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Inferring information from the S&P 500 and CBOE indices:
The more the merrier?

Abstract

The Chicago Board Options Exchange (CBOE) updated the CBOE Volatility Index (VIX) in

2003 and further launched the CBOE Skew Index (SKEW) in 2011, in order to measure the

30-day risk-neutral volatility and skewness of the S&P 500 Index (SPX). This paper mainly

compares the information extracted from the SPX and CBOE indices in terms of the SPX

option pricing performance. Based on our empirical analysis, VIX is a very informative index

for option prices. Whether adding the SKEW or the VIX term structure can improve the

option pricing performance depends on the model we choose. Roughly speaking, the VIX

term structure is informative for some models, while, the SKEW is very noisy and does not

contain much important information for option prices.

Keywords: SPX; VIX; SKEW; option pricing; term structure; MCMC; affine model.

JEL Classifications: G12; G13.
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1. Introduction

The Chicago Board Options Exchange (CBOE) introduced the old CBOE Volatility Index

(VXO) in 1993 to measure the market’s expectation of 30-day volatility implied by S&P 100

Index option prices. In 2003, the CBOE launched the new CBOE Volatility Index (VIX) by

supplying a script for replicating volatility exposure with a portfolio of the S&P 500 Index

(SPX) options. The new method estimates expected volatility by averaging the weighted

prices of SPX puts and calls over a wide range of strike prices. It is colloquially referred to

as the fear index or the fear gauge. Addition to the VIX, CBOE also published the 9-Day

Volatility Index (VIX9D), the 3-Month Volatility Index (VIX3M) and the 6-Month Volatility

Index (VIX6M) on the SPX Index.

Documented by Jiang and Tian (2005), the model-free volatility subsumes all information

contained in the Black-Scholes implied volatility and past realized volatility and is a more ef-

ficient forecast for the future realized volatility. Lin (2007) implements a generalized method

of moments (GMM) to estimate the model parameters in both physical and riskneutral prob-

ability measures by using the VIX and 5-minute-based integrated volatilities and documents

that the VIX is very informative for VIX futures prices. In order to avoid the computational

burden associated with option valuation, Duan and Yeh (2010) obtain the model parameters

and the latent stochastic volatility from the maximum likelihood estimates (MLEs) under a

jump-diffusion model. This takes the advantage that the VIX is a linear function of the latent

stochastic volatility, so that it is possible to obtain the joint likelihood function of the SPX re-

turn and the VIX. Furthermore, Zhu and Lian (2012); Kaeck and Alexander (2012) and Yang

and Kanniainen (2017) use the Markov chain Monte Carlo (MCMC) method to simultane-

ously estimate the model parameters in both physical and risk-neutral probability measures

and the latent variables by using the SPX and VIX data. Zhu and Lian (2012) and Yang and

Kanniainen (2017) infer information from the SPX and 30-day VIX indices under an affine

jump-diffusion model and non-affine Lévy model, respectively, while Kaeck and Alexander

(2012) extract the information from the SPX, 30-day VIX and 360-day VIX indices. All of

the above studies investigate pricing performance under the different continuous-time mod-

els calibrated by using the same data set. In contrast to them, we explore option pricing
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performance for the models calibrated by using the different data sets. Our studies raise

an important question of whether adding new index can really improve the option pricing

performance.

In order to capture the curve of implied volatilities with a shape of “smirk” or “skew”,

implied by the SPX option prices, the CBOE launched the CBOE Skew Index (SKEW)

in February 2011. The index value typically reflects trading activity of portfolio managers

hedging tail risk with options, to protect portfolios from a large, sudden decline in the market

(i.e., a black swan event or market crash). Similar to the VIX, the SKEW measures the

perceived tail risk of the distribution of SPX returns over a 30-day horizon by using the model-

free method in Bakshi, Kapadia, and Madan (2003). Zhang, Zhen, Sun, and Zhao (2017)

provide an exact formula for the skewness of stock returns implied in the Heston (1993) model

and separately use the SPX return, the CBOE VIX and SKEW term structures to calibrate

the model. Unfortunately, they do not study the option pricing performance after adding the

SKEW information. Recently, Liu and van der Heijden (2016) find that the estimation errors

of true skewness by using the CBOE SKEW method are very large. In this paper, we further

investigate whether adding the SKEW can improve models’ option pricing performance.

In this paper, we consider three typical models. The first model is the stochastic volatility

model with contemporaneous jumps in returns and volatility (SVCJ), which is the most

popular affine model in the literature, e.g., Bakshi, Cao, and Chen (1997); Eraker, Johannes,

and Polson (2003); Eraker (2004); Broadie, Chernov, and Johannes (2007); Lin and Chang

(2010); Duan and Yeh (2010); Neuberger (2012); Zhu and Lian (2011, 2012); Neumann,

Prokopczuk, and Simen (2016); Kaeck, Rodrigues, and Seeger (2017); Ruan and Zhang (2018);

Da Fonseca and Ignatieva (2019) and others. Bakshi et al. (1997); Eraker (2004); Broadie

et al. (2007) and Neumann et al. (2016) document that the SVCJ model is good enough to

fit options and returns data simultaneously. According to the empirical observation in Bates

(2006), i.e., more jumps occur during more volatile periods, we adopt the second model

from Bates (2006) and Aı̈t-Sahalia, Karaman, and Mancini (2015). The second model, the

SVCJ model with stochastic jump intensity, is labeled as “SCVJI”. The jump intensity is

a linear function of the spot variance. The SCVJI model is very popular in asset pricing,

e.g., Eraker and Shaliastovich (2008); Drechsler and Yaron (2010); Drechsler (2013) and Jin
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(2014). Recently, Du and Luo (2017) find that jump propagation (i.e., the phenomenon in

which the strike of one jump substantially raises the probability for more to follow) dominates

the jump risks from the joint time series of SPX and its options and use a two-factor Hawkes

jump-diffusion model to capture jump propagation. Therefore, the last model we consider is

the SVCJ model with Hawkes process (SVCJH). Du and Luo (2017) further document that

the SVCJH can explain well the pronounced smirk pattern in option implied volatility, which

is modelled as the SKEW in this paper.

As Kaeck and Alexander (2012) have documented that the SVCJ model with the stochas-

tic long-term level in the volatility (i.e., two-factor SVCJ model, labeled as J2-A2 in Kaeck

and Alexander (2012)) has larger out-of-sample option pricing errors than the SVCJ model

(labeled as J2-A1 in Kaeck and Alexander (2012)), in this paper, we do not consider the

two-factor SVCJ model. In Kaeck and Alexander (2012) and Yang and Kanniainen (2017),

even the models are non-affine, the close-form solution of the VIX can be obtained. However,

it is difficult to get an explicit SKEW formula under the non-affine models, as the SKEW

formula relies on the moment generating function (MGF) of the log SPX return, which can be

explicitly derived under affine models. In order to get the close-form solution for the SKEW,

we focus on the affine models in Duffie, Pan, and Singleton (2000) rather than the non-affine

models.

In line with Zhu and Lian (2012); Kaeck and Alexander (2012) and Yang and Kanniainen

(2017), we use MCMC method to calibrate the models as the MCMC method has sampling

properties superior to other methods documented in the literature. Comparing with the

MLEs in Duan and Yeh (2010), the MCMC method can handle more complex data, which

are no longer a linear function of latent variables, like option data in Eraker (2004) and

SKEW data in this paper. It allows us directly get the latent variables through the MCMC

procedure. Furthermore, Jacquier, Polson, and Rossi (2002) show that the MCMC method

works better than the MLEs in terms of estimating parameter of stochastic volatility models.

The main contribution in this paper is to newly investigate whether adding the VIX term

structure and SKEW data to a model can improve model’s option pricing performance. The

answer depends on the model we choose. Roughly speaking, the VIX is a very important

index for option prices, while SKEW is very noisy for option prices. Adding the VIX term

4



structure information to a model can improve the option pricing performance only for some

models.

The remainder of our article is organized as follows. Section 2 presents the framework.

Section 3 introduces the data. The details of the model calibration are shown in Section 4

and the empirical results are given in Section 5. Section 6 concludes. Appendix A collects

all proofs. Appendix B provides technical notes on MCMC with the CBOE SKEW and

Appendix C gives the fit of CBOE indices.

2. Framework

2.1 Affine models

In this paper, we collect three different affine models introduced in Duffie et al. (2000) in

order to eliminate the model bias. Under the physical probability measure P, at time t, the

S&P 500 Index (SPX), St, follows,

 dSt
St

= (r − q + φt) dt+
√
vtdWt,S + (ex − 1)dNt − λtmdt,

dvt = κ(θ − vt)dt+ σv
√
vtdWt,v + ydNt,

(1)

where r is risk free rate; q is the dividend yield and φt is the equity premium; Wt,S and

Wt,v are correlated Brownian motions with correlation ρ on a probability space (Ω,F ,P);

Nt is a Poisson process with jump intensity λt. The jump sizes x|y ∼ N(µx + ρJy, σ
2
x) and

y ∼ Exp(1/µy) with mean µy. In addition, m = E[(ex−1)] = eµx+σ
2
x/2

1−ρJµy −1. Following Broadie

et al. (2007), we assume φt = ηSvt + λtm− λQt mQ, where ηSvt is the Brownian contribution

to the equity premium; λtm− λQt mQ is the jump contribution; Q is the risk-neutral measure

and mQ = EQ[(ex − 1)].

For the jump intensity, we consider three cases as follows. (i) We first consider the

stochastic volatility model with contemporaneous jumps in returns and volatility (SVCJ) in

Eraker et al. (2003) and Broadie et al. (2007), i.e., λt ≡ λ1 which is a constant. This is the

most popular affine model in the literature, e.g., Bakshi et al. (1997); Lin and Chang (2010);

Duan and Yeh (2010); Zhu and Lian (2011, 2012); Neuberger (2012); Neumann et al. (2016)

and others. (ii) Bates (2006); Aı̈t-Sahalia et al. (2015) find that more jumps occur during
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more volatile periods and then they suggest that λt ≡ λ1 + λ2vt, where λ1 and λ2 are two

positive constants. We call the SVCJ model with stochastic jump intensity as SVCJI model.

(iii) Du and Luo (2017) document that the strikes of jumps substantially raise the probability

for more to follow (called “jump propagation”) dominates the jump risks from the joint time

series of SPX and its options and they propose a Hawkes process in the univariate case to

capture jump propagation. Alternatively, we assume the jump intensity satisfies the dynamic

dλt = β(λ∞ − λt)dt+ zdNt, (2)

where β > 0 is the constant rate of exponential decay; λ∞ is the constant reversion level; z

is the size of the self-excited jump, which can be viewed as independent random variable and

z ∼ Exp(1/µz) with mean µz. Equation (2) shows the jump propagation, i.e., λt ramps up in

response to the occurrences of jumps causing further jumps more likely to follow. We call the

SVCJ model with a Hawkes process as SVCJH model. A summary of model specifications is

given in Table 1.

Table 1: Summary of model specifications

Model Jump intensity (λt) Key references

SVCJ λ1
Eraker et al. (2003);

Broadie et al. (2007)

SVCJI λ1 + λ2vt

Eraker (2004); Bates

(2006); Aı̈t-Sahalia et al.

(2015); Bardgett et al.

(2018)

SVCJH Given in Equation (2) Du and Luo (2017)

Under the risk-neutral probability measure Q, the stock process becomes dSt
St

= (r − q) dt+
√
vtdW

Q
t,S + (ex − 1)dNt − λQt mQdt,

dvt = κQ
(
κθ/κQ − vt

)
dt+ σv

√
vtdW

Q
t,v + ydNt,

(3)

where WQ
t,S and WQ

t,v are correlated Brownian motions with correlation ρ on a probability
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space (Ω,F ,Q); Nt is a Poisson process with jump intensity λQt ; the jump sizes x|y ∼ N(µQx +

ρJy, σ
2
x), y ∼ Exp(1/µQy ) with mean µQy . In addition, mQ = EQ[ex−1] = eµ

Q
x+σ2x/2

1−ρJµQy
−1. Eraker

et al. (2003) and Eraker (2004) report statistically insignificant correlations between the two

jump sizes and find that µy and the correlation between the two jump sizes play a very

similar role. Broadie et al. (2007) further show that it is difficult to estimate the parameter

ρJ precisely. In the line with the literature, throughout this paper, we set ρJ = 0.

Following Broadie et al. (2007), we can further denote the diffusive volatility risk premium

ηv = κQ − κ, the price jump risk premium ηx = µx − µQx , the volatility jump risk premium

ηy = µQy − µy and the jump intensity risk premium as ηλ = λQt /λt. The jump intensity

specifications for three affine models under the risk-neutral probability measure Q therefore

are given in Table 2.

Table 2: Jump intensity in the risk-neutral measure

Model Jump intensity (λQt )

SVCJ λQ1 = ηλλ1.

SVCJI
λQ1 + λQ2 vt, where λQ1 = ηλλ1 and

λQ2 = ηλλ2.

SVCJH

dλQt = β(λQ∞ − λ
Q
t )dt+ zdNt, where

λQ∞ = ηλλ∞ and z ∼ Exp(1/µQz ) with mean

µQz = ηλµz.

2.2 CBOE indices

According to the CBOE VIX white paper and Duan and Yeh (2010),1 the CBOE VIX can

be expressed as

V IX2
t,τ =

2

τ
EQ
t

[∫ t+τ

t

(
dSu
Su
− d logSu

)]
=

1

τ
EQ
t

(∫ t+τ

t
vsds

)
+

2

τ

(
eµ

Q
x+σ

2
x/2 − 1− µQx

)
EQ
t

(∫ t+τ

t
λQs ds

)
,

1See https://www.cboe.com/micro/vix/vixwhite.pdf
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where τ = 30/365 for the 30-day VIX (VIX30) and τ = 1 for the 365-day VIX (VIX365).2

Expressions of the VIX for three different models are given in Appendix A.1.

The CBOE SKEW is derived from the price of S&P 500 skewness. According to CBOE

SKEW white paper and Bakshi et al. (2003),3 the risk-neutral skewness can be defined as

SKEWt,τ =

EQ
t

[(
Rt,t+τ − EQ

t [Rt,t+τ ]
)3]

(
EQ
t [
(
Rt,t+τ − EQ

t [Rt,t+τ ]
)2

]

)3/2
=

k3

k
3/2
2

, (4)

where the time to maturity τ = 30/365; Rt,t+τ = log St+τ
St

= Xt,+τ − Xt is the 30-day log-

return of the SPX and Xt = logSt; k2 and k3 are the risk-neutral second and third cumulants

of Rt,t+τ , respectively.

The moment generating function (MGF) of the log SPX at time t, f(ω, τ) = EQ
t [eωXt+τ ],

is given in Appendix A.2. Similarly, the MGF of the log SPX return, M(ω, τ) = EQ
t [eωRt,t+τ ],

is obtained by

M(ω, τ) = EQ
t [eωRt,t+τ ] = e−ωXtEQ

t [eωXt+τ ] = e−ωXtf(ω, τ). (5)

The cumulant generating function (CGF) of Rt+τ is the log of the MGF, i.e.,

K(ω, τ) = logEQ
t [eωRt+τ ] = logM(ω, τ) = log f(ω, τ)− ωXt. (6)

Based on that, the cumulants can be calculated by using the CGF,

kn =
∂nK(ω, τ)

∂ωn

∣∣∣∣
ω=0

, n = 2, 3. (7)

For example, under the SVCJH model, the CGF of Rt+τ in (6) becomes

K(ω, τ) = A(ω, τ) +B(ω, τ)vt + C(ω, τ)λQt , (8)

2Note that the terms, VIX and VIX30, are often used synonymously throughout this paper.
3See https://www.cboe.com/micro/skew/documents/skewwhitepaperjan2011.pdf
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and the second and third cumulants of Rt,t+τ in (7) can be represented by

k2 = A2 +B2vt + C2λ
Q
t , k3 = A3 +B3vt + C3λ

Q
t , (9)

where Zi = ∂iZ(τ,ω)
∂ωi

∣∣∣
ω=0

for = {A,B,C} and i = {2, 3}.

Finally, the CBOE SKEW (4) under the SVCJH model can be solved as

SKEWt,τ =
k3

k
3/2
2

=
A3 +B3vt + C3λ

Q
t(

A2 +B2vt + C2λ
Q
t

)3/2 . (10)

Similar formulas can be obtained for the SVCJ and SVCJI models by using the corresponding

MGF given in Appendix A.2.

We use central finite differences to approximate A2, B2, C2, A3, B3 and C3 with the spacing

of 0.01 for ω. For example, A2 and A3 can be approximated as

A2 =
∂2A(ω, τ)

∂ω2

∣∣∣∣
ω=0

≈ A(−d, τ) +A(d, τ)

d2
,

A3 =
∂3A(ω, τ)

∂ω3

∣∣∣∣
ω=0

≈
−1

2A(−2d, τ) +A(−d, τ)−A(d, τ) + 1
2A(2d, τ)

d3
,

where d = 0.01. Given τ = 30/365, A(−0.02, τ), A(−0.01, τ), A(0.01, τ) and A(0.02, τ) can

be easily calculated from Equations (26)–(28) in Appendix A.2.

3. Data

3.1 S&P 500 and CBOE indices

The S&P 500 Index (SPX) is downloaded from Bloomberg and the CBOE indices are ob-

tained from the CBOE. Throughout this paper, we use the converted (actual) value for CBOE

indices. In detail, the VIX is divided by 100 and the SKEW is taking the difference between

100 and the CBOE SKEW and then divided by 10. This paper mainly focuses on the risk-

neutral information extracted from the one-month VIX (VIX30), the one-year VIX (VIX365)

and the one-month SKEW. For the VIX30, we directly use the CBOE VIX, while for the

VIX365, we calculate from option data as the VIX term structure data are available after 24
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November 2010. In order to improve the computing accuracy, for each maturity, we interpo-

late implied volatilities using a cubic spline across moneyness levels to obtain a continuum

of implied volatilities. For moneyness levels above or below the available moneyness level in

the market, we use the implied volatility of the highest or lowest available strike price. After

implementing this interpolation-extrapolation technique, we get a fine grid of one thousand

implied volatilities for moneyness levels between 0.01% and 300%. Using the Black–Scholes

formula, we then convert the implied volatilities into the corresponding option prices. Given

these option prices, we apply the CBOE method given in the CBOE VIX white paper to

compute the near-term and far-term VIX365. Linear interpolation between maturities is

used to calculate the moments at a fixed 365-day horizon. Option data are obtained from

Ivy DB database provided by OptionMetrics.

All indices are from 02 January 1996 to 29 April 2016, which are consistent with the option

data period. In order to study the out-of-sample pricing performance, we divide the sample

into two subsamples: 02 January 1996 – 31 December 2014 (in-sample) and 02 January 2015

– 29 April 2016 (out-of-sample). The descriptive statistics of the SPX, index returns, VIX30,

VIX365 and SKEW are summarized in Table 3 and their time series are plotted in Figure 1.

Table 3: Descriptive statistics of the SPX, index returns, VIX30, VIX365 and
SKEW. Data are from 02 January 1996 to 29 April 2016.

1996-2014 (In-sample) 2015-2016 (Out-of-sample)

Mean Std.dev. Min. Median Max. Mean Std.dev. Min. Median Max.

Index level ($) 1220.27 291.81 598.48 1210.75 2090.57 2041.92 70.11 1829.08 2064.12 2130.82

Daily return (%) 0.0251 1.2463 -9.4695 0.0678 10.9572 0.0009 0.9949 -4.0211 -0.0159 3.8291

VIX30 (%) 21.21 8.42 9.89 19.73 80.86 17.22 4.49 11.95 15.62 40.74

VIX365 (%) 23.03 6.00 22.56 13.45 54.09 21.54 2.05 21.07 18.31 27.56

SKEW -1.83 0.62 -4.62 -1.78 -0.41 -2.73 0.68 -4.65 -2.58 -1.38
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Figure 1: Time series of the SPX, index returns, VIX30, VIX365 and CBOE
SKEW. Data are from 02 January 1996 to 29 April 2016.

Table 3 shows that the standard deviation of the daily return is 1.2463% during the in-

sample period, which can be converted to annualized standard deviation, 1.2463%×
√

252 =

19.7844%. Furthermore, the average daily return of the SPX is 0.0251% from 1996 to 2014,

while the average daily return decreases to 0.0009% from 2015 to 2016. The more recent

data of the SPX have a lower average daily return. Similarly, the average VIX30 decreases

from 21.21% (1996–2014) to 17.22% (2015–2016). For the in-sample VIX data, the average

VIX365 is higher than the average VIX30. This leads to the term structure of the VIX.

Figure 1b and Figure 1c plot the dynamics of the VIX30 and VIX365, respectively. Roughly

speaking, the peaks occur during the periods of financial crises. For example, the maximum

of the VIX30, 80.86%, is on 20 November 2008 (i.e., Financial crisis of 2008). Based on

the minimum and maximum of the SKEW, we find that the SKEW is always negative from

1996 to 2016. This is verified by the time series of the SKEW in Figure 1d. The average

SKEW during the out-of-sample period is −2.73, which is more negative than the average
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SKEW during the in-sample period. On 20 November 2008, the VIX30 sharply peaks to the

maximum, while the value of the SKEW is only −1.493. This indicates that the VIX and

SKEW seem to delivery different information in the financial market.

Table 4: Our VIX365 v.s. CBOE VIX365. Data are from 24 November 2010 to 30
April 2016.

Mean Std.dev. Min. Median Max. Corr.

CBOE VIX365 22.56 4.39 21.46 16.05 39.91
1.00

Our VIX365 22.55 4.21 21.49 16.66 38.95

Additionally, a comparison of our VIX365 and the CBOE VIX365 is given in Table 4.

As the VIX term structure data are available only after 24 November 2010, we calculate the

VIX365 from option data by using the interpolation-extrapolation technique. For the period

from 24 November 2010 to 30 April 2016, our VIX365 and the CBOE VIX365 have very close

descriptive statistics and their correlation reaches 1.00. Their time series given in Figure

1c document that our VIX365 can dynamically match the CBOE VIX365 very well. This

comparison highlights the accuracy of our VIX365, compared with the CBOE VIX365.

3.2 Options

Option data are obtained from Ivy DB database provided by OptionMetrics. Firstly, we filter

out options whose prices are less than 3/8 or violate arbitrage bounds, or the bid prices are

zero or higher than its ask prices. Secondly, we only keep options with nonzero vega and

nonzero trading volume. Thirdly, we keep options with days to maturity (DTM) between

7 and 365 days and moneyness (F/K) between 0.9 to 1.1, where K is strike price and the

forward price F = e(r−q)τS. Fourthly, we only keep the sample if the computed implied

volatility is less than 5% differ to the implied volatility from the Ivy DB database. Finally,

we use the Wednesday call and put index options in order to avoid weekend effects. After

filtering, 147,203 options are left from 1996 to 2014, and 61,262 options are left from 2015

to 2016. Number of option contracts, option prices and implied volatility by maturity and

moneyness are given in Table 5.
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Table 5: Number of option contracts, option prices and implied volatility by
maturity and moneyness. Option data are obtained from Ivy DB database provided by
OptionMetrics and the sample perod is from 02 January 1996 to 29 April 2016.

1996-2014 (In-sample, 147,203 options) 2015-2016 (Out-of-sample, 61,262 options)

(F/K)\DTM ≤ 30 30-90 90-180 180-250 > 250 ≤ 30 30-90 90-180 180-250 > 250

Panel A: Number of option contracts

≤ 0.96 2830 17446 5450 2012 2117 ≤ 0.96 2344 7587 1661 297 444

0.96-0.98 3286 10203 2527 899 977 0.96-0.98 2825 3871 564 107 158

0.98-1.02 8176 26110 6655 2372 2472 0.98-1.02 7177 8588 1553 351 490

1.02-1.04 3223 9571 2389 997 1050 1.02-1.04 3071 3200 485 102 166

1.04-1.06 2737 7849 2062 818 871 1.04-1.06 2499 2964 439 113 102

> 1.06 3877 12172 3321 1376 1358 > 1.06 3749 5190 774 167 224

Panel B: Average option prices

≤ 0.96 13.83 18.96 33.81 49.54 59.88 ≤ 0.96 26.96 16.47 29.23 52.62 83.25

0.96-0.98 14.96 26.60 47.99 67.99 81.10 0.96-0.98 23.04 31.94 59.28 89.46 118.76

0.98-1.02 21.77 33.08 54.05 72.68 88.39 0.98-1.02 29.36 46.28 73.48 102.21 126.40

1.02-1.04 24.33 33.99 52.64 68.98 83.79 1.02-1.04 35.88 45.37 75.40 101.97 126.65

1.04-1.06 23.90 32.26 51.21 63.99 79.80 1.04-1.06 35.52 37.17 66.80 98.68 109.13

> 1.06 18.57 27.59 46.01 60.40 71.74 > 1.06 25.50 26.99 56.63 86.08 99.03

Panel C: Average option implied volatility (%)

≤ 0.96 17.57 16.56 16.66 17.46 17.92 ≤ 0.96 14.89 12.11 12.01 13.80 14.99

0.96-0.98 14.21 15.99 17.60 18.55 18.97 0.96-0.98 12.86 13.04 14.69 15.93 16.95

0.98-1.02 15.34 17.39 18.55 19.23 19.47 0.98-1.02 15.07 15.60 16.46 16.80 17.47

1.02-1.04 17.89 19.31 19.81 19.78 19.60 1.02-1.04 17.96 17.84 18.09 18.17 18.72

1.04-1.06 19.95 20.55 20.49 20.57 20.39 1.04-1.06 19.86 19.21 19.12 18.63 19.00

> 1.06 22.98 22.47 21.69 21.61 21.11 > 1.06 22.75 21.02 20.29 20.20 20.48

From Panel A, Table 5, we find that at-the-money (ATM) options are the most popular.

For example, for the in-sample period, the total number of ATM option contracts are 45,785,

which is around one third of the total data sample. Furthermore, more than half of option

contracts are with DTM between 30 to 90 days. Panel B, Table 5 gives the average option

prices varying from 13.83 to 126.65. Panel C, Table 5 shows the average Black–Scholes implied

volatility by maturity and moneyness. It straightforwardly describes the implied volatility

surface. For example, during 1996 to 2014, the average implied volatility from the shot-term

options (i.e., DTM≤ 30) has a very steep U-shape smirk with a slope of 8.77 (= 22.98−14.21).

The shape of the average implied volatility from the long-term options (i.e., DTM≥ 250) is

flatter, with a slope of 3.19 (= 21.11 − 17.92). The average implied volatility for the in-

sample options is 18.37%, which is quite close to the annualized volatility of the SPX returns

(19.78%).
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4. Estimation method

Following Eraker (2004); Kaeck and Alexander (2012); Yang and Kanniainen (2017) and

others, we use the Markov Chain Monte Carlo (MCMC) method to simultaneously estimate

parameters in both physical and risk-neutral measures and the latent variables. We use the

SVCJH model as an example to demonstrate the discretization of our model. First, we give

the discretized process by using the Euler scheme,


logSt+h − logSt =

(
r − q + φt − 1

2vt − λtm
)
h+
√
vthεt,S + xtbt,

vt+h = vt + κ (θ − vt)h+ σv
√
vthεt,v + ytbt,

λt+h = λt + β(λ∞ − λt)h+ ztbt,

(11)

where h = 1/252, φt = ηSvt + λtm − λQt mQ, εt,S , εt,v ∼ N(0, 1), Corr(εt,S , εt,v) = ρ, xt ∼

N(µx, σ
2
x), yt ∼ Exp(1/µy), zt ∼ Exp(1/µz), bt ∼ Bernoulli(λth). Furthermore, we consider

the CBOE indices as additional inputs,

log IMarket
t,τ = log IModel

t,τ + εt, εt+1 ∼ N
(
ρεεt, σ

2
ε,

)
, (12)

where inputs It can be V IX2
t,30, {V IX2

t,30,−SKEWt,30} or {V IX2
t,30, V IX

2
t,360}. As the

SKEW is always negative, we use positive value of the SKEW as inputs, in order to guarantee

the pricing errors being log-normal following Eraker (2004); Kaeck and Alexander (2012) and

Yang and Kanniainen (2017).

Denote Θ = {ηS , µx, σx, κ, θ, σv, ρ, µy, β, λ∞, µz, µQx , κQ, µQy , ηλ; ρε, σε} as the parameter

set that we want to estimate. Denote S = St
∣∣t=T
t=0

, I = It
∣∣t=T
t=0

as the observed data and

D = {St, It}. Denote v = vt
∣∣t=T
t=0

and λ = λt
∣∣t=T
t=0

as the hidden state variables.4 Then the

posterior distribution function can be expressed as

p(Θ,v,λ|D) ∝ p(Θ,v,λ,D) ∝ p(D|Θ,v,λ)p(Θ,v,λ)

∝ p(D|Θ,v,λ)p(v,λ|Θ)p(Θ).

If we assume conditional independence among the observed data, we can further simplify the

4Actually, εt
∣∣t=T
t=0

is also a hidden state variable.
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previous expression as

p(Θ,v,λ|D) ∝ p(D|Θ,v,λ)p(v,λ|Θ)p(Θ)

∝ p(S|Θ,v,λ)p(VIX|Θ,v,λ)p(v,λ|Θ)p(Θ)

∝
T∏
t=1

p(St|Θ, vt, λt)
T∏
t=1

p(It|Θ, vt, λt)p(v,λ|Θ)p(Θ).

We can use further simplify p(v,λ|Θ) using filter method. Notice that

p(vt, vt−1, λt, λt−1|Θ) ∝ p(vt, λt|vt−1, λt−1,Θ)p(vt−1, λt−1|Θ)

and

p(vt, λt|vt−1, λt−1,Θ) ∝ p(vt|λt, vt−1,Θ)p(λt|λt−1,Θ).

So the term p(v,λ|Θ) can be rewritten as

p(v,λ|Θ) ∝ p(v0, λ0|Θ)

T∏
t=1

p(vt, λt|vt−1, λt−1,Θ)

∝ p(v0, λ0|Θ)

T∏
t=1

p(vt|λt, vt−1,Θ)p(λt|λt−1,Θ).

Therefore, the posterior distribution function can be divided into smaller pieces as

p(Θ,v,λ|D)

∝ p(v0, λ0|Θ)p(Θ)
T∏
t=1

p(St|Θ, vt, λt)p(It|Θ, vt, λt)p(vt|λt, vt−1,Θ)p(λt|λt−1,Θ)

∝ p(v0, λ0,Θ)
T∏
t=1

p(St|Θ, vt, λt)p(It|Θ, vt, λt)p(vt|λt, vt−1,Θ)p(λt|λt−1,Θ).

Hence, in order to use the posterior distribution, we need to specify the prior distribution

p(v0, λ0,Θ) and use the MCMC method to sample the posterior distribution. We choose prior

distribution p(v0, λ0,Θ) that is identical to the one in Eraker et al. (2003) or use a similarly

uninformative distribution according to Johannes and Polson (2009).
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5. Empirical results

5.1 Parameter estimation and goodness of fit

Denote the observed data sets as D0 = {St, V IX2
t,30}, D1 = {St, V IX2

t,30, V IX
2
t,365} and

D2 = {St, V IX2
t,30,−SKEWt,30}. For each data set, we run the MCMC algorithm for 100,000

iterations, discarding the first 10,000 as a burn-in-period to achieve the convergence of the

chain. Additionally, in order to study the goodness of fit of the models, we calculate the

Deviance Information Criterion (DIC) for each model. The explicit expression of the DIC

can be found in Appendix C in Yang and Kanniainen (2017). The DIC uses log-likelihoods

to measure goodness of fit. A lower DIC indicates that a model has better goodness of fit.

Table 6 gives the parameter estimates using different data sets.

The parameter estimates vary across different models and data sets. The price jump size

µx varies from −0.0150 to −0.608 and its volatility σx varies from 0.0178 to 0.0451. The

annualized jump mean in volatility reaches around 5%. The jump intensity for the SVCJ

model is 1.0349 using D0, 0.4626 using D1 and 1.1264 using D2. In other words, jumps occur

once a year or two years. Our jump parameters are consistent with Eraker et al. (2003); Eraker

(2004); Zhu and Lian (2012); Kaeck and Alexander (2012). In line with Egloff, Leippold, and

Wu (2010); Kaeck and Alexander (2012); Bardgett et al. (2018), the correlation estimate, ρ,

is around −0.8. The equity premium contributed from the volatility ηS varies from −0.0552

to −0.2446. The negative sign is consistent with Du and Luo (2017). According to the

equilibrium model in Ruan and Zhang (2018), ηS should be positive. Actually ηS estimates

are very noisy with large standard deviations (which are almost the same as the absolution

values of the estimates). In line with Du and Luo (2017), ηS is difficult to be estimated.

Most of the diffusive volatility risk premiums, ηv = κQ−κ, are positive in our calibrations

varying from 0.2245 to 8.9144, except for the SVCJI model using D1. This strongly supports

the negative variance risk premium in the empirical VIX and variance swaps literature, e.g.,

Egloff et al. (2010); Bardgett et al. (2018). Consistent with the equilibrium model in Ruan

and Zhang (2018), the price jump risk premium ηx = µx − µQx and the volatility jump risk

premium ηy = µQy −µy are all positive and the jump intensity risk premium ηλ = λQt /λt > 1.

In other words, jumps contribute very large part of the negative variance risk premium, e.g.,
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Todorov (2010); Bollerslev and Todorov (2011); Li and Zinna (2018).

Table 6: Parameter estimates using different data sets. Data are from 02 January
1996 to 31 December 2014. We discard the first 10,000 runs as a “burn-in” period and
use the last 100,000 iterations in MCMC simulations to estimate model parameters. For
each parameter to be estimated, we use the similar priors, that is identical to Eraker et al.
(2003) or use a similarly uninformative distribution according to Johannes and Polson (2009).
Specifically, we take the mean of the posterior distribution as the parameter estimate and
the standard deviation of the posterior as the standard error in parentheses.

ηS µx σx κ θ σv ρ µy (β) λ1 (λ∞) λ2 (µz) µQ
x κQ µQ

y ηλ DIC

Panel A: Parameter Estimates using D0 (benchmark)

SVCJ Model

-0.1861 -0.0374 0.0267 5.0043 0.0084 0.4796 -0.7718 0.0501 1.0349 -0.0659 1.0181 0.0501 1.0177 -65140

(0.1787) (0.0038) (0.0035) (0.4612) (0.0010) (0.0004) (0.0065) (0.0058) (0.0504) (0.0008) (0.0179) (0.0058) (0.0201)

SVCJI Model

-0.1666 -0.0390 0.0574 5.8089 0.0092 0.4488 -0.7886 0.0405 0.3563 23.6781 -0.0852 3.8548 0.0746 1.1104 -67080

(0.1625) (0.0077) (0.0238) (0.4814) (0.0007) (0.0079) (0.0060) (0.0048) (0.0355) (2.5290) (0.0085) (0.4926) (0.0228) (0.0521)

SVCJH Model

-0.1775 -0.0328 0.0179 9.9404 0.0195 0.4996 -0.7302 0.0463 5.5258 0.0502 4.7808 -0.2020 1.0260 0.2931 1.0711 -71460

(0.1731) (0.0053) (0.0045) (0.0576) (0.0003) (0.0004) (0.0078) (0.0083) (0.4846) (0.0002) (0.1702) (0.0096) (0.0257 ) (0.0076) (0.0493)

Panel B: Parameter Estimates using D1.

SVCJ Model

-0.2446 -0.0608 0.0338 3.0140 0.0207 0.4784 -0.8430 0.0675 0.4626 -0.1018 1.6324 0.0727 1.0618 -67118

(0.2265) ( 0.0093 ) (0.0092) (0.2896) (0.0021) (0.0016 ) (0.0119 ) (0.0190) (0.0630) (0.0131 ) (0.0271 ) (0.0028 ) (0.0654)

SVCJI Model

-0.0552 -0.0321 0.0274 4.8301 0.0124 0.3824 -0.8645 0.0279 0.1191 43.9284 -0.0282 5.1670 0.0885 1.0254 -70405

(0.0541) ( 0.0035 ) (0.0019) (0.0264) (0.0005) (0.0070 ) (0.0049 ) (0.0029) (0.0308) (4.0979 ) (0.0074 ) (0.0241 ) (0.0034 ) (0.0100)

SVCJH Model

-0.1427 -0.0573 0.0451 3.0242 0.0083 0.4995 -0.8166 0.0571 3.0061 0.0503 4.1319 -0.0573 2.7997 0.0751 1.1643 -84022

(0.1379) ( 0.0063 ) (0.0058) (0.0242) (0.0007) (0.0007 ) (0.0050 ) (0.0059) (0.0059) (0.0004) (0.5300) (0.0063 ) (0.0003) (0.0053 ) (0.0920)

Panel C: Parameter Estimates using D2

SVCJ Model

-0.1440 -0.0453 0.0415 3.3845 0.0138 0.5759 -0.9153 0.0464 1.1264 -0.0593 1.0191 0.0464 1.0197 -66748

(0.1434) ( 0.0053 ) (0.0033 ) (0.3726) (0.0017) (0.0201 ) (0.0026 ) (0.0058) (0.1089) (0.0040 ) (0.0204 ) (0.0058 ) (0.0194)

SVCJI Model

-0.7103 -0.0150 0.0178 3.3064 0.0158 0.3269 -0.5948 0.0083 0.2201 36.9487 -0.0358 2.0683 0.2437 1.0301 -69141

(0.2384) ( 0.0004 ) (0.0019) (0.4831) (0.0021) (0.0099 ) (0.0221 ) (0.0019) (0.0286) (3.7363 ) (0.0049 ) (0.6949 ) (0.0049 ) (0.0258)

SVCJH Model

-0.2090 -0.0352 0.0305 9.9294 0.0206 0.4989 -0.7135 0.0466 4.9662 0.0501 4.9037 -0.1913 1.0580 0.2950 1.1933 -82324

(0.1910) ( 0.0078 ) (0.0363) (0.1729) (0.0004) (0.0078 ) (0.0112 ) (0.0088) (1.3903) (0.0012) (0.0907) ( 0.0162 ) (0.0524) (0.0253 ) (0.0927)

According to DIC values, we find that the SVCJH model outperforms among three typ-

ical models using different data sets. Furthermore, in order to separately get the matching

performance for the three CBOE indices, following Equation (12), we compute the root mean

square errors (RMSE) of inputs as

RMSEI = 100%×
√

1

N

∑
t

(
log
(
Ît

)
− log (It)

)2
, (13)

where It is the market data and Ît is calculated based on the model. It can be V IX2
t,30, V IX

2
t,365

and −SKEWt,30.
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Table 7: RMSE of V IX2
t,30, V IX

2
t,365 and −SKEWt,30. The RMSEs of CBOE indices

that are not as inputs for the calibration are given in parentheses. Data are from 02 January
1996 to 31 December 2014.

VIX30 VIX365 SKEW

SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH

D0 12.30 2.26 1.63 (42.30) (30.03) (95.89) (67.10) (46.42) (14.98)

D1 9.63 37.22 2.03 29.49 14.30 3.92 (62.79) (67.83) (47.49)

D2 10.55 49.16 2.09 (53.40) (513.05) (110.60) 49.01 23.02 11.02

All RMSEs are given in Table 7.5 The RMSEs of CBOE indices that are not as inputs for

the calibration are given in parentheses. Table 7 actually reveals two important hypotheses.

(i) If the VIX30 can capture well the short-term option information, then estimated by

using different data sets (i.e., D0,D1 and D2), the SVCJH model will outperform in

terms of pricing short-term options (i.e., DTM≤ 30);

(ii) If the VIX30 and the VIX365 can capture well the option volatility surface, then SVCJH

model will outperform in terms of pricing options (e.g., the SVCJH estimated by using

D1 will be better than the SVCJI estimated by using D0).

The first hypothesis is due to the fact that the SVCJH model has the lowest RMSE

among three models estimated by using different data sets. Estimated by using D0, the

RMSEs of the VIX30 and VIX365 under the SVCJI are 2.26% and 30.03%, respectively.

After adding the VIX365, the RMSEs of the VIX30 and VIX365 under the SVCJH are 2.03%

and 3.92%, respectively. If the VIX30 and the VIX365 can capture well the option volatility

surface, according to their RMSEs, then SVCJH model should outperform in terms of pricing

options. Finally, through comparing option pricing performance, we can verify the following

three hypotheses.

(iii) If the VIX365 is informative for option prices, adding the VIX365 can increase all

models’ option pricing performance;

5Time series of the model-implied CBOE indices are given in Appendix C.
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(iv) If the SKEW is informative for option prices, adding the SKEW can increase all models’

option pricing performance;

(v) If the VIX365 is more informative than the SKEW for option prices, models’ option

pricing performance using D1 will be overall better than using D2.

5.2 Option pricing performance

In order to test the above five hypotheses, in this section, we investigate the option pricing

performance under different models estimated by using different data sets. First of all, in line

with Kaeck and Alexander (2012); Yang and Kanniainen (2017), we compute the root mean

square errors scaled by the Black–Scholes vegas (VRMSEs) as

VRMSE = 100×

√√√√ 1

N

∑
t,i

(
ĉ(Tt,i,Kt,i)− c(Tt,i,Kt,i)

V(Tt,i,Kt,i)

)2

, (14)

where c(Tt,i,Kt,i) is the market option price at time t for particular maturity Tt,i and strike

price Kt,i; ĉ(Tt,i,Kt,i) is the model-implied price and V(Tt,i,Kt,i) is the Black–Scholes vega;

N is the total number of options during the corresponding sample period. The model-implied

prices are calculated by using the fast Fourier transform (FFT) in Carr and Madan (1999),

see Appendix A.3.

5.2.1 In-sample performance

Following Equation (14), we calculate the VRMSEs by moneyness and maturity using the

information from the SPX and CBOE indices during the in-sample period from 1996 to 2014.

The results are given in Table 8.
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Table 8: In-sample VRMSEs by moneyness and maturity using the information
from S&P 500 and VIX30 indices. Data are from 02 January 1996 to 31 December 2014.

D0 D1 D2

SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH

Panel A: Overall

2.94 2.02 4.40 2.54 3.31 2.53 2.84 7.08 4.72

Panel B: Sorting by moneyness

≤ 0.96 4.07 2.84 5.73 3.67 5.01 3.72 3.42 9.54 6.19

0.96-0.98 2.93 2.11 4.35 2.62 3.50 2.80 2.61 6.51 4.65

0.98-1.02 2.53 1.65 3.98 2.14 2.87 2.23 2.42 6.12 4.27

1.02-1.04 2.54 1.52 3.93 2.03 2.45 1.89 2.76 6.15 4.19

1.04-1.06 2.47 1.65 3.82 1.98 2.25 1.73 2.85 6.27 4.09

> 1.06 2.40 1.88 3.86 1.95 2.04 1.62 3.01 6.62 4.14

Panel C: Sorting by time to maturity

≤ 30 3.12 2.10 1.77 2.90 4.16 2.55 2.61 4.16 1.75

30-90 2.85 1.93 2.89 2.59 3.59 2.18 2.65 5.94 3.02

90-180 2.61 1.97 5.37 2.03 1.90 2.53 2.81 10.89 5.84

180-250 3.11 2.26 7.91 2.14 1.47 3.48 3.48 9.65 8.85

> 250 3.69 2.52 10.11 2.44 1.61 4.05 4.21 7.99 10.74

First, comparing VRMSEs of short-term options (i.e., DTM≤ 30), we indeed find that

the SVCJH model has the lowest VRMSEs across different data sets (i.e., D0,D1 and D2).

It seems that the VIX30 indeed provides very informative short-term option information.

Second, the overall VRMSE of the SVCJH estimated by using D1 is larger than the overall

VRMSE of the SVCJI estimated by using D0, i.e., 2.53% v.s. 2.02%. This shows that the

VIX30 and VIX365 may not capture well the option volatility surface. This may be caused

by the definition of the VIX, that is the aggregate volatility across different moneyness.

Furthermore, the inconsistence may be also due to the calculation errors, e.g., Liu and van der

Heijden (2016). The VIX is not the same as the Black–Scholes implied volatility. Third,

comparing VRMSEs using D0 and D1, there is a big decrease in the SVCJ and SVCJH

models, however, the SVCJI model has larger VRMSEs after adding VIX365. The answer

of whether the VIX365 is informative for option prices depends on the model we choose.

Actually, the SVCJI model estimated by using only the SPX and VIX30 works best among

three models and three data sets. Fourth, comparing VRMSEs using D0 and D2, adding the

SKEW can significantly increase VRMSEs for the SVCJI and SVCJH models. The SVCJ

model almost does not change. Roughly speaking, the SKEW is very nosy index for option

prices. This is consistent with Liu and van der Heijden (2016) who find that the estimation

errors of true skewness by using the CBOE SKEW method are very large. Finally, comparing
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VRMSEs using D1 and D2, we conclude that VIX365 is more informative than SKEW for

option prices.

5.2.2 Out-of-sample performance

For the out-of-sample performance assessment, given the parameter estimates calibrated for

the period from 1996 to 2014, we need to filter out the unobservable latent state variables

vt and λt. Following Kaeck and Alexander (2012), we fix the model parameters from the

in-sample estimation and input the market data in order to obtain draws from the MCMC

procedure. Using the out-of-sample latent state variables vt and λt and the model parame-

ters from the in-sample estimation, we calculate the option prices by using the fast Fourier

transform (FFT) in Carr and Madan (1999) and compute the VRMSEs following Equation

(14). The out-of-sample VRMSEs are presented in Table 9.

Table 9: Out-of-sample VRMSEs by moneyness and maturity using the informa-
tion from S&P 500 and VIX30 indices. Data are from 02 January 2015 to 29 April
2016.

D0 D1 D2

SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH

Panel A: Overall

3.96 1.82 3.67 2.61 3.00 2.35 2.34 6.04 3.96

Panel B: Sorting by moneyness

≤ 0.96 6.90 2.63 6.08 4.33 4.99 3.69 3.32 9.08 6.58

0.96-0.98 3.75 1.67 3.44 2.68 3.51 2.47 2.32 5.06 3.66

0.98-1.02 2.79 1.23 2.89 1.85 2.21 1.79 1.82 5.36 3.10

1.02-1.04 2.46 1.29 2.47 1.63 1.80 1.60 1.87 5.07 2.66

1.04-1.06 2.63 1.94 2.38 2.00 1.88 1.92 2.32 4.68 2.54

> 1.06 2.06 1.85 2.28 1.63 1.38 1.62 2.00 4.30 2.45

Panel C: Sorting by time to maturity

≤ 30 3.96 2.13 1.68 2.74 3.49 2.57 2.27 5.10 1.72

30-90 4.02 1.69 3.11 2.63 2.92 2.11 2.24 5.86 3.34

90-180 3.83 1.50 6.20 2.26 1.85 2.16 2.54 9.24 6.80

180-250 3.49 1.09 8.33 1.84 1.03 3.08 2.94 7.41 9.20

> 250 3.64 0.88 10.40 1.81 0.91 3.53 3.61 6.26 11.11

Compared with Table 8, there are two new messages obtained in Table 9. First, Panel C,

Table 9 shows that the SVCJI model works very well in terms of pricing long-term options

(i.e., DTM> 250) even calibrated by using the SPX and VIX30 only (i.e., D0). Second,

overall, for all models and data sets, the out-of-sample option pricing performance is better

than the in-sample option pricing performance.
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5.3 Volatility smirk

Following Yang and Kanniainen (2017), we also calculate the implied volatility root mean

square errors (IVRMSEs) as

IV RMSE = 100×
√

1

N

∑
t,i

(σ̂BS(Tt,i,Kt,i)− σBS(Tt,i,Kt,i))
2, (15)

where σBS(Tt,i,Kt,i) is the Black–Scholes implied volatility based on the market price of the

option at time t for particular maturity Tt,i and strike price Kt,i; σ̂BS(Tt,i,Kt,i) is the Black–

Scholes implied volatility based on the model price of the option. The IVRMSEs for the

in-sample period are given in Table 10 and the IVRMSEs for the out-of-sample period are

given in Table 11.

Table 10: In-sample IVRMSEs by moneyness and maturity using the information
from SPX and CBOE indices. Data are from 02 January 1996 to 31 December 2014.

D0 D1 D2

SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH

Panel A: Overall

2.70 1.94 4.16 2.35 2.90 2.44 2.69 6.38 4.46

Panel B: Sorting by moneyness

≤ 0.96 3.45 2.69 5.03 3.24 3.85 3.53 3.18 7.50 5.41

0.96-0.98 2.80 2.12 4.22 2.54 3.29 2.75 2.60 6.17 4.52

0.98-1.02 2.48 1.63 3.95 2.09 2.79 2.19 2.38 6.03 4.23

1.02-1.04 2.44 1.47 3.87 1.95 2.35 1.83 2.64 6.00 4.13

1.04-1.06 2.33 1.54 3.72 1.85 2.13 1.66 2.66 6.00 3.97

> 1.06 2.25 1.70 3.68 1.78 1.99 1.55 2.72 6.10 3.94

Panel C: Sorting by time to maturity

≤ 30 2.67 1.88 1.60 2.52 3.47 2.20 2.33 3.81 1.59

30-90 2.59 1.84 2.62 2.41 3.16 2.05 2.49 5.11 2.73

90-180 2.53 1.97 5.03 1.99 1.86 2.61 2.74 9.97 5.45

180-250 3.05 2.26 7.59 2.11 1.47 3.56 3.42 9.14 8.50

> 250 3.64 2.51 9.83 2.41 1.61 4.11 4.14 7.69 10.43
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Table 11: Out-of-sample IVRMSEs by moneyness and maturity using the in-
formation from SPX and CBOE indices. Data are from 02 January 2015 to 29 April
2016.

D0 D1 D2

SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH SVCJ SVCJI SVCJH

Panel A: Overall

3.08 1.50 3.17 2.14 2.37 1.99 2.05 5.20 3.39

Panel B: Sorting by moneyness

≤ 0.96 4.55 2.14 4.66 3.24 3.50 2.89 2.72 5.24 4.96

0.96-0.98 3.48 1.66 3.29 2.53 2.99 2.36 2.32 5.03 3.50

0.98-1.02 2.74 1.21 2.87 1.82 2.13 1.76 1.80 5.35 3.08

1.02-1.04 2.28 1.04 2.42 1.42 1.52 1.38 1.67 5.36 2.61

1.04-1.06 2.08 1.19 2.21 1.39 1.32 1.35 1.73 5.12 2.38

> 1.06 1.83 1.31 2.18 1.29 1.22 1.30 1.69 4.93 2.35

Panel C: Sorting by time to maturity

≤ 30 2.84 1.59 1.51 2.11 2.72 1.95 1.82 5.46 1.57

30-90 3.12 1.48 2.48 2.19 2.30 1.81 1.99 4.76 2.62

90-180 3.49 1.43 5.13 2.12 1.58 2.19 2.40 5.94 5.56

180-250 3.36 1.08 7.85 1.79 1.01 3.14 2.88 6.72 8.66

> 250 3.57 0.88 10.07 1.79 0.91 3.58 3.56 5.97 10.74

Based on Broadie et al. (2007); Yang and Kanniainen (2017), the IVRMSEs are identical to

the VRMSEs. Therefore, same conclusions are made in Tables 10 and 11. This also highlights

the importance of the Black–Scholes implied volatility. Carr and Wu (2016) emphasize that

institutional investors manage their volatility views and exchange their quotes not through

option prices, but through the option implied volatility computed from the Black and Scholes

(1973) model. In general, modelling option prices essentially is modelling the option implied

volatility.
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Figure 2: Average implied volatilities computed from the model option prices.
The option sample is Wednesday options from 1996 to 2015.

Figure 2 plots the average implied volatilities against different moneyness. Roughly speak-

ing, adding the VIX365 can significantly increase the goodness of fitting the implied volatility

curves (comparing Figure 2a and Figure 2b), while adding the SKEW can decrease the good-

ness of fitting the implied curves (comparing Figure 2a and Figure 2c). The SVCJI model

works best among three model when the model is calibrated by using D0, while it works worst

among three model when the model is calibrated by using D2.

6. Conclusion

This study fills a notable gap in the current literature on inferring information from the SPX

and CBOE indices for the option prices. Different to the existing literature that focus on

comparing different models’ option pricing performance by using the same SPX and VIX

information, e.g., Kaeck and Alexander (2012) and Yang and Kanniainen (2017), this paper
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newly investigates whether adding the new indices can further improve models’ option pricing

performance. After we have well known how to choose a good model, choosing the informative

data for option prices becomes more and more important. Recently, Bardgett et al. (2018)

document that adding VIX option data to calibrate the affine models can significantly improve

the return predictability of the model-implied variance risk premium. We need to carefully

choose the data used to calibrate the models for different models and purposes.

Even though, the answer of whether adding the new indices can further improve models’

option pricing performance depends on the model we choose, roughly speaking, our studies

send two important messages: the CBOE VIX is a very informative index but the CBOE

SKEW is a very noisy index for option prices; the VIX term structure is informative for some

models. Considering the information embedded in the CBOE VIX Volatility Index (VVIX)

for the SPX option prices can be further investigated. Nevertheless, our current paper pays

attention on the importance of choosing indices for the model calibration in terms of inferring

information for the option prices.
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Appendix A: Proofs

A.1 CBOE VIX

In order to calculate the VIX under the SVCJH model, we need the following lemma studied

by Dassios and Zhao (2011).

Lemma 1. For s > t > 0, given the Hawkes process in Table 2, the conditional expectation

of λQs on Ft under the risk-neutral measure Q is

EQ
t

(
λQs

)
= λQt e

−αQ(s−t) + λ
Q
(

1− e−αQ(s−t)
)
, (16)

where λ
Q

= λQ∞β/α
Q and αQ = β − µQz > 0. If β = µQz , then

EQ
t

(
λQs

)
= λQt + λQ∞β(s− t). (17)

Obviously, for αQ = β − µQz > 0, the unconditional expectation of λQt is

E
(
λQt

)
= λ

Q
=
λQ∞β

αQ . (18)

Given the volatility process in Equation (3), for s > t > 0, applying Itô’s lemma to eκ
Qtvt

leads to

vs = e−κ
Q(s−t)vt+

κθ

κQ

(
1− e−κQ(s−t)

)
+

∫ s

t
e−κ

Q(s−u)σv
√
vudW

Q
u,v+

∫ s

t
e−κ

Q(s−u)ydNu. (19)

Using Lemma 1, we have

EQ
t (vs) =e−κ

Q(s−t)vt +
κθ

κQ

(
1− e−κQ(s−t)

)
+ µQy

∫ s

t
e−κ

Q(s−u)
[
λQt e

−αQ(u−t) + λ
Q
(

1− e−αQ(u−t)
)]
du

=e−κ
Q(s−t)vt +

κθ

κQ

(
1− e−κQ(s−t)

)
+

µQy
κQ − αQ

(
e−α

Q(s−t) − e−κQ(s−t)
)
λQt

+
µQy λ

Q

κQ

(
1− e−κQ(s−t)

)
−

µQy λ
Q

κQ − αQ

(
e−α

Q(s−t) − e−κQ(s−t)
)
.
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Then, for κQ 6= αQ,

v̄Qt,t+τ =
1

τ
EQ
t

(∫ t+τ

t
vsds

)
=

1

τ

∫ t+τ

t
EQ
t (vs) ds

=
1− e−κQτ

κQτ
vt +

κθ + µQy λ
Q

κQ

(
1− 1− e−κQτ

κQτ

)

+
µQy

(
λQt − λ

Q
)

κQ − αQ

(
1− e−αQτ

αQτ
− 1− e−κQτ

κQτ

)

=ϕκQ,τvt +
κθ + µQy λ

Q

κQ
(
1− ϕκQ,τ

)
+
µQy

(
λQt − λ

Q
)

κQ − αQ
(
ϕαQ,τ − ϕκQ,τ

)
,

where ϕa,τ = 1−e−aτ
aτ .

Furthermore,

1

τ
EQ
t

(∫ t+τ

t
λQs ds

)
=

1

τ

∫ t+τ

t
EQ
t

(
λQs

)
ds =

1− e−αQτ

αQτ
λQt + λ

Q
(

1− 1− e−αQτ

αQτ

)
=ϕαQ,τλ

Q
t + λ

Q (
1− ϕαQ,τ

)
.

Finally, under the risk neutral measure, a CBOE VIX formula can be obtained by

V IX2
t,τ =

1

τ
EQ
t

(∫ t+τ

t
vsds

)
+

2

τ

(
eµ

Q
x+σ

2
x/2 − 1− µQx

)
EQ
t

(∫ t+τ

t
λQs ds

)
=v̄Qt,t+τ + 2

(
eµ

Q
x+σ

2
x/2 − 1− µQx

) [
ϕαQ,τλ

Q
t + λ

Q (
1− ϕαQ,τ

)]
.

For the SVCJ and SVCJI models, using λQt = ηλλt = λQ1 + λQ2 vt, we denote κ̃Q = κQ−µQy λ
Q
2

and then

EQ
t (vs) = e−κ̃

Q(s−t)vt +
κθ + µQy λ

Q
1

κ̃Q

(
1− e−κ̃Q(s−t)

)
. (20)

We obtain

v̄Qt,t+τ =
1

τ
EQ
t

(∫ t+τ

t
vsds

)
= ϕκ̃Q,τvt +

κθ + µQy λ
Q
1

κ̃Q
(
1− ϕκ̃Q,τ

)
. (21)
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Finally, we get

V IX2
t,τ =

1

τ
EQ
t

(∫ t+τ

t
vsds

)
+

2

τ

(
eµ

Q
x+σ

2
x/2 − 1− µQx

)
EQ
t

(∫ t+τ

t
λQs ds

)
=v̄Qt,t+τ + 2

(
eµ

Q
x+σ

2
x/2 − 1− µQx

)(
λQ1 + λQ2 v̄

Q
t,t+τ

)
A.2 MGF

Under the SVCJH model, denoting Xt = logSt, then


dXt =

(
r − q − 1

2vt − λ
Q
t m

Q
)
dt+

√
vtdW

Q
t,S + xdNt,

dvt = κQ
(
κθ/κQ − vt

)
dt+ σv

√
vtdW

Q
t,v + ydNt,

dλQt = β(λQ∞ − λ
Q
t )dt+ zdNt.

(22)

The moment generating function (MGF) ofXT can be defined as f(ω, t, ;X, v, λQ) = EQ
t [eωXT ].

It is a martingale and satisfies the following partial differential equation (PDE),


0 = ∂f

∂t + ∂f
∂X

(
r − q − 1

2v − λ
QmQ)+ 1

2
∂2f
∂X2 v + ∂2f

∂Xvρσvv + ∂f
∂vκ

Q (κθ/κQ − v)
+1

2
∂2f
∂v2

σ2vv + ∂f
∂λQ

β(λQ∞ − λQ) + λQEQ [f(X + x, v + y, λQ + z)− f
]

f(T,X, v, λQ) = eωX .

(23)

If we denote τ = T − t, then the above PDE can be rewritten as


∂f
∂τ = ∂f

∂X

(
r − q − 1

2v − λ
QmQ)+ 1

2
∂2f
∂X2 v + ∂2f

∂Xvρσvv + ∂f
∂vκ

Q (κθ/κQ − v)
+1

2
∂2f
∂v2

σ2vv + ∂f
∂λQ

β(λQ∞ − λQ) + λQEQ [f(X + x, v + y, λQ + z)− f
]

f(0, X, v, λQ) = eωX .

(24)

Now we guess the solution of the above PDE has the following form,

f(ω, τ) = eA(ω,τ)+B(ω,τ)vt+C(ω,τ)λQt +ωXt . (25)
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Then A(ω, τ), B(ω, τ) and C(ω, τ) satisfy the following ordinary differential equations (ODEs)

∂A(ω, τ)

∂τ
= B(ω, τ)κθ + ω (r − q) + C(ω, τ)βλQ∞, (26)

∂B(ω, τ)

∂τ
=

1

2
B2(ω, τ)σ2v −

(
κQ − ρσvω

)
B(ω, τ)− 1

2

(
ω − ω2

)
, (27)

∂C(ω, τ)

∂τ
= −ωmQ − C(ω, τ)β +

eωµ
Q
x+

1
2
ω2σ2

x(
1−B(ω, τ)µQy

)(
1− C(ω, τ)µQz

) − 1, (28)

with the initial conditions A(ω, 0) = 0, B(ω, 0) = 0, C(ω, 0) = 0.

Under the SVCJI model, f(ω, τ) = eA(ω,τ)+B(ω,τ)vt+ωXt where Then A(ω, τ), B(ω, τ) satisfy

the following ordinary differential equations (ODEs)

∂A(ω, τ)

∂τ
=B(ω, τ)κθ + ω (r − q)− ωmQλQ1 + λQ1

(
eωµ

Q
x+

1
2
ω2σ2

x

1−B(ω, τ)µQy
− 1

)
, (29)

∂B(ω, τ)

∂τ
=

1

2
B2(ω, τ)σ2v −

(
κQ − ρσvω

)
B(ω, τ)− 1

2

(
ω − ω2

)
− ωmQλQ2 + λQ2

(
eωµ

Q
x+

1
2
ω2σ2

x

1−B(ω, τ)µQy
− 1

)
, (30)

with the initial conditions A(ω, 0) = 0, B(ω, 0) = 0.

Under the SVCJ model, A(ω, τ) and B(ω, τ) have closed-form solutions, i.e.,

B(ω, τ) =
−(ω − ω2)(1− e−ζτ )

ξ+e−ζτ + ξ−
,

where

ζ =

√
(κQ − ρσvω)

2
+ σ2v(ω − ω2), ξ± = ζ ∓ (κQ − ρσvω),
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and

A(ω, τ) =κθ

∫ τ

0
B(ω, u)du+ (r − q)ωτ − λQ1 ωm

Qτ + λQ1

∫ τ

0

(
eωµ

Q
x+

1
2
ω2σ2

x

1−B(ω, u)µQy
− 1

)
du

=− κθ

σ2v

(
ξ+τ + 2 ln

ξ+e
−ζτ + ξ−

2ζ

)
+ (r − q)ωτ

− λQ1
(
ωmQ + 1

)
τ + λQ1 e

ωµQx+
1
2
ω2σ2

x

∫ τ

0

1

1−B(ω, u)µQy
du,

where

∫ τ

0

1

1−B(ω, u)µQy
du =

∫ τ

0

ξ+e
−ζu + ξ−(

ξ+ − µQy (ω − ω2)
)
e−ζu +

(
ξ− + µQy (ω − ω2)

)du
=

ξ−

ξ− + µQy (ω − ω2)
τ − 1

ζ

(
ξ+

ξ+ − µQy (ω − ω2)
− ξ−

ξ− + µQy (ω − ω2)

)

· ln
(
ξ+ − µQy (ω − ω2)

)
e−ζτ +

(
ξ− + µQy (ω − ω2)

)
2ζ

.

A.3 Option prices

We define the European call option price at time 0 as

C0 = EQ
0

[
e−rT (ST −K)+

]
= EQ

0

[
e−rT

(
elogST − ek

)+]
, (31)

where k = logK and K is the strike price, T is the maturity date, (·)+ denotes max{·, 0}

and (ST −K)+ is the payoff function of the call option at the maturity date.

Following Carr and Madan (1999), we rewrite the option price as Ĉ0(k) = eαkC0 for

α > 0, so that C0 = e−αkĈ0(k), which can be derived as

C0(k) = e−αk
[

1

2π

∫ +∞

−∞
e−iuk

(∫ +∞

−∞
eiukĈ0(k)dk

)
du

]
=
e−αk

π

∫ +∞

0
e−iukφ(u)du, (32)

where φ(u) = e−rT fT (iu+(1+α))
α2+α−u2+i(2α+1)u

and fT (ω) = f(T,X, v, λQ) = EQ
0 [eωXT ].

Following Carr and Madan (1999), we adopt the trapezoid rule for the integral by setting

uj = ∆u(j − 1) where j = 1, ..., N and ∆u is the grid spacing. The value of ∆u should be

sufficiently small to approximate the integral well enough, while the value of N∆u should be
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large enough to assume that the characteristic function is equal to zero for u > N∆u. The

approximation of the option price in Equation (32) can be obtained as

C0(k) ≈ e−αk

π

1

2
e−iu1kφ(u1) +

N−1∑
j=2

e−iujkφ(uj) +
1

2
e−iuNkφ(uN )

∆u

=
e−αk

π

N∑
j=1

qje
−iujkφ(uj)∆u, (33)

where q1 = qN = 1
2 and qj = 1 for 2 ≤ j ≤ N − 1.

Put option prices can be calculated from the put-call parity.

Appendix B: Technical notes on MCMC with the CBOE SKEW

For the MCMC, we reply on rjags package, which provides an interface from R to the JAGS

library for Bayesian data analysis. JAGS is a clone of BUGS (Bayesian analysis Using Gibbs

Sampling). For details, see https://cran.r-project.org/web/packages/rjags/index.html. The

DIC value computed follows a standard way, e.g., Appendix C in Yang and Kanniainen

(2017).

We use the Runge–Kutta (RK4) numerical method to solve ODEs (26)–(28) in R. Let an

initial value problem be specified as follows:

y′ = f(t, y), y(t0) = y0.

Here y is an unknown function (scalar or vector) of time t, which we would like to approximate;

we are told that y′, the rate at which y changes, is a function of t and of y itself. At the

initial time t0 the corresponding y value is y0. The function f and the data t0, y0 are given.

Now pick a step-size h > 0 and define

yn+1 = yn + 1
6 (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h
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for n = 0, 1, 2, 3, ..., using

k1 = h f(tn, yn),

k2 = h f

(
tn +

h

2
, yn +

k1
2

)
,

k3 = h f

(
tn +

h

2
, yn +

k2
2

)
,

k4 = h f (tn + h, yn + k3) .

We use the central finite differences to approximate A2, B2, C2, A3, B3 and C3 with the spacing

of 0.01 for ω in R. For example, A2 and A3 can be approximated by

A2 =
∂2A(τ, ω)

∂ω2

∣∣∣∣
ω=0

≈ A(−d, τ) +A(d, τ)

d2
,

A3 =
∂3A(τ, ω)

∂ω3

∣∣∣∣
ω=0

≈
−1

2A(−2d, τ) +A(−d, τ)−A(d, τ) + 1
2A(2d, τ)

d3
,

where d = 0.01.
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Appendix C: Fit of CBOE indices
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Figure 3: Fit of V IX2
t,30. Data are from 02 January 1996 to 31 December 2014.
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Figure 4: Fit of V IX2
t,365. Data are from 02 January 1996 to 31 December 2014.
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Figure 5: Fit of SKEWt,30. Data are from 02 January 1996 to 31 December 2014.
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