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Abstract

We put forward a model in which analysts are uncertain about a firm’s earnings process. Faced

with the possibility of using a misspecified model, analysts issue forecasts that are robust to

model misspecification. We estimate that this mechanism explains approximately 60% of the

autocorrelation in analysts’ forecast errors. The remainder stems from the cross-sectional vari-

ation in mean forecast errors and in analysts’ estimation errors of the persistence of earnings

growth shocks. Consistent with our model, we find that analysts learn about some features of

the earnings process but not others, and this learning reduces, but does not eliminate, the auto-

correlation of forecast errors as firms age. Other potential explanations for the autocorrelation

of analyst’s forecast errors are rejected. Our model of robust forecasting applies not only to

analysts’ forecasts but to all model-based forecasts.
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1. Introduction

If analysts know the earnings process of a firm and seek to minimize the mean squared error of

their forecasts, the forecast errors will be mean zero and serially uncorrelated. In the data they are

neither. The average forecast error is positive and forecast errors are positively autocorrelated. This

autocorrelation pattern is puzzling because it suggests that analysts do not learn from their past

mistakes. While the literature agrees on these empirical facts, there has been a veritable explosion

of research that has put forward a host of competing explanations for these seeming inefficiencies in

analysts’ forecasts.1 The sheer magnitude of this research effort reflects the importance of security

analysts in financial markets. This paper provides a framework that not only encompasses many of

the leading explanations for the autocorrelation of analysts’ forecast errors but can also be used to

quantify their relative contributions. Relying on this framework, we find that the autocorrelations

stem primarily from analysts’ concern for model misspecification.

In our model, reported earnings equal the true earnings plus noise. This noise represents factors

such as earnings smoothing, changes in the recognition of future cash flows, and one-off demand

and price shocks. The analyst, however, faces model (or “Knightian”) uncertainty about the noise

in reported earnings and is concerned that his model is misspecified.2 We show that the analyst’s

optimal strategy is to issue “robust” forecasts. The analyst achieves robustness by using a model

which ex post likely overstates the amount of noise in reported earnings.

The intuition is simple. If the analyst assumes that there is little or no noise in reported earnings,

his forecasts will be more imprecise than expected if the true model’s reported earnings are very

1Abarbanell (1991), Mendenhall (1991), and Abarbanell and Bernard (1992), among many others, provide reliable
evidence that analysts underreact to new information. To explain this finding, subsequent research explores the
cross-sectional variation in analyst underreaction including, for example, the explanatory power of permanent versus
transitory components of a firm’s earnings Ali, Klein, and Rosenfeld (1992), and analyst specific characteristics such as
analyst experience Mikhail, Walther, and Willis (2003). Easterwood and Nutt (1999) suggest that analysts underreact
to negative information but overreact to positive information. However, Abarbanell and Lehavy (2003) show that
this conclusion is sensitive to how outliers are treated. Shane and Brous (2001) document that analyst underreaction
is corrected in subsequent forecasts. Markov and Tamayo (2006) argue that analysts are uncertain about the earnings
process and underestimate its persistence. More recently, Williams (2013) investigates a behavioral explanation—“a
false consensus effect”—of analyst underreaction.

2The distinction between Knightian and Bayesian uncertainty is important. If an agent knows the model but
is uncertain about the parameters governing that model, Bayes rule describes how the agent updates his beliefs
about the parameters. An agent who faces model uncertainty, by contrast, cannot assign a prior distribution to
the universe of alternative models nor perform Bayesian updating to distinguish between models. We use the term
“model uncertainty” throughout to refer to Knightian uncertainty about the model governing the earnings process.
The term “parameter uncertainty” is reserved for Bayesian uncertainty about the parameters of a known model.
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noisy. The analyst loses accuracy not only because there is now more noise in reported earnings

and, therefore, the forecastable component is smaller but, importantly, because the analyst relies

on a misspecified model to learn from historical data. If, on the other hand, the analyst assumes

that the reported earnings are very noisy, then his forecasts will be more precise than expected if

the true model has little or no noise in reported earnings. Therefore, a robust forecast in effect

assumes that reported earnings are noisier than what the analyst’s point estimate suggests. As

a byproduct, this behavior leaves a trail of positively autocorrelated forecast errors in the data.

However, this positive autocorrelation emerges not because the analyst uses information inefficiently

but because the analyst guards against model misspecification. Using data on security analysts from

Institutional Broker Estimate Systems (IBES), we estimate that model uncertainty accounts for

58% of the autocorrelation in analysts’ forecast errors.

Having established the importance of model uncertainty, we proceed to show that two additional

mechanisms also contribute to the autocorrelation in analysts’ forecast errors. The first mechanism

results from the variation in mean forecast errors. To illustrate how this variation generates posi-

tively autocorrelated forecast errors, consider, for simplicity, using data on two firms. Suppose that

analysts issue too conservative forecasts about firm A and too optimistic forecasts about firm B.

A pooled regression will return a positive estimate of the autocorrelation in forecast errors. The

reason is that positive errors are likely followed by positive errors, and vice versa, but only because

the positive errors are from firm A and the negative errors from firm B. We estimate that one-fifth

of the autocorrelation in analysts’ forecast errors is due to this variation.

Estimation errors about the persistence of earnings growth shocks also add to the autocorre-

lation of forecast errors. We show that if analysts receive signals about earnings growth shocks,

then both positive and negative estimation errors about the persistence of these shocks will lead

to positive autocorrelation in forecast errors. A stylized example illustrates the intuition. Suppose

that a firm’s earnings growth follows an AR(1) process, yt = φyt−1 + et, with persistence φ > 0

but that the analyst issues forecasts using φ̂ 6= φ. If we assume that the analyst learns the shock

et before the firm announces earnings, his forecast equals ŷt = φ̂yt−1 + et.
3 The process of forecast

errors is then but a scaled version of the yt process itself, FEt = yt− ŷt = (φ− φ̂)yt−1. The process

3We assume in this example that the analyst perfectly learns the shock et before the firm announces earnings. In
Section 5.2’s analysis of this mechanism, we dispose of this assumption.
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of forecast errors is therefore positively autocorrelated regardless of whether the analyst over- or

underestimates the persistence of earnings shocks:

cov(FEt,FEt−1) = cov
[(
φ− φ̂

)
yt−1,

(
φ− φ̂

)
yt−2

]
=
(
φ− φ̂

)2
φ var(yt) > 0. (1)

The empirical contribution stemming from this channel is important. Although analysts, on aver-

age, use unbiased estimates of the persistence of earnings shocks when issuing forecasts, they have

substantial estimation errors in φ̂ on a firm-by-firm basis. These estimation errors in turn generate

one-fifth of the autocorrelation in their forecast errors.

Our decomposition results are easy to summarize. Analysts’ uncertainty about the earnings

process accounts for approximately 60% of the autocorrelation in analysts’ forecast errors, with

the remainder attributable, in roughly equal parts, to the variation in mean forecast errors and in

analysts’ estimation errors about the persistence of earnings growth shocks. These results there-

fore suggest that the uncertainty that analysts face about the firms they follow is of first-order

importance in explaining the seeming inefficiencies of their forecasts.

Our results are important also because they reveal what mechanisms are absent from the data.

One behavioral explanation for the autocorrelation in forecast errors is that analysts overestimate

the precision of the non-earnings signals, and so they collectively do not update sufficiently given an

earnings signal.4 Put differently, their false trust in non-earnings signals crowds out earnings signals.

Our model yields estimates of the degree to which analysts utilize both earnings and non-earnings

signals and we find no evidence of analysts overestimating the precision of the non-earnings signals.

Similarly, we show that learning itself—that is, changes in analysts’ beliefs—does not generate

autocorrelation in forecast errors. Rather, they are autocorrelated because of the uncertainty that

analysts have about firms’ earnings processes, and learning only reduces autocorrelations as these

estimation errors dissipate.

This paper rationalizes the autocorrelations in analysts’ forecast errors by arguing that analysts

face significant uncertainty about firms’ earnings processes. It is important to then ask whether the

4See, for example, Chen and Jiang (2006) and the references therein. Chen and Jiang (2006) note that analysts
may deviate from efficient weighting not only because of behavioral biases but because they face incentives to do so.
Bernhardt, Campello, and Kutsoati (2006) suggest that analysts “anti-herd:” they issue forecasts that overshoot the
consensus forecast in the direction of their private signal.
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levels of uncertainty implied by our estimates are reasonable. They are. We show that an analyst

cannot rule out the possibility that there might be up to four times as much noise in reported

earnings as what his point estimate suggests. The detection error probability—which measures

the difficulty of distinguishing the “worst case model” from the analyst’s best guess—is 17.2% for

the model that matches the autocorrelation of forecast errors in the data. To put this result in

perspective, the robust control literature argues that a decision maker should be concerned about

alternative models whose detection error probabilities are at least 5%.

The assumption that analysts face model uncertainty about features of the earnings process is

testable. The idea is simple. If analysts face only parameter uncertainty, then they learn over time

and so the autocorrelations in forecast errors gradually dissipate. If analysts, by contrast, treat

the uncertainty about the noise in reported earnings as a permanent state of affairs, the amount

of autocorrelation emanating from this source will not diminish even after observing decades of

earnings data. The time-series behavior of the autocorrelation patterns thus measures how much

of the uncertainty is of the kind analysts can resolve through learning. We find that the positive

autocorrelation of forecast errors in the data decreases as firms age. This rate of decay, however,

also decreases with age, and so significant autocorrelations remain even among the oldest firms.

We further show that the uncertainty that analysts resolve is about the persistence of the earnings

growth shocks. Consistent with our assumptions, analysts appear to be unable to resolve their

uncertainty about the noise in reported earnings.

Taken together, our results paint a more favorable view of security analysts’ ability to forecast

earnings than what is commonly reported in the literature. That analysts are quite sophisticated,

however, is consistent with our empirical evidence of their remarkable forecast accuracy, notwith-

standing the fact their forecast errors are predictable. For example, while an ARMA(1,1) model

predicts earnings growth rates with an R2 of 14%, analysts’ forecasts explain 80% of this variation!

If analysts are so remarkably accurate, it is reasonable to entertain the possibility that the positive

autocorrelation of their forecast errors results from analysts’ deliberate response to the substantial

model uncertainty confronting them.

Our results contribute to three strands of the literature. Uppal and Wang (2003), Maenhout

(2004), and Epstein and Schneider (2008) suggest that model uncertainty is of first-order impor-
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tance for portfolio choice and asset pricing. We show that this conclusion extends to the behavior

of security analysts. Our findings also relate to studies that examine the behavior of analysts for

reasons other than investigating mechanisms that might drive the positive autocorrelation in fore-

cast errors.5 A complete model of analyst behavior should incorporate analysts’ concerns for model

misspecification. Finally, our results relate to studies that draw a connection between analysts and

asset pricing anomalies. If analysts underreact to new information, perhaps the same can also be

expected of investors, which could then help explain some of the anomalies in asset returns.6 Our

results suggest that the autocorrelation of forecast errors may be unrelated to those anomalies.

Any connection between the two may simply then reflect the fact that investors themselves face

similar misspecification concerns when pricing assets.

The rest of the paper is organized as follows. Section 2 puts forward our model of earnings and

robust forecasting. Section 3 describes the data. Section 4 estimates the joint dynamics of firms’

earnings processes and analysts’ forecasts, and measures detection error probabilities. Section 5

decomposes the autocorrelation of forecast errors into components stemming from model uncer-

tainty, variation in mean forecast errors, and variation in estimation errors about the persistence

of earnings shocks. Section 6 measures the extent to which analysts resolve uncertainty over time.

Section 7 concludes.

5See, for example, Hong and Kubik (2003) and Hilary and Hsu (2013). They note that understanding analyst
behavior is of great interest because there exist considerable demand for analysts’ earnings forecasts: investment
bankers rely on analysts to procure investment banking deals while brokers rely on analysts to provide research
services to attract order flow. The amounts by which security analysts are compensated support this view. The
National Bureau of Labor Statistics reports that, in 2012, there were 253,000 financial analysts—buy and sell sides
combined—with a median income of $76,950, indicating that the market annually spends approximately $19.5 billion
dollars on security analysis.

6De Bondt and Thaler (1985), Jegadeesh and Titman (1993), Lakonishok, Shleifer, and Vishny (1994), and Daniel,
Hirshleifer, and Subrahmanyam (1998), for example, are proponents of the view that long-term reversal, momentum,
and value anomalies in asset prices stem from investors under- or overreacting to new information. There is an
extensive literature in finance alone that study the connection between stock price behavior and analyst forecasts.
See, for example, Abarbanell and Bernard (1992), La Porta (1996), Diether, Malloy, and Scherbina (2002), Jegadeesh,
Kim, Krische, and Lee (2004), Loh and Stulz (2011), and So (2013).
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2. Robust Forecasting

2.1. The earnings process

We assume that the earnings growth process has both persistent and temporary components:

reported earnings growth: yt+1 = µ+ xt+1 + αt+1, (2)

persistent component of earnings growth: xt+1 = φxt + et+1, (3)

where yt+1 is the reported earnings growth, xt is the persistent component of earnings growth

and αt is the noise in reported earnings. We assume that the analyst also receives additional

information not contained in earnings numbers. This signal st informs the analyst about the shock

to the persistent earnings growth component,

st = et+1 + nt, (4)

where nt ∼ N(0, σ2
n). The shocks αt+1, et+1, and nt have zero cross-correlations, autocorrelations,

and cross-autocorrelations. The analyst’s objective at time t is to predict yt+1 using the full history

of earnings {y1, y2, . . . , yt} and signals {s1, s2, . . . , st}.

This earnings process is an AR(1)-plus-noise process, which is observationally equivalent to

an ARMA(1,1) process.7 This modeling choice is motivated by the literature on firms’ earnings

processes. The work in this area—the most prominent papers are those by Griffin (1977), Foster

(1977), Brown and Rozeff (1979), and Brown, Hagerman, Griffin, and Zmijewski (1987)—concludes,

first, that there is a large seasonal component to earnings and, second, that an ARMA(1,1) model

7An ARMA(1,1) model with an autoregressive parameter φ, a moving-average parameter θ, and a variance of
innovations σ2

e∗ , can be expressed as an AR(1)-plus-noise model by setting σ2
α = − θ

φ
σ2
e∗ and σ2

e = (1 + θ2)σ2
e∗ − (1 +

φ2)σ2
α.
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provides a good description of the earnings process.8 We discuss the empirical fit of the AR(1)-

plus-noise model in Section 4.

2.2. The uncertainty environment

The reported earnings growth yt in equation (2) is the sum of the true earnings growth process

(denoted by xt) and a “noise” component (denoted by αt). We assume that analysts face model

(or “Knightian”) uncertainty about the noise term and that they know the parameters of the xt

process. We later relax the assumption about the parameters of the xt process by letting analysts

face Bayesian uncertainty about them.

This noise represents factors such as earnings smoothing, the treatment of accruals, changes

in the recognition of future cash flows, and other managerial strategic considerations concerning

a firm’s reported earnings. The assumption that analysts have model uncertainty about αt can

be interpreted quite broadly. Simply put, analysts are unsure of the precise earnings process and

realize that this AR(1)-plus-noise model is but an approximation. The αt term then captures the

sum of all the factors left outside the model.

Knightian uncertainty about the noise term has both a direct and indirect effect on the fore-

casting problem. First, uncertainty about αt directly affects analysts’ perceived accuracy because

the reported earnings growth—the object which the analysts forecast—is the sum of xt and αt. The

greater the analyst’s uncertainty about αt, the less accurate the analyst’s forecast will be. Second,

since analysts cannot separately identify xt and αt, uncertainty about the past values of αt worsens

the analyst’s inferences about xt. The analyst will be more uncertain about current true earnings

growth and therefore his forecasts will, on average, be farther off the mark.

The noise term αt is governed by some probability distribution but the analyst knows neither

αt nor its distribution. We assume that the analyst approximates the distribution of αt by an IID

8The subsequent accounting literature uses either an ARMA(1,1) model or, for simplicity, an AR(1) model, and
these choices are often accompanied by references to the studies referenced above. The post-earnings announcement
drift study of Bernard and Thomas (1990, p. 313), for example, estimates an ARMA(1,1) model of seasonally adjusted
quarterly earnings and states: “Based on prior research, we assume that the most accurate univariate description of
the time-series process of earnings is provided by the Brown and Rozeff (1979) model, modified to include a trend
term: Qt = δ+Qt−4 +φ(Qt−1−Qt−5)+θεt−4 +εt,. . . ” Our empirical analyses are also based on seasonally adjusted
earnings growth—that is, we define yt = Qt −Qt−4.
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N
(
0, σ̂2

α∗
)

distribution where we set σ̂2
α∗ equal to the true variance of αt, σ

2
α. This assumption

ensures that the analyst’s initial approximating model is very good.

The analyst accounts for possible model misspecification by always considering what would be

the worst possible distribution of αt. We define this worst case realization as a linear function of

α∗t in the analyst’s initial approximating model without model uncertainty:

α
(w)
t = κ0 + κ1α

∗
t . (5)

The realization α
(w)
t is therefore an IID random draw fromN

(
κ0, κ

2
1σ

2
α

)
where κ0 is an arbitrary real

number and κ1 ≥ 0 is an arbitrary nonnegative real number. The model uncertainty assumption

can therefore be cast by saying that the analyst knows neither κ0 nor κ1, and, therefore, does not

know the mean and variance of α
(w)
t .

2.3. The robust forecasting problem

Our model is in the spirit of the robust control theory of Hansen and Sargent (2008) and we use

their evil-agent device to characterize the analyst’s problem. In this zero-sum game, the analyst

chooses a forecast that minimizes mean squared error while the evil agent chooses parameters κ0

and κ1 to make the analyst look as bad as possible. This game is equivalent to a minimax problem

in which the analyst chooses the forecast to minimize mean squared error while choosing κ0 and

κ1 to maximize that error, anticipating that these would be the choices made by the evil agent.

Although the evil agent could then choose different values of κ0 and κ1 to hurt the analyst, the

unique solution is such that the analyst correctly anticipates the evil agent’s choices of κ0 and κ1.

The analyst’s problem is then:

min
ŷt|t−1

max
(κ0,κ1)

E

[{
y

(w)
t − ŷt|t−1

}2
∣∣∣∣ Ft−1

]
(6)

subject to E

[{(
α

(w)
t − α∗t

)
︸ ︷︷ ︸

Deviation of α
(w)
t

from α∗t
(Direct effect)

+
(
x̂

(w)
t|t−1 − x̂t|t−1

)
︸ ︷︷ ︸
Perceived bias in xt

(Indirect effect)

}2
∣∣∣∣ Ft−1

]
≤ η2σ2

α,
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where the constraint, as discussed below, measures the analyst’s concerns for model misspecification.

In our notation, y
(w)
t is the earnings growth at time t with κ0 and κ1 chosen to result in the worst ex

ante outcome; ŷt|t−1 is the analyst’s optimal forecast; Ft−1 = {y1:t−1, s1:t−1, µ, φ, σ
2
e , σ

2
n} represents

the analyst’s information set; x̂
(w)
t|t−1 is the optimal forecast of xt using a Kalman filter under

the worst case choices of κ0 and κ1; and x̂t|t−1 is the optimal forecast of xt under the analyst’s

expectation of the evil agent’s choices of κ0 and κ1. As above, α
(w)
t is the worst case realization of

αt while α∗t is the noise under the approximating model.

The left-hand side of the constraint decomposes the effects of the evil agent’s distortion into

two components. The evil agent tries to maximize these effects given the constraint. The first

component, the expected squared deviation of α
(w)
t from α∗t , measures the error induced by the evil

agent’s distortion of αt. This is the direct effect of model uncertainty: an analyst’s forecasts will be

more imprecise than expected if the reported earnings are noisier. The second component captures

the extra forecast error in xt that is created by the evil agent when he distorts αt. This is the

indirect effect of model uncertainty: if the analyst learns from historical data using a misspecified

model, the xt he extracts from the data will deviate further from its true value, thereby increasing

the forecast error.

The constraint in the minimax optimization problem penalizes the evil agent for distorting αt.
9

Without this constraint, an equilibrium would not exist as the evil agent could take an arbitrarily

extreme action Hansen and Sargent (2008). The right-hand side of the constraint, η2σ2
α, determines

the degree of robustness. The parameter η measures the agent’s concern for model misspecification.

If η is close to zero, the models that the analyst considers are nearly indistinguishable and so the

analyst is as likely as not to detect the correct model resulting in a detection error probability of

approximately 0.5. However, as η increases, we add models that are increasingly “different” from

the approximating model and the detection error probability falls because these models are easier

to tell apart in the data.

Two additional remarks are in order. First, the analyst’s optimization problem is static; that

9Technically, the second component of the constraint in the analyst’s optimization problem (equation 6) penalizes
the evil agent for the indirect effect of the distortion and guarantees the existence of the equilibrium in the context of
“robust filtering without commitment” Hansen and Sargent (2008). Without this second component, the equilibrium
still exists in the context of “robust filtering with commitment” if (i) the analyst and the evil agent play the game
only once and (ii) κ0 is known at the beginning.
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is, the analyst’s forecast yt|t−1 is independent of his past forecasts and the same solution applies at

every date t. Second, because, by assumption, the analyst knows the parameters of the true earnings

process xt, his choices of (κ̂0, κ̂1)—which correspond to what he anticipates the evil agent will choose

as (κ0, κ1)—completely determine ŷt|t−1. That is, after choosing (κ̂0, κ̂1), the analyst obtains the

optimal forecast using a Kalman filter. We can thus alternatively express the minimax problem

in equation (6) using (κ̂0, κ̂1) as the arguments of the problem’s minimization part. Proposition 1

gives the solution to the analyst’s forecasting problem:

Proposition 1. The constrained minimax optimization problem (6) has a unique solution (κ̂0, κ̂1)

= (κ0, κ1) with κ0 = 0 and κ1 = η+1, where η+1 equals the maximum value of κ1 that satisfies the

constraint. The optimal forecast ŷt|t−1 is obtained via a Kalman filter with κ̂0 = 0 and κ̂1 = η + 1.

The worst case outcome is therefore distributed as α
(w)
t ∼ N

(
0, (η + 1)2σ2

α

)
at the solution. This

solution is also the pure-strategy equilibrium of the equivalent zero-sum game.

Proof. See Appendix A.

Proposition 1 states that the evil agent schemes against the analyst by inflating the noisiness

of reported earnings from σ2
α to (η + 1)2σ2

α but leaves the mean unchanged (κ0 = 0). We detail

the intuition for why this is the worst case model for the analyst in Section 2.5. In Section 2.6,

we discuss how this model relates to asset pricing models in which investors face misspecification

concerns.

It is worth noting that this result holds even if the analyst had an asymmetric objective function

in which case the optimal forecast will deviate from the mean of the predictive distribution. This

tilt would lead to forecasts that seem either pessimistic or optimistic relative to the forecasts of

an analyst like ours who has a symmetric objective function Gu and Wu (2003). However, for

an equilibrium to exist, it must be that the analyst would perfectly anticipate and offset the evil

agent’s attempt to shift the mean in light of this asymmetry, thereby eliminating the evil agent’s

incentive to do so. This argument holds irrespective of the shape of the analyst’s objective function.
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Of course, this shape clearly affects the location of the analyst’s forecasts but not because the evil

agent shifts the mean by choosing κ0 < 0.10

Lemma 2.1 gives the optimal forecast as a function of parameters θ = {φ, σ2
α, σ

2
e , σ

2
n}.

Lemma 2.1. The predictive distribution of the earnings growth yt+1 given the information set

Ft = {y1:t, s1:t,θ} is a normal distribution with mean and variance of

E[yt+1|Ft] = (1− φ)µ+ φ {E[yt|Ft−1] +K (yt − E[yt|Ft−1])}+ wst, (7)

= (1− φ)µ+ φ {ŷt +K (yt − ŷt)}+ wst,

var(yt+1|Ft) = π2
p + σ2

α, (8)

where w =

[
1 +

σ2
n

σ2
e

]−1

,

K =
cov(xt, yt|Ft−1)

var(yt|Ft−1)
=

π2
p

π2
p + σ2

α

,

π2
p = var(xt+1|Ft) = φ2π2

u +
[
σ−2
e + σ−2

n

]−1
,

π2
u = var(xt|Ft) =

[
π−2
p + σ−2

α

]−1
.

Proof. The results are obtained by applying Bayes theorem and a standard Kalman filter that has

converged to the steady state.

Lemma 2.1 shows that the analyst’s forecast is a function of the previous forecast (ŷt), the

previous forecast error (yt − ŷt), and the additional signal st. Parameters K and w are important.

The Kalman gain K measures how the analyst uses the previous forecast error to revise estimates

of xt. The intuition is that the analyst issued the forecast ŷt with an estimate of xt in mind. When

10The objective function’s shape affects the location of the analyst’s forecasts both directly and through its in-
teraction with his misspecification concerns. To illustrate, suppose that, for example, because of an asymmetric
objective function, the analyst’s forecasting rule is of the form ŷt = E(yt) − 0.1SD(yt), where the expectation and
standard deviation are conditional on the analyst’s information set. The analyst’s forecast ŷt is lower than the mean
of predictive distribution even in the absence of misspecification concerns. However, if the analyst is concerned about
model misspecification, this concern inflates SD(yt) and so lowers the forecast further. Although asymmetry does
not affect the mechanism we study, it is important in other models of uncertainty. Orlik and Veldkamp (2014), for
example, examine the forecasting behavior of an agent who does not know the parameters governing the GDP process,
but learns about these parameters as data accumulate. In this model, uncertainty coupled with the skewness of the
GDP growth distribution generate large and counter-cyclical uncertainty fluctuations that match those observed in
the data—there is no need to posit an exogenous disaster process to capture these features of the data. We revisit
asymmetric objective functions in Section 5 where we examine the variation in mean forecast errors. In that analysis,
we note that asymmetry in analysts’ objective functions may contribute to variation in mean forecast errors.
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the analyst now observes how much the realization deviates from his forecast, this deviation informs

him about how far off the mark he was in terms of xt. The weight w controls how much of the

extra signal st is used to estimate et+1. Both K and w are functions of the parameter vector θ. If

the parameters used by the analyst differ from the true parameter values, θ 6= θ̂, then K̂ and ŵ

are still given by Lemma 2.1 but with parameters θ̂. For example, if the analyst sets the noise in

reported earnings equal to (η + 1)2σ2
α out of fear of model misspecification, this choice decreases

the Kalman gain, K̂ < K.

2.4. Autocorrelation of forecast errors

The autocorrelation of forecast error depends on how the parameters used by the analyst (θ̂)

differ from the true parameters (θ). Proposition 2 characterizes the autocorrelation of forecast

errors:

Proposition 2. If the analyst uses parameter values θ̂=(φ̂, σ̂2
α, σ̂2

e , σ̂2
n) in the forecasting problem

when the true parameters are θ=(φ, σ2
α, σ2

e , σ2
n), the analyst’s forecast error FEt = (yt − ŷt|t−1) is

a stationary time series and its first-order autocorrelation is given by

corr(FEt+1,FEt) =
A

var(FEt)
(φ− φ̂)︸ ︷︷ ︸

Estimation
error in φ

+ φ(K − K̂)︸ ︷︷ ︸
Difference in
Kalman gain

+ φ(1−K)

[
1− var(FE ∗t )

var(FEt)

]
︸ ︷︷ ︸,

Any deviation from
MSE-optimal forecast

(9)

where A = cov
(
K̂yt +

(
1− K̂

)
ŷt,FEt

)
,

FE ∗t = forecast error when θ̂ = θ.

Proof. See Appendix B.

If the analyst uses θ̂ = θ, the autocorrelation collapses to zero. In the robust forecasting model,

the analyst knows all other parameters except for the distribution of αt, and so the only difference

between θ and θ̂ is that the analyst sets σ̂2
α = (η+1)2σ2

α. In this case, the first term in equation (9)
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vanishes and both the second and third terms are strictly positive. The third term, which is positive

as long as θ̂ 6= θ, is negligible relative to the second term.11

Figure 1 plots the autocorrelation of forecast errors when the analyst uses “wrong” parameters in

the forecasting problem. The upper-right corner, in which σ̂2
α 6= σ2

α, applies to the robust forecasting

model. We see that if analysts act as if the reported earnings are very noisy, forecast errors will be

positively correlated. Other “mistakes” also affect the autocorrelation function. Forecast errors are

positively autocorrelated if analysts either under- or overestimate the persistence of earnings growth

shocks (φ), underestimate the variance of the permanent growth shocks (σ2
e), or overestimate the

precision of the non-earnings signal (σ−2
n ). In Section 4.2, we estimate the deviations between

the true parameters and those used by the analysts, and discuss the interpretation of these other

mistakes.

2.5. Robust forecasts: Intuition

An analyst concerned about model misspecification will issue forecasts that perform well even

under the worst case model in which reported earnings have the highest possible variance. Equa-

tion (6) shows that noise in reported earnings hurts the analyst in two ways. First, the noisier

reported earnings are, the less accurate the analyst’s forecast will be. His task is to forecast re-

ported earnings and the amount of variation that can be predicted decreases as the amount of noise

increases. Second, the analyst’s inferences about xt depend on how noisy earnings are. The more

noise in reported earnings, the farther away the analyst will, on average, be in his assessment of

the current value of xt.

The analyst will, therefore, want to overestimate the amount of noise in reported earnings.

Doing so, his realized accuracy will be better than what he expected it to be. Whatever the

analyst’s forecast, it will be closer to reported earnings because there is less noise in these reports.

Also, his assessment of xt will be closer to the truth because, by definition, reported earnings (yt)

better track true earnings growth (xt). If, on the other, the analyst has underestimated the amount

of noise in reported earnings, both of these channels work against the analyst.

The analyst’s desire for robustness comes at a cost, however. By assuming that reported earnings

11For example, if φ = 0.5, σα = 0.1, σn = 0.5, and σe = 1.0, then the third term is less than 1% of the second term
even if the analyst “overestimates” the amount of noise in reported earnings by a factor of 100.
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are noisier than what they probably are, he will, on average, pay less attention to historical earnings

numbers. As a result, the analyst puts less weight on these numbers and, by extension, his previous

forecast errors. This shift in his weighting scheme results in a positive autocorrelation in forecast

errors, giving the appearance that the analyst underreacts to earnings numbers and forecast errors.

The analyst’s behavior is, nevertheless, intuitive and optimal. If he is unsure of the model generating

reported earnings and wants to guard against the risk of making a large mistake, the analyst will

rely on historical data only with caution. Doing so, he keeps in mind the possibility that some of

the reported earnings numbers might have reflected large errors and, not wanting to be led astray,

issues forecasts that are robust to such a possibility.

2.6. Discussion: Robustness in asset pricing versus forecasting

An analyst in our framework is concerned about the amount of noise in the reported earnings

he is attempting to forecast. The analyst’s objective is to minimize mean squared forecast error

in the face of an evil agent when earnings are assumed to follow an AR(1)-plus-noise process. In

this context, the worst case model is the maximally noisy model. This result stands in contrast to

the asset pricing literature where investors want to make robust investment decisions. The worst

case models there differ because investors have different objective functions than analysts and face

uncertainty surrounding the consumption growth process.

In the asset pricing literature, the nature of the investor’s preferences dictate what constitutes

the worst case model. For example, Hansen, Sargent, Turmuhambetova, and Williams (2006) and

Anderson, Ghysels, and Juergens (2009) model investors as having time-separable preferences and

show that the worst case model is the one in which the consumption growth rate’s mean is shifted.

Hansen and Sargent (2010) and Bidder and Dew-Becker (2014), on the other hand, model investors

as having recursive utility with a preference for early resolution of uncertainty (Kreps and Porteus

(1978), Epstein and Zin (1989), and Weil (1990)) and for these investors the worst case model is

the one in which the persistence of the consumption growth process is increased.

In a forecasting problem, by contrast, a decision maker has a preference for accuracy. For

example, Hansen and Sargent (2008, chapter 17) investigate a forecasting problem similar to ours

in which a decision maker minimizes a mean squared error objective function. They conclude that
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the robust decision rule relies on the standard Kalman filter with “distorted beliefs” in which the

decision maker acts as if the process is more volatile than what his approximating model suggests.

The evil agent in a forecasting problem does not shift the mean of the process to be forecast. If an

equilibrium exists, it must be that the decision maker is able to successfully offset the evil agent’s

mean shift.12 Our model is similar to that of Hansen and Sargent (2008) except that, because we

draw a distinction between earnings growth shocks and noise in reported earnings, the analyst in

our model is concerned about the noise in reported earnings.

Of course, analysts in our model could, in principle, be concerned about other elements of their

approximating model. Influenced by these asset pricing results, suppose that an analyst knows all

model parameters except for the persistence of earnings growth shocks. If he is concerned about

misspecification in φ, the analyst will issue forecasts using φ̂ > φ. The use of an inflated φ guards

against the worst case scenario because the amount of uncertainty about the hidden state xt—the

true earnings growth—increases in φ. In Section 4.2, we estimate how the parameters that analysts

use to issue their forecasts differ from the parameters of the true earnings process. We find that,

on average, φ̂ ≈ φ. That is, analysts do not behave in a way that would suggest that they are

concerned about misspecification in φ.

The distinction between model and parameter uncertainty is important, and this distinction is

also evident in the asset pricing literature. For example, Collin-Dufresne, Johannes, and Lochstoer

(2013, 2015) show that if investors have recursive preferences, rational parameter learning gener-

ates subjective long-run risks. The shocks to rational beliefs are permanent and therefore impact

consumption growth in all future periods, just as if we had shocks to long-run consumption growth

in the standard model without learning. In deriving these results, investors are assumed to know

the true model or can, at least, assign a prior on the universe of possible models. However, what

they do not know are the values of the parameters governing this model. Anderson, Hansen, and

Sargent (2000) delineate between these two approaches by noting that “the robust decision maker

12In an investment problem, an investor cannot “offset” the mean shift because future consumption growth is not
a choice variable. That is, while the investor can account for the shifted mean in his optimal consumption and
investment decisions, he cannot offset the utility loss that is due to the shifted mean. Although the evil agent could
hurt the investor by increasing the variance of the consumption growth process, he would rather shift the mean or
change the persistence of the process. To the evil agent, shifting the mean or modifying the persistence in these
models is always cheaper than inflating the variance. Hansen and Sargent (2008, p. 42) note that, in a diffusion
setting in continuous time, the evil agent agent chooses not to distort the volatility because doing so is infinitely
costly in terms of relative entropy. See, also, Hansen et al. (2006) and Anderson et al. (2009).
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accepts model misspecification as a permanent state of affairs, and devotes his thoughts to designing

robust controls, rather than to using data to improve his model specification over time.” However,

for a decision maker to accept potential misspecification as a permanent state of affairs, he must

find it difficult to tell his approximating model apart from the worst case model. We return to this

question in Section 4.4 in which the detection error probabilities facing analysts are computed.

3. Data

3.1. Data sources and sample construction

We combine data from IBES, Compustat, and the Center for Research in Securities Prices

(CRSP). We use analysts’ earnings forecasts and actual earnings per share from January 1984

through December 2013 relying on the detailed history IBES files to avoid the rounding problems

associated with the split-adjusted files.13 To account for the seasonality in earnings, we define

yt as the year-to-year change in quarterly earnings per share, deflated by lagged stock price. A

forecast stays in our sample only if it is issued or reconfirmed after the firm announced its previous

quarter’s earnings. This requirement excludes forecasts that have not been updated to reflect the

latest available information. We denote the analysts’ median forecast of yt by ŷt.

We next merge in additional data from Compustat and CRSP. We require the firms in our

sample to be matched against CRSP and Compustat and have CRSP share codes of 10 or 11

(common stock) and be listed on the NYSE, Nasdaq, or AMEX. We then impose standard sample

selection rules14 to alleviate the effects of outliers: (1) delete observations in which the beginning-

of-quarter stock price is below $5; (2) delete observations where the forecasted year-to-year change

in the quarterly earnings per share is greater than $10 in absolute value; (3) delete observations

with extreme values of (yt, ŷt, yt − ŷt) by trimming at their 1% and 99% levels; and (4) require a

firm to have at least 20 quarterly observations of yt and ŷt. The last restriction ensures that we

have enough data to estimate firm-specific models of earnings and analyst forecasts.15 The final

sample with these restrictions has 185,420 firm-quarter observations on 3,804 firms.

13See, for example, Diether et al. (2002) for a description of this problem.
14See, for example, De Bondt and Thaler (1990), Lim (2001), Mikhail et al. (2003), and Raedy, Shane, and Yang

(2006).
15In Table 1 below, we also provide some statistics for these deleted firms which we will call “short-lived firms.”
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3.2. Descriptive statistics

Table 1 provides descriptive statistics for the year-to-year quarterly earnings growth (yt), fore-

casted earnings growth (ŷt), and resultant forecast errors. Analysts’ forecasts are, on average,

pessimistic. The fractions of negative, zero, and positive forecast errors are 32%, 10%, and 57%,

respectively, and so positive errors outnumber negative errors by a two-to-one ratio. Although the

average forecast error is close to zero—the heteroscedasticity and autocorrelation consistent t-value

associated with the average is 2.07—the median forecast is significantly positive with a t-value of

13.37 based on a simple sign test. The difference between the mean and the median implies that

large negative errors are more common than equivalently large positive errors. Lim (2001) and

Hilary and Hsu (2013), among others, also find that average forecast errors are positive.

The last rows in Table 1 report autocorrelations in forecasts and forecast errors. We measure

autocorrelations using AR(1) regressions:

FEi,t+1 = a+ ρFEi,t + εi,t+1. (10)

The pooled estimate of the autocorrelation in forecast errors, 0.216, is significant with a het-

eroscedasticity and autocorrelation consistent t-value of 28.87. This estimate is similar to other

autocorrelation estimates reported in the literature, both qualitatively and quantitatively. Menden-

hall (1991), for example, reports an estimate of 0.276 (t-value = 17.82) while the estimate in Abar-

banell and Bernard (1992) is 0.20 (t-value = 15.77). These papers use different datasets and sample

periods and so the similarity in these estimates speaks to the robustness of this result.

Table 1 also reports average firm-specific autocorrelations for all firms, short-lived firms, and

long-lived firms.16 The average firm-specific autocorrelation estimate across all 7,153 firms with

sufficient data for estimating the autocorrelation is 0.102. These firm-specific estimates, however,

are biased downwards Kendall (1954). The intuition for the bias is best illustrated by considering

what the autocorrelation estimate would look like when estimated from a time series of two IID

random numbers. Because we first estimate the sample average and then measure deviations from

16“Short-lived firms” are firms with fewer than 20 quarterly observations of earnings and forecasts. We drop these
firms from the main sample which therefore consists of firms for which we have at least 20 quarterly observations
(“long-lived firms”). The “all-firms” sample includes both short- and long-lived firms.
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the average, a positive deviation must be followed by a negative deviation, or vice versa. That

is, it must be that the autocorrelation estimate is negative even though the draws are IID.17 This

bias is the reason most papers in this literature, including those referenced above, rely on estimates

from pooled regressions. We follow this tradition but later add fixed and random effects to soak

up heterogeneity in the data.

The average bias-corrected autocorrelation estimate for all firms is 0.244. The remaining rows

of the table show that, after correcting for the bias, autocorrelations are considerably smaller for

long-lived firms than for short-lived firms, 0.196 versus 0.299. The 0.196 estimate for long-lived

firms—which are the firms included in the main sample—is close to the pooled estimate of 0.216.

In Section 6, we use the decay in autocorrelations, measured at the firm level, to estimate the rate

at which analysts resolve uncertainty about the firms they follow.

4. Empirical Analysis of Analysts’ Forecasts

4.1. The difficulty of model selection

In Section 2’s model, earnings are assumed to follow an AR(1)-plus-noise model which is obser-

vationally equivalent to an ARMA(1,1) model. The earnings data strongly favor the ARMA(1,1)

model over a MA(1) model. When these two models are taken to the data, the MA(1) model’s

adjusted R2 is 11.5% while that of the ARMA(1,1) model is 14%. In a comparison of these two

models, a likelihood-ratio test rejects the MA(1) model with a p-value below 0.001. We present the

estimates of the AR(1)-plus-noise model for the earnings growth process in Section 4.2.

As discussed in Section 2, the earnings literature often defaults to an ARMA(1,1) specification

because no model within this class of linear models matches the autocorrelation function of earnings

growth much better than the ARMA(1,1) model.18 In fact, this model provides an adequate

description of the data for most firms in our sample. We can assess model fit by separately

estimating this model for each firm using Generalized Method of Moments (GMM) and then testing

the resultant over-identifying restrictions. Using the average earnings growth, the variance of

17Kendall (1954) shows that if the unadjusted autocorrelation estimated from a time series of T observations is ρ̂,

then the bias-adjusted estimate is ρ̂bias-adjusted = ρ̂(T−1)+1
T−4

. This bias is therefore larger for short-lived firms.
18For example, fitting an ARMA(5,1) model to our data gives an R2 of only 22.6%.
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earnings growth, and the autocovariances at the first four lags as the moment conditions, we reject

the ARMA(1,1) model for 10.3% of the firms at the 5% level after applying a Bonferroni correction.

Furthermore, even if earnings growth follows a higher-order ARMA process, note that the

analysts’ information set in our forecasting model consists of an AR(1)-plus-noise model and an

extra signal st. This extra signal can represent any useful information found in the higher-order

lags. In fact, if we regress analysts’ forecast errors on five lags of earnings growth, the resultant

coefficients are all close to zero. This result implies that analysts’ forecasts reflect information

embedded in the higher-order lags or that those additional lags do not contain useful information.

Finally, it is important to emphasize that the problem confronting the analyst in Section 2’s

model is not choosing between, say, MA(1) and ARMA(1,1) models. Rather, in our formulation, the

analyst assumes an AR(1)-plus-noise model but realizes that it is but an approximation stemming

from his uncertainty surrounding the amount of noise in reported earnings. At one extreme, there

may be little or no noise, in which case the earnings process is close to an AR(1) model. At

the other extreme, many features of the reported earnings may not be captured by the analyst’s

approximating model, all of which is then subsumed by the noise term. An important consideration

is the extent to which the analyst can use earnings data to distinguish this true model from among

this spectrum of alternatives. We address this question in Section 4.4.

4.2. A joint model of earnings and analyst forecasts

We can express the dynamics of earnings together with their forecasts as a VARMA(1,1) system

Yt+1 = A+BYt + Cεt+1 +Dεt, (11)

where Yt =

yt
ŷt

, εt =


αt

et

nt−1

, cov(εt) =


σ2
α 0 0

0 σ2
e 0

0 0 σ2
n

,

A =

µ(1− φ)

µ̂(1− φ̂)

, B =

 φ 0

φ̂K̂ φ̂
(

1− K̂
)
, C =

1 1 0

0 ŵ ŵ

, D =

−φ 0 0

0 0 0

,
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and µ and µ̂ are the long-term means of yt and ŷt, respectively.19

We estimate this model in two steps. In the first step, we estimate the parameters of the

earnings growth process—the AR(1)-plus-noise model—using maximum likelihood. In the second

step, we hold these parameter values fixed and use conditional maximum likelihood to estimate the

remaining parameters of the VARMA model. We use a block bootstrapping procedure, resampling

firms to preserve the time-series properties of the data, to compute standard errors and to confirm

that the parameter estimates obtained using the two-step procedure are unbiased.20

Table 2 reports the parameter estimates and the standard errors of the earnings and forecast

processes. It also reports R2s for the AR(1)-plus-noise model and analysts’ forecasts to assess the

accuracy of analyst forecasts. The latter compares the variance of forecast errors to the variance

of earnings growth,

Pseudo-R2 of analyst forecasts = 1− var(yt+1 − ŷt+1)

var(yt+1)
. (12)

In our model, the analyst receives additional signals about earnings growth shocks. If analysts

use only historical earnings to issue forecasts, the precision of their forecasts should be comparable

to the R2 of 14% of the ARMA(1,1) model. Analysts’ forecasts, however, are considerably more

accurate: the R2 of their forecasts is 79.8%. Although the literature often portrays analysts as being

poor forecasters21, this characterization ignores the fact that analysts’ forecasts are, on average,

substantially more accurate than those obtained from time series models. The estimates of the

VARMA(1,1) model capture the precision of these extra signals. This precision affects not only the

estimate of σn but also other estimates, such as K and w, that depend on this precision.

19It is important to note that this VARMA(1,1) system is not a new specification of earnings and forecasts. It
merely collects equations (2), (3), (4), and (A.1) (from the proof of Proposition (2)).

20Although we assume normality in estimating the VARMA(1,1) model, we verify that the departures from nor-
mality do not affect our inferences. We assess the robustness of our results as follows. We start from the parameter
estimates of the VARMA(1,1) model reported in Table 2. We then generate a hypothetical data set with the same
size as the real data set. However, instead of imputing normal shocks, we draw random shocks et, αt, and nt from
the empirical distribution of the standardized earnings growth. This standardized distribution has mean zero and a
standard deviation of 1 but, consistent with the estimated reported in Abarbanell and Lehavy (2003), it is negatively
skewed (−0.866) and fat-tailed (kurtosis = 12.46). We then then re-estimate the VARMA(1,1) model using these
simulated data, and compare the parameter estimates and standard errors to assess robustness. We find that the esti-
mates are nearly unchanged. For example, consider the VARMA(1,1) estimates of σα/σe = 0.106 and σn/σe = 0.538
reported in Table 2. If we simulate data by imputing shocks from the empirical earnings growth distribution, these
parameters are nearly unchanged at 0.108 and 0.534, respectively.

21See Bradshaw (2011) for a discussion of the analysts-versus-time series models debate.
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We also note an observational equivalence result that is useful in interpreting the estimates of the

VARMA(1,1) model. Hansen and Sargent (2008, Section 17.8) show an observational equivalence

between robust forecasts and ordinary forecasts made under “distorted beliefs.” Importantly, this

result implies that the estimates of the VARMA(1,1) model can be interpreted without specifying

the motivations behind the analysts’ forecasts. Put differently, the VARMA(1,1) model recovers

from the data (i) the true parameters of the earnings process and (ii) the parameter values that

represent distorted beliefs. For example, the result in Table 2 that φ ≈ φ̂, which we discuss below,

holds regardless of whether or not the analyst fears model misspecification.

4.3. Which “mistakes” drive the autocorrelation in forecast errors?

The estimates in Table 2 assess how the true parameters of the earnings process differ from those

relied upon by analysts and help us pinpoint the sources for the autocorrelation in forecast errors.

Recall from Proposition 2 and Figure 1, forecast errors are positively autocorrelated if: (i) analysts

either under- or overestimate the persistence of earnings growth shocks, φ; (ii) underestimate the

variance of the earnings growth shocks, σ2
e ; (iii) overestimate the precision of the non-earnings

signal, σ−2
n ; or (iv) overestimate the amount of noise in reported earnings, σ2

α. Robust forecasting

operates through the last of these channels with analysts optimally using “too high” a value of σ2
α

to guard against the worst case scenario.

Table 2 recovers estimates of ρ̂, K̂, and ŵ from the data. These parameters, in turn, depend on

analysts’ choices for the primitive parameters (φ̂, σ̂α, σ̂e, σ̂n). By equation (7), the analyst’s optimal

forecast is ŷt+1 = (1− φ̂)µ̂+ φ̂
{
ŷt + K̂(FEt)

}
+ ŵst, where φ̂ represents the analyst’s belief about

the persistence of the earnings growth shocks, K̂ summarizes his belief of the informativeness of the

reported earnings growth, and ŵ is the analyst’s measure of the additional signal’s informativeness.

Because w is the weight the analyst places on the additional signal, the analyst would incorrectly

estimate this parameter if he was overconfident in his private information (ŵ � w) or if he herded

with other analysts and ignored the additional signal (ŵ � w). Also, the higher the value of σα

the analyst uses, the lower the Kalman gain estimate K̂.

The estimates in Table 2 are consistent with the autocorrelation in forecast errors stemming

solely from the underestimated Kalman gain K. By contrast, the values of φ̂ and ŵ that analyst rely

21



on are remarkably close to their true values. This finding implies that analysts, on average, have

correct beliefs about the precision of the additional signal, σ2
n, and the variance of the shocks to the

persistent component of earnings growth, σ2
e .

22 These estimates suggest that the autocorrelation

of forecast errors is therefore not due to some of the mechanisms that have been proposed in the

literature. In Markov and Tamayo (2006), for example, the autocorrelation of forecast errors is

positive because analysts underestimate the persistence of the earnings shocks, φ̂ � φ. Similarly,

studies documenting that analysts herd or put excessive weight on their private signals23 argue that

the autocorrelation of forecast errors may stem from such mechanisms. The fact that ŵ − w ≈ 0

in the data rules out these channels.

The underestimated Kalman gain K can stem from three different types of “mistakes.” Analysts

could overestimate the precision of the additional signal, σ̂2
n � σ2

n; they could underestimate the

variance of the permanent growth shocks, σ̂2
e � σ2

e ; or they could overestimate the noisiness of the

reported earnings, σ̂2
α � σ2

α. However, the fact that ŵ − w ≈ 0 implies that the underestimated

Kalman gain can only result from analysts overestimating σ2
α. This behavior is consistent with

our model in which the analyst optimally makes this choice to ensure robustness against model

misspecification. The Kalman gain used by analysts (K̂ = 0.414), however, is substantially lower

than the actual Kalman gain (K = 0.953). Are analysts’ concerns about model misspecification

sufficiently large to lower the Kalman gain to such a degree? We turn to this question next.

4.4. Detection error probabilities

4.4.1. Definition

As discussed earlier, robust control theory assumes that the decision maker accepts model

misspecification as a permanent state of affairs. The alternative models considered as plausible by

the decision maker must therefore lie close to his approximating model. Otherwise, if the worst

case model were too different from his approximating model, the decision maker could easily reject

22Because w is a function of the ratio σ2
n/σ

2
e , the estimation results technically also permit for the possibility that

analysts have wrong beliefs about both terms but that these mistakes are exactly of the same magnitude and thus
offset each other in the ratio so that w − ŵ ≈ 0. We assume in the discussion that follows that this knife’s edge
solution is an unlikely explanation for the autocorrelation of the forecast errors.

23See, for example, Trueman (1994), Welch (2000), Cooper, Day, and Lewis (2001), Chen and Jiang (2006), and
Jegadeesh and Kim (2010).
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it and thereby invalidate the assumption that he fears model misspecification. The detection error

probability measures the likelihood that the decision maker errs in detecting the correct model and

provides a measure of model uncertainty confronting him.

To calibrate the amount of model uncertainty confronting analysts, we follow Hansen, Sargent,

and Wang’s (2002) notation in defining these probabilities. Suppose that the analyst has two

models in mind: the approximating model (A) and the worst case model (W). The analyst can use

earnings data to formulate two likelihood ratio tests: (1) the probability of rejecting A when A is

the correct model, and (2) the probability of rejecting W when W is the correct model. The two

models are difficult to distinguish if the probability of mistakingly rejecting the correct model is

high Maenhout (2004).

The detection error probability depends on the “distance” between the approximating model

A and the worst case model W. In our formulation, this distance is controlled by the constraint

parameter η (see equation 6). Attaching equal prior weights to A and W, the detection error

probability p(η) is the average probability of the two mistakes:

p(η) =
1

2
(Pr(mistake | A) + Pr(mistake |W)) . (13)

The higher p(η), the more difficult it is for the analyst to distinguish between the models and so

the more likely he errs in detecting the correct model. If η is close to zero, the worst case model

is nearly indistinguishable from the approximating model and so the analyst is as likely as not

to make an error in detecting the correct model, giving p(η) ≈ 0.5. If, on the other hand, η is

large, the worst case model will likely be easy to distinguish from the approximating model and

so p(η) ≈ 0. The robust control literature typically assumes that a decision maker wants to guard

against alternative models whose detection probability is 5% or higher.

To determine the amount of uncertainty confronting the analyst, we must compute the detection

error probabilities of alternative models and find the set of those that exceed this 5% threshold.

However, detection error probabilities also depend on the amount of data relied upon by the analyst:

the larger the sample, all else being equal, the more likely the analyst will detect the correct

model and so the lower the detection error probability. Therefore, before turning our attention to
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computing detection error probabilities, we must measure the amount of data at analysts’ disposal

when forecasting earnings.

4.4.2. Measuring the effective sample size

Our data set has 185,420 firm-quarter observations with a median of 42 quarters of observations

per firm. If analysts have access to similar data and use it to estimate firms’ earnings processes,

what is the amount of useful data per firm? The effective sample size lies between two extremes.

At one extreme, if firms’ earnings processes are completely heterogenous, then analysts can only

use historical data specific to each firm. At the other extreme, if the parameters are identical across

firms, then analysts can use the entire pooled data set.

We estimate the effective sample size as follows. We first assume that analysts can learn about

a model parameter from other firms and possibly by using other additional information. We can

then measure the uncertainty that analysts have about that parameter to back out the effective

sample size. If, for example, analysts in the data issue forecasts using a very precise estimate of φ,

that precision implies that the effective sample size is large. By contrast, if their estimate of φ is

noisy, the effective sample size is small.

Panel A of Table 3 presents estimates of the estimation errors in long-term growth rates, mea-

sured by SD(µ − µ̂), and those in φ, as measured by SD(φ − φ̂).24 We measure these standard

deviations by estimating mixed-effects models of the earnings growth and forecast processes. In

these models, both the intercepts (µ and µ̂) and autoregressive parameters (φ and φ̂) can vary

across firms and as a function of calendar time and firm age. Appendix D details these estimation

procedures.

To estimate the effective sample size, we begin with our estimate of SD(φ − φ̂) = 0.0875 in

Panel A. Since the standard error of φ̂ when estimating the AR(1)-plus-noise model depends on

the expected asymptotic Fisher information matrix and sample size, we can find that sample size

N for which the standard error of φ̂ matches the 0.0875 estimate. In our data, the resultant

effective sample size is N = 465 observations and measures the average amount of information that

24The parameter µ is the long-term growth rate of reported earnings in the AR(1)-plus-noise model (see equations 2
and 3). The standard deviation SD(µ − µ̂), however, also measures the variation in mean forecast errors, because
µ− µ̂ = E(yt)−E(ŷt | t−1) = E(yt − ŷt | t−1) = E(FEt), and therefore SD(µ− µ̂) = SD (E(FEt)). We thus henceforth
call SD(µ− µ̂) the “the variation in mean forecast errors.”
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an analyst relies upon when forecasting earnings. Since our estimate of the effective sample size

exceeds the median number of observations available per firm, analysts appear to avail themselves

to data on other firms when issuing their forecasts.25

4.4.3. Estimates of detection error probabilities

Panel B of Table 3 tabulates detection error probabilities.26 We simulate data from an AR(1)-

plus-noise model in which the parameters of the approximating model are those reported in Table 2,

while the parameters of the corresponding worst case model are the same except that the amount of

noise is inflated to the level shown in the column labeled σα/σe. The top part of Panel B computes

detection error probabilities by simulating samples of N = 465 observations, the effective sample

size previously estimated. Subsequently, we vary the effective sample size when computing the

detection error probabilities.

The starting point in Panel B is the row σα/σe = 0.106, which corresponds to the approximating

model from Table 2. The worst case model here corresponds to the analyst’s approximating model.

In this case, the analyst faces no model uncertainty. The constraint parameter η is zero to indicate

that there are no alternative models and the detection error probability is 50% because we are

comparing two identical models. The autocorrelation of forecast errors must be zero because the

parameters used by the analyst (θ̂) coincide with the true parameter values (θ).

Notice that as we increase σα while holding the effective sample size fixed, detection error

probabilities decrease because the analyst now entertains models that are increasingly different

from his approximating model. For example, if we approximately double the noise σα so that

σα/σe = 0.2 in Panel B, the detection error probability is reduced to 38.3%. Correspondingly, η,

25We could also measure the effective sample size using the estimate of SD(µ− µ̂). Following the same procedure,
the effective sample size becomes N = 341 observations. We use the higher estimate of N = 465 to be conservative;
in Section 5.1 (see footnote 30), we note that variation in mean forecast errors may also reflect other mechanisms in
addition to estimation error.

26Detection error probabilities, the constraint parameter η, the amount of noise in reported earnings under the
worst case model (σ

(w)
α ), and the autocorrelations are all linked together. First, Proposition 1 shows that η relates

σα to σ
(w)
α by σ

(w)
α = (η+ 1)σα. Second, Proposition 2 gives the autocorrelation of forecast errors as a function of the

difference between the true parameters (θ) and those used by the analyst (θ̂). If the analyst uses the true values for all

parameters but σα—as when concerned with misspecification—this proposition relates σ
(w)
α to the autocorrelation of

forecast errors. Third, detection error probabilities are determined as well because they are computed by comparing
the data through the approximating model (using σα) and the worst case model (using σ

(w)
α ). These connections

are important. If we fix any one of them—η, σ
(w)
α , the autocorrelation of forecast errors, or the detection error

probability—we fix the other parameters as well.
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which controls the distance between the approximating and the worst case models has increased

to 0.89. The autocorrelation in forecast errors is now positive because the analyst is concerned

that there might be more noise in reported earnings than suggested by his approximating model.

By Proposition 2, this positive serial correlation in forecast errors reflects the increase in σα that

lowers Kalman gain K.27

The detection error probability remains at least 5%, the threshold for which the analyst should

guard against possible misspecification, up until σα/σe = 0.438 for N = 465 observations. At

this threshold, the analyst faces so much model uncertainty that he is plausibly concerned that the

amount of noise in reported earnings could be as much as four times as high as in his approximating

model. If we set this model as the worst case model, the analyst’s desire for robustness leads him

to issue forecasts that have an autocorrelation of 0.184.

Recall that the pooled estimate of the autocorrelation in analysts’ forecast errors is 0.216.

From Panel B, this amount of autocorrelation is consistent with a detection error probability of

only 1.7%, smaller than the 5% threshold, indicating that model uncertainty would not be an issue

as the analyst should feel comfortable in ruling out this alternative model. This computation,

however, is too conservative as it assumes all of the estimated autocorrelation is due to model

uncertainty. In Section 5, we show that just over half of the 0.216 estimate—0.125, to be precise—

is due to analysts’ concerns for model misspecification. Panel B shows the worst case model that

generates an autocorrelation of 0.125 (on row σα/σe = 0.330) has a detection error probability of

17.2%, well above the 5% threshold.

The last two rows of Panel B fix the autocorrelation in forecast errors at 0.125 but change the

amount of data available to an analyst. These computations are important because the effective

sample size estimate of 465 observations applies to the average forecast about the average firm. If

the analyst is only able to make use of a smaller sample because of a firm’s uniqueness, he would

be less likely to to distinguish between the approximating and worst case models. For example, in

Panel B, if the effective sample size is only 200 observations, then the detection error probability

of the σα/σe = 0.330 model increases to 26.7%. Conversely, if the analyst can avail himself to a

27We can also use detection error probabilities to investigate how likely an analyst would be able to distinguish
an AR(1) model (σα = 0) as his approximating model from an ARMA(1,1) model with parameters as those re-
ported in Table 2. The corresponding detection error probability is 45.4% indicating that the two models are nearly
indistinguishable in our data and highlighting just how much uncertainty an analyst has about the earnings process.
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larger sample, his ability to distinguish between the approximating and worst case models increases.

However, from Panel B note that the effective sample size would have to increase by a factor of

three, to 1,417 observations, before the detection error probability drops to the 5% threshold.28

5. Decomposing the autocorrelation in forecast errors

To clearly discern the role of model uncertainty in explaining the observed autocorrelation of

forecast errors requires that we purge the effects of all other contributing mechanisms. In addition

to analysts’ misspecification concerns, two mechanisms contribute to the autocorrelation of forecast

errors. Section 5.1 shows that variation in mean forecast errors generate positive autocorrelation

of forecast errors. Section 5.2 shows that both positive and negative estimation errors about the

persistence of earnings growth shocks can also add to the autocorrelation of forecast errors.

After detailing these mechanisms, we decompose the total autocorrelation of forecast errors

into three parts: analysts’ concerns for model misspecification and the contributions from these

two mechanisms. The autocorrelation estimate of 0.216 in Table 1 is the sum of these three parts.

By assuming parameter homogeneity, however, the VARMA(1,1) model in Table 2 attributes all of

this autocorrelation to analysts’ concerns for model misspecification by lowering the Kalman gain

K̂.29

28Although the estimates in Table 2 suggest that analysts are not concerned about misspecification in φ, we could
use the same methodology as in Panel B of Table 3 to measure detection error probabilities for models indexed by φ.
For example, the detection error probability comparing the approximating model with φ = 0.472 (from Table 2) to
a model with φ = 0.6 is 1.6%.

29See Appendix D.
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5.1. Autocorrelation from the variation in the mean forecast error

Table 1 shows that analysts are, on average, too pessimistic in their forecasts and there is

substantial variation in their forecast errors.30 Before providing a formal proof, Figure 2 illustrates

how this variation induces positive autocorrelation in forecast errors. In this figure, we assume

that forecast errors are IID draws from normal distributions with different means for two groups:

+0.1 for group 1 and −0.1 for group 2. Their standard deviations are both 0.1. The within-group

autocorrelations are zero because of the IID assumption. In a pooled regression, however, the

autocorrelation of forecast errors is 0.5. The intuition is simple: a positive error is likely followed

by another positive error, and vice versa, but only because observations are drawn from groups

with different means. Proposition 3 formalizes this result:

Proposition 3. Suppose that the observations of forecast errors FEi,t in panel data divide into

m = 1, 2, . . . ,M groups. The fraction of observations from group m is wm so that
∑M

m=1wm = 1.

Each group includes firms whose forecast errors are drawn from a covariance stationary process with

group-specific mean forecast error E[FEm,t] = bm. Let ρ∗pooled = corr(FEt+1,FEt) denote the pooled

first-order autocorrelation of forecast errors when there is no variation in mean forecast errors,

var(bm) = 0. The pooled first-order autocorrelation of forecast errors ρpooled when var(bm) ≥ 0 is

ρpooled = (1− λ) · ρ∗pooled + λ · 1 ≥ ρ∗pooled, where (14)

λ =
var(bm)

var(FEt)
, 0 ≤ λ ≤ 1, and (15)

var(bm) =
M∑
m=1

wmb
2
m −

(
M∑
m=1

wmbm

)2

.

30The literature has put forth several mechanisms to explain the variation in mean forecast errors. Analysts may,
for example, systematically underestimate the growth rate of earnings, that is, µ̂ < µ. Alternatively, analysts may
strategically issue low forecasts to gain better access to management and to thus increase the accuracy of their
forecasts Lim (2001). Hong and Kubik (2003) and Jackson (2005) show that analysts who are more optimistic
relative to the consensus are more likely to experience favorable job separations and to generate more trade for their
brokerage firms. Hilary and Hsu (2013) find that analysts who are more consistent in their forecast errors tend to
give more pessimistic forecasts, and that the market rewards this behavior by paying more attention to such analysts.
Gu and Wu (2003) note that if analysts’ loss function is not quadratic, then analysts’ forecasts may be biased even
though they are efficient. Moreover, as discussed in Section 2.3, analysts’ objective functions could be asymmetric.
Analysts, for example, may prefer to understate earnings to generate investment banking revenue, and this preference
for positive forecast errors leads to forecasts that an outsider might view as being unjustifiably pessimistic. We do
not attempt to distinguish between these alternatives but instead measure to what extent variation in mean forecast
errors induces autocorrelation in forecast errors.
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Proof. See Appendix C.

A “group” in Proposition 3 can be firms, time periods, or a combination of these. If mean forecast

errors vary in any of these dimensions, the estimated autocorrelation is biased upwards. For

example, if the autocorrelation of forecast errors in the absence of this variation is ρ∗pooled = 0, then

the bias equals

corr(FEt+1,FEt) =
var(bm)

var(FEt)
=

var(µ− µ̂)

var(FEt)
.

That is, the autocorrelation becomes a measure of how much of the total variation in forecast errors

emanates from the variation in mean forecast errors. This is important. If analysts are accurate

but issue systematically too low or high forecasts for some firms, estimated autocorrelations can be

significantly upward biased.

5.2. Autocorrelation from estimation errors in the persistence of the earnings growth shocks

Analysts’ estimation errors about the persistence of earnings growth shocks φ also contribute to

the observed autocorrelation of forecast errors. This effect is due to the first term of Proposition 2

which can be expressed as
cov(K̂yt + (1− K̂)ŷt,FEt)

var(FEt)
(φ− φ̂). (16)

If φ > φ̂, then the covariance term is always positive, and so the autocorrelation of forecast

errors is increasing in φ − φ̂. If, alternatively, φ < φ̂, this covariance becomes negative if the

analyst’s additional signal is sufficiently precise.31 Therefore, if the additional signal is sufficiently

precise, both positive and negative estimation errors in φ̂ add to the autocorrelation of forecast

errors. The stylized example in the introduction, summarized in equation (1), illustrates this result

31The covariance term can be written as

cov
(
x̂t|t, yt − ŷt

)
= cov

(
x̂t|t, φyt−1 + et + αt − φαt−1 − φ̂x̂t−1|t−1 − ŵ(et + nt−1)

)
= cov

(
x̂t|t, (φ− φ̂)x̂t−1|t−1 + φ(xt−1 − x̂t−1|t−1) + αt + (1− ŵ)et − ŵnt−1

)
=

(
φ− φ̂

)
cov
(
x̂t|t, x̂t−1|t−1

)
+ φcov

(
x̂t|t, xt−1 − x̂t−1|t−1

)
+ cov

(
x̂t|t, (1− ŵ)et − ŵnt−1

)
.

As the additional signal on et becomes increasingly precise, σn → 0, the first term converges to (φ− φ̂)cov(xt, xt−1) =
φ(φ− φ̂)var(xt), and the second and third terms converge to zero because x̂t|t → xt, ŵ → 1, and nt → 0.
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under the assumption that the additional signal is perfect. In that example, the autocorrelation of

forecast errors increases in (φ− φ̂)2. Panel A of Figure 1 clearly illustrates how this result depends

on the precision of the additional signal. When the additional signal is sufficiently precise, the

autocorrelation of forecast errors is a U-shaped function of φ− φ̂. Therefore, even if E(φ− φ̂) ≈ 0—

that is, analysts on average correctly estimate the persistence of earnings growth shocks—variation

in φ− φ̂ will contribute to the autocorrelation in their forecast errors.

5.3. Decomposition estimates

Sections 5.1 and 5.2 show that variation in mean forecast errors and in estimation errors in φ̂

both contribute to our pooled estimate of the autocorrelation of forecast errors (0.216). Table 4

decomposes this pooled estimate into three components: (1) the autocorrelation due to the variation

in mean forecast errors, (2) the autocorrelation due to estimation errors in φ̂, and, by subtracting

these two additional components from the overall pooled estimate, (3) the autocorrelation due to

analysts’ concerns for model misspecification.

This decomposition is based on the estimates given in Panel A of Table 3. There we report

the amount of variation in mean forecast errors, SD(µ − µ̂), and in estimation errors, SD(φ − φ̂).

Estimating how much of the pooled autocorrelation estimate of 0.216 is due to the variation in mean

forecast errors is straightforward. We estimate the pooled regression given by equation (10) while

letting the intercept vary across firms and as a function of calendar time and firm age. The change

in the slope coefficient measures the contribution of the mean-forecast error channel. Similarly,

we measure the contribution of the estimation errors in φ̂ but this computation is slightly more

involved because we need to iterate for a fixed point. We provide the computational details in

Appendix D.

The estimates in Table 4 show that the variation in mean forecast errors accounts for approxi-

mately one-fifth (19.7%) of the autocorrelation in forecast errors. That is, while the original pooled

autocorrelation estimate is 0.216, it decreases to 0.173 once we remove the effects of calendar time,

age, and cross-sectional variation across firms in mean forecast errors. Most (71%) of this addi-

tional autocorrelation emanates from the cross-sectional variation across firms. That is, analysts

are, on average, pessimistic or optimistic about some firms, and these differences contribute to the
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autocorrelation in forecast errors. It should be noted that this “firm” effect captures both analysts’

uncertainty about the long-term growth rate µ and cross-sectional variation to the extent to which

analysts purposefully issue too low or high forecasts. The calendar-time effect—aggregate mean

forecast errors trend upwards during the sample period—contributes one-quarter (28%) of the ad-

ditional autocorrelation. This effect captures, for example, any persistent market-wide factors in

earnings surprises; for example, macroeconomic shocks that surprise all analysts. The effect of

firms aging is negligible.

The estimation errors-in-φ channel is equally important. Table 4 shows that total variation

in φ− φ̂ also accounts for approximately one-fifth (21.9%) of the pooled autocorrelation estimate.

That is, the pooled autocorrelation estimate decreases by 0.047 once these effects are removed

from the data. This decrease is almost entirely due to the cross-sectional variation in φ − φ̂. The

calendar-time and age effects in φ− φ̂ account for just 2% of the total reduction in autocorrelation.

The last row of Table 4 shows that after removing the effects of mean forecast errors and

estimation errors in φ̂, the autocorrelation of 0.125 that remains stems from analysts’ concerns for

model misspecification. These concerns are warranted. Recall from Panel B of Table 3 that an

autocorrelation of 0.125 in analysts’ forecast errors is consistent with a detection error probability

of 17.2%, well above the 5% threshold. Therefore, the analyst will find it difficult to distinguish his

approximating model from this worst case model in which earnings are three times as noisy. The

autocorrelation of 0.125 that we observe reflects analysts guarding against this very real possibility

of model misspecification.

6. Learning and its Limits

Underlying our analysis to this point is the assumption that analysts cannot learn about the

noisiness of a firm’s reported earnings. We now turn our attention to empirically investigating this

claim. As a byproduct, we also shed light on which features of the earnings process analysts appear

to learn about.
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6.1. Changes in autocorrelations as firms age

Table 5 measures the change in autocorrelations as firms age. We use a two-stage procedure.

We first estimate for each firm-quarter the autocorrelation of forecast errors and then run a linear

regression to explain variation in these estimates

ĉorr(FEi,t,FEi,t−1) = β0 + βt + γAgei,t−1 + Xi,t−1β + ei,t, (17)

where the dependent variable is estimated using a five-year window centered around quarter t and

adjusted for the Kendall (1954) bias; βt are calendar-time fixed effects; and firm age is measured as

the number of years since a firm’s first appearance on CRSP, entered linearly or in logs. Because

firm age is potentially confounded with other variables that can influence the autocorrelation of

forecast errors, we include as controls in Xi,t−1 the standard deviation of analyst forecasts scaled

by the prior quarter’s stock price, book-to-market, firm size, analyst coverage, and the standard

deviation of daily stock returns. We compute heteroscedasticity and autocorrelation consistent

standard errors because the dependent variable is constructed using overlapping data. Because we

estimate the dependent variable (autocorrelations) in equation (17) on a firm-by-firm basis, the

estimates are free of the issues discussed in Section 5.1.

Table 5 shows that the autocorrelation of forecast errors decreases significantly as firms age.

The log-specification of age fits the data better than the linear version. These results suggests

that autocorrelations decrease as firms age but at a decreasing rate and are thus consistent with

analysts learning about something : analysts learn more from the first observation than from the

second, more from the second than the third, and so forth. The estimates in the second column are

useful for quantifying the magnitude of this aging effect. The age variables are scaled so that their

slopes represent the reduction in autocorrelations over the first 50 years of a firm’s life. The point

estimate of β0 indicates that the average autocorrelation at the time of birth is 0.21. The log-age

coefficient of −0.054 then implies that, over the first 50 years of a firm’s life, analysts would learn

enough about its earnings process to decrease the autocorrelation of forecast by 26%. This learning

pattern is also consistent with the simple descriptive statistics reported in Table 1: autocorrelations

are considerably higher for short-lived firms than what they are for long-lived firms.
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These results suggest that there are limits to what analysts can learn. Although analysts learn

quickly at the outset, a firm would need to exist for hundreds of years for the autocorrelations in

analysts’ forecast errors to vanish. This limits-to-learning result is consistent with our assumption

that analysts can learn about certain features of the earnings process but not about others.32

6.2. What do analysts learn about?

Our assumption that analysts can learn about the persistence of earnings growth shocks but

not about the noisiness of reported earnings is empirically testable.33 We begin by measuring the

amount of uncertainty analysts have about the persistence of the earnings growth shocks, φ, as a

function of firm age. We follow the same procedure as that used in Panel A of Table 3. The only

difference is that, instead of estimating SD(φ− φ̂) using the full data set, we estimate this standard

deviation for firms of different age using five-year windows around every quarter t.

Panel A of Figure 3 shows that analysts’ precision about φ improves significantly as firms

age. The estimates show that with 15 years of quarterly data, analysts’ uncertainty about φ is

approximately one-half of what it was at the time of the first observation, and the estimation errors

continue dissipating afterwards.

Panel B of Figure 3 confirms that the autocorrelation of forecast errors decreases because

estimation errors about φ attenuate—and not because analysts learn about the noisiness of reported

earnings and K̂ changes. This panel plots how much of the autocorrelation is attributable to

analysts’ uncertainty about φ versus the extent to which it results from model uncertainty (K̂ < K).

These estimates are scaled by their age-zero values. The y-axis therefore measures the amount of

autocorrelation that stems from each channel relative to that channel’s importance at birth. We

32In unreported results, we find that autocorrelations attenuate faster among firms that go public at a young age.
We excluded from the sample firms that satisfy the following two requirements: (1) they have their IPO during the
sample period and (2) they are below the median in age at the time of their IPO relative to the founding dates
provided by Jay Ritter at http://bear.warrington.ufl.edu/ritter/FoundingDates.htm. Both the intercepts and the
slopes on log(1 + Age) are closer to zero in this restricted sample than they are in Table 5’s full sample. These results
suggest that analysts are more uncertain about the earnings processes of firms that go public at a young age.

33It is important to note that analysts could also learn about µ in which case mean forecast errors might dissipate
over time and thus autocorrelations would diminish. Table 4, however, shows that mean forecast errors in the pooled
estimation do not vary predictably as a function of firm age. Moreover, as described above, the regressions in Table 5
shut down this channel by estimating firm-by-firm regressions in the first stage. The remaining age-autocorrelation
patterns must therefore depend on K or φ.
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use the same procedure as earlier (see Appendix D) to estimate the amount of autocorrelation that

is due to each channel.

The estimates in Panel B show that analysts are unable to learn about the noisiness of reported

earnings. The amount of autocorrelation due to this component is very similar across the very

youngest and oldest firms. Although there is a dip in the middle, such a temporary dip—even if

not a chance finding—is not consistent with analysts resolving uncertainty about the noisiness of

reported earnings. The dashed line, by contrast, shows that the autocorrelation of forecast errors

falls as analysts learn about the persistence of earnings growth shocks.

7. Conclusion

Analysts guard against model misspecification by relying on a model which ex post likely over-

states the noisiness of reported earnings. Intuitively, if the true earnings process is noisy but the

analyst erroneously assumes that there will be little or no noise in reported earnings, his resultant

forecasts will be grossly inaccurate. By contrast, if the analyst assumes that reported earnings are

noisy when the true process actually has no noise, his resultant forecasts will be remarkably accu-

rate. An analyst therefore achieves robustness by exaggerating the noisiness of reported earnings.

This behavior leaves a trail of positively correlated forecast errors. This autocorrelation pattern,

however, does not imply that analysts use information inefficiently.

Our empirical tests are consistent with this mechanism explaining a large part of the autocor-

relation of analysts’ forecast errors. Two additional mechanisms, stemming from variation in mean

forecast errors and estimation errors in the persistence of earnings growth shocks, also contribute

to the autocorrelation of analysts’ forecast errors.

The assumptions underlying our model are supported by the data. First, the data confirm that

an analyst would struggle to distinguish his approximating model even from a model that has four

times as much noise in reported earnings. Analysts thus have reason to be concerned about model

misspecification. Second, the accuracy of analysts’ forecasts greatly exceeds those obtained from

time-series models, suggesting that they are privy to additional non-earnings signals. Third, we

show that analysts learn about the persistence of earnings growth shocks and that this learning
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reduces the autocorrelation of forecast errors. By contrast, the amount of autocorrelation that

emanates from the robustness channel remains nearly unchanged as firms age.

Our results suggest a number of directions for future research. First, investors face the same

model uncertainty that confronts analysts. Their predictions of future cash flows depend on how

they interpret new earnings numbers and so, like analysts, investors also need to take into account

model misspecification. An interesting exercise would be to use analyst forecasts to measure model

uncertainty and then embed this measure into asset pricing tests.

Second, future research should further explore the role of model uncertainty versus parameter

uncertainty in explaining the behavior of decision makers. In the case of analysts’ forecasting

behavior, a model based on parameter uncertainty, similar to that in Orlik and Veldkamp (2014),

can also generate “underreaction”. In particular, consider an analyst facing uncertainty about the

noise in reported earnings αt such that his beliefs about αt are unbiased. If we choose a prior

such that the Kalman gain K is a concave function of the unknown parameters then, because of

Jensen’s inequality, K̂ < K. The analyst now “underreacts” to new information. This effect can be

further amplified by making the distribution of αt skewed and by giving the analyst an asymmetric

objective function. Skewness would then play the same role as analysts’ misspecification concerns

in our model in altering the analysts forecasting behavior.34 The difference between the model

uncertainty and parameter uncertainty approaches is that the former provides a clear rationale for

why K̂ < K—analysts do so to ensure that their forecasts are reasonably accurate even if their

model is misspecified.

Third, our theoretical results apply to all model-based forecasting tasks. The same underreac-

tion pattern is found in non-security analyst settings as well. Deschamps and Ioannidis (2013), for

example, survey the evidence on professional forecasters’ GDP forecasts and note that “forecasters

on average underreact to new information” (p. 146). Some of the explanations for this pattern

in the macroeconomics literature evoke arguments about incentives and the fact that forecasters

may not be compensated solely on the basis of their accuracy. Our model posits an alternative.

If forecasters are uncertain about the model generating GDP numbers and want to guard against

using a possibly misspecified model, they will issue forecasts that “underreact” to new information.

34We thank the referee for pointing out this alternative mechanism.
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Appendix

Appendix A. Proof of Proposition 1

We use the following Lemma to prove Proposition 1:

Lemma A.1. Given the evil agent’s choice (κ0, κ1), the analyst obtains the optimal forecast ŷt|t−1

using the Kalman filter with (κ̂0, κ̂1) = (κ0, κ1). Any solution to the constrained minimax optimiza-

tion (6) will therefore satisfy (κ̂0, κ̂1) = (κ0, κ1).

We now prove Proposition 1.

Proof. The objective function is expressed as follows:

E
[
{y(w)
t − ŷt|t−1}2 | Ft−1

]
= E

[{
(y

(w)
t − ŷ(w)

t|t−1) + (ŷ
(w)
t|t−1 − ŷt|t−1)

}2
∣∣∣∣ Ft−1

]
= E

[{
y

(w)
t − ŷ(w)

t|t−1

}2
∣∣∣∣ Ft−1

]
+
(
ŷ

(w)
t|t−1 − ŷt|t−1

)2

=
(
π̂(w)
p

)2
+ κ2

1σ
2
α +

(
x̂

(w)
t|t−1 − x̂t|t−1 + κ0 − κ̂0

)2

where Ft−1 = {y1:t−1, s1:t−1,θ}, (π̂
(w)
p )2 is var(x

(w)
t |Ft−1) after the Kalman filter has converged to

the steady state, and ŷ
(w)
t|t−1 is the optimal forecast about yt using the Kalman filter under the evil

agent’s worst-case choices of κ0 and κ1. The constraint is expressed as follows:

E

[{
(x̂

(w)
t|t−1 − x̂t|t−1) + (α

(w)
t − α∗t )

}2
∣∣∣∣ Ft−1

]
= E

[{
(x̂

(w)
t|t−1 − x̂t|t−1 + κ0) + (κ1 − 1)α∗t

}2
∣∣∣∣ Ft−1

]
=
(
x̂

(w)
t|t−1 − x̂t|t−1 + κ0

)2
+ (κ1 − 1)2σ2

α = η2σ2
α − ξ,

where ξ ≥ 0 is the slack in the constraint.

Candidate Solution. Suppose there is a solution for the constrained minimax optimization

problem (6). Lemma (A.1) states that the solution satisfies (κ̂0, κ̂1) = (κ0, κ1). The objective

function and the constraint in the optimization problem (6) therefore reduce at the solution to

(
π̂(w)
p

)2
+ κ2

1σ
2
α subject to κ2

0 + (κ1 − 1)2σ2
α = η2σ2

α − ξ.
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Note that the terms (π̂
(w)
p )2 and κ2

1σ
2
α are both increasing functions of κ1 and independent of κ0.

An evil agent who maximizes this objective function therefore chooses κ1 = κ̄1 where κ̄1 is the

maximum of κ1 satisfying the constraint. This maximum κ1 = κ̄1 is attained when κ0 = 0 and ξ = 0

since η and σ2
α are constant.35 The only candidate solution is therefore (κ̂0, κ̂1) = (κ0, κ1) = (0, κ̄1),

and we have κ̄1 = η + 1 from the constraint with the candidate solution.

Verification. We now verify that the candidate solution (κ̂0, κ̂1) = (κ0, κ1) = (0, κ̄1) is optimal

for the analyst and the evil agent and that neither player has an incentive to deviate. Suppose that

the analyst chooses (κ̂0, κ̂1) = (0, κ̄1). The evil agent’s objective function becomes

(
π̂(w)
p

)2
+ κ2

1σ
2
α +

(
x̂

(w)
t|t−1 − x̂t|t−1 + κ0

)2
.

The expression for the constraint remains the same although the value of x̂t|t−1 is chosen by the

analyst. Replacing the last term in the evil agent’s objective function by the constraint, we rewrite

the objective function as follows:

(2κ1 − 1)σ2
α +

(
π̂(w)
p

)2
+ η2σ2

α − ξ.

The first and second terms are increasing functions of κ1 and independent of κ0. The third term

is constant and the last term is maximized at κ = κ̄1. The objective function is thus maximized

at κ1 = κ̄1 and ξ = 0, which implies that κ0 = 0. The evil agent therefore does not deviate

at the candidate solution. The analyst will choose (κ̂0, κ̂1) = (0, κ̄1) given the evil agent’s choice

(κ0, κ1) = (0, κ̄1) as shown in Lemma (A.1). The candidate solution is therefore the unique solution

for the constrained minimax optimization (6).

35Note that even if κ1 is allowed to be negative, the minimum κ1 satisfying the constraint is κ1 = 1− κ̄1, and the
value of the objective function at κ1 is smaller than the maximum when κ1 < 0. We assume that κ1 ≥ 0 because the
analyst views κ̂1 = κ1 and κ̂1 = −κ1 the same.
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Appendix B. Proof of Proposition 2

Lemma B.1. The analyst’s forecast for yt+1 at time t is its predictive mean given the information

set F̂t = {yt, st, θ̂}:

ŷt+1|t = E[yt+1|Ft] = (1− φ̂)µ̂+ φ̂
{

E[yt|Ft−1] + K̂ · (yt − E[yt|Ft−1])
}

+ ŵ · st, (A.1)

where ŵ =
σ̂2
e

σ̂2
e + σ̂2

n

K̂ =
cov(xt, yt|F̂t−1)

var(yt|F̂t−1)
=

π̂2
p

π̂2
p + σ̂2

α

π̂2
p = var(xt+1|F̂t) = φ̂2π̂2

u +
[
σ̂−2
e + σ̂−2

n

]−1

π̂2
u = var(xt|F̂t) =

[
π̂−2
p + σ̂−2

α

]−1
.

Proof. Replacing θ by θ̂ in Lemma 2.1 proves the lemma. The predictive mean of yt+1 is the point

forecast because the analyst’s objective is to minimize the mean squared error.

Proof of Proposition 2

Proof. First, let FEt denote the forecast error when the analyst uses the Kalman filter with the

analysts’ estimates θ̂ of the parameter θ. Define Γ0 as the variance of forecast errors, var(FEt).

Similarly, let FE∗t denote the forecast error when the analyst uses the Kalman filter with the correct

parameter values, that is, θ̂ = θ. The variance of this forecast error, Γ∗0 = var(FE∗t ), is therefore

the minimum value that Γ0 = var(FEt) can take since the forecast based on θ̂ = θ is unbiased and

minimizes the mean squared errors. That is,

Γ0 = var(FEt) ≥ var(FE∗t ) = Γ∗0.

Second, the equation for K in Lemma 2.1 implies (1−K)Γ∗0 = σ2
α when θ̂ = θ because

1−K = 1−
π2
p

π2
p + σ2

α

=
σ2
α

π2
p + σ2

α

=
σ2
α

var(FE∗t )
=
σ2
α

Γ∗0
.
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The dynamics of earnings growth yt and analysts’ forecasts ŷt can be expressed as

yt+1 = (1− φ)µ+ φyt + et+1 + αt+1 − φαt,

ŷt+1 = (1− φ̂)µ̂+ φ̂
(

1− K̂
)
ŷt + φ̂K̂yt + ŵ(et+1 + nt).

We then calculate the first-order autocovariance function as follows:

Γ1 = cov(FEt+1,FEt) = cov(yt+1 − ŷt+1, yt − ŷt)

= cov
(
φyt + et+1 + αt+1 − φαt − φ̂

(
1− K̂

)
ŷt − φ̂K̂yt − ŵ(et+1 + nt),FEt

)
= cov

((
φ− φ̂K̂

)
yt − φ̂

(
1− K̂

)
ŷt, yt − ŷt

)
− φσ2

α

= cov
(
φ
(

1− K̂
)

FEt + (φ− φ̂)K̂yt + (φ− φ̂)
(

1− K̂
)
ŷt,FEt

)
− φσ2

α

= φ
(

1− K̂
)

var(FEt)− φσ2
α + (φ− φ̂)cov

(
K̂yt +

(
1− K̂

)
ŷt,FEt

)
= φ

(
1− K̂

)
Γ0 − φσ2

α + (φ− φ̂)A

= φ
(

1− K̂
)

Γ0 − φ(1−K)Γ∗0 + (φ− φ̂)A

= φ(1−K)(Γ0 − Γ∗0) + φ(K − K̂)Γ0 + (φ− φ̂)A,

where A , cov
(
K̂yt +

(
1− K̂

)
ŷt,FEt

)
= cov

(
x̂t|t,FEt

)
. Finally, we compute the first-order

autocorrelation as follows:

corr(FEt+1,FEt) =
Γ1

Γ0
=

A

Γ0
(φ− φ̂) + φ

(
K − K̂

)
+ φ(1−K)

[
1− Γ∗0

Γ0

]
,

which is equation (9) in Proposition 2. The variance of forecast errors and the term A can be

computed as:

Γ0 = var(FEt) = var(yt − ŷt) = var(yt) + var(ŷt)− 2cov(yt, ŷt),

A = K̂var(FEt) + cov(yt, ŷt)− var(ŷt), where
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var(yt) = var(xt) + σ2
α =

σ2
e

1− φ2
+ σ2

α,

cov(yt, ŷt) = φφ̂
(

1− K̂
)

cov(yt, ŷt) + φφ̂K̂var(yt)− φφ̂K̂σ2
α + ŵσ2

e

=
1

1− φφ̂
(

1− K̂
){φφ̂K̂ (var(yt)− σ2

α

)
+ ŵσ2

e

}
,

var(ŷt) = φ̂2
(

1− K̂
)2

var(ŷt) + φ̂2K̂2var(yt) + ŵ2(σ2
e + σ2

n) + 2φ̂2K̂
(

1− K̂
)

cov(yt, ŷt)

=
1

1− φ̂2
(

1− K̂
)2

{
φ̂2K̂

(
K̂var(yt) + 2

(
1− K̂

)
cov(yt, ŷt)

)
+ ŵ2(σ2

e + σ2
n)
}
.

Appendix C. Proof of Proposition 3

Proof.

E
[
FEm,t+1FEm,t | mth group

]
= E

[
FEm,t+1 | mth group

]
E
[
FEm,t | mth group

]
+ cov

(
FEm,t+1,FEm,t | mth group

)
= b2m + Γm,1.

E[FEt] = E
{

E
[
FEm,t | mth group

]}
= E[bm].

cov(FEt+1,FEt) = E[FEt+1FEt]− E[FEt+1] E[FEt]

= E
{

E
[
FEm,t+1FEm,t | mth group

]}
− {E[bm]}2

= E
[
b2m + Γm,1

]
− {E[bm]}2

= var(bm) + E[Γm,1] = var(bm) + E[ρmΓm,0].

var[FEt] = E
[
(FEt)

2
]
− {E[FEt]}2 = E

{
E
[
(FEm,t)

2 | mth group
]}
− {E[bm]}2

= E
[
b2m + Γm,0

]
− {E[bm]}2 = E

[
b2m
]
− {E[bm]}2 + E[Γm,0]

= var(bm) + E[Γm,0].
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corr(FEt+1,FEt) =
cov(FEt+1,FEt)

var(FEt)
=

var(bm) + E[ρmΓm,0]

var(FEt)

=
var(bm)

var(FEt)
+

E[ρmΓm,0]

E[Γm,0]

E[Γm,0]

var(FEt)

=
var(bm)

var(FEt)
· 1 + E

[
ρm ·

Γm,0
E[Γm,0]

](
1− var(bm)

var(FEt)

)
= (1− λ) · ρ∗pooled + λ · 1.

where ρ∗pooled = E

[
ρm ·

Γm,0
E[Γm,0]

]
≡

M∑
m=1

ρm ·
wmΓm,0
E[Γm,0]

,

E [Γm,0] ≡
M∑
m=1

wmΓm,0, ρm ≡ corr(FEm,t+1, FEm,t | mth group) =
Γm,1
Γm,0

,

Γm,0 ≡ var(FEm,t | mth group), Γm,1 ≡ cov(FEm,t+1, FEm,t | mth group),

λ =
var(bm)

var[FEt]
=

var(bm)

var(bm) + E[Γm,0]
, and

var(bm) ≡
M∑
m=1

wmb
2
m −

(
M∑
m=1

wmbm

)2

.

Note that ρ∗pooled is the weighted average of group-specific first-order autocorrelation of forecast

errors ρm. The weights
wmΓm,0∑M
m=1 wmΓm,0

are proportional to each group’s size (wm) and unconditional

variance (Γm,0).

Appendix D. Decomposing the autocorrelation of analysts’ fore-

cast errors and estimating variation in mean fore-

cast errors and estimation errors in φ̂

The observed autocorrelation of analysts’ forecast errors, ρpooled, arises not only because of

analysts’ concerns for model misspecification but also because of the variation in mean forecast

errors and variation in errors estimating φ:

ρpooled = ρµ + ρφ + ρr, (A.2)
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where ρµ, ρφ, and ρr are the contributions to the observed autocorrelation due to variation in

mean forecast errors, variation in firm-level estimation errors in φ̂, and analysts’ concern for model

misspecification, respectively.

The contributions of the ρµ and ρφ components reflect parameter heterogeneity. This decompo-

sition, therefore, cannot be addressed in the context of our pooled VARMA(1,1) estimation which

assumes parameter homogeneity. Rather, it would require a VARMA(1,1) model with parameter

heterogeneity. However, the estimation and statistical properties of such a model, unfortunately,

have not heretofore been investigated. Our empirical strategy then is to obtain separately unbiased

estimates of each component’s contribution to the pooled autocorrelation in equation (A.2). We

only need to obtain estimates of ρµ and ρφ. The autocorrelation that is due to analysts’ misspeci-

fication concerns, ρr, is what remains after removing ρµ and ρφ from ρpooled.

We use a recursive procedure to decompose the pooled first-order autocorrelation of forecast

errors ρpooled. We fix the estimates of VARMA(1,1) model from Table 2 except for K̂, and then

iterate for a fixed point. These iterations are required because K̂ in the VARMA(1,1) model is

biased downwards if SD(µ− µ̂) > 0 or SD(φ− φ̂) > 0.36 Our recursive method proceeds as follows:

(a) Pick an initial value of ρr and compute the implied value of K̂ using Proposition 2;

(b) Estimate SD(µ − µ̂) and SD(φ − φ̂) with mixed models (detailed below), and then compute

the values of ρµ and ρφ. These values are computed by simulating data from the VARMA(1,1)

model together with the value of K̂ from step (a);

(c) Update ρr = ρpooled − ρµ − ρφ and recompute the implied value of K̂;

(d) Repeat steps (b) and (c) until ρr and K̂ converge.

Below, we describe how we estimate SD(φ− φ̂), SD(µ− µ̂), ρφ, and ρµ in this procedure.

Estimation of SD(φ− φ̂). To estimate SD(φ− φ̂) in step (b), we first simplify the VARMA(1,1)

model by setting σ2
α = 0 so that the demeaned earnings growth yt and analyst forecast ŷt | t−1 have

36We confirm this property of the pooled estimator of the VARMA(1,1) model via the simulations described below.
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the following dynamics:37

yt = φyt−1 + εt, (A.3)

ŷt | t−1 = φ̂yt−1 + ŵst−1. (A.4)

The difference between equations (A.4) and (A.3) is

FEt = (φ− φ̂)yt−1 + εt, (A.5)

where εt = εt − ŵst−1. We can therefore estimate SD(φ − φ̂) by running the regression in equa-

tion (A.5) by letting the coefficient on yt−1 to vary across firms (a random effect) and as a function

of calendar time and firm age (fixed effects). The iterations of steps (b) and (c) adjust for any bias

in SD(φ − φ̂) that emerges from approximating the AR(1)-plus-noise model by an AR(1) model

when ρr 6= 0.38

Estimation of ρφ. The ρφ component of the pooled autocorrelation estimate depends not only

on SD(φ − φ̂) but also SD(φ) and SD(φ̂). Following the same mixed-effects procedure used to

estimate SD(φ− φ̂) from equation (A.5), we estimate SD(φ) from equation (A.3) and SD(φ̂) from

equation (A.4). That is, we again let the coefficients on yt−1 to vary across firms (a random effect)

and as a function of calendar time and firm age (fixed effects).

We now repeatedly simulate a panel data set with the same dimensions as the actual data

set and compute the pooled autocorrelation of forecast errors. In these simulations, we use the

estimates of SD(φ), SD(φ̂), and SD(φ − φ̂) that we just computed; we use the current value of K̂

in the recursive procedure; and we set the remaining parameters to the values given in Table 2.

We continue these simulations until we obtain a sufficiently precise autocorrelation estimate. In

this procedure, the resulting autocorrelation estimate, by construction, equals ρφ + ρr. Given the

current estimate of ρr from step (a), we can therefore back out the ρφ component of the pooled

autocorrelation estimate. We can further decompose ρφ into three different sources of variation

37We demean the time-series by estimating equation (A.5) with calendar-time and firm-age fixed effects and firm
random effects. We use random rather than fixed firm effects to avoid the Kendall (1954) bias.

38We re-estimate SD(φ− φ̂) within each loop of the recursive procedure because the size of the bias in SD(φ− φ̂)
depends on the ρr component of the pooled autocorrelation estimate.
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(across firms, calendar time, and firm age) by setting SD(φ) = SD(φ̂) = SD(φ− φ̂) = 0 selectively

for each source and by measuring the resulting changes in the autocorrelation estimate.

Estimation of SD(µ − µ̂) and ρµ. We can estimate SD(µ − µ̂) and its contribution to the

autocorrelation of forecast errors, ρµ, by using a model-free procedure. This procedure does not

require any simulations or recursions. To illustrate this alternative approach, we first rewrite the

regression (see equation 10) that is used to estimate ρpooled:

FEi,t+1 = a+ ρFEi,t + ei,t+1

= E[FEi,t](1− ρ) + ρFEi,t + ei,t+1

= (µ− µ̂)(1− ρ) + ρFEi,t + ei,t+1, (A.6)

because a = E[FEi,t](1−ρ) for a stationary AR(1) process and µ−µ̂ = E[FEi,t] (see footnote 24). We

obtain an estimate of ρpooled by estimating this regression since the OLS estimator is a consistent

estimator of ρpooled = ACF(1)/ACF(0) when SD(µ−µ̂) = 0 irrespective of whether the higher-order

ACFs are zero or not. Put differently, we examine this regression only because of this property of

its OLS estimator. This approach is model free in that this regression is not a time-series model

implied by any particular earnings and forecast processes. Now, Proposition 3 shows that the

estimate ρpooled is higher when SD(µ− µ̂) 6= 0 than when SD(µ− µ̂) = 0. We can jointly estimate

ρ∗pooled = ρpooled − ρµ and SD(µ − µ̂) by estimating a mixed-effects version of the regression in

equation (A.6), in which the intercept varies across firms (a random effect) and as a function of

calendar time and firm age (fixed effects).39 We can now recover ρµ = ρpooled − ρ∗pooled.

39Please note that, consistent with equation (A.6), the random and fixed effects measure SD((µ− µ̂)(1− ρ)) instead
of SD(µ− µ̂). This distinction is potentially important because variation in (1 − ρ) could then affect the estimates
of SD(µ− µ̂) and, by extension, that of ρµ. However, we confirm using simulations that the variation in (1− ρ) has
but a negligible effect on the SD(µ− µ̂) estimates.
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Fig. 1. Serial correlation in forecast errors as a function of model parameters. Earnings growth
yt+1 follows an AR(1)-plus-noise process and the analyst observes an additional signal that informs
him about the shock to the persistent earnings-growth component. The true parameters are φ = 0.5,
σ2
α = (0.1)2, σ2

e = (1)2, and σ2
n = (0.5)2. This figure plots the autocorrelation of forecast errors as

a function of the parameters used by the analyst: φ̂, σ̂2
α, σ̂2

e , and σ̂2
n. The vertical line in each panel

denotes the true parameter value.

50



−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

FEt

F
E

t+
1

 

 
Pooled population regression line
Group 1
Group 2

Fig. 2. Variation in mean forecast errors and its effect on the autocorrelations of forecast errors.
This figure illustrates Proposition 3 by assuming that forecast errors are IID draws from two
normal distributions with means of +0.1 (group 1) and −0.1 (group 2) and standard deviations of
0.1. Therefore, var(bm) = 0.01 and var(FEt) = var(bm) + var(FEt | group) = 0.02. The solid thin
line and the dashed line are the population regression lines for the two groups. The thick solid line
is the regression line for a sample that pools observations from groups 1 and 2.
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Fig. 3. Learning about the persistence of earnings-growth shocks and time-variation in model
uncertainty. Panel A estimates how analysts’ uncertainty about the persistence of the earnings-
growth shocks changes as firms age. The solid line in Panel A represents analysts’ uncertainty
about φi after observing t quarters of IBES data. The estimates are scaled so that the uncertainty
is relative to the uncertainty at the time of the first observation. The 95% confidence interval
are computed by block bootstrapping the data by firms. Panel B measures how much of the
autocorrelation of forecast errors is due to (1) uncertainty about the noisiness of reported earnings
(solid line) and (2) uncertainty about φ (dashed line). The two autocorrelation components are
scaled so that the estimates are relative to their sizes at the time of the first observation.
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Table 1
Descriptive statistics, 1984–2013

This table reports the distributions of year-to-year quarterly earnings growth (yt), forecasted earn-
ings growth (ŷt), and forecast errors. The data combine IBES, Compustat, and CRSP data from
1984 through 2013. See the text for details on sample construction. Autocorrelations are estimated
from AR(1) regressions. The pooled estimate uses data on all firms and firm-specific estimates
are the average estimates from firm-specific regressions. Short-lived firms (N = 3,349) are firms
with fewer than 20 quarterly observations. Long-lived firms (N = 3,804) are firms with at least
20 quarterly observations. Except for these firm-specific autocorrelation estimates, the short-lived
firms are not part of the main sample. The main sample therefore has 185,420 firm-quarter observa-
tions on 3,804 firms that survive for at least five years. The bias-adjusted autocorrelation estimates
ρ̂bias-adjusted correct raw estimates ρ̂ for Kendall’s (1954) small-sample bias, ρ̂bias-adjusted = ρ̂(T−1)+1

T−4 ,
where T is the number of observations.

Year-to-year Forecast error,
earnings Forecasted yt − ŷt

Statistic growth, yt growth, ŷt Estimate t-value

Mean 0.004 0.000 0.004 2.07
SD 1.113 0.992 0.501
Percentiles

5% −1.615 −1.398 −0.607
25% −0.250 −0.246 −0.037
50% 0.030 0.015 0.020 13.37
75% 0.340 0.289 0.119
95% 1.442 1.294 0.563

Negative 46.0% 47.7% 32.4%
Zero 0.2% 0.1% 10.3%
Positive 53.8% 52.2% 57.3%

Pooled autocorrelation 0.429 0.434 0.216 28.87
Firm-specific autocorrelations

All firms 0.102 20.12
All firms (bias-adjusted) 0.244 23.36
Short-lived firms 0.042 4.49
Short-lived firms (bias-adjusted) 0.299 13.79
Long-lived firms 0.153 31.80
Long-lived firms (bias-adjusted) 0.196 36.88
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Table 2
Estimates of a VARMA(1,1) model of earnings and analyst forecasts

This table presents parameter estimates from a VARMA(1,1) model that describes the evolution of
firms’ earnings and analyst forecasts. The data are analysts’ earnings forecasts and actual earnings
per share from 1984 through 2013 from IBES. We estimate the VARMA model in two steps. First,
we fit the earnings dynamics with an AR(1)-plus-noise model using maximum likelihood estimation
and a Kalman filter. Second, we use these estimates of the earnings process within the VARMA
model to estimate the remaining parameters using maximum likelihood estimation and a Kalman
filter. We report bootstrapped standard errors that draw firms as blocks with replacement. Rows
labeled True report the estimated parameters of the earnings process; Implied are the parameters
used by the analysts, as implied by their forecasts. The bottom part reports R2s for the AR(1)-
plus-noise model and for analysts’ forecasts. The latter compares the variance of forecast errors to
the variance of earnings growth, R2 = 1− var(yt+1 − ŷt+1)/var(yt+1).

Parameter Estimate SE

Persistence of the earnings-growth shocks
True, ρ 0.472 0.006
Implied, ρ̂ 0.470 0.005

SD(noise term) / SD(earnings growth shock), σα/σe 0.106 0.073
SD(additional signal) / SD(earnings growth shock), σn/σe 0.538 0.022
Kalman gain

True, K 0.953 0.059

Implied, K̂ 0.414 0.049
Weight placed on the additional signal

True, w 0.775 0.014
Implied, ŵ 0.783 0.014

R2s for predicting earnings growth
AR(1)-plus-noise model 14.0%
Analysts’ median forecast (IBES) 79.8%
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Table 3
Variation in mean forecast errors, estimation errors in φ̂, and detection error probabilities

Panel A reports estimates of variation in mean forecast errors, SD(µ − µ̂), and estimation errors
in the persistence of the earnings-growth shocks, SD(φ − φ̂). We measure variation from three
sources: calendar-time variation; variation as a function of firm age; and variation across firms.
Appendix D describes the computational details. Effective sample size is estimated by equating
SD(µ− µ̂) or SD(φ− φ̂) to the standard errors of µ̂ and φ̂ in the AR(1)-plus-noise model of earnings
growth. Panel B reports detection error probabilities as a function of σα (the noisiness of reported
earnings) and sample size. Detection error probability measures the difficulty of distinguishing
the approximating model from the worst-case model. These probabilities range from 50% (when
the models are observationally equivalent) to 0% (when one model is wholly inconsistent with the
data). In Section 2’s model, detection error probabilities, the noisiness of reported earnings in the

worst-case model (σ
(w)
α ), the constraint-parameter η, and the autocorrelation of forecast errors are

related so that fixing one of them uniquely determines the others.

Panel A: Variation in mean forecast errors and estimation errors in φ̂
Effective

Parameter Estimate SE sample size

100× SD(µ− µ̂) 0.1026 0.0034 341
Calendar-time variation 0.0451 0.0028
Age variation 0.0112 0.0026
Variation across firms 0.0915 0.0036

SD(φ− φ̂) 0.0875 0.0021 465
Calendar-time variation 0.0185 0.0012
Age variation 0.0088 0.0010
Variation across firms 0.0851 0.0026

Panel B: Detection error probability as a function of σα and sample size
Detection Auto-

error correlation Sample
σα/σe probability of FEs η size

0.106← true model 50.0% 0.000 0.00 465
0.200 38.3% 0.047 0.89 465
0.330 17.2% 0.125 2.11 465
0.438 5.0% 0.184 3.13 465
0.508 1.7% 0.216 3.76 465

0.330 26.7% 0.125 2.11 200
0.330 5.0% 0.125 2.11 1,417
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Table 4
Decomposing the autocorrelation of forecast errors

This table decomposes the autocorrelation of forecast errors into three main components: (1)
autocorrelation due to variation in mean forecast errors, (2) autocorrelation due to estimation
errors in φ̂, and (3) autocorrelation due to analysts’ concerns for model misspecification. These
three components add up to the total autocorrelation of forecast errors estimated from a pooled
regression. The first two components are further decomposed by the source of heterogeneity. Mean
forecast errors, for example, vary as a function of calendar time (year), firm age, and firm, and
this table reports how much the variation in each dimension contributes to the autocorrelation
of forecast errors. Standard errors associated with the variation-in-mean forecast errors channel
are are heteroskedasticity and autocorrelation consistent Newey and West (1987) with the number
of lags selected using Newey and West (1994). Standard errors associated with the estimation
errors-in-φ̂ channel are computed using a parametric bootstrap.

Autocorrelation estimate Estimate SE

Total autocorrelation of forecast errors, (1) + (2) + (3) 0.216 0.008

(1) Autocorrelation due to variation in mean forecast errors 0.043 0.008
Calendar-time variation 0.012 0.009
Age variation 0.000 0.008
Variation across firms 0.030 0.009

(2) Autocorrelation due to estimation errors in φ̂ 0.047 0.006
Calendar-time variation 0.001 0.002
Age variation 0.000 0.003
Variation across firms 0.046 0.010

(3) Autocorrelation due to analysts’ concerns for model misspecification 0.125
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Table 5
Explaining cross-sectional variation in the autocorrelation of forecast errors

This table reports estimates from pooled regressions ĉorr(FEi,t,FEi,t−1) = β0 + βt + γAgei,t−1 +
Xi,t−1β+ei,t, in which the dependent variable is estimated using a five-year window around quarter
t, βt represent year fixed effects, and firm age is measured from the firm’s first appearance in CRSP.
The characteristics Xi,t are defined as: (1) Return volatility is computed from daily returns over
the prior quarter; (2) Forecast dispersion is the standard deviation of analyst forecasts scaled by the
stock price in the prior quarter; (3) BE/ME is the firm’s book-to-market ratio in the prior quarter;
(4) Firm size is the market value of equity in the prior quarter; and (5) Coverage is the number of
analysts covering the firm. The standard errors are heteroscedasticity and autocorrelation consis-
tent. All characteristics except age are demeaned by subtracting their median and scaled by their
standard deviation. The age variables are scaled so that their coefficients represent the decrease in
autocorrelation for 50 years since a firm’s birth.

Independent Regression
variable (1) (2) (3) (4) (5)

β0 0.24 0.21 0.19 0.18 0.22
(10.37) (8.65) (10.71) (9.75) (6.75)

Age −0.04 −0.02 0.01
(−3.92) (−2.08) (0.35)

log(1 + Age) −0.09 −0.05 −0.07
(−4.53) (−2.55) (−1.41)

Return volatility 0.02 0.02 0.02
(3.80) (4.16) (3.77)

Forecast dispersion 0.00 0.00 0.00
(0.16) (0.14) (0.14)

BE/ME −0.01 −0.01 −0.01
(−1.39) (−1.45) (−1.40)

Firm size 0.00 0.00 0.00
(−0.50) (0.00) (−0.12)

Coverage 0.00 0.00 0.00
(0.73) (0.67) (0.74)

Year FEs Yes Yes Yes Yes Yes
R2 0.5% 0.6% 0.5% 0.6% 0.7%
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