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Abstract

I show that overreaction to the volatility shock generates a demand pressure for stock

options with high volatility shock, making such options overpriced. Empirically, I find

that straddles written on high variance change stocks underperform those on low vari-

ance change stocks by 5.30% per month. Volatility uncertainty and other risk factors

can’t explain my results. Further decomposition result shows that the idiosyncratic com-

ponent of the variance change is the driving force for this return predictability. Vari-

ance risk premium regressions corroborating with earnings announcement test confirm

investors overreact to the idiosyncratic component of the variance change, which gen-

erates the demand pressure. Dealers charge higher premiums and bid-ask spreads as

compensations for the increased market making risk caused by the demand pressure.
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1 Introduction

Investors are not rational and do not behave like Bayesian statisticians when it comes to in-

corporating new information into asset prices. A large body of stock market studies have

shown that stock market investors underreact to information over short horizons (e.g. Je-

gadeesh and Titman (1993), Chan, Jegadeesh, and Lakonishok (1996), and Rouwenhorst

(1998)) and overreact to information over long horizon (e.g. De Bondt and Thaler (1985),

Chopra, Lakonishok, and Ritter (1992), and Lakonishok, Shleifer, and Vishny (1994)) in form-

ing return expectations. Relying on cognitive biases or slow information diffusion assump-

tions, some behavioral models can successfully reconcile these short-term underreaction and

long-term overreation.(e.g. Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and

Subrahmanyam (1998), and Hong and Stein (1999)). But, less is explored about agents per-

ception of risk. Given agents perception of risk also play a critical role in asset pricing mod-

els, understanding investors expectation of volatility when incorporating new information

is of equal importance. Two notable exceptions are Stein (1989) and Poteshman (2001), who

both document the long-term implied volatility of index options overreact to the changes in

short-term volatility along the implied volatility term structure.1 What’s less investigated is

whether this overreaction can be translated into the cross sectional returns of stock options.2

In this paper, I study whether investors overreaction to volatility shock at firm level and its

implication on the cross-sectional option returns.

Following the same spirits of Stein (1989) and Poteshman (2001), I use variance change

of underlying stock as a proxy for the volatility shock. Derivative textbooks emphasize the

fact that options provide a mechanism for investors to trade on bliefs about volatility, and

1Giglio and Kelly (2018) reject internal consistency conditions in all term structures that they study, includ-
ing equity options, currency options, credit default swaps, commodity futures, variance swaps, and inflation
swaps.

2The answer to this question is nontrivial. Bollen and Whaley (2004) show that most trading in S&P 500
index options involves puts, whereas most trading in stock options involvas calls. They attribute this fact to
the hedging demand of institutional investors, who purchase index puts as portfolio insurance against market
declines. Lakonishok, Lee, Pearson, and Poteshman (2007) document that hedging motivated trading accounts
for only a small fraction of trading in stock options and a majority of non-market maker stock option trading
involves naked positions. Lemmon and Ni (2014) show that there is a significant difference between the clien-
tele for index options and for individual stock options. Compared to index options trading, which is largely
dominated by sophisticated institution investors, stock options trading is mainly driven by unsophisticated
individual investors.
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straddle is one of the leading volatility trading strategies (e.g. Section 9.3 in Hull (2003)

and Section 3.4 in McDonald (2003)). Thus, I focus on the returns of zero-delta straddles on

individual stocks. A zero-delta straddle is a combination of approximately equal positions

in a call and a put with the same maturity and strike price, which is constructed to have an

overall delta of zero. Thus, the return of a zero-delta straddle is invariant to the movements

of the underlying stock price and it is a pure bet on the direction of volatility.

A first natural test would be to compare the returns to straddle positions with high vari-

ance change and low variance change. Therefore, at the end of each month during the period

from 1996 to 2020, I sort straddles into deciles based on the variance change of their under-

lying stocks and form equal or value weighted straddle portfolios in each decile. I close out

the straddles after 1 month and compute the 1-month holding period returns. Then, I com-

pute the time-series averages of the monthly excess returns for each decile portfolio. I find a

strong negative relation between the variance change and future one-month holding period

straddle returns. The long-straddle, a position that bets on the direction of variance, has an

average monthly excess return of -4.89% for the decile 10 (the highest variance change port-

folio) and a return of 0.41% for the decile 1 (the lowest variance change portfolio) in equal

weighted scheme. The equal weighted 10-1 strategy generates a monthly return spread of

-5.30% with a t-statistic of -9.05. The results are similar for value weighted straddle portfo-

lios.3

Then, I examine whether straddle returns to my 10-1 portfolio are related to option risk

factors documented in the literature. After controlling for a comprehensive set of up to 10

option factors used in Horenstein, Vasquez, and Xiao (2020) and Heston, Jones, Khorram, Li,

and Mo (2022), the risk adjusted alphas of my portfolio strategy remain statistically signifi-

cant and the magnitudes are about the same as the raw return. Even using all the 10 factors

in factor adjustment, the alpha is -4.88% with a t-statistic -6.22 in equal weight scheme and

it is -5.50% with a t-statistic -5.66 in value weight scheme. Therefore, my result is not driven

by its loadings on the existing option risk factors.

Next, I test whether this pattern can be explained by the correlation of variance change

3From a profitable trading strategy point of view, these numbers translate into a motnly sharpe ratio of 0.51
for equal weighted portfolio and 0.47 for value weighted portfolio, which is higher than the most profitable
individual option momentum strategy in Table 8 of Heston, Jones, Khorram, Li, and Mo (2022).

2



with option and stock characteristics. I try to include a comprehensive set of control vari-

ables such as the difference between implied and historical volatility, idiosyncratic volatility,

slope of the implied volatility term structure, stock price, individual option momentum, op-

tion greeks and others (see, e.g. Goyal and Saretto (2009), Cao and Han (2013), Vasquez

(2017), Boulatov, Eisdorfer, Goyal, and Zhdanov (2022), Cao, Han, Zhan, and Tong (2021),

and Heston, Jones, Khorram, Li, and Mo (2022)). Bivariate sort results confirm the negative

relationship between variance change and straddle returns. While the magnitude of 10-1

returns are reduced compared to the univariate sort results, I still find significant 10-1 return

differences in the range of -5.40% to -3.45% for independent sort and -5.68% to -3.75% for

dependent sort. I further confirm the negative relationship between variance change and

straddle returns via Fama and MacBeth (1973) regressions by controlling multiple character-

istics at the same time.

Previous work has documented that transaction costs in option markets are high (e.g.

Figlewski (1989) and Ofek, Richardson, and Whitelaw (2004)). A recent paper by Muravyev

and Pearson (2020) show, even liquidity-taking strategies face costs that are much less than

those implied by end-of-day quoted spreads. All my previous results are based on trans-

actions at the midpoint of bid and ask quotes, which is at zero effective spread. A natural

concern is that my result may be a manifestion of the transaction costs. To address this con-

cern, I use alternative transaction prices by altering the ratios of effective spread to quoted

spread and study the profitability of the trading strategy based on the variance change.4 My

strategy is still profitable for effective spreads up to 25%. Alternatively, I consider a low

transaction cost sub-sample whose option bid-ask spreads are all lower than 10%. My strat-

egy is profitable even for 100% effective spreads to quoted spreads. Thus, my results are

robust to transaction costs.

In further robustness checks, I show my findings hold across different time periods (first

half v.s second half period), both January and non-January months, both low and high sen-

timent periods, both market booms and busts, both recession and expansion periods, both

low and high aggregate volatility period. And my results are invariant to using conditional

4From a profitable trading strategy point of view, the long side is chosen to have the higher average return.
Thus, I long the decile 1 (low variance change) portfolio and short decile 10 (high variance change) portfolio in
this transaction cost exercise.
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betas in calculating factor adjustment alphas. My results are also robust to controlling the

uncertainty about stock volatility as in Baltussen, Van Bekkum, and Van Der Grient (2018),

Ruan (2020), and Cao, Vasquez, Xiao, and Zhan (2022). They are also invariant to control-

ling risk-neutral jump as in Yan (2011). My findings are also robust to using the holding to

maturity return and longer maturity options.

To further understand the relation between variance change and straddle returns, I de-

compose the variance change into two components: systematic variance change and id-

iosyncratic variance change. I find that the negative relation between variance change and

straddle returns can be attributed to the idiosyncratic variance change component. This

result is confirmed both in the portfolio sorting and Fama and MacBeth (1973) regression

results. Utilizing the decomposition results, I show increases in idiosyncratic variance lead-

ing to a higher variance risk premium.5 This result holds both in panel regressions with

time fixed effect and Fama and MacBeth (1973) regressions. This is the direct evidence of

overreaction to idiosyncratic variance change at the firm level.

To corroborate the overreaction interpretation for the option return predictability, I lever-

age on the earnings announcement event test proposed by Engelberg, McLean, and Pon-

tiff (2018). First, I divide the sample into two subsamples: no earnings sample and earn-

ings sample based on whether the underlying stocks will make an earnings announcement

during the portfolio holding period. Then, I do the univariate portfolio sorting for these

two subsamples separately. Consistent with stronger anomaly return predictability on an-

nouncement days in Engelberg, McLean, and Pontiff (2018), the equal weighted 10 - 1 strad-

dle portfolio excess return spread is -4% statistically lower for options with earnings an-

nouncement during the holding period. I also confirm these results in Fama and MacBeth

(1973) regressions. This reflects the option mispricing, which is caused by overreaction to

idiosyncratic variance change, is corrected upon the arrival of earnings announcemnt news.

Finally, I interpret my return predictability results to be consistent with the demand-

based option pricing (e.g. Bollen and Whaley (2004), and Garleanu, Pedersen, and Potesh-

man (2009)). This interpretation is corroborated by two additional results. First, I examine

how the end-user demand for options varies with idiosyncratic variance change. Follow-

5The variance premium is defined as the implied variance minus the actual realized variance

4



ing Cao and Han (2013), Cao, Han, Zhan, and Tong (2021), and Ramachandran and Tayal

(2021), I use relative open interest (relative open value), measured as open interest scaled by

the number of shares outstanding (open option value scaled by market cap), as a proxy for

option demand. The idiosyncratic variance change is positively related to option demand.

Thus, investors overreaction to volatility shock can generate a positive demand pressure.

Second, dealers respond to such high investor demand. They will charge a higher option

price and bid-ask spread for taking on the risk of market making.

Related literature

This paper contributes to several aspects of the literature. First, my paper contributes to the

nascent and rapidly growing literature on cross sectional stock option return predictabil-

ity. Goyal and Saretto (2009) show that straddles or delta hedged calls on stocks with low

volatility deviation earn high returns, where the volatility deviation is defined as the log dif-

ference between the implied-volatility and the past one-year historical volatility . Cao and

Han (2013) document that delta-hedged equity option returns decrease monotonically with

an increase in the idiosyncratic volatility of the underlying stock, which is consistent with

market imperfections and constrained financial intermediaries. Bali and Murray (2013) find

a negative relation between risk-neutral stock skewness and the returns of skewness assets

constructed from options and the underlying stock. An, Ang, Bali, and Cakici (2014) doc-

ument that stocks with high past returns tend to experience increases in implied-volatility.

Boyer and Vorkink (2014) document total skewness exhibits a strong negative relationship

with average option returns. Byun and Kim (2016) show that call options written on the most

lottery-like stocks underperform otherwise similar call options written on least lottery-like

stocks. Muravyev (2016) documents that option market order-flow imbalance significantly

predicts daily option returns. Vasquez (2017) shows that the slope of the implied volatil-

ity term structure is positively related to straddle returns. Christoffersen, Goyenko, Jacobs,

and Karoui (2018) find more illiquid options tend to have higher daily delta-hedged option

returns. Ruan (2020) and Cao, Vasquez, Xiao, and Zhan (2022) both document a negative re-

lationship between volatility uncertainty and delta-hedged option returns. Cao, Han, Zhan,
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and Tong (2021) show that 10 stock characteristics (e.g., stock price,6 profit margin, distress

risk and so on) can predict the cross-section of delta-hedged option returns. Ramachan-

dran and Tayal (2021) document a monotonically negative relationship between short-sale

constraints and delta-hedged returns of put options on overpriced stocks. Heston, Jones,

Khorram, Li, and Mo (2022) documents options with high historical returns continue to sig-

nificantly outperform options with low historical returns at individual, industry, and factor

level, which they term as option momentum. My paper contributes to this literature by un-

covering a new option return predictor, which is theoretically motivated by the overreaction

to volatility shock hypothesis. My return predictability results are robust to controlling for

these effects and distinct from known patterns in the literature.

Second, my paper is also related to a number of studies documenting behavioral biases

induced mispricing in options market. Stein (1989) shows a tendency for long maturity op-

tions on the S&P 100 Index to overreact to changes in short-term volatility, which rejects

the rational expectation theory. Poteshman (2001) documents both underreact and overreact

to daily changes in instantaneous variance and these two can be reconciled by the cogni-

tive biases proposed by Barberis, Shleifer, and Vishny (1998). While some of my results

are qualitatively similar, my analysis differs in my focus on the cross section of individ-

ual equity options and this is the first paper documenting investor overreaction to volatility

shock in a large cross-section and its implication for option returns. Goyal and Saretto (2009)

also suspect the return predictability of volatility deviation coming from overreaction. But

they conjecture that the overreaction to current stock returns leads to misestimation of fu-

ture volatility, which is consistent with Barberis and Huang (2008) behavioral model that

people display both loss aversion and mental accounting. My paper is a direct test of the

overreaction to volatility shock, which is different to Goyal and Saretto (2009)’s past return

channel.7 My overreaction results also complement the underreaction result of option mo-

6Boulatov, Eisdorfer, Goyal, and Zhdanov (2022) also document that delta-hedged options on low-priced
stocks underperform those on high-priced stocks and interpret their results to be consistent with demand
pressure on low-priced stocks induced by inattention to underlying stock prices.

7Goyal and Saretto (2009)’s result can also be reconciled with Atmaz (2022), who presents a model of stock
return extrapolation in the presence of stochastic volatility. In the model, investors expect future returns to be
higher (lower) but also less (more) volatile following positive (negative) stock returns. This biased volatility
expectation introduces a new channel through which past returns and investor sentiment affect derivative
prices. Again, the behavioral effects source from stock return not volatility itself. Moreover, my results remain
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mentum documented by Heston, Jones, Khorram, Li, and Mo (2022).8 There are also other

evidence of behavioral effects in options. Focusing on index option prices, Han (2008) doc-

uments that sentiment can affect index option prices. Focusing on the effect of investors

skewnees or lottery preferences, Boyer and Vorkink (2014) and Byun and Kim (2016) find

evidence that investors’ skewness preference drives up the demand for lottery-like options

and make those options overpriced. Eisdorfer, Sadka, and Zhdanov (2022) and Boulatov,

Eisdorfer, Goyal, and Zhdanov (2022) both document investor inattention can lead to option

mispricing.9 10

Third, my paper is also related to a number of studies investigating agents’ beliefs. Grow-

ing survey evidence suggests that the expectations of households, firm managers, finan-

cial analysts, and professional forecasters show systematic predictability of forecast errors,

which reject the rational expectations hypothesis.11 Most of them focuses on the mean (first

moment) and less is explored about the volatility (second moment). The existing literature

on volatility expectation formation documents positive aggregate variance risk premium,12

unchanged when controlling their volatility deviation measure.
8Although they admit that underreaction and time-varying risk premia are impossible distinguish, they

find week evidence of time-varying betas and no evidence that risk premia and betas interact in the way nec-
essary to produce the momentum effect. Thus, I interpret their results to be more consistent with underreaction
explanation.

9Eisdorfer, Sadka, and Zhdanov (2022) document that short-term options achieve significantly lower re-
turns during months with 4 versus 5 weeks between expiration dates. Their interpretation of this seasonality
result is due to investor inattention to exact expiration date. Boulatov, Eisdorfer, Goyal, and Zhdanov (2022)
show that inattention to the underlying stock prices generates a demand pressure for options written on low-
priced stocks, resulting in overpricing in such options.

10Another line of literature utilizes firm earnings announcement event to study how investors react to news
or form expectations of uncertainty. Mahani and Poteshman (2008) find unsophisticated investors enter option
positions that load up on growth stocks relative to value stocks in the days leading up to earnings announce-
ment. They interpret this as evidence that unsophisticated option investors overreact to past news and mistak-
enly believe that mispriced stocks will move even further away from fundamentals at impending scheduled
news releases. Gao, Xing, and Zhang (2018) document significantly positive straddle returns around earnings
announcements, in sharp contract to the significantly negative returns over the whole sample. They interpret
this as evidence of underestimation of uncertainty before earnings announcements.

11Such predictability has been documented for inflation and other macro forecasts (Coibion and Gorod-
nichenko (2012, 2015) and Fuhrer (2018)), the aggregate stock market (Bacchetta, Mertens, and Van Wincoop
(2009), Amromin and Sharpe (2014), Greenwood and Shleifer (2014) and Adam, Marcet, and Beutel (2017)),
the cross section of stock returns (La Porta (1996) Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer,
and Subrahmanyam (1998), Hong and Stein (1999) and Bordalo, Gennaioli, Porta, and Shleifer (2019)), credit
spreads (Greenwood and Hanson (2013) and Bordalo, Gennaioli, and Shleifer (2018)), short-term interest rate
(Cieslak (2018)), and corporate earnings (De Bondt and Thaler (1985), Ben-David, Graham, and Harvey (2013),
Gennaioli, Ma, and Shleifer (2016) and Bouchaud, Krueger, Landier, and Thesmar (2019))

12The variance premium is defined as the difference between risk-neutral (Q) minus physical (P) expectation
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which means investors are willing to pay a lot to hedge fluctuations in stock market volatil-

ity (e.g. Coval and Shumway (2001) and Bakshi and Kapadia (2003)). A puzzling phe-

nomenon is the ”low premium response” documented in Bekaert and Hoerova (2014) and

Cheng (2019), which refers to the fact that, when several ex-ante measures of risk have risen,

the estimated variance premium from index options or VIX futures tends to fall or stay flat

before rising later. Investors seem to underreact to volatility shock in aggregate. Cheng

(2019) document that the ”low premium response” is associated with falling hedging de-

mand. By assuming agents’ expectations of volatility are sticky and extrapolative, Lochstoer

and Muir (2022) show that agents’ slow-moving beliefs about stock market volatility can

lead to initial underreaction to volatility shocks followed by delayed overreaction. They

confirm the slow moving expectations about volatility in survey data using Graham and

Harvey CFO survey (as well as the Shiller survey). Different from their conclusion of initial

underreaction to volatility shock in time series regression, my paper decomposes the to-

tal volatility shock into two components and shows investors overreact to the idiosyncratic

component in the cross-section, which can lead to option mispricing.

Finally, my paper is related to studies of demand-based option pricing. The seminal work

by Black and Scholes (1973) and Merton (1973) lays the foundation of using no-arbitrage

theory to price derivative prices independently of investor demand.13 Recent studies depart

fundamentally from the no-arbitrage framework by admitting that in imperfect markets, op-

tion market makers can’t perfectly hedge their inventories, and, therefore, option demand

can impact option prices. Bollen and Whaley (2004) document that daily changes in the im-

plied volatility of an option series are significantly related to net buying pressure. Garleanu,

Pedersen, and Poteshman (2009) theoretically model demand-pressure effects and empir-

ically show that the expensiveness of individual options depends on net option demand.

Boyer and Vorkink (2014) document that skewness preference is an important source of de-

mand in option markets and intermediaries are compensated with large premiums when

accommodating investor demand for lottery-like options. Byun and Kim (2016) identify

lottery-like feature of the underlying stocks as an additional source of demand in option

of variance, where the risk neutral expectation is inferred from derivatives written on the underlying.
13There is a large literature developing various parametric implementations of the no-arbitrage theory to

price options and see Bates (2003) for a comprehensive literature review.
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markets. Ramachandran and Tayal (2021) shows that investors demand for put option on

overpriced stocks increase with difficulty in short-selling. But the relation between investors

behavioral bias and option demand is less explored.14 My paper contributes to this litera-

ture by showing investors’ biased expectation about volatility can drive the option demand

and contribute to the option mispricing.

The rest of the paper is organized as follows. Section 2 describes the data sources and

sample construction as well as the definitions of the key variables. Section 3 presents the

main results of the paper by studying the relation between variance change and zero-delta

straddle returns in univariate sort, bivariate sort, and Fama and MacBeth (1973) regressions.

Various robustness checks are also presented in this section. Section 4 provides the overre-

action to idiosyncratic variance change as a potential explanation. Section 5 concludes.

2 Data and Variables

This section introduces the data and variables used in the empirical study. First, I explain the

filters that are applied to the option data and present summary statistics of my final sample.

Next, I describe the procedure for calculating the straddle returns. Then, I present how to

construct the firm level volatility shock measure. Finally, I detail other controls used in this

paper.

2.1 Data and sample coverage

The data used in this study is obtained from several public sources. The option data is ob-

tained from Ivy DB OptionMetrics which provides a comprehensive coverage of U.S. equity

options from 1996 to 2020. For a given stock, the data set includes the detailed information

of options across different maturities and strike prices written on it. The option information

include implied volatility, daily closing bid and ask quotes, trading volume, option open

interest and greeks computed by OptionMetrics based on standard market conventions. I

14Boulatov, Eisdorfer, Goyal, and Zhdanov (2022) is a notable exception and they identify investor inatten-
tion to the underlying stock prices as a source of demand pressure, which contributes to the overpricing of
options on low-priced stocks.
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obtain stock market data from the Center for Research on Security Prices (CRSP) and an-

nual accounting data from Compustat. The short-interest data is also from Compustat. The

quarterly institutional investor holding data is from Thomson Reuters (13F) database. The

analyst coverage and forecast data are from I/B/E/S.

I use data of U.S.-listed options that are written on common stocks (CRSP share codes

10 and 11) trading on the New York Stock Exchange (NYSE), American Stock Exchange

(AMEX), and National Association of Securities Dealers Automated Quotation (NASDAQ).

All of them are American type options. To deal with options written on illiquid stocks, I

exclude stocks with a closing price at the end of the previous month less than $5.

To minimize the impact of recording errors and illiquidity of the options, I apply a series

of data filters on the options data following the standard in the literature (e.g. Goyal and

Saretto (2009) and Cao and Han (2013)). First, I eliminate options whose prices violate ar-

bitrage bounds.15 Second, to avoid the microstructure biases, I drop observations with zero

open interest and exclude observations when the ask price is lower than the bid price, or the

bid price is zero, or the bid-ask spread is lower than the minimum tick size (equal to $0.05 for

option trading below $3 and $0.1 in any other cases). Third, to deal with the early exercise

premium, I exclude options whose underlying stocks pay dividends during the remaining

life of the options. Fourth, I keep options with moneyness between 0.8 and 1.2, where the

moneyness is defined as the ratio of strike price to stock price. Then, I select a pair of options

(one call and one put) that are closed to being at-the-money (moneyness closest to 1) with

the same strike price and have the shortest maturity among those with more than one month

to expiration (around 50 calendar days). Finally, from the series remain, I only retain stocks

with both call and put options available after the filtering process.16

My final sample contains 242,226 option-month observations for both call and put op-

15Specifically, I remove call options that are outside the range [max(S− Ke−rT , 0), S] and put options that
are outside the range [max(Ke−rT − S, 0), Ke−rT ], where S is the spot price of the underlying stock, K is the
strike price of the option, T is the time to maturity, and r is the risk-free rate.

16The options are matched to stocks in CRSP by using the WRDS link table. In rare cases, there will be
a option matching to more than one stocks, i.e. one unique optionid to multiple permnos. To deal with this
issue, I require the stock prices recorded in OptionMetrics and CRSP are the same when rounding at the third
decimals. Alternatively, I can drop these duplicates, which have little effects on the results. All the filters
mentioned above are standard in the literature, which are also adopted in Ramachandran and Tayal (2021),
Cao, Han, Zhan, and Tong (2021), and Heston, Jones, Khorram, Li, and Mo (2022). However, removing any of
these filters will not change the conclusion of the paper.
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tions on individual stocks. Panel A and B of Table 1 show the characteristics summary

results for the call and put options. The options chosen have an average maturity of 50

calendar days, with average moneyness close to 1.17 The average option bid-ask spread is

17%, with a standard deviation of 17%. The average delta of call is 0.53 and it is -0.47 for

put option, echoing the at-the-money property of these options. They are comparable to

the numbers in Cao, Han, Zhan, and Tong (2021), Eisdorfer, Sadka, and Zhdanov (2022),

and Heston, Jones, Khorram, Li, and Mo (2022). These short-term options are most actively

traded, have a relatively smaller bid-ask spread, and thus their pricing information is more

reliable. I will utilize this set of options throughout this study.

Insert Table 1 here.

2.2 Straddle returns

Since my interest is in studying returns on options based only on their volatility character-

istics, I need to neutralize the impact of movements in the underlying stocks as much as

possible. I accomplish this goal by forming zero delta straddles following Heston, Jones,

Khorram, Li, and Mo (2022). For each pair of call and put with the same underlying, strike

price, and maturity, I buy −∆P shares of call and ∆C shares of put options,18 where ∆P and

∆C are call and put option deltas. I construct the straddle at the end of last trading day of

month t and hold the straddle for one month. Then I close the option positions at the end of

month t + 1. Thus, the one month holding period return is

Straddle ret =
−∆P(Ct+1 − Ct) + ∆C(Pt+1 − Pt)

−∆PCt + ∆CPt
(1)

where Ct and Ct+1 (Pt and Pt+1) are the bid-ask midpoint of the call (put) at the end of month

t and t + 1, and ∆C (∆P) are deltas of the underlying call (put) options. Alternatively, I can

17The maturity is calculated as the number of calendar days between expiration date (exdate) and the last
trading day of month t. In fact, stock option expiration dates were Saturdays prior to 2015, which are not
trading days. If I adjust the expiration date to the prior trading day, the average maturity should be around 49.

18Alternatively, I can construct plain vanilla straddles of one call and one put following Goyal and Saretto
(2009) and the results are almost the same. These results are omitted for brevity.
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calculate the holding to maturity returns, which will be explored in Section 3.5.5. For the rest

of my analysis, if not specified, the straddle returns refer to the one month holding period

straddle returns.

Panel C of Table 1 presents the summary statistics for the one month holding period

straddle returns. Given that my sample has 298 months, the 242,226 straddle returns with

positive open interest translates to 813 straddles per month on average. Straddle returns

are negative on average (-1.69%), volatile (51.24% standard deviation), and have positive

skewness as indicated by the low median.

2.3 Volatility shock

In this section, I detail the construction of my main measure to proxy for the volatility shock.

For each stock i at the end of each month t, I calculate its total variance Varit based on its

daily return retid on trading day d within month t

Vari,t =
1
N

N

∑
d=1

(reti,d −
1
N

N

∑
d=1

reti,d)
2 (2)

where N is the total number of non-missing reti,d within month t.

Further, I decompose the total variance into the idiosyncratic component and systematic

component. To do that, I run a time series regression of daily returns relative to a return

factor model within month t in the following form

ri,d − r fd = α + β′
tFt + εi,d (3)

where β′
t is a vector of factor loadings and Ft is a vector of factors.19 Following Ang, Ho-

drick, Xing, and Zhang (2006) and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016),

the first return factor model that I consider is the market model (CAPM) specifying that Ft

is the excess return of the CRSP value-weighted market portfolio over risk free rate. The

second model specifies Ft as the 3× 1 vector of Fama and French (1993) factors. Then, the

19Following Ang, Hodrick, Xing, and Zhang (2006), I require at least 17 daily observations available in
calculating the volatility.
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idiosyncratic variance is defined as

IVari,t =
1
N

N

∑
d=1

(εi,d −
1
N

N

∑
d=1

εi,d)
2 (4)

and the systematic variance can be obtained by

SVari,t = Vari,t − IVari,t (5)

Barberis, Shleifer, and Vishny (1998) propose a behavioral model which reconciles short-

horizon underreaction and long-horizon overreaction by positing a representative investor

who is subject to two well-established cognitive biases conservatism and the representa-

tiveness heuristic. An investor who displays representativeness heuristic finds patterns in

data too readily, and as a result, tends to overreact to periods of mostly similar information.

Thus, investors tend to overreact to information that is preceded by a large quantity of sim-

ilar information. Precisely, investor misreaction to information is increasing in the quantity

of previous similar information. Poteshman (2001) construct a measure using the change in

instantaneous variances over the previous trade days to capture the increasing misreaction

effect.20

Thus, I use the sum of the change in variance ∆Vari,t in the previous two months as a

proxy for volatility shock, which can potentially capture the increasing overreaction effect

in the spirit of Barberis, Shleifer, and Vishny (1998) and Poteshman (2001)

∆Vari,t = Vari,t −Vari,t−1︸ ︷︷ ︸
change from month t− 1 to t

+ Vari,t−1 −Vari,t−2︸ ︷︷ ︸
change from month t− 2 to t− 1

= Vari,t −Vari,t−2 (6)

Similarly, the systematic component of the variance change is

∆SVari,t = SVari,t − SVari,t−2 (7)

20See equations (15) and (16) in Poteshman (2001) for more details.
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and the idiosyncratic component of the variance change is

∆IVari,t = IVari,t − IVarit−2 (8)

Having defined the main variables used throughout this paper, the next subsection turns to

the control variables.

2.4 Control Variables

Existing studies (e.g. Goyal and Saretto (2009), Cao and Han (2013), Vasquez (2017), Cao,

Han, Zhan, and Tong (2021), and Heston, Jones, Khorram, Li, and Mo (2022)) have identified

multiple stock and option characteristics that can affect option returns. I broadly classify

them into two categories:

1. Volatility related measure

• IV − HV: volatility deviation measure as in Goyal and Saretto (2009), calculated

as the log difference between the implied volatility (IV) and historical volatility

(HV). IV is computed by taking the average of the at-the-money call and put

implied volatilities. HV is calculated as the standard deviation of realized daily

stock returns over the past 12 months. Both are annualized.

• Ivol: idiosyncratic volatility as in Cao and Han (2013), computed as the standard

deviation of the regression residual of individual stock returns on the Fama and

French (1993) three factors using daily data in the previous month, with the re-

quirement at least 17 observations available in calculating the Ivol.

• Slope: slope of the implied volatility term structure, as in Vasquez (2017), is de-

fined as the difference between the long-term and the short-term implied volatil-

ity. The short-term implied volatility is defined as the average of the short-term

at-the-money put- and call-implied volatility. The long-term implied volatility is

the average implied volatility of the at-the-money put and call options that have

the longest time to maturity available. To construct this measure, I require the

short-term and long-term options have the same strike prices.
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• Smile: slope of the implied volatility curve, as in Heston, Jones, Khorram, Li, and

Mo (2022), computed as the difference between the implied volatility of a call with

delta of 0.3 and the implied volatility of a put with delta of -0.3.

• VoV: volatility of the implied volatility, as in Baltussen, Van Bekkum, and Van

Der Grient (2018), is defined as standard deviation of the daily implied volatility

(IV) scaled by the time series average of the daily IV within month t. The IV is

defined as the average IV of the call option and put option that are closet to being

at the money.

• Optionmom: individual option momentum based on zero-delta straddle, as in

Heston, Jones, Khorram, Li, and Mo (2022), is calculated as the simple average

of monthly straddle returns over the past 12 months, skipping the most recent

month.

2. Stock characteristics uncovered in Cao, Han, Zhan, and Tong (2021), including cash

flow variance (CFV) in Haugen and Baker (1996), cash-to-assets ratio (CH) in Palazzo

(2012), analyst earnings forecast dispersion (DISP) as in Diether, Malloy, and Scherbina

(2002), one-year new issues (ISSUE1y) in Pontiff and Woodgate (2008), five-year new

issues ISSUE5y in Daniel and Titman (2006), profit margin (PM) in Soliman (2008),

log of stock price (log(P)) Blume and Husic (1973), profitability (PROFIT) in Fama

and French (2006), total external financing (TEF) in Bradshaw, Richardson, and Sloan

(2006), and z-score in Dichev (1998).21

On top of those variables documented in the option return literature, I also control some of

the option and stock characteristics that are commonly used in the literature:22

• VoI, volume to open interest ratio, is calculated as the ratio of option trading volume

to open interest.

21See Section 1.3 in Cao, Han, Zhan, and Tong (2021) for the detailed constructions of those stock character-
istics

22In fact, there are no direct option characteristics for straddles. Since a straddle is a combination of calls
and puts, I calculate the option characteristics for straddles as the weighted average of the call and put, when
controlling those characteristics. The weights are the number of shares in constructing the zero-delta straddles.
Alternatively, I can calculate them as the simple average of the call and put option characteristics. It barely
changes my results.
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• BidAsk, the option bid-ask spread, as in Cao and Han (2013), is the ratio of bid-ask

spread of option quotes over the mid point of bid and ask quotes.

• Gamma, option gamma, is the second derivative of option price to stock price.

• Vega, option vega, is the first derivative of option price to implied volatility.

• Size: natural logarithm of market capitalization (in million dollar), as in Fama and

French (1993), where market capitalizaion is calculated as stock price times shares out-

standing.

• Bm: book to market ratio, as in Fama and French (1993) and Davis, Fama, and French

(2000), where the book equity is measured as stockholders book equity, plus balance

sheet deferred taxes and investment tax credit if available, minus the book value of

preferred stock. Stockholders’ equity is the value reported by Compustat, if it is avail-

able. If not, we measure stock holders equity as the book value of common equity plus

the par value of preferred stock, or book value of assets minus total liabilities. De-

pending on availability, I use redemption, liquidating, or par value for the book value

of preferred stock.

• Mom: 12 month stock momentum skipping the most recent month, as in Jegadeesh

and Titman (1993), is based on prior 11-month returns from month t− 11 to t− 1 at the

end of month t skipping the most recent month.

• Reversal, the return in month t, as in Jegadeesh (1990). I require that a stock must have

a valid price at the end of month t− 1 and a valid return for month t.

• LTreversal, long-term reversal, as in De Bondt and Thaler (1985), is constructed based

on the prior returns from month t− 59 to t− 12.

• Maxret, maximum daily return, as in Bali, Cakici, and Whitelaw (2011), is defined as

the maximal daily return in month t, requiring a minimum of 15 daily returns.

• Skewness, the third moment of the daily returns over the past one year

• Kurtosis, the fourth of the daily returns over the past one year
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• Amihud, amihud illiquidity, as in Amihud (2002), is calculated as the ratio of absolute

daily stock return to daily dollar trading volume, averaged over the prior six months,

requiring a minimum of 50 daily observations.

3 Empirical Results

In this section, I first present robust cross-sectional negative relation between variance change

and straddle returns in univariate portfolio sort. By performing bivariate portfolio analysis

and Fama and MacBeth (1973) regression, I show that my findings are distinct from known

determinants of option returns documented in the literature. In further robustness checks,

I show that my results are robust to different sub-periods, using conditional betas in calcu-

lating the factor adjust alphas, controlling for the volatility uncertainty, controlling for the

jump risk, using hold to maturity straddle returns, and using longer maturity options.

3.1 Straddle portfolio returns

In this subsection, I use univariate portfolio sorting method to investigate the relationship

between variance change and option returns. The variance change is defined in equation

(6). Following Heston, Jones, Khorram, Li, and Mo (2022), I focus on zero-delta straddle

returns as defined in equation (1). At the end of each month, I form decile straddle portfolios

based on the variance change for all optional stocks and hold these straddle portfolios for 1

month without daily rebalancing. Decile 10 portfolio contains straddles with high variance

change and decile 1 portfolio contains straddles with low variance change. The average

returns within a decile are calculated using equal or value weight scheme. The value weight

scheme uses the initial total investment at the beginning of the holding period to assign

portfolio weight. Then I can calculate the time series average straddle excess returns for

each decile and the difference between decile 10 and decile 1.

Insert Table 2 here.

Table 2 reports the average straddle return for each decile portfolio and the return spread

between the top and bottom decile portfolios. To adjust serial correlations, I use Newey and
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West (1987) standard errors with 12 lags in calculating t-statistics. There is a striking negative

relationship between variance change and straddle portfolio returns. For the equal weight

result, the decile 1 portfolio excess return is 0.41% and the decile 10 portfolio excess return

is -4.89%. The 10-1 spread is -5.30% with a t-statistic of -9.05. For the value weight result, the

decile 1 portfolio excess return is -0.04% and the decile 10 portfolio excess return is -6.05%.

The 10-1 spread is -6.01% with a t-statistic of -8.13.

Insert Figure 1 here.

Figure 1 plots the time series of the equal weight 10-1 straddle returns. About 72% of

the monthly straddle returns are negative. The maximum 10-1 straddle return is 32% and

the minimum is -39%. Over the sample, most of the negative returns are above -20%. I

also present the QQ-plot of the equal weight 10-1 straddle returns in Figure 2. The dis-

tribution of straddle returns is negatively skewed and fat-tailed. The skewness of the dis-

tribution is -0.19, and kurtosis is 1.19, which are consistent with the findings in Broadie,

Chernov, and Johannes (2009) and Vasquez (2017) that the long-short straddle returns dis-

play non-normality. Then, one may concern that some extreme outliers can drive my results

and the large t-statistics in Table 2 should be interpreted with caution. To deal with this

non-normality, I also report the 95% bootstrap confidence intervals for the mean of the 10-1

straddle excess returns in Table 2. I perform bootstrap with replacement 50000 times to gen-

erate 50000 bootstrap samples. For each sample, I calculate the mean of 10-1 straddle excess

returns and this leaves me with 50000 bootstrapped means. I extract the 2.5th and 97.5th

percentile to form the 95% bootstrap confidence interval. The 95% bootstrap confidence in-

terval for equal weight 10-1 excess return is [-6.48%, -4.11%] and it is [-7.45%, -4.56%] for

value weight, which confirms that my results are not driven by some extreme outliers.

Insert Figure 2 here.

Another concern is that the statistically significant negative spread of 10-1 can be a man-

ifestation of loadings on other factors that are already documented in the literature. To

address the concern that some risk factors are driving my results, I need to calculate the

risk-adjusted return spread relative to some option factors. Following Horenstein, Vasquez,

18



and Xiao (2020) and Heston, Jones, Khorram, Li, and Mo (2022), I use up to 10 factors in this

factor adjustment exercise.23 These factors include decile sort long-short straddle returns

based on the log difference between implied and historical volatility (IV − HV), firm size

(Size), idiosyncratic volatility (Ivol), implied volatility term spread (Slope), and the slope

of the implied volatility smirk (Smile), along with two factors constructed by shorting SPX

straddles (SPX) and equally weighted short equity straddles return (EW − Straddle). Ad-

dition to these 7 factors, I also include three momentum factors based on option returns:

Individual Option Momentum, Option Industry Momentum, and Option Factor Momentum

as constructed in Heston, Jones, Khorram, Li, and Mo (2022). The replication results us-

ing my sample are presented in Table A1 and they are largely consistent with the results in

Heston, Jones, Khorram, Li, and Mo (2022).

The factor adjustment results are also reported in Table 2. Specifically, when controlling

IV − HV (1-Factor), the 10− 1 equal weight spread is -5.00% with a t-statistic -7.14. When

controlling IV − HV, Size, and Ivol together (3-Factor), the 10− 1 equal weight spread is

-4.86% with a t-statistic -6.57. Augmenting the factors with Slope, Smile, SPX and EW −
Straddle (7-Factor), the 10− 1 equal weight spread is -4.77% with a t-statistic -5.30. Even

when I include all the factors (10-Factor), the 10− 1 equal weight spread is -4.88% with a

t-statistic -6.22, which is comparable to the excess return without factor adjustment. The

value weight results show very a similar pattern in terms of the economic magnitude and

statistical significance. For example, the value weight 10-factor alpha of the spread is -5.50

with a t-statistic -5.66. Combining together, my results are invariant to the factor adjustment

procedure.24

In summary, using univariate portfolio sorts, Table 2 shows that there is a robust cross-

sectional negative relation between variance change and straddle returns. The return pre-

dictability result is new in the literature and robust to different weighting schemes and factor

adjustments with up to 10 factors.25

23The factor structure of option returns is relatively under-explored and there is no consensus on the factor
space. Following Heston, Jones, Khorram, Li, and Mo (2022), I try to include as many factors as possible in this
exercise to show the robustness of my result.

24I also consider factor model with conditional betas in the robustness check and these results are presented
in Section 3.5.2.

25In untabulated results, I also control the common factors used in the cross-sectional stock returns, such
as Fama and French (1993) three-Factor, Fama and French (2015) five-Factor and their augmented model with
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3.2 Bivariate-sorted portfolios

To account for potential correlation of the variance change with other characteristics, I ex-

amine portfolio returns in a bivariate-sorted portfolio framework. The control variables

include log difference between the implied volatility and historical volatility (IV − HV),

idiosyncratic volatility (Ivol), slope of the implied volatility term structure (Slope), volatil-

ity of the implied volatility (VoV), individual option momentum (Optionmom), log of stock

price (Log(p)), volume to open interest ratio (VoI), option bid-ask spread (BidAsk), option

gamma (Gamma) and option vega (Vega), market cap (Size), book to market ratio (Bm), past

one month stock return (Reversal), paste 12 month stock return skipping the most recent

month (Mom), maximum daily return of the past one month (Maxret), long term reversal

(LTreversal), third moment of past one year daily stock returns (Skewness), fourth moment

of past one year daily stock returns (Kurtosis), and stock illiquidity (Amihud), which are

defined in Section 2.4.26

I try two different sorting procedures: dependent sorting and independent sorting. Each

month, I first sort all optional stocks into quintiles based on one of the control variables

listed above and the stocks are further sort into deciles within each quintile (dependent sort-

ing) or independently (independent sorting) based on the variance change. This procedure

produces 50 characteristic/variance change portfolios. For each variance change decile, I av-

erage returns across the characteristic quintiles, which leaves me with ten variance change

decile returns. Then, I can compute the return difference between decile ten (highest vari-

ance change) and decile 1 (lowest variance change). This bivariate sorting process controls

for correlation between the underlying stock variance change and various characteristics.

For example, if the effect of the variance change on zero-delta straddle returns is primarily

driven by variance change’s correlation with Size, then returns to long-short portfolios in

this analysis should be close to zero because I first sort the portfolios on Size.

Insert Table 3 here.

Carhart (1997) momentum factor. The results are almost the same.
26I choose those variables for several reasons: some are shown to have strong return predictability in the

literature (e.g. IV − HV, Ivol, Slope and et al); some are commonly used in the stock literature (e.g. Size, Bm,
Maxret and et al); some are related to the characteristics of the option contract (e.g. VoI, BidAsk and et al). In
untabulated robustness check, I consider all the variables defined in Section 2.4 in the double sorting procedure
and the results still hold. They are omitted for brevity.
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Table 3 reports the excess returns of the decile 1, decile 10 and 10-1 portfolios both in

dependent sorting and independent sorting. The excess returns reported in Table 3 are gen-

erally comparable to those in Table 2, ranging from -3.45% per month for Ivol control to

-5.40% per month for Gamma control in dependent sorting and from -3.75% for Ivol control

per month to -5.73% for price control per month in independent sorting. And the t-statistics

are all significant at the conventional level. In Table A2, I sort the stocks into quintiles instead

of deciles in the second sort and do the same bivariate-sorted portfolio procedure. Though

a bit weaker because of less extreme groups used, the results are consistent with the results

in Table 3. For example, the 5-1 spreads range from -3.03% to -4.11% with all the t-statistics

less than -5 in dependent sorting.

Taken together, I conclude that the negative relationship between variance change and

straddle returns is robust to controlling other characteristics in bivariate-sorted portfolios.

3.3 Fama-MacBeth regressions

To further show the robustness of my results, I perform a multivariate regression analysis

by running Fama and MacBeth (1973) regressions. An advantage of this approach is that

it allows me to calculate the marginal influence of the variance change on future straddle

returns while controlling multiple variables at the same time. Specifically, the regression

specification is

Ri,t+1 = γ0,t + γ1,t∆Vari,t + φ′tZi,t + εi,t+1 (9)

where Ri,t+1 is the straddle return multiplied by 100 of stock i, ∆Vari,t is stock i’s variance

change defined in equation (6) at the end of month t, and Zi,t is a vector of control char-

acteristics. To compare the economic significance between my variance change measure

and other predictors documented in the literature, all explanatory variables are assigned

to deciles ranging from zero to one based on the last non-missing available observations

for each month t, which follows the procedure of Lee, Sun, Wang, and Zhang (2019) and

Ramachandran and Tayal (2021). Each month, I run these regressions and report the time-

series average of γ and φ coefficients and their t-statistics with 12 lags Newey and West

(1987) adjustment.
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Insert Table 4 here.

The estimation results are presented in Table 4. I include the existing return predictors

documented in the literature such as IV − HV in Goyal and Saretto (2009), Ivol in Cao and

Han (2013), Slope in Vasquez (2017), amihud illiquidity in Christoffersen, Goyenko, Jacobs,

and Karoui (2018), 10 characteristics uncovered in Cao, Han, Zhan, and Tong (2021), and

individual option momentum (Optionmom) in Heston, Jones, Khorram, Li, and Mo (2022).

Other option and stock characteristics are also included as controls. The option character-

istics include measures of option liquidity such the ratio of option volume to open interest

(VOI), and option bid-ask spread (BidAsk), and also option greeks such as Gamma and Vega

that can potentially reflect difference in the riskiness of options and, therefore, affect straddle

returns. The stock characteristics include logarithm of market capitalization (Size), book-to-

market ratio (BM), past 1 month return (Reversal), past 12 months return skipping the most

recent month (Mom), long term reversal (LTreversal), max daily return in the past month

(Maxret), stock return skewness (Skewness), and kurtosis (Kurtosis).

All these regressions include both stock and option characteristics as controls and their

coefficients are omitted for brevity.27 The coefficients reported in Table 4 for other return

predictors are consistent with the existing studies. Consistent with the findings of Goyal and

Saretto (2009), IV−HV is negatively related to straddle returns. And Ivol has a significantly

negative coefficient, which confirms the finding in Cao and Han (2013). Meanwhile, Log(p)

is statistically positive as in Cao, Han, Zhan, and Tong (2021) and Eisdorfer, Sadka, and

Zhdanov (2022). The Slope and Optionmom are both positive and significant, which are

consistent with the findings in Vasquez (2017) and Heston, Jones, Khorram, Li, and Mo

(2022).

Turning to the variable of interest, the coefficients γ1 of variance change are statistically

negative in all the regression specifications. For example, without controlling any existing

option return predictors, the coefficient of γ1 in column (1) is -4.62 with a t-statistic -9.97,

indicating that the average monthly return spread of straddles in the 10 and 1 deciles is

27The coefficients of those controls are largely consistent with the existing studies. For example, stocks with
large size, high past return, high option bid-ask spread, high skewness, and high kurtosis tend to have lower
straddle returns.
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-4.26%.

To further distinguish my variance change effect from the existing option return predic-

tors, I control an existing predictor each time in columns (2) to (16). When controlling the

volatility deviation (IVHV) in column (2), the magnitude of γ1 coefficient reduces slightly

and the corresponding t-statistic remains less than -6. Columns (3) to (16) show that the

magnitude and significance of the coefficient γ1 remains virtually the same when compar-

ing with other option return predictors. And these numbers are comparable to the univariate

sorting in Section 3.1 and bivariate sorting result in Section 3.2. Even when all the controls

are added in the same regression in column (17), the coefficient of variance change is -2.73

with a large t-statistic -5.28. The result in column (17) shows that the negative effect of vari-

ance change on straddle returns is different and far beyond what the existing predictors

capture.28

In summary, my results are robust to controlling existing predictors documented in the

literature, option characteristics, and stock characteristics in Fama and MacBeth (1973) re-

gressions.29

3.4 Accounting for transaction cost

The results so far rely on calculating zero-delta straddle returns from midpoint bid-ask

quotes. The actual trading prices might be different and, therefore affects the robustness

of my result. Existing literature shows that transaction costs in option markets are high (e.g.

Figlewski (1989), George and Longstaff (1993) and Ofek, Richardson, and Whitelaw (2004)).

Recently, Muravyev and Pearson (2020) show that the option traders can time their execu-

tions and take liquidity at lower costs than conventionally thought. They conclude that the

after-cost profitability of option trading strategies should be reconsidered with execution

timing.

To formally take the transaction cost into consideration, I consider several scenarios that

differ from midpoint bid-ask quotes. Specifically, I consider trading at different values of

28The result in column (17) should be interpreted with caution as requiring all the controls available reduces
the number of observations significantly.

29In untabulated results, I also run the specifications without option and stock characteristics and the results
are almost the same.
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the effective bid-ask spread (ESPR) measured in percentage of the quoted bid-ask spread

(QSPR). For example, if the bid price of an option is $3 and the ask price is $4, then, assuming
ESPR
QSPR = x%, the option is bought at (3 + 4)/2 + x%× (4− 3) and sold at (3 + 4)/2− x%×
(4− 3).30 I consider scenarios of x% = 0%, 10%, 20.3%, 25%.

Insert Table 5 here.

Table 5 reports these results. Panel A presents the result for the whole sample and the

first row ESPR
QSPR = 0% is the same as the excess return result in Table 2 except the sign is

flipped.31 As expected, returns to the short (decile 10) portfolio increase and become less

negative, as x% increases, while returns to the long (decile 1) decrease. The mean excess

returns of the 1-10 portfolio remain highly statistically significant for the value weight with

the values of x% up to 25%. The value weight 1-10 portfolio excess return is 2.47% with a

t-statistic of 3.32. While for equal weight strategy, the 1-10 portfolio excess return is 0.71%

with a t-statistic of 1.16, which is not statistically significant. I also consider a scenario of
ESPR
QSPR = 20.3%, which Muravyev and Pearson (2020) and Heston, Jones, Khorram, Li, and Mo

(2022) term as “Algo” traders’ scenario. In this case, the equal and value weight 1-10 excess

returns are all economically large and statistically significant. Thus, my strategy would be

highly profitable if one could achieve the trading cost as the “Algo” traders in Muravyev

and Pearson (2020).

Alternatively, one can consider only trading straddles that have relatively low bid-ask

spreads as suggested by Heston, Jones, Khorram, Li, and Mo (2022). In the same spirit of

Heston, Jones, Khorram, Li, and Mo (2022), I consider strategies that avoid trading options

with bid-ask spread above 10% of option midpoints, as these options are clearly the costliest

to trade. Meanwhile, this strategy can be easily implemented in real time ex-ante. These

results are shown in Panel B of Table 5. In this low trading cost sample, the 1-10 portfolio

returns are all above 5% with large t-statistics in both equal and value weight schemes even

when paying for 25% of QSPR. For example, assuming ESPR
QSPR = 25%, the equal weight 1-10

30For example, if x = 10, the option is bought at $3.6 and sold at $3.4
31From a trading strategy point of view, one need to make sure the long side is with higher average returns.

Thus, I long the decile 1 (low variance change) options and short decile 10 (high variance change) options
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spread is 5.09% with a t-statistic 5.39 and it is 5.61% with a t-statistic 5.05 for value weight.32

In summary, my findings on option return predictability can survive transaction costs,

despite their large impact on the profits of my option strategies.

3.5 Robustness check

In this subsection, I conduct a battery of tests to further show the robustness of my results.

These robustness checks include subperiod analyses, using conditional betas in calculating

the factor adjust alphas, controlling for uncertainty about stock volatility, controlling for

jump risk, using the holding to maturity straddle returns, and using longer maturity options.

3.5.1 Subperiod result

In Table 6, I conduct a variety of subperiod analyses to show the robustness of the results.

This is done by partitioning the time series of straddle returns into different groups based

on certain variables.

Insert Table 6 here.

I first partition the full sample into two periods (1996-2008 v.s. 2009-2020). The 10-1

spread remains economically large and statistically significant in both periods, although the

result is weaker in the recent period. Furthermore, the results are robust during both January

and non-January months, while the results for January sample seem to be larger.

To see whether my result is robust to the market conditions, I partition the full sample

into low and high sentiment period based on the sentiment index from Baker and Wurgler

(2006).33 The low and high sentiment is divided based on the median of the sentiment index.

The results are significant in both period and comparable to each other. Moreover, I can

divide the full sample into low and high market return period based on the median of the

32In untabulated tables, the 1-10 spread is statistically significant even with x% up to 100%, which means
paying the full bid-ask spread.

33The sentiment index data is obtained from Jeffrey Wurgler’s website http://people.stern.nyu.edu/

jwurgler/.
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S&P500 index return. My results are significant in both periods and seem to be stronger in

high market return periods.

Then, I check whether my results are robust to the business cycles.34 I achieve this task

by dividing the full sample into NBER recession and expansion and the results are robust,

though the results for recession period are a bit weaker due to less observations. Finally, I

check whether my results are robust to the aggregate volatility level using the VIX index.35 I

divide the sample into low and high VIX sample based on the median of the VIX index. My

results are significant in both low and high VIX periods.

To conclude, the negative relationship between variance change and future straddle re-

turns is robust in different subperiods.

3.5.2 Conditional betas

In Table 2, I use linear factor models with constant β loadings in calculating the alphas. A

drawback of this implementation is that it neglects the time-varying property of the β load-

ings. The decile 10 options with high variance change may be those straddles expose more

to risk factors and this will induces time variation in the 10-1 factor loadings. Combining

with the time-varying factors, it is possible that the interaction of betas and factors could

explain my result.

To formally rule out this possibility, I estimate the following factor-model regression with

conditional betas:

R10−1,t = α10−1 + Θ10−1,t−1 + (β0,10−1 + β1,10−1Θ10−1,t−1)Ot + ε10−1,t (10)

where R10−1,t, is the 10-1 portfolio straddle returns, Θ’s are either portfolio implied volatility

(IV), greeks (Delta, Gamma, and Vega), or aggregate implied volatility measured by VIX,

and Ot are the option factors used in Table 2.

Table A3 presents the results for factor-model regressions with conditional betas. The

row labeled with IV in column Θ means that I assume the beta loadings are correlated with

34The business cycle dates are from https://www.nber.org/research/business-cycle-dating.
35The VIX index is obtained from CBOE’s website https://www.cboe.com/tradable_products/vix/vix_

historical_data/
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portfolio implied volatility. This is implemented in Equation (10) by setting Θ as the 10-1

portfolio implied volatility. All the results are similar to those in Table 2.

Thus, my results can’t be explained by the dynamic beta loadings with respect to portfo-

lio implied volatility, greeks, and aggregated implied volatility.

3.5.3 Controlling for uncertainty about stock volatility

In this subsection, I show that my results are robust to controlling for uncertainty about

stock volatility. An enormous body of work has shown that volatility in asset returns is

time varying (e.g. Engle (1982) and Bollerslev (1986)) and stochastic volatility models of

Heston (1993) type have better performance in contrast to models with constant volatility.

Meanwhile, investors’ uncertainties about future stock volatility create a “model risk” as in

Figlewski (1998) and Green and Figlewski (1999). This “model risk” will create sizable risk

exposure for option writers and risk-averse option sellers can increase the volatility input,

which can increase the mean return and reduce the fraction of losing trades. Thus, when the

uncertainty about the underlying stock volatility increases, option sellers charge a higher

option premium to compensate for this “model risk”, resulting in a lower expected return

for buyers. This could explain my findings if the variance change is correlated with the

uncertainty about stock volatility. Meanwhile, Ruan (2020) and Cao, Vasquez, Xiao, and

Zhan (2022) define uncertainty about stock volatility as volatility of volatility in Baltussen,

Van Bekkum, and Van Der Grient (2018) and they both document a negative relationship

between option returns and volatility of implied volatility (VoV). Thus, a careful comparison

is needed in this subsection.

The significant 10-1 biavariate portfolio sorting result based on VoV partially mitigates

this concern.36 To formally rule out this possibility in a regression framework. I run the

same Fama-MacBeth regressions as in Table 4 with volatility of implied volatility (VoV) as an

additional control. Table A4 presents the result. The coefficients of VoV are all significantly

negative, which confirms the findings in Ruan (2020) and Cao, Han, Zhan, and Tong (2021).

It is also consistent with Green and Figlewski (1999)’s argument that option writers charge

36The equal weight 10-1 excess return is -4.19% with a t-statistic -6.95 in dependent sort and it is -4.82% with
a t-statistic -7.83.
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a higher option premium when facing the volatility uncertainty risk. More importantly, the

coefficients for the ∆Var are almost the same as the coefficients reported in Table 4, and are

all statistically significant at the 1% level.

Thus, I conclude that the predictive power of variance change for future straddle returns

is independent and unexplained by the effect of stock volatility uncertainty.

3.5.4 Controlling for jump risk

Green and Figlewski (1999) suggest that option dealers charge a premium for the jump risk

when they write options. Another strand of literature examines the effects of jumps to option

pricing. Articles such as Duffie, Pan, and Singleton (2000), Pan (2002), and Broadie, Chernov,

and Johannes (2009) show that the empirical patterns of option prices can be better explained

by incorporating jumps in the option pricing models. A natural concern is that options

experiencing large variance changes are caused by the large price movements. Thus, these

large variance movements may be manifestations of the jump risk. In this subsection, I

examine whether my results could be explained by the correlations between jump risk and

variance change.

Following equation (9) in Yan (2011), I use the slope of implied volatility smile to proxy

for risk-neutral jump. Table A5 shows the results for controlling jump risk in Fama and

MacBeth (1973) regressions. Clearly, the presence of risk-neutral jump risk proxies does not

change the sign and statistical significance of the coefficients for variance change. They are

almost the same as those in Table 4. Thus, my results are not driven by risk-neutral jump

risk.

3.5.5 Holding to maturity straddle returns

In this subsection, I check whether my results hold for using holding to maturity straddle

returns. The return predictability results up to now are all based on one month holding

period straddle returns, which requires to sell the options at the end of next month. The

other way to calculate the straddle returns is to hold the straddles until maturity and this

involves exercising the options on expiration date. The holding to maturity straddle returns
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are calculated as

Straddle retHTM =

−∆P(max( ST
c f acprT
c f acprt

− Kt, 0)− Ct) + ∆C(max(Kt − ST
c f acprT
c f acprt

, 0)− Pt)

−∆PCt + ∆CPt
(11)

where Kt is the strike price, c f acprt is the cumulative factor to adjust price at the end of

month t, c f acprT is the cumulative factor to adjust price at expiration date, and ST is the

stock price at expiration date.

Table A6 presents the results based on holding to maturity straddle returns (about 50

calendar days). The patterns in general are similar to the corresponding results in Table 2

with larger magnitudes due to longer holding period. For example, the equal weight 10-

1 excess return is -6.69% with a t-statistic -8.15 and it is -8.13% with a t-statistic -7.23 for

value weight 10 -1 spread. Thus, my results are robust to using holding to maturity straddle

returns.37

3.5.6 Evidence from longer maturity options

My results so far are based on zero-delta straddles constructed from at the money short ma-

turity options (about 50 calendars to maturity), which expire on the third Friday of month

t + 2. The primary reason for this choice is because these options are most actively traded

and have the highest liquidity. In this subsection, I also explore whether the negative re-

lationship between variance change and zero-delta straddle returns holds for using longer

maturity options.

To explore these, I consider options maturity date in month t + 3 (about 80 calendar

days to maturity) and t + 4 (about 110 calendar days to maturity) and do the same portfolio

sorting procedure as in Table 2 except straddles are constructed from longer maturity op-

tions. The results still hold for longer maturity options, though the magnitudes tend to be

weaker compared to short-term options. For example, the value-weight excess returns for

10-1 spread is -3.47% with a t-statistic -4.28 with expiration date in month t + 3. The value-

weight excess returns for 10-1 spread is -3.07% with a t-statistic -3.65 with expiration date in

37In untabulated results, I also re-run Table 3 and 4 using the holding to maturity returns and the results are
similar.
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month t + 4.38

4 Potential Explanations

After establishing a robust negative relation between variance change and zero-delta strad-

dle returns, I conduct additional analyses to understand the underlying mechanisms. First,

I conduct a decomposition exercise of the total variance change and show its idiosyncratic

component is the driving force of the return predictability. Then, I show investors overreact

to this idiosyncratic component in variance risk premium regressions. The overreaction re-

sults are confirmed both in panel regressions with time fixed effect and Fama and MacBeth

(1973) regressions. To collaborate the overreaction interpretation, I leverage on the earnings

announcement test proposed by Engelberg, McLean, and Pontiff (2018). I find that the re-

turn predictability result is stronger among the sample with earnings announcement, which

further confirms the overreaction interpretation. Finally, I show investors overreaction to

volatility shock generates a demand pressure on option prices, which is responsible for the

overpricing of high variance change options. Dealers respond to this demand pressure by

charging higher option premium and option bid-ask spread.

4.1 Which component drives the return predictability? A decomposition

approach

In this subsection, by combining equations (5) to (8), I decompose the total variance change

into systematic and idiosyncratic components as follows:

∆Varit = ∆SVarit︸ ︷︷ ︸
systematic component

+ ∆IVarit︸ ︷︷ ︸
idiosyncratic component

(12)

where the idiosyncratic component is defined relative to the market model by setting Ft in

equation (3) as the excess return of the CRSP value-weighted market portfolio over risk free

38For options maturity beyond month t + 4, the results also hold but with smaller spreads and t-statistics
due to less observations available. And those results are omitted for brevity.
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rate.39 Then, I do the portfolio sorting procedure using these two components separately as

in Table 2.

Insert Table 7 here.

These portfolio sorting results are presented in Table 7, where Panel A shows the results

for the systematic component and Panel B shows the results for the idiosyncratic compo-

nent. The 10-1 spreads are all close to zero and insignificant for the systematic component

in Panel A of Table 7. For example, the equal weight 10-1 spread excess returns is -0.32%

with a t-statistic -0.42 in Panel A. In sharp contrast to the results in Panel A, the 10-1 spread

results in Panel B are all economically large and statistically significant. Most importantly,

the numbers are comparable to the numbers in Table 2. For example, the 10-1 equal weight

excess returns is -5.46% with a t-statistic -9.13 in Panel B of Table 7, while it is is -5.30% with

a t-statistic -9.05 in Table 2. Thus, idiosyncratic component drives the portfolio sorting result

in Table 2.

I also run Fama-MacBeth regressions to formally check which component drives the re-

turn predictability result. I replace the total variance change by these two components in the

same regression as in Equation (9)

Ri,t+1 = γ0,t + γS
1,t∆SVari,t + γI

1,t∆IVari,t + φ′tZi,t + εi,t+1 (13)

where ∆SVari,t and ∆IVari,t are the systematic and idiosyncratic components of the total

variance change.

Insert Table 8 here.

The variables of interest are γS
1,t and γI

1,t, and the estimation results are presented in Ta-

ble 8. The coefficients of the idiosyncratic component γI
1,t in all regressions are significantly

negative and they are comparable to the numbers in Table 4, while coefficients of the sys-

tematic component γS
1,t are positive and barely significant. For example, without controlling

39All the following results will go through if I define idiosyncratic component relative to Fama and French
(1993) model.

31



other option return predictors in column (1) of Table 8, the coefficient of ∆IVar is -5.04 with

a t-statistic -10.6, while it is 0.74 with a t-statistic 1.46 for ∆SVari,t. Even when adding all

the option return predictors in column (17), the coefficient of ∆IVar is -3.45 with a t-statistic

-6.59, while it is 1.11 with a t-statistic 2.32 for ∆SVari,t.

In summary, both Table 7 and 8 deliver the same message: the idiosyncratic component

dominates the systematic component and the idiosyncratic component of the total variance

change is responsible for the return predictability.

4.2 Overreaction to volatility change

In this subsection, I further explore the source of the return predictability by investigating

whether these two components can predict variance risk premium. The zero-delta straddle

is a strategy which trades the volatility and its profitability is related to the realized vari-

ance risk premiums as documented in Vasquez (2017). The negative relationship between

variance change and future straddle returns could be due to the fact that investors overre-

act to volatility shock and are paying a higher variance premiums for options written on

stocks with the high variance changes. Following Lochstoer and Muir (2022), I define firm

i’s variance risk premiums as

VRPi,t = IV2
i,t − RVi,t+1 (14)

where IV2
i,t is the square of implied volatility at the end of month t and RVi,t+1 is the actual

realized variance over month t + 1.

To formally test whether variance change can predict the variance risk premium, I per-

form the following Fama and MacBeth (1973) regression:

IV2
i,t − RVi,t+1 = a + β1∆SVari,t + β2∆IVari,t + γXi,t + εi,t+1 (15)

and panel regression with month fixed effect:

IV2
i,t − RVi,t+1 = a + β1∆SVari,t + β2∆IVari,t + γXi,t + τt + εi,t+1 (16)

where ∆SVari,t and ∆IVari,t are defined in Equation (12) relative to CAPM, Xi,t is the control
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vector and τt is for the month fixed effect. The controls include volatility measures related

option anomalies such as log difference between the implied volatility and historical volatil-

ity (IVHV), idiosyncratic volatility (Ivol), implied volatility term structure (Slope), stock

price (Log(p)) and volatility of implied volatility (VoV) as defined in Section 2.4.40 The co-

efficients of interest are β1 and β2. Before performing these two regressions, each month,

I winsorize all the independent variables at 1% and 99% levels to deal with the extreme

values.41

Insert Table 9 here.

Table 9 presents the regression results. Panel A shows the seven Fama-MacBeth regres-

sion results with Newey and West (1987) adjustment up to 12 lags. In the first regression,

the coefficient of ∆SVar is -0.05 with a t-statistic -1.22, while the coefficient of ∆IVar is 0.05

with a t-statistic 4.87. In columns (2)-(6), I add one control at a time. The coefficients associ-

ated with ∆IVar range from 0.03 to 0.05 and are all statistically significant at the 1% level.42

For ∆SVar, the coefficients are generally negative but not robustly significant. Finally, when

I add all the controls in column (7), the coefficient of ∆IVar is 0.03 with a t-statistic 2.48,

while it is -0.06 with a t-statistic -1.64 for ∆SVar. Thus, the Fama-MacBeth regressions show

a robust positive relationship between ∆IVar with future realized variance premium, which

is the evidence that investors overreact to idiosyncratic component of variance change in

forming the volatility expectation.

Panel B of Table 9 shows the results using panel regression with month fixed effect. The

month fixed effect serves the purpose to remove any aggregate movements in firm level

40Shue and Townsend (2021) document that investors have non-proportional thinking in financial markets
and higher nominal share price is associated with lower volatility. Meanwhile, Boulatov, Eisdorfer, Goyal, and
Zhdanov (2022) and Cao, Han, Zhan, and Tong (2021) both document that delta-hedged options on low-priced
stocks underperform high-price stocks. Thus, I include Log(p) as a control, though it is not a literal volatility
measure.

41My result is robust to the winsorization with different levels or without winsorization and those results
are omitted for brevity.

42The positive coefficients of IVHV, IVOL, and VOV are consistent with the fact that they are negatively
related to future straddle returns as documented in Goyal and Saretto (2009), Cao and Han (2013), Ruan (2020)
and Cao, Vasquez, Xiao, and Zhan (2022). And the negative coefficient of Slope and Log(p) are consistent with
the fact that they are positively related to future straddle or delta-hedged option returns as documented in
Vasquez (2017), Cao, Han, Zhan, and Tong (2021), and Boulatov, Eisdorfer, Goyal, and Zhdanov (2022).
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variance premiums. Thus, these regressions only use the cross sectional variations in es-

timations as the Fama-MacBeth regressions. The standard errors are double-clustered by

firm and month to account for correlations both over time within each firm and across firms

as in Thompson (2011). The coefficients of ∆IVar in panel B are all significantly positive,

which are consistent with what I have shown in panel A of Table 9.43 For example, without

any controls in column (1) of Panel B, the coefficient of ∆IVar is 0.03 with a t-statistic 3.39.

And this number is significant in the range of 0.02-0.04 when adding a control each time in

columns (2)-(6). When adding all the controls in column (7), the coefficient of ∆IVar is 0.05

with a t-statistic 2.41.

Combining Fama-MacBeth and panel regressions results together, I conclude that in-

vestors overreact to the idiosyncratic variance change ∆IVar when forming future volatility

expectations.44

4.3 Biased expectation: evidence from earnings announcement

To corroborate the overreaction interpretation, I leverage on firms’ earnings announcements

to study the relationship between variance change and zero-delta straddle returns. Engel-

berg, McLean, and Pontiff (2018) propose that firm information events can be utilized to dif-

ferentiate risk and biased expectation explanations for anomaly returns.45 They document

that stock return anomalies are six times higher on earnings announcement days. When

new information arrives in the form of an earnings announcement, investors update their

beliefs resulting in a correction to the stocks price. They interpret this result as evidence that

anomaly returns are due to stock mispricing.

Following the same logic, my option return predictability results should be stronger for

those stock options with earnings announcements during the holding period if they mainly

43In Table A7, I present the result for ∆SVar and ∆IVar defined relative to Fama and French (1993). The
results are very similar to the results in Table 9, which shows my results are robust to the factor models chosen
in calculating these two components.

44Lochstoer and Muir (2022) also run a similar panel regression in their firm level analysis. They show that
increases in total variance over 6 months negatively forecast variance risk premiums, which they interpret as
evidence of underreaction to changes in total variance. In untabulated result, when using total variance change
∆Var in the regression, I confirm their findings. A key difference is that I decompose the total variance into
two components and check them separately.

45Lee, Sun, Wang, and Zhang (2019) also utilize this test to rule out risk explanations for their results.
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reflect the correction of option mispricing caused by investors overreaction to volatility

shock. I use portfolio sorts to test this biased expectation hypothesis. Based on whether

stocks have earnings announcements during the straddle holding period, I divide the strad-

dles each month into two subsamples: no earnings sample and earnings sample.46 Then, I

implement the same portfolio sorting procedure as in Table 2 based on ∆Ivar on these two

subsamples separately.

Insert Table 10 here.

Table 10 presents the portfolio sorting results for these two subsamples. First, the 10-

1 straddle portfolio spreads are significantly negative in both the no earnings sample and

earnings sample, which again shows the robustness of my return predictability result. In

equal weight scheme, the 10-1 excess return spread for no earnings sample is -2.60% with

a t-statistic -4.32 and it is -6.64% with a t-statistic -4.53 for earnings sample. And 10-factor

alpha of the 10-1 portfolio for no earnings sample is -2.71% with a t-statistic -3.09 and it is

-6.83% with a t-statistic -3.63 for earnings sample. Similar patterns can be found when using

value weighting scheme.

Moreover, the return spread is more negative for the earnings sample as shown in the row

“Difference” of Table 10. The row “Difference” is defined as the 10-1 return spread difference

between earnings sample and no earnings sample. All the numbers in row “Difference” are

negative and statistically significant, with a magnitude of around -5.32% to -3.03% depend-

ing on the weighting schemes and factor adjustment models used. For example, the equal

weight excess return of the “Difference” is -4.04% with a t-statistic -2.56. And it is -3.34%

with a t-statistic -1.71 for equal weight 10-factor alpha. Similar return difference patterns

can be found in value weighting scheme. All these point to the same fact that the negative

return predictability of variance change is more pronounced for earnings announcement

sample options in portfolio sorting analysis.

46To correctly identify earnings announcement dates, I follow the procedures of DellaVigna and Pollet (2009)
and Johnson and So (2018). I first compare Compustat and I/B/E/S announcement dates and assign the
earlier dates as being correct. When they are more than two trading days apart from each other, I drop those
observations. Second, I adjust the announcement date one trading day forward if the announcement occurred
after the market close based on the I/B/E/S time stamp. With or without these adjustments have little effects
on my results.
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Furthermore, I also check whether the same results hold in Fama-MacBeth regressions by

adding an Earnings dummy and its interaction with ∆IVar. The Earnings dummy equals

to 1 if the underlying stock has an earnings announcement during the holding period and

0 otherwise. Table A8 presents these results.47 I find negative and statistically significant

coefficients on ∆IVar in all the specifications and the coefficients on Earnings are all signif-

icantly positive.48 More important for my test, I find that the coefficients on the interaction

term of ∆IVar and Earnings are all significantly negative. For the regression with all controls

in column (17), the coefficients on ∆IVar and the interaction term ∆IVar× Earnings are -1.22

and -2.18. This means that the effect of ∆IVar for stocks with earnings announcement sam-

ple is -2.18% lower than that for stocks without earnings announcement in Fama-MacBeth

regression.

In summary, the more pronounced return predictability results for earnings announce-

ment subsample in Table 10 and A8 are consistent with the pattern documented in Engel-

berg, McLean, and Pontiff (2018) for stock market anomalies, supporting my argument that

overreaction about volatility shock contributes to the option return predictability and this

biased expectation gets corrected around earnings announcement.

The decomposition results in Section 4.1, the overreaction results in Section 4.2, along

with the earnings announcement test results in Section 4.3 all point to the importance of

investigating the idiosyncratic variance change. In the rest of the paper, I will mainly focus

on the idiosyncratic variance change.

4.4 Demand pressure induced by overreaction

In this subsection, I investigate how end-user demand varies with the idiosyncratic variance

change (∆IVar). I hypothesis that investors’ overreaction to variance change will induce

a demand pressure on the underlying options and this will make the options with large

variance change overpriced. The impact of demand-pressure on the option prices has been

47To conserve space, I omitted the coefficients of other predictors in Table A8.
48Gao, Xing, and Zhang (2018) document that average at-the-money straddles from 3 days before an earn-

ings announcement to the announcement date yield a highly significant positive return, while straddles on
individual stocks generally earn negative and significant returns. Though my straddle returns are measured
over the entire month instead of the daily returns around earnings announcement, the positive coefficients on
Earnings are generally consistent with their findings.
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documented in Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009), Boyer

and Vorkink (2014), Byun and Kim (2016), Muravyev (2016), and Boulatov, Eisdorfer, Goyal,

and Zhdanov (2022).

Following Cao and Han (2013), Cao, Han, Zhan, and Tong (2021), and Ramachandran

and Tayal (2021), I construct two proxies for option demand to test this demand pressure

channel. The first one is relative open interest

Relative open interest =
Open interest

Number of shares outstanding
(17)

and the other one is relative open value

Relative open value =
Open interest×Option price

Number of shares outstanding × Stock price
(18)

where Option price is defined as the mid point of the bid and ask quote.

Then, I run panel regressions with both firm and time fixed effects using one of the above

measures as the dependent variable option demand in the following form:

Option demandi,t = a + β∆IVari,t + γXi,t + τi + τt + εi,t (19)

where Xi,t are the control vectors, τi and τt are the firm and month fixed effects respectively.

To deal with the outliers, all independent variables each month are winsorized at 1% and

99%. For ease of interpretation, they are standardized to have a mean of zero and a standard

deviation of one.

Insert Table 11 here.

Panel A of Table 11 presents the panel regression of relative open share on idiosyncratic

variance change. In column (1) of Panel A, the coefficient on ∆IVar is 0.15 with a double

clustered t-statistic 2.55, which means a one standard deviation increase in ∆IVar will lead to

0.15% higher option demand measured by relative open interest. Boulatov, Eisdorfer, Goyal,

and Zhdanov (2022) document that inattention to the underlying stock prices generates a

demand pressure for options on low-priced stocks. Controlling log of stock price in column
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(2), the coefficient of ∆IVar is 0.16 with a t-statistic 2.61, which is almost the same as in

column (1).

Also, Ramachandran and Tayal (2021) show that investors drive up the demand for put

options on overpriced stocks because of short-sale constraint. Following Ramachandran and

Tayal (2021), the proxy for short-sale constraint is defined as

RSI
IO

=
Relative short interest

Institutional ownership
(20)

where relative short interest is measured as short interest over the total shares outstanding

and institutional ownership is the percentage of shares owned by institutions.49 Column

(3) of Panel A in Table 11 presents the result for controlling the short sale constraint. The

coefficient of ∆IVar is 0.23 with a t-statistic 2.65.

In column (4) of Panel A, the coefficient of ∆IVar is 0.23 with a t-statistic 2.68 when

adding these two controls at the same time. This implies that a one-standard increase in

idiosyncratic variance change leads to 0.23% higher option demand.

Panel B of Table 11 presents the option demand results when option demand is measured

by relative open value. In all of the four regressions, the coefficients are all significantly posi-

tive.50 I also consider option interest scaled by the monthly stock trading volume as another

proxy for option demand and these results are presented in Table A9. The coefficients of

∆IVar are all statistically significant and of large magnitudes.

In summary, high idiosyncratic variance change can lead to a demand pressure, which is

induced by the overreaction to idiosyncratic component of volatility shock.51

49The short interest data is from Compustat and the institutional ownership data is from Thomson Reuters
13F holdings.

50The coefficients of Log(p) in Panel B of Table 11 is consistent with the findings in Boulatov, Eisdorfer,
Goyal, and Zhdanov (2022) that stocks with lower prices have higher option demand. But, the coefficients
of RSI

IO are all significantly positive, while Ramachandran and Tayal (2021) document significantly negative
relationship between RSI

IO and option demand. Their results are conditional results restricted to put options
written on overpriced stocks. Thus, their results should be interpreted with caution.

51In untabulated tables, I show my results in this subsection are robust to (1) without controls of stock and
option characteristics, (2) using month fixed effect only or without any fixed effect, (3) standard errors without
clustering or clustered by firm or time only, (4) using alternative regression method such as Fama and MacBeth
(1973).
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4.5 Dealer’s response

Having documented that options written on stocks with higher idiosyncratic variance change

have higher demand, a natural question is how do dealers respond to this higher demand.

Christoffersen, Goyenko, Jacobs, and Karoui (2018) propose that expected return and spreads

together constitute dealers remuneration for taking on the risks of market making. They ar-

gue that the expected return can be viewed as a daily fee and the spread as a down payment

charged by a risk averse dealer to manage or accept the risk of a position. Thus, responding

to the inventory risk driven by demand pressure, they will charge higher option premiums

and bid-ask spreads (Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009)

and Muravyev (2016)).

To begin with, I first focus on the expected return component, which is approximated

by the option expensiveness. Following Garleanu, Pedersen, and Poteshman (2009) and

Goyal and Saretto (2009), I define the expensiveness of options as the log difference between

implied volatility and historical volatility over the past one year as defined in Section 2.4. I

formally test this hypothesis by running the following panel regression :

IVi,t − HVi,t = a + β∆IVari,t + γXi,t + τi + τt + εi,t (21)

where Xi,t are the control vectors, τi and τt are the firm and month fixed effects respectively.52

Insert Table 12 here.

Panel A of Table 12 present the option expensiveness results and all the coefficients in

Panel A are multiplied by 100. In column (1), the coefficient of ∆IVar is 0.66 with a t-statistic

8.46, which indicates that one standard deviation increase in ∆IVar is associated with 0.66%

higher option expensiveness. Column (2) and (3) include Log(p) and RSI
IO separately, the

coefficients on the idiosyncratic volatility change remain positive and statistically significant,

0.65 with a t-statistic 8.39 and 0.43 with a t-statistic 5.61, which are close to the result in

Column (1).

52Similarly, all independent variables each month are winsorized at 1% and 99%. For ease of interpretation,
they are standardized to have a mean of zero and a standard deviation of one.
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Lastly, I include Log(p) and RSI
IO in the same regression in column (4). The coefficient

of ∆IVar is 0.43 with a t-statistic 5.57, which indicates that one standard deviation increase

in ∆IVar is associated with 0.43% higher option expensiveness control. The coefficients on

stock price Log(p) are significantly negative, which confirms the findings in Boulatov, Eis-

dorfer, Goyal, and Zhdanov (2022) that options on low-priced stocks are overpriced. The

coefficients on RSI
IO are negative but not statistically significant.

Next, I turn to the option spread component. I run the same panel regressions as in

equation (21) by replacing IV−HV with option bid-ask spread, which is defined as the ratio

of difference between ask and bid quotes over the midpoint of bid and ask quotes. These

results are presented in Panel B of Table 12.53 The coefficients of ∆IVar in Columns (1) to (4)

are all significantly positive and of similar magnitudes, depending on the specifications. For

example, in Column (4), the coefficient of ∆Ivar is 0.15 with a t-statistic 2.77, which indicates

that a one standard deviation increase in ∆Ivar is associated 0.15% higher option bid-ask

spread. The coefficients of Log(p) and RSI
IO are all statistically negative, which suggest that

options written on stocks with high price and less short-sale constraint tend to have less

option bid-ask spread. These are largely consistent with the findings in Boulatov, Eisdorfer,

Goyal, and Zhdanov (2022) and Ramachandran and Tayal (2021).

Taken together, dealers respond strongly to the demand pressure induced by investors’

overreaction to idiosyncratic variance change ∆IVar. They will charge a higher option pre-

mium and option bid-ask spread to compensate the resulting inventory risk driven by de-

mand pressure.54 Depending on the regression specifications, a one-standard increase in

∆IVar will lead to 0.43% to 0.66% higher option expensiveness and 0.12% to 0.17% higher

option bid-ask spread.

53For ease of interpretation, all the coefficients are also multiplied by 100.
54In untabulated tables, I show my results in this subsection are robust to (1) without controls of stock and

option characteristics, (2) using month fixed effect only or without any fixed effect, (3) standard errors without
clustering or clustered by firm or time only, (4) using alternative regression method such as Fama and MacBeth
(1973).
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5 Conclusion

This paper documents a novel and robust effect in option prices – equity options written

on stocks with higher variance change tend to be relatively overpriced. This overpricing

is manifested in zero-delta straddle portfolio returns and alphas up to adjustments with 10

option factors as in Horenstein, Vasquez, and Xiao (2020) and Heston, Jones, Khorram, Li,

and Mo (2022). The negative relationship also hold in portfolios double sorted on variance

change and various controls documented in the literature as well as in cross-sectional Fama

and MacBeth (1973) regressions. In further robustness check, I show my results are robust

to transaction costs, subperiod analysis, conditional betas in factor adjustment, controlling

for the volatility uncertainty, controlling for jump risk, alternative calculations of straddle

returns, and using longer maturity options.

Furthermore, I decompose the total variance change into systematic and idiosyncratic

variance change components. I show that the idiosyncratic variance change is the dominant

force for the return predictability. Then, I document investors overreaction to idiosyncratic

variance change by showing increases in idiosyncratic variance change lead to higher vari-

ance risk premiums at firm level Fama and MacBeth (1973) and panel regressions. The over-

reaction explanation is further confirmed by leveraging on the earnings announcement test

proposed by Engelberg, McLean, and Pontiff (2018). I show that the return predictability re-

sult is much more pronounced for the earnings announcement subsample than no earnings

announcement subsample in portfolio sorting and Fama and MacBeth (1973) regressions.

The overreaction to volatility shock evidence from large cross-sectional options collaborates

the overreaction along the volatility term structure evidence in Stein (1989) and Poteshman

(2001).

To close the loop, I show this overreaction can generate a demand pressure on the options

and dealers will response this demand pressure by charging a higher option price and op-

tion bid-ask spread as argued by the demand-based option pricing framework of Garleanu,

Pedersen, and Poteshman (2009).
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Figure 1: Time Series of Straddle Returns
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This figure shows the equal weight returns of the 10-1 straddle portfolio, defined as the difference between
decile 10 (highest volatility change) and decile 1 (lowest volatility change) as in Table 2. The sample period
spans from 1996 to 2020.
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Figure 2: QQ-Plot of Straddle Returns

−0.4

−0.2

0.0

0.2

−3 −2 −1 0 1 2 3
Standard Normal Quantiles

Z
er

o−
de

lta
 S

tr
ad

dl
e 

Q
ua

nt
ile

s

This figure presents the QQ-plots of equal weight straddle returns of the 10-1 straddle portfolio, defined as the
difference between decile 10 (highest volatility change) and decile 1 (lowest volatility change) as in Table 2.
The sample period spans from 1996 to 2020.
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Table 1: Summary statistics
This table presents summary statistics for my sample and zero-delta straddle returns after
the filter procedure in Section 2.1. All the variables are extracted from Ivy DB OptionMetrics.
All the numbers are statistics on the full panel of each variable. The sample period spans
from 1994 to 2020. Panel A presents the summary for call options and Panel B presents the
summary for put options. Panel C presents the zero-delta straddle returns. The sample
period spans from 1996 to 2020.

Panel A: Call options
Variable N Mean Median Standard 10th 25th 75th 90th

deviation percentile percentile percentile percentile
Days to maturity 242226 50 50 2 46 49 51 52
Moneyness = K

S (%) 242226 100.42 100.11 4.38 95.24 97.88 102.62 105.82
Implied volatility 242226 0.48 0.43 0.23 0.24 0.31 0.59 0.78
Open interest 242226 1018 163 3017 10 39 662 2328
Option bid-ask spread 242226 0.17 0.12 0.17 0.04 0.07 0.21 0.36
Delta 242226 0.53 0.54 0.10 0.40 0.47 0.60 0.66
Gamma 242226 0.11 0.09 0.07 0.04 0.06 0.15 0.21
Vega 242226 5.53 3.76 6.24 1.29 2.15 6.64 10.88

Panel B: Put options
Variable N Mean Median Standard 10th 25th 75th 90th

deviation percentile percentile percentile percentile
Days to maturity 242226 50 50 2 46 49 51 52
Moneyness= K

S (%) 242226 100.42 100.11 4.38 95.24 97.88 102.62 105.82
Implied volatility 242226 0.48 0.43 0.23 0.24 0.31 0.60 0.80
Open interest 242226 633 85 2013 7 20 364 1396
Option bid-ask spread 242226 0.17 0.12 0.17 0.04 0.07 0.21 0.36
Delta 242226 -0.47 -0.46 0.10 -0.60 -0.53 -0.40 -0.34
Gamma 242226 0.11 0.09 0.07 0.04 0.06 0.15 0.21
Vega 242226 5.52 3.75 6.24 1.29 2.15 6.63 10.87

Panel C: Zero-delta straddle returns
Variable N Mean Median Standard 10th 25th 75th 90th

deviation percentile percentile percentile percentile
Hold until month-end(%) 242226 -1.69 -17.15 51.24 -43.20 -34.17 14.46 59.09
Hold until maturity(%) 241801 -1.35 -19.85 83.97 -85.32 -61.79 36.92 102.23

53



Table 2: Portfolio sorting result of straddle returns
This table reports the excess returns, 1-Factor, 3-Factor, 7-Factor, and 10-Factor alphas. The
factors are defined in Section 3.1 and Table A1. Left panel reports the equal weight result
and right panel reports the value weight result. Returns and alphas are in percent, t-statistics
are shown in parentheses using Newey and West (1987) correction with 12 lags. The sample
period spans from 1996 to 2020.

Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
Decile returns alpha alpha alpha alpha returns alpha alpha alpha alpha
Short 0.41 -2.10 -1.69 1.29 0.95 -0.04 -2.76 -2.10 1.30 0.90
2 -0.08 -2.00 -1.08 1.53 1.51 -0.84 -2.96 -1.80 1.29 1.28
3 -1.11 -3.20 -2.00 0.76 0.78 -1.68 -3.75 -2.38 0.60 0.39
4 -1.52 -3.31 -2.04 0.74 0.75 -2.63 -4.30 -2.61 0.66 0.54
5 -1.56 -3.99 -2.54 0.03 0.03 -3.22 -5.59 -4.04 -1.48 -1.62
6 -1.30 -3.22 -1.47 1.69 1.40 -2.60 -4.54 -2.51 0.87 0.54
7 -1.66 -4.11 -2.85 0.04 -0.34 -2.33 -5.24 -3.73 -0.83 -1.37
8 -2.65 -4.85 -3.61 -0.71 -1.14 -4.01 -6.21 -4.65 -1.33 -1.79
9 -2.61 -5.04 -4.25 -0.77 -0.92 -3.80 -6.53 -5.36 -1.70 -2.02
Long -4.89 -7.10 -6.55 -3.48 -3.93 -6.05 -8.12 -7.36 -4.17 -4.61
10-1 -5.30 -5.00 -4.86 -4.77 -4.88 -6.01 -5.36 -5.26 -5.47 -5.50

(-9.05) (-7.14) (-6.57) (-5.30) (-6.22) (-8.13) (-6.33) (-5.77) (-5.22) (-5.66)
95% Bootstrap CI [-6.48, -4.11] [-7.45, -4.56]
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Table 3: Bivariate portfolio sorting result of straddle returns
This table reports the bivariate portfolio sorting result of straddle excess returns. At the end
of each month, we first sort all options into quitiles based on a sorting characteristic. Then,
the options are further sorted into deciles according to volatility change defined in equation
6 within the sorting characteristic quintile (Dependent sort) or independently (Independent
sort). We average straddle returns for each volatility change decile across the characteristic
quintiles, which leaves us ten decile returns. The table reports the excess return of the decile
1, decile 10 and 10-1 portfolios separately for dependent sort (left panel) and independent
sort (right panel). The sample period spans from 1996 to 2020. Returns and alphas are in
percent, t-statistics are shown in parentheses using Newey and West (1987) correction with
12 lags.

Dependent sort (%) Independent sort (%)

Sorting Characteristic 1 10 10-1 1 10 10-1
IV − HV -0.48 -4.35 -3.86 -0.27 -4.65 -4.37

(-0.50) (-4.00) (-6.08) (-0.28) (-4.57) (-6.13)
Ivol -0.12 -3.57 -3.45 0.45 -3.31 -3.75

(-0.13) (-3.06) (-5.54) (0.44) (-2.57) (-3.56)
Slope 0.54 -4.03 -4.57 0.52 -3.88 -4.40

(0.49) (-3.28) (-5.96) (0.49) (-3.01) (-5.08)
VoV 0.11 -4.09 -4.19 0.34 -4.49 -4.82

(0.11) (-3.81) (-6.95) (0.35) (-4.21) (-7.83)
Optionmom 0.22 -4.77 -4.99 0.22 -4.82 -5.04

(0.23) (-4.62) (-8.06) (0.22) (-4.73) (-8.40)
Log(p) 0.07 -5.22 -5.28 0.30 -5.43 -5.73

(0.07) (-5.14) (-8.68) (0.29) (-5.33) (-8.18)
VoI 0.21 -4.71 -4.92 0.33 -4.95 -5.28

(0.21) (-4.76) (-7.77) (0.33) (-5.04) (-8.80)
BidAsk 0.36 -5.17 -5.53 0.21 -4.95 -5.16

(0.38) (-5.16) (-9.11) (0.21) (-4.88) (-8.79)
Gamma 0.18 -5.21 -5.40 0.21 -5.23 -5.45

(0.19) (-5.53) (-9.23) (0.23) (-5.33) (-9.02)
Vega 0.00 -5.17 -5.17 0.21 -5.47 -5.68

(0.00) (-5.30) (-8.35) (0.20) (-5.55) (-8.23)
Size -0.41 -5.50 -5.10 0.21 -5.09 -5.30

(-0.42) (-5.53) (-8.55) (0.20) (-4.94) (-7.32)
Bm -0.05 -5.08 -5.02 0.17 -4.91 -5.08

(-0.05) (-5.26) (-7.55) (0.17) (-4.90) (-7.74)
Reversal 0.44 -3.95 -4.39 0.53 -3.76 -4.28

(0.45) (-3.75) (-8.16) (0.52) (-3.19) (-5.62)
Mom -0.07 -5.11 -5.04 -0.12 -5.37 -5.25

(-0.07) (-5.21) (-8.40) (-0.12) (-5.42) (-7.82)
Maxret 0.18 -4.44 -4.62 0.59 -4.82 -5.41

(0.19) (-3.85) (-6.94) (0.58) (-4.47) (-5.82)
LTreversal 0.38 -4.83 -5.22 0.40 -4.83 -5.23

(0.38) (-4.69) (-9.08) (0.40) (-4.50) (-8.37)
Skewness 0.51 -4.44 -4.95 0.77 -4.69 -5.46

(0.50) (-4.51) (-7.85) (0.77) (-4.54) (-7.94)
Kurtosis 0.73 -3.98 -4.71 0.73 -4.35 -5.08

(0.75) (-3.92) (-8.20) (0.72) (-4.32) (-7.37)
Amihud -0.14 -5.20 -5.06 0.38 -4.86 -5.24

(-0.14) (-5.16) (-8.59) (0.37) (-4.81) (-7.55)
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Table 5: Effect of transaction costs
This table reports the portfolio sorting excess return result for considering transaction costs.
For the row ESPR

QSPR = 0%, I assume the options are transacted at the midpoint of the bid and
ask quotes and this result is the same as the result in Table 2 except I calculate 1-10 spread
instead of 10-1 spread. This flipping procedure guarantees that I construct a profitable strat-
egy. The other rows correspond to the variations of this assumption. For example, suppose
an option is quoted bid at $3 and ask at $4, ESPR

QSPR = x% means that I buy the options in the
bottome decile (low variance change) at (3 + 4)/2 + x%/2× (4− 3) and sell the options in
the top decile (high variance change) at (3 + 4)/2− x%/2× (4− 3). Panel A reports the
result for the whole sample and Panel B consists the result for option sample with option
bid ask spread lower than 10%. Both equal and value weight results are reported. Excess
returns are in percent, t-statistics are shown in parentheses using Newey and West (1987)
corection with up to 12 lags. The sample period spans from 1996 to 2020.

Panel A: Whole Sample
Equal Weight (%) Value Weight (%)

1 10 1-10 1 10 1-10
ESPR
QSPR = 0% 0.41 -4.89 5.30 -0.04 -6.05 6.01

(0.42) (-4.91) (9.05) (-0.04) (-6.31) (8.13)
ESPR
QSPR = 10% -0.51 -3.98 3.47 -0.76 -5.35 4.59

(-0.53) (-3.95) (5.87) (-0.74) (-5.54) (6.23)
ESPR
QSPR = 20.3% -1.42 -3.00 1.58 -1.48 -4.62 3.13

(-1.49) (-2.95) (2.61) (-1.45) (-4.74) (4.23)
ESPR
QSPR = 25% -1.83 -2.54 0.71 -1.81 -4.28 2.47

(-1.93) (-2.49) (1.16) (-1.78) (-4.37) (3.32)
Panel B: Option bid-ask spread below 10%
Equal Weight (%) Value Weight (%)

1 10 1-10 1 10 1-10
ESPR
QSPR = 0% 0.60 -6.07 6.67 -0.20 -7.26 7.06

(0.52) (-5.79) (7.03) (-0.16) (-6.64) (6.32)
ESPR
QSPR = 10% 0.28 -5.76 6.04 -0.50 -6.98 6.48

(0.24) (-5.48) (6.38) (-0.39) (-6.37) (5.81)
ESPR
QSPR = 20.3% -0.05 -5.44 5.39 -0.80 -6.68 5.88

(-0.05) (-5.16) (5.70) (-0.64) (-6.09) (5.29)
ESPR
QSPR = 25% -0.21 -5.30 5.09 -0.94 -6.55 5.61

(-0.18) (-5.01) (5.39) (-0.75) (-5.96) (5.05)
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Table 6: Straddle Portfolio Returns in different subperiods for the period of 1996 to 2020
This table reports the equal weight excess returns in different subperiods. The sentiment
index is constructed by Baker and Wurgler (2006). The cut off of low and high market return
is the median of S&P500 index returns. The business cycle dates are from National Bureau
of Economic Research (NBER). The cut off of low and high VIX is the median of VIX index,
which is obtained from CBOE. Returns are in percent, t-statistics are shown in parentheses
using Newey and West (1987) correction with 12 lags. The sample period spans from 1996
to 2020.

Excess Returns (%)

1 2 3 4 5 6 7 8 9 10 10-1
1996-2008 1.08 -0.08 -1.74 -2.04 -3.33 -2.78 -2.94 -3.38 -3.63 -6.19 -7.27

(0.70) (-0.05) (-1.05) (-1.31) (-2.19) (-1.92) (-1.91) (-2.16) (-2.42) (-4.35) (-7.29)
2009-2020 -1.26 -1.67 -1.61 -3.28 -3.10 -2.41 -1.67 -4.70 -3.99 -5.89 -4.63

(-0.95) (-1.19) (-1.17) (-2.16) (-2.36) (-1.69) (-1.06) (-2.66) (-3.28) (-4.67) (-4.47)
January 5.25 1.86 2.70 1.07 1.20 1.72 1.99 -2.58 -0.24 -4.03 -9.29

(1.90) (0.43) (0.83) (0.39) (0.45) (0.44) (0.57) (-0.68) (-0.06) (-1.50) (-6.93)
Non-January -0.51 -1.08 -2.06 -2.96 -3.61 -2.98 -2.71 -4.14 -4.11 -6.23 -5.72

(-0.46) (-1.00) (-1.77) (-2.52) (-3.31) (-2.72) (-2.30) (-3.38) (-3.76) (-5.95) (-6.93)
Low-Sentiment -1.40 -1.71 -1.67 -3.34 -3.23 -3.40 -2.76 -5.77 -4.60 -7.41 -6.01

(-0.90) (-1.04) (-0.96) (-2.14) (-2.09) (-2.39) (-1.73) (-3.64) (-3.23) (-5.37) (-5.49)
High-Sentiment 1.06 -0.29 -2.14 -2.36 -3.51 -2.35 -2.82 -3.38 -3.98 -5.11 -6.17

(0.65) (-0.19) (-1.25) (-1.39) (-2.37) (-1.58) (-1.77) (-1.97) (-2.68) (-3.33) (-5.21)
Low-Market Ret 1.59 0.57 -0.44 -1.41 -1.63 -1.02 -0.03 -1.47 -2.02 -3.16 -4.75

(1.04) (0.32) (-0.24) (-0.70) (-0.99) (-0.60) (-0.02) (-0.76) (-1.16) (-2.01) (-4.15)
High-Market Ret -1.67 -2.25 -2.92 -3.86 -4.81 -4.18 -4.63 -6.56 -5.59 -8.94 -7.27

(-1.38) (-1.85) (-2.51) (-3.56) (-4.92) (-3.88) (-4.62) (-6.31) (-4.98) (-9.53) (-7.06)
NBER Recession 2.63 4.62 1.64 1.45 3.32 2.73 3.06 1.63 3.73 -1.41 -4.04

(0.60) (0.96) (0.35) (0.27) (0.69) (0.71) (0.52) (0.31) (0.88) (-0.40) (-1.73)
NBER Expansion -0.32 -1.41 -2.02 -3.06 -3.90 -3.15 -2.89 -4.60 -4.58 -6.53 -6.21

(-0.32) (-1.39) (-1.86) (-2.92) (-4.06) (-3.12) (-2.86) (-4.18) (-4.93) (-6.86) (-7.81)
Low VIX -3.13 -2.99 -4.28 -5.88 -5.31 -4.94 -5.43 -6.71 -7.31 -9.04 -5.91

(-3.47) (-3.19) (-4.81) (-6.79) (-5.74) (-4.39) (-5.77) (-7.22) (-8.33) (-10.72) (-6.22)
High VIX 3.04 1.30 0.92 0.62 -1.13 -0.27 0.77 -1.32 -0.29 -3.06 -6.10

(1.64) (0.69) (0.44) (0.30) (-0.64) (-0.15) (0.39) (-0.59) (-0.18) (-1.93) (-5.30)
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Table 7: Portfolio sorting result of straddle returns based on systematic and idiosyncratic
components separately
This table is the same as Table 2 except we sort straddles into deciles based on systematic
and idiosyncratic components separately. Table A contains the result for systematic volatility
change defined in equation (7). Table B contains the result for idiosyncratic volatility change
defined in equation (8). Both equal weight and value weight results are presented. Returns
and alphas are in percent, t-statistics are shown in parentheses using Newey and West (1987)
correction with 12 lags. The sample period spans from 1996 to 2020.

Panel A : Systematic Component
Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
Decile returns alpha alpha alpha alpha returns alpha alpha alpha alpha
1 -1.56 -3.96 -3.10 -0.18 -0.44 -2.53 -4.88 -3.90 -0.42 -0.84
2 -1.89 -4.25 -3.21 -0.57 -0.63 -2.92 -5.47 -4.21 -1.20 -1.25
3 -1.59 -3.94 -2.67 0.43 0.49 -2.72 -4.88 -3.33 0.05 0.02
4 -1.94 -4.02 -2.72 -0.51 -0.41 -2.93 -5.05 -3.54 -1.01 -0.98
5 -2.15 -4.08 -2.67 0.12 -0.07 -3.24 -5.17 -3.49 -0.50 -0.83
6 -2.35 -4.43 -3.20 -0.50 -0.57 -3.41 -5.61 -4.10 -1.41 -1.46
7 -1.38 -3.40 -2.15 0.71 0.46 -2.18 -4.38 -2.79 0.46 0.15
8 -1.22 -3.24 -2.23 0.97 0.70 -2.53 -4.40 -3.03 0.18 -0.16
9 -0.98 -3.38 -2.39 0.90 0.18 -2.07 -4.44 -3.15 0.26 -0.52
10 -1.87 -4.17 -3.69 -0.21 -0.58 -2.74 -5.16 -4.45 -0.80 -1.22
10-1 -0.32 -0.21 -0.59 -0.03 -0.15 -0.21 -0.29 -0.55 -0.38 -0.37

(-0.42) (-0.26) (-0.77) (-0.03) (-0.14) (-0.25) (-0.31) (-0.60) (-0.32) (-0.31)
Panel B : Idiosyncratic Component

Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
Decile returns alpha alpha alpha alpha returns alpha alpha alpha alpha
1 0.56 -1.76 -1.33 1.75 1.37 0.24 -2.44 -1.72 1.78 1.33
2 -0.04 -2.33 -1.48 1.25 0.95 -0.69 -3.18 -2.20 0.95 0.56
3 -0.57 -2.60 -1.55 1.35 1.33 -1.69 -3.67 -2.20 1.09 0.87
4 -1.08 -3.14 -1.93 0.92 1.06 -1.97 -4.02 -2.50 0.69 0.73
5 -1.44 -3.55 -1.85 0.77 0.55 -2.63 -4.58 -2.70 0.22 -0.23
6 -1.88 -3.97 -2.49 0.64 0.49 -3.46 -5.94 -4.19 -1.01 -1.32
7 -2.03 -4.30 -2.75 0.10 -0.12 -3.48 -5.63 -3.79 -0.89 -1.19
8 -2.75 -5.06 -3.89 -1.02 -1.37 -3.93 -6.39 -4.98 -1.76 -2.18
9 -2.84 -5.23 -4.38 -1.27 -1.53 -3.82 -6.43 -5.32 -1.98 -2.47
10 -4.90 -6.99 -6.44 -3.39 -3.65 -6.14 -8.19 -7.42 -4.25 -4.46
10-1 -5.46 -5.23 -5.11 -5.15 -5.02 -6.38 -5.74 -5.70 -6.03 -5.78

(-9.13) (-7.49) (-6.92) (-6.08) (-6.31) (-8.23) (-6.65) (-6.13) (-5.71) (-5.61)
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Table 9: Overreaction to volatility change
This table presents the monthly forecast regressions of stock level variance risk premiums.
The dependent variable variance risk premium VRP is defined as IV2

i,t − RVi,t+1. All inde-
pendent variables are winsorized at the 1% and 99% levels each month. Panel A reports the
Fama-MacBeth regression results. To adjust for serial correlations, Fama-MacBeth t-statistics
with Newey and West (1987) adjusted (up to 12 lags) are reported with parentheses. Panel
B reports the panel regression results with time fixed effect. The standard errors are double-
clustered by firm and time in calculating the t values. Coefficients marked with *, **, *** are
significant at 10%, 5%, and 1% respectively.

Dependent variable IV2
i,t − RVi,t+1

(1) (2) (3) (4) (5) (6) (7)
Panel A : Fama-MacBeth Regression

∆SVar -0.05 -0.07∗ -0.05 -0.05 -0.04 -0.05 -0.06
(-1.22) (-1.77) (-1.2) (-1.27) (-1.08) (-1.32) (-1.64)

∆IVar 0.05∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.03∗∗∗

(4.87) (3.87) (2.97) (4.86) (5.21) (4.54) (2.48)
IVHV 0.24∗∗∗ 0.27∗∗∗

(7.56) (9.17)
Ivol 0.04 0.02

(1.39) (0.66)
Slope -0.13 0.14∗∗

(-1.48) (2.02)
Log(p) -0.02∗∗∗ -0.02∗∗∗

(-3.86) (-2.54)
VoV 0.14∗∗∗ 0.06

(2.43) (1.3)
Intercept -0.00 -0.01 -0.01 -0.01 0.07∗∗∗ -0.02∗∗∗ 0.04

(-0.65) (-0.79) (-0.94) (-0.76) (3.56) (-2.45) (1.47)
NW-Adjusted YES YES YES YES YES YES YES
adj R2 0.01 0.04 0.03 0.02 0.03 0.02 0.07

Panel B : Panel Regression
∆SVar -0.09∗ -0.11∗∗∗ -0.09∗ -0.11∗∗ -0.09∗ -0.09∗ -0.13∗∗∗

(-1.85) (-2.4) (-1.85) (-2.15) (-1.82) (-1.9) (-2.46)
∆Ivar 0.03∗∗∗ 0.02∗∗ 0.03∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.05∗∗∗

(3.39) (2.24) (2.03) (3.59) (3.43) (3.13) (2.41)
IVHV 0.20∗∗∗ 0.13∗∗∗

(6.84) (3.56)
Ivol -0.00 -0.04

(-0.06) (-1)
Slope 0.03 0.13

(0.17) (0.97)
Log(p) -0.02∗∗∗ -0.01∗∗∗

(-5.08) (-2.85)
VoV 0.15∗∗∗ 0.06

(3.02) (0.89)
Month FE YES YES YES YES YES YES YES
Double CLuster YES YES YES YES YES YES YES
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Table 10: Portfolio sorting result for earnings and no-earnings subsamples
This table reports the excess returns, 1-Factor, 3-Factor, 7-Factor, and 10-Factor alphas. The
sample period spans from 1996 to 2020. Left panel reports the equal-weight result and right
panel reports the value-weighted result. Returns and alphas are in percent, t-statistics are
shown in parentheses using Newey and West (1987) correction up to 12 lags.

Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
returns alpha alpha alpha alpha returns alpha alpha alpha alpha

No earnings sample -2.60 -3.02 -2.61 -2.71 -2.43 -2.44 -2.29 -2.96 -2.12 -2.71
(-4.32) (-3.41) (-3.80) (-3.09) (-3.38) (-2.69) (-2.73) (-2.98) (-2.53) (-2.65)

Earnings sample -6.64 -8.34 -5.64 -6.83 -5.77 -6.79 -6.45 -7.50 -6.46 -7.46
(-4.53) (-5.57) (-3.20) (-3.63) (-3.11) (-3.36) (-3.24) (-3.56) (-3.10) (-3.43)

Difference -4.04 -5.32 -3.03 -4.12 -3.34 -4.34 -4.16 -4.54 -4.34 -4.75
(-2.56) (-3.21) (-1.68) (-2.10) (-1.71) (-2.04) (-1.84) (-1.92) (-1.90) (-1.95)
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Table 11: End-users demand
This table presents panel regressions of relative open share and relative open value on
volatility change. The relative open share is defined as Open interest

Number of shares outstanding and rela-

tive open value is defined as Open interest×Option price
Number of shares outstanding × Stock price . All independent variables

are winsorized at the 1% and 99% levels each month. Panel A reports the results for relative
open share. Panel B reports results for relative open value. The standard errors are double-
clustered by firm and time in calculating the t values. Coefficients marked with *, **, *** are
significant at 10%, 5%, and 1% respectively.

Panel A : Relative open share
(1) (2) (3) (4)

∆IVar 0.15∗∗∗ 0.16∗∗∗ 0.23∗∗∗ 0.23∗∗∗

(2.55) (2.61) (2.65) (2.68)
Log(p) 1.09∗∗∗ 1.35∗∗∗

(8.27) (6.5)
RSI
IO 1.75∗∗∗ 1.80∗∗∗

(8.46) (8.52)
Controls YES YES YES YES
Firm FE YES YES YES YES
Month FE YES YES YES YES
Double CLuster YES YES YES YES

Panel B : Relative open value
(1) (2) (3) (4)

∆IVar 0.05∗∗∗ 0.05∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(5.91) (5.9) (5.22) (5.22)
Log(p) -0.03∗∗ -0.02

(-2.1) (-0.8)
RSI
IO 0.19∗∗∗ 0.18∗∗∗

(5.85) (5.87)
Controls YES YES YES YES
Firm FE YES YES YES YES
Month FE YES YES YES YES
Double CLuster YES YES YES YES
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Table 12: Dealers’ response
This table presents panel regressions of option expensiveness and option bid-ask spread on
idiosyncratic volatility change. The option expensiveness is defined as IV − HV and option
bid-ask spread is the ratio of difference between ask and bid quotes over the midpoint of
bid and ask quotes. All independent variables are winsorized at the 1% and 99% levels
each month. Panel A reports the results for IV − HV. Panel B reports results for bid-ask
spread. The standard errors are double-clustered by firm and time in calculating the t values.
Coefficients marked with *, **, *** are significant at 10%, 5%, and 1% respectively.

Panel A : IV − HV
(1) (2) (3) (4)

∆IVar 0.66∗∗∗ 0.65∗∗∗ 0.43∗∗∗ 0.43∗∗∗

(8.46) (8.39) (5.61) (5.57)
Log(p) -1.21∗∗∗ -0.83∗∗∗

(-6.6) (-3.78)
RSI
IO -0.07 -0.12

(-0.61) (-0.99)
Controls YES YES YES YES
Firm FE YES YES YES YES
Month FE YES YES YES YES
Double CLuster YES YES YES YES

Panel B : Option bid-ask spread
(1) (2) (3) (4)

∆IVar 0.15∗∗∗ 0.12∗∗∗ 0.17∗∗∗ 0.15∗∗∗

(3.86) (3.12) (3.08) (2.77)
Log(p) -4.17∗∗∗ -4.32∗∗∗

(-33.29) (-25.94)
RSI
IO -0.17∗ -0.40∗∗∗

(-1.86) (-4.22)
Controls YES YES YES YES
Firm FE YES YES YES YES
Month FE YES YES YES YES
Double CLuster YES YES YES YES
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APPENDICES

Appendix A Tables

Table A1: Performace of the 10 factors based on prior research
This table presents the performance of 10 factors from prior literature and the factors are
constructed to have positive means. The sample period spans from 1996 to 2020. The first
five are long-short factors sorted on the difference between implied volatility and historical
volatility (Goyal and Saretto (2009)), idiosyncratic volatility (Cao and Han (2013)), market
capitalization, the slope of the implied volatility term structure (Vasquez (2017)), and the
slope of the implied volatility curve. Followed by two short factors only, one is an at-the-
money S&P500 index straddle and the other one is an equally weighted portfolio of strad-
dles on individual equities. The last three factors are three option momentum factors docu-
mented in Heston, Jones, Khorram, Li, and Mo (2022). Returns are in percent, t-statistics are
shown in parentheses using Newey and West (1987) correction with 12 lags.

IV-HV -Ivol -Size Slope Smile SPX EW Individual Option Option
straddle straddle option mom industry mom factor mom

Mean 9.65 3.18 2.96 5.59 2.78 10.77 2.76 1.72 3.18 3.24
t (11.31) (3.57) (4.09) (7.38) (3.54) (5.33) (2.49) (3.56) (2.74) (2.91)
Sharpe ratio 0.78 0.22 0.23 0.42 0.23 0.32 0.17 0.18 0.16 0.18
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Table A2: Bivariate portfolio sorting result of straddle returns
This table reports the bivariate portfolio sorting result of straddle excess returns. At the
end of each month, we first sort all options into quitiles based on a sorting characteristic.
Then, the options are further sorted into quintiles according to volatility change defined
in equation 6 within the sorting characteristic quintile (Dependent sort) or independently
(Independent sort). We average straddle returns for each volatility change quintile across
the characteristic quintiles, which leaves us 5 quintile returns. The table reports the excess
return of the quintile 1, quintile 5 and 5-1 portfolios separately for dependent sort (left panel)
and independent sort (right panel). The sample period spans from 1996 to 2020. Returns and
alphas are in percent, t-statistics are shown in parentheses using Newey and West (1987)
correction with 12 lags.

Dependent sort (%) Independent sort (%)

Sorting Characteristic 1 5 5-1 1 5 5-1
IV − HV -0.37 -3.65 -3.28 -0.27 -3.45 -3.18

(-0.38) (-3.49) (-6.92) (-0.28) (-3.36) (-6.36)
Ivol -0.08 -3.23 -3.15 -0.13 -3.00 -2.87

(-0.08) (-2.91) (-6.11) (-0.14) (-2.72) (-4.37)
Slope -0.03 -3.06 -3.03 -0.21 -2.86 -2.64

(-0.03) (-2.70) (-5.46) (-0.21) (-2.48) (-4.20)
VoV -0.06 -3.37 -3.30 -0.04 -3.41 -3.37

(-0.07) (-3.24) (-6.90) (-0.04) (-3.31) (-7.33)
Optionmom 0.08 -3.84 -3.92 0.06 -3.67 -3.73

(0.08) (-3.72) (-8.55) (0.06) (-3.60) (-8.17)
Log(p) -0.04 -4.15 -4.12 -0.06 -4.26 -4.19

(-0.04) (-4.05) (-8.83) (-0.07) (-4.42) (-8.76)
VoI 0.03 -3.76 -3.79 0.12 -3.81 -3.93

(0.03) (-3.69) (-8.25) (0.12) (-3.88) (-8.48)
BidAsk -0.03 -3.84 -3.81 0.03 -3.90 -3.93

(-0.03) (-3.77) (-8.27) (0.03) (-3.93) (-8.51)
Gamma 0.01 -4.02 -4.03 0.03 -3.99 -4.02

(0.01) (-4.03) (-8.35) (0.03) (-4.12) (-8.70)
Vega -0.10 -4.14 -4.04 -0.05 -4.22 -4.18

(-0.10) (-4.05) (-8.61) (-0.05) (-4.43) (-8.72)
Size -0.32 -4.37 -4.05 -0.20 -4.26 -4.06

(-0.32) (-4.29) (-8.18) (-0.20) (-4.39) (-8.27)
Bm -0.13 -3.95 -3.82 -0.10 -3.87 -3.76

(-0.14) (-3.95) (-7.58) (-0.11) (-3.89) (-7.63)
Reversal 0.09 -3.44 -3.52 0.19 -3.15 -3.35

(0.09) (-3.35) (-7.96) (0.20) (-2.97) (-7.07)
Mom -0.17 -4.10 -3.92 -0.03 -4.08 -4.05

(-0.18) (-4.12) (-8.01) (-0.03) (-4.12) (-8.28)
Maxret 0.09 -3.45 -3.54 -0.01 -4.10 -4.09

(0.09) (-3.05) (-7.21) (-0.01) (-3.81) (-6.31)
LTreversal -0.24 -4.06 -3.82 0.06 -4.07 -4.13

(-0.24) (-3.88) (-8.02) (0.06) (-3.93) (-9.22)
Skewness 0.11 -3.85 -3.96 0.29 -3.72 -4.00

(0.11) (-3.86) (-8.80) (0.29) (-3.73) (-8.23)
Kurtosis -0.01 -3.72 -3.71 0.20 -3.40 -3.60

(-0.01) (-3.68) (-8.14) (0.21) (-3.40) (-7.22)
Amihud -0.28 -4.39 -4.11 -0.08 -4.08 -4.00

(-0.30) (-4.38) (-8.93) (-0.08) (-4.17) (-8.32)
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Table A3: Portfolio sorting result with conditional betas
This table reports the excess returns, 1-Factor, 3-Factor, 7-Factor, and 10-Factor alphas with
conditional betas as in Equation 10. The factors are defined in Section 3.1 and Table A1.
Left panel reports the equal weight result and right panel reports the value weight result.
Returns and alphas are in percent, t-statistics are shown in parentheses using Newey and
West (1987) correction with 12 lags. The sample period spans from 1996 to 2020.

Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
Θ returns alpha alpha alpha alpha returns alpha alpha alpha alpha
IV -5.33 -5.00 -4.58 -4.35 -4.30 -5.86 -5.26 -4.86 -4.94 -4.55

(-9.41) (-7.43) (-7.26) (-5.37) (-5.83) (-8.23) (-6.42) (-5.94) (-5.11) (-4.78)
Delta -5.30 -4.99 -4.87 -4.73 -4.87 -5.95 -5.30 -5.17 -5.31 -5.26

(-9.34) (-7.41) (-6.98) (-5.47) (-6.51) (-8.28) (-6.45) (-6.03) (-5.24) (-5.40)
Gamma -5.32 -5.05 -4.94 -4.98 -5.23 -6.01 -5.41 -5.33 -5.64 -5.78

(-9.09) (-7.29) (-6.73) (-5.51) (-6.81) (-8.13) (-6.42) (-5.89) (-5.45) (-6.06)
Vega -5.30 -5.01 -4.76 -4.76 -4.91 -5.98 -5.35 -5.13 -5.33 -5.18

(-9.11) (-7.13) (-6.54) (-5.66) (-6.00) (-8.10) (-6.28) (-5.63) (-5.24) (-5.04)
VIX -7.45 -8.35 -6.66 -8.50 -7.80 -7.18 -8.10 -8.89 -10.89 -10.16

(-5.08) (-5.01) (-3.90) (-4.63) (-4.80) (-4.04) (-4.38) (-4.02) (-4.76) (-4.72)
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Table A6: Portfolio sorting result of holding to maturity straddle returns
This table reports the excess returns, 1-Factor, 3-Factor, 7-Factor, and 10-Factor alphas for
holding to maturity straddle portfolio returns. The factors are defined in Section 3.1 and
Table A1. Left panel reports the equal weight result and right panel reports the value weight
result. Returns and alphas are in percent, t-statistics are shown in parentheses using Newey
and West (1987) correction with 12 lags. The sample period spans from 1996 to 2020.

Equal Weight (%) Value Weight (%)

Excess 1-Fator 3-Factor 7-Factor 10-Factor Excess 1-Fator 3-Factor 7-Factor 10-Factor
Decile returns alpha alpha alpha alpha returns alpha alpha alpha alpha
Short -0.01 -3.51 -2.61 0.42 -0.25 1.25 -2.67 -1.48 1.60 0.92
2 0.82 -2.14 -0.59 2.07 1.57 1.02 -2.27 -0.70 2.19 1.58
3 -0.34 -3.62 -2.05 -0.12 -0.28 0.74 -2.53 -0.87 1.02 0.27
4 -0.46 -3.83 -1.72 0.93 0.69 -0.80 -4.01 -1.75 1.28 0.74
5 -1.16 -4.98 -2.69 -0.28 -0.31 -1.97 -5.74 -3.35 -1.04 -1.27
6 -1.00 -4.43 -1.95 1.46 0.99 -1.13 -4.42 -1.67 2.09 1.76
7 -2.17 -5.87 -3.91 -1.04 -1.92 -1.86 -6.14 -3.92 -1.17 -2.08
8 -3.26 -6.96 -5.14 -2.95 -3.37 -3.34 -7.40 -5.20 -2.84 -3.36
9 -2.41 -6.14 -4.69 -1.41 -1.66 -2.66 -6.88 -5.18 -2.40 -2.97
Long -6.70 -9.34 -8.10 -5.21 -5.83 -6.88 -9.53 -8.21 -5.42 -5.94
10-1 -6.69 -5.83 -5.49 -5.64 -5.58 -8.13 -6.86 -6.73 -7.02 -6.87

(-8.15) (-6.65) (-6.18) (-4.77) (-5.14) (-7.23) (-6.28) (-5.78) (-4.63) (-4.60)
95% Bootstrap CI [-8.46, -4.93] [-10.46, -5.83]
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Table A7: Overreaction to volatility change when decoposing relative to Fama and French
(1993)
This table presents the monthly forecast regressions of stock level variance risk premiums.
The dependent variable variance risk premium VRP is defined as IV2

i,t − RVi,t+1. All inde-
pendent variables are winsorized at the 1% and 99% levels each month. Panel A reports the
Fama-MacBeth regression results. To adjust for serial correlations, Fama-MacBeth t-statistics
with Newey and West (1987) adjusted (up to 12 lags) are reported with parentheses. Panel
B reports the panel regression results with time fixed effect. The standard errors are double-
clustered by firm and time in calculating the t values. Coefficients marked with *, **, *** are
significant at 10%, 5%, and 1% respectively.

Dependent variable IV2
i,t − RVi,t+1

Panel A : Fama-MacBeth Regression
(1) (2) (3) (4) (5) (6) (7)

∆SVar -0.05 -0.07∗ -0.05 -0.05 -0.04 -0.05 -0.06
(-1.22) (-1.77) (-1.2) (-1.27) (-1.08) (-1.32) (-1.64)

∆IVar 0.05∗∗∗ 0.04∗∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.03∗∗∗

(4.87) (3.87) (2.97) (4.86) (5.21) (4.54) (2.48)
IVHV 0.24∗∗∗ 0.27∗∗∗

(7.56) (9.17)
Ivol 0.04 0.02

(1.39) (0.66)
Slope -0.13 0.14∗∗

(-1.48) (2.02)
Log(p) -0.02∗∗∗ -0.02∗∗∗

(-3.86) (-2.54)
VoV 0.14∗∗∗ 0.06

(2.43) (1.3)
Intercept -0.00 -0.01 -0.01 -0.01 0.07∗∗∗ -0.02∗∗∗ 0.04

(-0.65) (-0.79) (-0.94) (-0.76) (3.56) (-2.45) (1.47)
NW-Adjusted YES YES YES YES YES YES YES
adj R2 0.01 0.04 0.03 0.02 0.03 0.02 0.07

Panel B : Panel Regression
(1) (2) (3) (4) (5) (6) (7)

∆SVar -0.06∗ -0.08∗∗∗ -0.06∗ -0.07∗ -0.06 -0.06∗ -0.09∗∗

(-1.67) (-2.42) (-1.67) (-1.88) (-1.65) (-1.72) (-2.25)
∆Ivar 0.05∗∗∗ 0.04∗∗∗ 0.05∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.07∗∗∗

(3.88) (3.14) (2.04) (3.99) (3.89) (3.61) (2.59)
IVHV 0.20∗∗∗ 0.12∗∗∗

(6.83) (3.53)
Ivol -0.00 -0.04

(-0.12) (-1.06)
Slope 0.02 0.12

(0.16) (0.92)
Log(p) -0.02∗∗∗ -0.01∗∗∗

(-5.08) (-2.87)
VoV 0.15∗∗∗ 0.06

(3.01) (0.9)
Month FE YES YES YES YES YES YES YES
Double CLuster YES YES YES YES YES YES YES
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Table A9: End-users demand measured by Open interest
Trading Volume

This table presents panel regressions of relative open share on variance change. The relative
open share is defined as Open interest

Trading Volume . All independent variables are winsorized at the 1%
and 99% levels each month. The standard errors are double-clustered by firm and time in
calculating the t values. Coefficients marked with *, **, *** are significant at 10%, 5%, and 1%
respectively.

Panel A : Relative open share
(1) (2) (3) (4)

∆IVar 0.11∗∗∗ 0.12∗∗∗ 0.14∗∗∗ 0.14∗∗∗

(9.88) (9.93) (7.94) (7.98)
Log(p) 0.12∗∗∗ 0.23∗∗∗

(4.32) (5.18)
RSI
IO 0.19∗∗∗ 0.20∗∗∗

(5.26) (5.45)
Controls YES YES YES YES
Firm FE YES YES YES YES
Month FE YES YES YES YES
Double CLuster YES YES YES YES
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