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A Demand-Based Equilibrium Model of Volatility

Trading

Abstract

This paper is the first to provide a demand-based equilibrium model of volatility trad-

ing with three kinds of traders – dealers, asset managers and leveraged funds – which

complements Eraker and Wu’s (2017) consumption-based equilibrium model. Our the-

oretical results are consistent with existing empirical observations, and two endogenous

cases reach the same conclusion. Our novel model links together risk aversion, market

price of the volatility risk, variance risk premium, VIX futures price and return and

futures trading activities. This allows us to test empirically the impact of the three

traders’ net positions on the VRP and the VIX futures return.

Keywords: Volatility trading; Demand-based equilibrium; VIX futures; Heston model.

JEL Classifications: D53; G11; G12; G13.
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1. Introduction

This paper is the first to provide a demand-based equilibrium model of volatility trad-

ing with three kinds of traders (i.e., dealers, asset managers and leveraged funds),

which complements Eraker and Wu’s (2017) consumption-based equilibrium model.

According to Mixon and Onur (2015), volatility derivatives are mainly traded by three

kinds of traders: dealers, asset managers and leveraged funds. Dealers as market mak-

ers balance the orders of volatility derivatives. Asset managers as hedgers prefer to

take long positions, while leveraged funds as speculators prefer to take short positions.

Mixon and Onur (2015) collect the daily volatility derivatives transaction data from

the Swap Data Repositories (SDR) reported by the Commodity Futures Trading Com-

mission (CFTC) and find that the gross vega notional outstanding for variance swaps,

in 2014, is over USD 2 billion, with USD 1.5 billion in S&P 500 variance swaps. From

Bollen, O’Neill, and Whaley (2016), the dollar value of open interest of the CBOE

Market Volatility Index (VIX) futures in 2013 is around USD 7 billion, and the dollar

market value of VIX Exchange Traded Products (ETPs) linked to the short-term S&P

500 VIX futures index is around USD 2 billion. The market for volatility trading has

become an important new avenue of financial markets in addition to equity and fixed

income securities over last decade.

However, since 2009, there has been a huge loss of investing in positive multiplier

VIX Exchange Traded Notes (ETNs) (e.g., iPath S&P 500 VIX Short-Term Futures

ETN (VXX)). This is because of the negative return of VIX futures (Eraker and Wu

(2017)). In this paper, we mainly investigate the question: How do volatility trading

activities affect the variance risk premium (VRP) and the VIX futures’ price and

return? By using an equilibrium model of volatility trading, we provide an economic

theory to explain that the lower positions (more net short) of dealers, the lower short

positions of leverage funds and the higher long positions of asset managers lead to a

higher VIX futures price and a more negative VIX futures return, so that the positive

multiplier VIX ETNs produce a huge loss. This is different than the explanation in
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Eraker and Wu (2017), which states that the negative futures return is only determined

by the investors risk aversion. Besides considering the risk aversion, adding the trading

behaviour of the three main traders complement their consumption-based equilibrium

model. The novel model proposed in this paper is our main contribution. Furthermore,

empirically we use the weekly Traders in Financial Futures (TFF) reports data to test

the impact of trading on the VIX futures return. These results are new.

In terms of demand-based equilibrium models, Garleanu, Pedersen, and Poteshman

(2009) propose a demand-based equilibrium model for option pricing, with two kinds

of agents: dealers and end users. Dong (2016) extends their model to explain how the

demand for ETPs demand affects the VIX futures price. In contrast to the previous

literature, our model considers three kinds of traders (i.e., dealers, asset managers and

leveraged funds) and analyses how traders demand for VIX-type futures demand of

traders influences the volatility market. Based on the daily trading data in Mixon and

Onur (2015) and the weekly data used in this paper strongly support that we should

use a three-trader model instead of the two-trader model.

There are a huge number of papers studying the VRP and its predictive power. For

example, Carr and Wu (2009) find that there exists a large and negative mean of the

VRP on five stock indexes and 35 individual stocks. Recently, González-Urteaga and

Rubio (2016) have discussed and tested the volatility risk premium at the individual

and portfolio level. Barras and Malkhozov (2016) formally compare the market VRP

inferred from equity and option markets.1 However, there is a paucity of research on

predicting the VRP empirically. Konstantinidi and Skiadopoulos (2016) compare four

predicting models and find that the trading activity model is the best performing. Fan,

Imerman, and Dai (2016) claim that the magnitude of VRP is significantly affected

1Furthermore, Todorov (2010); Bollerslev and Todorov (2011) use the rare events to account for
the large average VRP. Aı̈t-Sahalia, Karaman, and Mancini (2015); Li and Zinna (2016) examine the
term structures of the VRP. Choi, Mueller, and Vedolin (2017) study variance risk premiums in the
bond market. Bollerslev, Todorov, and Xu (2015); Jin (2015) and others study the predictive power
of the VRP for the stock return, while Londono and Zhou (2017) recently provide evidence of the
predictive power of the VRP for the currency return.
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by investors’ demand for hedging tail risk. Two papers do not use the explicit trading

positions of dealers, asset managers and leveraged funds as predictive variables. For

example, Konstantinidi and Skiadopoulos (2016) use the trading volume of all S&P

500 futures contracts and the TED spread to explain the high negative VRP. In this

paper, we test the impacts of the trading positions of the three main traders and find

that the high negative VRP is driven by the higher short positions of dealers, the lower

short positions of leverage funds and the higher long positions of asset managers in

variance swaps. This is new empirical evidence. In addition, our theoretical model also

gives a very neat economic theory to explain the new empirical evidence.2

This paper makes at least two contirubutions. First, it is the first paper to provide

a demand-based equilibrium model of volatility trading with three kinds of traders (i.e.,

dealers, asset managers and leveraged funds) that fully supports the existing empirical

results. Second, due to our novel model, this paper is the first to test the impact of

the three main traders net positions on the VRP and the VIX futures return.

The remainder of this article is organized as follows. Section 2 presents the model

and results, and Section 3 provides two endogenous cases. Section 4 gives the empirical

analysis. Section 5 concludes. Appendix A collects all proofs, and Appendix B gives

solutions for the endogenous cases.

2. Models and results

2.1 Heston model

We set up our demand-based equilibrium model starting from the Heston (1993) model,

which is the most popular stochastic volatility model in the literature. We adopt it to

2Bollerslev, Tauchen, and Zhou (2009); Drechsler and Yaron (2011); Bollerslev, Sizova, and
Tauchen (2012); Drechsler (2013); Jin (2015) adopt the long-run risks model (i.e., long-run risks
and investor preferences) to explain the negative VRP and Buraschi, Trojani, and Vedolin (2014) use
a two-tree Lucas (1978) economy with two heterogeneous investors (i.e., disagreement). In contrast
to them, we use the trading positions of dealers, asset managers and leveraged funds to explain the
high VRP.
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describe the dynamicS of the stock price (i.e., S&P 500 Index (SPX)) in the physical

measure P as follows:  dSt
St

= µdt+
√
vtdBS,t,

dvt = κ(θ − vt)dt+ σv
√
vtdBv,t,

(1)

where vt is the instantaneous variance; BS,t and Bv,t are a pair of correlated Brownian

motions with correlation coefficient ρ. Empirical evidence documents that ρ is negative

for SPX, so that here we assume −1 < ρ < 0.

Developing Heston (1993), we assume the stock price in the risk-neutral measure

Q as follows:3  dSt
St

= rdt+
√
vtdB

Q
S,t,

dvt = [κ(θ − vt)− λ(S, v,Θ, t)] dt+ σv
√
vtdB

Q
v,t,

(2)

where λ(S, v,Θ, t) represents the market price of the volatility risk and Θ captures the

volatility trading activities,4 and

dBQ
S,t = dBS,t +

µ− r
√
vt
dt; dBQ

v,t = dBv,t +
λ(S, v,Θ, t)

σv
√
vt

dt. (3)

The above transformation between the physical measure P and the risk-neutral measure

Q indicates that the pricing kernel πt must satisfy,

dπt
πt

= −rdt− µ− r
√
vt
dBS,t −

λ(S, v,Θ, t)

σv
√
vt

dBv,t. (4)

In Heston (1993), he assumes λ(S, v,Θ, t) as λ(S, v, t).5 It means that the market

3To be clear, all notions (e.g., Brownian motion, conditional expectation, conditional variance and
conditional covariance) with superscript ·Q throughout the paper are in the risk-neutral measure Q,
while all notions without superscript ·Q are in the physical measure P.

4Strictly speaking, the market price of the volatility risk is λ(S,v,Θ,t)
σv
√
vt

. As σv
√
vt is fixed, then

λ(S, v,Θ, t) is able to measure the magnitude of the market price of the volatility risk.
5Furthermore, Heston (1993) just assumes λ(S, v, t) = λvt, where λ is a constant.
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price of the volatility risk is determined only by the stock price and its volatility. In

our setting, besides the stock price and its volatility, the volatility trading activities

contributes to the market price of the volatility risk as well.

We simplify the Heston (1993) model based on the following assumptions.

Assumption 1. To simplify the model, we set

r = 0, κ = 0. (5)

In addition,

−1 < ρ < 0, 0 < σv < 1, (6)

which leads to V art(RT ) > |Covt(RT , vT )| where RT = log ST
St

and the conditional

variance and covariance are given in Appendix A.

We note that Assumption 1 is made for notational simplicity only, and is unimportant

for the conclusions we get below. The results can be extended if we relax the above

assumption.

Under Assumption 1, we rewrite the dynamics of the stock price in the physical

measure P as  dSt
St

= µdt+
√
vtdBS,t,

dvt = σv
√
vtdBv,t,

(7)

and in the risk-neutral measure Q as dSt
St

=
√
vtdB

Q
S,t

dvt = −λ(S, v,Θ, t)dt+ σv
√
vtdB

Q
v,t.

(8)
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2.2 Variance risk premium and the CBOE VIX Index

Given SPX in (7), we are able to obtain the annualized realized variance (RV) at time

t during period [t, t+ τ ] as

RVt = Et

[
1

τ

∫ t+τ

t

(logSu)
2 du

]
= Et

[
1

τ

∫ t+τ

t

vudu

]
= vt. (9)

Similarly, the annualized implied variance (IV) at time t during period [t, t+ τ ] can be

written as

IVt = EQ
t

[
1

τ

∫ t+τ

t

(logSu)
2 du

]
= EQ

t

[
1

τ

∫ t+τ

t

vudu

]
= vt−

1

τ

∫ t+τ

t

EQ
t [λ(S, v,Θ, u)]du.

(10)

According to Carr and Wu’s (2009) definition for the variance risk premium (VRP),

V RPt = RVt − IVt, we have the following theorem.

Theorem 1 (Variance risk premium). The VRP at time t during period [t, t + τ ]

can be defined as

V RPt ≡ RVt − IVt =
1

τ

∫ t+τ

t

EQ
t [λ(S, v,Θ, u)]du. (11)

Based on the above theorem, the sign of V RPt depends on the sign of λ the more

negative the λ, the more negative the V RPt. The VRP on average is empirically

negative, so that λ should have a negative mean (e.g., Carr and Wu (2009)).

Following the definition of the CBOE VIX Index,6 the VIX Index at time t can

be defined as the product of the square root of the implied variance during period

[t, t+ 21/252] and the notional amount, 100, i.e.,

V IXt =
√
IVt × 100 = 100×

√
vt −

1

τ

∫ t+τ

t

EQ
t [λ(S, v,Θ, u)]du, (12)

6The CBOE VIX white paper can be found at https://www.cboe.com/micro/vix/vixwhite.pdf.
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where τ = 21/252.

Lemma 1. Based on simplified Heston (1993), we have the following:

(i) The implied volatility and the CBOE VIX increase with the more negative λ.

(ii) The negative VRP is caused by the negative λ.

(iii) In addition, more negative λ leads to more negative VRP.

In Heston’s (1993) setup, the VRP is determined by the average market price of the

volatility risk λ during a future period (t, t,+τ). In addition, the implied volatility and

CBOE VIX are contributed by λ. This is the key to link the VRP and the existing

risks in the financial market. In this paper, the risks are from the traders’ holdings in

volatility products, i.e., Θ. However, for different purposes, we could set is so that λ

is related to other market risks.

2.3 Volatility market

As Heston (1993) mentioned, any derivatives with the particular payoff function UT

must satisfy the following partial differential equation (PDE):

1

2
vS2∂

2U

∂S2
+ ρσvvS

∂2U

∂S∂v
+

1

2
σ2
vv
∂2U

∂v2
− λ∂U

∂v
+
∂U

∂t
= 0. (13)

The value of the derivative is determined by the market price of the volatility risk λ.

Here we assume that there is a volatility derivative, i.e., V IX2 futures, written on the

square of the CBOE VIX Index with the maturity date T .7 Then, its fair price at time

7V IX2 futures can be regarded as a proxy of VIX futures because they have similar properties.
The reason we use V IX2 futures instead of VIX futures is that the pricing formula of V IX2 futures is
more tractable. The tractable formula produces a lot of intuitions in Section 2.5. It can be extended
into VIX futures without affecting the main results in the paper.
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t is given by

F V IX2

t,T = EQ
t [V IX2

T ] = EQ
t

[
vT −

1

τ

∫ T+τ

T

EQ
T [λ(S, v,Θ, u)]du

]
× 1002

=

(
vt −

∫ T

t

EQ
t [λ(S, v,Θ, u)]du− 1

τ

∫ T+τ

T

EQ
t [λ(S, v,Θ, u)]du

)
× 1002. (14)

Applying Itô’s Lemma to F V IX2

t,T , we get

d
F V IX2

t,T

1002
= dvt + λ(S, v,Θ, t)dt = σv

√
vtdB

Q
v,t, (15)

which is a martingale in the risk-neutral measure Q. It can be also rewritten as

d
FV IX

2

t,T

1002

FV IX
2

t,T

1002

=
1

FV IX
2

t,T

1002

σv
√
vtdB

Q
v,t =

1

FV IX
2

t,T

1002

[λ(S, v,Θ, t)dt+ σv
√
vtdBv,t] . (16)

From (16), we can get the expected return of V IX2 futures as follows.

Theorem 2 (V IX2 futures return). The expected return of V IX2 futures is

RV IX2

t,T ≡ 1

dt
Et

dFV IX2

t,T

1002

FV IX
2

t,T

1002

 =
λ(S, v,Θ, t)

vt −
∫ T
t
EQ
t [λ(S, v,Θ, u)]du− 1

τ

∫ T+τ
T

EQ
t [λ(S, v,Θ, u)]du

.

(17)

This indicates that the return of V IX2 futures depends on the average λ during future

periods (t, t + τ) and (T, T + τ); the negative λ leads to a negative return of V IX2

futures. In addition, the value of V IX2 futures basis at time t can be solved in the

following.
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Theorem 3 (V IX2 futures basis). The value of V IX2 futures basis at time t is

BasisV IX
2

t,T ≡ F V IX2

t,T − V IX2
t =

[
−
∫ T

t

EQ
t [λ(S, v,Θ, u)]du

+
1

τ

(∫ t+τ

t

EQ
t [λ(S, v,Θ, u)]du−

∫ T+τ

T

EQ
t [λ(S, v,Θ, u)]du

)]
× 1002.

(18)

Lemma 2. Based on simplified Heston (1993), we have the following:

(i) The price of the V IX2 futures increases with more negative λ.

(ii) The negative return of the V IX2 futures is caused by the negative λ.

(iv) More negative λ leads to more negative return of V IX2 futures.

(v) In addition, more negative λ leads to more positive V IX2 futures basis.

In Heston’s (1993) framework, the variables related to the volatility of the underlying

are affected by the market price of the volatility risk λ. In other words, once we

determine the value of λ, we are able to price any volatility derivatives in Heston’s

(1993) model.

2.4 The market price of the volatility risk and traders

In the economy, there are three kinds of traders: dealers (market makers), asset man-

agers (hedgers) and leveraged funds (speculators). The trading data of the three main

traders are reported by the Commitments of Traders (COT) reports and the TFF re-

ports published by CFTC. We consider only a single-period model. There are 2 dates,

t and T , where 0 ≤ t < T + τ . All traders make their decisions at time t and hold it

until time T . In detail, the optimal futures positions in volatility markets (i.e., V IX2

futures market) of dealers, asset managers and leveraged funds are xt, yt and zt.
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Assumption 2. We assume the market price of the volatility risk is only related to

the volatility trading activities,

λ(S, v,Θ, t) = λ(Θ, t) := λt. (19)

In addition, the market price of the volatility risk is related to the trading strategies of

dealers, xt, i.e.,8

Θ = {x}. (20)

Based on the single-period model, the trading strategies xt will never change until date

T , so that we assume λt is time-homogeneous.9

Under Assumption 2, for any time u where t ≤ u ≤ T , the implied variance becomes

IVu = vu − λt, and then the VRP is

V RPu = λt; (21)

the price of the V IX2 futures becomes

F V IX2

u,T

1002
= vu − λt (T − u+ 1) ; (22)

the expected return of V IX2 futures,

RV IX2

t,T = λt
1002

F V IX2

u,T

; (23)

8In reality, the net position of dealers is the sum of net positions of the asset managers and
leveraged funds. This is why we set Θ = {x} rather than Θ = {x, y, z}.

9In other words, xt is time-homogeneous. That is, xu = xt and λu = λt for any u, where t ≤ u ≤ T ,
so that EQ

t [λu] = EQ
t [λt] = λt where t ≤ u ≤ T . As the formulas of futures price and return are

involved in the term
∫ T+τ

T
EQ
t [λu]du, we further assume λu = λt for any u where T < u ≤ T + τ .
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and the value of V IX2 futures basis,

BasisV IX
2

u,T = −λt(T − u)× 1002. (24)

We consider the following special case in which the market price of volatility λt is in

proportion to dealers’ positions.

Assumption 3. In particular, we assume

λt = axt + b, (25)

where a and b will be solved in equilibrium.10

Assumption 4. The trading strategies of dealers xt are exogenous.11

Leveraged funds (speculators). To take the advantage of the negative return of

V IX2 futures, leveraged funds (speculators) prefer to short V IX2 futures.12 Thus, we

assume their demand of V IX2 futures is yt < 0 at time t.

Asset managers (hedgers). In order to hedge their long positions in the stock

market, asset managers (hedgers) prefer to long V IX2 futures. Thus, we assume their

demand of V IX2 futures is zt > 0 at time t.

Dealers (market makers). Dealers are risk-averse. They choose the optimal order

φt in stocks and xt in V IX2 futures to maximize the mean-variance preferences with

the risk aversion coefficient γD, i.e.,

max
φ,x

Et[WD,T ]− γD
2
V art(WD,T ), (26)

10For the multiple-period model, a can be recursively solved; see Garleanu et al. (2009).
11Here we assume the optimal trading orders of dealers xt are exogenous (actually, xt, yt and zt

are all exogenous in this case). As similar idea can be found in, for example, Bansal and Yaron
(2004). The optimal consumption in Bansal and Yaron (2004) is solved from an equilibrium, but it is
exogenously given.

12As Mixon and Onur (2015) mentions, leveraged funds always short negative-return VIX futures.
Our empirical results also support this assumption.
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with terminal wealth process WD,T given by13

WD,T = WD,t + φtStRT + xt

(
F V IX2

T,T − F V IX2

t,T

)
, (27)

where WD,t is their initial wealth and the stock return RT = log ST
St

.

Using the V IX2 futures price formula (22), the terminal wealth processes of dealers

can be rewritten as

WD,T = WD,t + φtStRT + xt [vT − vt + (axt + b)(T − t)]× 1002. (28)

Thus, their optimization problem becomes

max
φ,x

WD,t + φtStEt[RT ] + xt [(axt + b)(T − t)]× 1002

− γD
2

[
φ2
tS

2
t V art[RT ] + x2tV art[vT ]× 1004 + 2φtxtStCovt[RT , vT ]× 1002

]
.

The first-order conditions (FOCs) lead to

xt =
b(T − t)− γφtStCovt[RT , vT ]

γV art[vT ]× 1002 − 2a(T − t)
, (29)

and

φt =
Et[RT ]− xtγCovt[RT , vT ]× 1002

γStV art[RT ]
, (30)

where Covt[RT , vT ], V art[vT ], Et[RT ] and V art[RT ] are shown in Appendix A.

We rearrange Equation (29) and get

axt =
γV art[vT ]× 1002

2(T − t)
xt −

b

2(T − t)
+
γφtStCovt[RT , vT ]

2(T − t)
. (31)

13In reality, WD,T = WD,t + φt(ST − St) + xt

(
FV IX

2

T,T − FV IX2

t,T

)
. Here we use the continuously

compounded return log ST

St
to approximate the simple return ST−St

St
, then we get the wealth process

(27). This approximation is due to the simplicity of calculating Et[RT ], V art[RT ] and Covt[RT , vT ].
However, whether we use this approximation does not change the main results in the paper.
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Plugging Equation (30) into (31),

0 =

(
a− γ (V ar2t [RT ]− Cov2t [RT , vT ])× 1002

2(T − t)V art[RT ]

)
xt +

Et[RT ]Covt[RT , vT ]− bV art[RT ]

2(T − t)V art[RT ]
.

(32)

Under Assumption 4, xt is an exogenously given random variable. Thus, the coefficient

of xt should be zero, and then we get

a =
γ (V ar2t [RT ]− Cov2t [RT , vT ])× 1002

2(T − t)V art[RT ]
> 0, (33)

and

b =
Et[RT ]Covt[RT , vT ]

V art[RT ]
< 0. (34)

2.5 Equilibrium

Definition 1 (Volatility market equilibrium I). Equilibrium in our economy is

defined in a standard way: The equilibrium V IX2 futures order xt of dealers is such

that dealers maximize their mean-variance preferences, and the V IX2 futures market

is clear, i.e., xt + yt + zt = 0.

In equilibrium, we summarize all trading activities in futures market as the following

theorem.

Theorem 4 (Benchmark). Under Assumption 1-4, the equilibrium solutions are solved

as 

λt = axt + b,

a =
γ(V ar2t [RT ]−Cov2t [RT ,vT ])×1002

2(T−t)V art[RT ]
> 0,

b = Et[RT ]Covt[RT ,vT ]
V art[RT ]

< 0,

xt = −yt − zt,

yt < 0, zt > 0,

(35)

where xt, yt and zt are all exogenous.
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By using Theorem 4, we get the following lemma.

Lemma 3 (Benchmark). In equilibrium, under Assumption 1-4,

(i) The larger short position of dealers leads to more negative λt.

(ii) The larger short position of leverage funds, yt, leads to lower negative λt.

(iii) The larger long position of asset managers, zt, leads to more negative λt.

(iv) Higher risk aversion, γ, more negative λt, if xt < 0, and vice versa.

Lemma 3 shows how the volatility trading activities influence the market price of the

volatility risk λt. We plug λt into Equation (21)-(24) and summarize as



V RPt = axt + b = −ayt − azt + b,

FV IX
2

t,T

1002
= − (axt + b) (T − t+ 1) + vt = (ayt + azt − b) (T − t+ 1) + vt,

BasisV IX
2

t,T

1002
= − (axt + b) (T − t) = (ayt + azt − b) (T − t),

RV IX
2

t,T

1002
= axt+b

FV IX
2

t,T

= −ayt−azt+b
FV IX

2
t,T

.

(36)

By using Equation (36) and Lemma 1-3, we get the following proposition.

Proposition 1 (Benchmark). In equilibrium, under Assumption 1-4

(i) The larger short positions of dealers lead to more negative VRP and V IX2 fu-

tures return, and a higher V IX2 futures price (equivalently, higher V IX2 futures

basis).

(ii) The larger short positions of leverage funds lead to less negative VRP and V IX2

futures return, and a lower V IX2 futures price.

(iii) The larger long positions of asset managers leads to more negative VRP and

V IX2 futures return, and a higher V IX2 futures price.
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(iv) The higher risk aversion of dealers leads to more negative VRP and V IX2 futures

return, and a higher V IX2 futures price if dealers are in a short position.

Mixon and Onur (2015) empirically test part of the results (i)-(iii) in Proposition 1; i.e.,

the futures price is negatively (positively) related to the level of positioning by dealers

(asset managers and leveraged funds). Furthermore, dealers as market makers balance

the futures positions. If buyers (i.e., asset managers) need more hedging demand than

sellers (i.e., leveraged fundss) supply, dealers will issue new futures for asset managers.

In this case, the futures price will be higher and the return will be negatively lower.

The higher risk aversion of dealers leads to more negative futures return and higher

futures price only if dealers are in a short position.

The economic mechanism is very clear and intuitive. Asset managers as hedgers

have a high demand for volatility derivatives, which raises the volatility derivatives

prices. At the same time, due to the their high demand, asset managers are willing

to pay the high risk premium to hold volatility derivatives. On the sellers side, if

leveraged funds short more volatility derivatives (i.e., higher supply), it leads to lower

prices of volatility products. Facing the higher supply and lower prices, buyers, of

course, are willing to pay a lower risk premium to hold these risky products. As the

market makers, dealers positions indicate the balance of the supply and demand of

volatility derivatives. If the demand is higher than the supply, dealers will issue new

volatility contracts for buyers. The higher net short positions of dealers imply the

higher demand for volatility derivatives, so that their prices will be higher. In the

same scenario, dealers need to short more volatility contracts in order to cater to the

needs of buyers. If dealers are more risk-averse, however, they will prefer to short less.

Then the supply will be lower and consequently the price will be higher. Finally, higher

prices always lead to a lower return.

If we treat the V IX2 futures as variance swaps, from (i)-(iii) in Proposition 1, the

model well explains the empirical results in Konstantinidi and Skiadopoulos (2016);

i.e., volatility trading activities strongly predict the market VRP. In contrast to Kon-
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stantinidi and Skiadopoulos (2016), who claim that this is because for dealers holding

a short position in index options based on Garleanu et al. (2009), the model suggests

that the high negative VRP is driven by the larger short positions of dealers, the lower

short positions of leverage funds and the larger long positions of asset managers in

variance swaps.

To summarize, the volatility market is affected contemporaneously by three types

of traders: asset managers, leveraged funds and dealers.

3. Endogenous trading strategies

In this section, we endogenize the trading strategies and find that the main conclusions

are not changed.

3.1 Case I: One-market equilibrium with endogenous trading

strategies

In contrast to Assumption 4, we give a new assumption as follows.

Assumption 5. The trading strategies of dealers xt are endogenous.14

As xt is endogenous and there is only one equilibrium in the volatility market, we can

not determine the parameters a and b in Assumption 3. Thus, there are two solutions

to overcome this issue: (i) reducing parameters (e.g., b) and (ii) defining additional

equilibrium in the stock market. We analyse the former in this subsection and discuss

the latter in the next subsection. Then, in order to decrease the number of unknowns,

we change Assumption 3 as follows.

Assumption 6. We assume

λt = axt, (37)

14Actually, xt, yt and zt are endogenous, while ψt is exogenous in this case.
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where a will be solved in equilibrium.

In addition, we relax the assumption that the trading strategies of leveraged funds and

asset managers are endogenous as well. We show the details of their trading behaviours

as follows.

Leveraged funds (speculators). By taking advantage of the negative return of V IX2

futures, leveraged funds (speculators) prefer to short V IX2 futures and only speculate

on the V IX2 futures market.15 They choose the optimal order yt in V IX2 futures to

maximize the mean-variance preferences with the risk-aversion coefficient γL, i.e.,

max
y
Et[WL,T ]− γL

2
V art(WL,T ), (38)

with terminal wealth process WL,T given by

WL,T = WL,t + yt

(
F V IX2

T,T − F V IX2

t,T

)
, (39)

where WL,t is their initial wealth. The terminal wealth processes of dealers can be

rewritten as

WL,T = WL,t + yt [vT − vt + λt(T − t)]× 1002. (40)

Thus their optimization problem becomes

max
y
WL,t + yt [λt(T − t)]× 1002 − γL

2
y2t V art[vt]× 1004.

The FOC leads to

yt =
λt(T − t)

γLV art[vT ]× 1002
< 0 if λt = axt < 0. (41)

The position of leveraged funds in the futures market depends on the sign of λt, which

15As Mixon and Onur (2015) mentions, leveraged funds always short negative-return VIX futures.
Our empirical results also support this assumption.
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indicates the sign of the V IX2 futures returns. Thus, the short positions in V IX2

futures of leveraged funds are due to the negative return of futures (i.e., λt < 0).

Asset managers (hedgers). In order to hedge their long positions ψt > 0 in the

stock market, asset managers (hedgers) prefer to long V IX2 futures, due to the negative

correlation between stock return and volatility derivatives. Thus, given ψt > 0 in

stocks, they choose optimal zt in V IX2 futures in order to maximize the mean-variance

preferences with the risk aversion coefficient γA, i.e.,

max
z
Et[WA,T ]− γA

2
V art(WA,T ), (42)

with terminal wealth process WA,T given by

WA,T = WA,t + ψtStRT + zt

(
F V IX2

T,T − F V IX2

t,T

)
, (43)

where WD,t is their initial wealth. Similarly, the terminal wealth processes of dealers

can be rewritten as

WA,T = WA,t + ψtStRT + zt [vT − vt + λt(T − t)]× 1002. (44)

Thus their optimization problem becomes

max
z

WA,t + ψtStEt[RT ] + zt [λt(T − t)]× 1002

− γA
2

[
ψ2
tS

2
t V art[RT ] + z2t V art[vt]× 1004 + 2ψtztStCovt[RT , vT ]× 1002

]
.

The FOC leads to

zt =
λt(T − t)− γAψtStCovt[RT , vT ]

γAV art[vT ]× 1002
=

λt(T − t)
γAV art[vT ]× 1002︸ ︷︷ ︸
negative return of futures

+
−ψtStCovt[RT , vT ]

V art[vT ]× 1002︸ ︷︷ ︸
negative correlation

.

(45)

The positions of asset managers in V IX2 futures are contributed from two components.
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Due to the negative return of V IX2 futures, they try to take short positions. However,

as they hold a bunch of stocks, they have to long V IX2 futures to hedge their long

positions in stocks by using the negative correlation between the stock return and the

futures price (i.e., Covt[RT , vT ] < 0). Finally, their positions are determined by the size

of the initial wealth in stocks. If ψtSt is large, then zt > 0, and vice versa. This explains

why sometimes asset managers have net short positions in the volatility market. It is

because they may reduce their position in the stock market and the return of volatility

derivatives is deeply negative.

Dealers (market makers). Dealers (market makers) are the same here as in Section

2.4. Thus, their optional endogenous trading strategies are

xt =
−γDφtStCovt[RT , vT ]

γDV art[vT ]× 1002 − 2a(T − t)
, (46)

and

φt =
Et[RT ]− xtγDCovt[RT , vT ]× 1002

γDStV art[RT ]
. (47)

Definition 2 (Volatility market equilibrium II). Equilibrium in our economy is

defined in a standard way: The equilibrium V IX2 futures orders of dealers, xt, and the

stock orders of dealers, φt, are such that they maximize their mean-variance preferences;

the equilibrium V IX2 futures orders of leveraged funds, yt , and the equilibrium V IX2

futures orders of asset managers, zt, are such that they maximize their mean-variance

preferences, and the V IX2 futures market is clear, i.e., xt + yt + zt = 0.

In this case, the competition among the three traders is close to in a von Stackelberg

game with the dealers as the leader. Dealers propose an “a” in the market and then

asset managers and leveraged funds submit their trading positions of the V IX2 futures.

Finally, dealers as market makers maximize their expected utilities with the market

clearing constriction, xt = −yt + zt, so that an equilibrium “a” is determined.

Based on Definition 2, we summarize the equilibrium as the following theorem.16

16Even though, in the equilibrium, there are three traders. Asset managers and leveraged funds
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Theorem 5 (Case I). Under Assumption 1-2 and 5-6, the equilibrium solutions can

be solved from the following system,

λt = axt,

xt = −γDφtStCovt[RT ,vT ]
γDV art[vT ]×1002−2a(T−t)

,

φtSt = Et[RT ]−xtγDCovt[RT ,vT ]×1002
γDV art[RT ]

,

yt = λt(T−t)
γLV art[vT ]×1002

,

zt = λt(T−t)−γAψtStCovt[RT ,vT ]
γAV art[vT ]×1002

,

xt + yt + zt = 0.

(48)

The analytical solutions are provided in Appendix B.

The equilibrium system (48) has six equations with six unknowns, a, λt, xt, yt, zt, φtSt.

Given parameters vt, T − t, µ, ρ, σv, ψtSt, γD, γL, γA, we can easily solve them by most

solvers. All solutions are provided in Appendix B. For example, the key parameter a

is solved as

a =
γAγL (γDψtStCov

2
t [RT , vT ]− γDψtStV art[RT ]V art[vt]− Et[RT ]V art[vt])× 1002

(T − t) ((γL + γA)Et[RT ]− 2γAγLψtStV art[RT ])
.

(49)

We assume their risk aversion as γL < γD < γA. This is because asset managers are

the most risk-averse and want to hedge their risks as much as they can, while leveraged

funds, as speculators, are risk takers, who prefer to sell V IX futures to gamble on more

profits. The risk aversion of dealers lies somewhere between them. To simplify, we fix

γD = γ, and then we set γL = γ/δ, γA = γδ, where δ > 1 can be a measure of risk-averse

heterogeneity. Following Aı̈t-Sahalia and Kimmel (2007), we set ρ = −0.75, σv = 0.5.

In addition, we set µ = 0.06, vt = 0.22, T − t = 1, γ = 2, δ = 2 and ψtSt = 1. Then we

have a = 199.85 > 0, λt = −0.0086 < 0, xt = −0.43 × 10−4 < 0, yt = −0.86 × 10−4 <

submit their orders of volatility products and deals as market makers clear the volatility market. Our
model is essential different to Kyle (1985)-type model which derives equilibrium security prices when
traders have asymmetric information. All traders in our model have symmetric information, while
they have different hedging needs of volatility products.
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0, zt = 1.29× 10−4 > 0, φtSt = 0.29.

We analyse the sensitivity of a to other parameters, e.g., the risk-averse hetero-

geneity δ, investment horizon T − t and the initial wealth of asset managers in stocks

ψtSt (equivalently, the demands of asset managers in V IX2 futures). In Figure 1, we

find the value of a is always positive. Now we can conclude that, under reasonable

parameter settings, the value of a can be always positive.

[Insert Figure 1]

In this case, the sign of λ is purely determined by the net positions of dealers. By

using the positive a and the market clearing condition xt = −yt − zt, we can get the

following lemma, which is similar to Lemma 3.

Lemma 4 (Case I). In equilibrium, under Assumption 1-2 and 5-6,

(i) The larger short position of dealers leads to more negative λt.

(ii) The larger short position of leverage funds, yt, leads to lower negative λt.

(iii) The larger long position of asset managers, zt, leads to more negative λt.

Lemma 4 shows that under Assumption 1-2 and 5-6, the conclusions in Lemma 4 are

not changed, compared with the results (i)-(iii) in Lemma 3. Similarly, we plug λt into

Equation (21)-(24) and summarize as



V RPt = axt = −ayt − azt,
FV IX

2

t,T

1002
= −axt (T − t+ 1) + vt = (ayt + azt) (T − t+ 1) + vt,

BasisV IX
2

t,T

1002
= −axt(T − t) = (ayt + azt) (T − t),

RV IX
2

t,T

1002
= axt

FV IX
2

t,T

= −ayt−azt
FV IX

2
t,T

.

(50)

By using Equation (50) and Lemma 1-2 and 4 , we get the following proposition.

Proposition 2 (Case I). In equilibrium, under Assumption 1-2 and 5-6,
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(i) The larger short positions of dealers lead to more negative VRP and V IX2 fu-

tures return, and a higher V IX2 futures price (equivalently, higher V IX2 futures

basis).

(ii) The larger short positions of leveraged funds lead to less negative VRP and V IX2

futures return, and a lower V IX2 futures price.

(iii) The larger long positions of asset managers leads to more negative VRP and

V IX2 futures return, and a higher V IX2 futures price.

The results in Proposition 2 are same as the results (i)-(iii) in Proposition 1. Thus,

the economic mechanism is the same as in Section 2.5. Here, we are interested in how

risk aversion, risk-averse heterogeneity, investment horizon and the hedging demand of

assert managers affect the VRP, the V IX2 futures return and the level of the V IX2

futures price.

[Insert Figure 2]

Panel A in Figure 2 shows higher risk-averse heterogeneity leads to less negative

λ, which means the less negative VRP and V IX2 futures return, and lower V IX2

futures price, while Panel B-D in Figure 2 shows that the higher risk aversion of

dealers (or total social risk aversion), shorter horizon and larger hedging demand of

assert managers generate more negative λ. We summarize these results in the following

proportion.

Proposition 3 (Case I). In equilibrium, under Assumption 1-2 and 5-6,

(i) Higher risk-averse heterogeneity leads to a less negative VRP and V IX2 futures

return, and a lower V IX2 futures price.

(ii) The larger risk aversion of dealers leads to more negative VRP and V IX2 fu-

tures return, and a higher V IX2 futures price (equivalently, higher V IX2 futures

basis).
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(iii) The shorter investment horizon leads to more negative VRP and V IX2 futures

return, and a higher V IX2 futures price.

(iv) The larger hedging demand of assert managers leads to more negative VRP and

V IX2 futures return, and a higher V IX2 futures price.

3.2 Case II: Two-market equilibrium with endogenous trading

strategies

In this case, we take Assumption 1-3 and 5 and then we have one more unknown, i.e.,

b, so that the equilibrium in the stock market has to be defined, in order to determine

the additional unknown b.17 The behaviours of traders are same as in Case I, except for

asset managers’ trading activities in the stock market. Thus, the optimal positions in

V IX2 futures of leveraged funds is same as (41), and the optimal portfolios of dealers

in V IX2 futures and stocks are same as (29) and (30). Asset managers choose both

the optimal order ψt in stocks and zt in V IX2 futures to maximize the mean-variance

preferences, i.e.,

max
ψ,z

Et[WA,T ]− γA
2
V art(WA,T ). (51)

Here, in the volatility market, asset managers are hedgers and dealers are the market

makers, while, in the stock market, asset managers are the market makers (clearing the

stock market) and dealers are hedgers (hedging their long or short position in V IX2

futures). Leveraged funds only speculate in the volatility market.

Similarly, we can solve the optimal order ψt in stocks and zt in V IX2 futures as

zt =
λt(T − t)− γAψtStCovt[RT , vT ]

γAV art[vT ]× 1002
, (52)

and

ψt =
Et[RT ]− ztγACovt[RT , vT ]× 1002

γAStV art[RT ]
. (53)

17Actually, xt, yt, zt and ψt are all endogenous in this case.
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The definition of the equilibrium in volatility and stock markets is given as follows.

Definition 3 (Two-market equilibrium). Equilibrium in our economy is defined in

a standard way: Equilibrium V IX2 futures orders xt, yt, zt and stock orders φt and ψt

maximize all traders’ mean-variance preferences, and V IX2 futures and stock markets

clear, i.e., xt + yt + zt = 0 and φt + ψt = Z, where Z is the total amount of stocks.18

Based on Definition 3, we summarize the equilibrium as the following system.

Theorem 6 (Case II). Under Assumption 1-3 and 5, the equilibrium solutions can

be solved from the following system,

λt = axt + b,

xt = b(T−t)−γDφtStCovt[RT ,vT ]
γDV art[vT ]×1002−2a(T−t)

,

φtSt = Et[RT ]−xtγDCovt[RT ,vT ]×1002
γDV art[RT ]

,

yt = λt(T−t)
γLV art[vT ]×1002

,

zt = λt(T−t)−γAψtStCovt[RT ,vT ]
γAV art[vT ]×1002

,

ψtSt = Et[RT ]−ztγACovt[RT ,vT ]×1002
γAV art[RT ]

,

xt + yt + zt = 0,

φtSt + ψtSt = ZSt.

(54)

The analytical solutions are provided in Appendix B.

The equilibrium system (54) has eight equations with six unknowns a, b, λt, xt, yt, zt, φtSt

and ψtSt. Given parameters vt, T − t, µ, ρ, σv, ZSt, γD, γL and γA, we can easily solve

them (see Appendix B). Similarly, we set ρ = −0.75, σv = 0.5, µ = 0.06, vt =

0.22, T − t = 1, γ = 2, δ = 2 and ZSt = 1. Then we have a = 97.03 > 0, b =

−0.023 < 0, λt = −0.012 < 0, xt = 1.12 × 10−4 > 0, yt = −1.17 × 10−4 < 0, zt =

0.044 × 10−4 > 0, φtSt = 0.78 and ψtSt = 0.22. We find that, in this model, the posi-

tive xt = 1.12×10−4 > 0 can produce the negative λt = −0.012 < 0. This is consistent

with the position data in our paper (i.e., Table 1) and Mixon and Onur (2015).

18In a more general case, Z can be regarded as the remainder of the total supply traded by purely-
stock-trading traders.
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We analyse the sensitivities of a and b against other parameters in Figure 3, which

shows that the value of a is always positive and the value of b is always negative. So,

under reasonable parameter settings, the value of a can be always positive, while b can

be always negative. The signs of them are same as the signs in the exogenous case (i.e.,

Equation (33) and (34)).

[Insert Figure 3]

In this model, the sign of λ is determined by not only the positions of dealers in V IX2

futures, but also the value of b, which measures the impacts of the position in stocks.

This explains why the positive xt can produce the negative λt.

[Insert Figure 4]

The effects in Figure 4 are similar to Figure 3, except the investment horizon. In

Panel C, Figure 4, a longer horizon leads to more negative λt. We get the following

proposition, which is the same as Proposition 3.

Proposition 4 (Case II). In equilibrium, under Assumption 1-3 and 5,

(i) The higher risk-averse heterogeneity most likely leads to less negative VRP and

V IX2 futures return, and a lower V IX2 futures price.

(ii) The larger the risk aversion of dealers leads to more negative VRP and V IX2 fu-

tures return, and a higher V IX2 futures price (equivalently, higher V IX2 futures

basis).

(iii) The longer investment horizon leads to more negative VRP and V IX2 futures

return, and a higher V IX2 futures price.

(iv) The larger hedging demand of asset managers leads to more negative VRP and

V IX2 futures return, and a higher V IX2 futures price.
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4. Empirical analysis

In this section, first, Konstantinidi and Skiadopoulos (2016) test the trading activity

model by using the trading volume of all S&P 500 futures contracts and the TED

spread (which measures traders funding liquidity), while we extend the model with the

net positions of dealers, asset managers and leveraged funds, which reveals the relation

between the VRP and the net positions of three main traders. Second, inspired by

Eraker and Wu (2017), we newly investigate the impact of the net positions on the

VIX futures return. Finally, we empirically study the results in Mixon and Onur

(2015) by using obtainable data.19

Based on Proposition 1, we propose the following six hypothesises:

(i-a) VRP is positively related to the level of positioning by dealers.

(i-b) VRP is negatively related to the level of positioning by asset managers and lever-

aged funds.

(ii-a) VIX futures return is positively related to the level of positioning by dealers.

(ii-b) VIX futures return is negatively related to the level of positioning by asset man-

agers and leveraged funds.

(iii-a) VIX futures basis is negatively related to the level of positioning by dealers.

(iii-b) VIX futures basis is positively related to the level of positioning by asset managers

and leveraged funds.

Hypothesis (i-a) and (i-b) are designed to explicitly explain the observation in Konstan-

tinidi and Skiadopoulos (2016); hypothesis (ii-a) and (ii-b) are extended from Eraker

and Wu (2017); and hypothesis (i-a) and (i-b) correspond to the empirical findings in

Mixon and Onur (2015).

19The daily trading data used in Mixon and Onur (2015) is not available to the public. Thus, we
have to use weekly data to test our model. Our empirical results are consistent with Mixon and Onur
(2015).
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4.1 Data

CFTC began to publish weekly TFF reports on 4 September 2009 to add further

transparency to the financial futures markets, together with the disaggregated data in

the CFTC’s weekly COT reports. Supporting the legacy COT reports, the TFF reports

provide a breakdown of each Tuesday’s open interest for markets in which 20 or more

traders hold positions equal to or above the reporting levels established by the CFTC

and separates large traders in the financial markets into the following four categories:

dealers, asset managers, leveraged funds and other reportables.20 We download TFF

Futures Only Reports weekly data from the CFTC website.21 The available time period

is from 13 June 2006 to 25 Oct 2016.

The TFF reports disclose the long and short open interest for four categories. We

are interested in their net positions in VIX futures. So, we convert the long and short

open interest variables into net positions, which are defined as the long open interest

minus the short open interest. Here the net positions are the total aggregated open

interest in VIX futures across different maturities for each type of trader. The statistics

are given in Table 1.

[Insert Table 1]

Table 1 shows that the sum of the average net positions of asset manager and leveraged

funds is 24199.63, which is close to the average net position of dealers, 26031.73. The

average net position of other reportables is very small, around 3% of leveraged funds.

Thus, contributions from other reportables can be omitted. In addition, Table 1 doc-

uments that we have to consider at least three main traders in the equilibrium instead

of using the two-trader equilibrium model in Garleanu et al. (2009); Dong (2016). Our

equilibrium model is more realistic than others.

20TFF Explanatory Notes can be found at http://www.cftc.gov/idc/groups/public/ @commit-
mentsoftraders/documents/file/tfmexplanatorynotes.pdf.

21See http://www.cftc.gov/marketreports/commitmentsoftraders/historicalcompressed/index.htm.
Variable names for TFF reports are introduced in http://www.cftc.gov/MarketReports/ Commit-
mentsofTraders/HistoricalViewable/cotvariablestfm.
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[Insert Figure 5]

Furthermore, from Figure 5, the trading in VIX futures is not very active before 2012.

In order to make an easy comparison with the empirical results in Mixon and Onur

(2015), we consider the last four years trading data, i.e., from 23 October 2012 to 25

October 2016.

We download VIX, S&P 500 index and VIX futures daily data from Bloomberg.

As the TFF reports provide only the total open interest of VIX futures markets held

by the three main traders across different maturity contracts, we examine only the

futures basis for the first and second nearest futures contracts, which are the most

active. Table 2 also supports our treatment. The average open interest of the first and

second nearest VIX futures is two times more than the rest of contracts.

[Insert Table 2]

Following Mixon and Onur (2015), we calculate the daily futures basis as

Basisit = Price futureit − V IXt (55)

where Price futureit is VIX futures last price at date t for the first nearest (i = 1)

and the second nearest (i = 2).22 In addition, according to Bollerslev et al. (2009) and

González-Urteaga and Rubio (2016), the daily VRP is defined as

V RP t→t+21
t = RV t→t+21

t − V IX2
t , (56)

where RV t→t+21
t is calculated as the variance of the daily percentage returns of the

S&P 500 over 21-day windows at day t; V IX2
t is the daily squared VIX index divided

by 12 as one-month horizon at time t.

Now we merge the daily Basisit and V RPt with weekly net position data and then

22We only consider the last price because the settlement price is the same as the last price in the
VIX futures data downloaded from Bloomberg.
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we calculate the weekly returns of VIX futures i,

Ret futureit = log
(
Price futureit

)
− log

(
Price futureit−1

)
. (57)

Finally, we provide summary statistics for all of the variables in Table 3.

[Insert Table 3]

In Table 3, the average future basis is positive and the means of the VRP and the

futures return are negative, which implies that the market price of the volatility risk

λ in our model should be negative in the real world. The mean of leveraged funds’

net positions is negative and that of asset managers’ net positions is positive. This is

consistent with our model assumptions in Section 2.4. Using the weekly data, we are

able to analyse the impact of trading on futures basis, the VRP and the VIX futures

return.

4.2 Empirical results: the impact of trading on VRP

Konstantinidi and Skiadopoulos (2016) compare the predictive ability of four models

and conclude that the trading activity model is the best to predict the VRP. They

claim that the greater VRP is due to dealers’ greater short positions in index options.

However, their trading activity variables are the trading volume of all S&P 500 futures

contracts and the TED spread. They do not explicitly test the impacts of the net

positions of dealers, asset managers and leveraged funds on the VRP. To fill this gap,

we further develop their trading activity model into a VIX futures trading model by

using the net positions of the three main traders. Then we are able to investigate the

impacts of volatility trading activities on the VRP. Corresponding to Konstantinidi
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and Skiadopoulos (2016), we run the following regressions:23

V RP t→t+21
t = α + β1NP dt + εt, Hypothesis (i-a) (58)

and

V RP t→t+21
t = α + β1NP am+ β2NP lft + εt, Hypothesis (i-b). (59)

In contrast to the impact of trading on futures basis, based on (36), the sign of the

coefficient β signifies whether the VRP is positively (negatively) related to the level of

positioning by dealers (asset managers and leveraged funds). The results are given in

Table 4.

[Insert Table 4]

Panel A of Table 4 shows that the coefficient is significantly positive. In other words,

the VRP is positively related to the level of positioning by dealers. The larger the short

position of dealers, the more negative the VRP. Panel B shows that both the coefficients

are negative, where the coefficient of leveraged funds’ net positions is significantly

negative. Similarly, we can empirically conclude that the VRP is negatively related

to the level of positioning by asset managers and leveraged funds. The larger long

positions of asset managers in VIX futures lead to more negative VRP, while the larger

short positions of leveraged funds lead to the more negative VRP. All results correspond

to Proposition 1 in this paper.

Our demand-based equilibrium model provides a channel to explain the high neg-

ative VRP. Based on our empirical and theoretical results, the high negative VRP is

driven by the large hedging demand of asset managers in VIX futures to hedge the

underlyings they hold. It is very intuitive that the buyers of volatility derivatives are

willing to pay some risk premium (i.e., −V RP ) to protect their long positions in under-

lyings. On the other hand, if leveraged funds increase (decrease) their short position,

23The better way to examine the impact of volatility trading on VRP is to use S&P 500 variance
swaps trading data for the three major traders and to calculate the VRP based on variance swaps
rates. However, the data are unobtainable.
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the supply of volatility derivatives will increase (decrease), so that volatility derivatives

buyers are willing to pay less (more) to buy these derivatives. This is why the VRP

decreases with a short position of leveraged funds.

The large negative mean of the VRP is mainly captured by the constant term α in

Regression (58) and (59), which essentially is the solution b in our benchmark model.

Table 4 shows that the constants are significantly negative with a large magnitude.

Based on Equation (34), we know that the negative sign of b comes from the negative

correlation between the stock return and its volatility. Therefore, we observe that

the large negative VRP is caused by the volatility trading activities and the negative

correlation between the stock return and its volatility. Actually, due to the negative

correlation, volatility derivatives provide a channel for investors to hedge the position

in the stock market or speculate the position in the volatility market.

4.3 Empirical results: the impact of trading on VIX futures

return

In order to investigate the impact of trading on the VIX futures return, we run the

following regressions,

Ret futureit = αi + βi1NP dt + εt, Hypothesis (ii-a) (60)

and

Ret futureit = αi + βi1NP am+ βi2NP lft + εt, Hypothesis (ii-b). (61)

Consistent with Eraker and Wu (2017), the negative VIX futures return is con-

temporaneously related to the negative VRP. The results in Table 5 are similar to the

results in Table 4. In other words, the VIX futures return and the VRP are positively

(negatively) related to the level of positioning by dealers (asset managers and lever-
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aged funds); see Proposition 1-2. The larger the short position of dealers, the more

negative the return of VIX futures (see Panel A of Table 5). In addition, the larger

long positions of asset managers in VIX futures lead to more negative return, while the

large short positions of leveraged funds lead to the more negative return (see Panel B

of Table 5).

[Insert Table 5]

Our demand-based equilibrium model very intuitively explains the mechanism. As

hedgers, the high demand of asset managers in volatility derivatives acts to increase the

prices of volatility derivatives and make the returns more negative. On the other hand,

the leveraged funds, as speculators, selling (shorting) more volatility derivatives brings

a high supply, so that the prices of volatility derivatives decrease and their returns

become less negative. The balance of the supply and demand determines the prices of

volatility derivatives and their returns.

4.4 Empirical results: the impact of trading on futures basis

In order to test whether the VIX futures (i.e., VIX futures basis) varies according to

the level of different types of traders’ net positions in VIX futures, following Mixon

and Onur (2015), we run the following regressions:

Basisi = αi + ηiV IX + βi1NP d+ εi, Hypothesis (iii-a) (62)

and

Basisi = αi + ηiV IX + βi1NP am+ βi2NP lf + εi, Hypothesis (iii-b). (63)

The signs of the coefficient βi signifies whether the futures price (equivalently, the

futures price basis) is negatively (positively) related to the level of positioning by

dealers (asset managers and leveraged funds). The results are given in Table 6.
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[Insert Table 6]

The results in both Panel A and Panel B of Table 6 are consistent with Mixon and

Onur (2015), even though we use weekly data. Panel A shows that the coefficient is

significantly negative for the first nearest futures contracts. Even though the coefficient

of the second nearest contracts is not significant, the sign is negative. Thus, we can see

the futures basis is negatively related to the level of positioning by dealers. In Panel

B, the coefficients of asset managers and leveraged funds net positions for the first and

second nearest contracts are all significantly positive. This means that the futures basis

is positively related to the level of positioning by asset managers and leveraged funds.

As on average, the asset managers net positions are positive and leveraged funds net

positions are negative, the larger long positions of asset managers act to bring about

higher VIX futures prices, while the larger short positions of leveraged funds act to

lower VIX futures prices. Our empirical results are consistent with Proposition 1-2 and

Mixon and Onur (2015).

5. Conclusions

We provide a very neat demand-based equilibrium model of volatility trading, which

reveals an intuitive economic mechanism of how asset managers, leveraged funds and

dealers’ volatility trading activities affect the volatility market. Our model comple-

ments Eraker and Wu’s (2017) consumption-based equilibrium model. After solving the

equilibrium, we get several theoretical results which are consistent with the empirical

tests in Mixon and Onur (2015) and the observation in Konstantinidi and Skiadopoulos

(2016). Our empirical tests significantly support the theoretical results implied by our

equilibrium model. As this is the first paper to model the volatility trading flows, our

model can be easily extended into more complicated settings.
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Appendix A

Denoting RT = log ST
St

=
∫ T
t

(
µ− 1

2
vu
)
du+

∫ T
t

√
vudBS,u, we have

Et[RT ] = µ(T − t)− 1

2
vt(T − t). (64)

By using vT = vt + σv
∫ T
t

√
vudBV,u, we have

V art[RT ] =Et [RT − Et[RT ]]2

=Et

[∫ T

t

√
vudBS,u −

1

2
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t

vudu− Et
∫ T

t

vudu

)]2
=Et
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√
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1

4
Et
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t

vudu− Et
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vudu

)]2
=vt(T − t)− ρσvvt
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t

(s− u)du+
1

4
σ2
vv

2
t

∫ T

t

(s− u)2du

=vt(T − t)− ρσvvt
1

2
(T − t)2 +

1

12
σ2
vv

2
t (T − t)3.

In addition,

Et[vT ] = vt, (65)

and

V art[vT ] = Et

[
σ2
v

∫ T

t

vudu

]
= σ2

vvt(T − t). (66)
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Furthermore, we calculate the conditional covariance between RT and vT as

Covt[RT , vT ] = Et [(RT − Et[RT ]) (vT − Et[vT ])]

= σvEt

[∫ T

t

√
vudBS,u

∫ T

t

√
vudBV,u

]
= ρσvEt

[∫ T

t

vudu

]
= ρσvvt(T − t).

By using the conditions, −1 < ρ < 0 and 0 < σv < 1, we have

|Covt[RT , vT ]| < vt(T − t) < V art[RT ]. (67)
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Appendix B

Given the equilibrium system (48), we solve the equilibrium as

a =
γAγL

(
Cov2t [RT , vT ]ψtStγD − V art[RT ]V art[vT ]ψtStγD − Et[RT ]V art[vT ]

)
× 1002

(T − t) (−2V art[RT ]ψtStγAγL + Et[RT ] (γA + γL))
, (68)

λt =
γAγL

(
Cov2t [RT , vT ]ψtStγD − V art[RT ]V art[vT ]ψtStγD − Et[RT ]V art[vT ]

)
Covt[RT , vT ]

(T − t)
(
Cov2t [RT , vT ]γAγD + Cov2t [RT , vT ]γDγL − V art[RT ]V art[vT ]γAγD − 2V art[RT ]V art[vT ]γAγL − V art[RT ]V art[vT ]γDγL

) , (69)

φtSt =
2Cov2t [RT , vT ]ψtStγAγDγL − Et[RT ]V art[vT ]γAγD − 2Et[RT ]V art[vT ]γAγL − Et[RT ]V art[vT ]γDγL(

Cov2t [RT , vT ]γAγD + Cov2t [RT , vT ]γDγL − V art[RT ]V art[vT ]γAγD − 2V art[RT ]V art[vT ]γAγL − V art[RT ]V art[vT ]γDγL
)
γD

, (70)

xt =
1

1002

Covt[RT , vT ] (−2V art[RT ]ψtStγAγL + Et[RT ]γA + Et[RT ]γL)

Cov2t [RT , vT ]γAγD + Cov2t [RT , vT ]γDγL − V art[RT ]V art[vT ]γAγD − 2V art[RT ]V art[vT ]γAγL − V art[RT ]V art[vT ]γDγL
, (71)

yt =
Covt[RT , vT ] γA

(
Cov2t [RT , vT ]ψtStγD − V art[RT ]V art[vT ]ψtStγD − Et[RT ]V art[vT ]

)
1002V art[vT ]

(
Cov2t [RT , vT ]γAγD + Cov2t [RT , vT ]γDγL − V art[RT ]V art[vT ]γAγD − 2V art[RT ]V art[vT ]γAγL − V art[RT ]V art[vT ]γDγL

) , (72)

zt = −
Covt[RT , vT ]

(
Cov2t [RT , vT ]ψtStγAγD − V art[RT ]V art[vT ]ψtStγAγD − 2V art[RT ]V art[vT ]ψtStγAγL + Et[RT ]V art[vT ]γL

)
1002V art[vT ]

(
Cov2t [RT , vT ]γAγD + Cov2t [RT , vT ]γDγL − V art[RT ]V art[vT ]γAγD − 2V art[RT ]V art[vT ]γAγL − V art[RT ]V art[vT ]γDγL

) . (73)
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Similarly, given the equilibrium system (54), we solve the equilibrium as

a =

(
Cov2t [RT , vT ] − V art[RT ]V art[vT ]

)
× 1002

T − t

Cov2t [RT , vT ]ZStγ
2
Aγ

2
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2
Aγ

2
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2
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2
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2
D

+ 2Et[RT ]V art[vT ]γAγDγL + Et[RT ]V art[vT ]γ2
D
γL
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2
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2
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+Cov2t [RT , vT ]Et[RT ]γ2A − Et[RT ]V art[RT ]V art[vT ]γ2A

− Et[RT ]V art[RT ]V art[vT ]γAγD − Et[RT ]V art[vT ]γAγLV art[RT ] − Et[RT ]V art[vT ]γDγLV art[RT ]

, (74)

b = −

Cov2t [RT , vT ]ZStγ
2
Aγ

2
D − V art[RT ]V art[vT ]ZStγ

2
Aγ

2
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2
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2
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2
D
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D
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A
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, (75)
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γA (T − t)Covt[RT , vT ] γD
, (76)
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2
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2
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Cov2t [RT , vT ] − V art[RT ]V art[vT ]

)
γDγ

2
A

, (77)

ψtSt = −
V art[vT ] (−V art[RT ]ZStγAγDγL + Et[RT ]γAγD + Et[RT ]γAγL + Et[RT ]γDγL)(
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)
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2
A

, (78)
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Table 1: Summary statistics on net positions. We report the summary statistics
of net positions of the different types of traders. NP i where i = d, am, lf, or represents
the net positions of dealers, asset managers, leveraged funds and other reportables. The
time period is from 13 June 2006 to 25 October 2016.

Variable Mean Std. Dev. Min Max

NP d 26,031.73 46,864.47 -58,735 144,190

NP am 16,056.04 19,204.95 -13,396 90,706

NP lf -40,255.67 755,660.03 -195,486 63,753

NP or -1,235.41 7,186.36 -38,950 33,621
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Table 2: Open interest of VIX futures across different maturities. We report
the summary statistics of open interest of VIX futures across different maturities (first
six maturities). The time period is from 23 October 2012 to 25 October 2016.

Contract Expiry Mean Std. Dev. Min Max

1 142,654.0 46,600.07 44,360 295,871

2 111,317.4 45,966.74 32,357 295,930

3 43,304.3 12,214.04 16,890 95,476

4 31,663.4 7,533.20 14,389 56,336

5 25,618.2 7,035.65 9,940 47,991

6 18,398.0 5,298.13 7,609 35,450
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Table 3: Summary statistics on all variables. We report the summary statistics of
variables in weekly frequency. The time period is from 23 October 2012 to 25 October
2016.

Variable Mean Std. Dev. Min Max

Basis1 0.58 1.13 -10.70 2.66

Basis2 1.46 1.83 -13.47 4.50

V IX 15.43 3.54 10.99 36.02

V RP t→t+21
t -6.64 13.33 -56.54 64.91

NP lf -74,160.72 61,307.91 -195,486 63,753

NP am 29,727.25 20,625.31 -13,396 90,706

NP d 48,697.36 52,010.26 -58,735 144,190

Ret future1 -0.0011152 0.11429 -0.37194 0.57328

Ret future2 -0.0008592 0.07553 -0.18382 0.39609
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Table 4: Results from regressing VRP on dealer and non-dealer VIX futures
positions. The table displays estimation results for the regressions in Equation (58)
shown in Panel A and in Equation (59) shown in Panel B. T-statistics are based
on Newey-West (1987) standard errors with 3 Newey-West lags. The regressions are
estimated on weekly data spanning the period 23 October 2012 to 25 October 2016.
∗∗∗, ∗∗ and ∗ represent statistical significance at the 1, 5 and 10% level.

Panel A

NP d (×10−5) Cons. Adj. R2 (%)

4.92∗∗ -9.00∗∗∗ 3.24

(2.04) (-4.83)

Panel B

NP am (×10−5) NP lf (×10−5) Cons. Adj. R2 (%)

-8.86 -5.19∗ -7.84∗∗∗

(-1.07) (-1.83) (-2.89) 2.18
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Table 5: Results from regressing VIX futures return on VIX and dealer and
non-dealer VIX futures positions. The table displays estimation results for the
regressions in Equation (60) shown in Panel A and in Equation (61) shown in Panel B.
Regressions are estimated separately for each contract ( i = 1 and 2). T-statistics are
based on Newey-West (1987) standard errors with 3 Newey-West lags. The regressions
are estimated on weekly data spanning the period 23 October 2012 to 25 October 2016.
∗∗∗, ∗∗ and ∗ represent statistical significance at the 1, 5 and 10% level.

Panel A

Contract Expiry NP d (×10−7) Cons. (×10−2) Adj. R2 (%)

1 2.50∗∗ 1.32 0.81

(2.32) (-1.43)

2 1.06 0.60 0.05

(1.34) (-0.91)

Panel B

Contract Expiry NP am (×10−7) NP lf (×10−7) Cons. (×10−3) Adj. R2 (%)

1 -7.57∗ -3.54∗∗∗ 4.75 0.94

(-1.88) (-2.80) (-0.39)

2 -3.51 -1.55∗ 1.87 0.13

(-1.36) (-1.75) (-0.22)
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Table 6: Results from regressing VIX futures basis on VIX and dealer and
non-dealer VIX futures positions. The table displays estimation results for the
regressions in Equation (62) shown in Panel A and in Equation (63) shown in Panel B.
Regressions are estimated separately for each contract (i = 1 and 2). T-statistics are
based on Newey-West (1987) standard errors with 3 Newey-West lags. The regressions
are estimated on weekly data spanning the period 23 October 2012 to 25 October 2016.
∗∗∗, ∗∗ and ∗ represent statistical significance at the 1, 5 and 10% level.

Panel A

Contract Expiry V IX NP d (×10−6) Cons. Adj. R2 (%)

1 -0.24∗∗∗ -5.50∗∗∗ 4.61∗∗∗ 47.52

(-4.30) (-2.82) (5.04)

2 -0.44∗∗∗ -1.66 8.34∗∗∗ 69.28

(-7.36) (-0.61) (8.53)

Panel B

Contract Expiry V IX NP am (×10−5) NP lf (×10−6) Cons. Adj. R2 (%)

1 -0.23∗∗∗ 1.91∗∗∗ 7.56∗∗∗ 4.15∗∗∗ 50.97

(-4.09 ) (4.28) (3.89) (4.43)

2 -0.42∗∗∗ 3.49∗∗∗ 6.54∗∗∗ 7.35∗∗∗ 77.45

(-7.20) (6.39) (2.73) (7.55)
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Figure 1: The value of parameter a in Case I. This figure shows the value of a.
The benchmark model parameters are as follows: ρ = −0.75, σv = 0.5, µ = 0.06, vt =
0.22, T − t = 1, γ = 2, δ = 2 and ψtSt = 1.
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Figure 2: The value of λ in Case I. This figure shows the value of λ. The
benchmark model parameters are as follows: ρ = −0.75, σv = 0.5, µ = 0.06, vt =
0.22, T − t = 1, γ = 2, δ = 2 and ψtSt = 1.
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Figure 3: The value of parameter a in Case II. This figure shows the value of a.
The benchmark model parameters are as follows: ρ = −0.75, σv = 0.5, µ = 0.06, vt =
0.22, T − t = 1, γ = 2, δ = 2 and ZSt = 1.
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Figure 4: The value of λ in Case II. This figure shows the value of λ. The
benchmark model parameters are as follows: ρ = −0.75, σv = 0.5, µ = 0.06, vt =
0.22, T − t = 1, γ = 2, δ = 2 and ZSt = 1.
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Figure 5: Net positioning in VIX futures by asset managers, leveraged
funds, and dealers. The figure displays the net positions, aggregated within each of
the dealers, asset managers and leveraged funds. NP i where i = d, am, lf, or represents
the net positions of dealers, asset managers, leveraged funds and other reportables. The
time period is from 13 June 2006 to 25 October 2016.
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