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Abstract 
 

We investigate the significance of difference of distributions (DD) over time in the cross-sectional pricing of 
stocks.  Our estimate of DD, based upon the Earth Mover’s Distance or the Wasserstein metric, measures the 
difference of empirical distributions of a firm’s present stock return and those of its own past return.  We 
find that stocks with higher DD exhibit higher returns on average, and the difference between returns on the 
portfolios with the highest and lowest DD is significantly positive.  Moreover, the results from firm-level 
cross-sectional regressions show strong corroborating evidence for an economically and statistically 
significant positive relation between the DD and the expected stock returns.  This positive relation persists 
after controlling for size, book-to-market, momentum, short-term reversals, liquidity, idiosyncratic volatility, 
skewness, kurtosis, and maximum return of the firm.   
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1. Introduction 

 

In one of the most seminal papers in financial economics, Markowitz (1952) argues 

that there are two stages when we select a portfolio: firstly forming beliefs about asset 

returns and secondly optimizing our portfolio based upon the beliefs.1  Traditional asset 

pricing models like the CAPM overlook the first stage and are constructed based upon the 

optimization in the second stage.  Those models assume that investors already have 

beliefs about asset returns and know the form of distribution.  For example, the CAPM 

assumes that asset returns follow a multivariate normal distribution or investors have 

quadratic utility function and that investors are mean-variance optimizing.  However, 

empirical evidence confirms that portfolio returns are not normally distributed (Fama, 

1965; Rosenberg, 1974), and even vague agreement about a specific stock return 

distribution does not exist (Tsay, 2010).  That is, empirical evidence seems to suggest that 

investors do not know the distributional form of future stock returns.2  In particular, a 

recent paper by Kacperczyk and Damien (2011) assumes that the form of the distribution 

of returns is not known, and proposes a novel method to incorporate “distribution 

uncertainty”, uncertainty about the type of return distribution, to obtain an optimal 

portfolio.  While the apparent difficulties of understanding the form of return distribution 

are generally recognized, surprisingly little is known about how seriously knowledge about 

1 Markowitz (1952) says that “The process of selecting a portfolio may be divided into two stages. The first stage starts 
with observation and experience and ends with beliefs about the future performances of available securities. The second 
stage starts with the relevant beliefs about future performances and ends with the choice of portfolio. This paper is 
concerned with the second stage.”    
2 For example, Pastor and Stambaugh (2003), Ang and Bekaert (2004), and Guidolin and Timmermann (2007) show that 
distributions of assets returns tend to switch between different regimes.  Liu et al. (2003) and Liu et al. (2005) suggest 
that the presence of rare events may perturb beliefs about the form of distributions.  Welch (2000) argues that investors 
tend to differ in their assessment of future returns. 
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distribution affects empirical phenomena in finance such as the cross-sectional difference 

of asset returns.  Therefore, in this paper, we empirically investigate whether there is a 

significant relation between the investors’ understanding about return distributions and the 

expected stock returns. 

   To estimate investors’ difficulty in understanding distributions of stock returns, we 

measure the stability of a stock’s return distributions over the periods.  If a distribution of 

stock returns in a current period is different from that of a previous period, we assume that 

investors will face more difficult problems in specifying a distribution of stock returns.  

To measure the difference of stock return distributions between the previous and present 

period, we adopt a noble metric widely used in the fields of mathematics and engineering.  

The earth mover’s distance (EMD), the Wasserstein metric, describes the cost of moving 

one pile of dirt unto the other.3  The cost of moving will be dependent on the distance 

between two piles as well as the difference in the shapes of the piles.  In our case, each 

distribution can be regarded as a pile of dirt and the EMD measures the cost of 

transforming one distribution to the other.  The EMD is not a unique measure to depict 

the difference among distributions, but it is considered to be a measure with more power.4  

We construct a measure of difference of distributions (DD) by averaging the EMDs 

estimated by using the previous 36-month daily stock return. 

   We examine the relation between the DD and cross-sectional pricing of stocks.  To do 

this, we first sort stocks by the DD estimated in the previous 36 months and examine the 

subsequent monthly returns on the resulting portfolios over the period of 1965 to 2012.  

3 More thorough explanation about the EMD is in the following section. 
4 Please refer to the Appendix A for more details. 
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The results show that stocks with higher DD exhibit higher returns on average.  The 

difference between value-weighted average returns on the portfolios with the highest and 

the lowest DD is around 0.72% in a month.  The corresponding Fama-French-Carhart 

four-factor alpha from high-minus-low DD-sorted portfolios is 0.46% a month.  We 

extensively investigate the robustness of our empirical results and find that the impact of 

the DD persists after accounting for firm characteristics, such as beta, size, book-to-market 

ratio, momentum, short-term reversal, and illiquidity.  These results are also robust to 

control for return distribution characteristics, for instance, firms’ idiosyncratic return 

volatility, skewness, kurtosis, and maximum daily return.  Moreover, the effect of the DD 

on expected stock returns exhibit substantial persistence in firm-level cross-sectional 

regressions, even after controlling for a variety of other firm-level variables.  Our 

empirical results suggest that investors are averse to high DD stocks and ask for a discount 

to buy those stocks, and thus, those stocks exhibit higher returns in the future. 

   Our empirical findings seem to be consistent with theories of ambiguity.  Knight 

(1921) says, with ambiguity, the location and shape of the distribution is open to question.  

As in Ellsberg (1961) and the survey of Camerer and Weber (1992), ambiguity is generally 

defined as uncertainty about distribution.  If an investor has to optimize her portfolio 

without knowing the distribution of stock returns, she is much like an agent in Ellsberg’s 

paradox,5 one of the most popular examples of ambiguity aversion.  The preference for 

existence of a specific distribution as in Ellsberg’s paradox is referred to as ambiguity 

aversion (Ellsberg, 1961; Sherman, 1974; and etc.).  An agent with ambiguity aversion is 

5 In Ellsberg’s paradox (Ellsberg, 1961), an agent mostly prefers a game with known probability distribution (for 
example, a game with an urn containing 50 red balls and 50 black balls) to one without a specific probability distribution 
(for instance, a game with an urn containing 100 balls of unknown number of red and black balls).  For more thorough 
discussion about Ellsberg type example, see Ellsberg (1961), Epstein and Schneider (2008), and others. 
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more likely to dislike her situation that she can barely specify a stock return distribution 

since the distributions were too unstable in the past.  If we interpret the size of the DD as 

the degree of ambiguity, we can argue that more ambiguous stocks will significantly 

outperform less ambiguous stock in the future.  Actually, the DD can be directly linked to 

the definition of ambiguity, “uncertainty about distribution”, by Knight (1921) or the 

explanation of ambiguity by Epstein and Schneider (2008).  In their paper, they argue that 

when quality is difficult to judge, investors treat signals as ambiguous.  Since investors 

need to spend more resources to understand a more unstable distribution of a stock6, 

investors will feel more uncertain and ask for a premium to hold the stock.  This result 

implies that there is a positive relation between ambiguity and the expected stock return as 

most theories about ambiguity suggest.  Our empirical results show the evidence of a 

positive premium for bearing ambiguity.  This positive premium is also helpful to 

understand the DD as a proxy for ambiguity.  Even though various theoretical, 

experimental, and survey studies about ambiguity7 argue that positive ambiguity premium 

exists, almost none of the empirical studies verify such a positive premium (Jiang et al., 

2005; Zhang, 2006; Ehsani et al., 2013).  For example, Baltussen, Bekkum, and Grient 

(2013) find a negative relation at a firm level by developing a proxy for ambiguity, 

volatility of implied volatility.8  However, this negative relation is inconsistent with the 

general perception of ambiguity aversion and its premium as in Epstein and Schneider 

6 This way to understand ambiguity is closely related to the multi-prior approach by Garlappi, Uppal, and Wang (2007) 
even though their paper is more concentrated on parametric and model uncertainty. On the other hand, our paper deals 
with non-parametric characteristics of distribution uncertainty.  
7 See, among many others, Gilboa and Schmeidler (1989), Dow and Werlang (1992), Epstein and Wang (1994), Olsen 
and Troughton (2000), Klibanoff, Marinacci, and Mukerji (2005), Epstein and Schneider (2008), Ju and Miao (2012), 
Izhakian (2012), Drechsler (2013), Jeong, Kim and Park (2015), and Ahn, Choi, Gale and Kariv (2014) 
8 In an aggregate level, Brenner and Izhakian (2011) and Erbaş and Mirakhor (2007) find negative relation between 
ambiguity and market return, but Anderson et al. (2009) find positive relations by constructing a proxy for ambiguity, the 
dispersion of forecasts from the Survey of Professional Forecasters (SPF). 
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(2008), Klibanoff, Marinacci, and Mukerji (2005), and others.  To summarize, many 

theories argue that ambiguity aversion makes investors ask for ambiguity premium in stock 

market, no empirical studies cross-sectionally confirm ambiguity premium in a stock level.  

On the other hand, the DD has statistically significant positive relation with future stock 

returns as most theories about ambiguity suggest. 

   An alternative interpretation of our empirical finding is consistent with literature of real 

options.  Bulan (2005) argues that a firm with more real options, under an uncertain 

environment, is likely to delay the exercise of options, such as follow-up investment since 

delaying exercise of the options is more valuable for the firm.  If we interpret the DD as a 

measure for uncertainty, a company with higher DD will have a higher value of real 

options under this uncertain environment, and less incentives for investing.  In this case, 

the company will delay investment and its current stock price will be relatively discounted.  

As Grullon et al. (2012) shows in their paper, the effect of real options on stock return 

changes when the options are exercised.  The exercise of the options, i.e., initiating 

investment, will make stock price reflect the value of a new investment, thus future stock 

return will increase.  Our empirical findings that higher DD stocks exhibit higher future 

stock returns are consistent with real option theory. 

   The rest of this paper is organized as follows.  In Section 2, we describe our dataset 

and construct variables of interest including the DD.  Section 3 and Section 4 report our 

empirical results, and Section 5 provides discussions and interpretations.  We conclude in 

Section 6. 

 

2. Data and Construction of Variables 
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2.1. Data 

 

The sample data include returns from the Center for Research on Security Prices 

(CRSP) Daily Stock File and book value from the Compustat of all stocks listed in NYSE, 

Amex, and NASDAQ.  CRSP is used to obtain prices, daily returns, market returns, 

shares outstanding, trading volume, etc.  We also obtain balance sheet information 

including assets, liabilities, and the total equity from Compustat.  We use stock prices and 

shares outstanding to calculate market capitalization, and use daily returns to calculate DD 

for each firm in each month as well as beta, idiosyncratic volatility, skewness, kurtosis, 

and maximum daily return.  These variables are defined in detail in the Appendix B.  

The sample period spans from January 1965 to December 2012.  To be included in the 

final sample for a given month, at least 100 daily returns must exist in the previous 12 

months. 

 

2.2. Difference of Distributions (DD) 

 

When an investor optimizes her investment and consumption, first she needs to specify 

the distribution of stock returns.  Since most theoretical and empirical works in financial 

economics overlook the importance of this specification process, in this paper we 

investigate the role of this process.  To verify the relation between investors’ difficulty to 

specify a stock return distribution and the expected stock return, we define a measure that 

reflects investors’ difficulty.  We argue that investors have trouble deciding a form of 

7 
 



stock return distribution if distributions change over time more considerably.  Therefore, 

we introduce a statistical measure, DD aforementioned, representing variability of stock 

return distributions over time. 

To construct a variable representing the difference of distributions, we apply the earth 

mover’s distance (EMD) in computer science, also called the Wasserstein metric in 

mathematics.  Informally, the EMD is defined as the minimum amount of work needed to 

change one pile of dirt into the other, where the amount of work is measured by quantity of 

dirt moved times the distance by which it is moved.  With stock return data, the stock 

return distribution in a period can be considered to be a pile of dirt.  If a stock’s return 

distribution in period t-2 is different from that in period t-1, the EMD of the stock will be 

larger, and we interpret this stock as one with which investors are hardly able to specify its 

return distribution.  The EMD is not a unique measure to estimate the difference among 

distributions.  There are other measures such as the Kolmogorov-Smirnov statistic or the 

Kullback-Liebler divergence.  However, the EMD has comparative advantages over other 

measures as explained in Appendix A.  The formal definition of the EMD and its actual 

calculating procedures are also described in detail in Appendix A. 

In this paper, our measure of the difference of distributions (DD) is the average of 24 

EMDs in the 2 years before the portfolio formation month.  To estimate each EMD at t, we 

compare a stock’s return distribution in t-12 to t-1 and that in t-11 to t.  For example, the 

EMD in January 1999 is calculated by comparing the daily return distribution between 

January 1998 and December 1998, and distribution between February 1998 and January 

1999.  The same procedure is repeated until the 24th EMD in December 2000 is estimated.  

Finally, to construct the DD in January 2001, these 24 EMDs from January 1999 to 
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December 2000 are averaged.  By averaging 24 EMDs to construct a DD, we can 

effectively control outliers in return distributions and construct a measure that reflects 

distribution changes month by month.  

 

2.3. Summary Statistics 

 

Table 1 reports the summary statistics and correlation coefficients for variables of 

interest.  The beta of a stock for a month (BETA) is estimated by regressing the daily 

stock return on the value weighted index return using a previous year sample.  SIZE is the 

market value of equity of the company (in thousands of dollars) measured at the end of t-1 

month.  Book-to-market ratio (BM) is the book value of equity divided by its market 

value at the end of the last fiscal year.  Momentum (MOM) is calculated as the return 

over the 11 months prior to that month.  Short-term reversal (REV) is the previous 

month’s stock return.  We use the illiquidity (ILLIQ) measure by Amihud (2002), which 

is the ratio of the absolute monthly stock return to its dollar trading volume for each stock.  

Idiosyncratic volatility (IDIOVOL) is calculated as the standard deviation of the daily 

residuals in month t from the CAPM.  We calculate skewness (SKEW) as the historical 

third-order centralized moment using daily returns within year t.  Kurtosis (KURT) is 

defined by the fourth-order centralized moment.  We define MAX as the maximum daily 

return over the past month. 

Panel A in Table 1 presents the summary statistics of DD, beta, firm size, book-to-

market ratio, momentum, short-term reversal, illiquidity, idiosyncratic volatility, skewness, 

kurtosis, and maximum return.  The mean of DD is 0.0251.  The lowest-percentile (P1) 

9 
 



and the highest-percentile (P99) in the DD are 0.0159 and 0.0617, respectively.  The 

mean and the median of SIZE are 11.37 and 11.25, respectively.  The mean and median 

of BM are 0.8364 and 0.6581, indicating a right skewness in the distribution.  The mean, 

the median, and the highest-percentile (P99) of MAX are 0.0742, 0.0504, and 0.4068, 

respectively.  Panel B shows correlation coefficients of variables of interest.  DD is 

negatively correlated with size, book-to market ratio, momentum, and short-term reversal, 

but positively correlated with beta and idiosyncratic volatility. 

- Insert Table I about here – 

  

2.4. Descriptive statistics based on Difference of Distributions 

 

To get a clearer picture of the characteristics of the DD, we compute the statistics for 

decile portfolios of stocks based on DD.  Table II presents the average values for DD, 

SIZE, BM BETA, MOM, REV, ILLIQ, IDIOVOL, SKEW, KURT, MAX, AGE, and 

REAL OPTION_D.  Definitions of all variables are given in Appendix B.   

The results show that there is a cross-sectional variation of the DDs; the DD increases 

from 0.0199 to 0.0407.  First, the market capitalization and firm's age differences are 

substantial.  The market capitalization and firm's age decrease quite dramatically for the 

highest DD deciles.  It is not surprising since a newly-public firm value will be evaluated 

using the value of future investment opportunities rather than assets in place, thus there is a 

higher chance to have a higher difference between present and future stock return 

distributions.  The stocks with the highest DD tend to have higher beta, suggesting that 

stocks with a high DD are more exposed to market risk.  As we move from the lowest DD 
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to the highest DD decile, book-to-market ratio increases.  The column (8) in Table II 

reports the monotonic increase in idiosyncratic volatility as DD increases.  It suggests that 

stocks with a high DD in a given month will have high realized idiosyncratic volatility in 

the same month measured using the residuals from a daily market model within the month.  

Meanwhile, the stocks with the highest DD tend to have higher maximum daily returns, 

indicating the maximum daily returns increases an average of 0.1440 for decile 10.  

Since real options are more valuable for a firm with an uncertain environment as in 

Bulan (2005), a company with a higher DD, presumably in a more uncertain environment, 

will accumulate more real options.  Therefore, we argue that a company with more real 

options must have a higher DD on average if the explanation with real options can be 

valid.  Grullon et al. (2012) argue that high-tech, pharmaceutical, and biotechnology 

industries have plenty of real options.  Thus, we use a dummy variable for real options 

(REAL OPTION_D) with the value of 1 if a firm belongs to high-tech, pharmaceutical, 

and biotechnology industries, or 0 otherwise.  The final column of Table II shows that the 

stocks with the highest DD tend to belong to high-tech, pharmaceutical, and biotechnology 

industries accumulating more real options.  We also test whether there is a cross-sectional 

variation of the DDs across industries.  In an unreported table9, we calculate average 

values of the DD for 10 different industries defined based on the 10 Fama-French 

industries.  The results show considerable cross-sectional variation of the values of DD 

across industries and higher averages of DDs of high-tech (0.0280), or health-care, medical 

equipment, and drug (0.0279) industries than those of other industries (from 0.0244 to 

0.0267).   It confirms that companies with a higher DD seem to have more real options.   

9 For brevity, this information will be available upon request. 
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- Insert Table II about here – 

 

3. Difference of Distributions and the Cross-Section of Expected Stock Returns 

 

3.1. Univariate Analysis 

 

The first empirical investigation is whether the DD can explain the cross-sectional 

variation of expected stock returns.  Table III reports the value-weighted and equal-

weighted average monthly returns of decile portfolios formed on the DD.  To construct 

this table, we first calculate these measures for each sample firm over the previous month.  

Each month we sort stocks into 10 value/equal weighted portfolios using our measure for 

the DD.  The portfolios sorted on the DD demonstrate strong variation in mean return, as 

shown in Table III.  Taking a closer look at the value-weighted average returns across 

deciles, stocks (S) with the lowest DD provide 0.7960% of expected return per month on 

average and the stocks (B) with the highest DD do 1.5166%.  It suggests that going from 

decile 1 to decile 10, value-weighted average returns increase significantly.  Additionally, 

the results show that the equal-weighted average returns on the decile portfolios sorted by 

the DD increase monotonically in portfolio rank.  The bottom decile portfolio (S) by the 

DD has 1.0988% of the expected return per month on average and the top decile has 

4.6755%.  Overall, we find significant evidence that stocks with higher DDs have higher 

expected returns than stocks with lower DDs.  This implies that since investors need to 

spend more resources to understand unfamiliar distributions of a stock compared to that of 

the stock in past years, they may require a premium to hold the stock.  Our results show 
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the evidence of a positive premium for bearing DD.  It suggests that investors will face 

more difficult problems in specifying a distribution of stock returns as the DD increases. 

- Insert Table III about here - 

 

Table IV shows the value-weighted average returns of the different portfolios using 

various estimation and holding periods.  The portfolios are formed based on J-month and 

held for K-months.  We confirm that all the trading strategies with a long position in 

stocks with the highest DD and a short position in stocks with the lowest DD yield positive 

returns, and the individual t-statistics are sufficiently large to be significant.  For example, 

the mean portfolio return for the 24-month/6-month strategy increases from 5.3913% in 

decile 1 (S) to 9.4979% in decile 10 (B).  A trading strategy with a long position in B 

stocks and a short position in S stocks (B-S) yields a return of 4.1066% (t=6.71) for 6 

months.  The more successful strategy selects stocks based on their returns over the 

previous 36 months. The mean portfolio return for the 36-month/12-month strategy 

increases from 10.61% in decile 1 to 21.03% in decile 10.  This strategy yields 10.43% 

with t-statistic of 10.16 for 12 months.  The evidence of higher returns for stocks with a 

high DD than for stocks with a low DD is robust to different estimations and holding 

periods. 

- Insert Table IV about here - 

 

3.2. Bivariate Analysis Sorted on Difference of Distributions and Firm Characteristics 

 

We examine the relation between DD and future stock returns after controlling for firm 

13 
 



characteristics.  For example, stocks with high DD tend to be small and illiquid.  In 

particular, following Olsen and Troughton (2000), 84% of respondents agreed that 

estimates of future stock return distributions are more unreliable for smaller firms than for 

larger firms.  To ensure that the effect of the DD is not driven by these characteristics, we 

investigate the profitability of portfolios sorted by DD after controlling for firm 

characteristics, such as beta, size, book-to-market ratio, momentum, short-term reversal, 

and illiquidity. 

Table V shows monthly returns averaged across the portfolios formed by dependent 

two-way sorts on a stock return’s DD and firm characteristics, following Bali et al. (2011) 

and Baltussen et al. (2013).10  First, stocks are categorized into 10 groups by firm 

characteristics.  Then, within each decile portfolio, we further sort stocks into decile 

portfolios ranked based upon the DD, which results in a total of 100 portfolios.  Next, we 

average each of the DD portfolios across the firm characteristic deciles.  As Baltussen et 

al. (2013) argue, we can control for each firm characteristic without assuming a parametric 

form about the relation between the DD and the future stock returns.  For each of these 

portfolios, we calculate the equal- and value-weighted average returns over the following 

month. 

The first column of Panel A in Table V reports the value-weighted returns averaged 

across the ten beta deciles to produce decile portfolios with dispersion in DD.  Since we 

average across beta deciles, the produced decile portfolios sorted by DD will include all 

betas.  The portfolio returns for each month are calculated as a value-weighted average of 

returns from strategies initiated at the end of the past month.  After controlling for beta, 

10 We find qualitatively similar results when we conduct independent bivariate sorts on the DD and firm characteristics.   

14 
 

                                                 



the average return difference between the lowest and highest DD portfolios is about 0.655% 

per month with a t-statistic of 3.63.  It suggests that the positive relation between the DD 

and the future stock returns is not affected by beta.  Column 2 in Panel A shows that the 

highest DD firms earn an average of 2.3133%, compared to 1.2468% for the smallest DD 

firms, when we control for size.  The return differential between these two deciles (B-S) 

is 1.0665% and significant (t=4.85).  The results from two-way sorts on a stock return’s 

DD and SIZE are larger and statistically more significant than those reported for the 

univariate sort in Table III.  As shown in Table I, the high DD stocks are negatively 

correlated with the firm size, which suggests that these stocks should have higher returns.  

When controlling for book-to market ratio (BM), the return differentials between B and S 

are also positive and significant.  When stocks are sorted based on momentum, the 

average return of the Big-Small portfolio is 0.6695%, with a t-statistic of 3.82.  

Subsequently, the average excess return of the B-S portfolio equals 0.72% per month when 

controlling for short-term reversal.  Finally, we see whether the illiquidity explains the 

higher returns for the highest DD stocks relative to the lowest DD stocks.  The average 

return of the B-S portfolio is 1.0046% per month with a t-statistic of 4.76.  These results 

suggest that a positive DD premium remains economically important and firm 

characteristics do not explain the positive relation between DD and futures stock returns. 

Panel B of Table V presents equal-weighted average monthly returns to portfolios 

formed by two-way sorts on the DD and firm characteristics.  Similarly we find 

confirmatory evidence in Panel B with equal-weighted average monthly returns.  After 

controlling for firm characteristics, the equal-weighted average return differences between 

the lowest and the highest DD portfolios are in the range of 1.37% - 3.11% per month with 
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high significance. 

These results suggest that for the value- and the equal-weighted portfolios, the well-

known cross-sectional effects such as beta, size, book-to-market ratio, momentum, short-

term reversal, and illiquidity cannot explain the high returns of the high DD stocks.  

- Insert Table V about here - 

 

3.3. Alphas 

 

In this section, we examine whether a rational risk-based approach can explain our 

result that the degree of DD provides premium.  Table VI presents the value- and the 

equal-weighted portfolios’ post-ranking alphas estimated under three different factor 

specifications, the capital asset pricing model (CAPM), the three-factor model proposed in 

Fama and French (1993), and the four-factor model proposed in Carhart (1997).  The 

results in Panel A show that our measures for DD are highly correlated with alphas 

estimated from three different factor specifications.  The magnitude of the alpha is 

positively related to the level of the DD, which implies that the high DD portfolios earn 

more positive abnormal returns.  All three alphas of the B-S spread are significantly 

positive.  The CAPM alpha is 0.4889% per month (t=2.27), the three-factor alpha is 

0.3878% per month (t=2.40), and the four-factor alpha is 0.458% per month (t=2.85).  A 

simple trading strategy of B-S portfolio generates about 6% of annual abnormal return, 

after controlling for the market, size, value, and momentum effects.  This pattern of 

alphas from the three different factor specifications implies that the abnormal returns of B-

S portfolios are not specific to asset pricing models and confirms our hypothesis of the DD 
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premium.   

As shown in the Panel B, similar and more economically and statistically significant 

results are obtained for the monthly returns on equal-weighted portfolios.  The alphas 

difference between the lowest DD and the highest DD portfolios are in the range of 3.15% 

- 3.41% per month with significance.  For example, the CAPM alpha of the B-S spread is 

3.3064% per month (t=10.80) and the four-factor alpha is 3.4136% per month (t=12.86).   

－Insert Table VI about here - 

 

3.4. Firm-level Cross-sectional Regressions 

 

We have examined the significance of the DD as a determinant of the expected stock 

returns at the portfolio level.  However, as mentioned in Bali et al. (2011), the portfolio-

level analysis has potentially significant disadvantages.11  Therefore, we examine the 

cross-sectional relation between the DD and the expected stocks returns at the firm level 

using Fama-MacBeth (1973) regressions.  The dependent variable is one-month ahead 

monthly return.  

Table VII reports the time-series averages of the coefficients from the regressions of 

expected stock returns on the DD, beta, size, book-to-market ratio, momentum, short-term 

reversal, and illiquidity over the sample period, 1965 - 2012.  These variables are 

explained in detail in Appendix B.  In the univariate regression of expected return on the 

DD, the coefficient is positive and statistically significant.  The average coefficient from 

11 Bali et al. (2011) argue two potential disadvantages: “First, it throws away a large amount of information in the cross-
section via aggregation.  Second, it is a difficult setting in which to control for multiple effects or factors simultaneously.” 
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the monthly regressions of expected return on the DD is 0.3851 with a t-statistic of 3.09.  

When the six control variables are included in the regression, the coefficient on the lagged 

DD remains large and significant.  The results show that the coefficients on the six 

individual control variables are as expected.  Of these six control variables, BM and REV 

contribute the most to the expected stock returns.  The average coefficient on BM is 

significantly positive and that on REV is significantly negative, as expected.  Overall, the 

results from cross-sectional regressions show strong corroborating evidence for an 

economically and statistically significant positive relation between the degree of the DD 

and the expected stock returns.  

- Insert Table VII about here -  

 

4.  Difference of Distributions and Return Distribution Characteristics  

 

4.1. Bivariate Analysis Sorted on Difference of Distributions and Return Distribution 

Characteristics  

 

We examine the relation between the DD and the future stock returns after controlling 

for various return distribution characteristics, such as idiosyncratic volatility, skewness, 

kurtosis, and maximum return.  Firstly, Epstein and Schneider (2008) propose that 

expected excess returns will increase with idiosyncratic volatility in fundamentals.  On 

the other hand, Ang et al. (2006, 2009) empirically find that stocks with high idiosyncratic 

volatility have low subsequent returns.  To verify that the DD is not explained by one of 

the return distribution characteristics, in this case idiosyncratic volatility, we examine the 
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profitability of the DD after controlling for it.  Secondly, we examine the profitability of 

the DD after controlling for skewness and kurtosis.  Since extant empirical evidence 

indicates that skewness and kurtosis are related to the expected returns, we examine 

whether the profitability of the strategy is confined to the subsample of stocks based on 

these return distribution characteristics.  For example, Arditti (1967), Levy (1969), Arditti 

and Levy (1975), and Kraus and Litzenberger (1976) extend the standard portfolio theory 

to incorporate the effect of skewness on valuation.  Harvey and Siddique (2000) present 

an asset-pricing model with conditional co-skewness, where risk-averse investors prefer 

positively skewed assets to negatively skewed assets.  Assets that decrease a portfolio’s 

skewness (i.e., that make the portfolio returns more left-skewed) are less desirable and 

should command higher expected returns.  Meanwhile, Fang and Lai (1997) note that 

investors are compensated for bearing kurtosis risk via excess returns.  Dittmar (2002) 

extends the three-moment asset-pricing model using the restriction of decreasing absolute 

prudence (Pratt and Zeckhauser, 1987; Kimball, 1993).  He argues that investors with 

decreasing absolute prudence dislike co-kurtosis, suggesting preference for lower kurtosis.  

Investors are averse to kurtosis, and prefer stocks with lower probability mass in the tails 

of the distribution to stocks with higher probability mass in the tails of the distribution.  

Assets that increase a portfolio’s kurtosis (i.e, that make the portfolio returns more 

leptokurtic) are less desirable and should command higher expected returns.  Therefore, 

we examine the relation between the DD and the future stock returns after controlling for 

skewness and kurtosis. 

Thirdly, Bali et al. (2011) argue that there is a negative and significant relation between 

the maximum daily return over the past month and the future stock returns.  Since this 
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factor has power in explaining stock returns, and is related to the shape of the distribution 

of stock returns, we examine whether the maximum return can explain the positive DD 

effect. 

To this end, we apply the same dependent two-way sorting procedure as in the previous 

section.  We form decile portfolios at the end of each month by sorting the return 

distribution characteristics, such as the idiosyncratic volatility, skewness, kurtosis, and 

maximum returns.  Then we sort each decile portfolio into ten additional DD portfolios.  

We further average each of the DD portfolios across the ten decile portfolios.  Next, we 

form a B-S portfolio that buys the resulting highest DD portfolio and sells the resulting 

lowest DD portfolio.  The portfolio returns for each month are calculated as the equal- 

and the value-weighted average of returns over the following month from strategies set up 

at the end of each previous month.   

The results of these double sorts are presented in Table VIII.  Panel A in Table VIII 

presents the value-weighted monthly returns across the return distribution characteristics.  

After controlling for idiosyncratic volatility (IDIOVOL), the value-weighted average 

monthly return difference between the lowest and the highest DD portfolios is about 

0.4341% with a t-statistic of 4.66.  The results show that the positive relation between DD 

and expected stock returns is not affected by idiosyncratic volatility.  Since idiosyncratic 

volatility and the DD are highly correlated, the range of returns of DD portfolios is reduced 

after controlling for idiosyncratic volatility, but still significant.  It suggests that 

idiosyncratic volatility does not explain the DD effect.  We control for skewness and 

kurtosis in a similar way.  We calculate the value-weighted average returns of portfolios 

formed by dependent two-way sorts on the DD and higher moments, such as skewness and 
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kurtosis.  When controlling for the magnitude of the skewness in the portfolio formation 

month, the highest DD firms earn an average of 1.6049% monthly, compared to 0.9038% 

for the lowest DD firms.  The return differential between these two deciles (B-S) is 

0.7012% and significant (t=3.32).  When we control for kurtosis in column (3), the return 

difference between the lowest DD and the highest DD portfolios is 0.6103% per month and 

statistically significant at all conventional levels.  These findings indicate that none of 

these higher moments are able to explain the DD effect.  We control for the maximum 

daily return over the past month (MAX), with the results reported in the fourth column of 

Table VIII, Panel A.  The effect of the DD is preserved, with an equal-weighted average 

return difference (0.7210%) between the lowest DD and the highest DD portfolios and a 

corresponding t-statistic of 5.40.   

Next, we turn to an examination of the equal-weighted average monthly returns on the 

DD portfolios after controlling for the return distribution characteristics as in Table VIII, 

Panel B.  For the equal-weighted average return, the results are even stronger than those 

presented for the value-weighted average return in Panel A.  The results show that the 

equal-weighted average return differences between the lowest DD and the highest DD 

portfolios are in the range of 1.1071% – 3.6453% per month, and they are statistically 

significant.  Overall, a strategy of buying the highest DD firms and shorting the lowest 

DD firms seems to produce high returns when controlling for return distribution 

characteristics, such as idiosyncratic volatility, skewness, kurtosis, and maximum return. 

- Insert Table VIII about here – 

 

4.2. Regression Tests  
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Another way to examine the DD effect after controlling for return distribution 

characteristics is to look at firm-level cross-sectional regressions of expected stock returns 

on DD values.  We conduct cross-sectional regressions of future stock returns on the DDs 

after controlling for various return distribution characteristics.  Table IX presents the 

time-series averages of the coefficients from the regressions of future stock returns on the 

DD, idiosyncratic volatility, skewness, kurtosis, and maximum return as well as beta, size, 

book-to-market ratio, momentum, short-term reversal, and illiquidity over the sample 

period of 1965 - 2012.  These variables are defined in detail in Appendix B.  The results 

show that the DD effects reported earlier are still evident in this cross-sectional test.  As 

in prior studies, we find a strong positive DD effect on returns, even after controlling for 

idiosyncratic volatility, skewness, kurtosis, and maximum return.   

Harvey and Siddique (1999, 2000) and Smith (2007) distinguish systematic and 

idiosyncratic skewness from total skewness, and argue that stocks with lower systematic 

skewness outperform stocks with higher systematic skewness.  Following Harvey and 

Siddique (2000), systematic skewness is the coefficient of a regression of returns on 

squared market returns, including the market return as a second regressor.  The 

idiosyncratic skewness is the skewness of the residuals from this regression.  The results 

show that when systematic skewness and idiosyncratic skewness are included in the 

regression, the coefficient on the DD remains large and significant.  Overall, the positive 

DD effects persistently exist in firm-level cross-sectional regressions, even after 

controlling for a variety of other firm-level variables.  

- Insert Table IX about here – 
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5. Discussions  

 

   A plausible interpretation of our evidence is that the DD may proxy for ambiguity.  

There are several possible reasons why we interpret the degree of DD as ambiguity.  First, 

it is directly linked to the definition of ambiguity, “uncertainty about distribution”, as 

explained by Knight (1921) and by Epstein and Schneider (2008).  In Epstein and 

Schneider’s paper, they assume that a signal s is the sum of a parameter of interest (θ) and 

noise of the signal (ε).  They argue that when the variance of ε has a wider range, 

investors treat signals as ambiguous.  For example, if the distribution of a signal (s1) has a 

normal distribution of N(0, 1), N (0, 2), or N (0, 3) and that of a signal (s2) has a normal 

distribution of N (0, 1), N (0, 4), or N (0, 9), they argue that the signal (s2) is more 

ambiguous than the signal (s1).  According to this theoretical situation, as the range of 

variance of ε expands, the DD mentioned in our study should also increase.  Based on 

these arguments, we can interpret the DD as a potential proxy for ambiguity. 

   Second, our results show the evidence of a positive premium for holding the stocks 

with a higher DD.  Since Knight (1921) distinguishes uncertainty from risk, various 

studies have argued that Knightian uncertainty or ambiguity is important in explaining a 

firm’s profit (Knight, 1921), economic decision making (Knight, 1921; Keynes, 1921), 

procyclical price-consumption and price-dividend ratio, and other economic phenomena 

(Ju and Miao, 2012).  Most theoretical, experimental, and survey studies argue that 

positive ambiguity premiums exist (Jeong, Kim and Park, 2015; Ahn, Choi, Gale and 
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Kariv, 2014; Olsen and Troughton, 2000)12.  For example, Yates and Zukowski (1976) 

show that decision makers are willing to pay an average ambiguity premium of 20% of  

the expected value.  On the other hand, only a few empirical studies exist13 and most of 

them find negative relation between ambiguity and the expected returns.  For instance, 

Zhang (2006) explains short-term price continuation by ambiguity.  Baltussen, Bekkum, 

and Grient (2013) find negative relation between ambiguity and expected stock returns by 

developing a proxy for ambiguity, which is volatility of implied volatility.  However, this 

negative relation is inconsistent with general perception of ambiguity aversion and its 

premium as in Epstein and Schneider (2008), Klibanoff, Marinacci and Mukerji (2005), 

and others.  To summarize, many theories argue that ambiguity aversion makes investors 

require ambiguity premium in the stock market.  No empirical studies cross-sectionally 

confirm ambiguity premium at a stock level.  On the other hand, our simple proxy, free 

from any assumption about distribution, has a statistically significant positive relation with 

future stock returns, as most theories about ambiguity suggest.  Even though we believe 

that our proxy is not the only one, nor necessarily the best one, to represent ambiguity, we 

argue that this paper suggests the interpretation of the DD as ambiguity. 

One of the advantages of using the DD as the proxy of ambiguity is that it is easy to 

apply the proxy to research about the cross-section of every single stock return, since only 

daily stock returns are necessary to construct this proxy.  Extant empirical studies such as 

Zhang (2006) and Jiang, Lee and Zhang (2005) use firm characteristic proxies, for example, 

firm size, age, analyst coverage, dispersion in analyst forecasts, return volatility, and cash 

12 See, among many others, Gilboa and Schmeidler (1989), Dow and Werlang (1992), Ju and Miao (2012), Epstein and 
Schneider (2008), Klibanoff, Marinacci, and Mukerji (2005), Izhakian (2012), Epstein and Wang (1994), and Drechsler 
(2013). 
13 Ehsani et al., (2013), Brenner and Izhakian (2011), Anderson et al. (2009), 
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flow volatility.  In addition, Ehsani et al. (2013) and Baltussen et al. (2013) use option-

implied volatility for their ambiguity proxy using data that have time series and cross-

sectional limitation.  On the other hand, our study only uses individual stock returns.  

Thus, by the virtue of the simplicity of our proxy, numerous implications from theories 

about ambiguity can be comprehensively investigated. 

   Another possible explanation of the results in this paper is related to literature on real 

options.  Bulan (2005) argues that a firm with more real options in uncertain environment 

is likely to delay the exercise of options because delaying exercise of the options is more 

valuable for the firm.  She finds empirical evidence that the more uncertain a firm's future 

cash flow is, the more valuable real options to delay investment there are.  If we interpret 

the DD as a measure for uncertainty, a company with a higher DD will have higher values 

of real options under this uncertain environment, and less incentives for investing.  In this 

case, the company will delay investment and its current stock price will be relatively 

discounted.  Nishimura and Ozaki (2007) directly relate investment behaviors of a firm to 

ambiguity.  They argue that Knightian uncertainty increases value of waiting and makes it 

more likely.  As Grullon et al. (2012) show in their paper, the effect of real options on 

stock return changes when the options are exercised.  The exercise of the options, i.e., 

initiating investment, will make the stock price reflect the value of the new investment, 

thus the future stock return will increase.  Our empirical findings that higher DD stocks 

exhibit higher future stock returns are consistent with this real option theory. 

   Meanwhile, our results are close in spirit to the literature on parameter uncertainty and 

distribution uncertainty.  Garlappi et al. (2007) develop a model to incorporate parametric 

and model uncertainty by using a multi-prior approach.  To study parametric uncertainty, 
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their framework incorporates the case that an investor estimates parameters, such as 

expected returns, using sample observations of the realized returns.  However, 

Kacperczyk and Damien (2011) say that it is very difficult to reach any agreement about 

the precise form of the underlying stochastic process driving returns.  Kacperczyk and 

Damien (2011) propose a concept of “distribution uncertainty”, which discuss uncertainty 

about the type of return distribution.  Our study, which is in the same vein as Kacperczyk 

and Damien (2011), non-parametrically measures distribution uncertainty by computing 

the difference of stock return distributions between the previous and the present period.    

 

6.  Conclusion 

 

  In this paper, we examine the relation between the DD and cross-sectional pricing of 

stocks.  The results show that stocks with a higher DD exhibit higher returns on average.  

The difference between value-weighted average returns on the portfolios with the highest 

and the lowest DD is around 0.72% in a month.  The corresponding Fama-French-Carhart 

four-factor alpha from high-minus-low DD-sorted portfolios is 0.46% a month.  We 

extensively investigate the robustness of our empirical results and find that the impact of 

the DD persists after accounting for firm characteristics, such as beta, size, book-to-market 

ratio, momentum, short-term reversal, and illiquidity.  These results are also robust to 

control for return distribution characteristics, for instance, firms’ idiosyncratic return 

volatility, skewness, kurtosis, and maximum daily return.  Moreover, the effect of the DD 

on expected stock returns exhibits substantial persistence in firm-level cross-sectional 

regressions, even after controlling for a variety of other firm-level variables.  Our 
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empirical results suggest that investors will face more difficult problems in specifying a 

distribution of stock returns as the DD increases.  This paper suggests the interpretation of 

the degree of DD as the level of ambiguity.  The notion of DD is consistent with the 

definition of ambiguity by Knight (1921).  The positive relation between our proxy for 

ambiguity (the DD) and future stock returns is what most theories about ambiguity suggest. 

Almost none of the other empirical studies verify such a relation.  
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Appendix A. Introduction to Earth Mover’s Distance (Wasserstein Metric) 

 

In mathematics, various metrics quantify the distance between two probability 

distributions.  Henceforth, we will use ‘probability metric’ to mean ‘metric’ measuring 

the distance between two probability distributions.  The probability metric we adopt in 

this paper is the Earth Mover’s Distance (EMD), the Wasserstein metric in mathematics.  

Intuitively, each distribution can be regarded as a unit amount of boxes piled on 𝑅𝑅. Then 

the EMD takes a minimum cost14 of transforming one pile into the other. 

    Let X, Y be random variables with their induced probability measures 𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌.  Then, 

the p-th EMD between two probability measures   is defined by   

           𝑊𝑊𝑃𝑃(𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌) ≔ �𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾∈𝛤𝛤(𝑃𝑃𝑋𝑋,𝑃𝑃𝑌𝑌) ∫ 𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑝𝑝𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑅𝑅×𝑅𝑅 �
1
𝑝𝑝, (A.1) 

Where 𝛤𝛤(𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌) denotes the set of all probability measures on 𝑅𝑅 × 𝑅𝑅 with marginal 

probability 𝑃𝑃𝑋𝑋 and 𝑃𝑃𝑌𝑌 on the first and second factors respectively and 𝑑𝑑(𝑥𝑥,𝑦𝑦) denote a 

metric defined In 𝑅𝑅, so we take absolute value of difference for the metric 𝑑𝑑(𝑥𝑥,𝑦𝑦). 

Therefore, in this paper, the p-th EMD metric between two probability measures 

𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌 have special form,  

𝑊𝑊𝑃𝑃(𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌) ≔ �𝑖𝑖𝑖𝑖𝑖𝑖𝛾𝛾∈𝛤𝛤(𝑃𝑃𝑋𝑋,𝑃𝑃𝑌𝑌) ∫ |𝑥𝑥 − 𝑦𝑦|𝑝𝑝𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑅𝑅×𝑅𝑅 �
1
𝑝𝑝 (A.2) 

It is worth noting that the 𝑝𝑝 in the formula (A.2) is a parameter we need to decide. 

Therefore, choosing the value 𝑝𝑝 depends merely on each problem we face and we have to 

14 In general, cost is defined as the amount of box needed to be moved times the distance to be moved 
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find out the optimal value of 𝑝𝑝15.  

The EMD has two nice advantages.  First, it is properly finer for the theories of 

statistics.  That is, the EMD metricizes weak convergence.16  Second, it is easy to 

compute. To compute the EMD in practice, we only focus on discrete probability measures. 

It means that normalized histogram17 used as a discrete probability measure is a proxy for 

original probability measure. 

Consider the discrete measures 𝑃𝑃𝑋𝑋 ≔ ∑ 𝑃𝑃𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖𝑖𝑖  and 𝑃𝑃𝑌𝑌 ≔ ∑ 𝑃𝑃𝑗𝑗𝛿𝛿𝑦𝑦𝑗𝑗𝑗𝑗 .  Then, to 

calculate the EMD, it is enough to solve a following problem of linear program. 

Minimize
(𝑖𝑖𝑖𝑖 𝜋𝜋)

�𝜋𝜋𝑖𝑖,𝑗𝑗|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑝𝑝(= 𝑊𝑊𝑃𝑃(𝑃𝑃𝑋𝑋 ,𝑃𝑃𝑌𝑌)𝑝𝑝)
𝑖𝑖,𝑗𝑗

 

Subject to �𝜋𝜋𝑖𝑖,𝑗𝑗 = 𝑝𝑝𝑖𝑖                                      
𝑗𝑗

 

                     �𝜋𝜋𝑖𝑖,𝑗𝑗 = 𝑝𝑝𝑗𝑗                                                     
𝑖𝑖

 

                            𝜋𝜋𝑖𝑖,𝑗𝑗 ≥ 0                                       

  

15 We use various values of the p, but the results in this paper do not change qualitatively. 

16  (Definition.1) A sequence of probability measure 𝑃𝑃𝑛𝑛 on  𝑅𝑅 converges weakly to 𝑃𝑃(in symbol 𝑃𝑃𝑛𝑛 ⇒ 𝑃𝑃), if 
 

|∫ℎ 𝑑𝑑𝑃𝑃𝑛𝑛 − ∫ℎ 𝑑𝑑𝑑𝑑| → 0, as 𝑛𝑛 → 0     
                        
for all bounded, continuous functions ℎ. This is exactly same notion with “convergence in distribution” which is one of 
the most importance convergence concepts in statistics. 
  (Definition.2) If a metric 𝑑𝑑 has the property that  

𝑑𝑑(𝑃𝑃𝑛𝑛,𝑃𝑃) → 0 if and only if 𝑃𝑃𝑛𝑛 ⇒ 𝑃𝑃, 
  we say that 𝑑𝑑 “metricizes weak convergence”.   
 (Theorem) 1-th Wassersstein metric “metricizes weak convergence”. 
17 Since we use histogram to calculate the EMD, the problem of choosing the number and width of bins in a histogram 
does happen. In this paper, we use √𝑛𝑛 as the number of bins in a histogram (𝑛𝑛: the number of data.). 
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Appendix B.  Variable Definitions 

 

   BETA: The beta of a stock for a month (BETA) is estimated by regressing the weekly 

stock return on the value weighted index return using a previous year sample.  

   SIZE: Firm size (SIZE) is measured by the market value of equity (a stock’s price 

times shares outstanding) at the end of month t-1 for a stock.  In our regressions, we take 

the natural logarithm of size.   

   BM: Book-to-market ratio (BM) is book value of equity in the most recent fiscal year 

divided by market value of equity.  

   MOM: Following Jegadeesh and Titman (1993), momentum (MOM) is the cumulative 

stock return over the previous 11 months starting two months ago to isolate momentum 

from the short-term reversal effect.  

   REV: Following Jegadeesh (1990) and Lehmann (1990), we measure short-term 

reversal (REV) for each stock in month t as the return on the stock over the previous month. 

   ILLIQ: Following Amihud (2002), stock illiquidity (ILLIQ) is defined as the ratio of 

the absolute monthly stock return to its dollar trading volume.  

   IDIOVOL: We compute the monthly idiosyncratic volatility (IDIOVOL) for each stock 

i as the standard deviation of the daily residuals in month t from the CAPM.  Specifically, 

we estimate 𝑅𝑅𝑖𝑖,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑑𝑑 − 𝑟𝑟 𝑓𝑓,𝑑𝑑� + 𝜀𝜀𝑖𝑖,𝑑𝑑 , where 𝜀𝜀𝑖𝑖,𝑑𝑑  is the idiosyncratic 

return on day d.  The idiosyncratic volatility of stock i in month t is defined as the 

standard deviation of daily residuals in month t: IVOL𝑖𝑖,𝑡𝑡 = �𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖,𝑑𝑑). 

   SKEW: The total skewness of stock i for month t is the historical third-order 
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centralized moment using daily returns within year t: SKEW𝑖𝑖,𝑡𝑡 = 1
𝐷𝐷𝑡𝑡
∑ �𝑅𝑅𝑖𝑖,𝑑𝑑−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
�
3𝐷𝐷𝑡𝑡

𝑑𝑑=1 , where 

𝐷𝐷𝑡𝑡 is the number of trading days in year t, 𝑅𝑅𝑖𝑖,𝑡𝑡 is the return on stock i on day d, 𝜇𝜇𝑖𝑖 is the 

mean of returns of stock i in year t, and 𝜎𝜎𝑖𝑖 is the standard deviation of returns of stock i in 

year t. 

   SSKEW and ISKEW: Following Bali et al. (2011), we decompose total skewness into 

systematic and idiosyncratic components by estimating the following regression for each 

stock: 𝑅𝑅𝑖𝑖,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖�𝑅𝑅𝑚𝑚,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑� + 𝛾𝛾𝑖𝑖�𝑅𝑅𝑚𝑚,𝑑𝑑 − 𝑟𝑟𝑓𝑓,𝑑𝑑�
2

+ 𝜀𝜀𝑖𝑖,𝑑𝑑 , where 𝑅𝑅𝑖𝑖,𝑑𝑑  is the 

return on stock i on day d, 𝑅𝑅𝑚𝑚,𝑑𝑑 is the market return on day d, 𝑟𝑟𝑓𝑓,𝑑𝑑 is the risk-free return 

on day d.   The systematic skewness (SSKEW) of stock i in year t is the estimated slope 

coefficient 𝛾𝛾�𝑖𝑖,𝑡𝑡.  The idiosyncratic skewness(ISKEW) of stock i in year t is defined as the 

skewness of daily residuals 𝜀𝜀𝑖𝑖,𝑑𝑑 in year t. 

   KURT: Kurtosis is the fourth-order centralized moment.  

   MAX: Following Bali et al. (2011), maximum return of each stock is the maximum 

daily return over the past month.  

   AGE: Firm age (AGE) is the number of years since the firm was first covered by CRSP.  

   REAL OPTION_D: REAL OPTION_D is a dummy variable for real options with the 

value of 1 if a firm belongs to high-tech, pharmaceutical, and biotechnology industries, or 

0 otherwise. 
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Table I 

Descriptive Statistics 
 

This table reports summary statistics and correlation coefficients for the key variables. DD is the average of 
previous 24 EMDs (the Earth Mover's Distance). Each EMD non-parametrically measures the difference 
between two probability distributions using previous 12 months. SIZE is the natural logarithm of the market 
value of equity of the company (in thousands of dollars) measured by times series average of a firm's market 
capitalization for the most recent 12 months. BM is the book value of equity divided by its market value at 
the end of the last fiscal year. BETA is estimated by regressing each stock's daily return on the value 
weighted index return using the previous year's data. MOM is calculated as the return over the 11 months 
prior to that month. REV is the previous month’s stock return. ILLIQ by Amihud (2002) is measured as the 
ratio of the absolute monthly stock return to its dollar trading volume for each stock, scaled by 1,000. 
IDIOVOL is calculated as the standard deviation of the daily residuals in month t from the CAPM. SKEW is 
the historical third-order centralized moment using daily returns within year t. KURT is the fourth-order 
centralized moment. MAX is defined by the maximum daily return over the past month. The sample includes 
all firms listed in NYSE, AMEX, and NASDAQ from 1965 to 2012. 
 
Panel A: Descriptive Statistics 

 DD SIZE BM BETA MOM REV ILLIQ IDIOVOL SKEW KURT MAX 
N 2717967 3401816 2324268 3095031 3118816 3404580 3098907 3118727 3122055 3122055 3404580 

Mean 0.0251  11.3702  0.8364  0.8540  0.1341  0.0112  0.0026  6.3253  0.5646  10.3961  0.0742  
P1 0.0159  7.0135  0.0225  -1.0283  -0.8177  -0.3846  0.0000  0.9979  -2.7734  2.9125  0.0000  
P5 0.0207  8.0693  0.1204  -0.2068  -0.6023  -0.2178  0.0000  1.7335  -0.9265  3.3843  0.0104  
P10 0.0216  8.6874  0.1970  0.0062  -0.4582  -0.1500  0.0000  2.2568  -0.4330  3.7212  0.0164  
P25 0.0223  9.8287  0.3741  0.3314  -0.2000  -0.0635  0.0000  3.3500  0.0118  4.5246  0.0286  

median 0.0230  11.2507  0.6581  0.7896  0.0517  0.0000  0.0001  5.1643  0.3865  6.1741  0.0504  
P75 0.0242  12.7895  1.0770  0.7896  0.3153  0.0676  0.0007  7.9326  0.8955  10.1643  0.0889  
P90 0.0295  14.2042  1.6654  1.8452  0.7005  0.1667  0.0030  11.6216  1.7306  19.2570  0.1500  
P95 0.0362  15.0769  2.1874  2.2320  1.0804  0.2593  0.0066  14.6321  2.6401  30.1461  0.2093  
P99 0.0617  16.7713  3.6054  3.1289  2.4706  0.5667  0.0275  22.7629  6.0196  75.8818  0.4068  

Stdev 0.0114  2.1436  0.6978  0.8154  0.7536  0.1759  0.2807  4.7530  1.4131  14.5901  0.0962  
Panel B: Correlation Matrix (Pearson Correlations Are Shown above the Diagonal with Spearman Below) 
 DD SIZE BM BETA MOM REV ILLIQ IDIOVOL SKEW KURT MAX 

DD 1.0000  -0.1806  0.0053  -0.0012  0.0645  0.0313  0.0045  0.4788  0.2455  0.2773  0.2890  
SIZE -0.2308  1.0000  -0.3457  0.1953  0.0798  0.0282  -0.0265  -0.4117  -0.2209  -0.1560  -0.2765  
BM -0.0348  -0.3576  1.0000  -0.1051  -0.1622  -0.0772  0.0153  0.0364  0.0132  0.0192  0.0531  

BETA 0.0542  0.2305  -0.1507  1.0000  0.0548  -0.0011  -0.0114  0.1358  -0.0283  -0.0547  0.0456  
MOM -0.0894  0.1849  -0.2243  0.0014  1.0000  -0.0049  -0.0042  0.1200  0.1794  0.0422  -0.0448  
REV -0.0303  0.0848  -0.0834  -0.0100  0.0189  1.0000  0.0031  0.0890  0.1081  0.0327  0.3239  

ILLIQ 0.0270  -0.6749  0.3011  -0.2311  -0.0701  -0.0041  1.0000  0.0044  0.0032  0.0171  0.0065  
IDIOVOL 0.4460  -0.4870  -0.0226  0.2002  -0.1437  -0.0451  0.1656  1.0000  0.3319  0.2832  0.5484  

SKEW 0.1782  -0.2963  0.0095  -0.0129  0.1959  0.0589  0.1984  0.3104  1.0000  0.4760  0.2284  
KURT 0.2750  -0.2066  0.0157  -0.0483  -0.0741  -0.0255  0.1004  0.2735  0.3336  1.0000  0.1561  
MAX 0.3108  -0.3494  -0.0116  0.1515  -0.1857  0.2015  0.1473  0.6642  0.2246  0.1001  1.0000  
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Table II 
Descriptive statistics based on Difference of Distributions 

 
This table reports summary statistics and correlation coefficients for the key variables. DD is the average of previous 24 EMDs (the Earth Mover's 
Distance). Each EMD non-parametrically measures the difference between two probability distributions using previous 12 months. The decile portfolios 
updated each month are formed by the sizes of DD statistics estimated using daily demeaned individual stock return over previous 36 months. Portfolio 
‘S’ is the portfolio of stocks with the lowest DD, Portfolio ‘B’ is the portfolio of stocks with the highest DD. SIZE is the natural logarithm of the market 
value of equity of the company (in thousands of dollars) measured by times series average of a firm's market capitalization for the most recent 12 
months. BM is the book value of equity divided by its market value at the end of the last fiscal year. BETA is estimated by regressing each stock's daily 
return on the value weighted index return using the previous year's data. MOM is calculated as the return over the 11 months prior to that month. REV 
is the previous month’s stock return. ILLIQ by Amihud (2002) is measured as the ratio of the absolute monthly stock return to its dollar trading volume 
for each stock, scaled by 1,000. IDIOVOL is calculated as the standard deviation of the daily residuals in month t from the CAPM. SKEW is the 
historical third-order centralized moment using daily returns within year t. KURT is the fourth-order centralized moment. MAX is defined by the 
maximum daily return over the past month. AGE is the natural logarithm of the firm age, and REAL OPTION_D is a dummy variable for real options 
with the value of 1 if a firm belongs to high-tech, pharmaceutical, and biotechnology industries, or 0 otherwise. The sample includes all firms listed in 
NYSE, AMEX, and NASDAQ from 1965 to 2012. 

DD DD SIZE BM BETA MOM REV ILLIQ IDIOVOL SKEW KURT MAX AGE REAL 
OPTION_D 

S 0.0199  1,428,190  0.8840  0.5809  0.1168  0.0089  0.0030  3.2834  0.3674  9.3751  0.0362  2.8436  0.0534  

2 0.0219  1,715,206  0.8641  0.8882  0.1449  0.0108  0.0022  4.6253  0.4046  7.2400  0.0521  2.6611  0.1005  

3 0.0223  1,472,392  0.8642  0.9270  0.1503  0.0111  0.0021  4.7840  0.4117  7.1026  0.0543  2.6473  0.1082  

4 0.0226  1,481,521  0.8698  0.9266  0.1494  0.0112  0.0019  4.7964  0.4114  7.1709  0.0546  2.6681  0.1067  

5 0.0229  1,486,758  0.8721  0.9241  0.1449  0.0115  0.0022  4.8098  0.4124  7.3879  0.0550  2.6817  0.1050  

6 0.0232  1,403,613  0.8738  0.9230  0.1377  0.0114  0.0020  4.9351  0.4172  7.7766  0.0567  2.6898  0.1074  

7 0.0236  1,283,590  0.8808  0.9330  0.1373  0.0117  0.0021  5.3640  0.4600  8.6329  0.0623  2.6712  0.1176  

8 0.0245  876,229  0.9047  0.9428  0.1390  0.0126  0.0025  6.3666  0.5759  10.2045  0.0755  2.5900  0.1432  

9 0.0268  397,942  0.9372  0.9473  0.1395  0.0145  0.0055  8.2368  0.8294  13.4310  0.0994  2.4638  0.1670  

B 0.0407  130,811  0.9457  0.9121  0.2011  0.0243  0.0058  11.8670  1.5418  20.9803  0.1440  2.3134  0.1716  
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Table III 
Portfolio Returns Sorted on DD 

 
This table presents value-weighted and equal-weighted average monthly returns for portfolios formed on DD 
within a month. DD is the average of previous 24 EMDs (the Earth Mover's Distance). Each EMD non-
parametrically measures the difference between two probability distributions using previous 12 months. The 
decile portfolios updated each month are formed by the sizes of DD statistics estimated using daily demeaned 
individual stock return over previous 36 months. Portfolio ‘S’ is the portfolio of stocks with the lowest DD, 
Portfolio ‘B’ is the portfolio of stocks with the highest DD, ‘S-B’ is the return difference between the lowest 
DD and highest DD portfolios, and t-statistics are reported in parentheses. The sample includes all firms 
listed in NYSE, AMEX, and NASDAQ from 1965 to 2012. 

  DD Value-weighted Equal-weighted 

S 0.0199 0.7960 1.0988 

2 0.0219 0.9768 1.4251 

3 0.0223 1.0090 1.4600 

4 0.0226 0.9987 1.4395 

5 0.0229 1.0305 1.4868 

6 0.0232 0.9496 1.5027 

7 0.0236 0.9564 1.5867 

8 0.0245 1.1292 1.9503 

9 0.0268 1.4161 2.5644 

B 0.0407 1.5166 4.6755 

    
B-S  0.7205 3.5766 

t(B-S)  (3.06) (10.91) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40 
 



Table IV 
Portfolio Returns by Various Estimation and Holding Periods 

 
This table reports the value-weighted average returns for portfolios formed on DD using various estimation 
periods (J) and holding periods (K). DD is the average of previous 24 EMDs (the Earth Mover's Distance). 
Each EMD non-parametrically measures the difference between two probability distributions using previous 
12 months. The decile portfolios updated each month are formed by the sizes of DD statistics estimated using 
daily demeaned individual stock return over previous 24 months and 36 months (J). We report the holding 
period returns of portfolios over the next one, three, six, and twelve months (K). Portfolio ‘S’ is the portfolio 
of stocks with the lowest DD, Portfolio ‘B’ is the portfolio of stocks with the highest DD, ‘S-B’ is the return 
difference between the lowest DD and highest DD portfolios, and t-statistics are reported in parentheses. The 
sample includes all firms listed in NYSE, AMEX, and NASDAQ from 1965 to 2012. 

  J=24/K=3 J=24/K=6 J=24/K=9 J=24/K=12 
S 2.6394  5.3913  8.1571  10.8121  
2 2.9094  5.9287  9.0073  12.0383  
3 2.9010  5.9677  9.1179  12.2606  
4 3.0511  6.1821  9.2703  12.2800  
5 3.1809  6.2735  9.2781  12.1531  
6 2.9632  6.0821  9.1604  12.4142  
7 2.7667  5.7306  8.8804  12.1410  
8 3.4525  7.2408  10.7424  14.1088  

9 4.1437  8.1928  12.5004  16.8899  

B 4.6124  9.4979  14.8108  19.9695  
      

B-S 1.9729  4.1066  6.6537  9.1574  
T(B-S) (4.52)  (6.71)  (8.38)  (9.34)  

     
 J=36/K=3 J=36/K=6 J=36/K=9 J=36/K=12 

S 2.5190  5.2174  7.9627  10.6022  
2 2.8789  5.8725  8.7253  11.8721  
3 2.9533  5.8304  9.1354  12.4148  
4 3.0319  6.1993  9.3224  12.2556  
5 3.2945  6.6560  9.9253  12.9723  
6 2.9520  6.1281  9.4165  12.7803  
7 2.9933  6.3290  9.4562  12.7738  
8 3.4409  6.8257  10.4358  13.9810  
9 4.3556  8.8714  13.2567  17.5006  
B 4.9849  10.1116  15.5418  21.0326  
      

B-S 2.4659  4.8942  7.5791  10.4304  
t(B-S) (5.54)  (7.49)  (9.25)  (10.16)  
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Table V 
Portfolios Returns Sorted on DD and Firm Characteristics 

 
This table reports value-weighted and equal-weighted average monthly returns for portfolios based on DD 
and firm characteristics. DD is the average of previous 24 EMDs (the Earth Mover's Distance). Each EMD 
non-parametrically measures the difference between two probability distributions using previous 12 months. 
In each case, we first sort the stocks into deciles using the firm characteristic. Within each characteristic 
decile, we sort stocks into ten additional portfolios based on DD and compute the returns on the 
corresponding portfolios over the subsequent month. This table presents average returns across the firm 
characteristic deciles. Portfolio ‘S’ is the portfolio of stocks with the lowest DD, Portfolio ‘B’ is the portfolio 
of stocks with the highest DD, ‘S-B’ is the return difference between the lowest DD and highest DD 
portfolios, and t-statistics are reported in parentheses. BETA is estimated by regressing each stock's daily 
return on the value weighted index return using the previous year's data. SIZE is the natural logarithm of the 
market value of equity of the company (in thousands of dollars) measured by times series average of a firm's 
market capitalization for the most recent 12 months. BM is the book value of equity divided by its market 
value at the end of the last fiscal year. MOM is calculated as the return over the 11 months prior to that 
month. REV is the previous month’s stock return. ILLIQ by Amihud (2002) is measured as the ratio of the 
absolute monthly stock return to its dollar trading volume for each stock, scaled by 1,000. Each characteristic 
is defined in the Appendix. The sample includes all firms listed in NYSE, AMEX, and NASDAQ from 1965 
to 2012. 
Panel A. Value-weighted           

 BETA SIZE BM MOM REV ILLIQ 

S 0.9619 1.2468 1.1318 0.9922 0.9677 0.9402 
2 0.9492 1.5529 1.1720 0.8706 1.0162 1.0928 
3 0.9951 1.6888 1.2242 0.9859 1.0377 1.1024 
4 1.0524 1.7109 1.3327 0.9085 1.1283 1.0925 
5 0.9860 1.8016 1.2538 0.9416 1.1571 1.0878 
6 1.0324 1.8120 1.2947 0.9919 1.0269 1.0683 
7 1.0868 1.9242 1.3524 1.0074 1.2763 1.1833 
8 1.1343 1.9540 1.4355 1.1520 1.2813 1.3253 
9 1.3654 2.0907 1.6119 1.2466 1.4883 1.5314 
B 1.6169 2.3133 1.9513 1.6617 1.6877 1.9448 

       
B-S 0.6550 1.0665 0.8194 0.6695 0.7200 1.0046 

t(B-S) (3.63) (4.85) (4.46) (3.82) (3.74) (4.76) 

       
Panel B. Equal-weighted      

 BETA SIZE BM MOM REV ILLIQ 

S 1.2682  1.2570  1.2422  1.2876  1.2622  1.1374  
2 1.3649  1.5809  1.3970  1.3896  1.4316  1.4497  
3 1.4390  1.7080  1.4175  1.5059  1.4968  1.4283  
4 1.4547  1.7528  1.4558  1.5384  1.5573  1.4270  
5 1.5132  1.8837  1.5126  1.5684  1.5953  1.5225  
6 1.5577  1.9117  1.5099  1.6783  1.7028  1.5755  
7 1.6666  2.0756  1.6433  1.7885  1.8291  1.7590  
8 1.9387  2.1083  1.8081  2.0293  2.0555  2.0420  
9 2.5383  2.3190  2.2018  2.4426  2.4146  2.6400  
B 4.3783  2.6289  3.7817  4.0332  3.9213  4.1382  

        
B-S 3.1102  1.3719  2.5395  2.7455  2.6591  3.0007  
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t(B-S) (11.80)  (5.98)  (11.38)  (11.68)  (10.69)  (9.60)  

Table VI 
Alphas of Portfolios Sorted on DD 

 
This table reports the alphas of the CAPM, the Fama-French 3-factor model, and the Carhart (1997) 4-
factor models for 10 portfolios based on DD. DD is the average of previous 24 EMDs (the Earth Mover's 
Distance). Each EMD non-parametrically measures the difference between two probability distributions 
using previous 12 months. Alphas are from a time series regression of the monthly returns on Rm-Rf, 
SMB, HML, and UMD as in Fama and French (1993) and Carhart (1997). The decile portfolios updated 
each month are formed by the sizes of DD statistics estimated using daily demeaned individual stock 
return over previous 36 months. Portfolio ‘S’ is the portfolio of stocks with the lowest DD, Portfolio ‘B’ is 
the portfolio of stocks with the highest DD, ‘S-B’ is the return difference between the lowest DD and 
highest DD portfolios, and t-statistics are reported in parentheses. The sample includes all firms listed in 
NYSE, AMEX, and NASDAQ from 1965 to 2012. 

Panel A. Value-weighted  

 CAPM Fama-French 3 Factor Carhart 4 Factor 

  Alpha Adj Rsq Alpha Adj Rsq Alpha Adj Rsq 
S 0.0340  0.7842  0.0001  0.8007 0.0179 0.8008 
2 0.1251  0.9276  0.1072  0.9278 0.1128 0.9277 
3 0.1326  0.9124  0.1223  0.9125 0.1216 0.9123 
4 0.1320  0.9293  0.0998  0.9307 0.0823 0.9308 
5 0.1628  0.9143  0.1205  0.9208 0.1513 0.9216 
6 0.0771  0.9073  0.0636  0.9112 0.1004 0.9123 
7 0.0699  0.9033  0.0703  0.9029 0.1357 0.9065 
8 0.2069  0.8384  0.1989  0.8517 0.2298 0.8521 
9 0.4358  0.7243  0.3899  0.7803 0.4516 0.7817 
B 0.5229  0.6214  0.3879  0.7808 0.4759 0.7835 

       
B-S 0.4889   0.3878   0.4580  

t(B-S) (2.27)    (2.40)   (2.85)  
                 

Panel B. Equal-weighted 

 CAPM Fama-French 3 Factor Carhart 4 Factor 
  Alpha Adj Rsq Alpha Adj Rsq Alpha Adj Rsq 

S 0.3674  0.6630  0.1647  0.7757  0.2342  0.7824  
2 0.5586  0.7789  0.2866  0.9217  0.3615  0.9262  
3 0.5765  0.7706  0.2861  0.9243  0.3591  0.9282  
4 0.5553  0.7807  0.2705  0.9295  0.3453  0.9337  
5 0.5952  0.7886  0.3073  0.9340  0.3932  0.9394  
6 0.6139  0.7877  0.3372  0.9351  0.4584  0.9461  
7 0.6756  0.7674  0.4104  0.9254  0.5867  0.9461  
8 1.0133  0.6909  0.7479  0.8782  0.9608  0.9026  
9 1.5882  0.5628  1.2600  0.7779  1.5466  0.8089  
B 3.6738  0.3635  3.3154  0.5696  3.6477  0.5938  

        
B-S 3.3064   3.1507   3.4136    

t(B-S) (10.80)    (11.66)    (12.86)    
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Table VII 
Firm-Level Cross-Sectional Return Regressions with DD and firm characteristics 

 
Each month, we run a firm-level cross-sectional regression of the one-month ahead return on DD and six 
control variables in the month. DD is the average of previous 24 EMDs (the Earth Mover's Distance). Each 
EMD non-parametrically measures the difference between two probability distributions using previous 12 
months. BETA is estimated by regressing each stock's daily return on the value weighted index return using 
the previous year's data. SIZE is the natural logarithm of the market value of equity of the company (in 
thousands of dollars) measured by times series average of a firm's market capitalization for the most recent 
12 months. BM is the book value of equity divided by its market value at the end of the last fiscal year. 
MOM is calculated as the return over the 11 months prior to that month. REV is the previous month’s stock 
return. ILLIQ by Amihud (2002) is measured as the ratio of the absolute monthly stock return to its dollar 
trading volume for each stock, scaled by 1,000. Each characteristic is defined in the Appendix. This table 
presents the time series average of the cross-sectional regression coefficients and corresponding t-statistics 
following methodology of Fama and MacBeth (1973). The sample includes all firms listed in NYSE, AMEX, 
and NASDAQ from 1965 to 2012. 
 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DD 0.3851  0.3507  0.3424  0.1889  0.3542  0.3991  0.3904  0.2557  

 (3.09) (2.97) (2.84) (2.18) (3.04) (3.26) (3.19) (3.16) 

BETA  0.0002       0.0015  

  (0.17)      (1.35) 

BM   0.0128      0.0118  

   (17.18)     (21.31) 

SIZE    -0.0018     -0.0008  

    (-4.62)     (-2.11)  

MOM     0.0044    0.0073  

     (2.59)   (5.76) 

REV      -0.0555   -0.0589  

      (-12.89)   (-16.65)  

ILLIQ       0.1143 -0.15376 

       (1.39) (-2.37)  

AdjRSQ 0.0062  0.0241  0.0157  0.0209  0.0184  0.0168  0.0080  0.0603  
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Table VIII  

Portfolios Returns Sorted on DD and Return Distribution Characteristics 
 
This table reports value-weighted and equal-weighted average monthly returns for portfolios based on DD 
and the return distribution characteristics. DD is the average of previous 24 EMDs (the Earth Mover's 
Distance). Each EMD non-parametrically measures the difference between two probability distributions 
using previous 12 months. In each case, we first sort the stocks into deciles using the return distribution 
characteristic. Within each characteristic decile, we sort stocks into ten additional portfolios based on DD and 
compute the returns on the corresponding portfolios over the subsequent month. This table presents average 
returns across the firm characteristic deciles. Portfolio ‘S’ is the portfolio of stocks with the lowest DD, 
Portfolio ‘B’ is the portfolio of stocks with the highest DD, ‘S-B’ is the return difference between the lowest 
DD and highest DD portfolios, and t-statistics are reported in parentheses. IDIOVOL is calculated as the 
standard deviation of the daily residuals in month t from the CAPM. SKEW is the historical third-order 
centralized moment using daily returns within year t. KURT is the fourth-order centralized moment. MAX is 
defined by the maximum daily return over the past month. Each characteristic is defined in the Appendix. 
The sample includes all firms listed in NYSE, AMEX, and NASDAQ from 1965 to 2012. 
 
Panel A. Value-weighted    

 IDIOVOL SKEWS KURT MAX 
S 1.0757  0.9038  0.9428  0.9338  

2 1.0266  1.0603  0.9953  0.9850  

3 1.1517  1.0402  1.0470  1.0022  

4 1.1103  1.0863  1.0659  1.0600  

5 1.0748  1.0998  1.0393  1.1229  

6 1.0925  1.1336  1.1088  1.0766  

7 1.2222  1.0369  1.0383  1.1082  

8 1.2115  1.1222  1.1742  1.2744  

9 1.2822  1.2251  1.1972  1.2403  

B 1.5098  1.6049  1.5531  1.6548  

      

B-S 0.4341  0.7012  0.6103  0.7210  

t(B-S) (4.66)  (3.32)  (2.75)  (5.40)  

    
Panel B. Equal-weighted    

 IDIOVOL SKEWS KURT MAX 
S 1.5688  1.1598  1.1137  1.3482  

2 1.6515  1.3890  1.3638  1.4355  

3 1.7391  1.4393  1.4030  1.4943  

4 1.7212  1.4579  1.4447  1.6349  

5 1.7981  1.5007  1.4944  1.7138  

6 1.9022  1.5508  1.4932  1.7872  

7 1.9650  1.6929  1.6350  1.9243  

8 2.0386  1.9308  1.9064  2.1395  

9 2.2184  2.6369  2.5170  2.4614  

B 2.6759  4.3965  4.7590  3.3339  

     

B-S 1.1071  3.2367  3.6453  1.9857  

t(B-S) (12.23) (11.48) (11.78) (11.71) 
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Table IX 
 Firm-Level Cross-Sectional Return Regressions with DD and Return Distribution characteristics 

Each month, we run a firm-level cross-sectional regression of the one-month ahead return on DD and return 
distribution characteristics as well as six control variables in the month. DD is the average of previous 24 
EMDs (the Earth Mover's Distance). Each EMD non-parametrically measures the difference between two 
probability distributions using previous 12 months. IDIOVOL is calculated as the standard deviation of the 
daily residuals in month t from the CAPM. SKEW is the historical third-order centralized moment using 
daily returns within year t. SSKEW is the systematic skewness of stock i in year t and ISKEW is the 
idiosyncratic skewness of stock i in year t. KURT is the fourth-order centralized moment. MAX is defined by 
the maximum daily return over the past month. Each characteristic is defined in the Appendix. This table 
presents the time series average of the cross-sectional regression coefficients and corresponding t-statistics 
following methodology of Fama and MacBeth (1973). The sample includes all firms listed in NYSE, AMEX, 
and NASDAQ from 1965 to 2012. 
  (1) (2) (3) (4) (5) (6) 

DD 0.2630  0.2891  0.2684  0.2626  0.3197  0.2719  

 
(3.86) (3.57) (3.35) (3.86) (3.78) (3.60) 

BETA 0.0012  0.0015  0.0015  0.0012  0.0014  0.0019  

 
(1.27) (1.38) (1.30) (1.29) (1.30) (1.84) 

BM 0.0117  0.0118  0.0117  0.0117  0.0118  0.0117  

 
(22.14) (21.43) (21.53) (22.15) (21.34) (21.69) 

SIZE -0.0007  -0.0009  -0.0008  -0.0007  -0.0008  -0.0008  

 
(-2.36)  (-2.29)  (-2.18)  (-2.36)  (-2.16)  (-2.40)  

MOM 0.0075  0.0076  0.0075  0.0074  0.0074  0.0073  

 
(5.94) (5.90) (5.99) (5.94) (5.81) (5.89) 

REV -0.0616  -0.0585  -0.0602  -0.0616  -0.0587  -0.0580  

 
(-17.48)  (-16.56)  (-17.08)  (-17.47)  (-16.64)  (-15.33)  

ILLIQ -0.1386  -0.1551  -0.1554  -0.1383  -0.1447  -0.1601  

 
(-2.37)  (-2.39)  (-2.43)  (-2.37)  (-2.24)  (-2.51)  

IDIOVOL 0.0020       

 
(0.09)      

SKEW  -0.00054     

 
 (-2.79)       

SSKEW   -0.0048      

 
  (-1.46)      

ISKEW    0.0024     

 
   (0.11)    

KURT     -0.0001    

 
    (-5.01)    

MAX      -0.01487 

 
     (-1.97)  

AdjRSQ 0.0671  0.0609  0.0627  0.0671  0.0610  0.0639  
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