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Abstract

We solve a model of firm dynamics that shows a firm’s financial flexibility affects the

timing of investment decisions. Firms may delay investment to accumulate cash, which

increases financial flexibility, or raise costly external capital to exercise immediately their

real options. Small firms, valuing financial flexibility more, require more cash before exer-

cising. Our models predicts that the value of waiting is hump-shaped in cash. Low-cash

firms must delay investment longer to accumulate cash and prefer financing investments

externally. High-cash firms already have high financial flexibility and thus benefit less

from waiting. We empirically examine these predictions.
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1. Introduction

We know little about how a firm’s financial flexibility affects the timing of firm

investments. Companies often have the ability to wait to time an investment—a real

option (Dixit and Pindyck, 1994). The literature on real options since McDonald and

Siegel (1986) generally assumes that firms operate in frictionless capital markets. A

convenience of this assumption is that valuing a real option is like valuing an American

option (Black and Scholes, 1973; Merton, 1973). However, with costly financing, the total

cost of exercising the option includes the effect of investing on a firm’s financial flexibility.

Firms manage their cash reserve, or financial flexibility, to economize over issuance costs.

Waiting delays investment’s benefits but allows the firm to accumulate cash and allows

earnings fundamentals to improve. Surveys of chief financial officers (CFOs) by Graham

(2000) and Graham and Harvey (2001) confirm that CFOs attach great importance both to

real options and to maintaining financial flexibility.

Recently, the seminal Julien Hugonnier, Semyon Malamud and Erwan Morellec (2015)

paper solves a dynamic model of a firm with a real option to delay investment allowing

for cash accumulation and external financing. In that model, capital supply is uncertain

so that accumulating cash allows a firm to potentially exercise a real option prior to

costless external financing becoming available.

We solve a dynamic model of a firm facing costly financing and possessing an option to

delay a lumpy investment. Like Hugonnier, Malamud and Morellec (2015), exercising the

option permanently increases the mean of the firm’s stochastic cash flow process. Also,

the exercise cost is fixed and irreversible. Unlike that paper, our model firm has a dynamic

physical capital stock as one state variable and a cash reserve as the second state variable.

The dynamic physical capital stock follows the standard capital accumulation model

with infinitely divisible investments, depreciation, and convex adjustment costs, which

encourage the firm to smooth investment over time. Thus, our model firm makes regular

investments in its dynamic capital stock punctuated by a lumpy and transformative

investment—a pattern observed empirically (Doms and Dunne, 1998; Caballero, 1999;

Cooper, Haltiwanger and Power, 1999). Hugonnier, Malamud and Morellec (2015) does

not model investment beyond the exercise decision.

By modeling a dynamic physical capital stock, we can uniquely examine how a firm’s

real option dynamics vary over a firm’s life cycle. Our firm changes as it grows because

our model allows us to incorporate several realistic assumptions, such as diminishing

returns to scale (e.g., Caballero, 1991) and financing frictions that decline in intensity with
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size (e.g., Altınkılıç and Hansen, 2000). Together, these modeling differences significantly

enrich the determinants of a firm’s demand for flexibility.

Although the classical tools of option pricing theory can no longer be directly applied,

and although the analysis of the exercise decision and its financing requires solving a

considerably more involved two-dimensional partial differential equation, we are able to

solve the problem numerically and provide a proof of convergence in the appendix.

We find support in the data for several novel predictions.

First, our model uniquely allows us to characterize how a firm’s threshold level of

financial flexibility for exercising the real option changes as a firm grows. The model

predicts the threshold level of cash scaled by the size of the physical capital stock (the

cash-to-capital ratio) for exercise is declining and convex in firm size (capital). The

threshold is higher when a firm is small because financial flexibility is more valuable

when a firm is small, making the firm more reluctant to pay the fixed exercise cost. As

the capital stock increases, the value of financial flexibility declines convexly because

of diminishing returns to scale and issuance costs that decline relative to size. The fact

that the decision to exercise a real option depends on cash is in contrast to benchmark

models of real-option investment in corporate finance, where the decision to exercise

depends only on future cash flows (e.g., McDonald and Siegel, 1986; Dixit and Pindyck,

1994). More recently, in Hugonnier, Malamud and Morellec (2015), there is a single cash

threshold determining exercise because capital and the investment opportunity are static.

We find support for this first prediction in the data. Cash holdings at exercise are

declining and convex in capital. We use growth investments as a proxy for real option

exercises. Specifically, we calculate a firm’s net investment as a firm’s expenditures on

capital less depreciation scaled by lagged capital. Our results are robust to classifying

net investments above various percentiles as option exercises. As discussed more below,

given that only recently models of real options consider a firm’s financial flexibility, it

is unsurprising that no prior empirical work examines how a firm’s financial flexibility

determines a firm’s real option’s behavior.

Second, our model predicts that the value of waiting is non-monotonic in a firm’s

financial flexibility. Specifically, the value of the option to delay investment is hump-

shaped in a firm’s cash holdings. We compute the value of the real option as the difference

in the value of a firm with the ability to delay investment and the value of the firm with a

now-or-never investment opportunity. When cash is low, the real option has little value

because the firm expects a lengthy wait to accumulate the minimum desired cash holdings
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for internally financing the exercise cost. Additionally, a low-cash firm is likely to require

external financing anyways to avoid inefficient liquidation and thus is more likely to

finance the exercise cost externally. When cash is high, the option also has little value

because the firm has high financial flexibility so that waiting to accumulate additional

cash is less beneficial relative to the forgone increase in cash flows from not exercising

immediately. Instead, waiting is more valuable when a firm has intermediate cash levels.

More precisely, the option is most valuable when the cash reserve is right around the

cost of exercising the real option. At this cash level, immediately paying the exercise cost

increases the marginal value of cash dramatically and may even require costly financing

that could be avoided by waiting a reasonable amount of time. The option value is more

sensitive to financial flexibility when a firm is small because its marginal value of cash is

higher. Hugonnier, Malamud and Morellec (2015) does not calculate the value of the real

option.

We find support for this second prediction in the data. It is well known that real

option values increase with expected cash flow volatility, and Gustavo Grullon, Evgeny

Lyandres and Alexei Zhdanov (2012) confirms that firms with more real options have

more positive relations between stock returns and innovations in firm volatility. Our

model likewise predicts an increase in option values with volatility, and the sensitivity

of option values to changes in volatility is hump-shaped in a firm’s financial flexibility.

Consistent with our prediction, we empirically find that the positive sensitivity of stock

returns to changes in firm volatility is hump-shaped in a firm’s cash holdings and more

so when a firm is smaller. We also find that the hump-shape is stronger for firms that

the literature generally characterizes as having more real options, such as young firms,

high-R&D firms, high-growth firms, and firms in industries with plenty of real options.

Additionally, consistent with firms with intermediate financial flexibility valuing waiting

more, we empirically find that firms with intermediate cash holdings cut investment more

in response to increases in a firm’s stock volatility. In other words, growth investments are

negatively related to firm volatility, consistent with several prior empirical studies (Leahy

and Whited, 1996; Guiso and Parigi, 1999; Bulan, 2005; Bloom, Bond and Van Reenen,

2007), and this negative relation is U-shaped in a firm’s liquidity.

Overall, our paper connects two classical strands of literature, one on real options

started by McDonald and Siegel (1986) and one on corporate cash balances started by

Miller and Orr (1966). Early static models find that financing frictions, which create a

demand for cash, decrease investment but ignore real flexibility and thus cannot speak
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to the effect of costly financing on the timing of investment (e.g., Fazzari, Hubbard and

Petersen, 1988; Froot, Scharfstein and Stein, 1993; Kaplan and Zingales, 1997). Décamps

and Villeneuve (1994) considers a financially constrained firm with an asset in place

generating cash-flows that are subject to i.i.d shocks and a growth option, which similarly

raises the drift of the cash-flow process. However, their firm has no access to external

funding and thus must finance the exercise cost with internal funds. Boyle and Guthrie

(2003) studies real options in the presence of financial constraints (a collateral constraint),

but their firm may continue operations even when it accumulates arbitrarily large negative

earnings, although it is not able to raise funds. An earlier study by Mauer and Triantis

(1994) considers a real options problem for a levered firm that faces recapitalization

costs to change the mix of debt and equity to maximize the interest tax shield. However,

like Leland (1994), the firm does not otherwise incur external financing costs. Boot and

Vladimirov (2019) focuses on agency issues when examining a financially constrained firm

with an asset in place that generates random cash flows and a new investment opportunity.

Gomes and Schmid (2021) develop a model to understand the joint exercise and leverage

policies of firms, but do not study liquidity management. In the strategic dynamic

contexts, several papers solve a real options problem under incomplete information (Miao

and Wang, 2007; Grenadier and Malenko, 2010, 2011; Grenadier, Malenko and Malenko,

2016). Recently, Patrick Bolton, Neng Wang and Jinqiang Yang (2019) models a firm with

a growth option allowing for cash accumulation but does not model a dynamic physical

capital stock.1

Our empirical results add to the relatively small empirical literature on real options.

Prior work examines whether managerial decisions and market prices for assets are

consistent with real option theory. These papers focus on a few industries such as real

estate (Quigg, 1993; Cunningham, 2006; Bulan, Mayer and Somerville, 2009), oil and gas

(Paddock, Siegel and Smith, 1988; Kellogg, 2014; Décaire, Gilje and Taillard, 2020), and

mining (Moel and Tufano, 2002). In general, these studies show that investors value the

ability to wait because they pay more than measures of current intrinsic value. While

these papers consider a project’s future cash flows when determining when to exercise a

real option, our model and empirical work highlight that it is important to consider the

1Additionally, our paper also extends the broader dynamic liquidity management literature (e.g., Girgis,
1968; Gomes, 2001; Hennessy and Whited, 2005, 2007; Riddick and Whited, 2009; Bolton, Chen and Wang,
2011; Décamps et al., 2011; Anderson and Carverhill, 2012; He and Milbradt, 2014; Kakhbod et al., 2021; Dai
et al., 2021). By contrast, we focus on real options and particularly how costly financing creates a demand
for liquidity that affects when a firm decides to exercise a real option.
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financial flexibility of the firm owning the real option. Overall, much additional work is

warranted, and accordingly, Lambrecht (2017) states, “We need more empirical studies

that test whether firms behave according to what real options theory predicts.”

2. Model

The firm’s operating revenue depends on its capital stock and productivity. We assume

that the firm’s productivity, before exercising the growth option, evolves according to:

dZt = µdt + σdWt, (1)

where W is a one-dimensional Brownian motion under the risk neutral measure and µ

and σ are positive constants. Thus, productivity shocks dZt, before the option exercise,

are i.i.d. with mean µdt and variance σ2dt.

The firm has a growth option that improves the average productivity and can be exer-

cised at a time of its choosing. Exercising the option costs the firm Φ (in monetary units).

The option exercise is irreversible and permanently increases the firm’s productivity.

After exercising the growth option, the firm’s productivity process becomes

dZt = µ̃dt + σ̃dWt, (2)

where µ̃ > µ. Unless otherwise stated, we assume σ̃ = σ. Thus, the growth option

involves a form of “real scaling” of the firm’s cash flow process, where the scaling

does not come from an expansion in capital stock, but instead from a higher average

productivity of capital. This improvement in productivity upon exercising the option

resembles that in Hugonnier, Malamud and Morellec (2015) and several other papers

(Décamps and Villeneuve, 2007, 2013; Vath, Pham and Villeneuve, 2008; Bolton, Wang

and Yang, 2019).

Given the firm’s productivity Z, the firm’s cumulative cash flows Y follow the dynam-

ics

dYt = kα
t dZt, (3)

where k is the size of capital stock of the firm. The production exhibits decreasing returns

to scale with the scale parameter α ∈ (0, 1) following Bertola and Caballero (1994).2

2Our model can accommodate α = 1 or α > 1; however, we find strong support in the data for the
model’s predictions with regards to investment assuming α < 1. Also, diminishing returns to scale is quite
common in the literature. See Caballero (1991), Basu and Fernald (1997), Gomes (2001), and Grullon and
Ikenberry (2021).
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The firm may regularly make investments that add to the physical capital stock k. As

is standard in capital accumulation models, for an investment process i, the dynamics of

the capital stock follows

dkt =
(

it − δkt

)
dt, (4)

where δ ≥ 0 is the depreciation rate. We assume that investment is irreversible, i.e., i ≥ 0.

Investment is subject to a convex adjustment cost

g(k, i) =
θ

2

(
i
k

)2

k, (5)

for a positive constant θ that measures the degree of the adjustment cost. Modeling a

dynamic physical capital stock is one difference with Hugonnier, Malamud and Morellec

(2015).

The firm is financed by equity and long-term debt. The firm pays a coupon at a

constant rate b for the long-term debt. Having b ≥ 0 allows us to study the impact of

debt on a firm’s payout, investment, growth, and risk management decisions. Examining

a levered firm is another modeling difference with Hugonnier, Malamud and Morellec

(2015).

The firm faces costly external equity financing. When the firm issues equity of a lump

size I, the cost is

λ(I) = λ f + λp I, (6)

where λ f and λp are constants, representing the constant component and the proportional

components of issuance costs, respectively. In our model, the relation between the fixed

issuance cost and capital (λ f /k) is decreasing in capital because the fixed cost λ f does

not scale with capital.3 By contrast, Hugonnier, Malamud and Morellec (2015) assumes

no issuance costs but rather an uncertain supply of external funds. Thus, in their model,

because the investment opportunity is static, when external financing becomes available,

the firm exercises the option.

The firm is also subject to default risk. When the firm exhausts the cash reserve,

the equityholders compare the benefit of equity issuance and continuing (continuation

value) with the residual value for equityholders after liquidation and applying proceeds

3This modeling feature contrasts with the more standard approach of multiplying the fixed issuance
cost by capital in the dynamic liquidity management literature because we do not assume homogeneity
in size. Bolton, Chen and Wang (2011) acknowledge that a limitation of their model is that, “In practice,
external costs of financing scaled by firm size are likely to decrease with firm size.” Also, prior work finds
declining costs relative to proceeds and size (Lee et al., 1996; Altınkılıç and Hansen, 2000).
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first to paying off the debt (liquidation value). If the latter outweighs the former, the

firm defaults. When the firm defaults at time τ, its capital stock kτ is fire sold. The

recovery rate ℓ is assumed to be constant. The liquidation value ℓkτ is used to pay off

the long-term debt with the face value b/rdebt, where rdebt is the cost of financing for

long-term debt. If there is any value after paying the long-term debtholder, the remaining

value,
(
ℓkτ − b/rdebt

)
+

is distributed to the equityholders.4

Due to the external financing and liquidation costs, the firm manages a cash reserve to

economize over issuance costs and to avoid default. The firm determines its investment

and cash management strategies, which include when to pay a dividend and when to

raise equity. The value of the cash reserve follows the dynamics

dct = (r − λc)ctdt + dYt − bdt − itdt − g(kt, it)dt − dDt + dIt. (7)

Here r is the interest rate, λc is the cash holding cost (liquidity premium), D is the

cumulative dividend payout, and I is the cumulative equity issuance. Both D and I are

non-decreasing processes. Cash earns a return equal to the risk free rate (r) net of a carry

cost of holding cash (λc).5 Even though cash earns a lower rate of return, the firm holds

cash for precautionary reasons to lower the expected issuance or default costs. The firm

manages an optimal cash policy to trade off the risk management benefits of maintaining

a cash reserve against the delay in dividend payouts. The firm defaults when it runs out

the cash reserve but decides not to issue equity. Therefore, the default time of the firm is

τ = inf{t ≥ 0 : ct < 0}.

When the firm exercises the growth option, it pays the fixed cost Φ from its cash

reserve. Therefore, the firm needs its cash reserve to be at least Φ when the growth option

is exercised. To reach Φ, the firm may accumulate cash flows over time or issue costly

4a+ = max{a, 0}.
5This assumption is standard in models with cash. For example, see Bolton, Chen and Wang (2011);

Bolton, Wang and Yang (2019), Kim, Mauer and Sherman (1998) and Riddick and Whited (2009). If λc = 0,
then the firm finds it optimal to hold as much cash as it can (indefinitely postponing the dividend) to
prevent costly equity issuance. The equity is still valuable because equityholders could always choose to
extract the cash via a dividend. The more realistic case is when λc > 0. Cash may earn low returns because
interest earned on a firm’s cash holdings is taxed at the corporate tax rate, which generally exceeds the
personal tax rate (Graham, 2000; Faulkender and Wang, 2006). Agency problems may lower cash returns
(Jensen, 1986; Harford, 1999; Dittmar and Shivdasani, 2003; Pinkowitz, Stulz and Williamson, 2006; Dittmar
and Mahrt-Smith, 2007; Harford, Mansi and Maxwell, 2008; Caprio, Faccio and McConnell, 2011; Gao,
Harford and Li, 2013; Back, Kakhbod and Xing, 2021).
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equity. When choosing to pay Φ, the firm needs to evaluate the benefit of preserving the

cash holding with the benefit of using it to pay the cost of option exercise to upgrade the

productivity. The benefit of preserving cash is the flexibility to fund investment and meet

liabilities without costly issuance and to avoid default.

2.1. Firm’s problem

Suppose that the firm chooses to exercise the real option to upgrade its production

technology at a stopping time ν. After the option exercise, the firm continues to choose

investment, dividend payout, and equity issuance to maximize the present value of

dividend payouts net of equity issuance costs. The firm’s value right after option exercise

is then

G(kν, cν) =

sup
i≥0,D,{σj,Ij}

Eν

[ ∫ τ

ν
e−r(s−ν)dDs − ∑

j
e−r(σj−ν)

(
Ij + λ(Ij)

)
+ 1{τ<∞}e−r(τ−ν)

(
ℓkτ − b/rdebt

)
+

]
,

(8)

where {σj} is a sequence of stopping times when the lump sum of equity of size Ij is

issued at time σj. We call G the option exercise value and treat (k, c) as its state variables.

Back to time zero, the firm needs to plan not only future investment, dividend payout,

and equity issuance, but also when, if ever, to exercise the real option. Hence, the firm’s

value at time zero is:

sup
i≥0,D,ν
{σj,Ij}

E

[ ∫ τ∧ν

0
e−rsdDs − ∑

j
1{σj<ν}e−rσj

(
Ij + λ(Ij)

)

+ 1{τ<ν}e−rτ
(
ℓkτ − b/rdebt

)
+
+ 1{τ≥ν}e−rν

(
G(kν, cν − Φ)

)]
.

(9)

We restrict the option exercise time ν to be in the class of stopping times such that cν > Φ.

In the problem (9), the first line corresponds to the discounted dividend value net of the

equity issuance costs before the option exercise time. If the firm defaults before option

exercise, the firm receives the liquidation value (ℓkτ − b/rdebt)+. If the firm decides to

exercise the real option before its default, the firm receives the option exercise value, but

its cash reserve after exercising is reduced by Φ. These correspond to the two terms in the

second line of (9), respectively. We denote V as the firm’s value function before option

exercise and consider (k, c) as its state variables.

It follows from the dynamic programming that the value function V satisfies the HJB
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equation:

0 =min
{

rV − sup
i≥0

{[
i − δk

]
∂kV +

[
(r − λc)c + kαµ − b − i − g(k, i)

]
∂cV +

1
2

k2ασ2∂2
ccV

}
,

∂cV − 1, V(k, c)− sup
I≥0

[
V(k, c + I)− I − λ(I)

]
, V(k, c)− G(k, c − Φ)

}
, c ≥ Φ,

(10)

0 =min
{

rV − sup
i≥0

{[
i − δk

]
∂kV +

[
(r − λc)c + kαµ − b − i − g(k, i)

]
∂cV +

1
2

k2ασ2∂2
ccV

}
,

∂cV − 1, V(k, c)− sup
I≥0

[
V(k, c + I)− I − λ(I)

]}
, c ∈ (0, Φ).

(11)

In the equations above, if c ≥ Φ, the firm chooses among four alternatives: continuation

(the group of terms on the first line of the right-hand side in (10)), dividend payout (the

first group of terms in the second line), equity issuance (the second group in the second

line), and option exercise (the last group in the second line). When c ∈ (0, Φ), the firm

only chooses among the first three options in (11).

In the continuation group, rV represents the required rate of return on equity, which

equals the risk free rate demanded by risk neutral investors. The term [i − δk]∂kV is firm’s

marginal benefit of net investment on equity value. The term [(r − λc)c + kαµ − b − i −
g(k, i)]∂cV is the marginal benefit of cash on equity value. The term 1

2 k2ασ2∂2
ccV captures

the effect of the volatility of cash holdings due to production volatility on equity value.

In the dividend payout group, the firm postpones dividend payout until the marginal

cost of reducing the cash reserve matches the marginal benefit of dividend payout, i.e.,

∂cV = 1.

In the equity issuance group, at each point (k, c) in the state space, the equity holders

compare the value of the firm without issuance V(k, c) to the best value for issuance

supI≥0

[
V(k, c+ I)− I −λ(I)

]
, where V(k, c+ I)− I −λ(I) is the firm value post issuance

net of issuance costs. The firm only issues equity when the best value for issuance is

strictly larger than the current value.

Finally, in the option exercise group, the equity holders compare the current value of

the firm V(k, c) with the value after option exercise G(k, c − Φ), where the cash position is

reduced by the cost Φ. The equity holders only exercise the real option when the exercise

value is larger than the current firm value.
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The dynamic programming principal implies that all four groups are nonnegative,

that only one group equals to zero at each point (k, c) in the state space, and that the

corresponding action is optimal for the firm.

By the same argument, the option exercise value satisfies

0 = min
{

rG − sup
i≥0

{[
i − δk

]
∂kG +

[
(r − λc)c + kαµ̃ − b − i − g(k, i)

]
∂cG +

1
2

k2ασ̃2∂2
ccG

}
,

∂cG − 1, G(k, c)− sup
I≥0

[
G(k, c + I)− I − λ(I)

]}
. (12)

Comparing to (10), option exercise is no longer available and (µ, σ) is replaced by (µ̃, σ̃).

Boundary conditions for (10), (11), and (12) will be specified in the appendix.

3. The Model Solution

In this section, we present and discuss the model solution for the baseline set of

parameters presented and discussed in Table 1. A series of figures reveal how costly

financing creates a demand for precautionary cash holdings and illustrates how that

demand affects a firm’s decision to exercise a real option. Also, the figures reveal how

the effects of financing costs matter differently when a firm is small versus when a firm

is large. To help illustrate the factors affecting the firm’s decision, we vary the different

parameters in the model to examine their impact on a firm’s predicted exercise behavior.

[Insert Table 1 Here]

3.1. Numeric results

Figure 1 depicts a firm’s optimal choices for the baseline set of parameters. Figure 1a

(1b) presents a firm’s optimal choices prior to (after) exercising the real option. The y-axis

captures the size of a firm’s cash reserve c, and the x-axis captures the size of a firm’s

physical capital stock k. The legend notates which regions of capital and cash correspond

to which firm behaviors.

When cash is sufficiently high, the firm is in the payout region (labeled “Pay dividends”

in legend and denoted by the letter A). When the state process (k, c) reaches the boundary

of the payout region (also known as “the dividend boundary”), minimal dividend is

paid out to reflect the state process below the region. If (k, c) starts inside the payout

region, then a lump sum dividend is paid out so that the state process (k, c) lands on the
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Figure 1: Optimal Exercise Region

Parameters used are summarized in Table 1.

dividend payout boundary.6,7

There are three investment regions depicted. In the region labeled “Pos. net invest-

ment” (denoted by the letter B), the firm finds it optimal to grow the physical capital k

by choosing an investment amount i that exceeds the amount of depreciation δk. Recall

that the firm’s physical capital exhibits diminishing returns to scale so that the marginal

returns to investing are higher when the firm’s capital stock is smaller. In the region

6Interestingly, in Hugonnier, Malamud and Morellec (2015), when a firm has low cash and the exercise
cost is high, the firm permanently abandons financing a real option’s exercise internally, immediately pays
a lump sum dividend, and waits for costless external financing to become available. The authors highlight
that this dynamics is evidence that barrier strategies may not always be optimal because the firm may pay
dividends when cash is low in addition to when cash is high. In our model, regardless of the exercise cost,
when cash is low, the firm would not payout a dividend but rather invest in the firm’s dynamic physical
capital stock, which is omitted in their model. The real option always has strictly positive value and is
never abandoned.

7The payout region forms a column on the far left when capital is very low. This column is the
strategic default region. When the state process (k, c) reaches this boundary, rather than continuing the
firm, equityholders pay out the remaining cash reserve as a lump sum dividend and default afterward.
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labeled “Neg. net investment” (denoted by the letter C), the firm finds it optimal to

shrink the physical capital stock k by choosing an investment amount i that is lower than

the amount of depreciation δk. Consistent with diminishing returns to scale, as capital

k increases, the firm invests at a lower rate. The firm’s net investment rate also tends

to decline as cash declines. Because of costly financing and default, when a firm’s cash

is low, the value of financial flexibility is high because the likelihood of paying the cost

of issuance or default is increasing. A high demand for financial flexibility competes

with the marginal returns to investing in the physical capital. In the region labeled

“Continuation” (denoted by the letter D), the marginal value of cash is high enough

relative to the marginal returns to investing that the firm finds it optimal to not invest

at all, such that i = 0. Thus, in the continuation region, the firm’s capital shrinks at the

rate δ and the cash reserve continues to change with the cash flow process. For these

investment regions, Internet Appendix Figure B.1 shows a heat map of net investment

rates.

The firm may also choose to issue equity. The firm continuously compares the best

value of the firm with issuance to the value of the firm without issuance to determine

whether to issue. In Figure 1a, the optimal time to issue is when cash is close to zero.

For this reason, there is no visible issuance boundary at which the firm finds issuance

optimal. However, Internet Appendix Figure D.5 shows that when issuance costs are

lower, the firm may choose to issue at higher cash levels because the benefits of waiting

to economize over issuance costs are lower relative to the costs of delaying the benefits of

investing. When issuing is optimal, the firm issues a lump sum amount of equity and

lands on the black line labeled “Issuance target” in the legend. The lumpiness of issuance

is to economize over fixed issuance costs.

In our model, the firm also possess a real option to upgrade the productivity of the

physical capital. Figure 1a shows that when the state process (k, c) reaches the “Option

exercise” region (denoted by the letter E) that the firm finds exercising the option optimal

given its cash and capital stocks. At exercise, the firm pays the exercise cost Φ and the

production technology immediately switches to the new productivity process with µ̃

and σ̃. Figure 1a shows that in the presence of costly financing, the decision to exercise

depends jointly on a firm’s cash and capital positions. The firm may also enter the

exercise region via an equity issuance as the issuance target may intersect the exercise

region. After exercising the option, Figure 1b shows a firm’s optimal dynamics.

Unlike traditional real option models, exercising the real option does not necessarily
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become optimal as k increases. In other words, there is no threshold level of capital above

which exercising is always optimal. Even for high levels of capital k, when cash c is

low, the firm prefers to not exercise the real option because paying the exercise cost Φ

increases the likelihood of paying the issuance costs.

Figure 1 also shows that a firm’s marginal value of cash is higher when a firm is

smaller. For instance, when capital is low, the firm requires more cash before exercising

the real option and also chooses to raise more cash via equity issuance conditional on

issuance. There are few reasons for this behavior: First, issuance costs are high when k is

low because of the fixed component of issuance costs. Thus, the precautionary savings

motive is high. Second, the firm needs enough cash to fund the coupon b to avoid

defaulting. Because k is small, the firm’s cash flows are low and the ability to pay the

coupon depends more on the cash reserve than the cash flows. Third, the incentives

to invest in the existing capital stock are relatively higher when k is low because of

diminishing returns to scale. Again, because k is low, investment is funded more from

the cash reserve than the cash flows. For these reasons, the marginal value of cash

increases when k is low, which discourages paying Φ. Additionally, when k is low the

benefits of exercising are smaller because the resulting increase in expected cash flows

from exercising depends on k and k is smaller relative to the exercise cost Φ. Hence, the

exercise boundary in Figure 1 rises in cash as capital declines.

4. Empirical Support

The analyses thus far has been mostly theoretical. In the preceding sections, we build

and solve a dynamic model of a firm with a real option and two states — cash and capital.

This section provides empirical support for several novel predictions about the relation

between option values and liquidity and option exercising and liquidity.

4.1. Data

A primary data source is the annual Compustat data file, providing detailed financial

statement information on public firms. After filtering the data, there are 8,006 firms and

93,628 firm-years. (See Internet Appendix Table C.1 for details on the filtering.) The

sample period is 1971 through 2020. For certain tests, the data series is more limited in

time frame because of availability of certain key variables.

[Insert Table 2 Here]

13



The two primary state variables in the model are a firm’s cash and capital positions. To

proxy for the cash state variable, we use a firm’s cash and cash equivalents (che) from the

quarter-end balance sheet. The capital position is a firm’s property, plant, and equipment

net of depreciation (ppent). Table 2 shows that the median cash-to-capital ratio is about

22.9%.

To identify real option exercises, we rely on a firm’s net investment rate in physical

capital. We calculate a firm’s net investment (capital expenditures less depreciation in

a quarter) scaled by lagged capital for each period and then standardize these values

within the firm. Table 2 shows that the median net investment rate is 4.5% per year.

We also rely on stock market data from CRSP. We obtain daily stock returns from the

CRSP daily return files. We use daily returns when calculating monthly and annual firm

volatility. We obtain daily factor returns and risk-free rates from Ken French’s website

(Link). See Internet Appendix Table C.2 for our sample selection criteria. Our sample

covers 15,221 firms; spans April, 1964 to December, 2020; and contains about 1.86 million

stock-month observations. Table 2 shows that the median daily volatility is 2.7%. The

median beta is 0.81, the median book-to-market ratio is 0.55, and the median turnover is

about 0.6% of shares outstanding.

4.2. Hypothesis 1: The minimum cash-to-capital ratio for exercise is declining and convex in
capital

Our model predicts that the required minimum cash for exercising the real option

relative to a firm’s size is declining and convex in capital. Figure 2a illustrates this

prediction. The rationale is that the value of financial flexibility (the marginal value of

cash) is high when capital is low for several reasons: (1) because existing cash flows are

low, the firm relies mostly on the cash reserve to fund investments and meet liabilities;

(2) solvency is low because of the fixed debt; (3) issuance costs are high when a firm is

small; and (4) the marginal returns to growing the dynamic physical capital stock are

high because of diminishing returns to scale. Consequently, when capital is low, the

firm is more reluctant to pay the fixed exercise cost Φ to improve the productivity of the

physical capital k. As capital increases, the minimum cash relative to capital declines

convexly because of diminishing returns to scale and the decline fixed issuance costs

relative to size.

This reasoning leads to the following prediction:

H1: The minimum cash-to-capital ratio for exercise is declining and convex in capital.
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(a) The Y-axis is the cash-to-capital ratio along the exercise
boundary in Figure 1; the X-axis is the corresponding level of
capital. The parameters used are summarized in Table 1.

(b) The Y-axis is a firm’s cash-to-capital ratio at the end of year
t (standardized within firm). The X-axis is a firm’s net property,
plant, and equipment at the end of year t (standardized within
firm). We limit the sample to firm years preceding firm years
with net investment rates (capital expenditures less depreciation
all scaled by lagged capital) in the top 50% of net investment
rates in the full sample (above 2.7% growth). We then sort firm-
year observations into twenty bins according to a firm’s size
standardized within firm (the black dots). For each bin, we
report the average size of the firm-years in that bin and their
average cash-to-capital ratios. Controls for year fixed effects.

Figure 2: Predicted Exercise Boundary from Figure 1 vs. Actual

Figures 2b provides empirical support for the model’s prediction. We limit the sample

to firm years preceding firm years with net investment rates (capital expenditures less

depreciation all scaled by lagged capital) in the top 50% of net investment rates in the

full sample (above 2.7% growth). For this sample, we show cash-to-capital ratios on the

y-axis and capital levels on the x-axis. To construct the figure, we first standardize a

firm’s cash-to-capital ratios and capital levels within firm using the full sample. Thus,

a value of zero for either variables reflects a firm’s average, and deviations from the

firm’s average are compared to the volatility of that variable at a specific firm. Then, for

the subsample of firm-years preceding a high net investment period, we sort firm-year

observations into twenty bins according to a firm’s size standardized within firm (the

black dots). For each bin, we report the average size of the firm-years in that bin and

their average cash-to-capital ratios. Consistent with our model’s prediction, the threshold

amount of cash for exercising appears to be declining and convex in capital.8

8In Internet Appendix Figure C.1, we show similar results using acquisition spending to proxy for
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To evaluate this hypothesis more rigorously, we estimate the following empirical

specification:

Cashi,t

Capitali,t
= β1Capitali,t + β2Capital2i,t + δt + ϵi,t. (13)

The outcome is the cash-to-capital ratio at the end of year t for firm i (standardized

within firm). The sample includes each firm-year t immediately preceding a firm-year

t + 1 in which a firm exercises a real option. To proxy for real option activity, we require

the net investment rates in year t + 1 to exceed the sample median of 2.6% in Panel A and

the 75th percentile of 13.1% in Panel B. Capital is a firm’s property, plant, and equipment

net of depreciation at the end of year t standardized within firm. We standardize capital

within firm so that the quadratic form of capital captures the distance from a firm’s

average size rather than an average across firms in the sample. We control for year fixed

effects (δt). ϵi,t is the unexplained variation. Standard errors are clustered by year.

Table 3 shows the results. Column (1) provides significant evidence that the cash-to-

capital ratio of a firm is declining in a firm’s capital in a convex manner. The coefficient

on Capital is negative, and the coefficient on Capital2 is positive and statistically significant.

Columns (2) and (3) show largely similar results before and after 1998. Columns (4) to

(10) show largely similar results cross SIC-1 industries.

[Table 3 Here]

4.3. Hypothesis 2: Real option values are hump-shaped in a firm’s cash reserve

Our model predicts that the value of a firm’s real option to delay investment is hump-

shaped in the firm’s cash reserve and more so when a firm is small. Figure 4 shows how

the value of the real option scaled by capital changes with cash when a firm is small

(k = 0.1) and when a firm is large (k = 0.8). The value of the option to delay starts close to

zero when cash is zero because (1) the firm must wait a longer time to fund the exercise

cost internally, which delays any benefits of exercising the option and because (2) the firm

imminently needs to raise costly financing anyways to avoid default. As the cash reserve

increases, the value of the option increases because the need to raise costly financing

real option exercises. We do not use acquisitions as our main proxy of real options exercises for several
reasons: (1) many acquisitions are completed using stock consideration rather than cash and (2) acquisition
prices include a control premium. In Internet Appendix Figure C.2, we also show similar results using
alternative net-investment-rate thresholds for option exercises. In Internet Appendix Figure C.3 we show
similar results accounting for intangible capital.
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anyways to avoid default decreases and because exercising immediately may increase

the marginal of cash significantly and even require costly external financing. Around

the cost of exercising the option, the value of the option to wait reaches its maximum

value. As the cash reserve increases further, the value of the option to delay declines

again because the firm’s cash position approaches the optimal cash reserve for exercising

the option. When cash is high, the difference in the value of the firm exercising the option

immediately and the value of the firm exercising the option imminently (after a short

delay) is small because the firm has sufficient cash to fund the exercise cost Φ and a

reasonable remaining amount of cash after exercise for precautionary savings. In other

words, the benefit of waiting in terms of reducing the impact of paying the exercise cost

on a firm’s financial flexibility (marginal value of cash) is lower when cash is high.
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Figure 3: Option Values and Financial Flexibility

This figure shows how the predicted value of the real option to delay investment scaled by capital k changes with a firm’s financial
flexibility, or the size of its cash reserve. We show how option values change with cash when capital is low (k = 0.1) and high (k = 0.8).

Figure 4: Option values vary with a firm’s financial flexibility

Figure 4 also shows that the hump-shape in option values scaled by capital is generally

larger when a firm is smaller. This change in the sensitivity of option values to cash over

a firm’s life cycle occurs because the marginal value of cash is higher when a firm is

smaller.

This reasoning leads to the following hypothesis:

H2: The value of a firm’s real option is hump-shaped in cash, and more so when the firm

is small.
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To examine H2 empirically, we need a methodology that reveals the value of a firm’s

real options. However, it is challenging to directly observe the value of a firm’s real

options. That is, stock prices incorporate the value of assets-in-place and real options.

Nevertheless, it is possible to tease out the value of a firm’s real options from stock

returns because the value of a firm’s real options is increasing in the volatility of expected

cash flows, which is σ in our model. The volatility of stock prices is expected to be

related to the volatility of expected cash flows, which justifies the use of measures of

stock return volatility as proxies for underlying volatility, as in Leahy and Whited (1996)

and Bulan (2005). The main rationale for this positive relation between real option values

and volatility is that, since firms can change their operating and investment decisions to

mitigate the effects of bad news (e.g., defer investments) and amplify the effects of good

news (e.g., expedite investments), an increase in the volatility of an underlying process

increases the value of the real option. Since flexibility induces the convexity of firm value

with respect to the value of its underlying assets, firm value is an increasing function of

volatility, due to Jensen’s inequality.

In our model, the firm may choose to delay exercising the option if its financial

flexibility is too low. A firm may also choose to delay the investment if its physical capital

stock is too low as this determines the expected amount of increase in cash flows from

exercising the growth option, which it compares to the direct exercise cost and the indirect

impact on a firm’s financial flexibility. Higher volatility increases the likelihood of having

to raise costly financing, which makes paying Φ immediately less appealing. Instead,

when volatility increases, the firm has a stronger preference to wait either to grow the

cash reserve or to become a larger firm, which decreases issuance costs relative to firm

size.

Consistent with this reasoning, Duffee (1995) finds a positive stock volatility-return

relation. Grullon, Lyandres and Zhdanov (2012) suggests that this relation is driven by the

positive effect of volatility on the value of real options. Grullon, Lyandres and Zhdanov

(2012) shows that for firms likely to derive more of their value from real options that firm

value is more positively related to a firm’s idiosyncratic volatility shocks. By contrast, for

firms with few real options, that paper finds no positive relation between idiosyncratic

volatility and firm value.

For these reasons, to evaluate H2, we examine how the sensitivity of a firm’s stock

returns to its volatility changes with a firm’s cash position. Because Figure 4 shows

how an option value varies with a firm’s cash and not how its sensitivity to volatility
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varies with a firm’s cash, we construct Figure 5(a) to show more directly what our model

predicts is the relation between the sensitivity of option values to volatility and a firm’s

financial flexibility.

(a) Predicted

This figure shows the model’s prediction of the change in the
value of the real option when the volatility of a firm’s cash flows
increases and how this sensitivity varies with a firm’s cash hold-
ings. The value of the option is the difference in the value of
the firm with the ability to delay a one-time investment opportu-
nity and the value of the firm with a now-or-never investment
opportunity. We scale the option values by capital. To examine
the sensitivity with volatility, we compare option values when
volatility is σ = 0.1 and σ = 0.09 (the default).

(b) Actual

We bin our full firm-month sample into two groups based on a
firm’s net property, plant, and equipment (standardized within
firm) in quarter t. The “Low Capital” group includes all firm-
month observations when a firm is below its average size. Then,
for each size group, we form ten cash bins based on a firm’s
cash reserve at the end of quarter t standardized within firm.
The Y-axis is the sensitivity of firm stock returns to innovations
in firm-specific stock volatility calculated for each bin using
Equation 16. The X-axis denotes the ordinal values of the cash
bins.

Figure 5: Sensitivity of option values to innovations in firm volatility by a firm’s size
and cash reserve

To measure firm i’s volatility in month t, we follow Ang et al. (2006, 2009), Duffee

(1995), and Grullon, Lyandres and Zhdanov (2012) among others, and calculate the

standard deviation of the firm’s daily returns during month t:

VOLi,t =

√
∑τ∈t(ri,τ − ri,t)2

nt − 1
. (14)

ri,τ is the natural logarithm of day τ ∈ t gross excess return on firm i’s stock, ri,t is the

mean of the logarithms of gross daily returns on firm i’s stock during month t, and nt

is the number of nonmissing return observables during month t. We use logarithmic

returns to mitigate the potential mechanical effect of return skewness (see Duffee, 1995)

on the relation between returns and contemporaneous return volatilities. The change

in volatility in month t, ∆VOLi,t, is computed as the difference between the estimated

volatility in month t and the estimated volatility in month t − 1:

19



∆VOLi,t = VOLi,t − VOLi,t−1 (15)

We estimate the following regression of individual firm returns, ri,t, net of the risk-free

rate, r f ,t, on contemporaneous changes in firm-level volatility, ∆VOLi,t, and a vector of

firm characteristics, xi,t, most of which are known at the beginning of month t. As in

Grullon, Lyandres and Zhdanov (2012), the characteristics include a firm’s market beta,

book-to-market ratio, market equity, turnover (volume/shares outstanding), and past

return over the prior six months (t-2, t-8). We include time fixed effects, ηt, for each

month t to isolate the cross-section and cluster the standard errors by month t.

ri,t − r f ,t = αt + βt∆VOLi,t + δtxi,t + ηt + ϵi,t (16)

Figure 5b provides evidence consistent with H2. Specifically, we group all firm-months

in our sample into two groups based on a firm’s net property, plant and equipment

(standardized within firm). Thus, the first group contains firm-month observations when

a firm’s size is below its average, capturing behavior when the firm is small. Then for

each size group, we create ten cash bins based on a firm’s cash reserve (standardized

within firm). Each cash bin contains about 100-thousand firm-month observations. We

then estimate specification (16) for each bin and store the sensitivity of stock returns

to innovations in firm volatility. The figure shows a clear hump-shape relation in this

sensitivity, which is consistent with real options being less valuable when cash is low

and high. Also consistent with H2, the figure shows that the hump-shape of real option

values in cash is stronger when a firm is smaller.9

The hump-shape of option values with a firm’s cash reserve should be stronger for

firms with more real options. We follow the literature and examine if the hump-shape

is stronger for small firms in the cross section (not within firm differences in size but

differences in levels), when firms spend more on research and development spending

relative to their sales, when firm’s are younger than their average age in the sample,

when firms see relatively higher future sales growth than their average, and when firms

operate in industries with plenty of real options, following the approach in Grullon,

Lyandres and Zhdanov (2012). Figures 6a-e show that firms predicted to have more real

9We find similar results using a Fama-MacBeth specification (See Internet Appendix C.4), using the
cash-to-capital ratio instead of cash (See Internet Appendix C.5), and when accounting for intangible capital
(See Internet Appendix C.6).
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options according to these proxies generally have higher sensitivities of stock returns to

innovations in firm specific stock volatility and exhibit a hump-shape in these sensitivities

with cash.

As additional robustness, if the option to delay is more valuable for intermediate levels

of cash, we might also predict that firms with intermediate cash levels are more likely to

delay investing in response to increases in firm volatility. Figure 7 provides visual evidence

consistent with this reasoning. Figure 7 shows the sensitivity of growth investments

to firm-specific volatility. We define growth investments as net investments (capital

expenditures less depreciation scaled by lagged net property, plant, and equipment)

exceeding the median of 2.6%. We find a general negative relation between a firm’s

stock volatility in quarter t and a firm’s net investment rate in quarter t + 1, consistent

with several prior empirical studies (Leahy and Whited, 1996; Guiso and Parigi, 1999;

Bulan, 2005; Bloom, Bond and Van Reenen, 2007). More interestingly, we find that the

negative investment-volatility relation is a function of a firm’s liquidity, exhibiting a

U-shaped in a firm’s cash holdings. Firms with intermediate levels of cash exhibit a

greater negative sensitivity of investment to firm volatility than firms with low or high

levels of cash exhibit. The figure also shows that the U-shape pattern is stronger when a

firm is smaller. In Internet Appendix Figure C.7, we show similar results using alternative

net-investment-rate thresholds for option exercises. In Internet Appendix Table C.4, we

show that the convexity is statistically significant.

To examine the significance of the hump-shape shown in the figures more rigorously,

we re-estimate equation (16) interacting ∆VOL with a firm’s cash reserve (standardized

within firm) and its square. Table 4 presents the results. Column (1) shows a significant

positive coefficient on ∆VOL consistent with the positive return-volatility relation in

Duffee (1995) and Grullon, Lyandres and Zhdanov (2012). Using the full sample, the

quadratic term, ∆VOL × Cash2 is not negative and statistically significant. However, in

column (2), we interact the relations with a dummy Large that equals to one when a firm’s

size is in the top three quartiles of the firm’s size distribution. Column (2) shows that

the hump-shape relation is statistically significant for small firms as the relation is the

coefficient on ∆VOL × Cash2 is negative and statistically significant for small firms.

5. Testable Implications

In this section, we vary the parameters in the baseline solution to the model depicted

in Figure 1 and examine their implications for a firm’s dynamics. These comparative
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(a) Low vs High Capital (Levels) (b) High vs Low R&D Firms

(c) Young vs Old (d) Low vs High Growth

(e) Low vs High Real Option Industries

Figure 6: Option Values for Firms with More/Fewer Real Options and the Firm’s Cash
Reserve
This Figure complements Figure 5 by initially forming two groups of firms based on proxies for a firm’s real options instead of a
firm’s within-firm physical capital stock. Panel (a) splits the sample based on whether a firm’s raw net property, plant, and equipment
in quarter t exceeds the full panel median. (Note that we are not splitting on the firm’s capital standardized within firm but rather the
level of capital.) Panel (b) splits the sample based on a firm’s R&D spending relative to lagged sales. Panel (c) splits the sample based
on the time since a firm IPO’d, standardized within firm. Panel (d) splits the sample based on actual revenue growth from quarter
t + 1 to quarter t + 4, standardized within firm. Panel (e) splits the sample based on whether a firm’s industry has plenty of real
options, as defined in Grullon, Lyandres and Zhdanov (2012), which are the Fama-French natural resource industries (27, 28, 30),
high-tech industries (22, 32, 35, 36), and pharmaceutical and biotechnology industries (12, 13).
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Figure 7: Sensitivity of large investments to a firm’s stock volatility by a firm’s size and
cash reserve
We divide our firm-year sample into two groups based on a firm’s net property, plant, and equipment (standardized within firm) at
the end of year t − 1. The “Low Capital” group includes all firm-year observations when a firm is below its average size. Then, for
each of the two size groups, we form ten cash bins based on a firm’s cash reserve (standardized within firm) at the end of year t − 1.
The Y-axis is the sensitivity of option exercises in year t to a firm’s average daily stock volatility (standardized within firm) in year t.
We classify option exercises as net investment rates above the sample median, which is 2.6% of net property, plant, and equipment.
The X-axis denotes the ordinal values of the cash bins. When estimating the exercise-volatility sensitivity, we regress an indicator for
option exercise in year t on a firm’s stock volatility in year t and control for year fixed effects.

statics provide additional predictions for future research.

5.1. Effect of exercise costs on the minimum required financial flexibility for investing

Internet Appendix Figure D.1 illustrates how the exercise region varies with the cost

of exercising the real option. The cost rises from Φ = 0.02 in (a) to Φ = 0.06 in (b). First, a

higher exercise cost predictably pushes the exercise boundary out — up and to the right

in (k, c) space. The firm is only willing to exercise when its capital stock is higher and

when it is less financially constrained. This shift occurs because the higher exercise cost

reduces the net profitability of exercising so that the firm only finds exercising profitable

when capital (and thus cash flows) is larger. Additionally, the firm requires a higher cash

reserve at the time of exercise (an upward shift in the exercise boundary) because an

increase in the exercise cost increases the probability of equity dilution after paying the

exercise cost since there is a larger outflow of cash associated with investment. Second,

the issuance target shifts down when the exercise cost increases. Intuitively, when the

exercise cost is higher, the firm is further away from the exercise boundary and the

incentive to raise proceeds to fund the exercise costs are weaker. Internet Appendix

Figure C.8 shows theoretically and empirically that real options incentivize firms to issue

larger amounts to help finance the exercise cost.
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Internet Appendix Figure D.2 illustrates how the exercise region varies with the degree

to which the real option increases a firm’s productivity. The productivity rises from

µ = 0.18 to (a) µ̃ = 0.19 and to (b) µ̃ = 0.20. An increase in the expected cash flows

gained from exercising the real option predictably shifts the exercise boundary inwards

— down and to the left. Intuitively, exercising becomes more attractive at lower levels

of capital because the expected cash flow increase is larger when the productivity rate

(µ̃ > µ) increases more, all else equal. The downward shift in the exercise boundary

occurs because the larger increase in cash flows helps the firm economize over issuance

costs to a greater extent after paying the exercise cost Φ. In other words, the risk of having

to pay issuance costs after paying the exercise cost Φ is lower because the expected cash

flows are larger. Thus, firms are more likely to exercise projects with larger increases in

productivity, especially when cash balances are lower.

Internet Appendix Figure D.3 illustrates how the decision to exercise varies with

issuance costs. The fixed component of issuance costs is 0.25 × λ f (or one-quarter of the

default fixed cost in Table 1) in (a) and 4.0× λ f in (b). The exercise boundary rises as fixed

issuance costs increase. Intuitively, the higher fixed component of issuance costs increases

the firm’s precautionary savings motive. Thus, the firm requires a larger cash buffer

prior to exercising and paying the issuance cost Φ. Relatedly, the issuance target rises

to economize on the higher fixed issuance costs. By contrast, Internet Appendix Figure

D.4 shows that increasing only the proportional component of issuance costs lowers the

issuance target or the amount a firm is willing to issue. Intuitively, as the proportional

costs increase relative to the fixed costs, the firm focuses more on economizing over the

proportional costs rather than the fixed costs. Interestingly, Internet Appendix Figure D.5

shows that when the fixed and proportional costs decrease, firms will issue when cash is

greater than zero because the cost of delaying the benefits of exercising are greater than

the costs of paying the issuance costs.

Internet Appendix Figure D.6 illustrates how the exercise decision varies with the

effect of the real option on the volatility of the cash flows. First, an increase in the volatility

of cash flows after exercising the real option leads firms to require larger cash balances

even prior to exercising. Visually, the exercise boundary shifts up. This demand for

larger cash reserves ahead of exercising occurs because a higher volatility post exercising

increases the probability of costly issuance and default. Equity holders internalize this

increase in the marginal value of cash post exercise and thus hold more cash before

exercising. In other words, equity holders anticipate their post-investment optimal cash
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policy. Second, the issuance target boundary increases even before exercising the real

option when the option’s volatility increases. As with the optimal cash reserve at the

time of exercise, this upward shift in the issuance target occurs because equityholders

internalize that higher volatility after exercising increases the probability of issuance and

default.

Internet Appendix Figure D.7 illustrates how the exercise decision varies with a firm’s

leverage. The leverage varies from no debt (b = 0.00) in (a) to a coupon of b = 0.03 in (b).

First, leverage increases the exercise boundary. That is the firm requires more cash before

exercising for any given level of capital. Intuitively, higher cash balances reduce the

likelihood of running out of cash and defaulting, which results in inefficient liquidation of

the firm’s physical capital, after paying the exercise cost. Second, the exercise region shifts

to the right because for low levels of capital, the profitability is too low after exercising

to justify the investment. Relatedly, with higher leverage, the default region expands,

evidenced by the rightwards shift in the issuance target.

6. Conclusion

This paper examines how costly financing affects the timing of investment. Firms

with the ability to delay investment may do so to improve the internal cash available to

fund the investment (financial flexibility) or may wait for the cash flows to improve (real

flexibility). To examine these two forms of flexibility, we solve a dynamic model of a

firm with both a dynamical capital stock as a state variable and a cash reserve as a state

variable. Because firms facing costly financing value flexibility, the value of a real option,

the timing of its exercise, and firm dynamics are closely linked to the firms liquidity in

addition to its physical capital stock. In doing so, this paper effectively integrates two

classical literatures on corporate cash balances (Miller and Orr, 1966) and on real options

(McDonald and Siegel, 1986) in a novel way.

Our model generates several new predictions we find support for in the data. (1) The

value of the real option is hump-shaped in cash, especially when a firm is smaller because

the demand for financial flexibility is higher. (2) Exercising activity is U-shaped in cash,

especially when a firm is smaller. (3) The optimal cash reserve at the time of exercise

scaled by capital is declining and convex in capital. The empirical support we provide

extends the limited empirical literature on real options.
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Appendix A. Proofs

Lemma 1. Before exercising the option, equity issuance is only optimal when c = 0 or at the same
time as option exercise.

Proof. We define an equivalent control problem using

c̃t = e−(r−λc)tct, D̃t =
∫ t

0
e−(r−λc)sdDs, Ĩt =

∫ t

0
e−(r−λc)sdIs.

Then,
dc̃t = e−(r−λc)tdYt − e−(r−λc)t(b + it + g(kt, it))dt − dD̃t + dĨt,

and the optimization problem is

V(k, c) = sup
i≥0,D̃,{σj, Ĩj},ν

E

[ ∫ τ,ν

0
e−λctdD̃t − ∑

σj≥0
e−λcσj

(
Ĩj + λp Ĩj + e−(r−λc)σj λ f )

)
+ 1{ν<τ}G(kν, c̃ν)

+ 1{τ<ν}e−r(τ−t)(ℓkτ − b/rdebt)+

]
,

where τ is defined equivalently for c̃ as for c.
In this formulation, issuance can be delayed at a discount. To make things clear,

we fix an investment strategy i and a dividend strategy D, index c̃ξ by an issuance
strategy ξ = {σj, Ĩj}j∈N with at least one issuance time say σi at which c̃ξ

σi > 0 and
σi < ν. Let Ĩi be the corresponding issuance amount. Let ξ− be another issuance
strategy that omits this issuance, but keep the rest of the issuance strategy as ξ. Finally,
construct a third strategy ξ ′ like ξ− but with an additional issuance of size Ĩi at a time
σ′ = ν ∧ inf{t > σi : c̃ξ−

t < 0}.10 Note that for the same (Y, i, D), the increment of c̃ξ and
c̃ξ ′ are the same as between σi and σ′. With the same issuance size, we have c̃ξ

σ′ = c̃ξ ′

σ′ , so
the continuation values must coincide after σ′, because the strategies are identical after σ′

i .
Moreover, dividends and issuance until σ′ have been identical, with one exception, for
which ξ ′ has resulted in a larger discounting factor and a smaller discounted fixed cost.

We therefore conclude that the original strategy is dominated by the one issuing equity
later: either only at c = 0 or simultaneously as exercising the option, i.e., at time ν. As
this is true for any strategy, we may consider only strategies that issue equity when c = 0
or at the option exercise time.

Let O = (0, ∞)× (0, kmax). We restrict ourselves to the setting in which there is a

maximal investment rate imax < ∞. It then follows from Lemma 1 that (10) and (11) can

10If c̃ξ−

t fell below zero due to a lump sum dividend payout, we can balance out the dividend payout
and the issuance to obtain the same result in the next step. If there are multiple issuances in ξ between σi
and σ′, we omit all of them in ξ− and issue the sum of all missed size at σ′ in ξ ′.
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be rewritten as

0 =min
{

rV − sup
imax≥i≥0

{[
i − δk

]
∂kV +

[
(r − λc)c + kαµ − b − i − g(k, i)

]
∂cV +

1
2

k2ασ2∂2
ccV

}
,

∂cV − 1, V(k, c)− sup
I≥0

[
G(k, c + I − Φ)− I − λ(I)

]
, V(k, c)− G(k, c − Φ)

}
, c ≥ Φ,

(A.1)

0 =min
{

rV − sup
imax≥i≥0

{[
i − δk

]
∂kV +

[
(r − λc)c + kαµ − b − i − g(k, i)

]
∂cV +

1
2

k2ασ2∂2
ccV

}
,

∂cV − 1, V(k, c)− sup
I≥Φ−c

[
G(k, c + I − Φ)− I − λ(I)

]}
, c ∈ (0, Φ),

(A.2)

with the boundary conditions

V(0, c) = c at k = 0,

V(k, 0) = min
{
(ℓk − b/rdebt)+, sup

I≥0

[
V(k, I)− I − λ(I)

]}
at c = 0.

(A.3)

Before we prove comparison for V and the convergence of the numeric algorithm, we

establish the following technical lemma.

Lemma 2. The function

(k, c) 7→ sup
I≥(Φ−c)+

[
G(k, c + I − Φ)− I − λ(I)

]
is continuous.

Proof. It will be convenient to consider the equivalent function

(k, c) 7→ sup
c′≥(c−Φ)+

[
G(k, c′)− (c′ + Φ − c)− λ(c′ + Φ − c)

]
.

We note that the function G is uniquely pinned down (and continuous) by the proofs in
Ali Kakhbod, Max Reppen, Tarik Umar and Hao Xing (2021). Because the function is the
supremum of continuous functions, it is lower semi-continuous. It thus remains to show
that it is upper semi-continuous. Let {(kn, cn)}n∈N be a sequence of points converging to
(k, c). Because λp > 0 and G(k, c′) grows like c′ for large c′, the optimizers c′n exist and
are uniformly bounded in n. Hence, there exists a convergent subsequence, which we
index by m to distinguish, such that limm→∞ c′m = ĉ. Because c′m ≥ (cm − Φ)+, we have
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ĉ = limm→∞ c′m ≥ limm→∞(cm − Φ)+ = (c − Φ)+. Therefore

sup
c′≥(c−Φ)+

[
G(k, c′)− (c′ + Φ − c)− λ(c′ + Φ − c)

]
≥ G(k, ĉ)− (ĉ + Φ − c)− λ(ĉ + Φ − c)

= lim
m→∞

[
G(km, c′m)− (c′m + Φ − cm)− λ(c′m + Φ − cm)

]
= lim

m→∞
sup

c′≥(cm−Φ)+

[
G(km, c′)− (c′ + Φ − cm)− λ(c′ + Φ − cm)

]
,

where the second equality follows from the optimality of c′m. Because this is true for
any sequence, we conclude that the function is upper semi-continuous and thus also
continuous.

Theorem 3. Let u and v be, respectively, possibly discontinuous viscosity sub- and supersolutions
to (A.1) and (A.2) with the above boundary conditions in (A.3) (possibly with ≤ and ≥ inequal-
ities, respectively). Assume further that u and v are both of linear growth in c and polynomial
growth in k, i.e., they take values in [c, c + p(k)] for some polynomial p. Then, u ≤ v everywhere
in O.

Proof. Suppose there exists a point at which u > v. Fix some η > 0 and consider a
maximizing sequence (cn, kn)n≥1 to supO e−ηk(u − v) > 0. By the growth condition, kn
is bounded by some k∗, where k∗ depends only on η. Now, for any ζ > 0 small enough,
there exists a point (k̄, c̄) such that e−ηk̄(u − v)(k̄, c̄) = δζ ≥ supO e−ηk(u − v)− ζ > 0. We
emphasize that k̄ remains bounded, irrespective of ζ. In particular, for any η, δζ/(ζ +

√
ζ)

can be chosen arbitrarily large.
We begin by showing that if such a point lies on the boundary c = 0, then there is

another with the same property on the interior. Consider points (k̄, c̄) such that c̄ = 0.
Then, depending on whether u(k̄, 0) ≤ k̄ − ℓ/rdebt or u(k̄, 0) ≤ Iu, we have

(u − v)(k̄, 0) ≤ ℓk̄ − b/rdebt − max{ℓk̄ − b/rdebt, Iv} ≤ 0

or
(u − v)(k̄, 0) ≤ Iu − max{ℓk̄ − b/rdebt, Iv} ≤ sup

I>0

[
u(k̄, I)− v(k̄, I)

]
.

The first case contradicts δζ > 0, and the second shows that another a point with the same
properties exists in the interior. Similarly, for k̄ = 0, we also get (u − v)(c̄, 0) ≤ c̄ − c̄ = 0.
Hence, without loss of generality, we may assume (k̄, c̄) lies away from c = 0 and k = 0.

Define for γ > 0

Ψϵ,γ(k, c, ℓ, d) = (1 − γ)e−ηku(ℓ, c)− e−ηℓv(k, d)

− β(c − c̄)4 − 1
2ϵ

(
(c − d)2 + (k − ℓ)2

)
in O ×O.
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Clearly, for γ > 0 small enough,

sup
O×O

Ψϵ,γ ≥ Ψϵ,γ(k̄, c̄, k̄, c̄) = e−ηk̄
(
(1 − γ)u(k̄, c̄)− v(k̄, c̄)

)
> δζ .

In particular, for any γ > 0 and η > 0, Ψϵ,γ has a maximizer (kϵ,γ, cϵ,γ, ℓϵ,γ, dϵ,γ), because
of the growth conditions on u and v. Moreover, the growth conditions give an upper
bound for this maximizer, depending only on γ and η. Therefore, (kϵ,γ, cϵ,γ, ℓϵ,γ, dϵ,γ)
converges along a subsequence as ϵ → 0. From here on, let us only consider ϵ along this
subsequence. Because the lower bound at the maximum above is independent of ϵ,

0 < δζ < lim inf
ϵ→0

Ψϵ,γ(kϵ,γ, cϵ,γ, ℓϵ,γ, dϵ,γ),

which implies

lim sup
ϵ→0

1
2ϵ

(
(cϵ,γ − dϵ,γ)

2 + (kϵ,γ − ℓϵ,γ)
2
)
< ∞,

so (kϵ,γ, cϵ,γ), (ℓϵ,γ, dϵ,γ) → (kγ, cγ). Note that kγ ≤ k∗, again because of the growth
condition.

Rearranging terms and letting ϵ → 0,

lim
ϵ→0

β(cϵ,γ − c̄)4 + lim
ϵ→0

1
2ϵ

(
(cϵ,γ − dϵ,γ)

2 + (kϵ,γ − ℓϵ,γ)
2
)

≤ lim sup
ϵ→0

e−ηkϵ,γ(1 − γ)u(kϵ,γ, cϵ,γ)− e−ηℓϵ,γ v(ℓϵ,γ, dϵ,γ)− δζ

≤ e−ηkγ

(
(1 − γ)u(kγ, cγ)− v(kγ, cγ)

)
− δζ

≤ ζ.

That is,

lim
ϵ→0

β(cϵ,γ − c̄)4 + lim
ϵ→0

1
2ϵ

(
(cϵ,γ − dϵ,γ)

2 + (kϵ,γ − ℓϵ,γ)
2
)
≤ ζ. (A.4)

As β may be taken arbitrarily large, we ensure that ζ < βc̄4, so that cγ > 0.
If kγ = 0, we directly obtain u(cγ, 0) ≤ cγ ≤ v(cγ, 0), which is a contradiction. Hence,

(kγ, cγ) must lie in the interior, and so will (kϵ,γ, cϵ,γ) and (ℓϵ,γ, dϵ,γ) for sufficiently small
ϵ.

Because the maxima are attained in interior points, we proceed to use Ishii’s lemma,
from which we obtain (pu

γ, X) ∈ J2,+
(e−ηkϵ,γ(1−γ)u(kϵ,γ, cϵ,γ)) and (pv

γ, Y) ∈ J2,−
(e−ηℓϵ,γ v(ℓϵ,γ, dϵ,γ))

(Crandall, Ishii and Lions, 1992, Theorem 3.2), satisfying

pu
γ = (pu

c , pu
k ) = (pv

c + 4β(cϵ,γ − c̄)3, pv
k), pv

γ = (pv
c , pv

k) =

(
cϵ,γ − dϵ,γ

ϵ
,

kϵ,γ − ℓϵ,γ

ϵ

)
and

k2α
ϵ,γX − ℓ2α

ϵ,γY ≤ k2α
ϵ,γ12β(cϵ,γ − c̄)2 +

(kα
ϵ,γ − ℓα

ϵ,γ)
2

ϵ
+ o(1),
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where o(1) denotes a term that converges to 0 as ϵ → 0.
We will be splitting into cases, depending on what part of the equation (A.1) (or (A.2))

is satisfied. Because the equations differ only in one term, depending on whether c ≥ Φ,
we assume (A.1) holds until we treat the one part that differs.

Because u is a subsolution, ũ = (1 − γ)e−ηku satisfies

0 ≥ min
{

rũ − sup
i∈[0,imax]

([
i − δζkϵ,γ

]
(ηũ + ∂kũ)

+
[
(r − λc)cϵ,γ + kα

ϵ,γµ − b − i − g(kϵ,γ, i)
]
∂cũ

+
1
2

k2α
ϵ,γσ2∂2

ccũ
)

,

ũ − (1 − γ)e−ηkϵ,γ sup
I≥Φ−cϵ,γ

[
G(kϵ,γ, cϵ,γ + I − Φ)− I − λ(I)

]
,

ũ − (1 − γ)e−ηkϵ,γ G(kϵ,γ, cϵ,γ − Φ),

∂cũ − (1 − γ)e−ηkϵ,γ

}
.

(A.5)

Similarly, ṽ = e−ηkv satisfies

0 ≤ min
{

rṽ − sup
i∈[0,imax]

([
i − δζℓϵ,γ

]
(ηṽ + ∂kṽ)

+
[
(r − λc)dϵ,γ + ℓα

ϵ,γµ − b − i − g(ℓϵ,γ, i)
]
∂cṽ

+
1
2
ℓ2α

ϵ,γσ2∂2
ccṽ

)
,

ṽ − e−ηℓϵ,γ sup
I≥Φ−dϵ,γ

[
G(ℓϵ,γ, dϵ,γ + I − Φ)− I − λ(I)

]
,

ṽ − e−ηℓϵ,γ G(ℓϵ,γ, dϵ,γ − Φ),

∂cṽ − e−ηℓϵ,γ

}
.

(A.6)

We split into four cases (in reverse order), depending on which expression is smallest
in Equation (A.5). We begin with the simple case of

pu
c ≤ (1 − γ)e−ηkϵ,γ .

Subtracting the two equations (A.5) and (A.6) thus gives

4β(cϵ,γ − c̄)3 = pu
c − pv

c ≤ (e−ηkϵ,γ − e−ηℓϵ,γ)− γe−ηkϵ,γ .

Letting ϵ → 0 in the last inequality,

4β(cγ − c̄)3 ≤ −γe−ηkγ ,
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which contradicts with Equation (A.4) because ζ can be chosen arbitrarily small, indepen-
dently of k∗.

For the option exercise condition ũ − (1 − γ)e−ηkϵ,γ G(kϵ,γ, cϵ,γ − Φ) ≤ 0, we differ-
entiate depending on the sign of cγ − Φ. If cγ < Φ, then also cϵ,γ < Φ for small ϵ,
so the option cannot be exercised without enough cash reserve. If cγ > Φ then both
cϵ,γ ≥ Φ and dϵ,γ ≥ Φ for small ϵ, and subtracting ũ − (1 − γ)e−ηkϵ,γ G(kϵ,γ, cϵ,γ − Φ) and
ṽ − e−ηℓϵ,γ G(ℓϵ,γ, dϵ,γ − Φ) yields

ũ(kϵ,γ, cϵ,γ)− ṽ(ℓϵ,γ, dϵ,γ) ≤ (e−ηkϵ,γ G(kϵ,γ, cϵ,γ − Φ)− e−ηℓϵ,γ G(ℓϵ,γ, dϵ,γ − Φ))

− γe−ηkϵ,γ G(kϵ,γ, cϵ,γ − Φ).

Thus, by continuity of G,

δζ ≤ e−ηkγ((1 − γ)u − v)(kγ, cγ) ≤ lim sup
ϵ→0

(ũ(kϵ,γ, cϵ,γ)− ṽ(ℓϵ,γ, dϵ,γ)) ≤ 0.

This implies that δζ ≤ 0, which is a contradiction. Consider finally cγ = Φ with cϵ,γ ≥ Φ
and dϵ,γ < Φ so that ũ satisfies (A.5) but ṽ does not satisfy the corresponding condition
in (A.6). In this case, we use lower semi-continuity of ṽ to get

lim inf
ϵ→0

ṽ(ℓϵ,γ, dϵ,γ) ≥ ṽ(kγ, cγ) ≥ e−ηkγ G(kγ, cγ − Φ),

as ṽ satisfies (A.6) in (kγ, cγ) = (kγ, Φ), and we can follow the same steps as above.
After observing the continuity established in Lemma 2, the case involving the issuance

term follows the same steps as the case cϵ,γ ≥ Φ and dϵ,γ ≥ Φ above.
In the final case, we subtract the equations and get

r(ũ − ṽ) ≤ sup
i∈[0,imax]

{[
i − δζkϵ,γ

]
(ηũ(kϵ,γ, cϵ,γ) + pu

k )

+
[
(r − λc)c + kα

ϵ,γµ − b − i − g(kϵ,γ, i)
]
(pv

c + 4β(cϵ,γ − c̄)3) +
1
2

k2α
ϵ,γσ2X

−
[
i − δζℓϵ,γ

]
(ηṽ(ℓϵ,γ, dϵ,γ) + pv

k)

−
[
(r − λc)c + ℓα

ϵ,γµ − b − i − g(ℓϵ,γ, i)
]

pv
c −

1
2
ℓ2α

ϵ,γσ2Y
}

≤ sup
i∈[0,imax]

{
iη(ũ(kϵ,γ, cϵ,γ)− ṽ(ℓϵ,γ, dϵ,γ))

+
[
(r − λc)c + kα

ϵ,γµ − b − i − g(kϵ,γ, i)
]
4β(cϵ,γ − c̄)3

− δζ(ℓϵ,γ − kϵ,γ)pu
k +

[
(kα

ϵ,γ − ℓα
ϵ,γ)µ − (g(kϵ,γ, i)− g(ℓϵ,γ, i))

]
pv

c

+ 6k2α
ϵ,γσ2β(cϵ,γ − c̄)2 +

(kα
ϵ,γ − ℓα

ϵ,γ)
2

ϵ

}
+ o(1).
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Let η < (r − ∆)/imax for ∆ ∈ (0, r). Then, taking lim sup as ϵ → 0, and using that g(·, i)
and k 7→ kα are Lipschitz in the neighborhood of (kγ, cγ), i.e.,

|g(kϵ,γ, i)− g(ℓϵ,γ, i)|+ µ|kα
ϵ,γ − ℓα

ϵ,γ| ≤ R|kϵ,γ − ℓϵ,γ|,

we get

lim sup
ϵ→0

∆(ũ(kϵ,γ, cϵ,γ)− ṽ(ℓϵ,γ, dϵ,γ))

≤ lim
ϵ→0

[
(δζ + R2)

(kϵ,γ − ℓϵ,γ)2

ϵ
+ R

(cϵ,γ − dϵ,γ)√
ϵ

(kϵ,γ − ℓϵ,γ)√
ϵ

+ R′(|cϵ,γ − c̄|2 + |cϵ,γ − c̄|3) + o(1)
]

,

for some constant R′, depending on k∗ (i.e., η), imax, β, and the model parameters. In
other words, R′ is independent of ζ. By Equation (A.4), the right-hand side is bounded
by R′′(ζ +

√
ζ), for some constant R′′ > 0 that is also independent of ζ. Finally, because

∆ > 0,

δζ ≤ e−ηkγ((1 − γ)u − v)(kγ, cγ) ≤ lim sup
ϵ→0

(ũ(kϵ,γ, cϵ,γ)− ṽ(ℓϵ,γ, dϵ,γ)) ≤
R′′

∆
(ζ +

√
ζ),

which is a contradiction because δζ/(ζ +
√

ζ) can be chosen arbitrarily large. Hence,
there cannot exist a point (k, c) such that (u − v)(k, c) > 0.

To use the comparison result above, we must show that the value function satisfies

the growth condition. The lower bound is trivial, by construction, so it remains to show

the upper bound.

Lemma 4. The value function V(k, c) is bounded by c + M + k for some constant M.

Proof. We may assume this is true for G, as its proof follows the same but simpler steps
(because there is no option execution). In fact, until the last step, the proof would be
identical by replacing V by G below.

Consider the following optimization problem:

Vc
R(k, c) = c + VR(k)

= c + sup
τ,i≥0,ν

E

[ ∫ τ

0
e−rt

(
kαµ − b − it − g(kt, it)

)
dt

+ 1{τ<ν}e−r(τ−t)(ℓkτ − b/rdebt)+

+ 1{ν<τ}e−r(ν−t)(GR(kν)− Φ)

]
,

where GR would have been defined similarly but without option execution. This is the
optimization problem for a firm that is subject to neither external financing costs nor
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a cash liquidity premium, and that can invest and choose its default time optimally,
i.e., a real option. This value function VR dominates the firm value in Equation (9), i.e.,
V(k, c) ≤ Vc

R(k, c) for any (k, c). The equation for VR(k) is given by dynamic programming:

0 = min{rVR − sup
i≥0

((i− δk)V′
R + kαµ− b− i− g(k, i)), VR − (ℓk− b/rdebt)+, VR −GR −Φ}.

(A.7)
We assume that this equation satisfies the comparison principle, which can be proven as
in Theorem 3.

We show that the function v : k 7→ M + k is a supersolution to (A.7), so by the
comparison principle,

V(k, c) ≤ c + VR(k) ≤ c + k + M.

Plugging in v into (A.7), we get

rM + rk + δk − kαµ + b,

which is minimized at
((r + δ)/µα)1/(α−1),

with the minimum value

(r + δ)(1 − 1/α)(µα/(r + δ))1/(1−α) + rM + b.

For M large enough, this minimum is always positive.
We also have that v − (ℓk − b/rdebt) > 0 for all M ≥ 0. It follows that v satisfies the

two first viscosity supersolution conditions of Equation (A.7). We are done if v ≥ GR − Φ.
However, because this step is not necessary in the construction of a supersolution for
GR, the proof so far shows that GR ≤ M + k for some M. With this M, clearly v ≥ GR >
GR − Φ, so v indeed a viscosity supersolution and V(k, c) ≤ c + k + M.

Corollary 5. The value function pair (V, G) is the (continuous) unique solution to the HJB
equation(s).

Another consequence of the comparison result in Theorem 3 is the convergence of the

numerical scheme outlined below (see Barles and Souganidis (1991)).

Corollary 6. Numerical solutions converge to the value function as the discretization gets finer.

The HJB equation(s) for (V, G) are solved in a square domain [0, cmax]× [0, kmax] via

policy iteration, which produces value functions V(k, c), G(k, c), and investment policy

function i(k, c) in addition to the regions of dividend payouts, equity issuance, and option

exercise. The singular structure is approximated as in (Reppen, Jean-Charles and Soner,

2020, Section 4), which also describes the policy iteration algorithm, and the impulse

control issuance as in (Reppen, Jean-Charles and Soner, 2020, Section 6.1.2).
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In addition to (A.3), the boundary conditions where c = cmax and kmax are given by

0 = ∂cV − 1 at c = cmax

0 = min
{

rV + δk∂kV −
[
rc + kαµ − b

]
∂cV − 1

2
k2ασ2∂2

ccV,

∂cV − 1, IV,

V − G(k, c − Φ)

}
at k = kmax

At the corners, the c-conditions are used.
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Table 1: Model Parameters

Parameter Name Values Comments
r Interest rate 6% In line with long term average

yield to maturity on 30 year
U.S. Treasuries.

λc Cash holding cost, liquidity
premium

1% In line with Bolton, Chen and
Wang (2011); Bolton, Wang
and Yang (2019).

µ Expected productivity shock 0.18 In line with the estimates of
Eberly, Rebelo and Vincent
(2009) for large U.S. firms.

µ̃ Expected productivity shock
after exercising the real option

0.19 A 0.01 increase relative to µ.

σ Volatility of productivity
shock

0.09 In line with the estimates of
Eberly, Rebelo and Vincent
(2009) for large U.S. firms.

σ̃ Volatility of productivity
shock after exercising the real
option

0.09 Same as σ.

θ Degree of adjustment cost 1.5 See Whited (1992).
δ Depreciation rate 10.07% In line with the estimates of

Eberly, Rebelo and Vincent
(2009) for large U.S. firms.

b Long term debt coupon rate 0.02 Together with rdebt below
yields a long term debt face
value 0.22.

λp Variable issuance cost 6% In line with the estimates of
Altınkılıç and Hansen (2000).

λ f Fixed issuance cost 0.05 λ f is chosen so that the fixed
issuance cost for firms with
average size in our model is
at the same magnitude as the
fixed cost rate in Bolton, Chen
and Wang (2011) multiplied
by our average size.

α Curvature of production func-
tion. When α < 1, then dimin-
ishing returns to scale

0.7 α = 0.75 in Riddick and
Whited (2009) and α = 0.627
with std 0.219 for the full sam-
ple of firms in Hennessy and
Whited (2007).

ℓ Recovery rate in liquidation of
capital

90% The choice of ℓ is consistent
with Hennessy and Whited
(2007), where the recovery
rate is estimated to be 0.896
for the full sample of firms.

rdebt Cost of financing for long-
term debt

9% rdebt is chosen as 1.5r. Re-
sults are insensitive to this
parameter, because firms are
left with no proceed after the
bondholder is repaid after liq-
uidation in most of numeric
experiments.

Φ Exercise Cost 0.03 Φ is the one-time cost of ex-
ercising the real option. Af-
ter paying Φ, the productivity
process permanently changes
to µ̃ and σ̃.
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Table 2: Summary Statistics Variables winsorized at the 1% level.

Panel A: Compustat Characteristics
Obs. Mean Std. Dev. P25 P50 P75

Property, Plant & Equipment (Net) 93628 683.65 2233.05 20.29 67.3 312.39
Cash and Short-Term Investments 93628 195.4 591.34 4.19 21.73 104.29
Cash-to-Capital (%) 93628 104.36 226.08 6.86 22.86 83.05
Net Investment Rate (%) 93628 4.52 24.64 -4.86 2.69 13.08
Capital Expenditures 93628 117.06 362.47 4.16 14.28 59.7
Depreciation 93628 90.21 267.52 3.65 11.94 49.8

Panel B: CRSP Characteristics
Obs. Mean Std. Dev. P25 P50 P75

VOL 1856565 3.37 2.42 1.76 2.68 4.16
∆VOL 1856565 0 1.81 -.75 -.02 .72
Market Beta 1856565 .82 .39 .54 .81 1.07
Book-to-Market 1856565 .75 .69 .3 .55 .94
Market Equity 1856565 11.89 2.24 10.23 11.74 13.44
Cumulative Past Six-Months Returns 1856565 4.01 38.91 -19.43 -.26 20.5
Turnover 1856565 1.14 1.54 .22 .58 1.42
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Table 3: H1: The minimum cash-to-capital ratio for exercise is declining and convex in
capital

The outcome is the cash-to-capital ratio at the end of year t for firm i (standardized within firm).
The sample includes each firm-year t immediately preceding a firm-year t + 1 in which a firm exercises a
real option. To proxy for real option activity, we require the net investment rates in year t + 1 to exceed the
sample median of 2.6% in Panel A and the 75th percentile of 13.1% in Panel B. Capital is a firm’s property,
plant, and equipment net of depreciation at the end of year t standardized within firm. We standardize
capital within firm so that the quadratic form of capital captures the distance from a firm’s average size
rather than an average across firms in the sample. Columns (2) and (3) split the sample after and on or
before the median year of 1992, respectively. Columns (4) to (10) restrict the sample to industries based on
the SIC-1 identifier. We control for year fixed effects. Standard errors are clustered by year. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A: Net investment rates in year t + 1 must exceed 50th percentile (2.6%)
Cash (t) / Capital (t)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Capital (t) -0.25∗∗∗ -0.23∗∗∗ -0.27∗∗∗ -0.31∗∗∗ -0.24∗∗∗ -0.18∗∗∗ -0.28∗∗∗ -0.29∗∗∗ -0.30∗∗∗ -0.32∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.03)
Capital2 (t) 0.04∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗ 0.07∗∗∗ 0.01 0.08∗∗∗ 0.07∗∗∗ 0.04∗∗ 0.12∗∗∗

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.04)
Specification All Yr≤92 Yr>’92 SIC1=1 SIC1=2 SIC1=3 SIC1=4 SIC1=5 SIC1=7 SIC1=8
Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
% Adjusted R2 6.84 5.10 8.49 8.63 7.12 7.05 8.04 8.20 9.35 8.92
% Within R2 4.38 3.64 5.18 6.42 4.17 2.25 6.01 5.87 6.54 7.46
Observations 41164 20653 20511 3890 8857 13615 2933 6667 3678 1357

Panel B: Net investment rates in year t + 1 must exceed 75th percentile (13.1%)
Cash (t) / Capital (t)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Capital (t) -0.28∗∗∗ -0.24∗∗∗ -0.32∗∗∗ -0.33∗∗∗ -0.28∗∗∗ -0.20∗∗∗ -0.32∗∗∗ -0.30∗∗∗ -0.33∗∗∗ -0.40∗∗∗

(0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03) (0.06)
Capital2 (t) 0.03∗∗∗ 0.05∗∗∗ 0.03∗∗∗ 0.07∗∗ 0.06∗∗ -0.02 0.08∗∗ 0.10∗∗∗ 0.01 0.15∗∗

(0.01) (0.02) (0.01) (0.03) (0.02) (0.02) (0.04) (0.02) (0.03) (0.06)
Specification All Yr≤92 Yr>’92 SIC1=1 SIC1=2 SIC1=3 SIC1=4 SIC1=5 SIC1=7 SIC1=8
Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
% Adjusted R2 6.42 4.87 8.12 8.77 6.98 5.64 9.93 7.92 8.39 9.87
% Within R2 4.46 3.26 5.88 6.33 4.52 2.08 6.37 5.95 6.02 10.25
Observations 19762 10251 9511 2307 3632 6314 1317 3444 2050 637
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Table 4: H2: The value of a firm’s real options are hump-shaped in cash, and more so
when the firm is small

The outcome variable is firm i’s stock return in month t. The main explanatory variable is
∆VOL the change of the stock volatility of firm i in month t. We interact changes in firm volatility with
a firm’s cash reserve (standardized within firm) and its square. We control for firm i’s market beta,
book-to-market ratio, market equity, cumulative past six month returns, and turnover. Large is an indicator
that equals to one if a firm’s property, plant, and equipment net of depreciation and standardized within
firm is in the top three quartiles of the sample. We include year-month fixed effects and cluster standard
errors by year-month. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Stock Returns (i,t)
(1) (2)

∆VOL (i,t) 0.52∗∗∗ 0.64∗∗∗

(0.05) (0.05)
Cash (i,t) -0.54∗∗∗ -0.67∗∗∗

(0.03) (0.03)
∆VOL (i,t) × Cash (i,t) -0.11∗∗∗ -0.12∗∗∗

(0.02) (0.02)
Cash2 (i,t) 0.09∗∗∗ 0.08∗∗∗

(0.01) (0.02)
∆VOL (i,t) × Cash2 (i,t) 0.00 -0.03∗∗

(0.01) (0.01)
Market Beta (i) -0.06 -0.16

(0.23) (0.23)
Book-to-Market (i,t) 0.65∗∗∗ 0.73∗∗∗

(0.07) (0.07)
Market Equity (i,t) 0.00 0.02

(0.05) (0.05)
Cumulative Past Returns (i,t-8,t-2) 0.01∗∗ 0.00∗

(0.00) (0.00)
Turnover (i,t) 0.80∗∗∗ 0.80∗∗∗

(0.06) (0.06)
Large=1 -0.79∗∗∗

(0.05)
Large=1 × ∆VOL (i,t) -0.25∗∗∗

(0.03)
Large=1 × Cash (i,t) 0.54∗∗∗

(0.04)
Large=1 × ∆VOL (i,t) × Cash (i,t) 0.05∗

(0.03)
Large=1 × Cash2 (i,t) -0.08∗∗∗

(0.02)
Large=1 × ∆VOL (i,t) × Cash2 (i,t) 0.04∗∗∗

(0.02)
Constant 0.08 0.32

(0.42) (0.42)
Specification All All
Year-Month FE Yes Yes
% Adjusted R2 16.24 16.34
Observations 1842770 1842770
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Internet Appendix to
Real Options and Financial Flexibility

This Internet Appendix contains supplementary theoretical and empirical work.

1. Additional Baseline Model Output

(a) Figure B.1 provides a heat map for the investment rates in Figure 1

2. Appendix C - Additional Empirical Work

(a) Table C.1 presents the COMPUSTAT sample selection criteria

(b) Table C.2 presents the CRSP sample selection criteria

(c) Table C.3 describes the SIC-1 categories used for robustness in the main tables

(d) Robustness for H1
i. Figure C.1b repeats Figure 2b using acquisition spending to proxy for real

option exercises
ii. Figure C.2 repeats Figure 2 using alternative thresholds for large net

investments
iii. Figure C.3 repeats Figure 2 adding intangible capital

(e) Robustness for H2
i. Figure C.4 repeats Figure 5b using Fama-MacBeth regression specifications

ii. Figure C.5 repeats Figure 5b splitting on a firm’s cash-to-capital ratio rather
than cash reserve

iii. Figure C.6 repeats Figure 5b using tangible and intangible capital
iv. Figure C.7 repeats Figure 7 using alternative thresholds for large net

investments

(f) Figure C.8 shows that firms with real options have more cash immediately
after issuance

3. Appendix D - Comparative statics for Figure 1 provide several additional testable
predictions

(a) Figure D.1 varies the exercise cost Φ in Figure 1

(b) Figure D.2 varies the productivity µ in Figure 1

(c) Figure D.3 varies the fixed issuance cost λ f

(d) Figure D.6 shows how a firm’s choices vary with the effect of the real option
on a firm’s cash flow volatility

(e) Figure D.4 shows how a firm’s choices vary with the proportional issuance
costs

(f) Figure D.5 lowers both the fixed and proportional issuance costs to 0.25x base
values and shows that firms may issue equity before running out of cash

(g) Figure D.7 shows how a firm’s choices vary with leverage
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Appendix B. Additional Baseline Model Output
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Figure B.1: Investment Heat Map

This figure provides a heat map of the optimal investment amount i before (left figure) and after
(right figure) the firm exercises the real option. Note that the legend always indicates a positive
investment rate because we are showing the investment rate i not the net investment rate i − δk.
The legend on the far right indicates the intensity of the investment i. Because of diminishing

returns to scale, investment declines as firm size k (capital) increases. Also, because of the
marginal value of cash, investment increases with cash c holding capital k fixed. Parameters

used are summarized in Table 1.
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Appendix C. Empirical Appendix

Table C.1: Compustat Sample Selection
This table presents the criteria used to prepare the firm-year dataset.

Criteria Obs. Lost Obs. Remaining

COMPUSTAT, 1970 – 2020 536,801
Less:
Pre-IPO Data (30,156) 506,645
Firms headquartered outside of USA (90,843) 415,802
Firms incorporated outside of USA (5,308) 410,494
Financials (SIC-1==6) (138,644) 271,850
Utilities (SIC-2==49) (17,555) 254,295
Public Administration (SIC-1==9) (5,055) 249,240
Missing cash and cash equivalents (9,114) 240,126
PP&E less than $5M or missing PP&E (89,072) 149,830
Negative cash and cash equivalents (13) 149,817
Less than $1M in sales (1,426) 148,391
Require merge with CRSP data (32,233) 116,158
Drop if stock volatility missing (12) 116,146
Drop if change in volatility missing (5,798) 110,348
Drop if net investment missing (12,577) 97,771
Singleton Firms (1,069) 96,702
SIC-4 industries with one firm (3,074) 93,628

Final sample, 1971 - 2020 (8,006 firms) 93,628
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Table C.2: CRSP Sample Selection
This table presents the criteria used to prepare the stock-month dataset used to measure
the value of a firm’s real options.

Criteria Obs. Lost Obs. Remaining

CRSP, 1960-Jan — 2020-Dec 4,396,301
Less:
Data prior to July, 1963 (Fama-French Factors start then) (61,193) 4,335,108
Utilities (SIC-2==49) (129,975) 4,205,133
Financials (SIC-1==6) (1,213,282) 2,991,851
Public Administration (SIC-1==9) (90,884) 2,900,967
Keep one record when duplicate PERMNO-month (12,279) 2,888,688
Does not merge with daily CRSP file (101,655) 2,787,033
Missing volatility (1,999) 2,785,034
Missing month-to-month change in volatility (23,112) 2,761,922
Lacks six months of past returns (173,087) 2,588,835
Missing turnover (199,377) 2,389,458
Keep records with annual lagged COMPUSTAT data (389,623) 1,999,835
Missing book-to-market ratio (127,234) 1,872,601
Missing market equity in prior month (12,965) 1,859,636
Missing property, plant & equipment (2,971) 1,856,665
Missing cash & equivalents (100) 1,856,565

Final sample, 1964-Apr — 2020-Dec (15,221 firms) 1,856,565
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Table C.3: SIC Code Reference

SIC First Digit Category Description

1 Mining & Construction
2 Manufacturing (Food, Apparel, Furniture, Chemicals, Petroleum)
3 Manufacturing (Rubber, Leather, Stone, Metals, Transportation Equipment)
4 Transportation and Public Utilities
5 Wholesale and Retail Trade
7 Services (Hotel, Personal, Business, Auto Repair)
8 Services (Health, Legal, Educational, Social, Museums)

5



Figure C.1: Repeats Figure 2 using acquisition spending to proxy for real option
exercises

The Y-axis is a firm’s cash-to-capital ratio at the end of quarter t (standardized within
firm). The X-axis is a firm’s physical and intangible capital at the end of quarter t
(standardized within firm). We limit the sample to quarter immediately preceding a
quarter t + 1 with acquisition spending greater than 5% of a firm’s capital. Controls for
industry trends.
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(a) Restricting the sample to firm years preceding firm years with net investment rates above
the 75th percentile (13.1%).

(b) Restricting the sample to firm years preceding firm years with net investment rates above
the 90th percentile (28.8%).

Figure C.2: Varying the net-investment-rate threshold for option exercises in Figure 2
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Figure C.3: Repeating Figure 2 adding intangible capital
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Figure C.4: Robustness of Figure 5b to a Fama-MacBeth specification

This figure repeats Figure 5 using the Fama-MacBeth regressions to estimate the sensitivity of a
firm’s stock returns to innovations in firm-specific volatility. We bin our full firm-month sample
into two groups based on a firm’s net property, plant, and equipment (standardized within firm)
in quarter t. The “Low Capital” group captures when a firm is small or in the first quartile
of its size distribution. Then, for each size group, we form ten cash bins based on a firm cash
reserve at the end of quarter t standardized within firm. The Y-axis is the sensitivity of firm
stock returns to innovations in firm-specific stock volatility calculated for each bin per Grullon,
Lyandres and Zhdanov (2012). The X-axis denotes the ordinal values of the cash bins.
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Figure C.5: Robustness of Figure 5b to binning firms based on cash-to-capital (stan-
dardized within firm) instead of cash (standardized within firm)
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Figure C.6: Robustness of Figure 5b to adding intangible capital
When determining a firm’s size, we use a firm’s physical property, plant, and equipment
net of depreciation and a firm’s intangible capital stock as calculated by Peters and Taylor
(2017).
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Figure C.7: Varying the Threshold for Large Investment in Figure 7
We repeat Figure 7 defining option exercises as net investment rates above the 75th percentile of 13.1%.
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Table C.4: H2: A firm’s exercising activity is U-shaped in cash

The outcome is an indicator that equals to one if the firm exercises real options in year t. We
proxy for real option exercises with an indicator variable that equals one when a firm’s net investment rate
exceeds the sample median of 2.6%. A firm’s net investment rate is calculated as capital expenditures
less depreciation in year t all scaled by capital at the end of year t − 1. The main explanatory variable is
VOL, the average daily stock volatility of firm i in year t. We interact a firm’s stock volatility with a firm’s
lagged cash reserve (standardized within firm) and its square. We control for year fixed effects. Large is an
indicator that equals to one if a firm’s property, plant, and equipment net of depreciation is above the
firm’s sample mean. Standard errors are clustered by year. *, **, and *** indicate significance at the 10%,
5%, and 1% level, respectively.

1(Large Net Investment) (i,t+1)
(1) (2)

VOL (i,t) -0.049∗∗∗ -0.052∗∗∗

(0.006) (0.007)
Cash (i,t-1) 0.002 0.001

(0.003) (0.003)
VOL (i,t) × Cash (i,t-1) 0.000 -0.001

(0.004) (0.005)
L.Cash2 (i,t) 0.007∗∗∗ 0.003

(0.002) (0.003)
VOL (i,t) × L.Cash2 (i,t) 0.002 0.003

(0.002) (0.003)
Large -0.127∗∗∗

(0.008)
Large × VOL (i,t) 0.006

(0.006)
Large × Cash (i,t-1) 0.048∗∗∗

(0.005)
Large × VOL (i,t) × Cash (i,t-1) 0.001

(0.006)
Large × Cash2 (i,t-1) -0.010∗∗∗

(0.003)
Large × VOL (i,t) × Cash2 (i,t-1) -0.003

(0.003)
Constant 0.481∗∗∗ 0.546∗∗∗

(0.002) (0.004)
Specification All All
Quarter FE Yes Yes
% Adjusted R2 10.81 12.55
Observations 84486 84486
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(a) Predicted. The solid red line represents the predicted op-
timal issuance amount when the firm has a real option. By
contrast, the dashed line represents the predicted optimal is-
suance amount for a firm similar in all respects except without
a real option. Evidently, a firm with a real option is predicted
to issue more equity conditional on issuance. Intuitively, the
firm with a real option raises funds to finance the fixed exercise
cost and to have enough precautionary savings after paying the
exercise cost.

(b) Actual. The offered amount is the value of stock sold in
quarter t + 1 scaled by capital at the end of quarter t. The hori-
zontal axis shows a firm’s total capital (tangible and intangible)
standardized within firm. The sample is all offerings in quarter
t + 1 with proceeds greater than or equal to 1% of capital stock
at the end of quarter t. We split the sample for firms with low
and high real options. To do so, we calculate the sensitivity of a
stock’s returns to the volatility in the returns and compare the
stocks with a sensitivity above and below the median sensitivity.
The figure clearly shows that for firms with more real options,
the amount offered is higher.

Figure C.8: Predicted vs actual issuance amounts when firms have more/less real
options
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Appendix D. Additional Testable Predictions
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(b) Φ = 0.06

Figure D.1: Varying the exercise cost of the real option

Parameters used are summarized in Table 1.
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(b) µ̃ = 0.20

Figure D.2: Varying productivity of the real option

Parameters used are summarized in Table 1.
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(b) Before and after with λ f = 4.0×

Figure D.3: Varying Fixed Issuance Costs

Parameters used are summarized in Table 1.
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Figure D.4: Varying Proportional Issuance Costs

Parameters used are summarized in Table 1.
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Figure D.5: The exercise region when λ f and λp are 0.25× base values and µ̃ = 0.2

Parameters used are summarized in Table 1.

Figure D.5 lowers both the fixed λ f and proportional costs λp. Interestingly, for sufficiently small
issuance costs, a new issuance region emerges. Firms may choose to issue even when the cash reserve is
still positive. Thus, when the (k, c) touches the new issuance region, it becomes optimal for the firm to
issue equity up to the issuance target and then pay the exercise cost Φ simultaneously. In the figure, the
costs are 0.25× their baseline values, and µ̃ = 0.2 to emphasize the effect. The effect still appears for the
baseline µ̃ value, but requires lower costs to be as clearly visible. Intuitively, when k is not too low and c
is low, the likelihood of paying the issuance cost is already high, so the benefits of postponing issuance
becomes less attractive relative to immediate issuing and exercising to receive the improved cash flow from
the option. That this new region emerges when issuance costs are lower indicates the importance of
considering such costs when examining a firm’s decision to exercise a real option.
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(a) σ̃ = 0.09. Note that the baseline volatility of the firm before exercise is also σ = 0.09. Thus, in
this figure, exercising the real option increases only productivity from µ = 0.18 to µ̃ = 0.20
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(b) σ̃ = 0.13. Note that the baseline volatility of the firm before exercise remains σ = 0.09. Thus,
in this figure, exercising the real option increases the volatility of the cash flows from σ = 0.09 to
σ̃ = 0.13 and the productivity from µ = 0.18 to µ̃ = 0.20.

Figure D.6: Varying volatility of the real option

Except where noted differently, the parameters used are summarized in
Table 1.
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Figure D.7: Varying firm leverage

Parameters used are summarized in Table 1.
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