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Abstract
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1. Introduction

While many have focused on investor attention (see, inter alia, Ben-Rephael, Da, and Israelsen,

2017; Kacperczyk, Van Nieuwerburgh, and Veldkamp, 2016), the literature has largely ignored firm

attention and how it reflects variations in their own growth prospects and risk (see, e.g., Gondhi,

2017, for recent theoretical work). As the primary economic unit of production, measuring this

relationship is an important addition to our understanding of the tradeoffs firms face. We propose a

model that adds regime switching cash-flow growth and investor learning to a canonical framework

of firms with both operating leverage (DOL) and real option (GO) considerations. We then test the

degree to which the level and variation in firm attention across two sets of topics–those related

to systematic risk and those related to within sector production–reflect these same considerations.

The empirical work uses a novel dataset that quantifies attention to a broad set of topics by em-

ployees across more than 3,000,000 firms. In keeping with the model’s implications, we find that

smaller firms with greater GOs and DOL more intensely follow systematic versus sector topics.

Additionally, dynamic shifts in attention from sector to systematic topics predict lower returns and

higher covariances (β) with the market portfolio. This predictability is highly concentrated around

earnings, suggesting investor learning about underlying cash-flow uncertainty during periods of

information revelation.

Our model appeals to the time-varying beta literature (see, e.g., Berk, Green, and Naik, 1999;

Carlson, Fisher, and Giammarino, 2004; Sagi and Seasholes, 2007; Babenko, Boguth, and Tser-

lukevich, 2016). Firm primitives reflect underlying business considerations–operating leverage and

growth options–embedded in a continuous time model with a single priced risk factor. Systematic

risk increases in poor economic states as the probability of a liquidity events rise and decrease in

strong economic states as growth options are converted to assets-in-place. This simple model sug-

gests two proxies associated with firm characteristics–the probability of a liquidity or systematic

event and of exercising of growth options–that if observable would drastically improve the markets

ability to evaluate a firm.

Our next motivation is to understand cross-sectional variation in firm behavior. We add idiosyn-
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cratic regime switching drift rates to firms in the economy. Market participants can learn about the

regime a firm faces from cash-flow dynamics. Investors become more uncertain about the state

of drift as cash-flows differ from their conditional expectations. This increases the variance of

returns much more than implied by a model without learning. Furthermore, given that this infor-

mation may not be immediately observable to investors, attention proxies may reflect asymmetric

information on the part of the firm. This has important implications on the timing of asset pricing

dynamics around information revealing events, something we exploit in our empirical analysis.

We use a proprietary dataset to test whether the composition of attention empirically captures

these theoretical implications. The raw data is generated from employee reading of articles from a

consortium of more than 4,000 publishers of online content (henceforth, the Consortium). Publish-

ers provide information that allows the Consortium to link individuals’ interactions with an article

to their firm. Using a proprietary machine learning algorithm, they then predict the article’s mix

across topics. Interactions with a topic are aggregated across all employees within a firm at a daily

frequency. This provides the Consortium with a measure of the intensity a firm is reading about a

particular topic. The Consortium’s primary purpose is to generate a signal of user purchase intent

so that clients can more effectively direct sales, marketing and advertising dollars. As such, the

topics themselves are geared towards identifying specific products or services, while changes in

the topic interaction metrics reflect changes in a firm’s purchase intent.

This business purpose makes the Consortium’s dataset particular useful in testing our main

set of hypothesis. Specifically, the model shows that firm β reflects the degree to which liquidity

(risk) dominates growth option (opportunities) concerns within the firm. We thus hypothesize that

firms with higher liquidity requirements will pay more attention to systematic versus firm-specific

growth option related topics. Second, the model predicts that changes in β through time reflect

changes to firm exposure to risk versus opportunity. Innovations to the composition of systematic

versus growth option related reading should thus also reflect changes in this exposure. And finally,

given the differing information sets between the firm and the marginal investor, innovations to the

composition of reading should predict fluctuations in asset prices only during information revealing
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events. That is, when positive innovations to risk versus opportunity are revealed, one would expect

(a) instantaneous returns to be lower, and (b) conditionally beta to increase. It is thus precisely

during these times that what a firm is paying attention to will have the greatest predictability.

Our first empirical objective is to decompose the list of topics provided by the Consortium

into those associated with firm-specific growth option (henceforth, sector topics) and liquidity

considerations (henceforth, systematic topics). Given the large cross-section of topics captured

by the Consortium, firms do not pay attention to every topic. For example, the 30th percentile

firm in 2020 only pays attention to 75 of the 6,000+ topics available. If we focus exclusively on

the publicly available firms in CRSP-COMPUSTAT (i.e., larger firms) the number of topics to

which the 30th percentile firm pays increases to 1,945. We develop a methodology that exploits

this heterogeneity to highly rank topics that occur with relatively high frequency within a sector

(i.e., NAICS 3-digit level), but low frequency in the general population of firms. Visually, sector

specific topics are closely related to the inputs required to produce the goods and services specific

to a sector. We hypothesis that positive abnormal firm attention to topics important to its own

sector is a strong indication of a positive firm-level growth shock that leads to an expansion of firm

production.

Next we isolate from the remaining set of topics those related to liquidity. In the model, a

firm’s liquidity requirements are a function of either operating leverage (see Gilchrist, Schoenle,

Sim, and Zakrajšek, 2017, for a similar interpretation) or external financing needs (see Whited,

2006, for microfoundations). These risks are reflected in higher covariances or beta with the market

portfolio, which can be thought of as a firm-level measure of economic uncertainty. We thus start

by constructing a reading list of articles for a fictitious industry that is interested in only economic

uncertainty (see Baker, Bloom, and Davis, 2016). We then apply the same separation methodology

above to identify those topics that have higher frequencies within this industry versus those in the

general population of firms. We hypothesize that positive abnormal firm attention to these topics,

regardless of sector, would be a strong indicator of a negative firm-level growth shock.

It’s important to note, that liquidity and external financing considerations are important both
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when growth options are being exercised and economic uncertainty is high. That is, if tested

without considering growth option, abnormal attention to liquidity related topics would have an

ambiguous relationship with systematic risk of the firm. As such, it’s critical that we aggregate

reading in both categories into a single measure (i.e. systematic versus growth option related

topics).1

We first see if our measure of firm attention has the intended interpretation. We do this by look-

ing at the statistical relationship between the level of systematic-to-sector topic reading and firm

characteristics during the Consortium sample period (2015-2019). Economically, there was little

systematic variation in aggregate liquidity risk during this time. We can interpret any relationship

as reflecting static differences in the presence of growth options or use of operating leverage be-

tween firms. We find that smaller firms with higher cash-flow betas, market-to-book and degrees

of operating leverage spend more time reading about systematic versus sector reading. This maps

directly to differences in model primitives.

Having validated our measures, we next test our model’s dynamic implications. Industry spe-

cific consolidation or competitive pressures, for example, may create cross-sectional differences in

cash flow growth expectations that are orthogonal to those seen market wide (see, e.g., David and

Veronesi, 2013; David, 1997, for microfoundations of this behavior). Given the large cross section

of firms in our database, by properly controlling for unobserved heterogeneity, we test how innova-

tions to rather than levels of attention relate to changes in (within) firm behavior. Daily reading for

each topic is aggregated to a weekly frequency (to remove seasonality), and then normalized and

standardized to produce a score of unit normal distribution that captures the degree of abnormal

reading versus a historical baseline. The methodology used to create a spike measure is similar

to the reading measures in Baker, Bloom, and Davis (2016) and Ben-Rephael, Da, and Israelsen

(2017). We find that within firm innovations in attention to systematic versus sector topics leads

to a fall in SG&A and capital expenditure ratios. This provides further evidence of the underlying

1In fact, we see this empirically as well–the predictability of real economic decisions and asset prices are ambiguous
when both variables are tested individually, but consistent across tests when included together or combined.
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drivers of our model.

Armed with an empirical proxy for innovations in attention, we next turn to the model’s asset

pricing implications. Our first test is on returns around an information revealing event (i.e., earnings

announcement). We find that abnormal reading in systematic versus sector topics predicts negative

announcement day excess returns. This finding is robust to controls for firm characteristics nor-

mally associated with cross-sectional differences in excess returns–namely, the high-minus-low,

small-minus-big, momentum and market beta risk factors. The intuition is straightforward: varia-

tions in drift rates have an idiosyncratic component such that on average the within firm drift rate is

constant across the economy. By fixing each firm’s exposure to sources of risk across our sample,

statistically large changes in excess returns around these events reveal the information content em-

bedded in our firm attention measures. Using this same intuition we also find that innovations to

systematic versus sector topics predict high long-run risk-neutral variance and beta. These changes

are also highly concentrated during the earnings announcement period, again suggesting strong

learning behavior by investors in the market.

The remainder of the paper is organized as follows. In section 2, we present our model that

motivates and clarifies the economic mechanisms involved in time-varying beta. In section 3 we

describe the data and the construction of our empirical proxies in further detail. Section 5 reports

the empirical results using our novel dataset and section 6 concludes.

2. A Conceptual Framework of the Firm

In this section, we provide a theoretical analysis of the relationship between simple, realistic firm

characteristics and large, persistent changes in firm systematic risk (β). In section 5, we then test

if measures derived from firm employee attention to topics related to these characteristics show

similar relationships as seen in theory. We begin with a canonical model similar to that of Carlson,

Fisher, and Giammarino (2004). Firms are exposed to systematic risk and have growth options

and operating leverage. To this we add idiosyncratic variations in firm drift rates. This is meant to

capture, in a partial equilibrium way, time varying industry, sector and product competition. This
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idiosyncratic variation, however, may be difficult for investors to fully decipher. Learning is then

added, clarifying how and when idiosyncratic shocks will impact asset prices.

2.1. Setup of the Baseline Model

Each firm in the economy generates profits according to the instantaneous profit function

Πi,t = ρi · yi,t−ρi · ci, (1)

where ρi is the firm’s sales sensitivity to systematic risk, y, and ci is the fixed cost. The systematic

state variable follows geometric brownian motion with constant drift µy and volatility σy

dy/y = µydt +σydzy.

All firms also have the opportunity to irreversibly expand production by γ for a fixed cost ρiIy. Post

option exercise the profit function becomes

Πi,t = (1+ γ)ρi · yi,t− (1+ γ)ρici.

The value function of the firm is given by V (yi) = E
∫

Πi,t ·e−rtdt, where r is the constant discount

rate. Ito’s Lemma provides a differential equation that defines the evolution of the value function.

rVi = Πi,t +µy · y
∂Vi

∂y
+

σ2
yy2

2
· ∂

2Vi

∂y2 (2)

We solve for Vi,t by guess-and-verify, using the balanced budget requirement for external funding

and the smooth pasting condition to estimate constants. The value function is defined as the sum

of assets in place (V AY ), the expansion option (V GY ), and present value of fixed costs (V F ).

Vi,t = ρi

(
V AY

i,t +V GY
i,t −V F

)
, where

V AY
i,t =

(1+ Iγ)y
r−µy

(3)

V GY
i,t =

(1+ I)γy∗

(r−µy)b

(
y
y∗

)b

.

where b > 1 is a constant. The threshold for option exercise, y∗, is defined as

y∗ =
b

b−1
·
(r−µy) Iy

γ
. (4)

This equation will become important when adding idiosyncratic regime switching drifts rates to

the model. Higher drift rates, µy lower the threshold over which the firm will exercise the growth
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option. In addition, the slope of the value function with respect to the systematic state variable also

changes. Using Ito’s Lemma we can also estimate the systematic exposure of the firm and most

importantly how it changes with the characteristics of the firm,

βi,t = 1+ρi (b−1)
V GY

i,t

Vi,t
+

V F
i,t

Vi,t
. (5)

Right away, one can see that the beta is expected to increase as the firm size falls, fixed costs rise

and growth options become a larger portion of firm value. In section 5 we first test this direct

relationship using an empirically derived measure of asset β. Once validated we show that the

level of systematic versus sector reading has the same relationship with size, sales β, DOL and the

availability of growth options.

2.2. Regime Switching Drift Rates

We next add symmetric and idiosyncratic regime switching to cash flow drift rates at the firm level.

This is meant to mimic shocks that impact firm valuations, but end up averaging out across the

entire economy (e.g. intra industry competition).

dy/y = µy (t)dt +σydzy.

µy (t) is a two-state Markov process with state space Θ = {µH
y ,µ

L
y} where µH

y > µy > µL
y . The

transition probabilities of µy (t) over an instantaneous time interval is given by(1−λ) ·dt λ ·dt

λ ·dt (1−λ) ·dt


That is at any given moment of time half of firms will be in a high growth state and half in a

low growth state. As such the average growth across the whole economy is still µy. This intuitive

addition has the effect of creating even greater within firm heterogeneity in degrees of operating

leverage and probabilities of growth option exercise by changing the distance the firm is from a

liquidity event and the threshold over which the growth option will be exercised, respectively. As

such, at the firm-level, underlying idiosyncratic shocks are also reflected in changes in systematic

risk.
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2.3. Investor Learning

So far firms (insiders) and investors (outsiders) have identical information sets through which to

evaluate the firm, i.e.

FInv
t = FFirm

t . (6)

Under this assumption, especially in small samples, any relationship we find between regime

changes and asset fluctuations could be miss identified (see Fama and French, 2004, for discus-

sion). The equality of information sets between insiders and outsiders also belies anecdotal ev-

idence of the demonstrated value that investors extract from formal or informal expert networks

(see, e.g., Ahern, 2017). We address these shortcomings by adding investor learning to the model.

We assume that investors do not fully know the state of firm growth at time t–that is they place

some probability on the state either being high or low growth,

P(αi(t) = H | FInv
t ) 6= 1 or 0. (7)

The asset pricing effects of learning from cash-flows would be most acute during information re-

vealing events (henceforth, IREs) and when uncertainty of firm prospects is high. Empirically,

learning confers a simple identification strategy. Insider’s behavior (i.e., attention) will react im-

mediately to idiosyncratic changes to prospects and risk. Assuming that investors are largely left

in the dark after such a change, this is also when investors would be most uncertain about the state

of cash flow growth. Investor reaction to news would thus be “large” when the state of growth was

revealed. As a corollary, the predictability of variation in firm attention on asset prices and mea-

sures of risk to either changing liquidity needs or the execution of growth options would also be

greatest immediately proceeding an IRE (e.g., after an earnings announcements or secondary stock

offerings (see Hibbert, Kang, Kumar, and Mishra, 2020, for a similar identification strategy)).

3. Data and Variable Construction

Our proprietary data comes from a data provider (the Consortium) that specializes in analyzing

content in internet articles published across thousands of media sites (members) to provide clients

with actionable signals of intent to purchase specific business-to-business products and services.

8



Members include generalist publishers such as The Wall Street Journal, Forbes, and Bloomberg, as

well as more niche providers of content such Hart (energy), Step Stone (private equity) and Quin

Street (consumer products). In general, members span a wide array of industries and business ac-

tivities and receive data analytic services from the Consortium for use of their raw data. Members

feed information pinpointing the URL of online content and external IP addresses of the originat-

ing HTTP request (≥ 15bn daily interactions with member content). In combination with cookie

generated user profiles, the Consortium is able to use the IP addresses to associate a domain with

a particular user. It is on this raw data that the Consortium deploys its NLP algorithm in order to

better understand the content being read by firms (domains).

3.1. Daily Aggregates

The Consortium has developed a machine learning algorithm that is able to predict the topic com-

position of each article. Topics are word mixtures and associations that are learned using highly

specific training corpora overlayed with exhaustive human verification. Generally topics come in

two varieties: either they are (1) created for a client firm that sells a specific product or service (e.g.,

proteomics, circuit design, registered investment advisor), or (2) created to enhance the fit of the

predictive algorithm to general variation in reading across users (e.g., political violence, vacation,

best places to live). While the preponderance of topics have a business focus, a large proportion of

actual reading occurs in the generalist bucket of topics.

The specific topics are of particular interest to the Consortium and their clients as their in-

tertemporal variation provides a demonstratable signal of intent of the user to purchase the given

product or service. All topic interactions, defined as the percentage a particular topic composes an

article read by a user, is aggregated to a daily frequency across all users within a given domain. The

rationale of this aggregation is simple. An article is an amalgamation of potentially many topics;

the NLP algorithm deconstructs its content into a topic mix. The aggregation to a lower frequency

(daily) of interactions across users (within a domain) utilizes the cross-sectional heterogeneity of

article topic mixes to generate a more refined sense of a company’s intent to purchase a particular

good or service. This can be thought of in a simple probabilistic framework–i.e. the probability
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that the “sum” of interactions reflect true interest in a particular product or service can be enhanced

when aggregated across N independent interactions,

P(Intent to Purchase|Reading about Product or Service) =

1−
N

∏
i=1

(1−Pi (Intent to Purchase|Reading about Product or Service))

Of course this is a gross simplification given the assumption that both the unconditional probabil-

ity of intent to purchase and reading about the product or service are always overlapping. This

assumption is complicated by the fact that the probability of certain topics appearing within an

article are highly interdependent. However, it should hold to some degree, especially as topic in-

teractions are aggregated further in our main set of independent variables (see section 4). Finally,

the Consortium applies other filters (sufficiency of topic interaction tests, bot filters, etc.) beyond

the NLP algorithm to streamline the data to be as intent specific as possible.

3.2. Signal Extraction

A shortcoming of the daily measure is that the volume of articles and therefore topic interactions

can vary across time and firms. First, intra week seasonality is substantial–e.g. weekend reading

will be less than weekday reading. Second, the members of the Consortium change. Given that the

preponderance of members are niche industry publications, this compositional shift can potentially

distort the intertemporal behavior of any attention measure we create. Third, domains, which repre-

sent firms or business entities, have changing size in terms of number of employees represented in

the data. And fourth, outages and latency issues may alter the volume of interactions documented.

In many ways these issues are similar to those in the raw data used to create the Baker, Bloom, and

Davis (2016) EPU measure; the Consortium uses a similar approach to construct a standardized

measure of topic attention.

The aggregate daily score (rt
j,d) for each topic j and domain d is first normalized by subtracting

the mean domain topic interaction score across domains (R̂t
1:D) and dividing by its cross-sectional
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standard deviation (σ̂t
1:D).

r̃t
j,d =

rt
j,d− R̂t

j,1:D

σ̂t
j,1:D

where

R̂t
j,1:D =

1
D

D

∑
i=1

rt
j,i and

σ̂
t
j,1:D =

√
1

D−1

D

∑
i=1

(
rt

j,d− R̂t
j,1:D

)2

This normalization mitigates changes in Consortium membership and algorithm, and the effects of

outages and latency. It still leaves, however, the problem of comparing measures across domain-

topics and changes in firm size. In addition, weekly seasonality could still be a persistent issue if

attention varies across topic-days. This is addressed when constructing our attention measure for

specific use cases next.

4. Topic Separation Methodology

Currently, the data represents more than 14mm domains and their interactions with over 6,000

topics (Consortium’s taxonomy). As table 1 illustrates there is substantial cross-sectional and in-

tertemporal heterogeneity in coverage across the dataset. First, the number of domains and topics

represented has increased from 638k to 1.52m and 2.46k to 6.97k, respectively. These figures jus-

tify the steps taken by the Consortium to standardize scores through time. Second, the distribution

of the number of topics paid attention to by individual firms is highly positively skewed. That is the

median firm pays attention to only a few topics, while some firms pay attention to many, but still

very far from all topics. If we focus only on COMPUSTAT/CRSP firms–the set of domains over

which our main set of regressions are performed–we see that the skewness falls. This indicates that

this skewness is largely driven by size.

The objective of this section is to develop an algorithm that separates the topics into those

that represent the primitives of the model. In the model, results hinge on two firm characteristics:

operating leverage and growth options. The relative importance of both drive key variations in firm

systematic risk. Our hypothesis is that firm attention to the products and services related to liquidity

events (due to a high degree of operating leverage) relative to those related to the expansion of core
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business activity will provide a high frequency proxy of changing exposure to each characteristic

and thus capture key variation in firms’ changing systematic risk.

4.1. Sector Topics

The heterogeneity across firms described above helps us separate core business related topics from

those of general interest and those related to other businesses. Specifically, we first compute within

a sector s for a given week t the number of domains that pay attention to topic j,

Fs
j,t =

Ds

∑
d=1

I(
rt

j,d>0
),

where the indicator function I(
rt

j,d>0
) equals 1 if and only if rt

j,d > 0 and Ds is the total number of

domains (associated companies) in sector s. Similarly, let Fj,t denote the number of times topic j

appears with non-zero score in the entire cross-section of domains. Equivalently,

Fj,t =
D

∑
d=1

I(
rt

j,d>0
).

We then denote a sector ranking or weighting for each topic j. This weight is obtained as

ws
j,t =

w̃s
j,t

∑
Ds
d=1 w̃s

j,t

where

w̃s
j,t =

(Fs
j,t

Fj,t

)α

·Fs
j,t .

The goal of the algorithm is to penalize topics that are being paid attention to by a relative large

number of domains in the full cross-section of domains, but only by a small number of domains

within a particular sector (NAICS 3-digit industry). A simple expositional example illustrate the

approach. Assume there are 100 firms of which 10 are in the crop production sector (NAICS 111).

Two topics within the taxonomy– Vacations and Tillage– are of obvious general and sector specific

interest. As such all 100 firms pay attention to vacations, but only the 10 firms pay attention to

tillage. Applying an α of 1, w̃crop
vacation,t = (10/100)1 ·10 = 1 and w̃crop

tillage,t = (10/10)1 ·10 = 10. The

algorithm thus tilts the weight or ranking of topics towards those (products and services) that are

most associated with either inputs or outputs of the particular sector or industry. As the ranking is

dependent on α, rather than constraining the algorithm to a particular parameter value, we use the
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Newton-Raphson method to solve for the parameter using the following constraint,(
N

∑
j=1

ws
j,t

)
−q% = 0.

That is, we choose α such that the sum of ws
j,t , sorted in descending order, over the first N topics

within a sector composes q percent of the weight. For our main set of results we use N = 100 and

q = 90, but results are robust to reasonable values of N and q. By reasonable we mean they are

bounded far enough from q being 100% and N representing all topics in the taxonomy. Figure 1

are word clouds representing the topics with the largest 100 weights within various sectors. The

differential sizes of the topic name represent their relative rank. As one can see, the algorithm does

a good job of isolating very sector specific topics, which look like products or services important

to the sector in question. This is despite some of the topics not being a large share of either the

COMPUSTAT/CRSP or Full sample. Table 2 is a list of the top 30 industries by either employment

share or firm count share. As one would expect, the full sample does a better job of capturing

the full scope of economic activity in the economy versus the exclusively public firm sample of

CRSP/COMPUSTAT.

4.2. Systematic Topics

Liquidity related or systematic topics on the other hand will be of a general interest variety. By

this we mean all firms with non-zero exposure to the market will be concerned about the effects of

these shocks on their bottom line and by extension will pay some attention to related topics. Of the

remaining non-sector specific topics, we attempt to distinguish between general “nuisance” topics,

e.g. “vacations”, and general “systematic” topics, e.g. “liquidity risk”, by creating a fictitious

sector which pays attention to only macroeconomic uncertainty.

We create a macroeconomic corpus of ≥2,500 articles. The corpus includes articles from 6

publishers from 2005-2019: the Wall Street Journal (WSJ), Economist (segmented by 6 section

tabs), Financial Times (FT), Federal Reserve Beige Books (segmented in 12 regions), Federal

Reserve Notes, and Bank of International Settlement publications. For the WSJ, Economist and

FT we follow Baker, Bloom, and Davis (2016) in searching for all articles with the terms economic,
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uncertainty, and either Congress, legislation, regulation, or White House. In many ways the level

of reading of these topics can be thought of as reflecting firm exposure to economic and policy

uncertainty.

The Consortium’s proprietary algorithm was then deployed onto the articles, generating the

predictions of the percentage that each article is of a particular topic. This was aggregated up

to each publication-type (22 when including segments). The separation methodology described

above (where Fs
j,t = Fβ

j,t) then used to capture topic saliency to our macroeconomic industry. Fig-

ure 2 is the word cloud representing the topics with the largest 100 weights within the fictitious

macroeconomic industry. As one can see, liquidity, macroeconomic uncertainty and macro ori-

ented institution related topics are well represented. The basic idea is that if a firm is paying

relatively more attention to these topics it must be that their concern or exposure to systematic

risks have increased.

4.3. Attention Factors

We then aggregate topics at the firm level across these two topic buckets: systematic and sector.

As our interests are in both the level and change in systematic versus sector reading, we construct

measures that reflect extensive and intensive margins of attention, respectively. In both cases it’s

important to note, given that all topics are not represented within each domain, that 250 systematic

topics are available for nearly all domain-week observations with our COMPUSTAT/CRSP sample.

Furthermore, as noted above, normalized scores are not comparable through time or across domain-

topics. To address this, we compute the precentile of the sum of current topic scores (extensive

margin) and current topic score versus some historical baseline (intensive margin). This then allows

us to compare scores across time and firms.

For extensive attention, we first sum standardized scores (r̃t
j,d) across the top 250 systematic

and sector-specific topics available within a given domain-week, which removes weekly seasonal-

ity. This domain sum is then compared with the cross section of sum of scores across the COM-
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PUSTAT/CRSP sample within a given week for each topic cluster type.

FR

(
rt

j,d

)
=

∫ rt
j,d

−∞

fR (r)dr =
Cr≤rt

j,d
+

Crt
j,d

2

N
, (8)

where j is defined as either sum of systematic or sector reading scores, C represents the number of

observations in the cross-section that are below a given firm’s sum of score (rt
j,d). The extensive

attention measure is then simply the logarithm of FR

(
rt

j,d

)
/FR

(
rt

j,d

)
. Note that this construction

implicitly controls for any size effect. For example, large firms will have both large numerators and

denominators, and, as such, we are measuring relative not absolute reading of systematic versus

sector reading.

For the intensive measure, on the other hand, we are interested in within-firm variation of at-

tention. The baseline measure is therefore scores across a historical time interval rather than a

cross-section of firm scores. We first compute a comparison of the current interval (i.e., rolling 21

day average of normalized scores) to baseline interval (84 days prior) of the same domain-topic

score. Equation 8 is used again to estimate the empirical cumulative distribution function, where

rt
j,d is now the standardized score (r̃t

j,d) and C represents the number of score observations in the

baseline interval that are below the current interval score. This weekly domain-topic measure cap-

tures positive innovations (or anomalies) to domain attention to a particular topic. Unfortunately,

in the time series, due its rolling nature, the score also demonstrates a higher probability of ≤50

score in the future as the current interval moves into the baseline interval. Our intensive attention

measure therefore focuses exclusive on right tail events,

Aβ

k,t−As
k,t =

(
∑

j

(
1

250

)
· I(xk, j,t≥x̄)

)
−

(
∑

j

(
1

250

)
· I(xk, j,t≥x̄)

)
.

That is we subtract the average number of spiking sector scores from spiking systematic scores in

a given week. For our baseline results x̄ = 80. This measure is computed across the top 250 sector

and systematic topic scores for each domain-week. In the next section we show that our measures,

which relate to the composition of attention and its changes, provide important information about

the level and time variation in firm risk.
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5. Empirical Results

We first show that the cross-section of firm characteristics relates to the extensive margin of atten-

tion with similarly directionality as an empirically derived measure of asset β. This exercise can

be thought of as validating our attention measure as a proxy for a firm’s systematic risk exposure.

We then relate intertemporal changes in reading (intensive margin) to changes in firm behavior

(real outcomes). Finally, allowing for the possibility of information frictions between investors

and insiders (employees within the firm), we test whether and when our attention measure predicts

returns and innovations to variances and βs.

5.1. Measure Validation

The predictions from the canonical model can be visualized in equation 5: asset β should be in-

versely related to firm size (Vk,t), while directly related to DOL (V F
k,t/Vk,t), availability of growth

options (V GY
k,t /Vk,t) and firm sales sensitivity to aggregate shocks (ρk). We use empirical proxies to

test for these relationships.

Our theoretical model ignores leverage, focusing on asset β. We follow Doshi, Jacobs, Kumar,

and Rabinovitch (2019) in delevering within quarter return data by using the total liabilities avail-

able in COMPUSTAT, rA
k,t = rk,t ×

(
1−Lk,t/

(
Lk,t +Pk,t×Shr Outk,t

))
. We estimate asset β (βA)

using daily delevered returns regressed onto daily delevered market returns.

rA
k,t = αk + β̂

A
k · rA

m,t + εk,t

Market returns, rA
m,t , are estimated by asset weighting (mark-to-market) delevered returns for our

universe of stocks. Sales sensitivities are similarly derived from regressing sales growth for firm k

onto aggregate sales, ∆Salesk,t = ρ̂k∆Salesagg,t + εk,t . This is estimated using quarterly sales data

on a 10yr rolling basis. Growth options are proxied by the log of Tobin’s Q,

Qt =
Pk,t×ShrOutk,t +Prefsk,t +Curr Liabk,t−Curr Assetsk,t +LT Debtk,t

Assetsk,t
. (9)

Market capitalization of asset is proxied as the log of the numerator of equation 9. Finally, follow-

ing the work of Gilchrist, Schoenle, Sim, and Zakrajšek (2017), we proxy for operating leverage

by the log of the liquidity ratio which is defined as cash and cash equivalents from the balance
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sheet divided by total assets. The intuition of this proxy follows the finding of Lins, Servaes, and

Tufano (2010)–non-operating cash holdings are largely driven by a desire of firms to hedge against

future negative cash flow shocks. As the liquidity of firms with high degrees of operating leverage

(DOL) is more likely to be impacted by these types shocks, one would conjecture that high DOL

firms will also hold relatively more liquidity in the cross-section.

We regress βA
k,t onto each of these proxies,

β̂
A
k,t = b1 · β̂s

k,t +b2 ·Qk,t +b3 ·Capitalizationk,t +b4 ·Liquidityk,t + εk,t . (10)

Results are presented in table 3 panel A. It’s important to note that both independent and dependent

variables demonstrate a great deal of persistence. We therefore cluster standard errors by both firm

and time. Unsurprisingly, higher sales sensitivity translates to higher βA. The liquidity ratio as well

is positively related to βA. Viewed through the lens of cash and cash equivalents being held as a

hedge against potential negative shocks, this relationship is very intuitive.

Tobin’s Q is also positively related to βA. This is in keeping with the model findings. Valuations

of firms with near or in the money growth options have implicit leverage–their value includes

exposure to yet to be exercised growth options while their physical asset base is relatively small.

This induces higher asset weighted exposure to systematic risks.

Unfortunately, capitalization is positively, not negatively–as suggested by our model–related

to βA. This, however, seems to be entirely related to observations in the lowest decile of size. In

figure 3 panel A, we split size into three buckets–the lowest 10th precentile, the 10-55th percentile

and the 55-100th percentile–and rerun the regression specification.

β̂
A
k,t = b1 · β̂s

k,t +b2 ·Qk,t +
3

∑
j=1

b3, j · Icap
k,t +b4 ·Liquidityk,t + εk,t , (11)

where Icap
k,t is a dummy variable that takes a one if the capitalization of firm k is in one of the three

buckets on week t. As noted by the simple p-values from Wald Statistics comparing coefficients

between buckets within the figure, the sensitivity of βA to size actually falls by a statistically sig-

nificant amount from the 10-55th percentile to 55-100th percentile buckets. As βA is a generated

quantity, we believe that the non-linear, hump shaped profile exhibited in 3 panel A may relate to
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estimation error.

In the fifth column of table 3 panel A, we add all four independent variables to the same regres-

sion. As noted in Lins, Servaes, and Tufano (2010), the liquidity ratio while driven primarily by

hedging needs, is also related to the need for easy access to expansion capital. This may confound

the interpretation of the liquidity ratio as a measure of operating leverage; in this specification we

place the residual from regressing the log liquidity ratio onto ρk,t , Tobin’s Q and capitalization as

our DOL proxy.

5.2. Attention and Firm Characteristics

In this section, we show that the set of cross-sectional firm characteristics described above relate

to the level of macro versus sector reading with signs similar to those of regression 10. We regress

the read ratio onto our proxy for sales β, availability of growth options, size and DOL:

log
(

FR

(
∑rt

β,d

)
/FR

(
∑rt

s,d

))
= b1 ·βs

k,t +b2 ·Qk,t (12)

+b3 ·Capitalizationk,t +b4 ·Liquidityk,t + εk,t .

Note that FR

(
∑rt

j,d

)
, defined by equation 8, is the percentile of a firm’s total reading in either

sector or systematic topics versus the distribution of all CRSP-COMPUSTAT firms on a given day.

Given the findings from our theoretical model, we would expect b1, b2, b3 and b4 to be positive,

positive, negative and positive, respectively. Results are presented in table 3 panel B. Similar to

βA, the read ratio demonstrates a significant amount of intra-firm time series persistence. We thus

cluster standard errors by both firm and time.

All firm characteristics correlate with the read-ratio as expected, including size. In figure

3 panel A, we perform the same size split as represented by regression 11. A dummy variable

is created that is a one if firm k’s size falls into one of three buckets–the lowest 10th percentile, the

10-55th percentile and the 55-100th percentile–during a given week. P-values from Wald statis-

tics testing whether b3, j are statistically different between buckets, shows that the relationship is

now strongly monotonically decreasing. As the data comes from directly observing what firm em-

ployees are reading, we believe our proxy reduces the risk of estimation error effecting statistical
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inference.

We conduct one more piece of cross-sectional analysis to verify that the read-ratio is partially

related to DOL. In the series of regressions presented so far, the liquidity ratio is our DOL proxy,

which, as noted, is at best an inferred proxy. We therefore run the classic degree of operating

leverage regression,

∆ logEBIT DAk,t = a0,k +
3

∑
j=1

a j · IRR
k, j ·∆ logSalesk,t + εk,t . (13)

We first average the read-ratio for firms across our sample (2015-2020) and then place each firm

into terciles based on the average level of systematic versus section reading. We then regress, on

annual data, the change in EBITDA (operating income plus non-cash depreciation) versus change

in sales. Due to seasonality the regression has less clear results (e.g. degrees of operating are

on average less than one across the sample) when using quarterly data. Following Eisfeldt and

Papanikolaou (2013) and others, we are allowing for heterogeneity in DOL by firm characteristics–

in our case differences in the average read-ratio. In figure 4 we present the three a j from equation

13 and test if they are different from one another. Given that our terciles are statitic through time,

we can test the DOL over longer samples. In figure 4 panel A and 4 panel B we run the sample

over the regression from 2014 to today and 2015 to today, respectively. Higher average read-ratio

firms have a statistically significant 25% higher DOL.

Finally, as noted there is a significant amount of persistence in both the dependent and inde-

pendent variables in both sets of regressions. Furthermore, the relationship between βA and firm

characteristics in the model is largely cross-sectional. States of growth are also highly persistent

and our data only covers roughly 5yrs. We should therefore expect, with the right sets of fixed

effects, that the relationships highlighted in table 3 should substantially attenuate. In table 4 we

sequentially add both time and firm fixed effects to model 5 from table 3. The first column of each

dependent variable (βA and the read-ratio), is the original regressions with time and firm clustered

standard errors, and no fixed effects. In the second column we add time fixed effects. This seems

to have little effect on the results. In the third column we add firm-level fixed effects. The re-

lationships disappear or greatly diminish. This is a strong indication that the construction of the
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independent variables and the relationships we see to are almost entirely cross-sectional.

5.3. Attention and Firm Dynamics

In the previous section we show that cross-sectional differences in the level of systematic versus

sector reading reflect differences in exposure to risk across firms. In our theoretical framework

negative shocks to trend growth rates lead to an increase in systematic risk and a drop in investments

within firms. We would therefore also expect that intertemporal changes in systematic versus sector

reading would reflect within firm changes in exposure to risk.

We test for this possibility by regressing cumulative investments at different horizons h onto

our intensive measure of attention

Ik,t+h = β ·
Wt

∑
w=1

(
Aβ

k,w,t−As
k,w,t

)
+ controlsk,t + εk,t . (14)

Aβ

k,w,t −As
k,w,t is the average number of systematic versus sector topics spiking versus a historical

average at any given week w and quarter t (see section 4 for further details). The intuition is straight

forward–as firms face a negative shocks to cash-flows their focus changes from efforts to exercise

growth options towards those to shore up liquidity due to fixed costs. Intertemporal changes in

the composition of attention should therefore tell us something about changes in investments. As

income statement information is only available on a quarterly basis, we average Aβ

k,w,t−As
k,w,t over

the quarter and test for both contemporaneous and long-run predictability in investment behavior.

To capture within firm effects all regressions include firm fixed effects. Our theoretical frame-

work also makes the distinction that variations in trend growth have both a systematic and idiosyn-

cratic component. While this is critical when we test for the asset pricing implications of attention

in section 5.4, our dynamic investment regressions also require some version of time fixed effects.

Furthermore, we must control for heterogeneity in firm investment seasonality. We add NAICS

3-digit by quarter fixed effects to control for both aspects.

Our two main independent variables, Ik,t+h in equation 14, are capital expenditures (CapEx)

and selling, general and administrative expenses (SG&A). We normalize both by historical balance

sheet items–one quarter lagged assets, and implied organizational capital for CapEx and SG&A,
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respectively. This is common in the literature and done to minimize the impact of time-varying

firm size on investment flows (see, inter alia, Welch and Wessels, 2000). We follow Eisfeldt and

Papanikolaou (2013) in constructing a stock of organizational capital, Oi,t . Specifically, we assume

a law of motion for any quarter t of

Ok,t = (1−δO) ·Ok,t−1 +SG&Ak,t .

δO is depreciation of organization capital. SG&Ai,t is available in COMPUSTAT. We estimate

organization capital at time t based on an initial stock which we assume to be an infinite backwards

sum from the first period SG&A is available, i.e. O0 = SG&Ak,1/(g+δO). We use parameter

estimates for δO and g of 30% and 10% annually. g is the average growth rate of SG&A across our

sample. It is important note that the depreciation rate we use is larger than the 15% used in Eisfeldt

and Papanikolaou (2013). Recent work by the BEA suggests that rates of R&D depreciation are

consistently greater than 25% across most industries (see Li and Hall, 2020). These parameters are

adjusted to our quarterly data. SG&A is then divided by Ok,t−1; this not only maintains consistency

with the idea of normalizing flows by a measure of investment stock, but also makes the variable

more stable when estimating our vector autoregression (VAR) below.

Our regression results are presented in table 5 for five different horizons h: contemporaneous

and then cumulative investments 1-4 quarters ahead. All variables are winsorized at the 1% level.

Economic magnitudes are difficult to compare between regressions using the stated coefficient

values. Quarterly CapEx/Assets has a standard deviation of around 0.75% and average Aβ

k,t −As
k,t

has a standard deviation of around 1.2%. This implies that a +1σ spike systematic versus sector

reading predicts a cumulative 0.06σ drop in CapExt/Assett−1 over one year. Similarly normalized

SG&A has a demeaned standard deviation of around 2.5%, which implies a cumulative 0.08σ drop

in SG&A over one year from a +1σ spike in systematic versus sector reading.

These magnitudes may seem small; a VAR, however, would provide a stronger interpretation

of the long-term, cumulative effects to investments from a shock to attention. We run the following
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panel VAR specification with J = 4, which removes seasonal variation in the investment variables.

Yk,t+1 = µk +µt +
J

∑
j=1

Φ j ·Yk,t− j +∑ ·uk,t+1 where (15)

Yk,t =
[
Aβ

k,t−As
k,t Ik,t

]
Table 5 indicates both a contemporaneous and predictive relationship between shocks to attention

and investments. This is due to differing frequencies of our data; attention variables are available

weekly whereas investment data is quarterly. In order to analyze the dynamic impact of a random

disturbance on the system of variables we utilize a Cholesky orthogonalization of our VAR. Given

the variable ordering implied in equation 15, the way in which we aggregate attention over a quarter

is critical. Our approach is to use a Barlett weighted average over the forward N weeks,

Aβ

k,t−1−As
k,t−1 =

N

∑
n=1

ω(n) ·
(

Aβ

k,n,t−As
k,n,t

)
∑ω(n)

where

ω(n) =


2n
N , if 0≤ n≤ N

2

2− 2n
N , otherwise.

The aggregate attention measure for quarter t−1 thus actually contains data from quarter t. We set

N equal to weeks, which is approximately 1 quarter of attention data. Given that the past quarter

attention proxy is using data from the current quarter–where attention 6-7 weeks before the end

of quarter is weighted most heavily–we perserve the possibility that investments can respond to a

pseudo-contemporaneous structural shock to attention. Following Holtz-Eakin, Newey, and Rosen

(1988) and Arellano and Bover (1995), we utilize forward demeaning and cross-sectional means

to control for firm and time fixed effects, respectively.

The impulse response functions (IRFs) are presented in figure 5. First a simple Granger Causal-

ity test verifies the statistically plausible direction of causality–changes in attention Granger cause

changes in investment behavior. Second, the cumulative fall in investments is similar in magnitude

for both CapEx/Assets and SG&A/Organiational Capital, although given that SG&A is a larger

portion on average of Organizational Capital than CapEx is of Assets, it’s fall in percentage terms

is less pronounced. Cumulatively the orthogonalized IRFs predict a fall of more than 0.3σ in
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CapEx/Assets and 0.15σ for SG&A over 10 quarters. The IRFs capture the intuition that while the

initial shock to investment is small, it is long lasting, accumulating to a much lower baseline over

time.

Finally, we test if the primitive shocks we claim induce changes in attention are reasonably

represented in the data. In our theoretical framework idiosyncratic shifts in trend cash-flow or

sales growth shift the risk profiles of firms. Granger causality tests of the VAR represented by

equation 15 when investments are substitute with quarterly sales growth suggest this exact direction

of causality.2 That is, whereas changes in attention seem to predict changes in investment, changes

in sales growth Granger cause changes in attention. This suggests flipping the ordering when

estimating our orthogonalized IRF,

Yk,t =
[
∆Salesk,t Aβ

k,t−As
k,t

]
. (16)

We present the IRF in figure 6. It is clear that positive shocks to sales growth induce a fall in

attention. However, the rebound of attention spike is also quick. Given the construction of our

attention variable (21-day average versus previous 84-day baseline), one would expect a reversal

over 2-3 quarters as the current data moves into the historical. Nonetheless, a standard deviation

shock to sales induces a cumulative drop in our attention variable of roughly 0.1σ over 5 quarters.

5.4. Asset Pricing Implications

Our final empirical work tests the premise that shifts in firm-level attention provide a novel signal

of firm state variables to investors. As noted in section 2, our analysis thus far does not assume

a separation in information sets between investors and the firm. There are two reasons to include

this separation. First, a world with no separation belies the tremendous efforts that investors have

historically, and assuming rationally, placed in learning about firm prospects before others. Second,

statistical identification of any relationship between changes in attention and asset prices would be

difficult given the short sample size of our attention proxies. Separation allows for the possibility of

2Running regression 14 with sales growth as the dependent variables, assumes that changes in macro versus sector
reading predict changes in sales growth. This produces directionally correct, but statistically inconclusive, results.
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discrete points in time, such us earnings announcements, where information is revealed to investors.

This provides a natural experiment for us to test our theoretical implications by comparing asset

prices at times before and after such points of revelation.

One implication of our model is that negative idiosyncratic shocks to trend growth lead to a fall

in asset prices. If we layer on investor learning, while we would expect an immediate change in

the composition of attention by the firm, investors reaction to the news would be delayed. In fact,

asset prices, which are determined by the marginal investor, would react to changes in the firm’s

composition of attention specifically around periods of time when this information is revealed.

Our first set of return analysis is portfolio sorts that test the medium-term predictability of ex-

cess returns around our information revealing event, earnings announcements. We first stack all

firms on their earnings date for a given quarter. Firms do not all have the same earnings announce-

ment date or fiscal year end. This process therefore staggers the implementation of any plausible

trading strategy within a quarter. We refer to this new timeline as the trading calendar where t = 30

is the date of earnings announcement. We rank each firm for a given trading quarter into deciles

based on their t = 25 (i.e., five trading days prior to earnings announcement) spike in systematic

versus sector reading, Aβ

k,25−As
k,25. We analyze the evolution of daily returns for a quarter around

the trading calendar earnings date. Under the assumption that announcements are evenly spaced

t = 0 and t = 60 are trading dates equidistant from the previous versus current and current versus

future quarter announcement, respectively. We then average the return of all stocks within a decile

across all trading windows of which we have roughly 20 (5yrs, 4 qtrs/year). The tenth decile stocks

(relatively high systematic reading spikes) is considered short while the first decile stocks (relative

high sector reading spikes) are considered long. Standard errors are estimated on each trading

day across all stock-quarters. Cumulative returns and standard errors are then estimated assuming

intertemporal independence, which is common in the event-study literature.

We present this analysis in figure 7. We have approximately 500 stocks in each portfolio for

each trading quarter. The aggregation step assumes that with so many stocks the portfolios would

have minimal residual idiosyncratic risk. In addition, while we control for this more rigorously
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in a regression framework below, it is unlikely that the composition of portfolios would be that

different from one another because the portfolio sorting variable, Aβ

k,t−As
k,t , is already normalized

and standardized by within time and firm level topic reading. The standard errors allow us to

test whether across trading time the excess return spread between first and tenth decile (factor)

portfolios are statistically different than zero. As one sees in figure 7, the factor return is not

statistically different than zero before portfolio formation (dashed line), but becomes consistently

and statistically positive within 15 days or three trading weeks after. This confirms that there is

little pre-trend activity although there seems to be some “leakage” of information before actual

announcement. The spread, although not statistically significant, begins to turn higher a week or

two before earnings announcement. The spread is also driven by both components of the portfolio;

included in the graph are the average returns over market of both the high systematic and high

sector reading portfolios. The bifurcation of returns around earnings is clear in both the equal and

value weighted portfolios.

We next formalize this non-parametric analysis with regressions, which allow us to test for

predictability of returns around earnings while controlling for the usual asset pricing factors,

rk,t+1− r f ,t+1 = Et
[
rk,t+1− r f ,t+1

]
+

B

∑
b=1

βb · I(b) ·
(

Aβ

k,t−As
k,t

)
+ εk,t+1. (17)

We aggregate returns over the risk-free rate to a weekly panel, matching the frequency of our atten-

tion variables. We further split the predictive sensitivities into B buckets. In our main specification

there are three: three weeks before earnings ([−3,0)), three weeks after ([0,+3)) and all other

times. Given our theoretical results, we would expect little predictability during normal times.

Information on idiosyncratic variations in trend growth rates within a firm are unlikely to filter to

the marginal investor unless formally revealed by the firm. As such, we should see, conditional on

macro reading spiking versus sector reading, a lower return in the post-earnings versus pre-earnings

bucket. Our null hypothesis therefore is that β[−3,0) ≤ β[0,+3]–i.e., that spikes to systematic versus

sector reading predict higher returns post- versus pre-earnings.

Table 6 panel A presents the results of regression 17. In columns 1-4 we limit the sample

to those stocks that have listed options. This is done in order to maintain the same sample of
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firms as those in our variance and risk neutral β regressions below. Given that smaller stocks tend

not to have listed options this analysis can be thought of as approaching the value weighted non-

parametric analysis above. In column 1 we do not include indicators for intra-quarter time periods.

It is clear that over the full sample lagged attention spikes have little predictive power. In column

2 we control for the market risk factor. While both pre- and post-earnings period indicators do

not individually show predictive power, our null hypothesis that spikes to systematic versus sector

reading predict higher returns post-earnings is rejected at the 10% level. This continues to be

true after adding SMB, HML, and UMD risk factors. In column 5 we show that results, while

quantitatively little changed, have become statistically weak using the full sample and all return

factor controls. As noted in figure 7, there seems to be leakage of information into returns in the

week prior to earnings. In table 6 panel B we include this week in the post-earnings indicator and

test if β[−3,−1)≤ β[−1,+3] using regression 17. With this additional week, results are stronger across

the board. In particular, the regression specification in column 5, which includes the full sample

and all risk factors, statistically rejects our null hypothesis. Overall, results are quantitatively

similar to those presented in figure 7. The standard deviation of weekly attention spikes is around

1.6%, which implies that a one-standard-deviation spike predicts ∼20pbs higher returns across the

three weeks post earnings announcement; a long-short portfolio would thus produce approximately

∼40bps. This return could be enhanced if portfolio formation took place a week before.

The second and perhaps more direct implication of our model is that negative idiosyncratic

shocks to trend growth lead to higher firm-level risk. Unfortunately, shifts in high frequency

volatility are difficult to identify using returns as it requires a lengthy window for estimation.

We therefore turn to options data, where forward looking (risk neutral) measure of volatility risk

are easily available. We follow Bakshi, Kapadia, and Madan (2003) in constructing a firm-level

measure of expected variance using options data on any given day t,

V =
∫

∞

S(t)

2 [1− ln(K/S(t))]
K2 ·C (t,τ;K)dK +

∫ S(t)

−∞

2 [1+ ln(K/S(t))]
K2 ·P(t,τ;K)dK. (18)

K is the strike of either call (C (t,τ;K)) or put (P(t,τ;K) options of expiry date t +τ and S(t) is the

current (spot) stock price. Equation 18 captures the idea that investors’ exposure to a squared return
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contract is a function of the probability weighted expected return squared across all possible share

price values. One can then back out these values from an infinite string of options in the positive

(calls) and negative (puts) return domains–i.e. the volatility surface. Following Buss and Vilkov

(2012), we discretize equation 18 over moneyness or K/S values from 0.33 to 3 by increments

of 0.01 and use the volatility surface files from Option Metrics to construct a daily estimate of

variance contract strikes across all stocks.

We then test whether our measure of attention spikes predict next period variation in risk neutral

variance. (
σ

Q
k,t+1

)2
= ωi +βQ ·

(
σ

Q
k,t

)2
+

B

∑
b=1

βb · I(b) ·
(

Aβ

k,t−As
k,t

)
+ εk,t+1. (19)

This regression specification can be thought of as a panel GARCH where attention spikes are a

proxy for the square of random return residuals. Another benefit of using risk-neutral measure

of forward variance is that we can use various expiries, which will give us some sense of the

persistence of shifts in trend growth. Due to the underlying mean reverting (i.e., towards α) process,

if long dated options show a great deal of predictability around a revealing event, it means that the

information revealed changes investors long-run expectation of firm prospects.

Table 7 panel A presents the results of regression 19 on forward variance of 1 month, quarter,

semi-annual, and annual frequencies. In column 1 we look at predictability over the whole sam-

ple, which is marginally positive. In columns 2 we split the quarter into three buckets: 3 weeks

before and after earnings, and all other weeks. There are a few points of note. First, the major-

ity of predictability of attention spikes occurs in the period around earnings not outside. This is

intuitive–spikes in systematic versus sector reading would be related to a spike in operating lever-

age risk. Second, as one would expect the degree of predictability decays as the forward expiry

of expected variance increases. This is in keeping with intuition of mean reversion in our model.

Third, focusing exclusively on the 1 year forward variance regression in column 5, the increase in

long-run variance from a one-standard deviation increase in lagged attention is quite small. Weekly

systematic versus sector spikes has a standard deviation of 1.6%, while individual firm demeaned

standard deviation of 1 year variance is around 0.10. This implies that a one-standard-deviation
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higher attention spike score predicts only a roughly 0.01σ higher variance over the next year.

This perceived small effect can be driven by two potential issues. First, the post earnings

indicator is the average effect of predictability over three weeks. As we will shortly show the

predictability is highly concentrated in the first week; as we’re averaging over three weeks this

could be fractioning out the effect. More importantly, however, we should distinguish between

predictability of the components of variance risk. The findings from table 7 panel A can be inter-

preted as specific to total risk–that priced (systematic) and that not priced (idiosyncratic). As the

regressions we are running are done on a firm-panel basis, idiosyncratic risk may overwhelm any

predictability of the sort that matters for pricing. This is also important in the context of our theo-

retical motivation; in the model while the underlying shock to cash-flows that we are interested in

are idiosyncratic, their effect is to change the systematic risk exposure of the firm. This is similar in

spirit to the compositional effects of idiosyncratic shocks rigorously analyzed in Babenko, Boguth,

and Tserlukevich (2016).

Systematic risk, henceforth βk, is the covariance between the returns of stock k and the market

m divided by the variance of market. The covariance term can be further split into the variance of

k and all index components j, as well as the correlation between k and j.

β
Q
km,t =

σ
Q
km,t(

σ
Q
m,t

)2 =
σ

Q
k,t ·∑

N
j=1 w jσ

Q
j,tρ

Q
i j,t(

σ
Q
m,t

)2 (20)

We have estimates of σ
Q
j,t from equation 18, but no estimates for ρ

Q
i j,t . We follow Buss and Vilkov

(2012) in parametrically estimating this measure. Specifically, we assume that the relationship

between risk-neutral and physical correlation is

ρ
Q
i j,t = ρ

P
i j,t−αt ·

(
1−ρ

P
i j,t
)
. (21)

This equation allows for differences in pairwise correlation between stocks, but only an average

correlation premium across index constituents. Buss and Vilkov (2012) highlights various regular-

ity conditions that must be satisfied for equation 21 to work, which were verified for our sample and

specification. We estimate physical correlation (ρP
i j,t) as the 250-day moving average correlation
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between stock i and j. Given equations 20 and 21 αt can be estimated as,

αt =−

(
σ

Q
m,t

)2
−∑

N
i=1 ∑

N
j=1 wiw jσ

Q
i,tσ

Q
j,tρ

P
i j,t

∑
N
i=1 ∑

N
j=1 wiw jσ

Q
i,tσ

Q
j,t

(
1−ρP

i j,t

) .

It is important to note that in our case versus that of Buss and Vilkov (2012) N is not the same

as the constituents of the index; this is because the cross-section of stocks in our sample will be

different than the constituents of any index with available options. Our next order is to decide our

proxy for the true market portfolio. Given our huge cross-section of stocks, we use the broadest

available index, the Russell 3000, versus the traditionally used S&P500.
(

σ
Q
m,t

)2
is estimated using

the volatility surface files for the Russell 3000 from Option Metrics and equation 18, and wi and

w j are estimated using market capitalizations within our sample of stocks. β
Q
k,t is then estimated

using equation 20 using the estimate of ρ
Q
i j,t from equation 21.

We then run a similar GARCH-type regression now focused on testing whether our measure of

attention spikes predict next period variations in risk-netural β,

β
Q
k,t+1 = a0 +aβ ·β

Q
k,t +

B

∑
b=1

ab · I(b) ·
(

Aβ

k,t−As
k,t

)
+ εk,t+1. (22)

Table 7 panel B provides the results from this regression. Mirroring the regressions represented in

table 7 panel A we regress future risk-neutral beta onto current beta and our measure of attention

spikes at a forward beta of 1 month, quarter, semi-annual, and annual frequencies. In the first

column we look at predictability over the whole sample. Starting in column 2 we look at various

measure of beta derived from different option durations. Like the volatility regressions there is a

decay in predictability as option duration increases, although the decay seems to be substantially

less steep; this leads to a still economically large effect at more long-run estimates of β. Using

365 day option derived measure of β the individual firm demeaned standard deviation is 0.18. This

implies that a one-standard-deviation higher attention spike predicts a 0.02σ higher risk-neutral

beta over the next year. As noted above, shifts in variance are highly concentrated in the first

week or two of earnings; we would assume that something similar would be there for estimates of

β. Given that the coefficients on our indicators represents the average predictability for the three

weeks post earnings, this would imply that this figure represents a lower-bound. We can more

29



directly test by expanding the indicators to cover all weeks within a quarter around the earnings

announcement date. That is, we can test when around an earnings announcement the predictability

of our attention measure is greatest. Figure 8 plots the interaction coefficient values (i.e., ab in

equation 22 where b ∈ {0, ...,11}) around earnings. a0 is absorbed into our regression constant

and thus not included in the plot, while b = 6 is the week of the earnings announcement. It is

clear both from an economic and statistical perspective that our attention spike measure as greatest

predictability during earnings week and the week after. It is also clear that the averaging across

the three weeks reduces the economic significance of predictability. Using the weekly coefficient

values a one-standard-deviation higher attention measure predicts a 0.04σ higher risk-neutral beta

over the next year.

6. Conclusion

This paper analyzes the dynamic relationship between firm risk and opportunity and firm atten-

tion. As the primary economic unit of production, understanding the theoretical underpinnings and

then measuring this relationship is an important contribution to the literature. We further these

objectives by first developing a time-varying β model that includes regime switching idiosyncratic

cash-flow growth and investor learning. Firms are exposed to both operating leverage and the

availability of growth options. This produces two points of liquidity constraints for the firm: (1)

due to negative idiosyncratic shocks to trend growth the probability that firms need to raise capital

to cover fixed costs increases, and (2) due to positive shocks to trend growth the probability of

needing capital to expand production increases. This generates idiosyncratic variation in system-

atic exposure, which is similar in spirit to Babenko, Boguth, and Tserlukevich (2016) although the

underlying mechanism is different. Furthermore the execution of growth options reduces system-

atic risk as the asset base increases. The basic idea is that systematic exposure increases at both

extremes–positive and negative shocks to cash-flow growth–but only reduces when positive shocks

translate into the expansion of production. Investor learning then generates the specific prediction

that asset pricing reactions to shifts in trend growth and thus discount rates will not be immediate,
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but concentrated around information revealing events.

This theoretical framework suggests that shifts in focus of the firm between liquidity and busi-

ness expansion concerns would provide tremendous insight into the state of a firm’s systematic

risk. We test this premise using a novel dataset that quantifies attention to a broad set of topics by

employees across more than 3,000,000 firms. We develop an algorithm that separates topics into

those related to liquidity and macro economic uncertainty and those related to the expansion of

products and services either consumed or produced by specific firms. Using these two sets of top-

ics we first find that, in keeping with our theoretical motivation, smaller firms with greater growth

options and degrees of operating leverage more intensely follow systematic versus sector topics.

Also dynamic shifts in attention from sector to systematic topics predict lower returns, and higher

total risk and covariances with the market portfolio. Finally, this predictability is highly concen-

trated around earnings announcements, suggesting concentrated investor learning about underlying

state of firm cash-flow growth during periods of information revelation.
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Figure 1. Industry Topic Clouds

In this figure we present word clouds of the top 100 topics associated with a particular 3-digit NAICS codes.
Sizes of illustrated topic names roughly correspond to the topic ranking. Rankings are derived using the
algorithm described in section 4.

panel A. Chemical Manufacturing panel B. Credit Intermediation
and Related Activites

panel C. Professional, Scientific
and Technical Services

panel D. Publishing (except Internet)

panel E. Fabricated Metal Manufacturing panel F. Oil and Gas Extraction



Figure 1. Industry Topic Clouds

(continued)

panel G. Insurance Carriers and
Related Activities

panel H. Food Services and Drinking Places

panel I. Educational Services panel J. Real Estate

panel K. Health and Personal Care Stores panel L. Ambulatory Health Care Services



Figure 2. Systematic Topic Cloud

In this figure we present the word cloud of the top 100 topics associated with our fictitious macro industry.
Sizes of illustrated topic names roughly correspond to the topic rankings. The derivation of the macro
industry reading list and topic ranking is described in section 4.



Figure 3. Cross-sectional Sensitivity by Size

In this figure we present the sensitivities of βA (panel A) and the read-ratio (panel B) to size as presented in
regression 11. βA is a derived measure of firm asset β as formulated by Doshi, Jacobs, Kumar, and Rabi-
novitch (2019). The read-ratio is defined as the log percentile of firm k’s normalized reading score across
systematic topics minus its log percentile of normalized reading score across sector topics. The dependent
variable (size) is split into three buckets: less than 10th, 10-55th and 55-100th percentiles. Standard errors
clustered by firm and date. The difference in sensitivities between buckets are tested using a Wald Statistic;
p-values are presented within the graphs.
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Figure 4. Degree of Operating Leverage Regressions

In this figure represents the interaction coefficients from regression 13. The dependent variable is annual
∆EBIT DA which is defined as growth in operating cash flow (operating include plus non-cash depreciation);
the independent is annual sales growth. The sensitivity of ∆EBIT DA to ∆Sales is then allowed to different
between firms of different systematic to sector reading. Firms are split into terciles based on the average
read-ratio over the full sample (2015-2020). Panel A and panel B presents the sensitivities of terciles from
2014-today and 2015-today, respectively. Wald statistics are computed comparing the second and third
terciles to the first; the statistics p-value is estimated using firm and time clustered standard errors.
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Figure 5. Investments Impulse Response Functions

This figure presents the Cholesky orthogonalized impulse response functions of our normalized investment
variables to a one-standard-deviation shock to attention. The underlying vector autoregression and variable
stacking is described by 15. Confidence intervals are robust to heteroskedasticity. Time and firm fixed
effects are estimated by forward and cross-sectionally demeaning variables following Holtz-Eakin, Newey,
and Rosen (1988) and Arellano and Bover (1995).
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Figure 6. Aβ

k,t−As
k,t Impulse Response Function

This figure presents the Cholesky orthogonalized impulse response functions of quarterly aggregated atten-
tion from a one-standard-deviation shock to quarterly sales growth. The underlying vector autoregression is
described by 15; however, now variable stacking is given by equation 16. Time and firm fixed effects are
estimated by forward and cross-sectionally demeaning variables following Holtz-Eakin, Newey, and Rosen
(1988) and Arellano and Bover (1995).
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Figure 7. Portfolio Returns

This figure show cumulative returns of a long-short strategy identified using our intensive attention measure.
All firms within a quarter are placed in deciles according to intensive margin score five days before earnings
announcement (dashed line). Days within a quarter are indexed as being 30 trading days before (0 to 29 days)
and 30 days after (31 to 61 days) announcement date (solid line). Returns are averaged on a given trading
day across all stocks and quarters. The total long-short portfolio is assumed to be of net zero investment.
Return standard errors are estimated using the cross-section of stock returns. Cumulative return standard
errors are then estimated assuming intertemporal independence. Also graphed are the average first and tenth
decile portfolio returns in excess of market returns.
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Figure 8. Risk Neutral β Predictability

In this figure we present the predictability coefficient values of regression 22 where indicators are given for
each within a quarter. Wald statistics are then used to tests for shifts in predictability of our intensive attention
measure by week. p-values are presented within the figure. Earnings announcement date is indicated as week
6. Week 1 through 5 are the 5 weeks before earnings announcement and weeks 7-11 are the 5 weeks after.
Regression 22 otherwise uses the same specification as in column 5 of table 7 panel B.
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Table 1. Dataset Summary Statistics

This table reports summary statistics of our raw data. “No Topics” and “No Domains” are the number of
unique topics or firms paid attention to across the entire database for a given year. We then illustrate the
representativeness of attention by presenting the 10th, 30th, median, 70th and 90th percentile of topics per
domain across the years. This is done on the full dataset and limited to the firms in the merged CRSP-
COMPUSTAT file.

2015 2016 2017 2018 2019 2020

No Topics 2459 2998 3740 5434 6766 6968
No Domains (Firms) 638086 760677 1814507 2225211 2252270 1521256

Topics per Domain
Full Sample:
p10 24 21 58 54 34 19
p30 98 95 276 297 196 75
p50 215 219 627 766 542 188
p70 394 410 1172 1525 1175 426
p90 822 847 2264 2968 2781 1305

CRSP-COMPUSTAT Sample:
p10 168 167 1165 1674 1431 502
p30 615 677 2645 3729 3945 1945
p50 1095 1236 3361 4639 5592 3822
p70 1567 1823 3643 5139 6489 5737
p90 2040 2431 3716 5389 6730 6828



Table 2. Top 30 Represented Industries

This table breaks down the top 30 industries within different subsamples of our dataset. Our separation
methodology (see section 4) utilizes the full sample of firms whereas our empirical tests, due to data avail-
ability, only utilize the CRSP-COMPUSTAT sample. Using a coarse measure of employment available in
our dataset, the table includes the fraction of total employment and total number of firms that each top 30
NAICS 3-digit industry represents for the various subsamples.

COMPUSTAT Sample Full Sample

Industry Name Emp. Firms Industry Name Emp. Firms

Professional, Scientific, and Technical
Services 0.077 0.225

Professional, Scientific, and Technical
Services 0.132 0.225

Chemical Manufacturing 0.071 0.037 Educational Services 0.064 0.037
Credit Intermediation and Related

Activities 0.066 0.014
Credit Intermediation and Related

Activities 0.047 0.014

Publishing Industries (except Internet) 0.057 0.012 Chemical Manufacturing 0.041 0.012
Fabricated Metal Product

Manufacturing 0.054 0.036 Administrative and Support Services 0.04 0.036

Miscellaneous Manufacturing 0.053 0.031 Publishing Industries (except Internet) 0.038 0.031
Transportation Equipment

Manufacturing 0.046 0.024 Motor Vehicle and Parts Dealers 0.037 0.024

Utilities 0.039 0.011 Food Manufacturing 0.032 0.011
Insurance Carriers and Related

Activities 0.038 0.009
Transportation Equipment

Manufacturing 0.027 0.009

Electrical Equipment, Appliance, and
Component Manufacturing 0.037 0.02

Insurance Carriers and Related
Activities 0.026 0.02

Food Manufacturing 0.034 0.016 Machinery Manufacturing 0.025 0.016

Machinery Manufacturing 0.033 0.017
Computer and Electronic Product

Manufacturing 0.025 0.017

Food Services and Drinking Places 0.033 0.025 Merchant Wholesalers, Durable Goods 0.024 0.025
Computer and Electronic Product

Manufacturing 0.023 0.068
Religious, Grantmaking, Civic,

and Similar Organizations 0.023 0.068

Accommodation 0.021 0.024 Food Services and Drinking Places 0.022 0.024
Truck Transportation 0.02 0.013 Miscellaneous Manufacturing 0.022 0.013

Merchant Wholesalers, Durable Goods 0.019 0.011
Fabricated Metal Product

Manufacturing 0.02 0.011

Administrative and Support Services 0.019 0.005
Electrical Equipment, Appliance, and

Component Manufacturing 0.019 0.005

Beverage and Tobacco Product
Manufacturing 0.018 0.012 Accommodation 0.019 0.012

Oil and Gas Extraction 0.017 0.013 Miscellaneous Store Retailers 0.018 0.013
Motor Vehicle and Parts Dealers 0.017 0.005 Utilities 0.017 0.005
Mining (except Oil and Gas) 0.016 0.027 Real Estate 0.016 0.027
Health and Personal Care Stores 0.016 0.05 Ambulatory Health Care Services 0.016 0.05
Telecommunications 0.015 0.006 Mining (except Oil and Gas) 0.015 0.006
Real Estate 0.012 0.013 Health and Personal Care Stores 0.014 0.013
Repair and Maintenance 0.012 0.008 Telecommunications 0.011 0.008
Air Transportation 0.011 0.036 Specialty Trade Contractors 0.011 0.036
Heavy and Civil Engineering

Construction 0.01 0.004 Truck Transportation 0.011 0.004

Amusement, Gambling, and
Recreation Industries 0.009 0.015

Securities, Commodity Contracts, and
Other Financial Investments Activities 0.01 0.015

Paper Manufacturing 0.008 0.002 Air Transportation 0.009 0.002



Table 3. Cross-sectional Validation Tests

These tables present the results of cross-sectional tests from section 5. The parameterized tests are represented by
regressions 10 (panel A) and 12 (panel B). In 3 panel A, a derived measure of firm asset β is regressed onto βSales,
Tobin’s Q, market capitalization and the liquidity ratio. β̂Sales is derived from regressing quarterly firm sales growth
onto aggregate sales growth onto aggregate quarterly sales growth. Tobin’s Q is defined by formula 9. Capitalization
is the market value of assets (equity plus liabilities). Following Gilchrist, Schoenle, Sim, and Zakrajšek (2017), the
liquidity ratio is used as a proxy for the firm degree of operating leverage. In 3 panel B the dependent variables changes
to the read-ratio. The read-ratio is defined as the log percentile of firm k’s normalized reading score across systematic
topics minus its log percentile of normalized reading score across sector topics. Reported t-statistics are clustered by
firm and time. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

panel A. βA Regressions

(1) (2) (3) (4) (5)

βSales 0.0062∗∗∗ 0.0069∗∗∗

[7.54] [8.20]
Tobin’s Q 0.0307∗ 0.0878∗∗∗

[1.87] [4.37]
Capitalization 0.0224∗∗∗ 0.0165∗∗∗

[5.62] [4.25]
Liquidity Ratio 0.0141∗∗ 0.0381∗∗∗

[2.17] [5.53]

Debt-to-Equity +

Observations 33,778 33,899 33,899 34,007 33,362
R2 0.0143 0.0012 0.0112 0.0020 0.0478

panel B. Read-ratio Regressions

(1) (2) (3) (4) (5)

βSales 0.0018∗∗∗ 0.0013∗∗∗

[3.85] [2.81]
Tobin’s Q 0.0271∗∗ 0.0279∗∗

[2.33] [2.32]
Capitalization −0.0214∗∗∗ −0.0216∗∗∗

[−6.52] [−6.36]
Liquidity Ratio 0.0329∗∗∗ 0.0216∗∗∗

[6.34] [3.48]

Debt-to-Equity +

Observations 39,903 39,923 39,923 40,441 38,980
R2 0.0014 0.0008 0.0082 0.0093 0.0148



Table 4. FEs for Cross-sectional Regressions

This table presents the addition of fixed effects to the regression specification presented in column 5 of
tables 3 panel A and 3 panel B. We begin with the original specification, including a debt-to-equity control
(columns 1 and 4). To that we add time fixed effects (columns 2 and 5), and, finally, both time and firm fixed
effects (columns 3 and 6). Reported t-statistics are clustered by firm and time. The independent variable is
either our derived measure of asset β (columns 1-3) or our proxy for systematic to sector reading (columns
4-6). Reported t-statistics are clustered by firm and time. *, **, and *** denote significance at the 10%, 5%,
and 1% levels, respectively.

Asset Beta Read Ratio

βSales 0.0069∗∗∗ 0.0066∗∗∗ 0.0003 0.0013∗∗∗ 0.0011∗∗ 0.0028∗∗

[8.20] [7.95] [0.37] [2.81] [2.46] [2.61]
Tobin’s Q 0.0878∗∗∗ 0.0864∗∗∗ −0.0146 0.0279∗∗ 0.0286∗∗ 0.0122

[4.37] [4.32] [−1.05] [2.32] [2.38] [0.71]
Capitalization 0.0165∗∗∗ 0.0172∗∗∗ 0.0267∗∗∗ −0.0216∗∗∗ −0.0211∗∗∗ −0.0145

[4.25] [4.43] [2.85] [−6.36] [−6.15] [−1.21]
Liquidity Ratio 0.0381∗∗∗ 0.0376∗∗∗ 0.0021 0.0216∗∗∗ 0.0220∗∗∗ 0.0001

[5.53] [5.51] [0.85] [3.48] [3.52] [0.02]

Debt-to-Equity + + + + + +
Time FE + + + +
Firm FE + +

Observations 33,362 33,362 33,224 38,980 38,980 38,801
R2 0.0478 0.0588 0.9317 0.0148 0.0227 0.4281



Table 5. Investment Predictive Regressions

This table presents the results of regression 14. In panel A the dependent variable is Capital Expenditures (CapEx)
normalized by lagged assets. In panel B the dependent variable is SG&A normalized by lagged organizational capital.
We follow Eisfeldt and Papanikolaou (2013) in estimating organizational capital although the rate of depreciation
assumption is higher at 25%. This is in line iwth recent work done at the BEA (see Li and Hall, 2020). As CapEx and
SG&A are only available quarterly the independent variable, Aβ

k,t −As
k,t , which is available weekly, is averaged over

the quarter. For horizons greater than contemporaneous (i.e. h≥ 0), investment flow is accumulated over the horizon
and then normalized by the stock at quarter t−1. Reported t-statistics are clustered by firm and time. *, **, and ***
denote significance at the 10%, 5%, and 1% levels, respectively.

panel A. Capital Expenditures

h = 0 h = 1 h = 2 h = 3 h = 4

Aβ

k,t−As
k,t −0.0082∗ −0.0147∗ −0.0270∗∗ −0.0385∗∗ −0.0446∗∗∗

[−1.81] [−2.02] [−2.22] [−2.89] [−3.36]
Time × NAICS FE + + + + +
Firm FE + + + + +

Observations 48,821 44,182 39,899 35,985 32,341
R2 0.6906 0.7469 0.7852 0.8132 0.8377

panel B. Selling, General and Administrative Expenses

h = 0 h = 1 h = 2 h = 3 h = 4

Aβ

k,t−As
k,t −0.0154 −0.0501∗ −0.0919∗∗∗ −0.1673∗∗∗ −0.2106∗∗∗

[−1.03] [−2.03] [−2.90] [−3.12] [−3.04]
Time × NAICS FE + + + + +
Firm FE + + + + +

Observations 44,620 40,043 36,056 32,460 29,151
R2 0.6738 0.7375 0.7753 0.8031 0.8307



Table 6. Return Predictive Regressions

This table presents the results from regression 17. Expected rates of return are subtracted from next period’s excess
returns and then regressed onto our measure of attention. Expected rates of return are estimated using market returns,
SMB, HML and UMD return factors. Which factors used are highlighted in the column header. As we are interested
in changes in predictability around earnings announcement dates, we split attention into those periods 3 weeks before
and 3 weeks after earnings. We then test, using a Wald Statistic, whether predictability changes. p-values are presented
in the tables. Panel A uses announcement date as a firm dissecting point for testing changes in predictability; panel B
includes the week before earnings in the post-earnings indicator. Reported t-statistics are clustered by firm and time.
*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

panel A. Contemporaneous to Earnings Indicator

None rm,t− r f ,t + SMBt , HMLt + UMDt Full, All

(Aβ

k,t−As
k,t) 0.0077

[0.65]
Iother × (Aβ

k,t−As
k,t) 0.0094 0.0104 0.0127 0.0069

[0.62] [0.71] [0.85] [0.46]
I[−3,0) × (Aβ

k,t−As
k,t) 0.0234 0.0247 0.0254 0.0221

[1.21] [1.28] [1.29] [1.11]
I[0,+3) × (Aβ

k,t−As
k,t) −0.0182 −0.0095 −0.0081 −0.0036

[−0.94] [−0.51] [−0.42] [−0.17]

Time FE + + + + +
Firm FE + + + + +

(I[0,+3)×·)− (I[−3,0)×·) -0.0417 -0.0342 -0.0335 -0.0257
P(I[−3,0)×·< I[0,+3)×·) 0.0299 0.0608 0.0689 0.1342

Observations 611,494 611,494 611,494 611,494 916,839
R2 0.1818 0.0310 0.0111 0.0097 0.0091

panel B. One Week Lag to Earnings Indicator

None rm,t− r f ,t + SMBt , HMLt + UMDt Full, All

(Aβ

k,t−As
k,t) 0.0077

[0.65]
Iother × (Aβ

k,t−As
k,t) 0.0030 0.0070 0.0094 0.0090

[0.22] [0.53] [0.69] [0.66]
I[−3,−1) × (Aβ

k,t−As
k,t) 0.0485∗∗ 0.0414∗ 0.0429∗ 0.0383

[2.02] [1.74] [1.78] [1.63]
I[−1,+3) × (Aβ

k,t−As
k,t) −0.0198 −0.0142 −0.0157 −0.0264

[−0.77] [−0.55] [−0.60] [−0.99]

Time FE + + + + +
Firm FE + + + + +

(I[−1,+3)×·)− (I[−3,−1)×·) -0.0683 -0.0557 -0.0586 -0.0647
P(I[−3,−1)×·< I[−1,+3)×·) 0.0217 0.0509 0.0437 0.0292

Observations 611,494 611,494 611,494 611,494 916,839
R2 0.1818 0.0310 0.0111 0.0097 0.0091



Table 7. Variance and β Predictive Regressions

This table presents the results of regression 19 in panel A and regression 22 in panel B. Risk neutral variance and β are
estimated using the methodologies of Bakshi, Kapadia, and Madan (2003) and Buss and Vilkov (2012), respectively.
Both independent variables are computed using options of various durations: 1 month, 1 quarter, 1 semi-annual period
and annual as described in the table columns. We split the period around earnings announcement to test if predictability
changes around earnings. p-value from the Wald Statistics are presented. Reported t-statistics are clustered by firm
and time. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

panel A. Risk Neutral Variance

30 day 30 day 90 day 182 day 365 day(
σ

Q
k,t

)2
0.4716∗∗∗ 0.4715∗∗∗ 0.6097∗∗∗ 0.6416∗∗∗ 0.6324∗∗∗

[39.10] [39.10] [45.79] [49.21] [52.01]
(Aβ

k,t−As
k,t) 0.0355

[1.40]
Iother × (Aβ

k,t−As
k,t) 0.0218 0.0275 0.0236 0.0182

[0.71] [1.38] [1.52] [1.26]
I[−3,0) × (Aβ

k,t−As
k,t) −0.0894∗ 0.0031 0.0090 0.0068

[−1.90] [0.15] [0.45] [0.40]
I[0,+3) × (Aβ

k,t−As
k,t) 0.2279∗∗∗ 0.0831∗∗∗ 0.0581∗∗∗ 0.0490∗∗∗

[4.57] [3.58] [3.04] [2.69]

Time FE + + + + +
Firm FE + + + + +

P(I[−3,0)×·> I[0,+3)×·) 0.0000 0.0027 0.0254 0.0417

Observations 609,609 609,609 609,609 609,609 609,609
R2 0.6512 0.6512 0.8054 0.8434 0.8498

panel B. Risk Neutral Beta

30 day 30 day 90 day 182 day 365 day

β
Q
k,t 0.5575∗∗∗ 0.5575∗∗∗ 0.7124∗∗∗ 0.7601∗∗∗ 0.7838∗∗∗

[58.02] [58.02] [80.25] [88.87] [94.29]
(Aβ

k,t−As
k,t) 0.0978

[1.58]
Iother × (Aβ

k,t−As
k,t) 0.0998 0.0389 0.0165 −0.0021

[1.49] [0.97] [0.46] [−0.06]
I[−3,0) × (Aβ

k,t−As
k,t) −0.2181∗ −0.0755 −0.0224 −0.0084

[−1.71] [−1.37] [−0.46] [−0.19]
I[0,+3) × (Aβ

k,t−As
k,t) 0.4687∗∗∗ 0.2115∗∗∗ 0.1753∗∗∗ 0.1559∗∗∗

[3.91] [3.26] [3.26] [3.08]

Time FE + + + + +
Firm FE + + + + +

P(I[−3,0)×·> I[0,+3)×·) 0.0002 0.0006 0.0042 0.0111

Observations 609,609 609,609 609,609 609,609 609,609
R2 0.6364 0.6364 0.8013 0.8409 0.8419
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