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A Theory of the CBOE SKEW

Abstract

The CBOE SKEW is a new index launched by the Chicago Board Options Ex-

change (CBOE) in February 2011. Its term structure tracks risk-neutral skewness of

the S&P 500 (SPX) index for different maturities. In this paper, we develop a theory

for the CBOE SKEW by modelling SPX using a jump-diffusion process with stochas-

tic volatility and stochastic jump intensity. With the market data of term structures

of VIX and SKEW, we estimate model parameters and obtain the four processes of

instantaneous variance, jump intensity and their long-term mean levels. Our result

can be used to describe SPX risk-neutral distribution and price SPX options.
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1 Introduction

The CBOE SKEW is a new index launched by the Chicago Board Options Exchange

(CBOE) in February 2011. Its term structure tracks risk-neutral skewness of the S&P

500 (SPX) index for different maturities. Skewness, which measures the asymmetry

of a distribution, gives more precise details of the distribution of a underlying asset

and improves the pricing accuracy of options written on this asset. Wang and Daigler

(2012) examine the empirical relations between the SKEW, the VIX, the VIX of VIX

and the SKEW of VIX. Faff and Liu (2014) propose an alternative measure of market

asymmetry against the SKEW index. A theory of the CBOE SKEW has not been

developed. In this paper, we establish a theory for the SKEW index by modelling

SPX using a jump-diffusion process with stochastic volatility and stochastic jump

intensity, and separate the diffusive variance and jump intensity using the market

data of term structures of CBOE VIX and SKEW.

The traditional Capital Asset Pricing Model (CAPM) is mean-variance efficient

while Harvey and Siddique (2000) show that it only holds if the pricing kernel is

linear in the market return. Kraus and Litzenberger (1976) extend the traditional

CAPM to the 3-moment CAPM to incorporate the effect of skewness preference and

Mitton and Vorkink (2007) find evidence that investors deliberately choose under-

diversified portfolios to increase skewness exposure. Empirical Studies identify the

importance of skewness risk and investigate the pricing factors in the cross section

of stock returns, such as the idiosyncratic skewness (see Boyer, Mitton and Vorkink

(2010)) as opposed to the coskewness in 3-moment CAPM, the market skewness (see

Chang, Christoffersen and Jacobs (2013)), or the ex ante risk-neutral skewness (see

Conrad, Dittmar and Ghysels (2013)) extracted from option prices. Besides the effect

of skewness to returns, the skewness itself is of great interest to researchers. The pre-
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dictability power of trading volume and past returns to skewness is tested by Chen,

Hong and Stein (2001), the cross-sectional variation in skewness is investigated by

Dennis and Mayhew (2002), the investor sentiment effect to skewness is examined

by Han (2008), and the stylized facts of positive firm-level skewness and negative

aggregate skewness are reconciled by Albuquerque (2012).

Skewness is an indispensable risk factor in asset pricing studies, especially during

financial crises. It also provides information for practitioners, such as portfolio man-

agement (see DeMiguel et al. (2013)). The CBOE launched SKEW index to track

the S&P 500 tail risk in February 2011 using Bakshi, Kapadia and Madan’s (2003)

model-free methodology. Skewness is not tradable but speculators or hedgers can

take a position in it by forming stock option portfolios (see Bali and Murray (2013)).

Skewness is the perceived asymmetry in stock returns, which can be explained

by leverage-effect, volatility-feedback or bubble theories. All these theories are con-

sistent in jump diffusion models, as leverage effect and volatility feedback explain

the negative correlation between stock returns and Brownian variance innovations

while bubbles represent the jumps in the stock prices. Intuitively, the heterogeneous

believes reflected by turnovers boosts volatility, whereas the momentum reflected by

positive past returns or bearishness increases jump intensity. Additionally, the Black-

Scholes (1973) implied volatility smile/smirk and the down-to-up variance, used by

Chen, Hong and Stein (2001) and Faff and Liu (2014), are alternative measures for

the return asymmetry.

In this paper, we provide analytical formulas for the CBOE SKEW in various

affine jump diffusion (AJD) models, decompose the market skewness into jump com-

ponent and variance correlation component in a 5-factor model with the term struc-

ture data of CBOE VIX and SKEW. The skewness calculation formulas provide a

linkage between skewness and jumps/variance-correlation as well as other fixed model
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parameters, which are crucial factors for option pricing.

A large variety of option pricing formulas are based on affine jump diffusion mod-

els due to their tractability. Heston (1993) develops a stochastic volatility model

that allows arbitrary correlation between volatility and spot-asset returns and ex-

plains the return skewness which can not be captured by Black and Scholes (1973)

model. However, Heston model constitutes an inadequate explanation of the instan-

taneous skewness (see Das and Sundaram (1999) and Zhang et al. (2015)). Merton

(1976) constructs a jump-diffusion model where the jumps in returns could be another

source for skewness. Bates (2000) examines the combined stochastic-volatility/jump-

diffusion model for the negatively skewed post-crash returns. Eraker, Johannes and

Polson (2003) test the AJD models with jumps in volatility which persistently steepen

the slope of implied volatility curves in addition to the transient impact of jumps in

returns. Overall, skewness is a nested outcome of variance correlation and jumps.

The instantaneous Brownian variance and jump intensity are important for asset

pricing. However, these two factors are unobservable in financial markets. A strand

of empirical studies exploring the return-skewness relationship use historical skewness

proxies, which require further assumptions to be valid, such as ergodicity. Using the

easily available VIX and SKEW term structure data, which are daily updated on

the CBOE website, our paper provides an estimation procedure to quantify the risk-

neutral Brownian variance and jump intensity, which could be used as more reliable

risk factors to explain returns than historical proxies.

The jump risk and correlation risk are two different common risk factors for the

explanation of returns, as jump risk mainly accounts for short-term skewness whereas

correlation risk primarily affects long-term skewness. The physical version of these

two factors can be captured by different constructions: the former through the daily

third moment of log-returns and the latter through the correlation between daily log-
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return and future variance as in Neuberger (2012). Thus, extracting the risk neutral

jump intensity and Brownian variance from VIX and SKEW term structure data,

our paper provides a theoretical platform to quantify the jump risk premium and

correlation risk premium.

The remainder of this paper is organized as follows. Section 2 introduces the

CBOE SKEW index. Section 3 derives the formulas for CBOE SKEW in various

jump diffusion models. Section 4 discusses the data selection. Section 5 presents the

estimation procedure and analyzes the empirical performance. Section 6 concludes

with suggestions for future research.

2 Definition of the CBOE SKEW

The CBOE SKEW is a new index launched by the Chicago Board Options Exchange

(CBOE) on February 23, 2011. Its term structure tracks risk-neutral skewness of the

S&P 500 (SPX) index for different maturities. The SKEW is computed from all of the

out-of-the-money (OTM) SPX option prices by using Bakshi, Kapadia and Madan’s

(2003) methodology.

At time t, the SKEW is defined as

SKEWt = 100− 10× Skt, (1)

where Skt is risk-neutral skewness given by

Skt = EQ
t

[

(RT
t − µ)3

σ3

]

; (2)

RT
t is the logarithmic return of SPX at time T , denoted as ST , against current forward

price with maturity T , F T
t ; µ is the expected return and σ2 is the variance in risk-

neutral measure Q

RT
t = ln

ST

F T
t

, µ = EQ
t (R

T
t ), σ2 = EQ

t [(R
T
t − µ)2]. (3)
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Expanding equation (2) gives

Skt =
EQ

t [(R
T
t )

3]− 3EQ
t (R

T
t )E

Q
t [(R

T
t )

2] + 2[EQ
t (R

T
t )]

3

EQ
t [(R

T
t )

2]− [EQ
t (R

T
t )]

2
. (4)

Following Bakshi, Kapadia and Madan (2003), the CBOE evaluates the first three

moments of log return EQ
t (R

T
t ), E

Q
t [(R

T
t )

2] and EQ
t [(R

T
t )

3] in risk-neutral measure by

using current prices of European options with all available strikes as follows

EQ
t (R

T
t ) = −erτ

∑

i

1

K2
i

Q(Ki)∆Ki + ln
K0

F T
t

+
F T
t

K0
− 1, (5)

EQ
t [(R

T
t )

2] = erτ
∑

i

2− 2 ln Ki

FT
t

K2
i

Q(Ki)∆Ki + ln2 K0

F T
t

+ 2 ln
K0

F T
t

(

F T
t

K0

− 1

)

, (6)

EQ
t [(R

T
t )

3] = erτ
∑

i

6 ln Ki

FT
t

− 3 ln2 Ki

FT
t

K2
i

Q(Ki)∆Ki + ln3 K0

F T
t

+3 ln2 K0

F T
t

(

F T
t

K0
− 1

)

, (7)

where F T
t is the forward index level derived from SPX option prices using put-call

parity; K0 is the first listed price below F T
t ; Ki is the strike price of the ith OTM

option (a call if Ki > K0 and a put if Ki < K0); ∆Ki is half the difference between

strikes on either side of Ki, i.e., ∆Ki =
1
2
(Ki+1−Ki−1), and for minimum (maximum)

strike, ∆Ki is simply the distance to the next strike above (below); r is the risk-free

interest rate; Q(Ki) is the midpoint of bid-ask spread for each option with strike Ki;

τ is the time to expiration as a fraction of a year. The reasoning behind equations

(5), (6) and (7) are included in Appendix A.

The SKEW index refers to 30-day maturity, i.e., τ = τ0 ≡ 30/365. In general, 30-

day options are not available. The current 30-day skewness Skt is derived by inter- or

extrapolation from the current risk-neutral skewness at adjacent expirations, Sknear
t

and Sknext
t as follows

Skt = ωSkt,near + (1− ω)Skt,next, (8)



A Theory of the CBOE SKEW 7

where ω is a weight determined by

ω =
τnext − τ0
τnext − τnear

,

and τnear and τnext are the times to expiration (up to minute) of the near- and next-

term options respectively. The near- and next-term options are usually the first and

second SPX contract months. “Near-term” options must have at least one week to

expiration in order to minimize possible close-to-expiration pricing anomalies. For

near-term options with less than one week to expirations, the data rolls to the second

SPX contract month. “Next-term” is the next contract month following near-term.

While calculating time to expiration, the SPX options are deemed to expire at the

open of trading on SPX settlement day, i.e., the third Friday of the month.

3 Model

Option-pricing models have been developed by using different kinds of stochastic

processes for the underlying stock, such as jump-diffusion with stochastic volatility

and stochastic jump intensity. The purpose of making volatility and jump intensity

stochastic is to capture time-varying second and third moments of stock return. Tra-

ditionally these models are usually estimated by using some numerical approaches

with volatility and jump intensity being latent variables. These numerical estimation

procedures are often highly technical and very time-consuming.

With the observable information of two term structures of VIX and SKEW from

the CBOE, it is now possible to estimate risk-neutral underlying process explicitly.

The volatility and jump intensity processes are not latent any more. In fact, in this

paper we will make them semi-observable. In order to achieve this goal, we need some

theoretical results on the term structures of VIX and risk-neutral skewness implied

in different models.
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To intuit the result, we begin with the simplest case, i.e., the Black-Scholes (1973)

model.

Proposition 1 In the Black-Scholes (1973) model, the risk-neutral underlying stock

is modeled by

dSt

St
= rdt+ σdBt,

where Bt is a standard Brownian motion, r is risk-free rate and σ is volatility. The

model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = σ2, Skt,τ = 0. (9)

This is a trivial case. The log return is normally distributed, hence the volatility

term structure is flat and the skewness is zero.

In order to create skewness, we need include jumps, e.g., Poisson process, into the

model. Merton’s (1976) jump-diffusion model is a pioneer along this direction.

Proposition 2 In Merton (1976) model, the risk-neutral underlying stock is modeled

by

dSt

St
= rdt+ σdBt + (ex − 1)dNt − λ(ex − 1)dt,

where Nt is a poisson process with constant jump size x and jump intensity λ. The

model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = σ2 + 2λ(ex − 1− x), Skt,τ =

λx3

(σ2 + λx2)3/2
τ−1/2. (10)

Proof. See Appendix B.1.

Remark 2.1. Here we present a result with a constant jump size in order to make the

formulas of VIX and SKEW term structures simple and intuitive. It can be extended
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to an arbitrary distribution without much difficulty, see e.g., Zhang, Zhao and Chang

(2012).

Remark 2.2. The VIX term structure is again flat with a squared VIX being σ2 +

2λ(ex − 1− x), which is different from annualized term variance (variance swap rate)

V art,τ = σ2 + λx2. The difference is due to the CBOE definition of VIX. It is small

for small x, see Luo and Zhang (2012) for a detailed discussion.

Remark 2.3. We notice that
√
τ Skt,τ is a constant in this model. Hence we a simple

criterion as follows: If
√
τ Skt,τ is not a constant, then Merton (1976) jump-diffusion

model does not apply in the options market.

Furthermore, we notice that
√
τ Skt,τ is equal to the daily skewness if the daily

returns are independent and identically distributed. Thus, we introduce a new concept

of the regularized skewnss.

Definition The regularized skewness, RSkt,τ , at time t, is given by

RSkt,τ =
√
τ Skt,τ =

√
τEQ

t

[

(Rt,τ − µ(Rt,τ ))
3

σ3(Rt,τ )

]

, (11)

where Rt,τ denotes the logarithmic return over the period [t, t+τ ], µ(Rt,τ ) and σ2(Rt,τ )

denote its mean and variance, respectively.

In addition to jumps, skewness can also be created by using stochastic volatility

with leverage effect, i.e., correlation between stock return and volatility. Along this

direction, Heston (1993) model has become a standard platform partially because of

its analytical tractability due to an affine structure. Das and Sundaram (1999) first

attempt to describe analytically the skewness implied in Heston model, unfortunately

their claimed closed-form formula is not exact. Zhao, Zhang and Chang (2013) provide

a partial result for a special case of zero mean-reverting speed, i.e., κ = 0. A full



A Theory of the CBOE SKEW 10

explicit formula is not available until the recent work of Zhang et al (2015).

Proposition 3 (Zhang et al 2015) In the Heston (1993) model, the risk-neutral un-

derlying stock is modeled by

dSt

St

= rdt+
√
vtdB

S
t ,

dvt = κ(θ − vt)dt+ σv

√
vtdB

v
t ,

where two standard Brownian motions, BS
t and Bv

t , are correlated with a constant

coefficient ρ. The model-implied squared VIX and skewness at time t for time to

maturity τ are as follows

V IX2
t,τ = (1− ω)θ + ωvt, ω =

1− e−κτ

κτ
, (12)

Skt,τ =
TCH

(V arH)3/2
, (13)

where the term variance and third cumulant are given by

V arH = Et(X
2
T )− Et(XTYT ) +

1

4
Et(Y

2
T ), (14)

TCH = Et(X
3
T )−

3

2
Et(X

2
TYT ) +

3

4
Et(XTY

2
T )−

1

8
Et(Y

3
T ). (15)

The integrated return uncertainty, XT , and integrated instantaneous variance uncer-

tainty, YT , are defined by

XT ≡
∫ T

t

√
vudB

S
u , YT ≡

∫ T

t

[vu −Et(vu)]du = σv

∫ T

t

1− e−κ(T−u)

κ

√
vudB

v
u.

The variance and covariance of XT and YT are given by

Et(X
2
T ) =

∫ T

t

Et(vu)du, (16)

Et(XTYT ) = ρσv

∫ T

t

A1Et(vu)du, A1 =
1− e−κτ∗

κ
, τ ∗ = T − u, (17)

Et(Y
2
T ) = σ2

v

∫ T

t

A2
1Et(vu)du. (18)
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The third and co-third cumulants of XT and YT are given by

Et(X
3
T ) = 3ρσv

∫ T

t

A1 Et(vu)du, (19)

Et(X
2
TYT ) = σ2

v

∫ T

t

A2 Et(vu)du,

A2 =

(

1− e−κτ∗

κ

)2

+ 2ρ2
1− e−κτ∗ − κτ ∗e−κτ∗

κ2
, (20)

Et(XTY
2
T ) = ρσ3

v

∫ T

t

A3 Et(vu)du,

A3 = 2
1− e−κτ∗ − κτ ∗e−κτ∗

κ2

1− e−κτ∗

κ
+

1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3
, (21)

Et(Y
3
T ) = 3σ4

v

∫ T

t

A4 Et(vu)du,

A4 =
1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3

1− e−κτ∗

κ
, (22)

and Et(vu) = θ + (vt − θ)e−κ(u−t) is the expected instantaneous variance.

Proof. See Zhang et al (2015).

Remark 3.1. Through asymptotic analysis, Zhang et al (2015) shows that for κ > 0,

if τ is small, the skewness is given by

Skt,τ =
3

2
ρ
σv√
vt

√
τ + o(

√
τ ).

If τ is large, then the skewness is given by

Skt,τ =
3ρσv

κ
− 3

2
σ2
v

κ2
√

1− ρσv

κ
+ 1

4
σ2
v

κ2

1√
θτ

+ o

(

1√
τ

)

.

Hence the regularized skewness
√
τ Skt,τ behaves linearly with τ for small τ , ap-

proaches to a constant for large τ .

When modeling the VIX term structure, Luo and Zhang (2012) observe that both

short and long ends of the term structure are time-varying. Hence it is necessary to
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include a new factor of stochastic long-term mean into the standard Heston model in

order to enhance its performance in pricing options. The impact of the new factor on

skewness is presented in the next proposition.

Proposition 4 In a modified Heston model with stochastic long term mean, the risk-

neutral underlying stock is modeled by

dSt

St
= rdt+

√
vtdB

S
t

dvt = κ(θt − vt)dt+ σv

√
vtdB

v
t .

dθt = σθ

√

θtdB
θ
t ,

where the new standard Brownian motion, Bθ
t , is independent of BS

t and Bv
t . The

model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = (1− ω)θt + ωvt, ω =

1− e−κτ

κτ
,

Skt,τ =
TCH + TCHM

[V arH + V arHM ]3/2
, (23)

where the contributions of long term mean variation to the variance and the third

cumulant are given by

V arHM =
1

4
σ2
θθtC1, (24)

TCHM = −3

2
σ2
θθtC1 +

3

2
ρσvσ

2
θθtC2 −

3

8
σ2
vσ

2
θθtC3 −

3

8
σ4
θθtC4, (25)

C1 =

∫ T

t

(e−κ(T−u) − 1 + κ(T − u))2

κ2
du, (26)

C2 =

∫ T

t

1− e−κ(T−u)

κ

∫ u

t

(1− e−κ(u−s))
e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (27)

C3 =

∫ T

t

(1− e−κ(T−u))2

κ2

∫ u

t

(1− e−κ(u−s))
e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (28)

C4 =

∫ T

t

(e−κ(T−u) − 1 + κ(T − u))2

κ2

∫ u

t

e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (29)
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and the term variance, V arH , and third cumulant, TCH , of Heston model are given

by Proposition 3.

Proof. See Appendix B.2.

Remark 4.1. In modified Heston model, for κ > 0, if τ is small, the asymptotic

skewness is the same as that in Heston model, given by

Skt,τ =
3

2
ρ
σv√
vt

√
τ + o(

√
τ ).

If τ is large, then the skewness is given by

Skt,τ = −3
√
3

5

σθ√
θt

√
τ + o(

√
τ).

Hence the regularized skewness
√
τ Skt,τ behaves linearly with τ for both small τ and

large τ .

With Merton (1976) jump-diffusion model, we are not able to create a flexible

SKEW term structure because the model implied skewness times
√
τ is a constant

across different τ . With Heston (1993) model, we are not able to produce a large

short-term skewness because the model implied skewness goes to zero for small τ .

Hence it is necessary to combine these two models in order to create a SKEW term

structure flexible enough to fit market data. The result of a hybrid Merton-Heston

model is presented in the next proposition.

Proposition 5 In a hybrid Merton-Heston model, i.e., jump-diffusion model with

stochastic volatility, the risk-neutral underlying stock is modeled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λ(ex − 1)dt,

dvt = κ(θ − vt)dt+ σv

√
vtdB

v
t .
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The model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = (1− ω)θ + ωvt + 2λ(ex − 1− x), ω =

1− e−κτ

κτ
,

Skt,τ =
TCH + λx3τ

[V arH + λx2τ ]3/2
, (30)

where the term variance, V arH , and third cumulant, TCH , of Heston model are given

by Proposition 3.

Remark 5.1. Due to the independence between jump and diffusion processes, the

term variance and third-cumulant of the hybrid Merton-Heston model is simply the

sum of the contributions from each model. The short-term skewness is no longer zero

due to the third cumulant contributed from jumps.

Remark 5.2. In hybrid Merton-Heston model, for κ > 0, if τ is small, the asymptotic

skewness is given by

Skt,τ =
λx3

(vt + λx2)3/2
1√
τ
+ c

√
τ + o(

√
τ).

where

c =
3ρσvvt

2(vt + λx2)3/2
+

3[ρσvvt + κ(vt − θv)]λx3

4(vt + λx2)5/2
.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

1√
τ
+ o

(

1√
τ

)

,

where

a = λx3 + θ

[

3ρ
σv

κ
− 3

2
(1 + 2ρ2)

σ2
v

κ2
+

9

4
ρ
σ3
v

κ3
− 3

8

σ4
v

κ4

]

,

b = λx2 + θ

(

1− ρ
σv

κ
+

1

4

σ2
v

κ2

)

.
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Hence the regularized skewness
√
τ Skt,τ approaches to a constant for both small τ

and large τ .

The time-varying feature of VIX has been picked up by stochastic instantaneous

variance, vt, in the continuous-time models presented before. The time-varying fea-

ture of SKEW has to be picked up by jump-related variables. The jump size is usually

assumed to follow a static distribution (in particular, a constant in this paper), hence

we have to rely on stochastic jump intensity, λt, to capture the time-varying SKEW.

To begin with, we look at a simple case of mean-reverting deterministic intensity

as follows.

Proposition 6 In a jump-diffusion model with stochastic volatility and deterministic

jump intensity with the same mean-reverting speed, the risk-neutral underlying stock

is modeled by

dSt

St

= rdt+
√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt,

dvt = κ(θv − vt)dt+ σv

√
vtdB

v
t ,

dλt = κ(θλ − λt)dt,

The model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = (1− ω)θV + ωVt,

Skt,τ =
TCH + ΛT

t x
3τ

[V arH + ΛT
t x

2τ ]
3/2

, (31)

where

θV = θv + 2θλ(ex − 1− x), Vt = vt + 2λt(e
x − 1− x),

and the average jump intensity, ΛT
t , is given by

ΛT
t =

1

T − t

∫ T

t

λudu = (1− ω)θλ + ωλt.
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The term variance, V arH , and third cumulant, TCH , of Heston model are given by

Proposition 3.

Remark 6.1. The time-varying deterministic jump intensity does not create any

difficulty in computing the term skewness. To produce a corrected result, we can

simply replace constant jump intensity in the formula of Proposition 5 by the average

one over the term period.

Remark 6.2. The mean-reverting speed of λt is designed to be the same as that of

vt, so that the resulted instantaneous squared VIX defined by Luo and Zhang (2012),

Vt = vt + 2λt(e
x − 1− x), follows a mean-reverting process with the same speed

dVt = κ(θV − Vt)dt+ σv

√
vtdB

v
t .

The VIX term structure model of Luo and Zhang (2012) can be directly applied.

With these background knowledge, we are now ready to move on to a more com-

plicated model of stochastic jump intensity as follows.

Proposition 7 In a jump-diffusion model with stochastic volatility and stochastic

jump intensity with the same mean-reverting speed, the risk-neutral underlying stock

is modeled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt,

dvt = κ(θv − vt)dt+ σv

√
vtdB

v
t ,

dλt = κ(θλ − λt)dt+ σλ

√

λtdB
λ
t ,

where Bλ
t is independent of BS

t , B
v
t , Nt. The model-implied squared VIX and skewness
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at time t for time to maturity τ are as follows

V IX2
t,τ = (1− ω)θV + ωVt,

Skt,τ =
TCH + TCJ

[V arH + V arJ ]3/2
, (32)

where the contributions of jump component to variance and third cumulant are given

by

V arJ = ΛT
t x

2τ + (ex − 1− x)2Et(Z
2
T ), (33)

TCJ = ΛT
t x

3τ − 3x2(ex − 1− x)Et(Z
2
T )− (ex − 1− x)3Et(Z

3
T ), (34)

ZT is defined by

ZT ≡
∫ T

t

[λu −Et(λu)]du = σλ

∫ T

t

1− e−κ(T−u)

κ

√

λudB
λ
u ,

and the variance and third cumulant of ZT are given by

Et(Z
2
T ) = σ2

λ

∫ T

t

(1− e−κτ∗)2

κ2
Et(λu)du, τ ∗ = T − u, (35)

Et(Z
3
T ) = 3σ4

λ

∫ T

t

1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3

1− e−κτ∗

κ
Et(λu)du, (36)

and Et(λu) = θλ + (vt − θλ)e−κ(u−t) is the expected jump intensity. The average

jump intensity ΛT
t is given by Proposition 6, and the term variance, V arH , and third

cumulant, TCH , of Heston model are given by Proposition 3.

Proof. See Appendix B.3.

Remark 7.1. As we can see from equations (33) and (34), the term variance, V arJ ,

and third cumulant, TCJ , contributed from jumps consist of two components. One of

them is due to the average jump intensity, ΛT
t ; the other one is due to the uncertainty,

σλ, in jump intensity. There is no interaction term between stochastic volatility and

jumps because they are independent.
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Remark 7.2. In this three-factor model, for κ > 0, if τ is small, the asymptotic

skewness is given by

Skt,τ =
λtx

3

(vt + λtx2)3/2
1√
τ
+ c

√
τ + o(

√
τ ),

where

c =
3ρσvvt

2(vt + λtx2)3/2
+

(3ρσvvtλt + κvtλt + 2κvtθ
λ − 3κθvλt)x

3

4(vt + λtx2)5/2
+

κλt(λt − θλ)x5

4(vt + λtx2)5/2
.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

1√
τ
+ o

(

1√
τ

)

,

where

a = θλ
[

x3 − 3x2(ex − 1− x)
σ2
λ

κ2
− 3(ex − 1− x)3

σ4
λ

κ4

]

+θv
[

3ρ
σv

κ
− 3

2
(1 + 2ρ2)

σ2
v

κ2
+

9

4
ρ
σ3
v

κ3
− 3

8

σ4
v

κ4

]

,

b = θλ
[

x2 + (ex − 1− x)2
σ2
λ

κ2

]

+ θv
(

1− ρ
σv

κ
+

1

4

σ2
v

κ2

)

.

Hence the regularized skewness
√
τ Skt,τ approaches to a constant for both small τ

and large τ .

As explained early, we need two variance factors, i.e., instantaneous one, vt, and

long-term one, θvt to capture the information of time-varying VIX term structure.

Similarly, in order the capture the information of time-varying SKEW term structure,

we also need two factors, i.e., instantaneous and long-term jump intensity, λt and θλt .

The simplest five-factor model is presented as follows.

Proposition 8 In a jump-diffusion model with stochastic volatility and stochastic

jump intensity as well as stochastic corresponding long term mean levels, the risk-
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neutral underlying stock is modeled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt,

dvt = κ(θvt − vt)dt+ σv

√
vtdB

v
t ,

dλt = κ(θλt − λt)dt+ σλ

√

λtdB
λ
t ,

dθvt = σ1

√

θvt dB
θ,v
t ,

dθλt = σ2

√

θλt dB
θ,λ
t ,

where Bθ,v
t , Bθ,λ

t are independent of each other and BS
t , B

v
t , B

λ
t and Nt. The model-

implied squared VIX and skewness at time t for time to maturity τ are as follows

V IX2
t,τ = (1− ω)θV + ωVt,

Skt,τ =
TCH + TCJ + TCM

[V arH + V arJ + V arM ]3/2
. (37)

where the contributions of long term mean variation to variance and third cumulant

are given by

V arM = V arHM + (ex − 1− x)2σ2
2θ

λ
t C1, (38)

TCM = TCHM − 3σ2
2θ

λ
t [x

2(ex − 1− x)C1 + (ex − 1− x)3(σ2
λC3 + σ2

2C4)],(39)

and the variance V arH , third cumulant TCH , of Heston model are given by Propo-

sition 3, V arHM , TCHM , C1, C3, C4 are given by Proposition 4, V arJ and TCJ , of

jump component are given by Proposition 7.

Remark 8.1. The result is built by combining those of Propositions 4 and 7 and in-

cluding additional term variance and third cumulant contributed from the uncertainty

of long-term mean jump intensity, θλt .
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Remark 8.2. In this five-factor model, for κ > 0, if τ is small, the asymptotic

skewness is given by

Skt,τ =
λtx

3

(vt + λtx2)3/2
1√
τ
+ o

(

1√
τ

)

.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

√
τ + o(

√
τ),

where

a = −1

5
(ex − 1− x)3θλt σ

4
2 −

1

40
θvt σ

4
1,

b =
1

3
(ex − 1− x)2θλt σ

2
2 +

1

12
θvt σ

2
1.

Hence the regularized skewness
√
τ Skt,τ approaches to a constant for small τ , and

behaves linearly with τ for large τ .

4 Data

The daily data on two term structures of VIX and SKEW ranging from 2 January

1990 to 31 December 2014 are provided by the CBOE.

On each day, we have VIX and SKEW data for up to ten maturity dates. The

time to maturity becomes one day shorter as we move forward by one day. In order

to facilitate our estimation of continuous-time models, we construct a new set of data

with constant times to maturity from the original one.

We are particularly interested in times to maturity, τ = 1, 3, 6, 9, 12 and 15

months. Following the practice of the CBOE, we compute the SKEW at time t for

time to maturity τ by using interpolation as follows

SKEWt,τ = ωSKEWt,last + (1− ω)SKEWt,next,
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where ω is a weight determined by

ω =
τnext − τ

τnext − τlast
,

and τlast and τnext are the times to maturity2 (up to minute) of the last and next

available data respectively. We set SKEW term structure to be flat if τ is larger than

the longest available time to maturity.

Figure 1 shows the time evolution of SKEW term structure for time to maturity

from 1 month to 15 months and Figure 2 shows the time series of three selected

SKEWs with constant time to maturity. The sample period is from 2 January 1990

to 31 December 2014. As we can see from the figures, the SKEW term structure has

a relative stable shape before financial tsunami. It becomes erratic in the last five

years. The level of SKEW significantly increases in recent years. It indicates that

option traders expect higher tail risk after the financial crisis.

Figure 3 shows a few samples of SKEW term structure with abnormal shape. They

either have a very low minimum SKEW (smaller than 90) or a very high maximum

SKEW (higher than 180).

5 Model Estimation and Its Empirical Performance

One always encounters the challenge that the daily realizations of diffusive volatility

or jump intensity are unobservable. To circumvent the estimation difficulty of latent

variables, we use a two-stage iterative approach. In the first stage, we follow the same

procedure adopted by Luo and Zhang (2012) to estimate the mean-reverting speed κ

and daily realizations of instantaneous squared VIX (ISVIX) and its long term mean

2There is an inconsistency in the CBOE practice on calculating number of days for the time to

maturity. Business day convention is used in computing the term structure of the SKEW, however

calendar day is used in computing 30-day SKEW index. In this paper, we construct constant time

to maturity SKEW by using business day convention.
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level using the term structure of CBOE VIX. Besides the VIX term structure data

from 2 January 1992 to 4 September 2009, we extend the sample period including the

latest VIX term structure data from 24 November 2010 to 31 December 2014. In the

second stage, we first calibrate the correlation coefficient ρ and jump size x, and then

estimate the volatility of volatility σv as well as the daily realizations of Brownian

variance and its long term mean level using the term structure of CBOE SKEW.

Meanwhile, we obtain the daily realizations of jump intensity and its long term mean

level due to the linear relationship of instantaneous squared VIX to Brownian variance

and jump intensity.

For estimation accuracy, we select the matched term structure data of VIX and

SKEW both with no less than 6 time to maturities. We design a 5-step estimation

procedure as follows:

Step 1 Given an initial value κ, obtain the time series of instantaneous and long-

term value of ISVIX {Vt, θ
V
t }, t = 1, 2, · · · , T , where T is the total number of trading

days in the matched sample. In this step, we are required to solve T optimization

problems

{Vt, θ
V
t } = argmin

nt
∑

j=1

(V IXt,τj − V IXMkt
t,τj

)2,

where V IXt,τj is the model-implied value of VIX with maturity τj on day t, V IXMkt
t,τj

is the corresponding market value, nt is the number of maturities on day t.

Step 2 Estimate κ with {Vt, θ
V
t } obtained in step 1 by minimizing the overall

objective function for VIX:

{κ} = argmin
T
∑

t=1

nt
∑

j=1

(V IXt,τj − V IXMkt
t,τj

)2.

Step 1 and Step 2 are repeated to estimate {κ} until no further significant decrease

exists in the overall objective (i.e., the aggregate sum of squared VIX errors).
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Step 3 Determine the correlation coefficient ρ and the jump size x externally using

the following relations:

Corrt(d logSt, dV IX2
t ) ≈ ρ

√

vt
vt + x2λt

,

RSkt,τ→0 =
λtx

3

(vt + λtx2)3/2
,

where Corrt(d logSt, dV IX2
t ) denotes the conditional correlation between the log-

arithmic return and the daily change of VIX square neglecting the instantaneous

variance of λt, θ
v
t and θλt , and RSkt,τ→0 denotes the daily instantaneous regularized

skewness.

Step 4 With the optimal mean-reverting speed κ and time series {Vt, θ
V
t } obtained

in the first two steps as well as the correlation coefficient ρ and jump size x in Step

3, given an initial value σv, we can estimate daily Brownian variance vt by solving T

optimizations

{vt, θvt } = argmin

nt
∑

j=1

(SKEWt,τj − SKEWMkt
t,τj

)2,

with constraints vt < Vt and θvt < θVt , where SKEWt,τj is the theoretical value of

SKEW with maturity τj on date t, SKEWMkt
t,τj

is the corresponding market value.

Step 5 Estimate σv with vt obtained in step 4 by minimizing the overall objective

function for SKEW:

{σv} = argmin

T
∑

t=1

nt
∑

j=1

(SKEWt,τj − SKEWMkt
t,τj

)2.

Step 4 and Step 5 are repeated to estimate σv until no further significant decrease

exists in the overall objective (i.e., the aggregate sum of squared SKEW errors).

We conduct the estimation procedure using the 5-factor model from Proposition

8. The full sample optimal κ is 3.5680, as shown in Table 2, and the daily realizations

of ISVIX and its long term mean level are shown in Figure 4. We also report the
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subperiod optimal values of κ as well as the mean values and standard deviations of

ISVIX and its long term mean level. The mean reverting speed κ for 2 January 1992

to 4 September 2009 is 5.8285, whereas κ for 24 November 2010 to 31 December 2014

is 1.9304. During 2008 financial crisis, ISVIX changed dramatically, resulting in a

large mean reverting speed. The post-2008 VIX term structure data exhibit higher

long term values than the instantaneous.

We assume the aggregate proportion of Brownian motion variance to total vari-

ance is 0.7. The optimal average of Vt is 0.0438 from the full sample VIX term

structure estimation. The correlation coefficient between VIX square and logarith-

mic SPX daily changes is -0.7185 (sample period 2 January 1990 to 31 December

2014). We use the spline interpolation -0.2 of the first 4 weekly average regularized

skewness -0.2817, -0.3786, -0.4759, -0.5430 with 7, 12, 17, 22 business days to matu-

rity respectively (sample period 2 January 1990 to 31 December 2014) as the limit of

regularized skewness at point zero. Given the above conditions, we have jump size x

and correlation coefficient ρ as -0.14, -0.859 respectively.

Given the mean reverting speed κ, correlation coefficient ρ, jump size x as well

as the daily realizations of ISVIX and its long term mean level, the optimal value of

the volatility of volatility σv is 0.7929 using the SKEW formula implied in Model 8

ignoring the instantaneous variance of jump intensity λt, Brownian variance long term

mean θvt and jump intensity long term mean θλt . The daily realizations of Brownian

variance and jump intensity as well as their long term mean levels are shown in Figure

5 and Figure 6 respectively. We see that the increase of Brownian variance tends to

be associated with the increase of jump intensity during financial crises. The relative

jump risk indicators, the proportion of Brownian variance to total variance and the

instantaneous regularized skewness, are shown in Figure 7. The aggregate estimation

performance is shown in Figure 9 and Figure 10.
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Note that we omit the instantaneous variance of λt, θvt and θλt . After getting

the time series of Brownian variance vt, jump intensity λt as well as their long term

mean levels θv and θλt , it is straightforward to calculate the instantaneous volatility

of λt, θ
λ
t and θvt as 11.1370, 3.5402 and 0.5362 respectively through the variance of

daily increments. As the expected Ft-conditional variance E(vart(dλt)) = var(dλt)−

var(Et(dλt)), the second term on the right-hand side is negligible due to its order

(dt)2, where dt = 1
252

neglecting the single point effect of data unavailability during

2009-2010. The expected conditional variance is exactly the unconditional variance

for the long term mean levels due to the martingale property.

The correlation coefficient between the estimated Brownian variance and jump

intensity is 0.055, see Figure 8, which indicates the jump intensity is neither constant

nor proportional to Brownian variance as assumed in Bates (1996) and Bates (2000).

However, the models in this paper retain the affine structure in Duffie, Pan and

Singleton (2000). Thus, the daily realization of Brownian variance and jump intensity

can be directly applied to option pricing.

We show in the model section that Black-Scholes (1973), Merton (1976), Heston

(1993) models exhibit zero skewness, constant regularized skewness and zero instan-

taneous skewness, respectively, which are implausible to explain the stylized skewness

in the distribution of the SPX log returns, see Das and Sundaram (1999) and Zhang et

al. (2015). Note that the nonzero conditional correlation between the SPX logrithmic

return and the daily change of VIX is dominated by the Brownian variance term. It

is essential to incorporate the Heston stochastic volatility into the model setup. Luo

and Zhang (2012) show advantages of modelling the term structure of VIX using an

extended Heston stochastic volatility model, where the long term mean level follows

a martingale process. Therefore, within the framework of Luo and Zhang (2012), we

compare the empirical performance of the extended stochastic volatility models with
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constant, deterministic and stochastic jump intensities, abbreviated as SVCJ, SVDJ,

SVSJ, respectively. Note that the constant jump variance, which is the jump intensity

multiplied by a quadratic function of the constant jump size in our model setting,

is less than the total instantaneous squared VIX over the entire sample period. The

minimum value, 32.7 basis points, of the estimated optimal time series of instanta-

neous squared VIX indicates that the constant jump intensity is less than 0.02, which

is too small to be sensible in the SVCJ model as a jump arrives per 50 years. Similar

argument holds for the SVDJ model as the minimum value of long term squared VIX

is 3.9 basis points. Thus, the fitting performance supports the 5-factor model SVSJ

in Proposition 8 over the SVCJ and SVDJ models.

6 Conclusion

In this paper, we derive skewness formulas under various affine jump diffusion models,

proposed by Duffie, Pan and Singleton (2000), which are typically used in option

pricing. Given the VIX formulas in Luo and Zhang (2012), the skewness formulas

provide a new perspective to identify the model parameters as well as latent variables

using the CBOE VIX and SKEW term structure data, which are daily updated on

the CBOE website, as opposed to the option cross-sectional data, which are only

available in subscribed databases. We also analyse the asymptotic behaviors of the

skewness formulas.

To model skewness more accurately, we propose an affine jump diffusion model

with 5 state variables, which are log returns, Brownian variance, jump intensity and

the long term mean levels of Brownian variance and jump intensity. We adopt a

two-stage iterative procedure to estimate the parameters as well as the latent Brow-

nian variance and jump intensity processes. As the VIX and SKEW term structure



A Theory of the CBOE SKEW 27

data are extracted from option prices, the parameters and latent variables are esti-

mated under risk-neutral measure, and can be directly applied to option pricing. The

Brownian variance and jump variance can also be used to explain stock returns, and

quantify the variance risk premium and jump risk premium. The CBOE SKEW, as

a complementary index for VIX, is informative for both model specification and risk

quantification.
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A The First Three Moments of Log Return

Bakshi, Kapadia and Madan (2003) propose a methodology of evaluating the first

three moments of log return, EQ
t (R

T
t ), E

Q
t [(R

T
t )

2] and EQ
t [(R

T
t )

3] by using current

prices of European options as follows.

For any twice differentiable function f(ST ), following equality holds

f(ST ) = f(K0) + f ′(K0)(ST −K0) +

∫ K0

0

f ′′(K)max(K − ST , 0)dK

+

∫ +∞

K0

f ′′(K)max(ST −K, 0)dK, (40)

where K0 is a reference strike price that could take any value. This mathematical

equality has a profound financial meaning: A European-style derivative with an ar-

bitrary payoff function, f(ST ), can be decomposed into a portfolio of bond with face

value f(K0), f ′(K0) amount of forward contract and f ′′(K) amount of European

options with strikes between 0 and K0 for puts and between K0 and +∞ for calls.

Applying equation (40) to the power of log return gives

ln
ST

F T
t

= ln
K0

F T
t

+
ST

K0
− 1−

∫ K0

0

1

K2
max(K − ST , 0)dK

−
∫ +∞

K0

1

K2
max(ST −K, 0)dK,

ln2 ST

F T
t

= ln2 K0

F T
t

+ 2 ln
K0

F T
t

(

ST

K0

− 1

)

+

∫ K0

0

2− 2 ln K
FT
t

K2
max(K − ST , 0)dK

+

∫ +∞

K0

2− 2 ln K
FT
t

K2
max(ST −K, 0)dK,

ln3 ST

F T
t

= ln3 K0

F T
t

+ 3 ln2 K0

F T
t

(

ST

K0
− 1

)

+

∫ K0

0

6 ln K
FT
t

− 3 ln2 K
FT
t

K2
max(K − ST , 0)dK

+

∫ +∞

K0

6 ln K
FT
t

− 3 ln2 K
FT
t

K2
max(ST −K, 0)dK.

Applying conditional expectation to the three equations in risk-neutral measure, we
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notice that

EQ
t [max(ST −K, 0)] = erτct(K), EQ

t [max(K − ST , 0)] = erτpt(K),

where ct(K)/pt(K) is call/put option price at current time. Evaluating the integration

approximately using discretization gives the first three moments in equations (5), (6)

and (7).

B Model-implied VIX and Skewness Formulas

B.1 Merton Model

In Merton (1976) model, the risk-neutral logarithmic process of the underlying stock

is as follows

d lnSt =
[

r − 1

2
σ2 − λ(ex − 1− x)

]

dt+ σdBt + xdNt − λxdt.

We define the logarithmic return from time t to T as RT
t ≡ ln ST

St
, then the variance

and third cumulant of RT
t are given by

EQ
t [R

T
t − EQ

t (R
T
t )]

2 = EQ
t

(

∫ T

t

σdBt + xdNt − λxdt
)2

= (σ2 + λx2)τ,

EQ
t [R

T
t − EQ

t (R
T
t )]

3 = EQ
t

(

∫ T

t

σdBt + xdNt − λxdt
)3

= λx3τ.

Therefore, the skewness of logarithmic return is given by

Skt =
EQ

t [R
T
t −EQ

t (R
T
t )]

3

{EQ
t [R

T
t −EQ

t (R
T
t )]

2}3/2
=

λx3

σ2 + λx2
τ−1/2.

B.2 Heston Model with Stochastic Long Term Mean

We generalize the Heston variance process by adding another stochastic component,

the long term mean θt, as follows

dvt = κ(θt − vt)dt+ σv

√
vtdB

v
t , (41)

dθt = σθ

√

θtdB
θ
t , (42)
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where Bθ
t is independent of Bv

t and BS
t .

Converting equation (41) into stochastic integral form and plugging equation (42)

yields

vs = Et(vs) + σv

∫ s

t

e−κ(s−u)√vudB
v
u + σθ

∫ s

t

(1− e−κ(s−u))
√

θudB
θ
u, (43)

where the expectation of vs at time t (t < s) is given by

Et(vs) = θt + (vt − θt)e
−κ(s−t).

Following the procedure in Zhang et al (2015), we define two integrals as

XT ≡
∫ T

t

√
vudB

S
u , YT ≡

∫ T

t

[vu −EQ
t (vu)]du.

Substituting equation (43) and interchanging the order of integrations gives

YT = σv

∫ T

t

∫ s

t

e−κ(s−u)√vudB
v
uds+ σθ

∫ T

t

∫ s

t

(1− e−κ(s−u))
√

θudB
θ
uds,

= σv

∫ T

t

1− e−κ(T−u)

κ

√
vudB

v
u + σθ

∫ T

t

e−κ(T−u) − 1 + κ(T − u)

κ

√

θudB
θ
u.

We introduce new martingale processes, Y H
s and Y M

s , as follows

Y H
s = σv

∫ s

t

1− e−κ(T−u)

κ

√
vudB

v
u,

Y M
s = σθ

∫ s

t

e−κ(T−u) − 1 + κ(T − u)

κ

√

θudB
θ
u.

Therefore, at time T , we have YT = Y H
T + Y M

T .

To express the contribution of long term mean variation explicitly, using the in-

dependency of Bθ
s and the martingale property of Y H

s , Y M
s and θs, we expand and

simplify the variance and third cumulant of RT
t in Zhang et al (2015) as follows
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where the variance V arH and third cumulant TCH are of the original forms in Zhang

et al (2015), with no impact of stochastic long term mean.

We need the following results in expressing the extra terms arising from the

stochastic long term mean.

Lemma 1 The correlations between Y M
s and θs as well as vs are given by

EQ
t (Y

M
s θs) = σ2

θθt

∫ s

t

e−κ(T−u) − 1 + κ(T − u)

κ
du, (44)

EQ
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M
s vs) = σ2

θθt

∫ s

t

(1− e−κ(s−u))
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κ
du. (45)

Proof. See Appendix B.2.1.

Using Ito’s Isometry and the martingale property of θu, we have
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Using Ito’s Lemma and martingale property of Xu and Y M
u , we have
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Using Ito’s Lemma and martingale property of Xu, Y
H
u and Y M

u , we have

EQ
t [XTY

H
T Y M

T ] = EQ
t

∫ T

t

d(XuY
H
u Y M

u )

= EQ
t

∫ T

t

Y H
u Y M

u dXu +XuY
M
u dY H

u +XuY
H
u dY M

u

+Y M
u dXudY

H
u + Y H

u dXudY
M
u +XudY

H
u dY M

u

= ρσv

∫ T

t

1− e−κ(T−u)

κ
EQ

t (Y
M
u vu)du = ρσvσ

2
θθtC2,

where C2 =
∫ T

t
1−e−κ(T−u)

κ

∫ u

t
(1− e−κ(u−s)) e

−κ(T−s)
−1+κ(T−s)
κ

dsdu.

Using Ito’s Lemma and martingale property of Y H
u and Y M

u , we have

EQ
t [(Y

H
T )2Y M

T ] = EQ
t

∫ T

t

d[(Y H
u )2Y M

T ]

= EQ
t

∫ T

t

2Y H
u Y M

u dY H
u + (Y H

u )2dY M
u + Y M

u (dY H
u )2 + 2Y H

u dY H
u dY M

u

= σ2
v

∫ T

t

(1− e−κ(T−u))2

κ2
EQ

t (Y
M
u vu)du = σ2

vσ
2
θθtC3,

where C3 =
∫ T

t
(1−e−κ(T−u))2

κ2

∫ u

t
(1− e−κ(u−s)) e

−κ(T−s)
−1+κ(T−s)
κ

dsdu.

Using Ito’s Lemma and martingale property of Y M
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B.2.1 Proof of Lemma 1

Using Ito’s Lemma and martingale property of Y M
u and θu, we have
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which is equivalent to equation (44).
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Furthermore, we have the integral

∫ s

t

EQ
t (Y

M
u θu)du = σ2

θθt

∫ s

t

∫ u

t

e−κ(T−r) − 1 + κ(T − r)

κ
drdu

= σ2
θθt

∫ s

t

(s− u)
e−κ(T−u) − 1 + κ(T − u)

κ
du.

Using Ito’s Lemma and martingale property of Y M
u , we have

EQ
t (Y

M
s vs) = EQ

t

∫ s

t

d(Y M
u vu) = EQ

t

∫ s

t

vudY
M
u + Y M

u dvu + dY M
u dvu

= −κEQ
t

∫ s

t

EQ
t (Y

M
u vu)du+ κ

∫ s

t

EQ
t (Y

M
u θu)du

= −κEQ
t

∫ s

t

EQ
t (Y

M
u vu)du+ σ2

θθt

∫ s

t

κ(s− u)
e−κ(T−u) − 1 + κ(T − u)

κ
du.

Solving the ordinary differential equation (ODE) gives
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Taking differentiation with respect to s gives
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θθt
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(1− e−κ(s−u))
e−κ(T−u) − 1 + κ(T − u)

κ
du,

which is equivalent to equation (45). This completes the proof.

B.3 Jump Diffusion Models

In a jump-diffusion model, the risk-neutral underlying stock is modeled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt, (46)

where r is the risk free rate, the jump size x is constant, the Brownian motion variance

vt and jump intensity λt are stochastic. We do not specify the processes for vt and λt

to derive generic expressions for the second and third central moments of logarithmic

return in jump-diffusion models.
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Applying Ito’s Lemma to equation (46) gives

d lnSt =
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The logarithmic return from current time t, to a future time, T , is defined by
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The conditional expectation at time t is then given by
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Following the notations in Zhang et al (2015), we introduce another two integrals
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Noting that dNu is conditionally independent of λu, and using the incremental in-

dependency property of a Poisson process, we obtain the variance and third cumulant

of RT
t as follows
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where the variance of XT , the variance and third cumulant of IT are given by
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To express the terms in variance and third cumulant of RT
t explicitly, we need to

specify the Brownian motion variance process and jump intensity process. See Zhang

et al (2015) for the case of Heston model. Furthermore, if the jump intensity also

follows a square root process, we obtain similar results for EQ
t (Z

2
T ) and EQ

t (Z
3
T ) as

Heston model.



A Theory of the CBOE SKEW 36

References

[1] Albuquerque, Rui, 2012, Skewness in stock returns: Reconciling the evidence on

firm versus aggregate returns, Review of Financial Studies 25(5), 1630-1673.

[2] Bakshi, Gurdip, Nikunj Kapadia, and Dilip Madan, 2003, Stock return char-

acteristics, skew laws, and the differential pricing of individual equity options,

Review of Financial Studies 16(1), 101-143.

[3] Bali, Turan G., and Scott Murray, 2013, Does risk-neutral skewness predict

the cross-section of equity option portfolio returns? Journal of Financial and

Quantitative Analysis 48(4), 1145-1171.

[4] Bates, David S., 1996, Jumps and stochastic volatility: exchange rate processes

implicit in deutsche mark options, Review of Financial Studies 9(1), 69-107.

[5] Bates, David S., 2000, Post-’87 crash fears in the S&P 500 futures option market,

Journal of Econometrics 94(1-2), 181-238.

[6] Black, Fischer, and Myron Scholes, 1973, The pricing of options and corporate

liabilities, Journal of Political Economy 81(3), 637-654.

[7] Boyer, Brian, Todd Mitton, and Keith Vorkink, 2010, Expected idiosyncratic

skewness, Review of Financial Studies 23(1), 169-202.

[8] Chang, Bo Young, Peter Christoffersen, and Kris Jacobs, 2013, Market skew-

ness risk and the cross section of stock returns, Journal of Financial Economics

107(1), 46-68.



A Theory of the CBOE SKEW 37

[9] Chen, Joseph, Harrison Hong, and Jeremy C Stein, 2001, Forecasting crashes:

Trading volume, past returns, and conditional skewness in stock prices, Review

of Financial Studies 61(3), 345-381.

[10] Conrad, Jennifer, Robert F. Dittmar, and Eric Ghysels, 2013, Ex ante skewness

and expected stock returns, Journal of Finance 68(1), 85-124.

[11] Das, Sanjiv Ranjan, and Rangarajan K. Sundaram, 1999, Of smiles and smirks:

A term-structure perspective, Journal of Financial and Quantitative Analysis

34(2), 211-240.

[12] DeMiguel, Victor, Yuliya Plyakha, Raman Uppal, and Grigory Vilkov, 2013, Im-

proveing portfolio selection using option-implied volatility and skewness, Journal

of Financial and Quantitative Analysis 48(6), 1813-1845.

[13] Dennis, Patrick, and Stewart Mayhew, 2002, Risk-neutral skewness: Evidence

from stock options, Journal of Financial and Quantitative Analysis 37(3), 471-

493.

[14] Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform analysis and

asset pricing for affine jump-diffusions, Econometrica 68(6), 1343-1376.

[15] Eraker, Bjørn, Michael Johannes, and Nicholas Polson, 2003, The impact of

jumps in volatility and returns, Journal of Finance 58(3), 1269-1300.

[16] Faff, Robert W., and Zhangxin Liu, 2014, Hitting SKEW for SIX, Working paper,

University of Western Australia.

[17] Han, Bing, 2008, Investor sentiment and option prices, Review of Financial Stud-

ies 21(1), 387-414.



A Theory of the CBOE SKEW 38

[18] Harvey, Campbell R., and Akhtar Siddique, 2000, Conditional skewness in asset

pricing tests, Journal of Finance 55(3), 1263-1295.

[19] Heston, Steven L., 1993, A closed-form solution for options with stochastic

volatility with applications to bond and currency options, Review of Financial

Studies 6(2), 327-343.

[20] Kraus, Alan, and Robert H. Litzenberger, 1976, Skewness preference and the

valuation of risk assets, Journal of Finance 31(4), 1085-1100.

[21] Luo, Xingguo, and Jin E. Zhang, 2012, The term structure of VIX, Journal of

Futures Markets 32(12), 1092-1123.

[22] Merton, Robert C., 1976, Option pricing when underlying stock returns are

discontinuous, Journal of Financial Economics 3(1-2), 125-144.

[23] Mitton, Todd, and Keith Vorkink, 2007, Equilibrium underdiversification and

the preference for skewness, Review of Financial Studies 20(4), 1255-1288.

[24] Neuberger, Anthony, 2012, Realized skewness, Review of Financial Studies

25(11), 3423-3455.

[25] Wang, Zhiguang, and Robert T. Daigler, 2012, The option SKEW index and the

volatility of volatility, Working paper, South Dakota State University.

[26] Zhang, Jin E., Huimin Zhao, and Eric C. Chang, 2012, Equilibrium asset and

option pricing under jump diffusion, Mathematical Finance 22(3), 538-568.

[27] Zhang, Jin E., Fang Zhen, Xiaoxia Sun, and Huimin Zhao, 2015, The skewness

implied in Heston model, Working paper, University of Otago.



A Theory of the CBOE SKEW 39

[28] Zhao, Huimin, Jin E. Zhang, and Eric C. Chang, 2013, The Relation between

physical and risk-neutral cumulants, International Review of Finance 13(3), 345-

381.



A Theory of the CBOE SKEW 40

Table 1: Descriptive statistics of daily SKEW term structure
We interpolate the daily SKEW term structure to constant time to maturity, τ = 1,
3, 6, 9, 12 and 15 months. The sample period is from 2 January 1990 to 31 December
2014. We only consider the days when the maximum time to maturity is not less
than 15 months.

Maturity Mean Std Dev Skewness Kurtosis Minimum Maximum
1 Month 117.8912 6.1185 0.7931 3.9948 101.0830 147.0000
3 Months 116.7662 5.3919 0.6332 5.8006 96.8083 173.2275
6 Months 116.5344 5.6636 0.7390 3.7362 99.5674 151.1067
9 Months 115.0219 6.4143 0.8855 4.1927 99.2181 165.8313
12 Months 114.5970 6.9751 0.8138 3.4740 97.0592 147.2174
15 Months 114.6724 7.5005 1.0559 4.0158 96.4798 155.6445

Figure 1: The time evolution of the SKEW term structure.
This graph shows the time evolution of the interpolated SKEW term structure for
time to maturity from 1 month to 15 months. The sample period is from 2 January
1990 to 31 December 2014. We only consider the days when the maximum time to
maturity is not less than 15 months.
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Figure 2: The time series of SKEW with constant time to maturity
This graph shows the time series of SKEW with 1 month, 6 months and 15 months to
maturity. The sample period is from 2 January 1990 to 31 December 2014. We only
consider the days when the maximum time to maturity is not less than 15 months.
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Figure 3: A few samples of SKEW term structures with abnormal shape.
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Table 2: Optimal Values for the Mean-reverting Speed.
Fitting the VIX term structure data of different periods, we obtain the optimal values
for the mean-reverting speed κ in terms of minimum root mean squared error (RMSE),
as well as the time series of instantaneous squared VIX Vt and its long term mean
level θVt . V t and θt denote the means of Vt and θVt . σ(Vt) and σ(θt) denote the
standard deviations of Vt and θVt . We select the days with no less than 6 maturities
for both VIX and SKEW to guarantee the estimation precision.

κ RMSE V t σ(Vt) θt σ(θt)
Panel A: 2 January 1992 to 4 September 2009
1 1.163 0.0467 0.0486 0.0419 0.0271
2 1.057 0.0472 0.0529 0.0429 0.0258
3 1.012 0.0474 0.0556 0.0435 0.0266
4 0.9891 0.0476 0.0581 0.0439 0.0274
5 0.9795 0.0477 0.0603 0.0441 0.0280

5.8285 0.9776 0.0478 0.0621 0.0442 0.0284
6 0.9776 0.0478 0.0624 0.0442 0.0285
7 0.9804 0.0479 0.0645 0.0443 0.0289

Panel B: 24 November 2010 to 31 December 2014
1 0.6482 0.0330 0.0294 0.0902 0.0295

1.9304 0.5622 0.0310 0.0303 0.0744 0.0262
2 0.5626 0.0308 0.0303 0.0738 0.0261
3 0.6240 0.0290 0.0312 0.0680 0.0254
4 0.7283 0.0275 0.0321 0.0649 0.0252
5 0.8343 0.0262 0.0329 0.0628 0.0250
6 0.9314 0.0250 0.0337 0.0614 0.0250
7 1.018 0.0239 0.0345 0.0602 0.0249

Panel C: Full Sample
1 1.071 0.0441 0.0459 0.0512 0.0335
2 0.9693 0.0441 0.0498 0.0488 0.0286
3 0.9396 0.0439 0.0523 0.0482 0.0281

3.5680 0.9361 0.0438 0.0536 0.0480 0.0281
4 0.9375 0.0437 0.0546 0.0479 0.0282
5 0.9493 0.0436 0.0567 0.0477 0.0284
6 0.9676 0.0434 0.0587 0.0475 0.0287
7 0.9889 0.0433 0.0606 0.0474 0.0289
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Table 3: Optimal Value for the Volatility of Volatility.
Set jump size x = −0.14, correlation coefficient ρ = −0.859, given the optimal time
series Vt and θVt obtained from the full sample VIX term structure, fitting the SKEW
term structure, we get the optimal value of σv 0.7929 in terms of minimum root mean
squared error (RMSE), as well as the time series of Brownian variance vt and its long
term mean level θvt . vt and θvt denote the means of vt and θvt . σ(vt) and σ(θvt ) denote
the standard deviations of vt and θvt . We select the days with no less than 6 maturities
for both VIX and SKEW to guarantee the estimation precision.

σv RMSE vt σ(vt) θvt σ(θvt )
0.6 7.5287 0.0265 0.0374 0.0330 0.0350
0.7 7.2350 0.0287 0.0436 0.0292 0.0353

0.7929 7.1561 0.0284 0.0458 0.0263 0.0350
0.8 7.1565 0.0283 0.0459 0.0261 0.0350
0.9 7.2382 0.0267 0.0471 0.0238 0.0341
1.0 7.4201 0.0247 0.0475 0.0217 0.0324
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Figure 4: The estimate time series of instantaneous squared VIX.
This graph shows the daily optimal values of instantaneous squared VIX and its long
term mean level with the sample period from 2 January 1992 to 4 September 2009
and 24 November 2010 to 31 December 2014. The statistics of the two series are
shown in Table 2 with optimal mean-reverting speed κ 3.5680.
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Figure 5: The estimate time series of Brownian variance.
This graph shows the daily optimal values of Brownian variance and its long term
mean level with the sample period from 2 January 1992 to 4 September 2009 and 24
November 2010 to 31 December 2014. The statistics of the two series are shown in
Table 3 with optimal volatility of volatility σv 0.7929.
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Figure 6: The estimate time series of jump intensity.
This graph shows the time series of jump intensity and its long term mean level,
which can be directly obtained from the daily squared VIX and Brownian variance
with the sample period from 2 January 1992 to 4 September 2009 and 24 November
2010 to 31 December 2014. The average of spot jump intensity is 0.818, whereas the
average of long-term jump intensity is 1.153.
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Figure 7: The time series of instantaneous variance ratio and regularized skewness.
The average of instantaneous Brownian variance to squared VIX is 66.9%, and the
average of regularized skewness at point zero is -0.27.
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Figure 8: Nonlinearity between Brownian Variance and Jump Intensity
This graph shows the scatter of the Brownian variance and jump intensity estimated
on the same day. The correlation coefficient between the two time series is 0.055.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Brownian Variance

Ju
m

p 
In

te
ns

ity



A Theory of the CBOE SKEW 50

Figure 9: Model-implied SKEW.
We use the optimal average values of Vt (0.0438), θ

V
t (0.048) derived from VIX term

structure estimation, θvt (0.0263) derived from SKEW term structure estimation, and
the Brownian variance vt (0.0311), jump size x (-0.14), correlation coefficient ρ (-
0.859) derived from the assumption that Brownian variance is 70% of total variance
on average as the inputs of the model-implied SKEW. The red dots represent the
weekly SKEW averages with 2 to 52 weeks to maturity, whereas the green dots
represent the monthly interpolated SKEW with 1 to 12 months to maturity.
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Figure 10: Model-implied Regularized Skewness.
The blue line represents the model-implied regularized skewness, whose inputs are
the optimal average values of Vt (0.0438), θ

V
t (0.048) derived from VIX term struc-

ture estimation, the Brownian variance vt (0.0311), jump size x (-0.14), correlation
coefficient ρ (-0.859) derived from the assumption that Brownian variance is 70%
of total variance on average, and the optimal average value of θvt (0.0263) derived
from SKEW term structure estimation. The dashed lines represent the asymptote of
the model-implied regularized skewness at zero and infinity. The dots represent the
weekly averages, from 2 weeks to 52 weeks, of regularized skewness, which is defined
as the product of the true skewness and the square root of time to maturity.


