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The Rare Disaster Concern Index: RIX26

Abstract27

This study aims to deepen the understanding of the Rare Disaster Index (RIX) by28

redefining its concept, developing its exact model within the Gram-Charlier density, and29

constructing its time series to enhance its theoretical foundation and numerical applica-30

tion in capturing extreme market risks. Through comparative analysis with conventional31

indices across various term structures, we uncover the superior capability of the RIX in32

reflecting higher-order risks in financial markets. Our findings demonstrate the height-33

ened sensitivity of the RIX to extreme market movements, especially within the left34

lower range, emphasizing its importance in strategic risk management and investment35

decision-making.36
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1 Introduction39

In the evolving landscape of financial markets, where the risk of rare but profoundly im-40

pactful events poses a major threat, the necessity for robust, predictive measures of tail41

risk has never been more urgent. The rare disaster index (RIX), first introduced by Du42

and Kapadia (2012) as a jump and tail index (JTIX), stands at the forefront in this field,43

offering a novel perspective for assessing the dynamics of extreme market volatility. The44

development of the RIX indicated a critical shift towards identifying and quantifying45

the vague nature of catastrophic market downturns, which are the events that traditional46

market volatility indices, such as the Chicago Board Options Exchange (CBOE) Volatility47

Index (V IX) and Skewness Index (SKEW ), might not fully encompass. By focusing on48

the extremities of market behavior, the RIX provides a more detailed view of the poten-49

tial for substantial losses, making it an important indicator for investors, risk managers,50

and policymakers alike. The urgency for such a measure has only exacerbated in the wake51

of recent global financial crises, underscoring the critical need to anticipate and mitigate52

the threats of these rare but overwhelming disasters.53

54

This study initiates a comprehensive exploration of the RIX, aiming to numerically55

disclose its characteristics and to underline its significance in indicating the dynamics of56

market tail risks. Leveraging our enhanced definition of the RIX, this study endeavors to57

numerically explore the connection between the RIX and higher-order risks, as well as its58

exact model under the Gram-Charlier density through rigorous mathematical derivations.59

Moreover, we also estimate the time series of the RIX using the S&P 500 Index options60

(SPX) to resonate with the practical realities of market dynamics. Through these efforts,61

we seek to extend the frontier of financial risk measurement, contributing to a deeper,62

more nuanced understanding of the framework of market tail risk and the shadows that63

rare disasters cast upon it.64

65
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On the basis of the foundational insights provided by the RIX, subsequent research66

has attempted to decode its complexities and use its predictive power across various mar-67

ket scenarios. The seminal work of Du and Kapadia (2012) established a critical baseline,68

arguing the RIX as a key indicator for assessing the likelihood and impact of market69

crises. This initial investigation into the tail risks underscored the urgent need for a mea-70

sure that could capture the extreme market volatility beyond the scope of conventional71

indices. Following this pioneering study, further studies have delved into the empirical72

applications and theoretical extensions of the RIX, each contributing unique perspectives73

on its utility and significance. For instance, Gao, Gao, and Song (2018) constructed the74

RIX via out-of-the-money (OTM) put options on different economic sector indices and75

documented its covariation with higher hedge fund returns. They found that hedge fund76

managers skilled in leveraging the RIX achieve superior future fund performance while77

being less susceptible to crisis risk. Similarly, the concept of global ex ante tail risk con-78

cerns (GRIX) was developed by Gao, Lu, and Song (2019) to analyze the variations in79

cross-sectional returns across global asset categories, thereby extending the pricing effect80

of the RIX on a global scale. Additionally, Liu, Chan, and Faff (2022) estimated the81

firm-level RIX, the firm-level jump-implied variance contribution index (JIV X), which82

effectively forecasted cross-sectional stock returns surrounding earnings announcements.83

These studies have demonstrated the robustness of the RIX in predicting market re-84

turns, particularly its ability to signal forthcoming downturns, as well as its adaptability85

as an indicator for navigating the complexities of financial markets due to its feasibility86

in various market conditions. Recognizing the significant empirical utility of the RIX,87

one recent study by Albert, Herold, and Muck (2023) introduces an advanced technique88

involving the risk-neutral return distribution (RND) to refine the calculation of the RIX.89

90

Although previous studies have significantly enhanced the comprehension of the RIX,91

especially in its application to empirical market analysis, an essential gap persists in the92
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academic research surrounding this measure. Most of the existing literature has focused93

on the empirical utility of the RIX, often at the expense of an in-depth theoretical explo-94

ration. This empirical emphasis, though valuable, has inadvertently led to a less thorough95

understanding of the fundamental mechanisms of the RIX. For example, none of them96

have displayed the time series or term structures of the RIX. Consequently, academics97

and practitioners are left with a somewhat superficial grasp of the RIX, aware of its98

importance yet they are still far from a comprehensive understanding of its core princi-99

ples. Furthermore, the predominance of empirical analysis in existing research has limited100

the objective to correlations among observations, rather than developing a deeper under-101

standing of the causal relationships between the RIX and other risk-neutral volatility102

and skewness indicators. The literature, thus far, has provided limited insight into how103

the RIX, as a measure, responds to and interacts with the dynamics of market tail risks.104

This gap is particularly noticeable in the analysis of market reactions to rare disaster105

risks. Although the existing literature recognizes the significance of the RIX, it rarely106

delves into the mathematical details that clarify its connection with higher-order risks.107

Such an exploration is crucial, as it would reflect the capacity of the RIX to indicate108

and encompass the broader spectrum of market uncertainties inherent in higher-order109

moments.110

111

The need for a refined analytical framework is evident, one that surpasses empirical112

observations to interpret the theoretical conceptions of the RIX. This approach would113

not only enhance our conceptual understanding of the RIX but also enrich our compre-114

hension of its comparative effectiveness in indicating and predicting market crashes. It115

is within this gap that this study positions itself, aiming to bridge the divide between116

empirical utility and theoretical depth, thereby offering a holistic view of the RIX and117

make several pivotal contributions to the field of financial risk management and market118

dynamics analysis.119
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120

First, we introduce an enhanced definition of the RIX. This could not only clarify121

the theoretical underpinnings of the RIX but also highlight its precision as an indicator122

of market tail risks. Compared to the original definition in Du and Kapadia (2012), our123

modified definition is more streamlined when utilized alongside the model-free approach.124

Second, our study develops an exact model of the RIX within the Gram-Charlier density125

framework, and draws comparisons to risks from the higher-order moments. By outlining126

the mathematical structure of the RIX, we explain its inherent relationship with higher-127

order moments, especially the risk-neutral third moment of log-returns (TM) and the128

risk-neutral third central moment of log-returns (TCM), providing a clear, quantitative129

understanding of its interaction with market dynamics. Third, by employing the time se-130

ries and term structure analyses across different forward-looking horizons (30-day, 60-day,131

and 90-day periods), we demonstrate the temporal sensitivity of the RIX. This aspect of132

our study underscores the efficiency of the RIX as an indicator of the left tail risks and133

how the predictive power of the RIX evolves over time, offering valuable insights into134

its efficacy in anticipating market downside shifts across various time frames. Finally,135

we address the practical implications of our findings for investors, risk managers, and136

policymakers. By providing a more detailed perspective of the capabilities of the RIX137

in indicating higher-order risks, our study empowers market participants with enhanced138

tools for risk assessment and strategic decision-making in the face of extreme uncertainty.139

In sum, our research bridges the theoretical and empirical realms. We not only fulfill the140

existing gaps in the literature but also pave the way for future inquiries into the sophis-141

ticated dynamics of market risks and measures designed to apprehend them.142

143

The remainder of this study is organized as follows. In Section 2, we discuss the theo-144

retical frameworks. Then, in Section 3 we display our data and the methodology employed145

in this study. We present the estimation results in Section 4. Finally, we conclude this146
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paper in Section 5. The appendices give the details of the derivations.147

148

2 Theoretical Framework149

In this section, we first introduce an enhanced definition of the RIX developed in this150

study, and clearly illustrate its differences from previous literature. We also state the151

computation of the TM , and show its relationship with the RIX. In addition, we demon-152

strate the model-free measures of the RIX and TM , and the exact model if the underly-153

ing follows a process based on the Gram-Charlier density. Then, following Gao, Gao, and154

Song (2018), and Gao, Lu, and Song (2019), we primarily concentrate on the derivation of155

the extreme downside risk, referred to as the lower half range of the RIX and is denoted156

as RIX−.157

158

2.1 Enhanced Definition of the RIX159

Du and Kapadia (2012) first forwarded the construction of tail risk index as the differen-160

tial impact of discontinuities on two measures of stock return variability: the variance of161

the log-return measured in Bakshi, Kapadia, and Madan (2003) (BKM , henceforth) and162

the V IX. Du and Kapadia (2012) argue that the former measures the square of summed163

log-returns, while the latter relates to the sum of squared log-returns (the integrated vari-164

ance). However, the V IX would be biased in measuring the quadratic variation when165

there are extreme movements in the stock price leading to discontinuities (Carr and Wu,166

2009). In contrast, the BKM variance measure can avoid the discrete sum approximation167

and accurately capture higher-order impact of jumps, i.e., the tail risk. Therefore, the168

tail risk can be clearly presented by the difference between the two measures.169

170
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This study aims to clearly clarify the reasons why the RIX can serve as an indicator171

of tail risks. On the basis of the Taylor series,1 higher-order risks can be written in the172

following form173

6
(

ST

F T
t

− 1 − ln ST

F T
t

− 1
2 ln2 ST

F T
t

)
= ln3 ST

F T
t

+ O

(
ln4 ST

F T
t

)
, (1)174

where F T
t is the forward price, T is the maturity, and t is the spot time. Although the175

risks beyond the fourth order are negligible and can be disregarded, it is evident that the176

left side of the equation effectively encompasses higher-order risks demonstrated on the177

right side. Hence, the definition of RIX can be developed as the risk-neutral expectation178

of the left terms.179

Definition 1. The definition of the rare disaster concern index, the RIX, at time t is180

RIXt ≡ 6EQ
t

(
ST

F T
t

− 1 − ln ST

F T
t

− 1
2 ln2 ST

F T
t

)
. (2)181

Remark 1.1. Du and Kapadia (2012) employed JTIX to refer to the jump and tail182

index. Specifically, Du and Kapadia (2012) denoted JTIX at time t as183

JTIXt = V − IV (3)184

where V is the BKM2 (volatility payoff contract), and IV is the V IX2. However, Du and185

Kapadia (2012) used the stock price St to compute the log-return. Consequently, there186

are several terms related to the risk-free rate in the calculation of the IV, leading to a less187

succint expression188

e−rτ IV = 2
τ

[∫ St

0

1
K2 Pt (K) dK +

∫ ∞

St

1
K2 Ct (K) dK − e−rτ (erτ − 1 − rτ)

]
(4)189

1 We start by focusing on capturing higher-order risks, which can be easily obtained via Taylor series
as follows

ex = 1 + x + 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · ·

= 1 + x + 1
2!x

2 + 1
3!x

3 + O
(
x4) .

After rearranging and substituting with the log-return with respect to the forward price, Equation (1)
can be obtained.
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where τ is the time to maturity (T − t), K is the strike price, and Ct(K) and Pt(K) are190

the prices of OTM European call and put options at time t, respectively.191

Remark 1.2. Gao, Gao, and Song (2018) is the first to use the RIX to refer to this192

tail risk indicator.2 They also considered the downside versions of both IV and V, which193

means that only OTM put options that protect investors against negative price jumps are194

used195

RIXt ≡ V− − IV− = 2erτ

τ

∫ St

0

ln St

K

K2 Pt (K) dK. (5)196

However, the RIX of Gao, Gao, and Song (2018), as well as the definition of the GRIX197

in Gao, Lu, and Song (2019) suffer the same issue as Du and Kapadia (2012) due to the198

use of St to compute IV.199

Remark 1.3. Although we use the name of “rare disaster concern index”, we opt for the200

forward price, F T
t , to calculate the log-return instead of St. This approach allows us to201

set the risk-neutral expectation of the first two terms, ST

F T
t

− 1, as 0. Consequently, RIX202

can be characterized as the difference between the risk-neutral expectations of − ln ST

F T
t

203

and −1
2 ln2 ST

F T
t

, which correspond to IV and V, respectively. Moreover, after applying204

the forward price, the annualized integrated variance can be written as205

e−rτ IV = 2
τ

[∫ F T
t

0

1
K2 Pt (K) dK +

∫ ∞

F T
t

1
K2 Ct (K) dK

]
. (6)206

Compared to Equation (4), Equation (6) is more concise as it excludes terms related to207

the interest rate.208

Remark 1.4. There is a constant 6 in front of the entire expression, which is resulted209

from the coefficient of the cubic term in Taylor series, 1
3! . Considering the negligibility210

of risks beyond the third-order moment, the TM can be regarded as an approximation of211

2 Although originally constructed by Du and Kapadia (2012), the study remains a working paper.
Hence, we adopt the RIX notation as established by Gao, Gao, and Song (2018), which has been
published in the Review of Financial Studies.
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the RIX as follows212

TMt ≡ EQ
t

(
ln3 ST

F T
t

)
≈ RIXt. (7)213

Then, we investigate the relationship between the RIX and TM . It is obvious that our214

definition of the RIX, subtracting V from IV, is opposite to the previous studies (e.g.,215

Du and Kapadia, 2012; Gao, Gao, and Song, 2018; Gao, Lu, and Song, 2019). This216

departure results from the observation that the option market exhibits negative skewness,217

suggesting that risks associated with the tail end should similarly be negative.218

2.2 Model-Free Measure of the RIX219

According to Carr and Madan (2001) and BKM, any twice-differentiable payoff function220

with bounded expectation can be spanned by a continuum of OTM European options,221

bonds, and shares. For payoff function H (x) ∈ C 2 and some constant x0, the decomposed222

payoff function is given by223

H (x) = H (x0) + Hx (x0) (x − x0) +
∫ x0

0
Hxx (K) PT (K) dK

+
∫ ∞

x0
Hxx (K) CT (K) dK

(8)224

where CT (K) and PT (K) are the prices of OTM European call and put options at ma-225

turity. Therefore, the model-free measure of the RIX can be simply obtained by using226

Equation (8) on Equation (2), which is the static replication of the RIX. Similarly, the227

model-free measure of the TM is applying Equation (8) to Equation (7).228

Proposition 1. The model-free measure of the RIX at time t is229

RIXt = erτ

[∫ F T
t

0

6
K2 ln K

F T
t

Pt(K) dK +
∫ ∞

F T
t

6
K2 ln K

F T
t

Ct(K) dK

]
. (9)230

The model-free measure of the TM at time t is231

TMt = erτ

[∫ F T
t

0

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Pt(K) dK +

∫ ∞

F T
t

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Ct(K) dK

]
.

(10)232



The Rare Disaster Concern Index: RIX 9

The derivations are shown in Appendix A.233

Remark 1.1. To make the equations more concise, Qt(K) is designated to represent234

all OTM European options at time t. Then, Equation (9) and Equation (10) can be235

simplified to the following forms236

RIXt = erτ
∫ ∞

0

6
K2 ln K

F T
t

Qt(K) dK,

TMt = erτ
∫ ∞

0

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Qt(K) dK.

237

Remark 1.2. The values of the two model-free measures are slightly different. After238

taking the risk-neutral expectation, we can obtain the difference, which represents the239

risks associated with higher-order moments beyond the third.3240

2.3 The RIX under the Gram-Charlier Density241

Due to the ease of expressing skewness and kurtosis under the Gram-Charlier density, we242

intend to use this special density function to further investigate the RIX. According to243

Zhang and Xiang (2008), and Aschakulporn and Zhang (2022a), the stock price, ST , can244

be modeled by245

ST = F T
t e(− 1

2 σ2+µc)τ+σ
√

τy (11)246

where σ, µc, and y is the standard deviation, convexity adjustment term, and a random247

variable, respectively. Using the Gram-Charlier density, if y has probability density248

f (y) = n (y) − λ1

3!
d3n (y)

dy3 + λ2

4!
d4n (y)

dy4 (12)249

where n(y) = 1√
2π

e− y2
2 , then y will have a mean of zero, variance of one, skewness equal250

to λ1, and an excess kurtosis of λ2. The forward price, F T
t , is related to the current stock251

price, St, by F T
t = Ste

(r−q)τ , where r is the risk-free rate, and q is the dividend yield. The252

convexity adjustment term is required to keep this model arbitrage-free by ensuring that253

3 Risks from the fourth or higher-order moments are worthy of exploration. However, our main concern
is the conception of the RIX.
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the stock price satisfies the martingale condition, F T
t = EQ

t (ST ), in the risk-nuetral world254

and was be found to be255

µc = −1
τ

ln
[
1 + λ1

3!
(
σ

√
τ
)3

+ λ2

4!
(
σ

√
τ
)4
]

. (13)256

Then, it is easy to prove that the third central moment of the log-return under the Gram-257

Charlier density, TCM , is (σ
√

τ)3λ1. After combining with Equation (2), Proposition 2,258

the exact model of the RIX under the Gram-Charlier density can be obtained.259

Proposition 2. The exact model of the RIX under the Gram-Charlier density at time t260

is261

RIXt = −3
(

−1
2σ2 + µc

)2
τ 2 − 6µcτ. (14)262

The derivation is shown in Appendix B.263

Remark 2.1. Aschakulporn and Zhang (2022a) stated the annualized RIX under the264

Gram-Charlier density in their Appendix C as265

RIXt =
(

r − q − 1
2σ2 + µc

)2
τ + 2µc. (15)266

Since Aschakulporn and Zhang (2022a) employed St rather than the forward price F T
t267

to compute the log-return, the model includes two additional terms, r and q, which are268

related to St. The RIX developed by us is opposite to previous studies and is three times269

larger, which are explained in Definition 1. Also, by using F T
t , we keep the derivations in270

this study consistant.271

Remark 2.2. The TM at time t can also be derived by combining the Gram-Charlier272

density with Equation (7)273

TMt =
(

−1
2σ2 + µc

)3
τ 3 + 3

(
−1

2σ2 + µc

)
(στ)2 +

(
σ

√
τ
)3

λ1. (16)274

The derivation is shown in Appendix C.275

Remark 2.3. To show the differences between the RIX and TM more clearly, we perform276
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a Taylor expansion on Equations (14) and (16) and get the following results277

RIXt =λ1
(
σ

√
τ
)3

+ 1
4 (λ2 − 3)

(
σ

√
τ
)4

+ O
(
σ

√
τ
)5

,

TMt =λ1
(
σ

√
τ
)3

− 3
2
(
σ

√
τ
)4

+ O
(
σ

√
τ
)5

.

278

Although the first term of the expanded RIX and TM are the same, giving the TCM , the279

crucial distinction lies in the inclusion of terms beyond the third-order, which is included280

in the RIX.281

Remark 2.4. It can be inferred that the RIX is a function of the skewness and kurto-282

sis referring to Equations (13), (14), and (16). After accounting for the Gram-Charlier283

positive-definite boundary argued in Aschakulporn and Zhang (2022), Figure 1 displays284

the relationships among the RIX, TM , and TCM , with the setting of σ = 0.2, τ = 1/12,285

and λ2 = 2, 2.5, 3, and 3.5, based on Equations (14) and (16), respectively. The negligible286

divergences observed among the RIX, TM , and TCM signify their similarity in captur-287

ing the third moment risks. Additionally, the RIX also accounts for risks from higher288

moments, reflecting its robustness as an indicator of the tail risks.289

[Insert Figure 1 about here.]290

2.4 Downside Risk of the RIX−
291

According to existing literature, market crashes draw more attention from investors com-292

pared to a bull market. Since tail risk concerns with the extreme downside jumps can293

be computed by OTM puts, the RIX−, which refers to the lower half range of the RIX,294

is easily obtained through the model-free measure. The formula of the RIX− under the295

Gram-Charlier density can also be derived through the risk-neutral expectation of OTM296

puts, then, the parameters can be estimated. Moreover, the relationship between the297

RIX− and TM− is also of interest for us to explore.298

299
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On the basis of Equation (9), the model-free measure of the RIX− at time t can be300

inferred to be the second term related to the OTM put options301

RIX−
t = erτ

∫ F T
t

0

6
K2 ln K

F T
t

Pt(K) dK, (17)302

which is also applicable to the TM−
303

TM−
t = erτ

∫ F T
t

0

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Pt(K) dK. (18)304

Moreover, the probability of downside risk occurring will be the probability that the305

stock price is lower than the forward price, P (ST < F T
t ) = E

(
1ST <F T

t

)
. Consequently, the306

RIX− is the combination of the indicator function and Equation (2), and is composed of307

three components. The three components are the current value of a European put option,308

semi-expectation of the log-return, and semi-second moment of the log-return as follows309

RIX−
t = − 6

F T
t

EQ
t

[
max

(
F T

t − ST , 0
)]

− 6EQ
t

(
ln ST

F T
t

× 1ST <F T
t

)
− 3EQ

t

(
ln2 ST

F T
t

× 1ST <F T
t

)
.

(19)310

Based on Equation (11), it must satisfy y < −

(
−1

2σ2 + µc

)√
τ

σ
under the Gram-311

Charlier density to guarantee that ST < F T
t . We set d2 =

(
−1

2σ2 + µc

)√
τ

σ
, so the RIX−

312

is an indicator of potential market crashes only when y < −d2. Then, the exact model of313

the RIX− can be obtained by rewriting Equation (19) under the Gram-Charlier density.314

Proposition 3. RIX− under the Gram-Charlier density at time t is315

RIX−
t =A + Bβ0 + Cβ1 + Dβ2 (20)316
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where317

A = −6
[
N(d1) − N(d2) + n(d2)

(
λ1

3! E + λ2

4! F

)
σ

√
τ

]
,

B = −6
(

−1
2σ2 + µc

)
τ − 3

(
−1

2σ2 + µc

)2
τ 2,

C = −6σ
√

τ − 6
(

−1
2σ2 + µc

)
σ
(√

τ
)3

, D = −3σ2τ,

E = −
(
d2 − σ

√
τ
)

, F = −
(
1 − d2

2 + σ
√

τd2 − σ2τ
)

,

d2 =

(
−1

2σ2 + µc

)
τ

σ
√

τ
, d1 = d2 + σ

√
τ ,

β0 = N(−d2) + λ1

3! (−d2
2 + 1)n(−d2) + λ2

4! (d3
2 − 3d2)n(−d2),

β1 = −n(−d2) + λ1

3! d3
2n(−d2) + λ2

4! (−d4
2 + 2d2

2 + 1)n(−d2),

β2 = d2n(−d2) + N(−d2) + λ1

3! (−d4
2 − d2

2 − 2)n(−d2) + λ2

4! (d5
2 − d3

2)n(−d2).

318

The derivation is shown in Appendix D.319

Remark 3.1. The pricing formula of a European call option with skewness and kurtosis320

has been proposed by Aschakulporn and Zhang (2022a) as321

ct = F T
t e−rτ N(d3) − Ke−rτ N(d4) + Ke−rτ n(d4)

(
λ1

3! E + λ2

4! F

)
σ

√
τ (21)322

where323

E = −
(
d4 − σ

√
τ
)

, F = −
(
1 − d2

4 + σ
√

τd4 − σ2τ
)

,

d4 =
ln
(
F T

t /K
)

+
(
−1

2σ2 + µc

)
τ

σ
√

τ
, d3 = d4 + σ

√
τ .

324

As for the value of a European put option, it can be easily computed by using the put-call325

parity, ct(K) − pt(K) = F T
t e−rτ − Ke−rτ . Once the forward price is equal to the strike326

price, we get ct(F T
t ) = pt(F T

t ) = e−rτ EQ
t

[
pT

(
F T

t

)]
. Additionally, d4 is exactly the same327

as d2 when F T
t is equal to K. Therefore, the first term of Equation (19) can be determined328

to be329

− 6
F T

t

EQ
t

[
max

(
F T

t − ST , 0
)]

= − 6
F T

t

erτ pt(F T
t ) = − 6

F T
t

erτ ct(F T
t )330

where F T
t is equal to K.331
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Remark 3.2. According to Equation (11), the log-return under the Gram-Charlier den-332

sity is333

ln ST

F T
t

=
(

−1
2σ2 + µc

)
τ + σ

√
τy.334

Therefore, the last two terms of Equation (19) are associated with the risk-neutral expec-335

tation of y and the indicator function. To enhance conciseness of formula, we employ βn336

to refer to EQ
t

(
yn × 1ST <F T

t

)
, respectively. More specifically, we denote β0, β1, and β2 as337

semi-probability, semi-expectation of y, and semi-second moment of y.338

Remark 3.3. The TM− under the Gram-Charlier density can be easily obtained. The339

only difference compared to the RIX− is the semi-expectation of y3, EQ
t

(
y3 × 1ST <F T

t

)
,340

which is denoted as β3. Consequently, β3 can be regarded as the semi-third moment of y,341

and the exact model of the TM− at time t is as follows342

TM−
t = Gβ0 + Hβ1 + Iβ2 + Jβ3 (22)343

where344

G =
(

−1
2σ2 + µc

)3
τ 3, H = 3

(
−1

2σ2 + µc

)2
σ
(√

τ
)5

,

I = 3
(

−1
2σ2 + µc

)
σ2τ 2, J = σ3

(√
τ
)3

,

β3 = (−d2
2 − 2)n(−d2) + λ1

3! [(d5
2 + 2d3

2 + 6d2)n(−d2) + 6N(−d2)] + λ2

4! (−d6
2 − 3d2

2 − 6)n(−d2).

345

The derivation is shown in Appendix E.346

Remark 3.4. Similarly, after accounting for the Gram-Charlier positive-definite bound-347

ary argued in Aschakulporn and Zhang (2022), Figure 2 displays the relationship between348

the RIX− and TM−, with the setting of σ = 0.2, τ = 1/12, and λ2 = 2, 2.5, 3, and 3.5,349

based on Equations (20) and (22), respectively. Compared with Figure 1, Figure 2 reveals350

that the RIX− and TM− are significantly closer, indicating that the third moment risks351

contribute more substantially during periods of adverse market movements compared to352

the other higher-order risks. The results also show the superior performance of the RIX−
353

particularly as an indicator of the left tail risks.354
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[Insert Figure 2 about here.]355

3 Data and Methodology356

Our aim is to enhance the comprehension of the RIX, which has been used as a proxy for357

tail risks in several studies (e.g., Gao, Gao, and Song, 2018; Gao, Lu, and Song, 2019; Liu,358

Chan, and Faff, 2022). However, none of these articles present the time series of the RIX,359

instead directly employing it in empirical research, leading to an incomplete perception360

of the RIX. This study has numerically revealed the essence of the RIX along with its361

relationships with the TM and TCM . To present the RIX clearly, we will construct the362

time series and term structure based on the market data in this section.363

3.1 Data364

We opt for SPX options, traded on the CBOE, as the primary sample to generate the365

time series of the RIX. This selection enables us to directly compare the RIX with the366

V IX and SKEW listed on the CBOE since the underlying of these indices is the same.367

Daily transaction data for SPX options are provided by OptionMetrics, and the values368

of the V IX and SKEW are collected from the CBOE. For our analysis, we exclusively369

retain monthly trading options, while weekly trading options are omitted. The dataset370

encompasses the entirety of the COVID-19 pandemic, ranging from 1 January, 2020 to 28371

February, 2023, a period marked by significant economic downturns. Daily interest rates372

are derived via linearly interpolation and extrapolation of the US Treasury yield rates,373

as sourced from the U.S. Department of the Treasury website. The data are screened374

following the filters outlined in the CBOE V IX White Paper,4 ensuring consistancy with375

the V IX and SKEW . The forward price, F T
t , is also computed following the CBOE376

V IX White Paper.377

4 The CBOE V IX White Paper is https://cdn.cboe.com/api/global/us_indices/governance/
Volatility_Index_Methodology_Cboe_Volatility_Index.pdf.

https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf
https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf
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3.2 Methodology378

After filtering based on the CBOE V IX White Paper, the screened data is used to calcu-379

late the time series and term structure of the RIX based on the model-free measures as380

detailed in Equation (9). However, direct integration is not possible due to the inherent381

constraints of limited trading option strike prices. The trapezium rule (viz. trapezoidal382

integration) is widely employed to counter this issue by approximating the definite inte-383

gral within the confines market data (Dennis and Mayhew, 2002; Jiang and Tian, 2005;384

Conrad, Dittmar, and Ghysels, 2013; Neumann and Skiadopoulos, 2013; Chang, Christof-385

fersen, and Jacobs, 2013; Chatrath et al., 2016; Stilger, Kostakis, and Poon, 2017; Ruan386

and Zhang, 2018; Liu, Chan, and Faff, 2022). Consequently, applying the trapezium rule387

to Equation (9), the integral can be discretized to388

RIXt = 6erτ
∞∑

i=1

∆Ki

K2
i

ln Ki

F T
t

Q(Ki) (23)389

where390

∆Ki =



K2 − K1, i = 1
1
2 (Ki+1 − Ki−1) , 1 < i < n

Kn − Kn−1, i = n

(24)391

and n is the number of strikes. Equation 24 is defined in the CBOE V IX White Paper.392

Similarly, the same procedure can also be applied to Equation (10) and we have393

TMt = 3erτ
∞∑

i=1

∆Ki

K2
i

(
2 ln Ki

F T
t

− ln2 Ki

F T
t

)
Q(Ki). (25)394

395

Moreover, we also replicate the time series of the TCM , JTIX, V IX, SKEW , and396

different payoff contracts stated in BKM. Specifically, the BKMn corresponds to the397

values of EQ
t (Rn

τ ), where Rτ is the log-returns ln ST

F T
t

.5 The computations of these indices398

5 The mean is approximated in BKM by setting the dividend yield, q, to zero:

EQ
t (Rτ ) = µτ = erτ − 1 − 1

2!E
Q
t

(
R2

τ

)
− 1

3!E
Q
t

(
R3

τ

)
− 1

4!E
Q
t

(
R4

τ

)
.



The Rare Disaster Concern Index: RIX 17

using trapezium rule are6
399

BKM2t = EQ
t

(
R2

τ

)
= 2erτ

∞∑
i=1

∆Ki

K2
i

(
1 − ln Ki

F T
t

)
Q(Ki), (26)400

BKM3t = EQ
t

(
R3

τ

)
= 3erτ

∞∑
i=1

∆Ki

K2
i

(
2 ln Ki

F T
t

− ln2 Ki

F T
t

)
Q(Ki), 7 (27)401

BKM4t = EQ
t

(
R4

τ

)
= 4erτ

∞∑
i=1

∆Ki

K2
i

(
3 ln2 Ki

F T
t

− ln3 Ki

F T
t

)
Q(Ki), (28)402

BKM1t = EQ
t (Rτ ) = erτ − 1 − BKM2t

2 − BKM3t

6 − BKM4t

24 , (29)403

V IX2
t = 2erτ

∞∑
i=1

∆Ki

K2
i

Q(Ki), (30)404

JTIXt = BKM2t − V IX2
t , (31)405

TCMt = BKM3t − 3BKM1t × BKM2t + 2BKM3
1t

, (32)406

V art = BKM2t − BKM2
1t

, (33)407

skewnesst = TCMt

V ar
3
2
t

, (34)408

V IXt = 100
√

V IX2
t

τ
, (35)409

SKEWt = 100 − 10 × skewnesst. (36)410

411

The errors of estimators have been researched in several studies (Jiang and Tian,412

2005; Jiang and Tian, 2007; Aschakulporn and Zhang, 2022b). Two primary sources of413

errors have been identified: truncation and discretization errors. The truncation errors414

arise from the finite range of strike prices available in the option market. Therefore, the415

bounds of integration would change from K ∈ (0, ∞) to K ∈ [Kmin, Kmax]. According to416

Aschakulporn and Zhang (2022), a boudary controlling factor, a, is introduced as417

[Kmin, Kmax] := [F T
t × a, F T

t /a] (37)418

6 We also calculate the time series for indices focusing solely on the downside risk with OTM options,
designated as RIX−, TM−, TCM−, BKM−

2 , BKM−
3 , BKM−

4 , BKM−
1 , V IX2− , and JTIX−.

7 BKM3 is the same as TM since they are both the risk-neutral expectation of the cube of the
log-return.
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where a ∈ (0, 1). Thus, as a approaches 0, Kmin and Kmax would approach 0 and ∞,419

respectively, fulfilling the integral bounds. Conversely, as a approaches 1, the strike prices420

would align with the at-the-money (ATM) condition. As for the discretization errors,421

they come from the application of the trapezium rule, which is required as the market422

strikes are discrete and the difference is ∆K.423

424

These errors can be mitigated through interpolation and extrapolation techniques.425

Aschakulporn and Zhang (2022) estimate the BKM skewness using a variety of interpo-426

lation and extrapolation methods, including constant, linear, cubic spline, and Gaussian427

kernel approaches, and compare these estimators with the true model based value com-428

puted via stochastic volatility and contemporaneous jumps (SVCJ) model developed by429

Duffie, Pan, and Singleton (2000). Subsequently, they discover that linear interpolation of430

the implied volatility curve, coupled with constant extrapolation using ∆K = 0.05%×F T
t431

and a = 0.25, yields the most reliable skewness estimation within 10−3 of the true value.432

Consequently, we adopt this configuration for the construction of our indices. Figures 3433

and 4 compare the CBOE V IX and SKEW to the V IX and SKEW estimated using the434

aforementioned approaches. Despite the replication not being identical, the estimations435

closely approximate the CBOE indices, as shown by the correlations of 0.99 and 0.97436

for the V IX and SKEW , respectively. This signifies that the deviations are insignifi-437

cant, supporting the feasibility of the method. Therefore, we use the estimated values as438

benchmarks to proceed with our investigation.439

[Insert Figure 3 about here.]440

[Insert Figure 4 about here.]441
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4 Results442

In this section, we present the time series and term structures of the indices we constructed443

and analyze their relationships with the RIX.444

4.1 The RIX with the CBOE V IX and SKEW445

First, we compare the CBOE V IX and SKEW following the CBOE SKEW White Pa-446

per.8 The CBOE argues that the anticipation of market participants concerning a catas-447

trophic market drop, often referred to as a “black swan” event, significantly influences448

perceived tail risk. Figure 5 shows that during the COVID-19 pandemic, the V IX reached449

its peak of 82.69% on 16 March, 2020 within the sample period in a contemporaneous450

setting where the SKEW was relatively low at 114.66.451

[Insert Figure 5 about here.]452

Figure 6 illustrates that the V IX, before reaching extreme values over 40, is associ-453

ated with both low and high levels of the SKEW . This observation suggests that there454

is variability in market perceptions and reactions to risk before the V IX indicator signals455

a state of extreme market volatility. However, as the V IX increases beyond 40, indicat-456

ing extreme market turbulence, the range of the SKEW values tends to narrow. The457

CBOE’s explanation suggests that after a significant market downturn, the market’s ex-458

pectation for another immediate drop diminishes. This could be due to the initial market459

shock adjusting investors’ expectations and risk assessments, leading to a recalibration460

of perceived future tail risks. Essentially, once the market has absorbed the impact of a461

major downturn, the anticipation of further immediate declines is reduced, as participants462

might view the most immediate risks as already realized.463

[Insert Figure 6 about here.]464

8 The CBOE SKEW White Paper is https://cdn.cboe.com/resources/indices/documents/
SKEWwhitepaperjan2011.pdf.

https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf
https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf
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Contrastingly, Figures 7 and 8 illustrate a distinctly different relationship between the465

V IX and RIX30 in comparison to the relationship observed between the CBOE V IX466

and SKEW . Serving as a proxy for tail risks, the RIX30 and V IX exhibit corresponding467

trends within the same periods, opposite to the behavior of the CBOE SKEW . This468

divergence lies in the intrinsic association between the SKEW and V IX, rooted in their469

conceptual framework. More specifically, the SKEW can be characterized as approxi-470

mating an inverse square root relationship with the V IX, a functional dependency that471

mirrors the graphical representation observed in Figure 6. As the V IX increases, the472

value of the SKEW would decrease, suggesting that expectations of extreme negative473

tail events become less pronounced as immediate market volatility rises. Therefore, in-474

stead of directly comparing the RIX with the V IX or SKEW , our analysis shifts to475

comparing the RIX against the V IX2 and TCM .476

[Insert Figure 7 about here.]477

[Insert Figure 8 about here.]478

4.2 The RIX with JTIX479

As introduced by Du and Kapadia (2012), the JITX is computed by Equation (31),480

which is the difference between the BKM2 and V IX2, and constitutes one third of our481

RIX. Subsequently, we conduct a comparative analysis among the RIX, BKM2, and482

V IX2, focusing on a 30-day term structure. Figure 9 shows that the two measures of483

stock return variability, the BKM2 and V IX2, exhibit similar patterns, with the former484

consistently exceeding the latter. Nevertheless, at each peak, the discrepancy between the485

BKM2 and V IX2 is significantly greater compared to their differences at lower levels,486

thereby highlighting an escalation in potential tail risks as represented by the JTIX. This487

phenomenon emphasizes the dynamics between market volatility and tail risk perceptions,488

providing a robust framework for analyzing market fluctuations and their implications on489
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risk assessment. Moreover, the interplay between the BKM2 and V IX2 substantiates490

the contemporaneous nature of the second moment risk with higher-order risks, which is491

supported by Figure 10.492

[Insert Figure 9 about here.]493

[Insert Figure 10 about here.]494

This phenomenon becomes more pronounced when attention is narrowed to the lower495

half range, as illustrated by Figures 11 and 12. Concentrating on the lower half range496

emphasizes the extremities of market behaviors, where the BKM2 and V IX2, and their497

divergence, are likely more accentuated. This focused analysis reveals the heightened498

sensitivity of the BKM2 and V IX2 to adverse market conditions, further clarifying the499

escalated potential for tail risks as indicated by the RIX. By focusing on this segment,500

the figures underscore the significant disparities between standard volatility measures501

and the acute stress indicators in the market’s lower distribution, offering a deeper under-502

standing of the mechanisms that drive market extremes and the inherent risks associated503

with them. This approach not only highlights the critical relationship between the tra-504

ditional volatility and extreme adverse risk but also demonstrates how specific market505

conditions can amplify the perceived risk, thereby providing a clearer picture of market506

vulnerabilities.507

[Insert Figure 11 about here.]508

[Insert Figure 12 about here.]509

4.3 The RIX with TM and TCM510

Following the comparison of the second moment risks, we proceed to analyze the efficiency511

of the RIX in encompassing the third moment risks. Figure 13 displays that the RIX512

effectively cover the TM and TCM as evidenced by their nearly identical values, which are513
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threefold the values of the JTIX. This congruence highlights the comprehensive nature514

of the RIX in reflecting skewness and asymmetry inherent in third moment risks. The515

robust alignment between the RIX and higher-order moments is further emphasized when516

the analysis is narrowed to focus on the downside risks with higher values, as demonstrated517

in Figure 14. Even in this focused view, which pays attention to the market’s response to518

adverse conditions, the RIX− maintains its effectiveness in mirroring the behavior of the519

TM and TCM . This persistence underlines the utility of the RIX as a holistic measure520

that effectively integrates various dimensions of market risk, offering valuable insights into521

the underlying dynamics of market distributions, particularly in indicating the essence of522

tail risks and market downturns.523

[Insert Figure 13 about here.]524

[Insert Figure 14 about here.]525

In addition, we illustrate the differences among the RIX, TM , and TCM in Figure526

15 spanning the entire range and Figure 16 for the lower half range specifically. Observa-527

tions indicate that the differences between the TM and TCM are comparatively minor,528

even when potential tail risks increase, which is consistent with our numerical results in529

Section 2. Conversely, the divergences between the RIX and TM , as well as the RIX530

and TCM , while modest under standard market conditions, tend to widen during periods531

of rising risks. Intriguingly, these differences contract when the analysis is strictly limited532

to the lower half range, signifying that the RIX possesses a heightened proficiency in533

encapsulating market downside risks.534

[Insert Figure 15 about here.]535

[Insert Figure 16 about here.]536

This phenomenon underscores the nuanced capability of the RIX as an indicator to537

more accurately reflect the severity and likelihood of negative market outcomes, partic-538

ularly in scenarios characterized by elevated tail risks. The comparative analysis reveals539
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that while the TM and TCM offer valuable insights into the skewness and dispersion of540

returns, the RIX provides a more comprehensive gauge of downside risk, indicating both541

the frequency and magnitude of extreme market downturns. The reduction in discrep-542

ancies specifically within the lower half range context further emphasizes the critical role543

of the RIX in risk management and assessment strategies, particularly for stakeholders544

focused on mitigating potential losses during turbulent market periods.545

4.4 Term Structures of the RIX546

We also present the term structures of the RIX across various durations—30-day, 60-day,547

and 90-day periods—to analyze how it behaves over different forward-looking horizons.548

As demonstrated in both Figures 17 and 18, although the RIX− consistently exceeds549

the RIX in value across all observed periods, both tend to exhibit higher values as the550

length of the forward-looking horizon extends. This feature suggests a critical insight551

into the nature of the RIX as a risk measure: its sensitivity to the temporal dimension552

of risk assessment, since the increase in the RIX with longer horizons reflects growing553

uncertainty. Intuitively, the market’s anticipation of future tail risk becomes more pro-554

nounced over longer durations, possibly due to the accumulation of unforeseen factors and555

the compounding effect of risk over time. Such observations highlight the importance of556

considering the time dimension in the assessment of market risks. For practitioners and557

researchers alike, understanding the term structure of the RIX provides valuable insights558

into the dynamic nature of market risk and its implications for strategic planning and559

risk management, as highlighted in prior studies (Gao, Gao, and Song, 2018; Gao, Lu,560

and Song, 2019; Liu, Chan, and Faff, 2022).561

[Insert Figure 17 about here.]562

[Insert Figure 18 about here.]563

Additionally, we explore the variations within different ranges of the RIX utilizing a564
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30-day term structure, as illustrated in Figure 19. Reasonably, the RIX+, calculated from565

OTM calls based on Equation (23) and representing essentially the difference between the566

RIX and RIX−, is found to be positive yet significantly smaller than the absolute values567

of the RIX and RIX−. This outcome suggests that the RIX−, by capturing a broader568

spectrum of negative market movements, is particularly feasible for quantifying extreme569

downside risks. The differentiation between the RIX+ and RIX− underlines the nuanced570

dynamics of market risk, where the RIX− serves as a more sensitive indicator of adverse571

market conditions. The relative smallness of the RIX+ highlights its specific role in the572

risk measurement framework, potentially indicating lesser concern for extreme positive573

market movements compared to the pronounced focus on negative shifts.574

[Insert Figure 19 about here.]575

5 Conclusion576

In conclusion, our study embarks on a comprehensive journey to demystify the RIX, a577

critical indicator in understanding and quantifying market tail risks. Through the lens578

of both theoretical innovation and numerical scrutiny, we have shed light on the mul-579

tifaceted nature of the RIX and its integral role in capturing the nuances of extreme580

market volatility. By redefining the RIX and developing its exact model within the581

Gram-Charlier density framework, we have not only enhanced its mathematical robust-582

ness but also its interpretive clarity, offering a deeper insight into the underpinnings of583

market behaviors.584

585

Our exploration also reveals the dynamic interplay between the the RIX and other586

indices, establishing the comparative advantage of the RIX in encapsulating market587

extreme uncertainties beyond conventional volatility measures. The temporal analysis588

across different forward-looking horizons further underscores the predictive flexibility of589
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the RIX, affirming its significance in strategic risk management and investment decision-590

making.591

592

The comparisons among the RIX and third-order risks, especially within the lower593

half range, highlight the exceptional capability of the RIX in signaling potential down-594

turns and its sensitivity to the possibility of rare disasters. Such insights are invaluable595

for investors, risk managers, and policymakers aiming to navigate the complexities of fi-596

nancial markets.597

598

Moving forward, this study lays a foundational stone for future research, encouraging599

a deeper examination of the RIX and its applications in diverse market conditions. The600

bridging of theoretical depth with empirical analysis opens new avenues for understanding601

the intricacies of market risk and constructs an indicator that engages both scholars and602

practitioners.603
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Appendix664

A Derivations of the Model-Free Measure of the RIX665

On the basis of Equation (8), both Equations (2) and (7) can be regarded as H(x). Then,666

the application process on the RIX is as follows667
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Therefore, the model-free measure of the RIX at time t is669
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Similarly, TM is671
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Thus, the model-free measure of the TM at time t is673

TMt =EQ
t

[
ln3 F T

t

F T
t

+ 3
F T

t

ln2 F T
t

F T
t

(
x − F T

t

)
+
∫ F T

t

0

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
PT (K) dK

+
∫ ∞

F T
t

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
CT (K) dK

]

=erτ

[∫ F T
t

0

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Pt(K) dK +

∫ ∞

F T
t

(
6

K2 ln K

F T
t

− 3
K2 ln2 K

F T
t

)
Ct(K) dK

]
.

(A.4)674



The Rare Disaster Concern Index: RIX 30

B Derivations of the RIX Under the Gram-Charlier Density675

Under the Gram-Charlier density, the values of three components of Equation (2) are as676

follows:677
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Therefore, the RIX of full range under Gram-Charlier Density is the combination of these679

values times 6, which is shown as Equation (14).680

C Derivations of the TM Under the Gram-Charlier Density681

Under the Gram-Charlier density, Equation (7) can be written as:682
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which is Equation (16).684
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D Derivations of the RIX− Under the Gram-Charlier Density685

Under the Gram-Charlier density, β0, β1, and β2 can be considered as semi-probability,686

semi-expectation of y, and semi-second moment of y:687
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Then, B, C, and D can be obtained by regrouping the coefficients of β0, β1, and β2,690

respectively.691

E Derivations of the TM− Under the Gram-Charlier Density692

Under the Gram-Charlier density, β3 can be considered as the semi-third moment of y:693
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In addition, G, H, I, and J can be obtained by expanding the semi-third moment under695

the Gram-Charlier density and regrouping the coefficients of β0, β1, β2, and β3, respec-696

tively.697

698
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\section{Introduction}\label{sec:Introduction}
In the evolving landscape of financial markets, where the risk of rare but profoundly impactful events poses a major threat, the necessity for robust, predictive measures of tail risk has never been more urgent. The rare disaster index ($RIX$), first introduced by \textcite{du2012tail} as a jump and tail index ($JTIX$), stands at the forefront in this field, offering a novel perspective for assessing the dynamics of extreme market volatility. The development of the $RIX$ indicated a critical shift towards identifying and quantifying the vague nature of catastrophic market downturns, which are the events that traditional market volatility indices, such as the Chicago Board Options Exchange (CBOE) Volatility Index ($VIX$) and Skewness Index ($SKEW$), might not fully encompass. By focusing on the extremities of market behavior, the $RIX$ provides a more detailed view of the potential for substantial losses, making it an important indicator for investors, risk managers, and policymakers alike. The urgency for such a measure has only exacerbated in the wake of recent global financial crises, underscoring the critical need to anticipate and mitigate the threats of these rare but overwhelming disasters.\\

This study initiates a comprehensive exploration of the $RIX$, aiming to numerically disclose its characteristics and to underline its significance in indicating the dynamics of market tail risks. Leveraging our enhanced definition of the $RIX$, this study endeavors to numerically explore the connection between the $RIX$ and higher-order risks, as well as its exact model under the Gram-Charlier density through rigorous mathematical derivations. Moreover, we also estimate the time series of the $RIX$ using the S\&P 500 Index options (SPX) to resonate with the practical realities of market dynamics. Through these efforts, we seek to extend the frontier of financial risk measurement, contributing to a deeper, more nuanced understanding of the framework of market tail risk and the shadows that rare disasters cast upon it.\\

On the basis of the foundational insights provided by the $RIX$, subsequent research has attempted to decode its complexities and use its predictive power across various market scenarios. The seminal work of \textcite{du2012tail} established a critical baseline, arguing the $RIX$ as a key indicator for assessing the likelihood and impact of market crises. This initial investigation into the tail risks underscored the urgent need for a measure that could capture the extreme market volatility beyond the scope of conventional indices. Following this pioneering study, further studies have delved into the empirical applications and theoretical extensions of the $RIX$, each contributing unique perspectives on its utility and significance. For instance, \citeauthoryear{gao2018hedge} constructed the $RIX$ via out-of-the-money (OTM) put options on different economic sector indices and documented its covariation with higher hedge fund returns. They found that hedge fund managers skilled in leveraging the $RIX$ achieve superior future fund performance while being less susceptible to crisis risk. Similarly, the concept of global ex ante tail risk concerns ($GRIX$) was developed by \citeauthoryear{gao2019tail} to analyze the variations in cross-sectional returns across global asset categories, thereby extending the pricing effect of the $RIX$ on a global scale. Additionally, \citeauthoryear{liu2022can} estimated the firm-level $RIX$, the firm-level jump-implied variance contribution index ($JIVX$), which effectively forecasted cross-sectional stock returns surrounding earnings announcements. These studies have demonstrated the robustness of the $RIX$ in predicting market returns, particularly its ability to signal forthcoming downturns, as well as its adaptability as an indicator for navigating the complexities of financial markets due to its feasibility in various market conditions. Recognizing the significant empirical utility of the $RIX$, one recent study by \citeauthoryear{albert2023estimation} introduces an advanced technique involving the risk-neutral return distribution (RND) to refine the calculation of the $RIX$.\\

Although previous studies have significantly enhanced the comprehension of the $RIX$, especially in its application to empirical market analysis, an essential gap persists in the academic research surrounding this measure. Most of the existing literature has focused on the empirical utility of the $RIX$, often at the expense of an in-depth theoretical exploration. This empirical emphasis, though valuable, has inadvertently led to a less thorough understanding of the fundamental mechanisms of the $RIX$. For example, none of them have displayed the time series or term structures of the $RIX$. Consequently, academics and practitioners are left with a somewhat superficial grasp of the $RIX$, aware of its importance yet they are still far from a comprehensive understanding of its core principles. Furthermore, the predominance of empirical analysis in existing research has limited the objective to correlations among observations, rather than developing a deeper understanding of the causal relationships between the $RIX$ and other risk-neutral volatility and skewness indicators. The literature, thus far, has provided limited insight into how the $RIX$, as a measure, responds to and interacts with the dynamics of market tail risks. This gap is particularly noticeable in the analysis of market reactions to rare disaster risks. Although the existing literature recognizes the significance of the $RIX$, it rarely delves into the mathematical details that clarify its connection with higher-order risks. Such an exploration is crucial, as it would reflect the capacity of the $RIX$ to indicate and encompass the broader spectrum of market uncertainties inherent in higher-order moments.\\

The need for a refined analytical framework is evident, one that surpasses empirical observations to interpret the theoretical conceptions of the $RIX$. This approach would not only enhance our conceptual understanding of the $RIX$ but also enrich our comprehension of its comparative effectiveness in indicating and predicting market crashes. It is within this gap that this study positions itself, aiming to bridge the divide between empirical utility and theoretical depth, thereby offering a holistic view of the $RIX$ and make several pivotal contributions to the field of financial risk management and market dynamics analysis.\\

First, we introduce an enhanced definition of the $RIX$. This could not only clarify the theoretical underpinnings of the $RIX$ but also highlight its precision as an indicator of market tail risks. Compared to the original definition in \textcite{du2012tail}, our modified definition is more streamlined when utilized alongside the model-free approach. Second, our study develops an exact model of the $RIX$ within the Gram-Charlier density framework, and draws comparisons to risks from the higher-order moments. By outlining the mathematical structure of the $RIX$, we explain its inherent relationship with higher-order moments, especially the risk-neutral third moment of log-returns ($TM$) and the risk-neutral third central moment of log-returns ($TCM$), providing a clear, quantitative understanding of its interaction with market dynamics. Third, by employing the time series and term structure analyses across different forward-looking horizons (30-day, 60-day, and 90-day periods), we demonstrate the temporal sensitivity of the $RIX$. This aspect of our study underscores the efficiency of the $RIX$ as an indicator of the left tail risks and how the predictive power of the $RIX$ evolves over time, offering valuable insights into its efficacy in anticipating market downside shifts across various time frames. Finally, we address the practical implications of our findings for investors, risk managers, and policymakers. By providing a more detailed perspective of the capabilities of the $RIX$ in indicating higher-order risks, our study empowers market participants with enhanced tools for risk assessment and strategic decision-making in the face of extreme uncertainty. In sum, our research bridges the theoretical and empirical realms. We not only fulfill the existing gaps in the literature but also pave the way for future inquiries into the sophisticated dynamics of market risks and measures designed to apprehend them.\\

The remainder of this study is organized as follows. In \hypref{sec:Theory}, we discuss the theoretical frameworks. Then, in \hypref{sec:Data and Methodology} we display our data and the methodology employed in this study. We present the estimation results in \hypref{sec:Results}. Finally, we conclude this paper in \hypref{sec:Conclusion}. The appendices give the details of the derivations.\\


\section{Theoretical Framework}\label{sec:Theory}
In this section, we first introduce an enhanced definition of the $RIX$ developed in this study, and clearly illustrate its differences from previous literature. We also state the computation of the $TM$, and show its relationship with the $RIX$. In addition, we demonstrate the model-free measures of the $RIX$ and $TM$, and the exact model if the underlying follows a process based on the Gram-Charlier density. Then, following \citeauthoryear{gao2018hedge,gao2019tail}, we primarily concentrate on the derivation of the extreme downside risk, referred to as the lower half range of the $RIX$ and is denoted as $RIX^-$.\\

\subsection{Enhanced Definition of the $\boldmath{RIX}$}
\textcite{du2012tail} first forwarded the construction of tail risk index as the differential impact of discontinuities on two measures of stock return variability: the variance of the log-return measured in \textcite{bakshi2003stock} ($BKM$, henceforth) and the $VIX$. \textcite{du2012tail} argue that the former measures the square of summed log-returns, while the latter relates to the sum of squared log-returns (the integrated variance). However, the $VIX$ would be biased in measuring the quadratic variation when there are extreme movements in the stock price leading to discontinuities \parencite{carr2009variance}. In contrast, the $BKM$ variance measure can avoid the discrete sum approximation and accurately capture higher-order impact of jumps, i.e., the tail risk. Therefore, the tail risk can be clearly presented by the difference between the two measures. \\

This study aims to clearly clarify the reasons why the $RIX$ can serve as an indicator of tail risks. On the basis of the Taylor series,\footnote{We start by focusing on capturing higher-order risks, which can be easily obtained via Taylor series as follows
	\begin{equation*}
		\begin{aligned}
			e^x &= 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \cdots \\
			&= 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + O\left(x^4\right).
		\end{aligned}
	\end{equation*}
After rearranging and substituting with the log-return with respect to the forward price, Equation (\ref{retaylor}) can be obtained.}  higher-order risks can be written in the following form
\begin{equation}
	\begin{aligned} \label{retaylor}
		6\left(\frac{S_T}{F^T_t} - 1 - \ln \frac{S_T}{F^T_t} - \frac{1}{2} \ln^2 \frac{S_T}{F^T_t}\right) = \ln^3 \frac{S_T}{F^T_t} + O\left(\ln^4 \frac{S_T}{F^T_t}\right),
	\end{aligned}
\end{equation}
where $\displaystyle F^T_t$ is the forward price, $T$ is the maturity, and $t$ is the spot time. Although the risks beyond the fourth order are negligible and can be disregarded, it is evident that the left side of the equation effectively encompasses higher-order risks demonstrated on the right side. Hence, the definition of $RIX$ can be developed as the risk-neutral expectation of the left terms.

\begin{definition} \label{begindefinition}
	The definition of the rare disaster concern index, the $RIX$, at time $t$ is
	\begin{equation}
		\begin{aligned} \label{definitionfull}
			RIX_t &\equiv 6 E^{\mathbb{Q}}_{t} \left(\frac{S_T}{F^T_t} - 1 - \ln \frac{S_T}{F^T_t} - \frac{1}{2} \ln^2 \frac{S_T}{F^T_t}\right).
		\end{aligned}
	\end{equation}
\end{definition}

\begin{deremark}
	\textup{\textcite{du2012tail} employed $JTIX$ to refer to the jump and tail index. Specifically, \textcite{du2012tail} denoted $JTIX$ at time $t$ as
		\begin{equation}
			\begin{aligned} \label{JTIX}
				JTIX_t &= \mathbb{V} - \mathbb{IV}
			\end{aligned}
		\end{equation}
		where $\mathbb{V}$ is the $BKM_2$ (volatility payoff contract), and $\mathbb{IV}$ is the $VIX^2$. However, \textcite{du2012tail} used the stock price $S_t$ to compute the log-return. Consequently, there are several terms related to the risk-free rate in the calculation of the $\mathbb{IV}$, leading to a less succint expression
		\begin{equation}
			\begin{aligned} \label{IVS}
				e^{-r\tau} \mathbb{IV} &= \frac{2}{\tau} \left[\int_{0}^{S_t} \frac{1}{K^2} P_t\left(K\right) \, d K + \int_{S_t}^{\infty} \frac{1}{K^2} C_t\left(K\right) \, d K - e^{-r\tau}\left(e^{r\tau} - 1 - r\tau\right)\right]
			\end{aligned}
		\end{equation}
		where $\tau$ is the time to maturity $(T-t)$, $K$ is the strike price, and $C_t(K)$ and $P_t(K)$ are the prices of OTM European call and put options at time $t$, respectively.
	}
\end{deremark}

\begin{deremark}
	\textup{\citeauthoryear{gao2018hedge} is the first to use the $RIX$ to refer to this tail risk indicator.\footnote{Although originally constructed by \textcite{du2012tail}, the study remains a working paper. Hence, we adopt the $RIX$ notation as established by \citeauthoryear{gao2018hedge}, which has been published in the Review of Financial Studies.} They also considered the downside versions of both $\mathbb{IV}$ and $\mathbb{V}$, which means that only OTM put options that protect investors against negative price jumps are used
		\begin{equation}
			\begin{aligned} \label{RIXDOWN}
				RIX_t &\equiv \mathbb{V^-} - \mathbb{IV^-} = \frac{2 e^{r\tau}}{\tau} \int_{0}^{S_t} \frac{\ln \frac{S_t}{K}}{K^2} P_t\left(K\right) dK.
			\end{aligned}
		\end{equation}
	However, the $RIX$ of \citeauthoryear{gao2018hedge}, as well as the definition of the $GRIX$ in \textcite{gao2019tail} suffer the same issue as \textcite{du2012tail} due to the use of $S_t$ to compute $\mathbb{IV}$.}
\end{deremark}

\begin{deremark}
	\textup{Although we use the name of ``rare disaster concern index", we opt for the forward price, $\displaystyle F^T_t$, to calculate the log-return instead of $\displaystyle S_t$. This approach allows us to set the risk-neutral expectation of the first two terms, $\displaystyle\frac{S_T}{F^T_t} - 1$, as $0$. Consequently, $RIX$ can be characterized as the difference between the risk-neutral expectations of $\displaystyle- \ln \frac{S_T}{F^T_t}$ and $\displaystyle -\frac{1}{2} \ln^2 \frac{S_T}{F^T_t}$, which correspond to $\mathbb{IV}$ and $\mathbb{V}$, respectively. Moreover, after applying the forward price, the annualized integrated variance can be written as
		\begin{equation}
			\begin{aligned} \label{IVF}
				e^{-r\tau} \mathbb{IV} &= \frac{2}{\tau} \left[\int_{0}^{F^T_t} \frac{1}{K^2} P_t\left(K\right) dK + \int_{F^T_t}^{\infty} \frac{1}{K^2} C_t\left(K\right) dK \right].
			\end{aligned}
		\end{equation}
	Compared to Equation (\ref{IVS}), Equation (\ref{IVF}) is more concise as it excludes terms related to the interest rate.}
\end{deremark}

\begin{deremark}
	\textup{There is a constant $6$ in front of the entire expression, which is resulted from the coefficient of the cubic term in Taylor series, $\displaystyle\frac{1}{3!}$. Considering the negligibility of risks beyond the third-order moment, the $TM$ can be regarded as an approximation of the $RIX$ as follows
		\begin{equation}
			\begin{aligned} \label{cubicrelation}
				TM_t \equiv E^{\mathbb{Q}}_{t} \left(\ln^3 \frac{S_T}{F^T_t}\right) \approx RIX_t.
			\end{aligned}
		\end{equation}	
		Then, we investigate the relationship between the $RIX$ and $TM$. It is obvious that our definition of the $RIX$, subtracting $\mathbb{V}$ from $\mathbb{IV}$, is opposite to the previous studies \parencite[e.g.,][]{du2012tail,gao2018hedge,gao2019tail}. This departure results from the observation that the option market exhibits negative skewness, suggesting that risks associated with the tail end should similarly be negative.} 
\end{deremark}

\subsection{Model-Free Measure of the $\boldmath{RIX}$}
According to \citeauthoryear{CarrP.2001Opid} and BKM, any twice-differentiable payoff function with bounded expectation can be spanned by a continuum of OTM European options, bonds, and shares. For payoff function $H\left(x\right) \in \mathscr{C}^2$ and some constant $x_0$, the decomposed payoff function is given by
\begin{equation}\label{carr}
	\begin{aligned}
		H\left(x\right) = H\left(x_0\right) + H_x\left(x_0\right)\left(x-x_0\right)
		&+ \int_{0}^{x_0} H_{xx}\left(K\right) P_T(K) \, dK \\
		 &+ \int_{x_0}^{\infty} H_{xx}\left(K\right) C_T(K) \, dK
	\end{aligned}
\end{equation}
where $C_T(K)$ and $P_T(K)$ are the prices of OTM European call and put options at maturity. Therefore, the model-free measure of the $RIX$ can be simply obtained by using Equation (\ref{carr}) on Equation (\ref{definitionfull}), which is the static replication of the $RIX$. Similarly, the model-free measure of the $TM$ is applying Equation (\ref{carr}) to Equation (\ref{cubicrelation}).

\begin{proposition} \label{ppmodelfreerix}
	The model-free measure of the $RIX$ at time $t$ is
	\begin{equation}
		\begin{aligned} \label{modelfreerix}
			RIX_t = e^{r \tau} \left[\int_{0}^{F_t^T} \frac{6}{K^2} \ln \frac{K}{F_t^T} P_t(K) \, d K + \int_{F_t^T}^{\infty} \frac{6}{K^2} \ln \frac{K}{F_t^T} C_t(K) \, d K\right].
		\end{aligned}
	\end{equation}
	The model-free measure of the $TM$ at time $t$ is
	\begin{equation}
		\begin{aligned} \label{modelfreetm}
			TM_t = e^{r \tau} \left[ \int_{0}^{F_t^T} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) P_t(K) \, d K + \int_{F_t^T}^{\infty} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) C_t(K) \, d K\right].
		\end{aligned}
	\end{equation}
    The derivations are shown in Appendix \ref{sec:APPENDIX A}.
\end{proposition}

\begin{remark}
\textup{To make the equations more concise, $Q_t(K)$ is designated to represent all OTM European options at time $t$. Then, Equation (\ref{modelfreerix}) and Equation (\ref{modelfreetm}) can be simplified to the following forms
\begin{equation*}
	\begin{aligned}
		RIX_t &= e^{r \tau} \int_{0}^{\infty} \frac{6}{K^2} \ln \frac{K}{F_t^T} Q_t(K) \, d K, \\
		TM_t &= e^{r \tau} \int_{0}^{\infty} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) Q_t(K) \, d K.
	\end{aligned}
\end{equation*}
	}
\end{remark}

\begin{remark}
\textup{The values of the two model-free measures are slightly different. After taking the risk-neutral expectation, we can obtain the difference, which represents the risks associated with higher-order moments beyond the third.\footnote{Risks from the fourth or higher-order moments are worthy of exploration. However, our main concern is the conception of the $RIX$.}
}
\end{remark}

\subsection{The $\boldmath{RIX}$ under the Gram-Charlier Density}
Due to the ease of expressing skewness and kurtosis under the Gram-Charlier density, we intend to use this special density function to further investigate the $RIX$. According to \citeauthoryear{doi:10.1080/14697680601173444,aschakulporn2022bakshi}, the stock price, $S_T$, can be modeled by
\begin{equation} \label{process}
	S_T = F^T_t e^{\left(-\frac{1}{2} \sigma^2 + \mu_c\right)\tau + \sigma \sqrt{\tau} y}
\end{equation}
where $\sigma$, $\mu_c$, and $y$ is the standard deviation, convexity adjustment term, and a random variable, respectively. Using the Gram-Charlier density, if $y$ has probability density
\begin{equation} \label{gramcharlier}
	f\left(y\right) = n\left(y\right) - \frac{\lambda_1}{3!} \frac{d^3n\left(y\right)}{dy^3} + \frac{\lambda_2}{4!} \frac{d^4n\left(y\right)}{dy^4}
\end{equation}
where $\displaystyle n(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$, then $y$ will have a mean of zero, variance of one, skewness equal to $\lambda_1$, and an excess kurtosis of $\lambda_2$. The forward price, $F^T_t$, is related to the current stock price, $S_t$, by $\displaystyle F^T_t = S_t e^{(r-q) \tau}$, where $r$ is the risk-free rate, and $q$ is the dividend yield. The convexity adjustment term is required to keep this model arbitrage-free by ensuring that the stock price satisfies the martingale condition, $F^T_t = E^{\mathbb{Q}}_{t} (S_T)$, in the risk-nuetral world and was be found to be
\begin{equation} \label{mu}
	\mu_c = -\frac{1}{\tau} \ln \left[1+\frac{\lambda_1}{3!} \left(\sigma \sqrt{\tau}\right)^3 + \frac{\lambda_2}{4!} \left(\sigma \sqrt{\tau}\right)^4\right].
\end{equation}
Then, it is easy to prove that the third central moment of the log-return under the Gram-Charlier density, $TCM$, is $\displaystyle (\sigma \sqrt{\tau})^3 \lambda_1$. After combining with Equation (\ref{definitionfull}), Proposition \ref{ppgram}, the exact model of the $RIX$ under the Gram-Charlier density can be obtained.

\begin{proposition} \label{ppgram}
	The exact model of the $RIX$ under the Gram-Charlier density at time $t$ is
	\begin{equation}
		\begin{aligned} \label{numericalfull}
			RIX_t &= -3 \left(-\frac{1}{2} \sigma^2 + \mu_c\right)^2 \tau^2 - 6 \mu_c \tau.
		\end{aligned}
	\end{equation}
    The derivation is shown in Appendix \ref{sec:APPENDIX B}.
\end{proposition}

\begin{remark}
	\textup{\citeauthoryear{aschakulporn2022bakshi} stated the annualized $RIX$ under the Gram-Charlier density in their Appendix C as
		\begin{equation}
			\begin{aligned} \label{beamrix}
				RIX_t &= \left(r - q -\frac{1}{2} \sigma^2 + \mu_c\right)^2 \tau + 2 \mu_c.
			\end{aligned}
		\end{equation}
		Since \citeauthoryear{aschakulporn2022bakshi} employed $S_t$ rather than the forward price $F^T_t$ to compute the log-return, the model includes two additional terms, $r$ and $q$, which are related to $S_t$. The $RIX$ developed by us is opposite to previous studies and is three times larger, which are explained in Definition \ref{begindefinition}. Also, by using $F^T_t$, we keep the derivations in this study consistant.}
\end{remark}

\begin{remark}
	\textup{The $TM$ at time $t$ can also be derived by combining the Gram-Charlier density with Equation (\ref{cubicrelation})
		\begin{equation}
			\begin{aligned} \label{numericalcubic}
				TM_t &= \left(-\frac{1}{2} \sigma^2 + \mu_c\right)^3 \tau^3 + 3 \left(-\frac{1}{2} \sigma^2 + \mu_c\right) \left(\sigma \tau\right)^2  + \left(\sigma \sqrt{\tau} \right)^3 \lambda_1.
			\end{aligned}
		\end{equation}
	The derivation is shown in Appendix \ref{sec:APPENDIX C}.
	}
\end{remark}

\begin{remark}
	\textup{To show the differences between the $RIX$ and $TM$ more clearly, we perform a Taylor expansion on Equations (\ref{numericalfull}) and (\ref{numericalcubic}) and get the following results
		\begin{equation*}
			\begin{aligned}
				RIX_t =& \lambda_1 \left(\sigma \sqrt{\tau}\right)^3 + \frac{1}{4} \left(\lambda_2 - 3\right) \left(\sigma \sqrt{\tau}\right)^4 + O \left(\sigma \sqrt{\tau}\right)^5, \\
				TM_t =& \lambda_1 \left(\sigma \sqrt{\tau}\right)^3 - \frac{3}{2} \left(\sigma \sqrt{\tau}\right)^4 + O \left(\sigma \sqrt{\tau}\right)^5.
			\end{aligned}
		\end{equation*}
		Although the first term of the expanded $RIX$ and $TM$ are the same, giving the $TCM$, the crucial distinction lies in the inclusion of terms beyond the third-order, which is included in the $RIX$.
	}
\end{remark}

\begin{remark}
	\textup{It can be inferred that the $RIX$ is a function of the skewness and kurtosis referring to Equations (\ref{mu}), (\ref{numericalfull}), and (\ref{numericalcubic}). After accounting for the Gram-Charlier positive-definite boundary argued in \textcite{aschakulporn2022bakshi}, Figure \ref{tab:combinedfiguresfullrangetaylor} displays the relationships among the $RIX$, $TM$, and $TCM$, with the setting of $\sigma=0.2$, $\tau=1/12$, and $\lambda_2=2, 2.5, 3,$ and $3.5$, based on Equations (\ref{numericalfull}) and (\ref{numericalcubic}), respectively. The negligible divergences observed among the $RIX$, $TM$, and $TCM$ signify their similarity in capturing the third moment risks. Additionally, the $RIX$ also accounts for risks from higher moments, reflecting its robustness as an indicator of the tail risks. 
	}
\end{remark}

\InsertHere{tab:combinedfiguresfullrangetaylor}
\begin{figure}[ht!]
	\centering
	\begin{adjustbox}{width=1\textwidth, center}
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	\caption[Relationships among the $RIX$, $TM$ and $TCM$.]{
		\textbf{Relationships among the $RIX$, $TM$ and $TCM$.} \\
		This figure shows the relationships among the $RIX$, $TM$ and $TCM$, with the setting of $\sigma=0.2$, $\tau=1/12$, and $\lambda_2=2, 2.5, 3,$ and $3.5$, based on Equation (\ref{numericalfull}) and Equation (\ref{numericalcubic}).
		\label{tab:combinedfiguresfullrangetaylor}
	}
\end{figure}

\subsection{Downside Risk of the $\boldmath{RIX^-}$}
According to existing literature, market crashes draw more attention from investors compared to a bull market. Since tail risk concerns with the extreme downside jumps can be computed by OTM puts, the $RIX^-$, which refers to the lower half range of the $RIX$, is easily obtained through the model-free measure. The formula of the $RIX^-$ under the Gram-Charlier density can also be derived through the risk-neutral expectation of OTM puts, then, the parameters can be estimated. Moreover, the relationship between the $RIX^-$ and $TM^-$ is also of interest for us to explore. \\

On the basis of Equation (\ref{modelfreerix}), the model-free measure of the $RIX^-$ at time $t$ can be inferred to be the second term related to the OTM put options
\begin{equation}
	\begin{aligned} \label{modelfreehalfrix}
		RIX^-_t &= e^{r \tau} \int_{0}^{F_t^T} \frac{6}{K^2} \ln \frac{K}{F_t^T} P_t(K) \, d K,
	\end{aligned}
\end{equation}
which is also applicable to the $TM^-$
\begin{equation}
	\begin{aligned} \label{modelfreehalftm}
		TM^-_t = e^{r \tau} \int_{0}^{F_t^T} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) P_t(K) \, d K.
	\end{aligned}
\end{equation}

Moreover, the probability of downside risk occurring will be the probability that the stock price is lower than the forward price, $P(S_T < F^T_t) = E\left(\mathds{1}_{S_T<F^T_t}\right)$. Consequently, the $RIX^-$ is the combination of the indicator function and Equation (\ref{definitionfull}), and is composed of three components. The three components are the current value of a European put option, semi-expectation of the log-return, and semi-second moment of the log-return as follows
\begin{equation} \label{threecomponents}
	\begin{aligned}
		RIX^-_t =& -\frac{6}{F^T_t} E^{\mathbb{Q}}_{t} \left[ \max \left( F^T_t - S_T, 0 \right) \right] - 6E^{\mathbb{Q}}_{t} \left(\ln \frac{S_T}{F^T_t} \times \mathds{1}_{S_T<F^T_t}\right) - 3E^{\mathbb{Q}}_{t} \left( \ln^2 \frac{S_T}{F^T_t} \times \mathds{1}_{S_T<F^T_t}\right).
	\end{aligned}
\end{equation}

Based on Equation (\ref{process}), it must satisfy $\displaystyle y < - \frac{\left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \sqrt{\tau}}{\sigma}$ under the Gram-Charlier density to guarantee that $S_T < F^T_t$. We set $\displaystyle d_2 = \frac{\left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \sqrt{\tau}}{\sigma}$, so the $RIX^-$ is an indicator of potential market crashes only when $\displaystyle y < -d_2$. Then, the exact model of the $RIX^-$ can be obtained by rewriting Equation (\ref{threecomponents}) under the Gram-Charlier density.

\begin{proposition} \label{ppGCthree}
	$RIX^-$ under the Gram-Charlier density at time $t$ is
	\begin{equation}
		\begin{aligned} \label{GCthree}
			RIX^-_t =& A + B \beta_0 + C \beta_1 + D \beta_2
		\end{aligned}
	\end{equation}
	where
	\begin{equation*}
		\begin{aligned}
			A &= -6 \left[N(d_1) - N(d_2) + n(d_2) \left(\frac{\lambda_1}{3!} E + \frac{\lambda_2}{4!} F\right) \sigma \sqrt{\tau}\right], \\
			B &= -6 \left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \tau - 3 \left(-\frac{1}{2} \sigma ^2 + \mu_c\right)^2 \tau^2, \\
			C &= -6 \sigma \sqrt{\tau} - 6 \left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \sigma \left(\sqrt{\tau}\right)^3, \qquad D = -3 \sigma^2 \tau,\\
			E &= -\left(d_2 - \sigma \sqrt{\tau}\right), \qquad F = -\left(1 - d_2^2 + \sigma \sqrt{\tau} d_2 - \sigma^2 \tau\right), \\
			d_2 &= \frac{\left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \tau}{\sigma \sqrt{\tau}}, \qquad d_1 = d_2 + \sigma \sqrt{\tau}, \\
			\beta_0 &= N(-d_2) + \frac{\lambda_1}{3!} (-d_2^2 + 1) n(-d_2) + \frac{\lambda_2}{4!} (d_2^3 - 3 d_2) n(-d_2), \\
			\beta_1 &= -n(-d_2) + \frac{\lambda_1}{3!} d_2^3 n(-d_2) + \frac{\lambda_2}{4!} (-d_2^4 + 2 d_2^2 + 1) n(-d_2),\\
			\beta_2 &= d_2 n(-d_2) + N(-d_2) + \frac{\lambda_1}{3!} (-d_2^4 - d_2^2 - 2) n(-d_2) + \frac{\lambda_2}{4!} (d_2^5 - d_2^3) n(-d_2).
		\end{aligned}
	\end{equation*}
    The derivation is shown in Appendix \ref{sec:APPENDIX D}.
\end{proposition}

\begin{remark}
	\textup{The pricing formula of a European call option with skewness and kurtosis has been proposed by \citeauthoryear{aschakulporn2022bakshi} as
		\begin{equation}
			\begin{aligned} \label{beamcall}
				c_t = F^T_t e^{-r \tau} N(d_3) - K e^{-r \tau} N(d_4) +  K e^{-r \tau} n(d_4) \left(\frac{\lambda_1}{3!} E + \frac{\lambda_2}{4!} F\right) \sigma \sqrt{\tau}
			\end{aligned}
		\end{equation}
		where
		\begin{equation*}
			\begin{aligned}
				E &= -\left(d_4 - \sigma \sqrt{\tau}\right), \qquad F = -\left(1 - d_4^2 + \sigma \sqrt{\tau} d_4 - \sigma^2 \tau\right), \\
				d_4 &= \frac{\ln \left(F^T_t / K\right) + \left(-\frac{1}{2} \sigma ^2 + \mu_c\right) \tau}{\sigma \sqrt{\tau}}, \qquad d_3 = d_4 + \sigma \sqrt{\tau}.
			\end{aligned}
		\end{equation*}
		As for the value of a European put option, it can be easily computed by using the put-call parity, $\displaystyle c_t(K) - p_t(K) = F^T_t e^{-r \tau} - K e^{-r \tau}$. Once the forward price is equal to the strike price, we get $\displaystyle c_t(F^T_t) = p_t(F^T_t) = e^{-r \tau} E^{\mathbb{Q}}_{t} \left[ p_T \left(F_t^T\right)\right]$. Additionally, $d_4$ is exactly the same as $d_2$ when $F^T_t$ is equal to $K$. Therefore, the first term of Equation (\ref{threecomponents}) can be determined to be
		\begin{equation*}
			\begin{aligned}
				-\frac{6}{F^T_t} E^{\mathbb{Q}}_{t} \left[ \max \left( F^T_t - S_T, 0 \right) \right] &= -\frac{6}{F^T_t} e^{r \tau} p_t(F^T_t) = -\frac{6}{F^T_t} e^{r \tau} c_t(F^T_t)
			\end{aligned}
		\end{equation*}
		where $F^T_t$ is equal to $K$.}
\end{remark}

\begin{remark}
	\textup{According to Equation (\ref{process}), the log-return under the Gram-Charlier density is
		\begin{equation*}
			\begin{aligned}
				\ln \frac{S_T}{F^T_t} =  \left(- \frac{1}{2} \sigma^2 + \mu_c \right)\tau + \sigma \sqrt{\tau} y.
			\end{aligned}
		\end{equation*} 
		Therefore, the last two terms of Equation (\ref{threecomponents}) are associated with the risk-neutral expectation of $y$ and the indicator function. To enhance conciseness of formula, we employ $\beta_n$ to refer to $\displaystyle E^{\mathbb{Q}}_{t} \left(y^n \times \mathds{1}_{S_T<F^T_t}\right)$, respectively. More specifically, we denote $\beta_0$, $\beta_1$, and $\beta_2$ as semi-probability, semi-expectation of $y$, and semi-second moment of $y$.}
\end{remark}

\begin{remark}
	\textup{The $TM^-$ under the Gram-Charlier density can be easily obtained. The only difference compared to the $RIX^-$ is the semi-expectation of $y^3$, $E^{\mathbb{Q}}_{t} \left(y^3 \times \mathds{1}_{S_T<F^T_t}\right)$, which is denoted as $\beta_3$. Consequently, $\beta_3$ can be regarded as the semi-third moment of $y$, and the exact model of the $TM^-$ at time $t$ is as follows
		\begin{equation}
			\begin{aligned} \label{GCTM}
				TM^-_t = G \beta_0 + H \beta_1 + I \beta_2 + J \beta_3
			\end{aligned}
		\end{equation}
		where
		\begin{equation*}
			\begin{aligned}
				G &= \left(-\frac{1}{2} \sigma ^2 + \mu_c\right)^3 \tau^3, \qquad H = 3\left(-\frac{1}{2} \sigma ^2 + \mu_c\right)^2\sigma \left(\sqrt{\tau}\right)^5, \\
				I &= 3\left(-\frac{1}{2} \sigma ^2 + \mu_c\right)\sigma^2 \tau^2, \qquad J = \sigma^3 \left(\sqrt{\tau}\right)^3, \\
				\beta_3 &= (-d_2^2 - 2) n(-d_2) + \frac{\lambda_1}{3!} [(d_2^5 + 2d_2^3 + 6 d_2) n(-d_2) + 6 N(-d_2)] + \frac{\lambda_2}{4!} (-d_2^6  - 3d_2^2 -6) n(-d_2).
			\end{aligned}
		\end{equation*} 
	The derivation is shown in Appendix \ref{sec:APPENDIX E}.
	}
\end{remark}

\begin{remark}
\textup{Similarly, after accounting for the Gram-Charlier positive-definite boundary argued in \textcite{aschakulporn2022bakshi}, Figure \ref{tab:combinedfigureshalfrangetaylor} displays the relationship between the $RIX^-$ and $TM^-$, with the setting of $\sigma=0.2$, $\tau=1/12$, and $\lambda_2=2, 2.5, 3,$ and $3.5$, based on Equations (\ref{GCthree}) and (\ref{GCTM}), respectively. Compared with Figure \ref{tab:combinedfiguresfullrangetaylor}, Figure \ref{tab:combinedfigureshalfrangetaylor} reveals that the $RIX^-$ and $TM^-$ are significantly closer, indicating that the third moment risks contribute more substantially during periods of adverse market movements compared to the other higher-order risks. The results also show the superior performance of the $RIX^-$ particularly as an indicator of the left tail risks.
}
\end{remark}
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\begin{figure}[ht!]
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	\caption[Relationship between the $RIX^-$ and $TM^-$.]{
		\textbf{Relationship between the $RIX^-$ and $TM^-$.} \\
		This figure shows the relationship between the $RIX^-$ and $TM^-$, with the setting of $\sigma=0.2$, $\tau=1/12$, and $\lambda_2=2, 2.5, 3,$ and $3.5$, based on Equation (\ref{GCthree}) and Equation (\ref{GCTM}).
		\label{tab:combinedfigureshalfrangetaylor}
	}
\end{figure}
	

\section{Data and Methodology}\label{sec:Data and Methodology}
Our aim is to enhance the comprehension of the $RIX$, which has been used as a proxy for tail risks in several studies \parencite[e.g.,][]{gao2018hedge,gao2019tail,liu2022can}. However, none of these articles present the time series of the $RIX$, instead directly employing it in empirical research, leading to an incomplete perception of the $RIX$. This study has numerically revealed the essence of the $RIX$ along with its relationships with the $TM$ and $TCM$. To present the $RIX$ clearly, we will construct the time series and term structure based on the market data in this section.
	
\subsection{Data}
We opt for SPX options, traded on the CBOE, as the primary sample to generate the time series of the $RIX$. This selection enables us to directly compare the $RIX$ with the $VIX$ and $SKEW$ listed on the CBOE since the underlying of these indices is the same. Daily transaction data for SPX options are provided by OptionMetrics, and the values of the $VIX$ and $SKEW$ are collected from the CBOE. For our analysis, we exclusively retain monthly trading options, while weekly trading options are omitted. The dataset encompasses the entirety of the COVID-19 pandemic, ranging from 1 January, 2020 to 28 February, 2023, a period marked by significant economic downturns. Daily interest rates are derived via linearly interpolation and extrapolation of the US Treasury yield rates, as sourced from the U.S. Department of the Treasury website. The data are screened following the filters outlined in the CBOE $VIX$ White Paper,\footnote{The CBOE $VIX$ White Paper is \url{https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf}.} ensuring consistancy with the $VIX$ and $SKEW$. The forward price, $F_t^T$, is also computed following the CBOE $VIX$ White Paper.

\subsection{Methodology}
After filtering based on the CBOE $VIX$ White Paper, the screened data is used to calculate the time series and term structure of the $RIX$ based on the model-free measures as detailed in Equation (\ref{modelfreerix}). However, direct integration is not possible due to the inherent constraints of limited trading option strike prices. The trapezium rule (viz. trapezoidal integration) is widely employed to counter this issue by approximating the definite integral within the confines market data \parencite{dennis2002risk,jiang2005model,conrad2013ex,neumann2013predictable,chang2013market,chatrath2016examination,stilger2017does,ruan2018risk,liu2022can}. Consequently, applying the trapezium rule to Equation (\ref{modelfreerix}), the integral can be discretized to
\begin{equation}
	\begin{aligned} \label{trapeziumrix}
		RIX_t = 6 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} \ln \frac{K_i}{F_t^T} Q(K_i)
	\end{aligned}
\end{equation}
where
\begin{equation} \label{deltak}
\Delta K_i = \left\{
	\begin{aligned} 
& K_2 - K_1, &&\quad i = 1 \\
& \frac{1}{2} \left(K_{i+1} - K_{i-1}\right), &&\quad 1 < i < n \\
& K_n - K_{n-1}, &&\quad i = n
	\end{aligned}
\right.
\end{equation}
and $n$ is the number of strikes. Equation \ref{deltak} is defined in the CBOE $VIX$ White Paper. Similarly, the same procedure can also be applied to Equation (\ref{modelfreetm}) and we have
\begin{equation}
	\begin{aligned} \label{trapeziumtm}
		TM_t = 3 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} \left(2 \ln \frac{K_i}{F_t^T} - \ln^2 \frac{K_i}{F_t^T}\right) Q(K_i).
	\end{aligned}
\end{equation}
\\
Moreover, we also replicate the time series of the $TCM$, $JTIX$, $VIX$, $SKEW$, and different payoff contracts stated in BKM. Specifically, the $BKM_n$ corresponds to the values of $E^{\mathbb{Q}}_{t} \left(R_{\tau}^n\right)$, where $R_{\tau}$ is the log-returns $\displaystyle \ln \frac{S_T}{F_t^T}$.\footnote{The mean is approximated in BKM by setting the dividend yield, $q$, to zero:
	\begin{equation*}
			E^{\mathbb{Q}}_{t} \left(R_{\tau}\right) = \mu_{\tau} = e^{r \tau} - 1 - \frac{1}{2!} E^{\mathbb{Q}}_{t} \left(R_{\tau}^2\right) - \frac{1}{3!} E^{\mathbb{Q}}_{t} \left(R_{\tau}^3\right) - \frac{1}{4!} E^{\mathbb{Q}}_{t} \left(R_{\tau}^4\right).
	\end{equation*}
} The computations of these indices using trapezium rule are\footnote{We also calculate the time series for indices focusing solely on the downside risk with OTM options, designated as $RIX^-, TM^-, TCM^-, BKM^-_2, BKM^-_3, BKM^-_4, BKM^-_1, VIX^{2^-}$, and $JTIX^-$.}
\begin{align}
	&BKM_{2_t} = E^{\mathbb{Q}}_{t} \left(R_{\tau}^2\right) = 2 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} \left(1 - \ln \frac{K_i}{F_t^T}\right) Q(K_i),  & \label{trapeziumvo} \\
	&BKM_{3_t} = E^{\mathbb{Q}}_{t} \left(R_{\tau}^3\right) = 3 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} \left(2 \ln \frac{K_i}{F_t^T} - \ln^2 \frac{K_i}{F_t^T}\right) Q(K_i),\footnotemark  & \label{trapeziumcu} \\
	&BKM_{4_t} = E^{\mathbb{Q}}_{t} \left(R_{\tau}^4\right) = 4 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} \left(3 \ln^2 \frac{K_i}{F_t^T} - \ln^3 \frac{K_i}{F_t^T}\right) Q(K_i), & \label{trapeziumqu} \\
	&BKM_{1_t} = E^{\mathbb{Q}}_{t} \left(R_{\tau}\right) = e^{r \tau} - 1 - \frac{BKM_{2_t}}{2} - \frac{BKM_{3_t}}{6} - \frac{BKM_{4_t}}{24}, & \label{trapeziumme} \\
	&VIX_t^2 = 2 e^{r \tau} \sum_{i=1}^{\infty} \frac{\Delta K_i}{K_i^2} Q(K_i), & \label{trapeziumvix2} \\
	&JTIX_t = BKM_{2_t} - VIX_t^2, & \label{trapeziumjtix} \\
	&TCM_t = BKM_{3_t} - 3 BKM_{1_t} \times BKM_{2_t} + 2 BKM_{1_t}^3, & \label{trapeziumtcm} \\
	&Var_t = BKM_{2_t} - BKM_{1_t}^2, & \label{trapeziumvar} \\	
	&skewness_t = \frac{TCM_t}{Var_t^{\frac{3}{2}}}, & \label{trapeziumskewness} \\
	&VIX_t = 100 \sqrt{\frac{VIX_t^2}{\tau}}, & \label{trapeziumvix} \\
	&SKEW_t = 100 - 10 \times skewness_t. & \label{trapeziumskew}
\end{align}
\footnotetext{$BKM_3$ is the same as $TM$ since they are both the risk-neutral expectation of the cube of the log-return.}

The errors of estimators have been researched in several studies \parencite{jiang2005model,JiangGeorgeJ.2007EMVf,aschakulporn2022bakshiB}. Two primary sources of errors have been identified: truncation and discretization errors. The truncation errors arise from the finite range of strike prices available in the option market. Therefore, the bounds of integration would change from $K \in (0,\infty)$ to $K \in [K_{min},K_{max}]$. According to \textcite{aschakulporn2022bakshiB}, a boudary controlling factor, $a$, is introduced as
\begin{equation}\label{controlfactor}
   [K_{min},K_{max}] := [F_t^T \times a, F_t^T / a]
\end{equation}
where $a \in (0,1)$. Thus, as $a$ approaches $0$, $K_{min}$ and $K_{max}$ would approach $0$ and $\infty$, respectively, fulfilling the integral bounds. Conversely, as $a$ approaches $1$, the strike prices would align with the at-the-money (ATM) condition. As for the discretization errors, they come from the application of the trapezium rule, which is required as the market strikes are discrete and the difference is $\Delta K$. \\

These errors can be mitigated through interpolation and extrapolation techniques. \textcite{aschakulporn2022bakshiB} estimate the $BKM$ skewness using a variety of interpolation and extrapolation methods, including constant, linear, cubic spline, and Gaussian kernel approaches, and compare these estimators with the true model based value computed via stochastic volatility and contemporaneous jumps (SVCJ) model developed by \textcite{duffie2000transform}. Subsequently, they discover that linear interpolation of the implied volatility curve, coupled with constant extrapolation using $\Delta K = 0.05\% \times F_t^T$ and $a = 0.25$, yields the most reliable skewness estimation within $10^{-3}$ of the true value. Consequently, we adopt this configuration for the construction of our indices. Figures \ref{tab:compareVIX} and \ref{tab:compareSKEW} compare the CBOE $VIX$ and $SKEW$ to the $VIX$ and $SKEW$ estimated using the aforementioned approaches. Despite the replication not being identical, the estimations closely approximate the CBOE indices, as shown by the correlations of 0.99 and 0.97 for the $VIX$ and $SKEW$, respectively. This signifies that the deviations are insignificant, supporting the feasibility of the method. Therefore, we use the estimated values as benchmarks to proceed with our investigation.
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	\caption[Comparison between the CBOE $VIX$ and the Estimated $VIX$.]{\textbf{Comparison between the CBOE $VIX$ and the Estimated $VIX$.} \\
		This figure shows the comparison between the CBOE $VIX$ and the Estimated $VIX$, with linear interpolation and constant extrapolation of the implied volatility curve and setting $\Delta K = 0.05\% \times F_t^T$ and $a = 0.25$, based on Equation (\ref{trapeziumvix}), from 1 January, 2020 to 28 February, 2023. The correlation is 0.99.
		\label{tab:compareVIX}
	}
\end{figure}
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\begin{figure}[ht!]
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	\caption[Comparison between the CBOE $SKEW$ and the Estimated $SKEW$.]{\textbf{Comparison between the CBOE $SKEW$ and the Estimated $SKEW$.} \\
		This figure shows the comparison between the CBOE $SKEW$ and the Estimated $SKEW$, with linear interpolation and constant extrapolation of the implied volatility curve and setting $\Delta K = 0.05\% \times F_t^T$ and $a = 0.25$, based on Equation (\ref{trapeziumskew}), from 1 January, 2020 to 28 February, 2023. The correlation is 0.97.
		\label{tab:compareSKEW}
	}
\end{figure}



\section{Results}\label{sec:Results}
In this section, we present the time series and term structures of the indices we constructed and analyze their relationships with the $RIX$.

\subsection{The $\boldmath{RIX}$ with the CBOE $\boldmath{VIX}$ and $\boldmath{SKEW}$}
First, we compare the CBOE $VIX$ and $SKEW$ following the CBOE SKEW White Paper.\footnote{The CBOE $SKEW$ White Paper is \url{https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf}.} The CBOE argues that the anticipation of market participants concerning a catastrophic market drop, often referred to as a “black swan” event, significantly influences perceived tail risk. Figure \ref{tab:comparetrendCBOEVIXSKEW} shows that during the COVID-19 pandemic, the $VIX$ reached its peak of 82.69\% on 16 March, 2020 within the sample period in a contemporaneous setting where the $SKEW$ was relatively low at 114.66.
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	\caption[Comparison between the trend of the $VIX$ and $SKEW$.]{\textbf{Comparison between the trend of the $VIX$ and $SKEW$.} \\
		This figure shows the comparison between the trend of the $VIX$ and $SKEW$ from 1 January 2020, to 28 February, 2023.
		\label{tab:comparetrendCBOEVIXSKEW}
	}
\end{figure}

Figure \ref{tab:comparexyCBOEVIXSKEW} illustrates that the $VIX$, before reaching extreme values over 40, is associated with both low and high levels of the $SKEW$. This observation suggests that there is variability in market perceptions and reactions to risk before the $VIX$ indicator signals a state of extreme market volatility. However, as the $VIX$ increases beyond 40, indicating extreme market turbulence, the range of the $SKEW$ values tends to narrow. The CBOE's explanation suggests that after a significant market downturn, the market's expectation for another immediate drop diminishes. This could be due to the initial market shock adjusting investors' expectations and risk assessments, leading to a recalibration of perceived future tail risks. Essentially, once the market has absorbed the impact of a major downturn, the anticipation of further immediate declines is reduced, as participants might view the most immediate risks as already realized.
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	\caption[Scatter plot of the $VIX$ and $SKEW$.]{\textbf{Scatter plot of the $VIX$ and $SKEW$.} \\
		This figure is a scatter plot of the $VIX$ and $SKEW$ from 1 January, 2020 to 28 February, 2023.
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	}
\end{figure}

Contrastingly, Figures \ref{tab:comparetrendCBOERIXVIX} and \ref{tab:comparexyCBOERIXVIX} illustrate a distinctly different relationship between the $VIX$ and $RIX_{30}$ in comparison to the relationship observed between the CBOE $VIX$ and $SKEW$. Serving as a proxy for tail risks, the $RIX_{30}$ and $VIX$ exhibit corresponding trends within the same periods, opposite to the behavior of the CBOE $SKEW$. This divergence lies in the intrinsic association between the $SKEW$ and $VIX$, rooted in their conceptual framework. More specifically, the $SKEW$ can be characterized as approximating an inverse square root relationship with the $VIX$, a functional dependency that mirrors the graphical representation observed in Figure \ref{tab:comparexyCBOEVIXSKEW}. As the $VIX$ increases, the value of the $SKEW$ would decrease, suggesting that expectations of extreme negative tail events become less pronounced as immediate market volatility rises. Therefore, instead of directly comparing the $RIX$ with the $VIX$ or $SKEW$, our analysis shifts to comparing the $RIX$ against the $VIX^2$ and $TCM$.
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	\caption[Comparison between the trend of $VIX$ and $-RIX_{30}$.]{\textbf{Comparison between the trend of $VIX$ and $-RIX_{30}$.} \\
		This figure shows the comparison between the trend of $VIX$ and $-RIX_{30}$ from 1 January 2020 to 28 February 2023.
		\label{tab:comparetrendCBOERIXVIX}
	}
\end{figure}
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	\caption[Scatter plot of $VIX$ and $-RIX_{30}$.]{\textbf{Scatter plot of $VIX$ and $-RIX_{30}$.} \\
		This figure is a scatter plot of $VIX$ and $-RIX_{30}$ from 1 January 2020 to 28 February 2023.
		\label{tab:comparexyCBOERIXVIX}
	}
\end{figure}

\subsection{The $\boldmath{RIX}$ with $\boldmath{JTIX}$}
As introduced by \textcite{du2012tail}, the $JITX$ is computed by Equation (\ref{trapeziumjtix}), which is the difference between the $BKM_2$ and $VIX^2$, and constitutes one third of our $RIX$. Subsequently, we conduct a comparative analysis among the $RIX$, $BKM_2$, and $VIX^2$, focusing on a 30-day term structure. Figure \ref{tab:comparefullrangeVIXBKM2} shows that the two measures of stock return variability, the $BKM_2$ and $VIX^2$, exhibit similar patterns, with the former consistently exceeding the latter. Nevertheless, at each peak, the discrepancy between the $BKM_2$ and $VIX^2$ is significantly greater compared to their differences at lower levels, thereby highlighting an escalation in potential tail risks as represented by the $JTIX$. This phenomenon emphasizes the dynamics between market volatility and tail risk perceptions, providing a robust framework for analyzing market fluctuations and their implications on risk assessment. Moreover, the interplay between the $BKM_2$ and $VIX^2$ substantiates the contemporaneous nature of the second moment risk with higher-order risks, which is supported by Figure \ref{tab:comparefullrangeBKM2RIX}.
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	\caption[Comparison between the trend of the $BKM_{2_{30}}$ and $VIX^2_{30}$.]{\textbf{Comparison between the trend of the $BKM_{2_{30}}$ and $VIX^2_{30}$.} \\
		This figure shows the comparison between the trend of the $BKM_2$ and $VIX^2$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparefullrangeVIXBKM2}
	}
\end{figure}
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	\caption[Comparison between the trend of the $BKM_{2_{30}}$ and $-RIX_{30}$.]{\textbf{Comparison between the trend of the $BKM_{2_{30}}$ and $-RIX_{30}$.} \\
		This figure shows the comparison between the trend of the $BKM_2$ and $-RIX$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparefullrangeBKM2RIX}
	}
\end{figure}

This phenomenon becomes more pronounced when attention is narrowed to the lower half range, as illustrated by Figures \ref{tab:comparehalfrangeVIXBKM2} and \ref{tab:comparehalfrangeBKM2RIX}. Concentrating on the lower half range emphasizes the extremities of market behaviors, where the $BKM_2$ and $VIX^2$, and their divergence, are likely more accentuated. This focused analysis reveals the heightened sensitivity of the $BKM_2$ and $VIX^2$ to adverse market conditions, further clarifying the escalated potential for tail risks as indicated by the $RIX$. By focusing on this segment, the figures underscore the significant disparities between standard volatility measures and the acute stress indicators in the market's lower distribution, offering a deeper understanding of the mechanisms that drive market extremes and the inherent risks associated with them. This approach not only highlights the critical relationship between the traditional volatility and extreme adverse risk but also demonstrates how specific market conditions can amplify the perceived risk, thereby providing a clearer picture of market vulnerabilities.
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	\caption[Comparison between the trend of the $BKM^-_{2_{30}}$ and $VIX^{2^-}_{30}$.]{\textbf{Comparison between the trend of the $BKM_{2_{30}}$ an $VIX^{2^-}_{30}$.} \\
		This figure shows the comparison between the trend of the $BKM^-_2$ and $VIX^{2^-}$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparehalfrangeVIXBKM2}
	}
\end{figure}
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	\caption[Comparison between the trend of the $BKM^-_{2_{30}}$ and $-RIX^-_{30}$.]{\textbf{Comparison between the trend of the $BKM^-_{2_{30}}$ and $-RIX^-_{30}$.} \\
		This figure shows the comparison between the trend of the $BKM^-_2$ and $-RIX^-$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparehalfrangeBKM2RIX}
	}
\end{figure}

\subsection{The $\boldmath{RIX}$ with $\boldmath{TM}$ and $\boldmath{TCM}$}
Following the comparison of the second moment risks, we proceed to analyze the efficiency of the $RIX$ in encompassing the third moment risks. Figure \ref{tab:comparefullrange30} displays that the $RIX$ effectively cover the $TM$ and $TCM$ as evidenced by their nearly identical values, which are threefold the values of the $JTIX$. This congruence highlights the comprehensive nature of the $RIX$ in reflecting skewness and asymmetry inherent in third moment risks. The robust alignment between the $RIX$ and higher-order moments is further emphasized when the analysis is narrowed to focus on the downside risks with higher values, as demonstrated in Figure \ref{tab:comparehalfrange30}. Even in this focused view, which pays attention to the market's response to adverse conditions, the $RIX^-$ maintains its effectiveness in mirroring the behavior of the $TM$ and $TCM$. This persistence underlines the utility of the $RIX$ as a holistic measure that effectively integrates various dimensions of market risk, offering valuable insights into the underlying dynamics of market distributions, particularly in indicating the essence of tail risks and market downturns.
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	\caption[Comparison among the trends of the $RIX_{30}$, $-JTIX_{30}$, $TM_{30}$, and $TCM_{30}$.]{\textbf{Comparison among the trends of the $RIX_{30}$, $-JTIX_{30}$, $TM_{30}$, and $TCM_{30}$.} \\
		This figure shows the comparison among the trends of the $RIX$, $-JTIX$, $TM$, and $TCM$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparefullrange30}
	}
\end{figure}
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	\caption[Comparison among the trends of the $RIX^-_{30}$, $-JTIX^-_{30}$, $TM^-_{30}$, and $TCM^-_{30}$.]{\textbf{Comparison among the trends of the $RIX^-_{30}$, $-JTIX^-_{30}$, $TM^-_{30}$, and $TCM^-_{30}$.} \\
		This figure shows the comparison among the trends of the $RIX^-$, $-JTIX^-$, $TM^-$, and $TCM^-$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparehalfrange30}
	}
\end{figure}

In addition, we illustrate the differences among the $RIX$, $TM$, and $TCM$ in Figure \ref{tab:comparefullrangediffTMTCMRIX} spanning the entire range and Figure \ref{tab:comparehalfrangediffTMTCMRIX} for the lower half range specifically. Observations indicate that the differences between the $TM$ and $TCM$ are comparatively minor, even when potential tail risks increase, which is consistent with our numerical results in \hypref{sec:Theory}. Conversely, the divergences between the $RIX$ and $TM$, as well as the $RIX$ and $TCM$, while modest under standard market conditions, tend to widen during periods of rising risks. Intriguingly, these differences contract when the analysis is strictly limited to the lower half range, signifying that the $RIX$ possesses a heightened proficiency in encapsulating market downside risks.
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	\caption[Comparison of the differences among the $RIX_{30}$, $TM_{30}$, and $TCM_{30}$.]{\textbf{Comparison of the differences among the $RIX_{30}$, $TM_{30}$, and $TCM_{30}$.} \\
		This figure shows the comparison of the differences among the $RIX$, $TM$, and $TCM$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparefullrangediffTMTCMRIX}
	}
\end{figure}
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	\caption[Comparison of the differences among the $RIX_{30}$, $TM_{30}$, and $TCM_{30}$.]{\textbf{Comparison of the differences among the $RIX_{30}$, $TM_{30}$, and $TCM_{30}$.} \\
		This figure shows the comparison of the differences among the $RIX$, $TM$, and $TCM$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparehalfrangediffTMTCMRIX}
	}
\end{figure}

This phenomenon underscores the nuanced capability of the $RIX$ as an indicator to more accurately reflect the severity and likelihood of negative market outcomes, particularly in scenarios characterized by elevated tail risks. The comparative analysis reveals that while the $TM$ and $TCM$ offer valuable insights into the skewness and dispersion of returns, the $RIX$ provides a more comprehensive gauge of downside risk, indicating both the frequency and magnitude of extreme market downturns. The reduction in discrepancies specifically within the lower half range context further emphasizes the critical role of the $RIX$ in risk management and assessment strategies, particularly for stakeholders focused on mitigating potential losses during turbulent market periods.

\subsection{Term Structures of the $\boldmath{RIX}$}
We also present the term structures of the $RIX$ across various durations—30-day, 60-day, and 90-day periods—to analyze how it behaves over different forward-looking horizons. As demonstrated in both Figures \ref{tab:comparefullrangeRIX} and \ref{tab:comparehalfrangeRIX}, although the $RIX^-$ consistently exceeds the $RIX$ in value across all observed periods, both tend to exhibit higher values as the length of the forward-looking horizon extends. This feature suggests a critical insight into the nature of the $RIX$ as a risk measure: its sensitivity to the temporal dimension of risk assessment, since the increase in the $RIX$ with longer horizons reflects growing uncertainty. Intuitively, the market's anticipation of future tail risk becomes more pronounced over longer durations, possibly due to the accumulation of unforeseen factors and the compounding effect of risk over time. Such observations highlight the importance of considering the time dimension in the assessment of market risks. For practitioners and researchers alike, understanding the term structure of the $RIX$ provides valuable insights into the dynamic nature of market risk and its implications for strategic planning and risk management, as highlighted in prior studies \parencite{gao2018hedge,gao2019tail,liu2022can}.
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	\caption[Term structures of the $RIX$.]{\textbf{Term structures of the $RIX$.} \\
		This figure shows the term structures of the $RIX$ for 30-day, 60-day, and 90-day periods from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparefullrangeRIX}
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\end{figure}
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	\caption[Term structures of the $RIX^-$.]{\textbf{Term structures of the $RIX^-$.} \\
		This figure shows the term structures of the $RIX^-$ for 30-day, 60-day, and 90-day periods from 1 January, 2020 to 28 February, 2023.
		\label{tab:comparehalfrangeRIX}
	}
\end{figure}

Additionally, we explore the variations within different ranges of the $RIX$ utilizing a 30-day term structure, as illustrated in Figure \ref{tab:comparediffrange30}. Reasonably, the $RIX^+$, calculated from OTM calls based on Equation (\ref{trapeziumrix}) and representing essentially the difference between the $RIX$ and $RIX^-$, is found to be positive yet significantly smaller than the absolute values of the $RIX$ and $RIX^-$. This outcome suggests that the $RIX^-$, by capturing a broader spectrum of negative market movements, is particularly feasible for quantifying extreme downside risks. The differentiation between the $RIX^+$ and $RIX^-$ underlines the nuanced dynamics of market risk, where the $RIX^-$ serves as a more sensitive indicator of adverse market conditions. The relative smallness of the $RIX^+$ highlights its specific role in the risk measurement framework, potentially indicating lesser concern for extreme positive market movements compared to the pronounced focus on negative shifts.
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	\caption[Comparison of different ranges of the $RIX_{30}$.]{\textbf{Comparison of different ranges of the $RIX_{30}$.} \\
		This figure shows the comparison of different ranges of the $RIX$ with a 30-day term structure from 1 January, 2020 to 28 February, 2023. The $RIX^+$ is calculated from OTM calls based on Equation (\ref{trapeziumrix}), which is essentially the difference between the $RIX$ and $RIX^-$.
		\label{tab:comparediffrange30}
	}
\end{figure}


\section{Conclusion}\label{sec:Conclusion}
In conclusion, our study embarks on a comprehensive journey to demystify the $RIX$, a critical indicator in understanding and quantifying market tail risks. Through the lens of both theoretical innovation and numerical scrutiny, we have shed light on the multifaceted nature of the $RIX$ and its integral role in capturing the nuances of extreme market volatility. By redefining the $RIX$ and developing its exact model within the Gram-Charlier density framework, we have not only enhanced its mathematical robustness but also its interpretive clarity, offering a deeper insight into the underpinnings of market behaviors.\\

Our exploration also reveals the dynamic interplay between the the $RIX$ and other indices, establishing the comparative advantage of the $RIX$ in encapsulating market extreme uncertainties beyond conventional volatility measures. The temporal analysis across different forward-looking horizons further underscores the predictive flexibility of the $RIX$, affirming its significance in strategic risk management and investment decision-making.\\

The comparisons among the $RIX$ and third-order risks, especially within the lower half range, highlight the exceptional capability of the $RIX$ in signaling potential downturns and its sensitivity to the possibility of rare disasters. Such insights are invaluable for investors, risk managers, and policymakers aiming to navigate the complexities of financial markets.\\

Moving forward, this study lays a foundational stone for future research, encouraging a deeper examination of the $RIX$ and its applications in diverse market conditions. The bridging of theoretical depth with empirical analysis opens new avenues for understanding the intricacies of market risk and constructs an indicator that engages both scholars and practitioners.
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	\subsection{Derivations of the Model-Free Measure of the $RIX$}\label{sec:APPENDIX A}
On the basis of Equation (\ref{carr}), both Equations (\ref{definitionfull}) and (\ref{cubicrelation}) can be regarded as $\displaystyle H(x)$. Then, the application process on the $RIX$ is as follows
\begin{equation}
	\begin{aligned}
		H(x) &= 6 \left(\frac{x}{F_t^T} - 1 - \ln \frac{x}{F_t^T} - \frac{1}{2} \ln^2 \frac{x}{F_t^T}\right), \\
		H_x(x) &= 6 \left(\frac{1}{F^T_t} - \frac{1}{x} - \frac{1}{x} \ln \frac{x}{F^T_t}\right), \\
		H_{xx}(x) &= \frac{6}{x^2} \ln \frac{x}{F^T_t}.
	\end{aligned}
\end{equation}
Therefore, the model-free measure of the $RIX$ at time $t$ is
\begin{equation}
	\begin{aligned}
		RIX_t =& E^{\mathbb{Q}}_{t} \bigg[6 \left(\frac{F_t^T}{F_t^T} - 1 - \ln \frac{F_t^T}{F_t^T} - \frac{1}{2} \ln^2 \frac{F_t^T}{F_t^T}\right) + 6 \left(\frac{1}{F^T_t} - \frac{1}{F_t^T} - \frac{1}{F_t^T} \ln \frac{F_t^T}{F^T_t}\right) \left(x - F_t^T \right) \\
		& + \int_{0}^{F_t^T} \frac{6}{K^2} \ln \frac{K}{F^T_t} P_T(K) \, d K + \int_{F_t^T}^{\infty} \frac{6}{K^2} \ln \frac{K}{F^T_t} C_T(K) \, d K\bigg] \\
		=& e^{r \tau} \left[ \int_{0}^{F_t^T} \frac{6}{K^2} \ln \frac{K}{F_t^T} P_t(K) \, d K + \int_{F_t^T}^{\infty} \frac{6}{K^2} \ln \frac{K}{F_t^T} C_t(K) \, d K\right].
	\end{aligned}
\end{equation}
Similarly, $TM$ is
\begin{equation}
	\begin{aligned}
		H(x) &= \ln^3 \frac{x}{F^T_t}, \\
		H_x(x) &= \frac{3}{x} \ln^2 \frac{x}{F^T_t}, \\
		H_{xx}(x) &= \frac{6}{x^2} \ln \frac{x}{F^T_t} - \frac{3}{x^2} \ln^2 \frac{x}{F^T_t}.
	\end{aligned}
\end{equation}
Thus, the model-free measure of the $TM$ at time $t$ is
	\begin{equation}
		\begin{aligned}
			TM_t =& E^{\mathbb{Q}}_{t} \bigg[\ln^3 \frac{F^T_t}{F^T_t} + \frac{3}{F^T_t} \ln^2 \frac{F^T_t}{F^T_t} \left(x - F_t^T \right) + \int_{0}^{F_t^T} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) P_T(K) \, d K \\
			& + \int_{F_t^T}^{\infty} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) C_T(K) \, d K \bigg]\\
			=& e^{r \tau} \left[ \int_{0}^{F_t^T} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) P_t(K) \, d K + \int_{F_t^T}^{\infty} \left(\frac{6}{K^2} \ln \frac{K}{F_t^T} - \frac{3}{K^2} \ln^2 \frac{K}{F_t^T} \right) C_t(K) \, d K \right].
		\end{aligned}
	\end{equation}
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	\subsection{Derivations of the $RIX$ Under the Gram-Charlier Density}\label{sec:APPENDIX B}
Under the Gram-Charlier density, the values of three components of Equation (\ref{definitionfull}) are as follows:
\begin{equation}
	\begin{aligned}
		E^{\mathbb{Q}}_{t} &\left(\frac{S_T}{F^T_t} - 1\right) = 0, \\
		\mathbb{IV} &= E^{\mathbb{Q}}_{t} \left(-\ln \frac{S_T}{F^T_t}\right) \\
		&= - E^{\mathbb{Q}}_{t} \left(\ln \frac{S_T}{F^T_t}\right) \\
		&= - E^{\mathbb{Q}}_{t} \left[\left(-\frac{1}{2} \sigma^2 + \mu_c\right)\tau + \sigma \sqrt{\tau} y\right] \\
		&= \frac{1}{2} \sigma^2 \tau - \mu_c \tau - \sigma \sqrt{\tau} E^{\mathbb{Q}}_{t}\left(y\right) \\
		&= \frac{1}{2} \sigma^2 \tau - \mu_c \tau, \\
		\mathbb{V}	&= E^{\mathbb{Q}}_{t}\left(-\frac{1}{2} \ln^2 \frac{S_T}{F^T_t}\right) \\
		&= -\frac{1}{2} \left[\left(- \frac{1}{2} \sigma^2 + \mu_c\right)\tau\right]^2 -\frac{1}{2} \left[\left(\sigma \sqrt{\tau}\right)^2 E^{\mathbb{Q}}_{t} \left(y^2\right)\right] \\
		&= -\frac{1}{2} \left(- \frac{1}{2} \sigma^2 + \mu_c\right)^2 \tau^2 -\frac{1}{2} \sigma^2 \tau.
	\end{aligned}
\end{equation}
Therefore, the $RIX$ of full range under Gram-Charlier Density is the combination of these values times $6$, which is shown as Equation (\ref{numericalfull}).
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	\subsection{Derivations of the $TM$ Under the Gram-Charlier Density}\label{sec:APPENDIX C}
Under the Gram-Charlier density, Equation (\ref{cubicrelation}) can be written as:
\begin{equation}
	\begin{aligned}
		E^{\mathbb{Q}}_{t}\left(\ln^3 \frac{S_T}{F^T_t}\right) =& E^{\mathbb{Q}}_{t} \left \{ \left[\left(-\frac{1}{2} \sigma^2 + \mu_c\right)\tau + \sigma \sqrt{\tau} y\right]^3\right \} \\
		=& \left(-\frac{1}{2} \sigma^2 + \mu_c\right)^3 \tau^3 + 3 \left[\left(- \frac{1}{2} \sigma^2 + \mu_c\right)\tau\right]^2 \sigma \sqrt{\tau} E^{\mathbb{Q}}_{t} \left(y\right) \\
		&+ 3 \left(-\frac{1}{2} \sigma^2 + \mu_c\right) \left(\sigma \tau\right)^2 E^{\mathbb{Q}}_{t} \left(y^2\right) + \left(\sigma \sqrt{\tau}\right)^3 E^{\mathbb{Q}}_{t} \left(y^3\right) \\
		=& \left(-\frac{1}{2} \sigma^2 + \mu_c\right)^3 \tau^3 + 3 \left(-\frac{1}{2} \sigma^2 + \mu_c\right) \left(\sigma \tau\right)^2  + \left(\sigma \sqrt{\tau} \right)^3 \lambda_1,
	\end{aligned}
\end{equation}
which is Equation (\ref{numericalcubic}).
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	\subsection{Derivations of the $RIX^-$ Under the Gram-Charlier Density}\label{sec:APPENDIX D}
Under the Gram-Charlier density, $\beta_0$, $\beta_1$, and $\beta_2$ can be considered as semi-probability, semi-expectation of $y$, and semi-second moment of $y$:
\begin{equation}
	\begin{aligned}
		\beta_0 =& E^{\mathbb{Q}}_{t} \left( \mathds{1}_{S_T<F^T_t} \right) \\
		=& 	\int_{-\infty}^{-d_2} f(y) \, dy \\
		=& \int_{-\infty}^{-d_2}  \left[ n(y) - \frac{\lambda_1}{3!} \frac{d^3n(y)}{dy^3} + \frac{\lambda_2}{4!} \frac{d^4n(y)}{dy^4} \right] \, dy \\
		=& \int_{-\infty}^{-d_2} n(y) \, dy - \frac{\lambda_1}{3!} \int_{-\infty}^{-d_2} (-y^3 + 3y) n(y) \, dy + \frac{\lambda_2}{4!} \int_{-\infty}^{-d_2} (y^4 - 6y^2 +3) n(y) \, dy \\
		=& N(-d_2) + \frac{\lambda_1}{3!} [-d_2^2 n(-d_2) - 2 n(-d_2) + 3 n(-d_2)] \\
		&+ \frac{\lambda_2}{4!} [d_2^3 n(-d_2) + 3 d_2 n(-d_2) + 3 N(-d_2) - 6 d_2 n(-d_2) - 6 N(-d_2) + 3 N(-d_2)] \\
		=& N(-d_2) + \frac{\lambda_1}{3!} (-d_2^2 + 1) n(-d_2) + \frac{\lambda_2}{4!} (d_2^3 - 3 d_2) n(-d_2), \\
		\beta_1 =& E^{\mathbb{Q}}_{t} \left( y \times \mathds{1}_{S_T<F^T_t} \right) \\
		=& 	\int_{-\infty}^{-d_2} y f(y) \, dy \\
		=& \int_{-\infty}^{-d_2} y n(y) \, dy - \frac{\lambda_1}{3!} \int_{-\infty}^{-d_2} (-y^4 + 3y^2) n(y) \, dy + \frac{\lambda_2}{4!} \int_{-\infty}^{-d_2} (y^5 - 6y^3 +3y) n(y) \, dy \\
		=& -n(-d_2) + \frac{\lambda_1}{3!} [d_2^3 n(-d_2) + 3 d_2 n(-d_2) + 3 N(-d_2) - 3d_2 n(-d_2) - 3N(-d_2)] \\
		&+ \frac{\lambda_2}{4!} [-d_2^4 n(-d_2) - 4 d_2^2 n(-d_2) - 8 n(-d_2) + 6 d_2^2 n(-d_2) + 12 n(-d_2) - 3 n(-d_2)] \\
		=& -n(-d_2) + \frac{\lambda_1}{3!} d_2^3 n(-d_2) + \frac{\lambda_2}{4!} (-d_2^4 + 2 d_2^2 + 1) n(-d_2), \\
		\beta_2 =& E^{\mathbb{Q}}_{t} \left(y^2 \times \mathds{1}_{S_T<F^T_t}\right)^2 \\
		=& 	\int_{-\infty}^{-d_2} y^2 f(y) \, dy \\
		=& \int_{-\infty}^{-d_2} y^2 n(y) \, dy - \frac{\lambda_1}{3!} \int_{-\infty}^{-d_2} (-y^5 + 3y^3) n(y) \, dy + \frac{\lambda_2}{4!} \int_{-\infty}^{-d_2} (y^6 - 6y^4 +3y^2) n(y) \, dy \\
		=& d_2 n(-d_2) + N(-d_2) + \frac{\lambda_1}{3!} [-d_2^4 n(-d_2) - 4 d_2^2 n(-d_2) - 8 n(-d_2) + 3 d_2^2 n(-d_2) \\
		&+ 6 n(-d_2)] + \frac{\lambda_2}{4!} [d_2^5 n(-d_2) + 5 d_2^3 n(-d_2) + 15 d_2 n(-d_2) + 15 N(-d_2) - 6 d_2^3 n(-d_2) \\
		& - 18 d_2 n(-d_2) - 18 N(-d_2) + 3 d_2 n(-d_2) + 3 N(-d_2)] \\
		=& d_2 n(-d_2) + N(-d_2) + \frac{\lambda_1}{3!} (-d_2^4 - d_2^2 - 2) n(-d_2) + \frac{\lambda_2}{4!} (d_2^5 - d_2^3) n(-d_2).
	\end{aligned}
\end{equation}

\begin{equation}
	\begin{aligned}
		E^{\mathbb{Q}}_{t} \left(\ln \frac{S_T}{F^T_t} \times \mathds{1}_{S_T<F^T_t}\right) &= E^{\mathbb{Q}}_{t} \left\{ \left[ \left(- \frac{1}{2} \sigma^2 + \mu_c \right)\tau + \sigma \sqrt{\tau} y \right] \times \mathds{1}_{S_T<F^T_t} \right\} \\
		&= \left(- \frac{1}{2} \sigma^2 + \mu_c \right)\tau \beta_0 + \sigma \sqrt{\tau} \beta_1, \\
		E^{\mathbb{Q}}_{t} \left[\frac{1}{2} \left(\ln^2 \frac{S_T}{F^T_t} \times \mathds{1}_{S_T<F^T_t}\right) \right] &= \frac{1}{2} E^{\mathbb{Q}}_{t} \left\{ \left[\left(- \frac{1}{2} \sigma^2 + \mu_c \right)\tau + \sigma \sqrt{\tau} y\right]^2 \times \mathds{1}_{S_T<F^T_t} \right\} \\
		&= \frac{1}{2} E^{\mathbb{Q}}_{t} \left\{ \left[\left(- \frac{1}{2} \sigma^2 + \mu_c \right)^2\tau^2 + 2 \left(- \frac{1}{2} \sigma^2 + \mu_c \right) \sigma \tau^{\frac{3}{2}} y + \sigma^2 \tau y^2 \right] \times \mathds{1}_{S_T<F^T_t} \right\} \\
		&= \frac{1}{2} \left(- \frac{1}{2} \sigma^2 + \mu_c \right)^2\tau^2 \beta_0 + \left(- \frac{1}{2} \sigma^2 + \mu_c \right) \sigma \left(\sqrt{\tau}\right)^3 \beta_1 + \frac{1}{2} \sigma^2 \tau \beta_2.
	\end{aligned}
\end{equation}
Then, $B$, $C$, and $D$ can be obtained by regrouping the coefficients of $\beta_0$, $\beta_1$, and $\beta_2$, respectively.
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	\subsection{Derivations of the $TM^-$ Under the Gram-Charlier Density}\label{sec:APPENDIX E}
Under the Gram-Charlier density, $\beta_3$ can be considered as the semi-third moment of $y$:
\begin{equation}
	\begin{aligned}
		\beta_3 =& E^{\mathbb{Q}}_{t} \left(y^3 \times \mathds{1}_{S_T<F^T_t}\right) \\
		=& 	\int_{-\infty}^{-d_2} y^3 f(y) \, dy \\
		=& \int_{-\infty}^{-d_2} y^3 n(y) \, dy - \frac{\lambda_1}{3!} \int_{-\infty}^{-d_2} (-y^6 + 3y^4) n(y) \, dy + \frac{\lambda_2}{4!} \int_{-\infty}^{-d_2} (y^7 - 6y^5 +3y^3) n(y) \, dy \\
		=& -d^2_2 n(-d_2) + -2 n(-d_2) \\
		&+ \frac{\lambda_1}{3!} [d_2^5 n(-d_2) + 5 d_2^3 n(-d_2) + 15 d_2 n(-d_2) + 15 N(-d_2)  - 3 d^3_2 n(-d_2) -9 d_2 n(-d_2) - 9 N(-d_2)] \\ 
		&+ \frac{\lambda_2}{4!} [-d_2^6 n(-d_2) - 3d^2_2 n(-d_2) - 6 n(-d_2)] \\
		=& (-d_2^2 - 2) n(-d_2) + \frac{\lambda_1}{3!} [(d_2^5 + 2d_2^3 + 6 d_2) n(-d_2) + 6 N(-d_2)] + \frac{\lambda_2}{4!} (-d_2^6  - 3d_2^2 -6) n(-d_2).
	\end{aligned}
\end{equation}
In addition, $G$, $H$, $I$, and $J$ can be obtained by expanding the semi-third moment under the Gram-Charlier density and regrouping the coefficients of $\beta_0$, $\beta_1$, $\beta_2$, and $\beta_3$, respectively.
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Figure 1: Relationships among the RIX, TM and TCM .
This figure shows the relationships among the RIX, TM and TCM , with the setting of
σ = 0.2, τ = 1/12, and λ2 = 2, 2.5, 3, and 3.5, based on Equation (14) and Equation (16).
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Figure 2: Relationship between the RIX− and TM−.
This figure shows the relationship between the RIX− and TM−, with the setting of
σ = 0.2, τ = 1/12, and λ2 = 2, 2.5, 3, and 3.5, based on Equation (20) and Equation (22).
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Figure 3: Comparison between the CBOE V IX and the Estimated V IX.
This figure shows the comparison between the CBOE V IX and the Estimated V IX, with
linear interpolation and constant extrapolation of the implied volatility curve and setting
∆K = 0.05% × F T

t and a = 0.25, based on Equation (35), from 1 January, 2020 to 28
February, 2023. The correlation is 0.99.
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Figure 4: Comparison between the CBOE SKEW and the Estimated SKEW .
This figure shows the comparison between the CBOE SKEW and the Estimated SKEW ,
with linear interpolation and constant extrapolation of the implied volatility curve and
setting ∆K = 0.05% × F T

t and a = 0.25, based on Equation (36), from 1 January, 2020
to 28 February, 2023. The correlation is 0.97.
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Figure 5: Comparison between the trend of the V IX and SKEW .
This figure shows the comparison between the trend of the V IX and SKEW from 1
January 2020, to 28 February, 2023.
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Figure 6: Scatter plot of the V IX and SKEW .
This figure is a scatter plot of the V IX and SKEW from 1 January, 2020 to 28 February,
2023.
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Figure 7: Comparison between the trend of V IX and −RIX30.
This figure shows the comparison between the trend of V IX and −RIX30 from 1 January
2020 to 28 February 2023.
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Figure 8: Scatter plot of V IX and −RIX30.
This figure is a scatter plot of V IX and −RIX30 from 1 January 2020 to 28 February
2023.
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Figure 9: Comparison between the trend of the BKM230 and V IX2
30.

This figure shows the comparison between the trend of the BKM2 and V IX2 with a
30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 10: Comparison between the trend of the BKM230 and −RIX30.
This figure shows the comparison between the trend of the BKM2 and −RIX with a
30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 11: Comparison between the trend of the BKM230 an V IX2−
30 .

This figure shows the comparison between the trend of the BKM−
2 and V IX2− with a

30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 12: Comparison between the trend of the BKM−
230 and −RIX−

30.
This figure shows the comparison between the trend of the BKM−

2 and −RIX− with a
30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 13: Comparison among the trends of the RIX30, −JTIX30, TM30, and
TCM30.
This figure shows the comparison among the trends of the RIX, −JTIX, TM , and TCM
with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 14: Comparison among the trends of the RIX−
30, −JTIX−

30, TM−
30, and

TCM−
30.

This figure shows the comparison among the trends of the RIX−, −JTIX−, TM−, and
TCM− with a 30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 15: Comparison of the differences among the RIX30, TM30, and TCM30.
This figure shows the comparison of the differences among the RIX, TM , and TCM with
a 30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 16: Comparison of the differences among the RIX30, TM30, and TCM30.
This figure shows the comparison of the differences among the RIX, TM , and TCM with
a 30-day term structure from 1 January, 2020 to 28 February, 2023.
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Figure 17: Term structures of the RIX.
This figure shows the term structures of the RIX for 30-day, 60-day, and 90-day periods
from 1 January, 2020 to 28 February, 2023.
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Figure 18: Term structures of the RIX−.
This figure shows the term structures of the RIX− for 30-day, 60-day, and 90-day periods
from 1 January, 2020 to 28 February, 2023.
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Figure 19: Comparison of different ranges of the RIX30.
This figure shows the comparison of different ranges of the RIX with a 30-day term
structure from 1 January, 2020 to 28 February, 2023. The RIX+ is calculated from OTM
calls based on Equation (23), which is essentially the difference between the RIX and
RIX−.
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