 0.0873 0.0888 0.0903 0.0917 0.0932 0.0946 0.0960 0.0975 0.0989 0.1003
Stdev 0.0634 0.0637 0.0640 0.0643 0.0646 0.0649 0.0652 0.0654 0.0657 0.0659 0.0661

Skewness 0.7371 0.7215 0.7060 0.6907 0.6756 0.6606 0.6458 0.6312 0.6168 0.6026 0.5885
Kurtosis 3.7594 3.7227 3.6870 3.6522 3.6184 3.5854 3.5534 3.5223 3.4920 3.4625 3.4338

Note. This table provides summary statistics of the aggregate default rate by varying the clearing schemes as combinations of network

centrality and margin imposition schemes. The graphical representation of this table is provided in Figure 3.
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Table 1 provides the summary statistics of the simulated distribution of the

aggregate default rates across di�erent clearing schemes. The clearing schemes

are combinations of network centrality and margin schemes, which are further

decomposed into margin cyclicality and their rates. Our simulation results imply

that the aggregate default rate distributions transform into di�erent shapes with

the introduction of central clearing. For the fixed margin scheme, the first and

second moments of the default rate decrease under the central clearing scheme in

all cases. This observation indicates that the default rate has a lower mean and

more centered distribution in the centrally cleared system. For the acceptable

margin rates, the kurtosis of the default rate distribution increases in constant

and countercyclical margin schemes, indicating that the decrease in the expected

default rate is realized with the systemic cost of increasing the downside tail risk.

Figure 4 shows the extensive set of marginal objectives used in our analyses.

A primary concern of the policymaker is the mean level of the aggregate default

rate. The policymaker may monitor a clustering of defaults and take preemptive

actions when pre-specified fractions of the total population have defaulted. The

aggregate default probability and the conditional mean of the aggregate default

rate exceeding a critical level in Panels B and C illustrate that risk. Panels D

and E shows ES estimates at the 95% and 99.9% significance levels, respectively.

The role of initial margins in shielding the CCP from the CMs’ defaults is shown

in Panel F.

Figure 5 shows the ratio of each marginal objective values under central

clearings to that under bilateral clearings for fixed margin schemes. The ra-

tio greater than 1 indicates that the central clearing scheme increases the risk

measure compared to bilateral clearing, and vice versa. Most risk measures ex-

cept the default probability of the CCP benefit from central clearing and such a

benefit becomes more pronounced as the margin rate increases. Even the cases

when tail risk arises as illustrated in Panel D or E, a little increase in margin

rate resolves the risk concentration. Note that the introduction of central clear-

ing doubles the default probability of the CCP while the relative magnitude

is mechanical artifact coming from our CCP default model specification under
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Figure 4: Marginal risk management objectives

Note. This figure illustrates the policy maker’s marginal risk management alongside

initial margin policies. Panel A depicts the mean level of the aggregate default rate, a

primary concern of the policymaker. Panels B and C provide the probability and con-

ditional mean of the aggregate default rate exceeding a critical level. In this example,

we assume the policymaker monitors the systemic risk and may take preemptive action

when 1/3 of the total population has defaulted. Panels D and E show ES estimates at

the 95% and 99.9% significance levels, respectively. Panel F shows the role of margin

schemes in shielding the CCP from the CMs’ defaults.
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Figure 5: The ratios of marginal risk management objectives

Note. This figure illustrates the relative magnitude of each marginal objectives under

central clearings to bilateral clearings conditioned on fixed margin schemes. The ratio

greater(smaller) than 1 states the introduction of central clearing increases(decreases)

the risk measure.
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Figure 6: Goal programming results and the optimal margin rates

Note. This figure depicts the mean-tail-extreme tail-SIFI balancing optimization result

with equal preference weights on each objective. In this figure, tail and extreme tail

risk are estimated by ES95% and ES99.9%, respectively. SIFI indicates the default

probability of the CCP. The mean-tail-extreme tail-SIFI balancing goal programming

results the optimal margin rates (constant, procyclical, countercyclical) = (0.61, 1.00,

0.68).

bilateral clearing; the increase in the default probability of the CCP is caused

from default feedback terms in Eq. (14).5 In short, we observe that a larger

initial margin collected from CM can mitigate such a systemic risk under central

clearing.

Figure 6 provides a graphical illustration of our GP results by showing the

total systemic cost function values across various margin rates. To visualize

the pure e�ect of the introduction of central clearing, we compute the marginal

deviations based on the best and worst systemic costs in the pool of all central

clearing schemes we consider. In general, both constant and countercyclical ini-

tial margin schemes are desired as they o�er lower total systemic cost compared

to procyclical scheme. The constant margin scheme maintains its dominance

5Recall that the default probability of the non-operating CCP under bilateral clearing has
insignificant economic implications to the system.
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Figure 7: Goal programming results and the optimal margin rates with alternative marginal
objectives

Note. This figure depicts the mean-tail-extreme tail-SIFI balancing optimization result

with equal preference weights on each objective. In this figure, ES95% measures the

tail risk and the extreme tail events are defined as the conditional mean default rate

on the more or equal to 1/3 of the total population defaults. SIFI indicates the default

probability of the CCP. The mean-tail-extreme tail-SIFI balancing goal programming

results the optimal margin rates (constant, procyclical, countercyclical) = (0.55, 1.00,

0.61).

over the countercyclical scheme in the low margin rate domain while the relation

reverts as the margin rate arises.

Figure 7 provides the graphical illustrations of the total systemic cost func-

tion with alternative marginal objective specifications. Specifically, we apply

the extreme tail risk measure, ES99.9%, along with the conditional expectation

of the default rate given that the aggregate default rate exceeds the threshold

level of 1/3. Policymakers may establish a pre-specified criterion level of ag-

gregate default rate and take preemptive actions to prevent systemically severe

damage in the financial network. The general tendency remains the same under

central clearing schemes, while the optimal margin level slightly decreases from

the original specification. Still, the constant margin scheme provides the best

outcome by minimizing the total systemic cost.
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4.3. Supplementary analysis

Instead of considering multiple objectives separately and simultaneously, we

alternatively consider a sole risk measure encompassing the entire distribution of

DT focusing on the right tail at the same time. Acerbi (2002) suggests spectral

risk measures that assign more weights to the tail of risk distributions of interest

when calculating statistics across the entire distribution. Kou & Peng (2016)

discuss a generalized version of a spectral risk measure of a random variable X

and it is defined by

fl(X) =
⁄

(0,1)
F ≠1

X (u)„(u)d(u), (29)

where „(·) is an increasing and nonnegative function. Accordingly, Cherny

& Madan (2009) propose a distort function „(u) = 1 ≠
!
1 ≠ x1/(1+–)"1+– for

some – > 0. We employ this form of distort function to describe the relative

significance in the lower survival rate region. In our spectral risk measure, the

distort function is specified as

1 ≠ (1 ≠ DT )1/m for m > 0. (30)

Figure 8 illustrates our distort function and the associate spectral risk mea-

sure alongside margin rates under various clearing schemes. It seems the trade-

o� of increasing the margin rate in estimating the systemic cost is evident. The

general tendency alongside the margin rate does not change from our multiple

objectives balancing analyses while the countercyclical scheme dominates in all

clearing scheme specifications with the spectral risk measure.

5. Conclusion

The failure of a member at Nasdaq Clearing in 2018 and the ongoing COVID-

19 market turbulence underscore the importance of a holistic risk management

practices by CCP’s to forestall the loss spread at the systemic level. Despite

the original intention of introducing the CCP into the system for the mitigation
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Figure 8: A distort function and a spectral risk measure

Note. Panel A shows the distort function 1 ≠ (1 ≠ DT )
1/m

for an arbitrarily chosen

m = 50, which is intended to assign more weights to the right tail distribution of DT

in calculating the weighted expectation. Panel B illustrates the implication of our

proposed spectral risk measure by showing the weighted expectation of DT based on

our distortion function described in Panel A. Interestingly, the countercyclical margin

scheme becomes the best margin policy in minimizing the total systemic cost across

most of the margin rates we consider.

of systemic risk, this paper finds that systemic trade-o�s may appear under

the central clearing scheme as reducing the first moment of the aggregate de-

fault rate often has an adverse e�ect on the tail risk and vice versa. Our main

findings indicate that the statistical properties of the full distribution exhibit a

non-trivial dependence on the initial margin policy, which redistributes burdens

among participants as well as the CCP in the system. Central clearing is more

likely to decrease the mean of the aggregate default rate, if the CCP guards

survivors against counterparties’ defaults. However, the delayed default feed-

back may cause the clustering of failures once the CCP defaults. As a price for

lowering the average default rate in regular time, a systemic risk concentration

arises.

This paper formulates a multi-objective optimization problem based on a

min-max GP approach involving a social cost minimization of preference-weighted
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marginal risk management objectives under consideration. The results of our

numerical analyses indicate that the systemic risk concentration arises from

central clearing. Although putting weights on the tail risk justifies bilateral

clearing, constant and/or countercyclical margin schemes generally dominate a

procyclical margin scheme based on a reasonable choice of preference param-

eter set governing the policymaker’s priorities over di�erent marginal goals to

achieve.

Appendix: The sketch of the conditional importance sampling (cIS)
algorithm

This appendix briefly summarizes the algorithm of conditional importance

sampling (cIS) proposed by Kim & Shkolnik (2020) for the purpose of estimating

tail probabilities e�ciently. The objective is to estimate P
!
DT = k

n |÷
"

with ac-

ceptable accuracy for a margin policy ÷ and a large k Æ n, where P
!
DT Ø

k
n |÷

"

is su�ciently small.

Importance sampling is a variance reduction technique that is widely used in

MC simulations by choosing an e�cient simulation measure to obtain reliable

estimates of tail probabilities. The conditional importance sampling approach

is based on adaptive probability measure changes conditional on the tail event

of interest without the need for calculating any optimal parameters prior to, or

during, simulation; see Kim & Shkolnik (2020) for details.

With all notations defined in this paper, we adopt Corollary 1 in Kim &

Shkolnik (2020) with the definition of the cIS simulation measure Qk
T as

Qk
T (A) = EB

A1
{DT = k

n }flA

M
k
T

B
for all A œ FT , (31)

where

M
k
T = exp

A
≠

⁄ T

0
bsds

B
kŸ

i=1
b·i≠

T k

k! , (32)

with bt =
qn

i=1 bi
t. Recall that our default intensity model under bilateral
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clearing has the form of

bi
t(÷) =

Q

aXi
t +

nÿ

j=1
e≠Ÿ(t≠·j) (1 ≠ ÷t) ”ij

t N j
t +

nÿ

j=1
e≠Ÿt÷t”

ji
t

!
1 ≠ N i

t

"
R

b !
1 ≠ N i

t

"
,

(33)

For i = 0, 1, · · · , n. We let Xi
t = wiYt +Zi

t for some constant wi and the squared

root di�usion processes Yt and
!
Z0

t , · · · , Zn
t

"
given by

dYt = ŸY
!
◊Y

≠ Yt

"
dt + ‡Y


YtdW Y

t , (34)

where W Y is a B≠Brownian motion with some ŸY > 0, ◊Y > 0 and ‡Y > 0,

and

dZi
t = Ÿi

!
◊i

≠ Zi
t

"
dt + ‡i

Ò
Zi

tdW i
t , (35)

where
!
W 0, · · · , W n

"
is a vector of mutually independent B≠Brownian motions,

ŸY > 0, ◊Y > 0 and ‡Y > 0.

Our numerical analyses are based on the parameter set for the systematic

factor (Yt) given by
!
ŸY , ◊Y , ‡Y

"
= (1.0, 0.0597911, 0.2) along with the initial

value Y0 = 0.0597911uY where uY is drawn from [0.5, 1.25] uniformly. For

i = 0, · · · , n, the systematic factor loadings wi are drawn from [0, 1], Ÿi from

[0.5, 1.5] and ◊i from [0.025, 0.125] uniformly. We set ‡i = max
1Ô

2Ÿi◊i, ‡i
2

where ‡i is drawn from [0.1, 0.4] uniformly. The conditions for parameters are

intended for Yt and Zi
t to satisfy the Feller condition to maintain Xi

t > 0 almost

surely under B. The exposures
Ó

”ij
t

Ôn

i,j=1
are drawn from [0, 0.025] uniformly

for i ”= j. ”ii
t = 0 for all i = 0, · · · , n by definition.
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