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Abstract

This paper investigates the impact of return predictability on portfolio per-
formance using mean-variance optimization and various timing strategies. Our
approach captures predictability and performs well in conventional timing exer-
cises, showing how predictability leads to substantial improvements in Sharpe
ratios. However, for MVO, the relationship between predictability and perfor-
mance is more complex. While higher predictability leads to increased mean
returns, it also introduces significant volatility and dispersion in predicted val-
ues, resulting in extreme weights and poor risk-adjusted performance. These
counter-intuitive results suggests that mean-variance optimization, may not al-
ways yield superior risk-adjusted returns when predictability is increased hinting
at a nuanced relationship between predictability and performance in portfolio
optimization.
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1 Introduction

According to Modern Portfolio Theory by Markowitz (1952), allocating wealth is a two
step procedure. The first step involves forming expectations about the future outcome
of the risk and the return of each assets within the investment universe, while the sec-
ond step revolves around optimally combining the assets in a way that maximizes the
return given the level of risk an investor is willing to bear. Undeterred by this straight-
forward theoretical framework published more than seven decades ago, the question of
how to form expectations and how to turn them into investment profits is ambiguous
and often puzzling for both academic researchers and practitioners. On top of that,
the relationship between traditional statistical measures of forecast accuracy and the
actual economic value of forecasts is often very fragile, as for example documented by
Leitch and Tanner (1991), Cenesizoglu and Timmermann (2012), Reschenhofer et al.
(2020) as well as Cederburg et al. (2023).

Explanations for the opaque link between forecasts and performance can be separated
into two camps. One strand of the literature revolves around the question of whether
returns in general or the equity premium in particular are predictable at all. Welch and
Goyal (2008) as well as Goyal et al. (2021) are well known instances for this debate as
their results show that the vast majority of predictors that have been published in top
journals “lose“ their ability to predict future returns on a statistically significant level or
no longer yield economically meaningful returns after they have been published.

Contrary to that, the alternative strand of the literature argues that asset returns
are predictable to some extent and thus mainly focuses on improving upon the meth-
ods and measures used to predict and evaluate predictions. Thus, some researchers
have focused on improving the predictive power of a set of variables by imposing
economically meaningful restrictions on the sign of the predictions in order to more
consistently translate predictions into performance, such as Campbell and Thomp-
son (2008). Alternatively, others focus more strongly on boosting prediction accuracy
by optimally combining various forecasts from as set of forecast variables into a sin-
gle forecast or on advancing prediction techniques by borrowing methods from the
realm of machine learning, such as Ridge and LASSO regressions, elastic nets, neural
networks or an ensemble thereof pushing for non-linear methods to account for the
complexity of modern financial markets (Rapach et al., 2011, 2019; Gu et al., 2020;
Kelly et al., 2024).

Finally, when it comes to measuring predictability, the statistical significance of a
predictor is typically assessed using the “out-of-sample” R² which compares the mean-
squared prediction errors of a predictor and its benchmark (Campbell and Thompson,
2008). Alternatively, the (root-)mean-squared-error or the correlation between predic-
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tions and realizations are sometimes used (Cenesizoglu and Timmermann, 2012; Kane
et al., 2010; Allen et al., 2019).

While the vast majority of existing studies has focused on whether asset returns can
be predicted and how to do so, much less is known about how these predictions can
be systematically leveraged to generate superior economic outcomes. The issue is
further compounded by the fact that the statistical significance of a predictor or a
technique often does not translate into economic significance, as impressively demon-
strated by Kelly et al. (2024). Against this backdrop, our study seeks to bridge the
divide between return predictability and its economic value, focusing on the conver-
sion of predictive accuracy into tangible investment performance. We posit that a
reevaluation of the metrics used to measure predictability, coupled with a nuanced
understanding of how these metrics relate to economic value, can unlock new avenues
for exploiting predictability in investment decision-making.

In order to answer these questions, we set-up a simple environment in which we can
precisely control the level of return predictability and thus by extension the accuracy
of our predictions. Given this set-up, we further explore how economically valuable our
predictions are given the most common investment strategies and universes investors
face. In particular, we investigate two different types of assets and two different
types of strategies. In terms of assets, we focus on the US equity premium and
US industry portfolios. As far as investment strategies are concerned, we focus on
investors that focus on simple timing strategies as well as on investors having mean-
variance preferences that want to optimally diversify their portfolio.

Our findings indicate that our approach increases predictability across all consid-
ered and established measures of predictability, our results are more nuanced when
it comes to the economic value of predictions. For timing exercises related to the
equity premium, predictability and profitability as measured by the Sharpe ratio in-
crease alongside each other. In a more sophisticated portfolio optimization setting,
this relationship does not hold. The Sharpe ratios initially improve with increasing
λ-values but eventually decline or fluctuate. We observe this trend across all portfolio
sizes.

These findings underscore the complexity of leveraging predictability to enhance port-
folio performance. While higher levels of predictability can lead to higher returns, they
also introduce greater volatility, which can offset the benefits in terms of risk-adjusted
performance. This counter-intuitive result suggests that mean-variance optimization,
despite its theoretical appeal, may not always yield superior risk-adjusted returns
when predictability is increased.
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This research contributes to the existing literature by elucidating the direct link
between return predictability and economic performance, challenging the prevailing
paradigm that prioritizes statistical significance over economic value. Furthermore, we
highlight the importance of choosing the appropriate measure for predictability and
economic value given the prediction and investment task at hand. Finally, we demon-
strate that even low levels of predictability, when strategically leveraged, can lead to
significant economic gains. Thus, we not only advance our theoretical understand-
ing of the predictability-performance nexus but also provide a valuable framework for
practitioners seeking to navigate the complexities of financial markets with greater
precision and profitability.

2 Literature Review

Given that this paper aims at evaluating how predictability turns into performance it is
only natural that we first investigate how returns are currently predicted. This includes
a review of methods, measures and variables that are used to predict various kinds of
returns. Subsequently, we delver deeper into how the predictability of returns is related
to common measures of economic value. Finally, we review what existing literature
has to say about how (the lack of) predictability impacts asset allocation.

2.1 Return predictability: Methods, measures and variables

As the concept of informationally efficient capital markets, formalized and popularized
by Fama (1970) with the so-called "Efficient Market Hypothesis" (EMH), is one of
the most fundamental ones in academic Finance, the question of whether returns are
and, from a theoretical perspective, should be predictable has been discussed vividly.
While a discussion of that topic per se is beyond the scope of this paper, it is worth
mentioning that return predictability only contradicts the EMH if the predictability
does not reflect compensation for taking on risk (Rapach and Zhou, 2022). In other
words, if predictability cannot be explained via risk and instead is more likely due to
behavioural patterns or certain types of market inefficiencies that arise due to frictions
(i.e. mispricing) it contradicts the EMH (Rapach and Zhou, 2022).

Having said that, this section mainly focuses on summarizing the literature related to
the out-of-sample predictability of the equity premium, industry portfolios and single
stock returns. Consequently, we begin with briefly discussing the state-of-the-art when
it comes to predicting the equity premium. According to Rapach and Zhou (2022) the
most widespread econometric model for predicting returns is a simple linear regression
in which the returns of an asset are regressed onto one (or more) lagged variables that
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with (presumably) predictive ability. More formally, such a predictive regression could
take the following form:

rt+1 = α + βxt + ϵt+1 for t = 1, ..., T − 1, (1)

where ϵt+1 refers to the zero-mean iid. error term. Subsequently, it is possible to
obtain an out-of-sample return forecast rt+1|t by using the OLS estimates of α and β

through t (i.e. α̂t and β̂t). With respect to the question of whether α and β should
be estimated using a rolling or expanding window, Dangl and Halling (2012) argue in
favour of time-varying coefficients.

The predictive accuracy of such forecasts is typically evaluated using a summary statis-
tic that measures the distance between realized and forecasted returns such as the
out-of-sample mean squared forecast error (MSFE). In addition to that, and in an at-
tempt to judge the accuracy of a predictor variable relative to a benchmark prediction
Campbell and Thompson (2008) introduced the so-called “out-of-sample R2“ which
compares the MSFE of a predictor variable with the MSFE of a simple benchmark
such as the prevailing mean. The idea behind this measure is that if the more sophisti-
cated prediction model that takes advantage of the information provided by predictor
xt generates a lower MSFE than a naive benchmark prediction that has not access
to this kind of information, this means that the predictor xt is capable of predicting
out-of-sample. Note that we formally introduce and describe both of these measures
as well as alternative measures for prediction accuracy in subsection 3.2.2).

As any discussion of equity premium prediction is incomplete without mentioning the
seminal paper of Welch and Goyal (2008) we want to stress the importance of their
contribution towards facilitating the shift from in-sample dominated prediction ex-
ercises towards a more realistic out-of-sample framework in addition to setting new
standards for how to assess the predictive abilities of variables in a comparable, repro-
ducible and realistic environment. Furthermore, Welch and Goyal (2008) also present
evidence that cast doubt on the predictability of the equity premium as none of the
17 variables they have tested were able to consistently predict the equity premium
out-of-sample.

In an attempt to address some of the issues highlighted by Welch and Goyal (2008),
Campbell and Thompson (2008) argue that imposing weak, economically motivated
restrictions on the return forecasts and the sign of the regression coefficients can al-
ready improve the out-of-sample predictions such that they are more accurate than
the historical average. Confirming the initial results of Welch and Goyal (2008), Ra-
pach et al. (2010) underline the importance of diversifying forecasts instead of relying
on a single predictor variable and thus propose combining forecasts from n univariate
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predictive regressions to get an equally-weighted combination mean forecast. Alter-
natively, the authors suggest to take the predictive performance of the individual
investors into account when combining the individual predicitons. Regardless of the
weighting-scheme, the results of Rapach et al. (2010) indicate that forecast combina-
tions improve the predictive accuracy on a statistically significant level. Besides that,
Neely et al. (2014) use the same predictor variables as Welch and Goyal (2008) and
another 14 technical indicators as inputs in a predictive regression framework based on
principal components and thereby manage to outperform the naive predictions made
by the prevailing mean significantly.

In a nutshell, published research indicates that the US equity premium is at least to
some extent predictable out-of-sample and on a statistically significant level. Recent
advances in the field highlight the importance of extending models beyond the classical
framework based on univariate predictive regressions based on OLS and instead rely
on methods that are more capable of dealing with the horrendously low signal-to-
noise ratio of financial returns. At their core, these novel methods mainly exploit the
benefits of the bias-variance trade-off via shrinkage and/or dimension reduction.

2.2 Linking predictability to economic value

While the vast majority of existing studies has focused on whether asset returns can
be predicted and how to do so, much less is known about how these predictions can
be systematically leveraged to generate superior economic outcomes. The relationship
between traditional statistical measures of forecast accuracy and the actual economic
value of forecasts is often very fragile, as for example documented by Leitch and
Tanner (1991), Cenesizoglu and Timmermann (2012), Reschenhofer et al. (2020) as
well as Cederburg et al. (2023). More recently, Kelly et al. (2024) have impressively
demonstrated that the positive and significant out-of-sample R2 of a predictor is not
a necessary condition for economically valuable timing signals of that predictor, again
highlighting the mismatch between statistical and economic significance. Unfortu-
nately, R2

OOS only focuses on the statistical significance of a predictor variable and
neglects its economic significance. As a consequence, R2

OOS often rejects the hypothe-
sis that a specific predictor delivers forecasts that are significantly more accurate than
those of the prevailing mean while the same predictor significantly outperforms the
prevailing mean from an economic perspective by generating higher utility levels or
Sharpe ratios when used in a market timing setting (i.e. Campbell and Thompson
(2008) or Kelly et al. (2021)).

Explanations for the opaque link between forecasts and performance can be separated
into two camps. One strand of the literature revolves around the question of whether
returns in general or the equity premium in particular are predictable at all. Welch and
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Goyal (2008) as well as Goyal et al. (2021) are well known instances for this debate as
their results show that the vast majority of predictors that have been published in top
journals “lose“ their ability to predict future returns on a statistically significant level or
no longer yield economically meaningful returns after they have been published.

Contrary to that, the alternative strand of the literature argues that asset returns
are predictable to some extent and thus mainly focuses on improving upon the meth-
ods and measures used to predict and evaluate predictions. Thus, some researchers
have focused on improving the predictive power of a set of variables by imposing
economically meaningful restrictions on the sign of the predictions in order to more
consistently translate predictions into performance, such as Campbell and Thomp-
son (2008). Alternatively, others focus more strongly on boosting prediction accuracy
by optimally combining various forecasts from as set of forecast variables into a sin-
gle forecast or on advancing prediction techniques by borrowing methods from the
realm of machine learning, such as Ridge and LASSO regressions, elastic nets, neural
networks or an ensemble thereof pushing for non-linear methods to account for the
complexity of modern financial markets (Rapach et al., 2011, 2019; Gu et al., 2020;
Kelly et al., 2024).

3 Data & Methodology

3.1 Data

Currently, we use two types of datasets. First of all, for all timing exercises, the US
equity premium is at our centre of attention. The data is freely available on the website
of Kenneth French1. For the sorting and optimization tasks, we use the returns of the
49 industry portfolios that is also freely available on Ken French’s website.

3.2 Methodology

In this section we briefly outline our methodology. This includes the set-up we use
to come up with return predictions for which we can exactly control the level of pre-
dictability. Furthermore, we also examine the most popular measures of predictability
as well as the strategies we investigate and how we define their economic value.

1See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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3.2.1 Controlled Return Predictions

We begin this section with a brief outline of the prediction set-up which we use to
exactly control the level of predictability inherent in our forecasts. Our model is takes
the following form:

r̂λτ,t+1 = (1− λ)r̄τ + λrt+1 (2)

where r̂λt+1 are our controlled return predictions and r̄τ the rolling average over the
previous τ months. r̄τ serves as a basis forecasts which we want to improve. Note
that for our purposes we assume that τ can take any of the following values: τ ∈
{12, 24, 60, 120, 240}. We motivate our choice of rolling averages as our basis forecast
because we, in accordance with finance theory, associate only a negligible level of
actual predictability with such a forecast. Naturally, r̄τ can be replaced by any other
return prediction r̂t+1. rt+1 refers to the actual realized return in t + 1 and thus λ

represents the degree of look-ahead bias that we introduce in order to control the
accuracy of our predictions. More precisely, we investigate different levels of λ by
gradually increasing it from 0 to 0.1 by steps of 0.002 which corresponds to a look-
ahead bias of 10%. While we keep λ constant over time in our base case, this set-up
generally allows for a more flexible modelling of λ to more realistically capture the
time-varying nature of predictability and its diversity across assets. Our benchmark
predictor is the prevailing mean of the asset(s).

3.2.2 Measuring Prediction Accuracy

By far the most popular measure for assessing the accuracy of predicted returns is the
so-called mean squared forecast error (MSFE) which is defined in (3):

MSFEi =
1

T
ΣT

t=1(ri,t+1 − r̂i,t)
2 (3)

where ri,t+1 is the realized return of asset i in time t+1 and r̂i,t is the time t prediction of
the return of asset i in time t+1. Similarly, the mean absolute forecast error (MAFE)
can by calculated by using the absolute value of the error term instead of squaring
them, as in (4):

MAFEi =
1

T
ΣT

t=1|ri,t+1 − r̂i,t| (4)

In order to assess the relative prediction accuracy of a prediction model, the so-called
”out-of-sample R2” is used:

R2
OOS = 1−

∑T
t=1(ri,t − r̂i,t)

2∑T
t=1(ri,t − r̄i,t)2

(5)
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where r̄i,t denotes the prevailing mean of asset i at time t. Essentially, (5) compares
the sum of squared forecast errors of a prediction model with the sum of squared errors
of a benchmark prediction model. Note that Gu et al. (2020) argue in favour of using
0 as a benchmark prediction when predicting returns for single stocks which is why
we consider both cases in our analysis.

While the predictability measures mentioned above are the most common ones, there
are also alternative measures that have been used by some researchers. Kane et al.
(2010) as well as Allen et al. (2019), for example, both use the correlation between
predictions and realizations to measure the accuracy of predictions despite referring
to this measure as ”R2”. More formally, the ”forecast correlation” can be calculated
as in (6):

ρr,r̂ =

∑T
t=1(rt − r̄t)(r̂t − ¯̂rt)√∑T

t=1(rt − r̄t)2
∑T

t=1(r̂t − ¯̂rt)2
(6)

Beyond that, another simple measure that can be used to proxy prediction accuracy
is the so-called “Hit Ratio“. The ratio measures the number of directionally correct
predictions relative to the toal number of predictions as depcited in (7):

HR =
1

T

T∑
t=1

I(sign(r̂t) = sign(rt)) (7)

where I() is an indicator function that has a value of 1 if the sign of the prediction
matches the sign of the realization and 0 otherwise.

Most of the measures mentioned above result in a single number which often is a sum-
mary statistic that can to some extent be influenced by a few outliers. This vulnerabil-
ity in combination with the observation that out-of-sample return predictability seems
to be higher in economic downturns as documented by Dangl and Halling (2012) can
result in a distorted notion of relatively high predictability although it is concentrated
around a few periods or rare events. In fact, some very popular predictor variables
such as the aggregate short-interest measure of Rapach et al. (2016) is known to suffer
from this phenomenon. To circumvent this issue, Welch and Goyal (2008) entertain
the idea of graphically illustrating how predictive outperformance develops over time
using cumulative squared forecast error differences (CSFED). These can be computed
using (8):

CSFED =
T∑
t=1

[(rt − r̄t)
2 − (rt − r̂t)

2] (8)

Note that all the measures mentioned above mainly focus on assessing the accuracy of
return predictions for one asset. Our paper however is not restricted to the classical
equity premium prediction task and also investigates predictability in the cross-section.
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Thus, we also want to briefly mention the cross-sectional MSFE of Han et al. (2023).
In contrast to the conventional MSFE, the cross-sectional MSFE does not investigate
prediction errors across time but within the cross-section. Furthermore, the measures
demeans the prediction errors and assigns market-cap based weights to each error to
reflect the weight of each asset within the cross-section:

MSFECS
t =

1

nt

nt∑
i=1

wi,t[(ri,t − r̄t)− (r̂i,t|t−1 − ¯̂rt|t−1)]
2 for t = 1, ..., T, (9)

where r̄t and ¯̂rt|t−1 are value-weighted cross-sectional means for the predicted and
realized returns. According to Han et al. (2023), their cross-sectional MSFE is par-
ticularly suited for assessing the predictive accuracy in the cross-section as this task
typically revolves around making sure that the predictions are accurate relative to one
another. Thus, if the predictions for each asset i is off by a certain amount x (i.e.
r̂i,t|t−1 = ri,t + x for i = 1, ..., nt then simply value weighting and averaging the MSFE
of each stock results in a MSFE of x2 whereas the cross-sectional MSFE of Han et al.
(2023) is 0.

While the value-weighted cross-sectional MSFE is suitable if sorted long-short port-
folios are formed in the spirit of the classical asset pricing literature, we argue that
this is not the appropriate measure in the case of portfolio optimization. Although
the ranking of predicted returns is also important in this context, the actual values
do matter much more as they are directly responsible for deriving portfolio weights.
Consequently, we suggest to calculate the MSFE for optimized portfolios by explicitly
considering the ex-ante optimal weights as in (10):

MSFEopt
t =

1

nt

nt∑
i=1

|wopt,i,t|(ri,t − r̂i,t|t−1)
2 for t = 1, ..., T, (10)

where wopt,i,t refers to the ex-ante optimal weights for asset i at time t. Note that
this measure not only assess the aggregate size of the estimation errors within the
portfolio but also judges how well the optimizer is capable of ignoring the noise within
the parameter inputs. In other words, the measure only takes into account estimation
errors that are also relevant for the portfolio (i.e. all assets that have a non-zero
weight) and ignores the error within estimates of asset that do not end up in the
portfolio.

3.2.3 Investment Strategies

In total, we consider three types of investment tasks: First of all, we focus on simple
timing strategies following Goyal et al. (2021). Thus, the first timing strategy is an
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unscaled long-short strategy that is either long the equity premium if the prediction
is above the prevailing median forecast or short if it is below (11):

ωQ50,ls,t+1 =

1 if r̂t+1 > Q50,t,r̂t

−1 if r̂t+1 ≤ Q50,t,r̂t

(11)

Note that we also investigate the timing strategy that only shorts the market if the
prediction is extremely bearish (i.e. below the 25th percentile).

The second timing strategy covers the same signals (i.e. the prevailing median foreacst
and the prevailing 25th percentile) but is constrained to be long-only in the case of a
negative signal (12):

ωQ50,lo,t+1 =

1 if r̂t+1 > Q50,t,r̂t

0 if r̂t+1 ≤ Q50,t,r̂t

(12)

The third timing strategy is a scaled long-short strategy where the weight of the
investment depends on a z-score which is calculated by subtracting the prevailing
median forecast from the forecast for this period and then divided by the prevailing
standard deviation (13):

ωZ,t+1 = Z ˆrt+1 =
r̂t+1 −Q50,t,r̂t

σt,r̂t

(13)

For all timing exercises we consider the performance of two benchmark strategies: The
first one is based on the prevailing mean as a timing signal but uses the same strategies
as described above to derive weights. The second benchmark is a simple (but hard to
beat) buy-and-hold strategy.

The second type of investment task is reminiscent of the standard approach to portfolio
formation used in asset pricing and revolves around sorting stocks into sub-portfolios
based on the magnitude of certain characteristics and then holding the stocks in the
top portfolio while the stocks in the bottom portfolio are sold short. In our setting,
we sort the cross-section according to the predicted return for the next period. We
then proceed with dividing the entire cross-section into five sub-portfolios based on
their rank. Subsequently, we form a long-short portfolio by going long the security
with the highest predicted return and short the securities with the lowest predicted
returns. The weights within each portfolio either depend on the market-capitalization
or on the number of assets. As benchmarks, we use the same sorting strategy based
on the prevailing mean as well as an equally-weighted portfolio of all assets in the
cross-section.

Finally, the third investment task we consider is mean-variance optimization. In order
to do so, we repeatedly draw samples of 4 to 30 assets from the set of 49 industry
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portfolios. At each time t, the security weights wt+1 are determined by maximizing
the expected utility as in (14):

max
ωt+1

ωT
t+1µ̂t+1 −

γ

2
ωT
t+1Σ̂t+1ωt+1 (14)

The vector of relative portfolio weights invested in the N risky assets at time t+ 1 is
then given by (15):

ωt+1 =
Σ̂−1

t+1µ̂t+1

1N Σ̂
−1
t+1µ̂t+1

(15)

In addition to that, we also consider the case with short-sell constraints to investi-
gate the behaviour of optimized long-only portfolios. For all of the mean-variance
portfolios, we use the prevailing mean counterparts as benchmark portfolios. Further-
more, we also use the equally-weighted portfolio as an additional benchmark due to
its hard-to-beat nature.

3.2.4 Measuring Economic Value

For the purpose of investigating how predictability translates to performance and
economic value we first have to define the most important measures of economic value
that are used in research. For the majority of timing exercises, the most relevant way
of quantifying the economic value of a predictor involves calculating the Sharpe ratio
of the realized returns that were generated by investing according to the timing signal.
More formally, the Sharpe ratio is defined as in (16):

SR =
r̄

σr

(16)

where r̄ denotes the average realized return of the timing strategy in excess of the
risk-free rate and σr refers to the realized standard deviation of the strategy.

In addition to the Sharpe ratio, we also consider certainty equivalent returns (CER)
as a measure for the economic value of a predictor. An investor‘s certainty equivalent
return is given by (17):

CER = r̄ − 1

2
γσ2

r (17)

The CER can be interpreted as the risk-free rate that an investor requires to forfeit
the return of the risky strategy.

Note, that both, the SR and the CER than can be generated using a certain predictor
is always compared to the SR and CER of a benchmark predictor such as the prevailing
mean. Thus, the actual measure is not the ratio itself but the gain or loss that occurs
through relying on the certain predictor in contrast to using the prevailing mean as a
predictor.
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4 Results

4.1 Lambda vs. conventional measures

First of all, we need to investigate, whether or not our controlled approach to increas-
ing the predictability of returns actually works. Thus, before we consider measures for
economic value, we have a look at how predictability changed due to our approach.
Table (1) summarizes our results related to how well our measure tracks predictability
relative to conventional measures of predictability. In particular, the mean squared
forecast error, the mean absolute forecast error, the R2 for benchmark predictions
of 0 and the prevailing mean, the forecast correlation and the hit ratio are depicted
for various predictions based on different estimation windows and different levels of λ.
Right away, it is noticeable that regardless of the predictability measure, predictability
improves as λ increases meaning that we observe the lowest values for MSFE as well
as MAFE and the highest values for R2, FC and HR when λ is the highest. Further-
more, it is worth mentioning that across different lengths of rolling window estimates
(i.e. across panels) the levels of predictability do not differ too much although pre-
dictability improves according to the majority of measures as the estimation window
gets longer.

[PLACE Table 1 HERE.]

Notable exemptions from this observation is the forecast correlation when no artificial
predictability is added. For this measure, the highest predictability can be observed
in panel A. In addition to that, adding predictability via λ has the strongest impact
on the forecast correlation as can be seen across all panels. In the case of λ = 0, all
values are fairly close to 0. Increasing λ to 0.1 however, yields a forecast correlation
of 0.3588 in panel A and a forecast correlation of 0.8664 in panel E. Finally, it is also
worth mentioning that with the exemption of the hit ratio, the results for predictions
based on estimation windows of more than 60 months are always better compared to
predictions based on an estimation window of less than 60 months. Interestingly, the
hit ratio for the estimation window of 240 months is more in line with that of 12 and
24 months. Also note that regardless of λ and estimation window, all predictions have
a hit ratio well above 50% which indicates that even simple rolling averages tend to
correctly predict the sign of the next period‘s return in more than half of all cases.
Most likely, this is due to the fact that the equity premium is upward sloping most of
the time.

[PLACE FIGURE 1 HERE.]

As R2 is most commonly used to assess the predictive accuracy of a variable, figure (1)
illustrates how the out-of-sample R2 of predictions based on rolling means increases

13



as we increase λ in our approach. As mentioned, predictions based on a longer rolling
window are more accurate than the predictions using a shorter rolling window. Al-
though there is little difference in predictive accuracy once 60 or more months are
considered. As all lines in figure (1) are upward sloping, it is evident that the out-of-
sample R2 increases alongside λ. Note that the upper panel compares the MSFE of
our predictions to the MSFE of naive predictions of 0 while the lower panel uses the
prevailing mean as a benchmark prediction. What is interesting here is the fact that
for all levels of λ, the R2 based on the naive benchmark predictions of 0 are higher
compared to their prevailing mean based counterparts. This indicates, that for tasks
related to predicting the equity premium, 0 is the the easier benchmark to beat. To
further illustrate how much easier a benchmark of 0 is, we investigate at which level of
λ each estimation window starts to generate positive out-of-sample R2 for each bench-
mark prediction. In the upper panel (i.e. against a benchmark of 0), all predictions
achieve an R2 of 0 or higher at λ = 0.03. In the lower panel (i.e. against the prevailing
mean prediction) all out-of-sample R2 are above or at 0 at λ = 0.04. This implies that
the threshold for beating the forecasts of the prevailing mean is 1%-point higher than
the threshold for a prediction of 0.

[PLACE FIGURE 2 HERE.]

Finally, (2) illustrates how predictability behaves over time. More precisely, the
figure depicts cumulative squared forecast error differences of predictions based on
a rolling window of 12 (upper panel) and 24 months(lower panel) vs predictions
made by the prevailing mean. For illustrative purposes, we only include λ-values
of 0, 0.01, 0.05, 0.08, and 0.1. Grey bars indicate NBER recession periods. Typically,
periods in which lines are upward sloping indicate periods in which the the predictor
performs better compared to the prevailing mean while downward sloping lines indi-
cate the opposite. Ideally, a good predictor generates predictability smoothly across
time, avoiding periods in which the line is downward sloping or spiking.

As depicted in figure (2), none of the predictors are without periods in which pre-
dictability shortly peaks or increases. The predictions based on λ-values of 0 and 0.01

are however continuously downward sloping, confirming the previously documented
poor performance of these predictors. In contrast to that, the predictions with a con-
siderable amount of look-ahead bias (i.e. λ ∈ {0.05, 0.08, 0.1} are all (slightly) upward
sloping. None of the lines depicting cumulative squared forecast error differences are
without spikes. Given however, that these spikes do not have a lasting impact on the
predictive accuracy as they quickly fade away, none of the results seem to be influenced
by “lucky hits“.
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4.2 Predictability and economic value

We begin with investigating the the link between predictability and economic value for
our timing exercises. Table 2) below depicts monthly mean return (µ), the standard
deviation (σ) and the Sharpe ratio (µ

σ
) of different (scaled), (un-)constrained timing

strategies for the equity premium, based on various rolling estimation windows and
λ-values. Details on how we incorporated the timing signals in our strategy can be
taken from subsection 3.2.3.

While almost all strategies based on unaltered return predictions start out with a nega-
tive mean return and thus also a negative Sharpe ratio, as λ increases, the performance
of all strategies turns positive. In fact, all three strategies show improved performance
metrics with increasing λ-values. The Sharpe ratio consistently improves with higher
λ-values, indicating better risk-adjusted performance across different rolling windows.
Longer rolling windows generally result in higher mean returns and Sharpe ratios, sug-
gesting that extended historical data provides more robust timing signals. Among the
three strategies, the z-score timing strategy outperforms the long-only and long-short
strategies in terms of both mean returns and Sharpe ratios, particularly at higher
λ-values and longer rolling windows, although there are a few exemptions such as
the Sharpe ratios of the rolling estiamtion window of 240 months at the λ-values of
0.08, 0.09, and 0.1.

[PLACE Table 2 HERE.]

In general terms, these results suggest that higher levels of predictability in tim-
ing strategies can significantly enhance performance, especially when combined with
longer rolling windows, providing more reliable and profitable investment decisions.

Moving on to analysing the performance of optimized portfolios, table (3) presents
the monthly realized mean return (µ), monthly realized standard deviation (σ), and
monthly Sharpe ratio (µ

σ
) of mean-variance optimized (MVO) portfolios. These port-

folios are based on repeated random draws of 10, 20, and 30 assets from a set of 49
industry portfolios with varying λ-values.

Panel A depicts these statistics for portfolios consisting of 10 assets, the monthly
mean return increases consistently as λ increases. Starting from 0.0139 at λ = 0, the
mean return grows to 0.1231 at λ = 0.1. The standard deviation initially decreases
from 0.5856 at λ = 0 to 0.5123 at λ = 0.02, but then shows significant fluctuations,
reaching a peak of 2.9567 at λ = 0.1. The Sharpe ratio improves initially, peaking at
0.1383 for λ = 0.05, but then decreases, suggesting a decline in risk-adjusted returns
at higher λ-values.
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For the portfolios based on 20 assets, the monthly mean return increases markedly
with higher λ values, from 0.0148 at λ = 0 to 0.2014 at λ = 0.1. The standard
deviation decreases initially from 1.2499 at λ = 0 to 1.0856 at λ = 0.02, but then
shows significant variation, peaking at 5.1828 at λ = 0.07 and stabilizing around
4.3688 at λ = 0.1. The Sharpe ratio shows mixed trends, initially increasing to 0.0938

at λ = 0.02, but later fluctuating and ending at 0.0636 atλ = 0.1.

For portfolios consisting of 30 assets, the monthly mean return shows a steady increase
with rising λ-values, starting at 0.0145 at λ = 0 and reaching 0.2521 at λ = 0.1. The
standard deviation varies significantly, starting at 1.4188 at λ = 0, decreasing to 1.1874

at λ = 0.01, and then fluctuating with a peak of 8.0547 at λ = 0.1. The Sharpe ratio
initially increases to 0.0865 at λ = 0.02, but then exhibits variability, with a decrease
to 0.0456 at λ = 0.1.

[PLACE Table 3 HERE.]

Figure (??) visualizes the results of table (3) in more detail, highlighting the volatile
nature of the Sharpe ratios alongside increasing levels of predictability.

[PLACE Figure 3 HERE.]

Across all panels, the monthly mean return increases consistently with higher λ-values,
indicating enhanced portfolio returns as λ rises. However, the standard deviation
shows significant fluctuations, particularly at higher λ-values, suggesting increased
portfolio risk and volatility. This variability is more pronounced in portfolios with a
larger number of assets. The Sharpe ratio, generally improves initially with increasing
λ-values, but then declines or fluctuates, indicating that while returns increase, the
associated risk also rises, which diminishes the risk-adjusted performance at higher λ-
values. These findings suggest that while higher λ-values (or more predictability) can
lead to higher returns, they also introduce greater volatility, which impacts the risk-
adjusted performance. Counter-intuitively, portfolios with a larger number of assets
exhibit more pronounced fluctuations in both standard deviation and Sharpe ratios,
indicating that despite increased levels of predictability, these benefits may be offset
by an increase in the realized volatility of the portfolio returns.

Given the counter-intuitive nature of the results depicted in table (3) we have a closer
look at the most important input variable that is used to come up with optimal portfo-
lio weights: the return predictions. Thus, table (4) presents the mean predicted value
(Mean Pred), the mean dispersion of the predicted values (SD Pred), and the mean
absolute weights (Mean Weight) from standard mean-variance optimization (MVO)
for portfolios based on 10, 20, and 30 assets across different levels of λ.

[PLACE Table 4 HERE.]
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Across all panels, the mean predicted value remains relatively stable, indicating that
the central tendency of the predicted values does neither significantly change with
varying levels of λ nor across the different numbers of assets within each of the cross-
sections. In contrast to that, the standard deviation of the predicted values increases
gradually with higher λ-values, suggesting increased dispersion in the predictions and
thus, potentially more extreme observations. Similarly, the mean absolute weights
also show a trend of increasing with higher λ-vales across all portfolio sizes, indicating
greater concentration in asset allocations and extreme weights. This trend is more
pronounced in portfolios with a larger number of assets, where the mean absolute
weights exhibit significant fluctuations, reflecting a higher degree of concentration in
specific assets as λ increases.

Figure (4) once visualizes the results of table (4) in more detail, highlighting the
increased dispersion in forecasts alongside an increase in absolute portfolio weights
and increasing levels of predictability.

[PLACE Figure 4 HERE.]

Taken together with the results presented in table (3), these findings suggest that
while the central tendency of predicted values remains stable as λ increases, the dis-
persion of these predictions also increases leading to more extreme portfolio weights.
These extreme weights further increase the standard deviation of the realized port-
folio returns. In fact, the increase in volatility even outweighs the higher returns
which ultimately results in lower Sharpe ratios. This is particularly counter-intuitive
as mean-variance optimization was particularly designed to optimize the Sharpe ratio
and treats parameter inputs with certainty. Thus, we would expect that increasing
the level of predictability automatically increases the Sharpe ratio.

5 Conclusion

In this study, we aim at investigating how predictability in asset returns translates
into portfolio performance using a controlled approach to predictability and various
investment strategies. While our approach increases predictability across all consid-
ered and established measures of predictability, our results are more nuanced when
it comes to the economic value of predictions. For timing exercises related to the
equity premium, predictability and profitability as measured by the Sharpe ratio in-
crease alongside each other. In a more sophisticated portfolio optimization setting,
this relationship does not hold.

Our findings indicate that while increasing the level of predictability consistently en-
hances the mean returns of portfolios, it also introduces significant volatility, leading
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to mixed outcomes in terms of risk-adjusted performance. The Sharpe ratios initially
improve with increasing λ-values but eventually decline or fluctuate. We observe this
trend across all portfolio sizes.

Additionally, our analysis of the mean predicted values, the standard deviation of pre-
dicted values, and the mean absolute weights in MVO portfolios reveals that while the
central tendency of predicted values remains stable, the dispersion of these predictions
increases with higher levels of predictability. This increased dispersion leads to more
extreme portfolio weights and higher volatility in realized portfolio returns, ultimately
resulting in lower Sharpe ratios despite higher returns.

These findings underscore the complexity of leveraging predictability to enhance port-
folio performance. While higher levels of predictability can lead to higher returns, they
also introduce greater volatility, which can offset the benefits in terms of risk-adjusted
performance. This counter-intuitive result suggests that mean-variance optimization,
despite its theoretical appeal, may not always yield superior risk-adjusted returns
when predictability is increased. In conclusion, our study highlights the nuanced
relationship between predictability and performance in portfolio optimization.

As a consequence, we are currently working gaining a deeper understanding of the
dynamics at work by extending our approach to robust optimization techniques that
were specifically designed to deal with estimation errors and parameter uncertainty.
Furthermore, we are interested in the the implications of our findings for long-term
portfolio allocation (i.e. inter-temporal or dynamic asset allocation). Finally, we
explore how the ability to predict returns changes or alters the way investors have to
think about, measure and incorporate risk.
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A Appendix

Figures

Figure 1: Depicts the out-of-sample R2 for predictions based on rolling windows of 12, 14, 60, 120
and 240 months vs our own measure of predictability called λ. For the purpose of this figure, λ has
been increased from 0 to 0.1 in steps of 0.002. In the upper panel, the MSFE of predictions based
on rolling windows is compared to the MSFE of a naive prediction of 0 while in the lower panel, the
benchmark MSFE is that of predictions based on the prevailing mean.
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Figure 2: Depicts the cumulative squared forecast error differences of predictions based on a rolling
window estimates of 12 (upper panel) and 24 months (lower panel) vs predictions made by the
previaling mean. For illustrative purposes, we only include λ-values of 0, 0.01, 0.05, 0.08, and 0.1.Grey
bars indicate NBER recession periods.
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Figure 3: Depicts the monthly realized mean return, the monthly realized standard deviation and
the monthly Sharpe ratio of mean-variance optimized portfolios based on repeated random draws of
10, 20 and 30 assets from the set of 49 industry portfolios alongside increasing values of λ.
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Figure 4: Depicts the mean predicted value, the mean dispersion of the predicted values as well
as the mean absolute weights retrieved from standard mean-variance optimization for the portfolios
based on 10, 20, and 30 assets for different levels of λ.
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Tables

Table 1: Presents the mean squared forecast error (MSFE), the mean absolute forecast error
(MAFE), the out-of-sample R2 against a prediction of 0 and against the prevailing mean (R2.PM
and R2.0), the forecast correlation (FC) as well as the hit ratio (HR) for λ-values between 0 and 0.1.
Each panel uses a different rolling windows between 12 and 240 months to create base-forecasts.

Panel A: Rollwing Window = 12 Months

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MSFE 0.0020 0.0020 0.0019 0.0019 0.0019 0.0018 0.0018 0.0017 0.0017 0.0017 0.0016
MAFE 0.0341 0.0337 0.0334 0.0330 0.0327 0.0324 0.0320 0.0317 0.0313 0.0310 0.0307
R2.PM -0.0821 -0.0606 -0.0393 -0.0182 0.0027 0.0234 0.0438 0.0641 0.0841 0.1039 0.1235
R2.0 -0.0573 -0.0362 -0.0154 0.0052 0.0256 0.0458 0.0658 0.0856 0.1051 0.1245 0.1436
FC 0.0209 0.0539 0.0874 0.1212 0.1553 0.1896 0.2239 0.2581 0.2921 0.3257 0.3588
HR 0.5892 0.6000 0.6065 0.6108 0.6173 0.6238 0.6346 0.6389 0.6432 0.6508 0.6595

Panel B: Rollwing Window = 24 Months

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MSFE 0.0020 0.0019 0.0019 0.0019 0.0018 0.0018 0.0017 0.0017 0.0017 0.0016 0.0016
MAFE 0.0338 0.0335 0.0332 0.0328 0.0325 0.0322 0.0318 0.0315 0.0311 0.0308 0.0305
R2.PM -0.0597 -0.0386 -0.0178 0.0029 0.0233 0.0436 0.0636 0.0834 0.1030 0.1224 0.1416
R2.0 -0.0354 -0.0148 0.0056 0.0258 0.0458 0.0656 0.0851 0.1045 0.1236 0.1426 0.1613
FC -0.0387 0.0104 0.0604 0.1109 0.1617 0.2122 0.2621 0.3109 0.3585 0.4043 0.4482
HR 0.5795 0.5881 0.5968 0.6119 0.6184 0.6368 0.6454 0.6519 0.6659 0.6768 0.6843

Panel B: Rollwing Window = 60 Months

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MSFE 0.0019 0.0019 0.0018 0.0018 0.0018 0.0017 0.0017 0.0016 0.0016 0.0016 0.0015
MAFE 0.0333 0.0329 0.0326 0.0323 0.0319 0.0316 0.0313 0.0309 0.0306 0.0303 0.0299
R2.PM -0.0189 0.0013 0.0214 0.0413 0.0609 0.0804 0.0997 0.1187 0.1376 0.1562 0.1747
R2.0 0.0045 0.0243 0.0439 0.0633 0.0825 0.1015 0.1203 0.1390 0.1574 0.1756 0.1936
FC -0.0093 0.0724 0.1542 0.2346 0.3120 0.3851 0.4529 0.5149 0.5709 0.6210 0.6653
HR 0.5827 0.6000 0.6097 0.6173 0.6346 0.6541 0.6703 0.6822 0.6908 0.6995 0.7135

Panel D: Rollwing Window = 120 Months

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MSFE 0.0019 0.0018 0.0018 0.0018 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 0.0015
MAFE 0.0331 0.0327 0.0324 0.0321 0.0317 0.0314 0.0311 0.0308 0.0304 0.0301 0.0298
R2.PM -0.0082 0.0119 0.0318 0.0514 0.0709 0.0901 0.1092 0.1280 0.1467 0.1651 0.1834
R2.0 0.0150 0.0346 0.0540 0.0732 0.0922 0.1110 0.1296 0.1481 0.1663 0.1843 0.2021
FC 0.0092 0.1179 0.2246 0.3257 0.4186 0.5016 0.5741 0.6365 0.6895 0.7342 0.7718
HR 0.5914 0.6043 0.6195 0.6368 0.6530 0.6638 0.6703 0.6811 0.6984 0.7103 0.7178

Panel E: Rollwing Window = 240 Months

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

MSFE 0.0019 0.0018 0.0018 0.0018 0.0017 0.0017 0.0017 0.0016 0.0016 0.0016 0.0015
MAFE 0.0332 0.0329 0.0325 0.0322 0.0319 0.0315 0.0312 0.0309 0.0305 0.0302 0.0299
R2.PM -0.0085 0.0116 0.0314 0.0511 0.0706 0.0898 0.1089 0.1277 0.1464 0.1649 0.1831
R2.0 0.0146 0.0343 0.0537 0.0729 0.0919 0.1107 0.1293 0.1478 0.1660 0.1840 0.2019
FC -0.0252 0.1336 0.2856 0.4214 0.5360 0.6287 0.7021 0.7594 0.8040 0.8389 0.8664
HR 0.6054 0.6054 0.6065 0.6108 0.6195 0.6303 0.6411 0.6584 0.6746 0.6800 0.7005
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Table 2: Presents the monthly mean return, the standard deviation and the Sharpe ratio of different
(scaled), (un-)constrained timing strategies for the equity premium based on various rolling estimation
windows and λ-values. All investment decision use the predictive signal relative to the prevailing
median value to determine the position.

Panel A: Long-Only Timing Strategy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ

12 4.00E-04 8.00E-04 0.0017 0.0020 0.0023 0.0027 0.0030 0.0037 0.0043 0.0049 0.0055
24 -0.0009 -0.0001 4.00E-04 0.0011 0.0021 0.0030 0.0041 0.0047 0.0056 0.0063 0.0065
60 -0.0011 -0.0002 0.0012 0.0026 0.0037 0.0050 0.0061 0.0070 0.0074 0.0079 0.0085
120 -0.0010 0.0013 0.0036 0.0052 0.0064 0.0078 0.0084 0.0090 0.0096 0.0109 0.0111
240 -0.0016 0.0015 0.0044 0.0063 0.0081 0.0093 0.0106 0.0112 0.0120 0.0123 0.0125

σ

12 0.0274 0.0277 0.0270 0.0270 0.0268 0.0265 0.0266 0.0254 0.0252 0.0251 0.0253
24 0.0259 0.0264 0.0265 0.0261 0.0254 0.0253 0.0243 0.0244 0.0238 0.0240 0.0241
60 0.0250 0.0253 0.0257 0.0238 0.0228 0.0225 0.0227 0.0228 0.0228 0.0234 0.0233
120 0.0222 0.0216 0.0216 0.0213 0.0214 0.0215 0.0213 0.0216 0.0224 0.0236 0.0238
240 0.0164 0.0141 0.0166 0.0183 0.0203 0.0217 0.0231 0.0234 0.0240 0.0241 0.0242

µ
σ

12 0.0140 0.0287 0.0632 0.0738 0.0865 0.1016 0.1144 0.1465 0.1694 0.1969 0.2157
24 -0.0342 -0.0032 0.0154 0.0441 0.0839 0.1174 0.1680 0.1927 0.2360 0.2609 0.2689
60 -0.0444 -0.0070 0.0482 0.1108 0.1640 0.2237 0.2698 0.3056 0.3258 0.3373 0.3649
120 -0.0463 0.0601 0.1667 0.2421 0.2966 0.3616 0.3920 0.4143 0.4294 0.4601 0.4680
240 -0.0949 0.1090 0.2653 0.3455 0.3978 0.4265 0.4617 0.4782 0.4998 0.5119 0.5180

Panel B: Long-Short Timing Strategy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ

12 8.00E-04 0.0016 0.0034 0.0040 0.0046 0.0054 0.0061 0.0074 0.0086 0.0099 0.0109
24 -0.0018 -0.0002 8.00E-04 0.0023 0.0043 0.0059 0.0082 0.0094 0.0112 0.0125 0.0130
60 -0.0022 -0.0004 0.0025 0.0053 0.0075 0.0101 0.0123 0.0139 0.0149 0.0158 0.0170
120 -0.0021 0.0026 0.0072 0.0103 0.0127 0.0155 0.0167 0.0179 0.0192 0.0217 0.0223
240 -0.0031 0.0031 0.0088 0.0126 0.0162 0.0185 0.0213 0.0224 0.0239 0.0247 0.0251

σ

12 0.0547 0.0553 0.0540 0.0540 0.0537 0.0529 0.0531 0.0507 0.0505 0.0502 0.0506
24 0.0518 0.0527 0.0530 0.0522 0.0508 0.0506 0.0485 0.0489 0.0477 0.0480 0.0482
60 0.0500 0.0506 0.0514 0.0476 0.0455 0.0451 0.0455 0.0456 0.0457 0.0468 0.0466
120 0.0443 0.0431 0.0432 0.0426 0.0429 0.0429 0.0427 0.0433 0.0448 0.0472 0.0476
240 0.0328 0.0282 0.0331 0.0365 0.0406 0.0435 0.0461 0.0469 0.0479 0.0482 0.0484

µ
σ

12 0.0140 0.0287 0.0632 0.0738 0.0865 0.1016 0.1144 0.1465 0.1694 0.1969 0.2157
24 -0.0342 -0.0032 0.0154 0.0441 0.0839 0.1174 0.1680 0.1927 0.2360 0.2609 0.2689
60 -0.0444 -0.0070 0.0482 0.1108 0.1640 0.2237 0.2698 0.3056 0.3258 0.3373 0.3649
120 -0.0463 0.0601 0.1667 0.2421 0.2966 0.3616 0.3920 0.4143 0.4294 0.4601 0.4680
240 -0.0949 0.1090 0.2653 0.3455 0.3978 0.4265 0.4617 0.4782 0.4998 0.5119 0.5180

Panel C: z-Score Timing Strategy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ

12 -0.0016 -0.0002 0.0013 0.0028 0.0043 0.0059 0.0074 0.0089 0.0105 0.0120 0.0135
24 -0.0042 -0.0020 3.00E-04 0.0026 0.0049 0.0072 0.0096 0.0118 0.0139 0.0160 0.0179
60 -0.0051 -0.0010 0.0033 0.0073 0.0112 0.0146 0.0178 0.0205 0.0229 0.0251 0.0270
120 -0.0037 0.0018 0.0071 0.0118 0.0158 0.0194 0.0225 0.0251 0.0273 0.0293 0.0309
240 -0.0052 0.0027 0.0097 0.0155 0.0202 0.0242 0.0274 0.0299 0.0319 0.0334 0.0347

σ

12 0.0583 0.0578 0.0575 0.0572 0.0569 0.0567 0.0566 0.0567 0.0569 0.0571 0.0574
24 0.0569 0.0559 0.0549 0.0540 0.0535 0.0532 0.0530 0.0531 0.0534 0.0540 0.0548
60 0.0509 0.0490 0.0476 0.0474 0.0480 0.0493 0.0512 0.0532 0.0555 0.0579 0.0602
120 0.0423 0.0413 0.0412 0.0422 0.0445 0.0477 0.0510 0.0544 0.0577 0.0607 0.0635
240 0.0220 0.0205 0.0262 0.0343 0.0424 0.0496 0.0558 0.0608 0.0650 0.0687 0.0717

µ
σ

12 -0.0281 -0.0031 0.0231 0.0489 0.0758 0.1034 0.1304 0.1569 0.1838 0.2101 0.2349
24 -0.0744 -0.0351 0.0057 0.0486 0.0925 0.1363 0.1803 0.2219 0.2604 0.2953 0.3267
60 -0.0996 -0.0195 0.0687 0.1541 0.2325 0.2972 0.3474 0.3849 0.4132 0.4335 0.4485
120 -0.0871 0.0434 0.1721 0.2796 0.3556 0.4074 0.4405 0.4615 0.4738 0.4817 0.4856
240 -0.2355 0.1339 0.3700 0.4517 0.4769 0.4872 0.4912 0.4914 0.4906 0.4871 0.4836
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Table 3: Depicts the monthly realized mean return, the monthly realized standard deviation and
the monthly Sharpe ratio of mean-variance optimized portfolios based on repeated random draws of
10, 20 and 30 assets from the set of 49 industry portfolios alongside increasing values of λ.

Panel A: MVO with 10 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ 0.0139 0.0255 0.0374 0.0498 0.0616 0.0730 0.0835 0.0943 0.1045 0.1141 0.1231
σ 0.5856 0.5230 0.5123 0.7936 0.7304 0.8406 1.4184 1.3587 1.5188 1.7614 2.9567
µ
σ

0.0426 0.0736 0.0960 0.1104 0.1254 0.1383 0.0953 0.1191 0.0947 0.0952 0.0583

Panel B: MVO with 20 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ 0.0148 0.0347 0.0548 0.0748 0.0948 0.1138 0.1330 0.1513 0.1690 0.1859 0.2014
σ 1.2499 1.1602 1.0856 1.6529 1.7751 1.9320 2.3577 5.1828 4.7794 4.3982 4.3688
µ
σ

0.0400 0.0521 0.0938 0.0832 0.0845 0.0934 0.0928 0.0599 0.0785 0.0765 0.0636

Panel C: MVO with 30 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

µ 0.0145 0.0410 0.0672 0.0933 0.1189 0.1450 0.1689 0.1922 0.2127 0.2332 0.2521
σ 1.4188 1.1874 1.5283 2.1501 2.5033 3.7571 5.4487 5.9230 6.5007 6.5404 8.0547
µ
σ

0.0322 0.0633 0.0865 0.0594 0.0648 0.0782 0.0508 0.0621 0.0507 0.0611 0.0456

Table 4: Presents the mean predicted value, the mean dispersion of the predicted values as well
as the mean absolute weights retrieved from standard mean-variance optimization for the portfolios
based on 10, 20, and 30 assets for different levels of λ.

Panel A: MVO with 10 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Pred 0.0104 0.0104 0.0104 0.0104 0.0104 0.0105 0.0105 0.0105 0.0105 0.0106 0.0106
SD Pred 0.0078 0.0077 0.0077 0.0078 0.0079 0.0080 0.0082 0.0085 0.0088 0.0091 0.0095
Mean Weight 1.1646 1.1792 1.0611 1.1270 1.1615 1.3590 1.2846 1.2863 1.3573 1.6177 1.8584

Panel B: MVO with 20 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Pred 0.0105 0.0105 0.0104 0.0104 0.0105 0.0105 0.0105 0.0105 0.0105 0.0106 0.0106
SD Pred 0.0080 0.0079 0.0079 0.0080 0.0080 0.0082 0.0084 0.0087 0.0090 0.0094 0.0098
Mean Weight 1.1263 1.2683 1.1877 1.2396 1.3149 1.2736 1.3980 1.6680 1.6693 1.8626 1.7882

Panel C: MVO with 30 Assets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Pred 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0105 0.0105 0.0105 0.0105 0.0105
SD Pred 0.0081 0.0080 0.0080 0.0080 0.0082 0.0083 0.0085 0.0088 0.0091 0.0095 0.0099
Mean Weight 1.4983 1.4399 1.4420 1.6167 1.6041 1.6556 1.9402 1.9692 2.4102 2.1189 2.2828

26


	Introduction
	Literature Review
	Return predictability: Methods, measures and variables
	Linking predictability to economic value

	Data & Methodology
	Data
	Methodology
	Controlled Return Predictions
	Measuring Prediction Accuracy
	Investment Strategies
	Measuring Economic Value


	Results
	Lambda vs. conventional measures
	Predictability and economic value

	Conclusion
	Appendix

