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Abstract 

Despite the fact that momentum strategies have been shown to generate significant positive returns 

by many previous studies, momentum can experience extreme weakness during periods of economic 

upheaval, especially during financial crises.  Consistent with the literature, we find that momentum 

profits benefit from persistent trends of the market which can be predicted by market volatility.  We 

propose partial moments-based (PM-based) momentum trading strategies and find that our partial 

moments-based (PM-based) momentum trading strategies outperform plain momentum and 

volatility-scaled momentum strategies. Our best performing PM-based strategy shows an annualized 

Sharpe ratio of 1.32 during the financial crisis period of 2008-2012, compared to an annualized 

Sharpe ratio of -0.54 from a benchmark 6 × 6 plain momentum strategy. An explanation of this strong 

profitability is that investors can distinguish between good and bad risk. Our results are robust across 

different momentum strategies and multiple time periods. 
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1. Introduction 

Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) present evidence that scaling the 

weights of momentum portfolios increases the Sharpe ratio of the plain momentum strategy. Rather 

than scaling plain momentum portfolios, we construct two partial moments-based (PM-based) 

strategies, the partial moment momentum (PMM) strategy and the partial moment-decomposed (PM-

decomposed) strategy, which enable momentum traders to better capture market trends and avoid 

huge losses during market turbulence using market decomposed variances. We find that both PM-

based strategies significantly outperform the plain momentum strategy. We further introduce an 

adapted-Sortino ratio to better capture the performances of strategies, particularly, during market 

downturns. 

Momentum strategies are employed by buying previous winners and selling previous losers 1 

(henceforth plain momentum strategies). The literature shows that cross-sectional momentum 

strategies are profitable in different markets and asset classes outside the US across different sample 

periods 2 . However, evidence on time-series momentum profits is inconclusive. Chordia and 

Shivakumar (2002) demonstrate that economic expansionary periods may be important in explaining 

the profits in the US equities market, but the literature is inconclusive whether momentum profits are 

positive or negative during contractionary periods. Ali and Trombley (2006) find that the level of 

momentum returns of US stocks for the period from 1984 to 2001 is positively related to short sales 

constraint, and that loser portfolios rather than winner portfolios drive this result. In contrast, Gao 

and Leung (2017) show that momentum returns of Australian stocks are negatively correlated to short 

sale restrictions and they are less profitable during the global financial crisis (GFC) compared to the 

pre-GFC period. The explanation is that the imposition of short selling restrictions by the Australian 

regulatory authority during the GFC may have moderated the ability for momentum traders to profit 

from the short sale of loser portfolios. This is supported by Barroso and Santa-Clara (2015) and Daniel 

and Moskowitz (2016), who show that momentum strategies experience extreme losses during 

periods of economic upheaval following market crashes and high market volatility. 

                                                            
1 Jegadeesh and Titman (1993) find that momentum strategies are profitable in the US equities markets over the short to 
medium horizons (3 to 12 months) from 1965 to 1989. Jegadeesh and Titman (2001) continue to show similar results for 
the period 1990 to 1998. Israel and Moskowitz (2013) extend momentum evidence to two periods from 1927 to 1965 and 
from 1990 to 2012.   
2 See Richards (1997) for evidence of momentum in stock market indices and Asness, Liew, and Stevens (1997) in country 
indices; Rouwenhorst (1998, 1999) in emerging stock markets; Chan, Hameed and Tong (2000) and Hameed and Yuanto 
(2002) for momentum in international equity markets. See Okunev and White (2003) for momentum in exchange rates; 
Erb and Harvey (2006) in commodities and Moskowitz, Ooi and Pedersen (2012) in futures contracts. Consistent with 
Asness, Moskowitz and Pedersen (2013), Daniel and Moskowitz (2016) find momentum returns in markets across regions 
(European Union, Japan, United Kingdom and United States) and asset classes (fixed income, commodities, foreign 
exchange and equity) from 1972 through 2013. 
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Recent literature has introduced a number of volatility-scaled momentum strategies, in both a cross-

sectional momentum setting (Barroso and Santa-Clara (2015)) and in a time-series momentum setting 

(Daniel and Moskowitz (2016)). In both cases, there is the notion of the use of a target volatility to 

scale the risk exposure of plain momentum returns to produce risk-managed momentum returns. For 

instance, Barroso and Santa-Clara (2015) reveal that gains in momentum returns can be wiped out by 

momentum crashes over short periods. For example, US stocks delivered -91.59% momentum returns 

in 1932 over just two months, and -73.42% over three months in 2009. What is more surprising is the 

high level of predictability of the risk of momentum returns. They show that the autoregression of 

monthly realized variance of daily returns of US stocks from 1927 through 2012 produces an out-of-

sample R-square of 57.82%. They proceed to scale the long-short winners-minus-losers (WML) 

momentum portfolio by its prior six months’ realized volatility to implement a constant volatility 

strategy which avoids forward-looking bias. This risk managed momentum strategy results in 

negligible negative returns during the crashes, a doubling of the Sharpe ratio and a reduction in both 

excess kurtosis and left skewness. Daniel and Moskowitz (2016) implements a dynamic momentum 

strategy based on conditional moments (mean and variance) and as a result achieve twice the alpha 

and Sharpe ratio compared to the traditional static WML strategy over multiple time periods and 

different equity markets3. This evidence suggests that momentum strategies which dynamically 

account for past volatility act as a hedging mechanism to the extreme momentum losses subsequent 

to sudden market downturns. However, the unconstrained leverage implicit in such a strategy makes 

these strong results questionable as a practical investment strategy. 

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) show that future volatility is related more to 

past negative returns than past positive returns. In doing so, they develop a volatility measure called 

realized semi-variance which decomposes the direction of the quadratic variation in asset prices, 

termed realized variance4. As such, the negative and positive returns of asset prices are used to 

compute a downside (RS-) and an upside (RS+) realized semi-variance, respectively. A review of the 

semi-variance literature is presented in Sortino and Satchell (2001). Further development of the 

economic theory underpinning this risk measure is set out in Pedersen and Satchell (2002). These 

directional volatility measures are found to capture the asymmetrical properties of volatility 

experienced by asset prices. Hedge funds may employ downside realized semi-variance in the context 

of risk management. These investors may have short positions in the market and therefore a drop in 

                                                            
3 Both Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) construct momentum portfolio with a 11-month 
formation period and a 1-month holding period. Particularly, there is a one-month gap between the formation and holding 
period and this strategy uses value-weighted holding period returns without rebalancing. We refer this strategy in 
particular to (static) WML strategy.  
4  Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-Nielsen and Shephard (2002) define the realized 
variance as the sum of the squared returns to estimate the quadratic variation in high frequency asset prices. 
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price realizes a positive return with the corresponding measure of risk being RS-. Baruník, Kočenda 

and Vácha (2016) extend this idea to construct asymmetric volatility spillover indices and reveal high 

levels of asymmetrical spillover amongst the most liquid U.S. stocks in seven sectors. As we shall 

argue later, it is more appropriate that this semi-variance be called partial moments of order 2. Upper 

and lower partial moments are the upside and downside realised semi-variance, respectively.  

The literature has further shown that momentum returns are related to partial moments, especially 

lower partial moments5. We employ the idea of downside realized partial moment (RPM-) and upside 

realized partial moment (RPM+) in the context of momentum trading strategies. We hypothesize that 

if volatility based momentum strategies such as those in Barroso and Santa-Clara (2015) and Daniel 

and Moskowitz (2016) have been shown to counter the extreme momentum losses in times of market 

crashes, then further momentum profits and better risk management can be achieved by utilizing the 

connection between RS- and future volatility due to Barndorff-Nielsen, Kinnebrock, and Shephard 

(2010).  

We introduce two partial moment-based (PM-based) momentum strategies. We call our first PM-

based momentum strategy the PMM strategy. It involves switching positions of the winner and loser 

portfolios during the holding periods depending upon current estimates of partial moments. Our 

second PM-based momentum strategy, an extended PM-decomposed momentum strategy, can be 

viewed as an extension of the dynamic volatility-based momentum strategy in Barroso and Santa-

Clara (2015). The key idea is that they do not differentiate between upside or downside risk. We 

extend this class of strategies by tilting our strategy long or short towards favourable/unfavourable 

volatility signals and holding an off-setting position in cash.  

We show strong evidence that our two PM-based strategies outperform benchmark plain momentum 

strategies6, in particular, during financial turbulences. Our results reveal an annualized adapted-

Sortino ratio (defined on page 8) of 1.35 from the Global Financial Crisis (GFC) period, 2008 to 2012, 

of the PMM Strategy 5 (PMM_S5) compared to an annualized adapted-Sortino ratio of -0.23 of the 

benchmark 6 × 6 plain momentum strategy. Our robustness test results show that an annualized 

Sharpe ratio of 1.48 from 2000 to 2016 of a PM-decomposed WML strategy compared to an 

annualized Sharpe ratio of 0.22 in Daniel and Moskowitz (2016) for dynamic WML strategies from 

                                                            
5 See Menkhoff and Schmeling (2006), Daniel, Jagannathan and Kim (2012) and Baltas and Kosowski (2012). 
6 We use a 6 × 6 plain momentum strategy, which represents a 6-month formation period and a 6-month holding period 
plain momentum strategy with one month gap between formation and holding periods, as benchmark. We use it as the 
benchmark strategy since this plain strategy yields the highest returns over the whole sample period among all four plain 
momentum strategies. Previous findings also reveal this phenomenon. See, for example, Jegadeesh and Titman (1993, 
2001).  
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2000 to 2013, confirming the persistence of momentum returns beyond 20137. Further out of sample 

analyses show consistent results. 

The remainder of the paper is organised as follows. Section 2 describes the data and plain momentum 

construction and shows the performances of plain momentum strategies in US equity markets. Section 

3 provides a theoretical development of the PMM strategies and examines their performance. Section 

4 examines the performances of extended PM-decomposed momentum strategies. Section 5 further 

tests the out of sample performances of PM-based momentum strategies and studies the persistence 

of these strategies over financial turbulences. Section 6 assesses the robustness of our findings. 

Section 7 concludes. 

 
2. Momentum in the US equity market 

2.1 Data 

The data used in this paper are sourced from Centre for Research in Security Prices (CRSP) via 

Wharton Research Data Services (WRDS), Datastream and Kenneth French Data Library (French 

Library)8. The monthly and daily US equity data are sourced from CRSP over the period January 

1964 to December 2016. Our sample includes common stocks (CRSP share code 10 or 11) of all 

firms listed on NYSE, Amex and Nasdaq (CRSP exchange code 1, 2 or 3). We use S&P 500 Index 

and one-month Treasury bill rate as the proxy for the market portfolio and the risk-free rate, 

respectively. We obtain daily and monthly S&P 500 price index from Datastream and one-month 

Treasury bill rate from French Library over the same period as that of US equity data.  

2.2 Momentum portfolio construction 

We follow a similar methodology to the Jegadeesh and Titman (1993) J × K Trading Model to 

construct our momentum portfolio with zero-net position. Firstly, in month t, all sample stocks are 

ranked and sorted into deciles based on their past J-month formation period returns from month t-J-

1 to t-1. Subsequently, we buy the best performed portfolio (winners) and short the worst performed 

portfolio (losers) for the K-month holding period from month t to t+K. The equally-weighted holding 

period returns are calculated for computing our momentum profits. In the meantime, this strategy 

rebalances every month. Thus, in any month t, one certain strategy holds not only the winner and 

loser portfolios constructed in month t, but also those portfolios in the previous K-2 months. We also 

use the one month lag between the formation period and the holding period to allow us to be consistent 

                                                            
7 We use a 11 × 1 plain momentum WML strategy, consistent with Barroso and Santa-Clara (2015) and Daniel and 
Moskowitz (2016), as our benchmark for performance comparison. 
8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
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with Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016)9, whilst noting that they 

differ from us in other respects.  

2.3 Performances of plain momentum strategies in the US equity markets 

[Insert Table 1 about here] 

From Table 1, we can compare the performances of four plain momentum strategies: 3 × 3, 6 × 6, 9 

× 9 and 12 × 12. During our whole sample period P1 and Jegadeesh and Titman 1993 period P2, the 

6 × 6 strategy, which represents a momentum strategy has 6-month formation (J) and holding (K) 

periods with a one-month gap between J and K, can earn 6.29% and 12.01% annualised return, 

respectively. It outperforms all other 3 strategies during these two periods by having higher positive 

Sharpe ratios.  3 × 3 and 9 × 9 strategies also report positive returns during P1 and P2. However, none 

of these four plain strategies can generate profits during periods of P4 financial turbulence. 

3. Partial moment momentum 

Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) present evidence that, by scaling 

the weights of momentum portfolio, this new scaling strategy increases the Sharpe ratio of the plain 

momentum strategy.  

Rather than scaling plain momentum portfolios, we firstly construct a PMM strategy by switching 

positions of the winner and loser portfolios during the holding periods. Our PMM strategy enables 

momentum traders to better capture market trends and hopefully avoid huge losses during market 

rebounds using market decomposed variances. 

3.1 Partial moments and realised semi-variance 

We can construct the sample realised volatility using equi-spaced data over [t-1, t] which we define 

as ܴܸ. This is defined over n+1 prices or their logarithms to define n returns,  ݎ௜ , i=1,…,n. We define 

ܴܸ as 

ܴ ௧ܸ ൌ෍ݎ௜,௧
ଶ

௡

௜ୀଵ

																																																																																																																																																				ሺ1ሻ		 

We call this the realised variance over [t-1, t] and is known to be a consistent estimator of the 

quadratic variation if we assume the prices are generated by a particular class of processes, see 

Baranik et al (2016) for more details. Properties of ܴܸ and related measures can be found in Andersen 

                                                            
9 By so doing, it can avoid short-term reversals. See Jegadeesh (1990) and Lehmann (1990). 
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et al (2001) and Barndorff-Nielson (2002). Following the literature, we define two statistics ܴܵି 

and	ܴܵା  

where 

ܴܵି ൌ ∑ ௜ݎ
ଶ௡

௜ୀଵ ௜ݎሺܫ ൏ 0ሻ																																																																																																																																		ሺ2ሻ  

and 

ܴܵା ൌ ∑ ௜ݎ
ଶ௡

௜ୀଵ ௜ݎሺܫ ൒ 0ሻ																																																																																																																																		ሺ3ሻ   

where ܫሺሻ is the indicator function, these being sample lower and upper partial moments of order 2 

with truncation at zero in both cases. There is an identity, 

ܴܸ ൌ ܴܵି ൅ ܴܵା																																																																																																																																														ሺ4ሻ 

If the population has a mean of zero, then we may hope to treat these quantities as estimators of the 

unconditional population variance and the unconditional lower and upper semi-variances of the 

process over the interval [t-1, t], which we could denote by	ߪଶ,	ߪଶି,  ,ଶା respectively. Hopefullyߪ

ଶିߪ	=ଶߪ ൅  ଶା butߪ ሺܴܵାሻ, for example, is not equal toܧ ଶା; However, the difficulty here is thatߪ

rather ߪଶା ൅ ∑ଶሺܧ ௜ݎ
௡
௜ୀଵ ௜ݎሺܫ ൒ 0ሻሻ. This means that descriptions in terms of partial moments seems 

more appropriate. Thus, we refer these two statistics as upper and lower partial moments (ܴܲܯା and 

 .(ିܯܴܲ

3.2 Some theoretical considerations 

It is argued by Barroso and Santa-Clara (2015) that momentum volatility is strongly forecastable 

relative to other styles, see in particular Table 2, page 114. This suggests that momentum volatility, 

or momentum partial moments may be useful in forecasting momentum returns. We note a caution 

in that we believe that part of the forecastability is artificial. To see this, we will oversimplify and 

assume that a momentum strategy can be described as a position in an asset where the “weight” of 

the asset is equal to last period’s return. Readers will identify this as version of single variable time-

series momentum. Thus, ܴ௧, the return to the strategy is equal to ݎ௧	ݎ௧ିଵ	. 

We first show that momentum is forecastable even when returns are iid. Assume that ݎ௧	 is iid	ሺߤ,  .ଶሻߪ

It follows by elementary calculation that 

ሺܴ௧ሻݎܸܽ  ൌ ௧ିଵݎ௧ଶݎሺܧ
ଶ ሻ െ  ሺ5ሻ																																																																																																											ሻ	௧ିଵݎ	௧ݎଶሺܧ

and 

,ሺܴ௧ݒ݋ܥ ܴ௧ିଵሻ ൌ ௧ିଵݎ	௧ݎሺܧ
ଶ ሻ	௧ିଶݎ െ  ሺ6ሻ																																																																					ሻ	௧ିଶݎ	௧ିଵݎሺܧሻ	௧ିଵݎ	௧ݎሺܧ
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This leads to an autocorrelation coefficient ߩ ൌ ఓమఙమ

ఙరାଶఓమఙమ
. If we interpret the signal to noise ratio of 

the strategy ܵܰ ൌ ఓ

ఙ
; then ߩ ൌ ௌேమ

ଵାଶௌேమ
. Thus, if the strategy has a signal to noise ratio of 0.5, then 

returns will appear to have an autocorrelation coefficient of 0.17 although the underlying data are 

pure white noise. 

Furthermore, as SN becomes large we reach an upper bound for ߩ of ½. 

We now assume that ܧሺݎ௧	ሻ ൌ 0. If we now turn to  

ሺܴ௧ଶሻݎܸܽ ൌ ௧ିଵݎ௧ସݎሺܧ
ସ ሻ െ ௧ିଵݎ௧ଶݎଶሺܧ

ଶ ሻ																																																																																																												ሺ7ሻ 

and                                   

,ሺܴ௧ଶݒ݋ܥ ܴ௧ିଵ
ଶ ሻ ൌ ௧ିଵݎ௧ଶݎሺܧ

ସ ௧ିଶݎ
ଶ ሻ െ ܧ ቀሺݎ௧ଶݎ௧ିଵ

ଶ ሻܧ൫ሺݎ௧ିଶ
ଶ ௧ିଵݎ

ଶ ሻ൯ቁ																																																												ሺ8ሻ 

Let ߤ௝ ൌ ௧ݎሺܧ
௝). Then ߩ ൌ ଵ

ഋర
ഋమ
మାଵ

. 

We see that, when underlying returns are white noise, the forecastibility of momentum volatility is 

connected to underlying kurtosis, the higher the kurtosis the lower the forecastibility. If we take this 

to be the kurtosis of six-monthly index returns we might expect a number near 5 and so the (spurious) 

autocorrelation might be of a similar magnitude to before. Thus we do not use momentum volatility 

in guiding our strategies but use instead a market index. It follows if we define ܧሺܴܸሻ ൌ ∑ሺܧ ௜ݎ
ଶ௡

௜ୀଵ ሻ 

and ܧሺܴܲିܯሻ ൌ ∑ሺܧ ௜ݎ
ଶ௡

௜ୀଵ ௜ݎሺܫ ൏ 0ሻ	ሻ and ܧሺܴܲܯାሻ ൌ ∑ሺܧ ௜ݎ
ଶ௡

௜ୀଵ ௜ݎሺܫ ൒ 0ሻሻ. 

3.3 Partial moment momentum strategies 

Whilst we continue to report Sharpe ratios, we also provide a performance measure called the 

Adapted-Sortino ratio. We define the Adapted-Sortino ratio as 

݀݁ݐ݌ܽ݀ܣ െ ݋݅ݐܽݎ	݋݊݅ݐݎ݋ܵ ൌ
݊ݎݑݐܴ݁	ݏݏ݁ܿݔܧ

2 ∗ ݊݋݅ݐܽ݅ݒ݁ܦ݅݉݁ܵ	݁݀݅ݏ݊ݓ݋ܦ
																																																													ሺ9ሻ 

where 

௧݊ݎݑݐܴ݁	ݏݏ݁ܿݔܧ ൌ ܴ௧ െ  ሺ10ሻ																																																																														௧݊ݎݑݐܴ݁	ݐ݁݃ݎܽܶ	݀݁ݎ݅ݏ݁ܦ

Sortino and Price (1994), for example, defines sample Downside Semi-Deviation as10 

                                                            
10 Third paragraph, Page 61, Sortino and Price (1994). Sortino and Price (1994) refers to this “downside risk” measure a 
Downside Deviation, which we thought the name Downside Semi-Deviation seems more appropriate. 
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݊݋݅ݐܽ݅ݒ݁ܦ݅݉݁ܵ	݁݀݅ݏ݊ݓ݋ܦ

ൌ ඨ
∑ ሺݏݏ݁ܿݔܧ	݊ݎݑݐܴ݁௜ െ ே	തതതതതതതതതതതതതതതതതതതതሻଶ݊ݎݑݐܴ݁	ݏݏ݁ܿݔܧ
௜ୀଵ

ܰ
௜݊ݎݑݐܴ݁	ݏݏ݁ܿݔܧሺܫ	 ൏ 0ሻ																																						ሺ11ሻ 

where ݏݏ݁ܿݔܧ	݊ݎݑݐܴ݁ is the portfolio’s excess return on ݀݁ݎ݅ݏ݁ܦ	ݐ݁݃ݎܽܶ	݊ݎݑݐܴ݁ which we use a 

one-month Treasury bill. ܫሺሻ is the indicator function, this being sample target excess return lower 

than zero. Our adaptation differs from the standard Sortino ratio with target return equal to the riskless 

rate, as, in the event that downside and upside standard deviations are equal, we recover the Sharpe 

ratio. Thus, we have put our version of the Sortino ratio into a broadly similar scale as the Sharpe 

ratio. 

3.3.1 Partial moments and boundaries 

 [Insert Figure 1a and 1b about here] 

Figures 1a and 1b show the histograms of upper and lower partial moments (ܴܲܯ௧
ା and ܴܲܯ௧

ି) with 

kernel density curves. Values of 10th percentile of ܴܲܯ௧
ା, 75th percentile of ܴܲܯ௧

ି and maximum 

observations of both ܴܲܯ௧
ା  and ܴܲܯ௧

ି  are reported. For the upper partial moment (ܴܲܯ௧
ା), the 

normal kernel estimate for c=0.7852 has a bandwidth of 0.0002 and an approximate mean integrated 

square error (AMISE) of 3.3237; For the lower partial moment (ܴܲܯ௧
ି), the normal kernel estimate 

for c=0.7852 has a bandwidth of 0.0002 and an AMISE of 3.1071.  

[Insert Table 2 about here] 

Table 2 reports the distributions of monthly realised variance (ܴ ௧ܸ), upper and lower market partial 

moments (ܴܲܯ௧
ା and ܴܲܯ௧

ି) throughout the whole sample period from January 1964 to December 

2016. In this paper, we use 10th percentile of ܴܲܯ௧
ା and 75th percentile of ܴܲܯ௧

ି as the critical values 

for upper and lower market partial moments. 11Although our results are not sensitive to our choice of 

boundaries12, we thought that the point where we would have a behavioural shift should be lower for 

positive risk so 90 per cent of the time we carry out the same gain strategy, differing only when 

positive risk is low. For negative risk, we carry out the same strategy 75 per cent of the time differing 

only when negative risk is high. Given these are the cases when momentum performs very badly, it 

seems appropriate to have an area of larger probability. 

                                                            
11 All analyses are repeated using 2 other pairs of boundaries, medians of ܴܲܯ௧

ା and ܴܲܯ௧
ି and 10th percentile of ܴܲܯ௧

ା 
and 75th percentile of ܴܲܯ௧

ି in addition to the original critical values 10th percentile of ܴܲܯ௧
ା and 75th percentile of 

௧ܯܴܲ
ି. Results are found to be consistent to those based on the original boundaries. 

12 It is not sensitive to variation away from the medians but when we run all tests using median boundaries, our results 
are insignificant.  
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The previous approach used past values evaluated in different ways as our forecast of partial moments. 

An alternative to this approach would be to assume that the partial moments satisfy a statistical model 

such as a vector-autoregressive process of order p (VAR(p)). We shall assume, for simplicity, that 

monthly partial moments satisfy a VAR (1) given by Regressions (12) and (13)   

௧ܯܴܲ
ା ൌ ଵߙ ൅ ௧ିଵܯଵଵܴܲߚ

ା ൅ ௧ିଵܯଵଶܴܲߚ
ି ൅  ሺ12ሻ																																																																																						ଵ௧ߝ

௧ܯܴܲ
ି ൌ ଶߙ ൅ ௧ିଵܯଶଵܴܲߚ

ା ൅ ௧ିଵܯଶଶܴܲߚ
ି ൅  ሺ13ሻ																																																																																					ଶ௧ߝ

Suppose that the conditional properties of	ߤଶ௧
ା  and	ߤଶ௧

ି  , these being the upper and lower partial 

moments of degree 2, can be described by the following equations 

ଶ௧ߤ	
ା ൌ ଵߙ ൅ ௧ିଵܯଵଵܴܲߚ

ା ൅ ௧ିଵܯଵଶܴܲߚ
ି 																																																																																																						ሺ14ሻ 

ଶ௧ߤ	
ି ൌ ଶߙ ൅ ௧ିଵܯଶଵܴܲߚ

ା ൅ ௧ିଵܯଶଶܴܲߚ
ି 																																																																																																					ሺ15ሻ 

Equations (14) and (15) can be interpreted as a matrix analogue of an ARCH (1) model except that it 

is a model for conditional partial moments. Replacing population moments by sample counterparts 

together with the errors involved gives us (12) and (13). 

Such a model has certain features we can exploit for analytic purposes. We can compute the 

conditional and unconditional means of the partial moments and use potentially better forecasts.  

Writing (12) and (13) in terms of vectors and matrices,  

		௧ܯܴܲ ൌ ߙ ൅ 	௧ିଵܯܴܲߚ ൅  ሺ16ሻ																																																																																																																							௧ߝ

Then, ܧሺܴܲܯ௧		ሻ ൌ ሺܫ െ  is the unconditional mean and the one period-ahead forecast for time ߙ	ሻିଵߚ

t+1 at time t is given by ߙ ൅  are less than ߚ . The stationarity condition is that all the roots of	௧ܯܴܲߚ

one in absolute value.13 This is satisfied in all cases in this paper, based on estimated ߚ. 

[Insert Table 3 about here] 

We present the estimated model in Table 3. We see that the past lower partial moment does not 

forecast the current partial lower moment otherwise all coefficients are significant and positive. We 

note also that the stationarity conditions are satisfied as well as the unconditional means being positive. 

3.3.2 Rules and performances of PMM strategies 

 [Insert Table 4 about here] 

                                                            
13 We run standard unit root test on our VAR process given by regression (9) and (10). We find that the VAR process is 
stationary.  
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The idea behind our switching strategies is to change momentum strategies depending upon our 

current (ܴܲܯ௧
ା, ܴܲܯ௧

ି) estimates of partial moments. We could describe this as a regional PMM 

strategy. We refer to if simply as a PMM strategy.  

Our switching methodologies are shown in Table 4 and Figure 2. Panel A of Table 4 shows four 

conditions of upper and lower partial moments based on their boundaries.  The corresponding 

switching methodology (-ies) during holding periods under each of these four conditions are 

presented. Panel B illustrates different holding periods actions and returns to each of the four 

conditions presented on Panel A of our six partial moment momentum strategies, which we called 

PMM Strategy 1 to 6, represented by PMM_S1 to PMM_S6. 

[Insert Figure 2a and 2b about here] 

Figure 2a illustrates the four PMM strategies conditions in the coordinate plane. The origin point 

represents both the critical values for ܴܲܯ௧
ା and ܴܲܯ௧

௧ܯሺܴܸܲܥ) ି
ାሻ and ܸܥሺܴܲܯ௧

ିሻ) in month t. 

Each quadrant represents a PMM condition based on upper and lower partial moments and their 

critical values. For example, if in month t, both upper and lower partial moments are higher than their 

critical values, the point of PMM condition in month t is in the first quadrant in this coordinate plane. 

Then condition 1 applies in month t and the corresponding trading methods to condition 1 are 

employed as shown on Panel B, Table 4. 

Figure 2b shows the estimation of four PMM strategies conditions when the 10th percentile of ܴܲܯ௧
ା 

and the 75th percentile of ܴܲܯ௧
ି  are used as critical values for ܴܲܯ௧

ା  and ܴܲܯ௧
ି , respectively. 

Apparently, the possibility of condition 4 occurs, when the upper partial moment is higher than the 

10th percentile of ܴܲܯ௧
ା while the lower partial moment being lower than the 75th percentile of ܴܲܯ௧

ି, 

is the most frequent of these four conditions.  

In this paper, we use a 6 × 6 plain momentum strategy with a one month gap between formation and 

holding periods as the benchmark strategy to demonstrate the effectiveness of our PM-based 

strategies since this strategy yields the highest returns over the whole sample period among all four 

plain momentum strategies.14 Thus, we set our benchmark as high as possible. 

 [Insert Figure 3 about here] 

Figure 3 demonstrates the timeline of a 6 × 6 PMM strategy. In any month t, all sample stocks are 

ranked and sorted into deciles based on their past 6-month formation period returns from month t-7 

to t-1 (due to a one month gap, month t-1 to t, between formation and holding periods for returns). 

                                                            
14 See Table 1. 
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Then we classify holding strategies into four conditions based on partial moments determined in the 

period month t-1 to t and their boundaries analysed in section 4.3.1. Then during the 6-month holding 

period from month t to t+6, we continue to compare upper and lower partial moments with their 

boundaries in each month and switch positions of winners, losers and the cash asset to keep zero-net 

position based on Panel A, Table 4. That is to say, for any PMM strategies, we keep rebalancing and 

switching positions of all assets held. For instance, in month t+2, to a 6 × 6 PMM strategy which was 

constructed at time t, PMM conditions in month t+2 are determined based on partial moments during 

the period [t+1, t+2]. 

In particular, all six PMM strategies switch to the same positions if conditions 2 or 3 occur, but act 

differently if conditions 1 or 4 occur. Besides, we hold cash long or short cash to keep our PMM 

strategies net zero positions. ݎ௪,௧ାଵ,	ݎ௟,௧ାଵ,	ݎ௙,௧ାଵ represent return of winners, losers and risk-free asset 

in month t+1, respectively. For example, for PMM Strategy 4 (PMM_S4), if condition 1 applies 

during the period [t-1, t] where upper and lower partial moments are all higher than their boundaries, 

then we close out our positions in both winners and losers. The PMM return for month t+1 is 0; If 

condition 2 applies during the period [t-1, t] where the upper partial moment is lower than its boundary 

and the lower partial moment is higher than its boundary, then we short losers only, liquidating our 

longs and holding cash long. The PMM return for month t+1 is ݎ௙,௧ାଵ െ  ௟,௧ାଵ; If condition 3 appliesݎ

during the period [t-1, t] where upper and lower partial moments are all lower than their boundaries, 

then we carry on momentum strategy by buying winners and short selling losers. The PMM return 

for month t+1 is ݎ௪,௧ାଵ െ  ௟,௧ାଵ; If condition 4 applies during the period [t-1, t] where the upper partialݎ

moment is higher than its boundary and the lower partial moment is lower than its boundary, then we 

buy winners only and short cash. The PMM return for month t+1 is ݎ௪,௧ାଵ െ  .௙,௧ାଵݎ

The key characteristic of our PMM strategies is that we change positions of winners, losers and a 

cash asset based on market partial moments during holding periods. For instance, if we construct an 

a4 PMM strategy on a J × K basis with zero-net position in month t, we rank all sample stocks and 

sort into deciles based on their past J-month formation period returns from month t-J-1 to t-1. Then 

during the K-month holding period from month t to t+K, we compare upper and lower partial 

moments with their boundaries in each month and switch positions of winners, losers and the cash 

asset to keep a zero-net position based on Panel A, Table 4. However, if the current partial moment 

condition persists over consecutive months, then we hold the same positions based on this condition’s 

methodology and keep rebalancing until other conditions apply. Assume in month t, this J × K based 

PMM Strategy 4 (PMM_S4) meets Condition 4, then we buy winners only and short cash; If in month 

t+1 Condition 4 still holds, then we hold current positions and rebalance winners’ portfolio based on 

past J-month performances from month t-1 to t, which is the same rebalancing method to our plain 
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momentum strategy in Section 3.2; If in month t+2 Condition 1 holds, then we close out long 

positions by selling winners and close out short positions in cash for the month. And so repeatedly. 

 [Insert Table 5 about here] 

Table 5 shows a comparison of the performances of six PMM strategies on a 6 × 6 basis and the 

benchmark strategy over three sample periods: P1, whole sample period (1964-01 to 2016-12); P2, 

Jegadeesh and Titman (1993) period (1965-01 to 1989-12); P3, the Global Financial Crisis (GFC) 

period (2008-01 to 2012-12) and P4, the Era of Turbulence (2000-01 to 2016-12).  

From Table 5, almost all six PMM strategies beat the benchmark strategy. In particular, PMM 

Strategies 4 and 5 (PMM_S4 and PMM_S5) persistently outperform the benchmark over the whole 

sample period and two sub-periods by generating higher Sharpe ratios and yielding higher-than-

benchmark significant returns. Even during the GFC, four PMM strategies earn positive returns and 

high Sharpe ratios and the adapted-Sortino ratios. Specifically, PMM Strategy 5 (PMM_S5) generates 

the highest 28.52% annualised return which is also the most significant among all 7 strategies 

including the benchmark. 

4. An extended partial moment-decomposed momentum strategy 

Recent papers have enhanced momentum strategies by weighting by volatility in various ways.15 

These do not differentiate between upside or downside risk and, typically are, by construction net 

zero funds. We extend this class of strategies by tilting our strategy long or short towards 

favourable/unfavourable volatility signals and holding an off-setting position in cash.  

We define a ( ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ, ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ  ) strategy as a net zero portfolio long 

߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ  in winners, short 	߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ  in losers with an offsetting position of 

߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ െ ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ in cash; we call this portfolio p. Denote its return at time 

t+1 as  

௣,௧ାଵݎ ൌ ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻݎ௪,௧ାଵ െ ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻݎ௟,௧ାଵ 

																൅ሺ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻሻ െ ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻሻ		ݎ௙,௧ାଵ																																																													ሺ17ሻ 

Where ݎ௪,௧ାଵ,	ݎ௟,௧ାଵ, and ݎ௙,௧ାଵ are the returns at time t+1 to the winners, losers and “cash” portfolios.  

There is no obvious guidance as to the functional form of  ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ and ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ 

but we might expect ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻto be increasing in its first argument and decreasing in its 

                                                            
15 See from Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016). 
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second argument and ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ  to have the opposite properties. As we discuss later, we 

might wish to have different assumptions on ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ   

Furthermore, we might want to normalise them, as in Barroso and Santa-Clara (2015) in terms of 

some target volatility ߪ௧௔௥. We pick the same target annualised volatility of 12% to keep consistency. 

With these considerations in mind we might also want the constraint  

߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൅ ߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൌ
௧௔௥ߪ2
ඥܴ ௧ܸ

																																																																																	ሺ18ሻ 

which is broadly in accord with Barroso and Santa-Clara (2015). We choose ߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ and 

߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ as follows: 

߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൌ
௧௔௥ߪ2
ඥܴ ௧ܸ

ቆ
௧ܯܴܲ

ା

௧ܯܴܲ
ା ൅ ௧ܯܴܲ

ିቇ																																																																																					ሺ19ሻ 

߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൌ
௧௔௥ߪ2
ඥܴ ௧ܸ

ቆ
௧ܯܴܲ

ି

௧ܯܴܲ
ା ൅ ௧ܯܴܲ

ିቇ																																																																																					ሺ20ሻ 

If ܴܲܯ௧
ା ൌ ௧ܯܴܲ

ି, then we have a conventional long-short portfolio with scaling 
ఙ೟ೌೝ
ඥோ௏೟

 as in Barroso 

and Santa-Clara (2015), formula (5), page 115.  

There are many alternative ways we could specify our strategy and (18) to (20) could be criticised 

that we might want shrink our exposure on the downside when ܴܲܯ௧
ି is large. Such an approach 

might be more consistent with the empirical result that momentum profits mainly result from the 

long-side of the portfolio.16 Also it might be argued that choosing functions that are homogeneous of 

degree zero loses some of the partial moment information. The argument in favour of increasing one’s 

exposure on the downside is that, in prospect theory, agents are usually deemed to be risk-loving on 

the downside.17 

In practise leverage is an issue in long-short portfolios. Many institutional hedge funds have strict 

restrictions on leverage, where 200% leverage is a typical upper bound. The previous popularity of 

                                                            
16 Jegadeesh and Titman (1993) state that “the abnormal performance of the zero-cost (momentum) portfolio is due to the 
buy side of the transaction rather than the sell side.” Moskowitz and Grinblatt (1999) argue that “industry momentum 
strategies appear to profit mostly on the buy side”. See, for instance, Chan, Jegadeesh and Lakonishok (1996), Jegadeesh 
and Titman (2001) and Israela and Moskowitz (2013) for further evidence. 
17 Ang, Chen and Xing (2006) conclude that “…the behavioural framework of Kahneman and Tversky's (1979) loss 
aversion preferences and the axiomatic approach taken by Gul's (1991) disappointment aversion preferences allow agents 
to place greater weights on losses relative to gains in their utility functions.” They also argue that “agents who place 
greater weight on downside risk demand additional compensation for holding stocks with high sensitivities to downside 
market movements.” 
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130-30 funds is evidence that leverage is not unconstrained in practise.18 Leverage is defined as the 

sum of absolute value of long and short weights (ignoring cash positions) so that our strategies above 

have a leverage as in (18). 

To rescale our weights to obey a 200% leverage condition, we need to change our scaling to 

߮ଵሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൌ 2ቆ
௧ܯܴܲ

ା

௧ܯܴܲ
ା ൅ ௧ܯܴܲ

ିቇ																																																																																													ሺ21ሻ 

߮ଶሺܴܲܯ௧
ା, ௧ܯܴܲ

ିሻ ൌ 2ቆ
௧ܯܴܲ

ି

௧ܯܴܲ
ା ൅ ௧ܯܴܲ

ିቇ																																																																																													ሺ22ሻ 

with corresponding positions in cash. 

[Insert Table 6 about here] 

Table 6 shows the performance of PM-decomposed momentum strategy over four sample periods. 

Our PM-decomposed momentum strategy (M66*) dramatically outperform the plain momentum 

strategy over all four sample periods by generating higher and more significant positive returns, and 

having larger Sharpe ratios and Adapted-Sortino ratios. Even during P3, the GFC period and P4, the 

Era of Turbulence when holding a plain 6 × 6 momentum strategy earns negative returns, our PM-

decomposed momentum strategy persistently yields an annualised return of about 40%. In particular, 

during the GFC, this strategy has an annualised Sharpe ratio of 1.32 and an annualised adapted-

Sortino ratio of 1.02. Besides, our leveraged PM-decomposed momentum strategy (M66#) reveals 

similar good performances even though it slightly underperforms the unleveraged strategy.  

5. Out of sample analysis 

Our PMM performances in the previous sections are conditional on the realised semi-variance 

boundaries over our whole sample period over January 1964 to December 2016. Concerns may be 

raised that this involves using out-of-sample information and lacks realism. 

To strengthen the effectiveness of our PMM model and to provide practical investment insights for 

momentum investors, we further construct PMM strategies using parameters and boundaries 

computed within an in-sample period from January 1964 to December 1999. We call the out-of-

sample period, which is from January 2000 to December 2016, the Era of Turbulence since during 

which, there was the IT bubble (early 2000s), the Hedge Fund Crisis (2006), the GFC (Since 2008) 

and the European Debt Crisis (Since late 2009). Therefore, it may be more convincing if our selected 

                                                            
18 “130-30” represents a leveraged long-short mutual fund strategy that allows fund managers to hold short positions up 
to 30% of the initial investment and use the corresponding funds to take long positions. Other popular strategies of this 
type include “150-50”, “120-20” and so on. 
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PMM and PM-decomposed momentum strategies outperform plain momentum during these financial 

turbulences. 

[Insert Table 7 about here] 

Table 7 shows the use of critical values of 10th percentile for ܴܲܯ௧
ା and 75th percentile for ܴܲܯ௧

ି 

during in-sample periods for the VAR of upper and lower partial moments, respectively, in order to 

maintain consistency with previous sections. 

[Insert Table 8 about here] 

Table 8 presents the frequencies of the four PMM switching conditions based on in-sample partial 

moments over the whole out-of-sample periods, the Era of Turbulence, from January 2000 to 

December 2016.  It shows that in any given month t over the out-of-sample period, there is a high 

probability that condition 1 or 4 occurs. Compared to the estimated frequencies shown in Table 8 

Panel B and Figure 2b, the major variation is that the frequency of condition 1 more than doubled 

during the Era of Turbulence (actual frequency of 50.49% compared to an expected frequency of 

22.5%). One possible explanation is that the Era of Turbulence contains a lower proportion of market 

upturns compared to periods of market downturns, in contrast to our in-sample period from 1964 to 

1999. Thus, condition 1, where upper and lower partial moments are greater than the in-sample 

critical values, is fulfilled more frequently during this period.  

5.1 Performances of out of sample PMM strategies  

 [Insert Table 9 about here] 

Table 9 presents a comparison of the performances of six PMM strategies and the benchmark strategy 

over the whole out-of-sample period and the GFC period. Similar to the results presented in Table 5, 

five out of six PMM strategies persistently outperform the benchmark strategy over these two periods. 

Particularly, strategies a4 and a5 both earn significant positive returns during the GFC while the 

benchmark strategy makes plain momentum investors wounded by losing approximately 1.2% a 

month.  

5.2 A dynamic PM-decomposed strategy 

By using the estimated coefficients over in-sample periods from Table 7, we generate a dynamic out-

of-sample PM-decomposed momentum strategy. During the out-of-sample periods, we employ 

estimated partial moments using formulae (21) and (22) into the models developed in Section 5. The 

estimated model is: 

௧ܯܴܲ
ା ൌ 0. 00056 ൅ 0.34015 ∗ ௧ିଵܯܴܲ

ା െ 0.01652 ∗ ௧ିଵܯܴܲ
ି 																																																								ሺ21ሻ 
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௧ܯܴܲ
ି ൌ 0. 00056 ൅ 0.37669 ∗ ௧ିଵܯܴܲ

ା ൅ 0.00449 ∗ ௧ିଵܯܴܲ
ି 																																																								ሺ22ሻ 

 

[Insert Table 10 about here] 

Whilst the results, presented in Table 10, show that partial moments are forecastable, we find the 

performance of the PM strategies based on using these forecasts to scale positions does not improve 

performance. This is possibly due to estimation errors swamping any forecasting benefits. 

6. Robustness Check: a WML strategy 

Consistent with Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), we construct a 

WML portfolio with a 11-month formation period and a 1-month holding period over January 1964 

to December 2016. Particularly, there is a one-month gap between the formation and holding period 

and this strategy uses value-weighted holding period returns without rebalancing.  

6.1 PM-based momentum strategies on a WML basis 

We follow the switching rules presented in Table 3 and construct six PMM strategies on a WML 

basis over the whole sample period (1964 to 2016) which are presented in Table 11. 

[Insert Table 11 about here] 

From Table 11, apart from PMM Strategy 6 (PMM_S6), all other five PMM strategies outperform 

the benchmark strategy (a WML strategy) over both periods: P3, the GFC period (2008 to 2012) and 

P4, the Era of Turbulence (2000-01 to 2016-12). Particularly, all six PMM strategies based on WML 

earn positive returns during the GFC. 

[Insert Table 12 about here] 

We further test WML-based PMM on out-of-sample analyses same as Section 5.1 as shown in Table 

12.  These results show that all six WML-based PMM strategies surpass the performance of a plain 

WML strategy during Pa, the Era of Turbulence (2000 to 2016) and Pb, the GFC period (2008 to 

2012). 

[Insert Table 13 about here] 

We then conduct two PM-decomposed momentum strategies, with and without a 200% leverage 

condition, based on WML as shown in Table 13. Same to the results in Table 6, PM-decomposed 

momentum strategies on a WML basis consistently outperform the plain WML strategy over all 

sample periods.  

[Insert Table 14 about here] 
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Moreover, we test the dynamic PM-decomposed momentum strategies on a WML basis over the out-

of-sample period as in Section 5.2 as shown in Table 14. These results provide further evidence that 

PM-decomposed momentum strategies outperform plain momentum during financial turbulences. 

The robustness checks reveal that our PM-based momentum strategies are robust across different 

momentum strategies and multiple time periods. Whilst we do not claim that investors could earn 

these returns in practise, we suggest that PM-based strategies seem a good way of managing 

momentum risk. 

6.2 Comparison between PM-decomposed momentum strategies and Barroso and Santa-Clara 

(2015) volatility-scaled momentum strategy 

[Insert Table 15 about here] 

Table 15 presents a comparison of the performances of our PM-decomposed momentum strategies 

and the volatility-scaled momentum strategy constructed by Barroso and Santa-Clara (2015). We 

construct the volatility-scaled momentum portfolio following the same methodology as Barroso and 

Santa-Clara (2015) use for their “risk-managed momentum”. 19  Results reveal that our PM-

decomposed momentum strategies outperform the Barroso and Santa-Clara (2015) volatility-scaled 

momentum strategy for all four sample periods, including those periods of financial booming (P2) 

and financial turbulences (P3 and P4). In particular, our PM-decomposed momentum strategy earns 

an annualised return of 12.93%, which is significant at 1% level, with an annualised Sharpe ratio of 

1.58 during the GFC, compared to an insignificant annualised return of 4.40% with an annualised 

Sharpe ratio of 0.36 for the Barroso and Santa-Clara (2015) volatility-scaled momentum strategy 

during the same period.  

We might find that, by tilting our strategy long or short towards favourable/unfavourable volatility 

signals, our extended partial moment-decomposed momentum strategy is more efficient and 

profitable, during both good and bad times.  

7. Conclusion 

We have demonstrated good performance for cross-sectional momentum-strategies, using 

information in past partial moments. We investigate two types; Firstly, either a portfolio choice based 

on the region that upper and lower partial moments lie in; Secondly, based on partial moment scaling 

whereby we load up on longs if upper partial moments are forecast to be relatively large or load up 

on shorts when lower partial moments are forecast to be relatively large. 

                                                            
19 They referred this volatility-scaled momentum strategy as the “risk-managed momentum”. See from section 4, page 
115, Barroso and Santa-Clara (2015). 
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Our approach, relative to what a fund manager might do, is conservative in the sense of using minimal 

calculation. Whilst we use CRSP data, which involves many stocks too small or illiquid to be 

considered by a fund of reasonable size, we do not update our models, estimating them once based 

on in sample data and using them, with fixed parameters, when we carry out our out-of-sample back 

testing.  

The success of this strategy occurs because of the forecastability of partial moments, see Table 3. 

This immediately raises the question. Is this finding evidence of market inefficiency? We can best 

answer this by quoting Timmermann and Granger (2004). 

“There is now substantial evidence that volatility of asset returns varies over time in a way that can 

be partially predicted. For this reason there has been considerable interest in improved volatility 

forecasting models in the context of option pricing, see e.g. Engle, Hong, Kane, and Noh (1993). 

Does this violate market efficiency? Clearly the answer is no unless a trading strategy could be 

designed that would use this information in the options markets to identify under- and over-valued 

options. “ 

Whilst we note possible subtleties in that options price directly off volatility; we also note that partial 

moments are barely traded at all. Thus, it seems, to us at least, that the presentation of a trading 

strategy that generates significant returns by forecasting partial moments is an argument against 

market efficiency. 

The source of this inefficiency, whether it be behavioural or predictable risk premia or investors 

unwilling to embrace a more challenging measure of risk such as partial moments, awaits further 

research. 
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Figure 1a Histograms of upper partial moments with kernel density curves 

Figure 1a shows histograms of upper partial moment (ܴܵ௧
ା ) with kernel density curves. Values of 10th 

percentile and maximum observations of ܴܵ௧
ା are reported. The normal kernel estimate for c=0.7852 has a 

bandwidth of 0.0002 and an approximate mean integrated square error (AMISE) of 3.3237. Since the 
distribution of upper partial moment has a fat tail, we combine all upper partial moments with values between 
99th percentile (0.0079066) and the maximum observation (0.027443). 
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Figure 1b Histograms of lower partial moments with kernel density curves   

Figure 1b shows histograms of lower partial moment (ܴܵ௧
ି ) with kernel density curves. Values of 75th 

percentile and maximum observations of ܴܵ௧
ି are reported. The normal kernel estimate for c=0.7852 has a 

bandwidth of 0.0002 and an approximate mean integrated square error (AMISE) of 3.1071. Since the 
distribution of lower partial moment has a fat tail, we combine all lower partial moments with values between 
99th percentile (0.0087403) and the maximum observation (0.066847). 
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Figure 2a PMM strategies conditions in the coordinate plane 

Figure 2a illustrates the four PMM strategies conditions in the coordinate plane. The origin point represents 
both the critical values for ܴܲܯ௧

ା  and ܴܲܯ௧
ି ௧ܯሺܴܸܲܥ) 

ାሻ  and ܸܥሺܴܲܯ௧
ିሻ) in month t. Each quadrant 

represents a PMM condition based on upper and lower partial moments and their critical values. For example, 
if in month t, both upper and lower partial moments are higher than their critical values, the point of PMM 
condition in month t is in the first quadrant in this coordinate plane. Then condition 1 applies in month t and 
the corresponding trading methods to condition 1 are employed as shown on Panel B, Table 4. 

 

 

 

Figure 2b PMM strategies conditions estimation 

Figure 2b shows the estimation of four PMM strategies conditions when 10th percentile of ܴܲܯ௧
ା and 75th 

percentile of ܴܲܯ௧
ି  are used as critical values for ܴܲܯ௧

ା  and ܴܲܯ௧
ି , respectively. Estimated percentage 

reports the theoretical possibilities of each of these four PMM strategies conditions occur. 

Condition  Estimated Percentage 

1 22.50% 
2 2.50% 
3 7.50% 
4 67.50% 

Total 100.00% 
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Figure 3 Timeline of a 6 × 6 PMM strategy  

Figure 3 demonstrates the timeline of a 6 × 6 PMM strategy. In any month t, all sample stocks are ranked and sorted into deciles based on their past 6-month formation period 
returns from month t-7 to t-1 (due to a one month gap, month t-1 to t, between formation and holding periods for returns). Then we classify holding strategies into four conditions 
based on partial moments determined in the period month t-1 to t and their boundaries analysed in section 4.3.1. Then during the 6-month holding period from month t to t+6, 
we continue to compare upper and lower partial moments with their boundaries in each month and switch positions of winners, losers and the cash asset to keep zero-net position 
based on Panel A, Table 4. That is to say, for any PMM strategies, we keep rebalancing and switching positions of all assets held. For instance, in month t+2, to a 6 × 6 PMM 
strategy which was constructed at time t, PMM conditions in month t+2 are determined based on partial moments during the period [t+1, t+2]. 
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Table 1 Performances of plain momentum strategies in the US equity markets 

Table 1 shows the performances of 4 plain momentum strategies over four sample periods: P1 whole sample 
period (1964 to 2016), P2 Jegadeesh and Titman 1993 period (1965 to 1989), P3 the Global Financial Crisis 
(GFC) period (2008 to 2012) and P4 the Era of Turbulence (2000 to 2016). Return reports the annualised return 
of each strategy in percentage.  Sharpe ratio reports the annualised Sharpe ratio of each strategy. It is calculated 
following the methodology in Sharpe (1994), as the excess return divided by its standard deviation. Adapted-
Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is calculated following the 
methodology in formula (9) to (11), as the excess return divided by twice its downside semi-deviation. M33, 
M66, M99 and M1212 represent the 3 × 3, 6 × 6, 9 × 9 and 12 × 12 plain momentum strategies with one month 
gap between formation and holding periods, respectively. The Newey-West (1987) t-test statistics are provided. 
*, **, *** indicate significances at the 10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: P1, Whole sample period: 1964-01 to 2016-12 

M33 4.18 1.48 -0.03 -0.01 
M66 6.23 1.97(**) 0.06 0.03 
M99 2.08 0.71 -0.13 -0.06 

M1212 -3.49 -1.24 -0.40 -0.20 
Panel B: P2, Jegadeesh and Titman (1993) period: 1965-01 to 1989-12 

M33 8.96 2.95(***) 0.12 0.06 
M66 12.03 3.59(***) 0.29 0.15 
M99 9.10 2.68(***) 0.12 0.06 

M1212 3.11 0.90 -0.22 -0.12 
Panel C: P3, The Global Financial Crisis: 2008-01 to 2012-12 

M33 -10.59 -1.09 -0.50 -0.23 
M66 -13.45 -1.17 -0.54 -0.23 
M99 -14.59 -1.28 -0.59 -0.27 

M1212 -15.02 -1.37 -0.63 -0.30 
Panel D: P4, The Era of Turbulence: 2000-01 to 2016-12 

M33 -0.88 -0.13 -0.09 -0.04 
M66 -0.92 -0.12 -0.08 -0.04 
M99 -6.17 -0.98 -0.30 -0.14 

M1212 -9.51 -1.68 -0.47 -0.24 
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Table 2 Distributions of partial moments of the US equity market 

Table 2 reports the distributions of monthly realised variance (ܴ ௧ܸ), upper and lower market partial moments 
௧ܯܴܲ)

ା and ܴܲܯ௧
ି) throughout the whole sample period from January 1964 to December 2016. 10th Pctl, 

25th Pctl, 75th Pctl, 90th Pctl and Std Dev represent 10th, 25th, 75th, 90th percentile and standard deviation of 
each variable.  Median, mean, skewness and kurtosis are also reported. ܵܳܧܦ ௧ܸ stands for annual standard 
deviation equivalent (in percentage) of monthly realised variance. For example, ܴ ௧ܸmean average of 22.03 
corresponds to an annual standard deviation of 16.26%. Values of all percentiles, median, mean and standard 
deviation are in 0.0001. 

Variable 10th Pctl 25th Pctl Median 75th Pctl 90th Pctl Mean Std Dev Skewness Kurtosis 

ܴ ௧ܸ 4.61 7.21 12.04 22.27 42.06 22.03 47.37 11.01 156.45 
௧ܯܴܲ

ା 1.94 3.57 6.48 11.29 20.04 10.64 17.76 8.01 93.17 
௧ܯܴܲ

ି 1.11 2.52 6.44 10.78 21.58 11.39 32.86 14.41 263.72 
ܳܧܦܵ ௧ܸ 7.44 9.30 12.02 16.35 22.47 16.26    
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Table 3 VAR results of partial moments 

Table 3 reports the VAR (1) process results of partial moments throughout the whole sample period from 
January 1964 to December 2016. For Equation (12), the dependent variable is ܴܲܯ௧

ା which represents the 
upper partial moment at month t; For Equation (13), the dependent variable is ܴܲܯ௧

ି which represents the 
lower partial moment at month t. For each regression, ߙ represents the coefficient of the intercept; ܴܲܯ௧ିଵ

ା  
and ܴܲܯ௧ିଵ

ି  represent the value of the upper partial moment and the lower partial moment at month t-1, 
respectively. ܴ௔ௗ௝

ଶ  reports the adjusted R squared value. The Newey-West (1987) t-test statistics are marked 
as *, **, ***. These indicate significance at the 10%, 5% and 1% level, respectively. 

Coefficient Variable Estimated coefficients (t-statistics) 
  (12) (13)	 
௧ܯܴܲ   

ା ܴܲܯ௧
ି 

 ଵߙ
 

1 
 

0.00051  
(7.37) *** 

 

 ଵଵߚ
 

௧ିଵܯܴܲ
ା  

 
0.44978 

(9.24) *** 
 

 ଵଶߚ
 

௧ିଵܯܴܲ
ି  

 
0.02631 
(2.42) ** 

 

 ଶߙ
 

1 
 

 0.00046 
(3.22) *** 

 ଶଵߚ
 

௧ିଵܯܴܲ
ା  

 
 0.55273 

(6.53) ***  
 ଶଶߚ

 
௧ିଵܯܴܲ

ି  
 

 
0.07961 
(1.47) 

ܴ௔ௗ௝
ଶ   0.2912 0.1274 
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Table 4 PMM strategies construction 

Table 4 presents how we construct partial moment momentum (PMM) strategies. Panel A shows four conditions of upper and lower partial moments based on their boundaries: 10th percentile 
of ܴܲܯ௧

ା and 75th percentile of ܴܲܯ௧
ି.  In any given month t, we classify holding strategies into four conditions based on partial moments in the period [t-1, t] (there is a one month gap between 

the formation and holding periods for returns) and their boundaries analysed in section 3.3.1. Correspondingly, switching methodologies during holding periods under each of these four conditions 
are presented. Panel B illustrates different holding periods actions and returns to each of the four conditions presented on Panel A of our six partial moment momentum strategies, which we 
called PMM Strategy 1 to 6, represented by PMM_S1 to PMM_S6. In particular, all six PMM strategies switch to the same positions if condition 2 or 3 occur, but act differently if conditions 1 
or 4 occur. Besides, we hold cash long or short cash to keep our PMM strategies net zero positions. ݎ௪,௧ାଵ,	ݎ௟,௧ାଵ,	ݎ௙,௧ାଵ represent return of winners, losers and risk-free asset in month t+1, 
respectively. For example, for PMM strategy 4 (PMM_S4), if condition 1 applies during the period [t-1, t] where upper and lower partial moments are all higher than their boundaries, then we 
close out our positions in both winners and losers. The PMM return for month t+1 is 0; If condition 2 applies during the period [t-1, t] where upper partial moment is lower than its boundary and 
lower partial moment is higher than its boundary, then we short losers only, liquidating our longs and holding cash long. The PMM return for month t+1 is ݎ௙,௧ାଵ െ  ௟,௧ାଵ; If condition 3 appliesݎ
during the period [t-1, t] where upper and lower partial moments are all lower than their boundaries, then we carry on momentum strategy by buying winners and short selling losers. The PMM 
return for month t+1 is ݎ௪,௧ାଵ െ  ௟,௧ାଵ; If condition 4 applies during the period [t-1, t] where the upper partial moment is higher than its boundary and the lower partial moment is lower than itsݎ
boundary, then we buy winners only and short cash. The PMM return for month t+1 is ݎ௪,௧ାଵ െ  .௙,௧ାଵݎ

Panel A:  Four conditions of partial moments based on their boundaries 

Condition 1 if ܴܲܯ௧
ା > ܸܥሺܴܲܯ௧

ାሻ and if ܴܲܯ௧
௧ܯሺܴܸܲܥ < ି

ିሻ then Method 1.1: Close out 

Method 1.2: Go Contrarian  

Method 1.3: Short losers only 

Condition 2  ܴܲܯ௧
ା < ܸܥሺܴܲܯ௧

ାሻ ܴܲܯ௧
௧ܯሺܴܸܲܥ < ି

ିሻ Method 2:    Short losers only 

Condition 3  ܴܲܯ௧
ା < ܸܥሺܴܲܯ௧

ାሻ  ܴܲܯ௧
௧ܯሺܴܸܲܥ > ି

ିሻ Method 3:    Go momentum 

Condition 4  ܴܲܯ௧
ା > ܸܥሺܴܲܯ௧

ାሻ ܴܲܯ௧
௧ܯሺܴܸܲܥ > ି

ିሻ Method 4.1: Go momentum 

Method 4.2: Buy winners only 

Panel B: Methodologies and returns of six partial moment momentum strategies (In any given month t, conditions are classified based on partial moments in the previous month t-1 due to 

one-month gap between the formation and holding periods; ,ା૚࢚,࢝࢘ ,ା૚࢚,࢒࢘  ,ା૚  represent returns of winners, losers and the risk-free asset in month t+1, respectively. Correspondingly࢚,ࢌ࢘

returns of momentum and contrarian strategies are ࢚,࢝࢘ା૚- -ା૚࢚,࢒࢘ ା૚ and࢚,࢒࢘  (.ା૚, respectively࢚,࢝࢘

PMM Strategies 
Condition 1 Condition 2 Condition 3 Condition 4 

Method Return Method Return Method Return Method Return 

PMM_S1 1.1 0 2 ݎ௙,௧ାଵ െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.1ݎ െ  ௟,௧ାଵݎ

PMM_S2 1.2 ݎ௟,௧ାଵ െ ௪,௧ାଵݎ ௙,௧ାଵݎ 2 െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.1ݎ െ  ௟,௧ାଵݎ

PMM_S3 1.3 ݎ௙,௧ାଵ െ ௙,௧ାଵݎ ௟,௧ାଵ 2ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.1ݎ െ  ௟,௧ାଵݎ

PMM_S4 1.1 0 2 ݎ௙,௧ାଵ െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.2ݎ െ  ௙,௧ାଵݎ

PMM_S5 1.2 ݎ௟,௧ାଵ െ ௪,௧ାଵݎ ௙,௧ାଵݎ 2 െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.2ݎ െ  ௙,௧ାଵݎ

PMM_S6 1.3 ݎ௙,௧ାଵ െ ௙,௧ାଵݎ ௟,௧ାଵ 2ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 3ݎ െ ௪,௧ାଵݎ ௟,௧ାଵ 4.2ݎ െ  ௙,௧ାଵݎ
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Table 5 Performances of PMM strategies on a 6 × 6 basis 

Table 5 shows performances of partial moment momentum (PMM) strategies on a 6 × 6 basis over four sample 
periods: P1, whole sample period (1964-01 to 2016-12), P2, Jegadeesh and Titman (1993) period (1965-01 to 
1989-12), P3, the Global Financial Crisis (GFC) period (2008-01 to 2012-12) and P4, the Era of Turbulence 
(2000-01 to 2016-12). Partial moments boundaries are computed over whole sample period P1. M66 (strategy) 
represents a 6 × 6 plain momentum strategy with one month gap between formation and holding periods. 
PMM_S1 to PMM_S6 represent six PMM strategies which are on a 6 × 6 basis and constructed following the 
switching rules presented in Table 4. Return reports the annualised return of each strategy in percentage.  
Sharpe ratio reports the annualised Sharpe ratio of each strategy. It is calculated following the methodology in 
Sharpe (1994), as the excess return divided by its standard deviation. Adapted-Sortino ratio reports the 
annualised adapted-Sortino ratio of each strategy. It is calculated following the methodology in formula (9) to 
(11), as the excess return divided by twice its downside semi-deviation. The Newey-West (1987) t-test statistics 
are provided. *, **, *** indicate significances at the 10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: P1, Whole sample period: 1964-01 to 2016-12 

M66 6.23 1.97(*) 0.06 0.03 
PMM_S1 6.08 3.19(***) 0.09 0.05 
PMM_S2 5.90 1.86(*) 0.05 0.03 
PMM_S3 4.23 1.07 -0.02 -0.01 
PMM_S4 13.67 5.29(***) 0.46 0.31 
PMM_S5 13.47 3.66(***) 0.31 0.26 
PMM_S6 11.70 2.65(***) 0.21 0.11 

Panel B: P2, Jegadeesh and Titman (1993) period: 1965-01 to 1989-12 

M66 12.03 3.59(***) 0.29 0.15 
PMM_S1 9.30 3.46(***) 0.16 0.10 
PMM_S2 6.64 1.99(**) -0.02 -0.02 
PMM_S3 11.32 2.69(***) 0.20 0.10 
PMM_S4 14.70 3.43(***) 0.34 0.23 
PMM_S5 11.91 2.53(**) 0.20 0.15 
PMM_S6 16.81 3.10(***) 0.35 0.21 

Panel C: P3, The Global Financial Crisis: 2008-01 to 2012-12 

M66 -13.45 -1.17 -0.54 -0.23 
PMM_S1 3.57 0.94 0.38 0.24 
PMM_S2 23.62 1.77(*) 0.78 1.59 
PMM_S3 -8.57 -0.51 -0.24 -0.13 
PMM_S4 7.74 1.32 0.56 0.35 
PMM_S5 28.52 2.00(**) 0.88 1.35 
PMM_S6 -4.85 -0.27 -0.13 -0.07 

Panel D: P4, The Era of Turbulence: 2000-01 to 2016-12 

M66 -0.92 -0.12 -0.08 -0.04 
PMM_S1 4.77 1.64 0.26 0.15 
PMM_S2 10.85 1.38 0.28 0.24 
PMM_S3 -1.47 -0.16 -0.08 -0.04 
PMM_S4 10.95 2.95(***) 0.60 0.42 
PMM_S5 17.36 2.07 (**) 0.45 0.41 
PMM_S6 4.38 0.44 0.07 0.03 
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Table 6 Performances of PM-decomposed momentum strategy on a 6 × 6 basis 

Table 6 shows performances of two partial moments-decomposed momentum strategies over four sample 
periods: P1, whole sample period (1964-01 to 2016-12), P2, Jegadeesh and Titman (1993) period (1965-01 to 
1989-12), P3, the Global Financial Crisis (GFC) period (2008-01 to 2012-12) and P4, the Era of Turbulence 
(2000-01 to 2016-12).  M66 (strategy) represents a 6 × 6 plain momentum strategy with one month gap between 
formation and holding periods. M66* and M66# represent a PM-decomposed momentum strategy and a 
leveraged PM-decomposed momentum strategy, respectively. Both strategies are on a 6 × 6 basis and 
constructed following the methodologies described in Section 4. Return reports the annualised return of each 
strategy in percentage. Sharpe ratio reports the annualised Sharpe ratio of each strategy. It is calculated 
following the methodology in Sharpe (1994), as the excess return divided by its standard deviation. Adapted-
Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is calculated following the 
methodology in formula (9) to (11), as the excess return divided by twice its downside semi-deviation. The 
Newey-West (1987) t-test statistics are provided. *, **, *** indicate significances at the 10%, 5% and 1% 
level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: P1, Whole sample period: 1964-01 to 2016-12 

M66 6.23 1.97(**) 0.06 0.03 
M66* 18.61 14.65(***) 1.46 1.31 

M66# 17.70 13.32(***) 1.31 0.89 

Panel B: P2, Jegadeesh and Titman (1993) period: 1965-01 to 1989-12 

M66 12.03 3.59(***) 0.29 0.15 
M66* 23.47 11.49(***) 1.54 2.17 
M66# 21.44 12.14(***) 1.58 1.59 

Panel C: P3, The Global Financial Crisis: 2008-01 to 2012-12 

M66 -13.45 -1.17 -0.54 -0.23 
M66* 9.42 3.07(***) 1.32 1.02 
M66# 11.34 2.44(**) 1.05 0.61 

Panel D: P4, The Era of Turbulence: 2000-01 to 2016-12 

M66 -0.92 -0.12 -0.08 -0.04 
M66* 13.44 6.56 (***) 1.39 1.05 
M66# 14.43 5.21(***) 1.11 0.65 
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Table 7 VAR results of partial moments over January 1964 to December 1999 

Table 7 reports the VAR (1) process results of partial moments throughout the in-sample period from January 
1964 to December 1999. For Equation (12), dependent variable is ܴܲܯ௧

ା  which represents upper partial 
moment at month t; For Equation (13), dependent variable is ܴܲܯ௧

ି which represents lower partial moment at 
month t. For each regression, ߙ represents the coefficient of the intercept; ܴܲܯ௧ିଵ

ା  and ܴܲܯ௧ିଵ
ି  represent the 

value of upper partial moment and lower partial moment at month t-1, respectively. ܴ௔ௗ௝
ଶ  reports adjusted R 

squared value. The Newey-West (1987) t-test statistics are marked as *, **, ***. These indicate significance 
at the 10%, 5% and 1% level, respectively. 

Coefficient Variable Estimated coefficients (t-statistics) 
  (12) (13)	 
௧ܯܴܲ   

ା ܴܲܯ௧
ି 

 ଵߙ
 

1 
 

0. 00056 
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Table 8 Conditions switching over the out-of-sample periods 

Table 8 reports the frequencies of the four PMM switching conditions based on in-sample partial moments 
over the whole out-of-sample periods, the Era of Turbulence, from January 2000 to December 2016. Panel A 
shows the actual out-of-sample frequencies of PMM conditions based on in-sample estimates. The variable 
“Sab” represents a situation when condition in the current month t is a and condition in the next month t+1 is 
b.  N represents the number of each situation. Pct represents percentage of each situation per each of the four 
conditions. Cond X represents the total numbers of months when condition X applies over the whole out-of-
sample periods. For example, Cond 1 equals 103 and it means that there are 103 months over out-of-sample 
periods when condition 1 applies. N of S14 is 31 means that there are 31 months over out-of-sample periods 
when condition 1 applies and in the meantime, condition 4 applies in the next month; Pct of S14 is 30.10% 
means that if condition 1 applies in the current month, there is a 30.1% chance that condition 4 will apply in 
the next month. Panel B compares the estimations of four PMM strategies to the actual observations. Estimated 
percentage reports the theoretical possibilities of each of these four PMM strategies conditions occur which is 
consistent with Figure 2b.  

Panel A: Frequencies of the four PMM switching conditions  

Variable N Pct Variable N Pct Variable N Pct Variable N Pct 

S11 70 67.96% S21 0 0.00% S31 2 66.67% S41 30 30.93% 

S12 0 0.00% S22 0 0.00% S32 0 0.00% S42 0 0.00% 

S13 2 1.94% S23 0 0.00% S33 0 0.00% S43 1 1.03% 

S14 31 30.10% S24 1 100.00% S34 1 33.33% S44 66 68.04% 

Cond 1 103 100.00% Cond 2 1 100.00% Cond 3 3 100.00% Cond 4 97 100.00% 

Panel B: Estimated and actual frequencies comparison 

Condition Estimated Percentage Actual Percentage 

1 22.50% 50.49% 
2 2.50% 0.49% 
3 7.50% 1.47% 
4 67.50% 47.55% 

Total 100.00% 100.00% 
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Table 9 Out-of-sample performances of PMM strategies on a 6 × 6 basis 

Table 9 shows out-of-sample performances of partial moment momentum (PMM) strategies on a 6 × 6 basis 
over two sample periods: Pa, whole out-of-sample period (Era of Turbulence, 2000 to 2016) and Pb, the Global 
Financial Crisis (GFC) period (2008 to 2012). Partial moments boundaries are computed over in-sample 
sample period from January 1964 to December 1999. M66 (strategy) represents a 6 × 6 plain momentum 
strategy with one month gap between formation and holding periods. PMM_S1 to PMM_S6 represent six 
PMM strategies which are on a 6 × 6 basis and constructed following the switching rules presented in Table 4. 
Return reports the annualised return of each strategy in percentage.  Sharpe ratio reports the annualised Sharpe 
ratio of each strategy. It is calculated following the methodology in Sharpe (1994), as the excess return divided 
by its standard deviation. Adapted-Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. 
It is calculated following the methodology in formula (9) to (11), as the excess return divided by twice its 
downside semi-deviation. The Newey-West (1987) t-test statistics are provided. *, **, *** indicate 
significances at the 10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: Pa, The Era of Turbulence: 2000-01 to 2016-12 

M66 -0.92 -0.12 -0.08 -0.04 
PMM_S1 2.31 0.96 0.07 0.04 
PMM_S2 5.11 0.66 0.11 0.10 
PMM_S3 -0.48 -0.05 -0.05 -0.03 
PMM_S4 10.22 3.28(***) 0.66 0.50 
PMM_S5 13.22 1.61 0.34 0.31 
PMM_S6 7.23 0.71 0.13 0.07 

Panel B: Pb, The Global Financial Crisis: 2008-01 to 2012-12 

M66 -13.45 -1.17 -0.54 -0.23 
PMM_S1 1.68 0.56 0.19 0.11 
PMM_S2 19.20 1.45 0.64 1.12 
PMM_S3 -5.92 -0.34 -0.16 -0.09 
PMM_S4 10.82 2.31(**) 1.00 0.86 
PMM_S5 29.77 2.12(**) 0.93 1.58 
PMM_S6 2.60 0.14 0.05 0.03 
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Table 10 Performances of the dynamic PM-decomposed momentum strategies on a 6 × 6 basis 

Table 10 shows performances of two out-of-sample partial moments-decomposed momentum strategies over 
two sample periods: Pa, whole out-of-sample period (Era of Turbulence, 2000 to 2016) and Pb, the Global 
Financial Crisis (GFC) period (2008 to 2012). M66 (strategy) represents a 6 × 6 plain momentum strategy with 
one month gap between formation and holding periods. M66* and M66# represent a PM-decomposed 
momentum strategy and a leveraged PM-decomposed momentum strategy, respectively. Both strategies are 
on a 6 × 6 basis and constructed following the methodologies described in Section 4 and Section 5.2. Return 
reports the annualised return of each strategy in percentage. Sharpe ratio reports the annualised Sharpe ratio of 
each strategy. It is calculated following the methodology in Sharpe (1994), as the excess return divided by its 
standard deviation. Adapted-Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is 
calculated following the methodology in formula (9) to (11), as the excess return divided by twice its downside 
semi-deviation.  The Newey-West (1987) t-test statistics are provided. *, **, *** indicate significances at the 
10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: Pa, The Era of Turbulence: 2000-01 to 2016-12 

M66 -0.92 -0.12 -0.08 -0.04 
M66* 0.88 0.50 -0.11 -0.05 
M66# -0.51 -0.19 -0.19 -0.09 

Panel B: Pb, The Global Financial Crisis: 2008-01 to 2012-12 

M66 -13.45 -1.17 -0.54 -0.23 
M66* -2.03 -0.81 -0.43 -0.21 
M66# -4.65 -1.07 -0.52 -0.22 
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Table 11 Performances of PMM strategies on a WML basis 

Table 11 shows performances of partial moment momentum (PMM) strategies on a WML basis (11 × 1) over 
four sample periods: P1, whole sample period (1964-01 to 2016-12), P2, Jegadeesh and Titman (1993) period 
(1965-01 to 1989-12), P3, the Global Financial Crisis (GFC) period (2008-01 to 2012-12) and P4, the Era of 
Turbulence (2000-01 to 2016-12). Partial moments boundaries are computed over whole sample period P1. 
WML (strategy) represents an 11 × 1 plain momentum strategy with one month gap between formation and 
holding periods. PMM_S1 to PMM_S6 represent six PMM strategies which are on a WML basis and 
constructed following the switching rules presented in Table 4. Return reports the annualised return of each 
strategy in percentage.  Sharpe ratio reports the annualised Sharpe ratio of each strategy. It is calculated 
following the methodology in Sharpe (1994), as the excess return divided by its standard deviation. Adapted-
Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is calculated following the 
methodology in formula (9) to (11), as the excess return divided by twice its downside semi-deviation. The 
Newey-West (1987) t-test statistics are provided. *, **, *** indicate significances at the 10%, 5% and 1% 
level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: P1, Whole sample period: 1964-01 to 2016-12 

WML 16.51 4.60(***) 0.44 0.24 
PMM_S1 14.79 6.36(***) 0.58 0.39 
PMM_S2 13.11 3.68(***) 0.31 0.24 
PMM_S3 14.08 3.63(***) 0.32 0.18 
PMM_S4 12.61 5.35(***) 0.44 0.31 
PMM_S5 10.96 3.07(***) 0.23 0.19 
PMM_S6 11.92 3.07(***) 0.25 0.15 

Panel B: P2, Jegadeesh and Titman (1993) period: 1965-01 to 1989-12 

WML 21.61 5.13(***) 0.67 0.40 
PMM_S1 18.01 5.07(***) 0.59 0.40 
PMM_S2 14.52 3.46(***) 0.34 0.26 
PMM_S3 20.29 4.49(***) 0.57 0.34 
PMM_S4 15.67 3.98(***) 0.42 0.29 
PMM_S5 12.23 2.72(***) 0.22 0.17 
PMM_S6 17.90 3.71(***) 0.43 0.28 

Panel C: P3, The Global Financial Crisis: 2008-01 to 2012-12 

WML -1.79 -0.10 -0.05 -0.03 
PMM_S1 13.56 1.95(*) 0.85 0.73 
PMM_S2 31.08 1.56 0.69 0.81 
PMM_S3 3.46 0.17 0.07 0.04 
PMM_S4 7.28 1.51 0.64 0.39 
PMM_S5 23.92 1.27 0.56 0.65 
PMM_S6 -2.31 -0.12 -0.06 -0.03 

Panel D: P4, The Era of Turbulence: 2000-01 to 2016-12 

WML 4.89 0.61 0.10 0.05 
PMM_S1 7.49 1.96(*) 0.37 0.24 
PMM_S2 10.24 1.25 0.25 0.21 
PMM_S3 5.20 0.59 0.10 0.06 
PMM_S4 6.65 2.20(**) 0.40 0.27 
PMM_S5 9.38 1.20 0.24 0.20 
PMM_S6 4.37 0.52 0.08 0.04 
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Table 12 Out-of-sample performances of PMM strategies on a WML basis 

Table 12 shows out-of-sample performances of partial moment momentum (PMM) strategies on a WML basis 
(11 × 1) over two sample periods: Pa, whole out-of-sample period (Era of Turbulence, 2000 to 2016) and Pb, 
the Global Financial Crisis (GFC) period (2008 to 2012). Partial moments boundaries are computed over in-
sample sample period from January 1964 to December 1999. WML (strategy) represents an 11 × 1 plain 
momentum strategy with one month gap between formation and holding periods. PMM_S1 to PMM_S6 
represent six PMM strategies which are on a WML basis and constructed following the switching rules 
presented in Table 4. Return reports the annualised return of each strategy in percentage.  Sharpe ratio reports 
the annualised Sharpe ratio of each strategy. It is calculated following the methodology in Sharpe (1994), as 
the excess return divided by its standard deviation. Adapted-Sortino ratio reports the annualised adapted-
Sortino ratio of each strategy. It is calculated following the methodology in formula (9) to (11), as the excess 
return divided by twice its downside semi-deviation. The Newey-West (1987) t-test statistics are provided. *, 
**, *** indicate significances at the 10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: Pa, The Era of Turbulence: 2000-01 to 2016-12 

WML 4.89 0.61 0.10 0.05 
PMM_S1 4.25 1.28 0.19 0.12 
PMM_S2 3.69 0.46 0.06 0.05 
PMM_S3 5.23 0.58 0.10 0.06 
PMM_S4 6.69 2.55(**) 0.46 0.32 
PMM_S5 6.12 0.78 0.14 0.11 
PMM_S6 7.70 0.87 0.17 0.10 

Panel B: Pb, The Global Financial Crisis: 2008-01 to 2012-12 

WML -1.79 -1.10 -0.05 -0.03 
PMM_S1 7.90 1.60 0.68 0.47 
PMM_S2 18.47 0.96 0.42 0.44 
PMM_S3 4.89 0.23 0.09 0.05 
PMM_S4 8.76 2.09(**) 0.90 0.66 
PMM_S5 19.41 1.02 0.45 0.47 
PMM_S6 5.72 0.27 0.11 0.06 
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Table 13 Performances of PM-decomposed momentum strategy on a WML basis 

Table 13 shows performances of two partial moments-decomposed momentum strategies on a WML basis (11 
× 1) over four sample periods: P1, whole sample period (1964-01 to 2016-12), P2, Jegadeesh and Titman (1993) 
period (1965-01 to 1989-12), P3, the Global Financial Crisis (GFC) period (2008-01 to 2012-12) and P4, the 
Era of Turbulence (2000-01 to 2016-12).  WML (strategy) represents an 11 × 1 plain momentum strategy with 
one month gap between formation and holding periods. WML* and WML# represent a PM-decomposed 
momentum strategy and a leveraged PM-decomposed momentum strategy, respectively. Both strategies are 
on a WML basis and constructed following the methodologies described in Section 4. Return reports the 
annualised return of each strategy in percentage. Sharpe ratio reports the annualised Sharpe ratio of each 
strategy. It is calculated following the methodology in Sharpe (1994), as the excess return divided by its 
standard deviation. Adapted-Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is 
calculated following the methodology in formula (9) to (11), as the excess return divided by twice its downside 
semi-deviation.  The Newey-West (1987) t-test statistics are provided. *, **, *** indicate significances at the 
10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: P1, Whole sample period: 1964-01 to 2016-12 

WML 16.51 4.60(***) 0.44 0.24 
WML* 22.30 17.00(***) 1.79 1.62 
WML# 21.43 15.38(***) 1.61 1.12 

Panel B: P2, Jegadeesh and Titman (1993) period: 1965-01 to 1989-12 

WML 21.61 5.13(***) 0.67 0.40 
WML* 31.71 13.88(***) 1.97 2.22 
WML# 28.74 13.99(***) 1.93 1.70 

Panel C: P3, The Global Financial Crisis: 2008-01 to 2012-12 

WML -1.79 -0.10 -0.05 -0.03 
WML* 12.93 3.64(***) 1.58 1.00 
WML# 18.05 2.77(***) 1.21 0.63 

Panel D: P4, The Era of Turbulence: 2000-01 to 2016-12 

WML 4.89 0.61 0.10 0.05 
WML* 13.54 6.36(***) 1.34 0.92 
WML# 16.01 5.47(***) 1.18 0.73 
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Table 14 Performances of the dynamic PM-decomposed momentum strategies on a WML 
basis 

Table 14 shows performances of two out-of-sample partial moments-decomposed momentum strategies on a 
WML basis (11 × 1) over two sample periods: Pa, whole out-of-sample period (Era of Turbulence, 2000 to 
2016) and Pb, the Global Financial Crisis (GFC) period (2008 to 2012). WML (strategy) represents an 11 × 1 
plain momentum strategy with one month gap between formation and holding periods. WML* and WML# 
represent a PM-decomposed momentum strategy and a leveraged PM-decomposed momentum strategy, 
respectively. Both strategies are on a WML basis and constructed following the methodologies described in 
Section 4 and Section 5.2. Return reports the annualised return of each strategy in percentage. Sharpe ratio 
reports the annualised Sharpe ratio of each strategy. It is calculated following the methodology in Sharpe 
(1994), as the excess return divided by its standard deviation. Adapted-Sortino ratio reports the annualised 
adapted-Sortino ratio of each strategy. It is calculated following the methodology in formula (9) to (11), as the 
excess return divided by twice its downside semi-deviation.  The Newey-West (1987) t-test statistics are 
provided. *, **, *** indicate significances at the 10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

Panel A: Pa, The Era of Turbulence: 2000-01 to 2016-12 

WML 4.89 0.61 0.10 0.05 
WML* 2.00 1.07 0.05 0.03 
WML# 1.57 0.57 -0.01 0.00 

Panel B: Pb, The Global Financial Crisis: 2008-01 to 2012-12 

WML -1.79 -0.10 -0.05 -0.03 
WML* 0.89 0.23 0.06 0.03 
WML# -0.46 -0.07 -0.06 -0.03 
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Table 15 Performances comparison between PM-decomposed momentum strategies and the 

Barroso and Santa-Clara (2015) volatility-scaled momentum strategy 

Table 15 compares the performances between our PM-based momentum strategies and the volatility-scaled 
momentum strategies introduced by Barroso and Santa-Clara (2015) over four in-sample periods: P1, whole 
sample period (1964-01 to 2016-12), P2, Jegadeesh and Titman (1993) period (1965-01 to 1989-12), P3, the 
Global Financial Crisis (GFC) period (2008-01 to 2012-12) and P4, the Era of Turbulence (2000-01 to 2016-
12). To keep consistency with Barroso and Santa-Clara (2015), all momentum portfolios are constructed based 
on a WML basis. BSC represents the volatility-scaled momentum strategy constructed by Barroso and Santa-
Clara (2015). WML (strategy) represents an 11 × 1 plain momentum strategy with one month gap between 
formation and holding periods. PMD and PMD_L represent a PM-decomposed momentum strategy and a 
leveraged PM-decomposed momentum strategy, respectively. Both strategies are constructed following the 
methodologies described in Section 4 and Section 5.2. PMM_S1 to PMM_S6 represent six PMM strategies 
which are on a WML basis and constructed following the switching rules presented in Table 4. Return reports 
the annualised return of each strategy in percentage. Sharpe ratio reports the annualised Sharpe ratio of each 
strategy. It is calculated following the methodology in Sharpe (1994), as the excess return divided by its 
standard deviation. Adapted-Sortino ratio reports the annualised adapted-Sortino ratio of each strategy. It is 
calculated following the methodology in formula (9) to (11), as the excess return divided by twice its downside 
semi-deviation.  The Newey-West (1987) t-test statistics are provided. *, **, *** indicate significances at the 
10%, 5% and 1% level, respectively. 

Strategy Return t-value Sharpe ratio Adapted-Sortino ratio 

P1: Whole sample period: 1964-01 to 2016-12 

WML 16.51 4.60(***) 0.44 0.24 
BSC 18.33 7.47(***) 0.89 1.21 
PMD 24.30 17.00(***) 1.79 1.62 

PMD_L 22.43 15.38(***) 1.61 1.12 

P2: Jegadeesh and Titman (1993): 1965-01 to 1989-12 

WML 21.61 5.13(***) 0.67 0.40 
BSC 28.20 6.32(***) 1.14 1.56 
PMD 33.71 13.88(***) 1.97 2.22 

PMD_L 30.84 13.99(***) 1.93 1.70 

P3: The Global Financial Crisis: 2008-01 to 2012-12 

WML -1.79 -0.10 -0.05 -0.03 
BSC 4.40 0.82 0.36 0.45 
PMD 12.93 3.64(***) 1.58 1.00 

PMD_L 18.05 2.77(***) 1.21 0.63 

P4: The Era of Turbulence: 2000-01 to 2016-12 

WML 4.89 0.61 0.10 0.05 
BSC 4.81 1.64 0.36 0.50 
PMD 13.54 6.36(***) 1.34 0.92 

PMD_L 16.01 5.47(***) 1.18 0.73 
 

 

 


