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The CBOE SKEW

Abstract

The CBOE SKEW is an index launched by the Chicago Board Options Exchange

(CBOE) in February 2011. Its term structure tracks the risk-neutral skewness of the

S&P 500 (SPX) index for different maturities. In this paper, we develop a theory for

the CBOE SKEW by modelling SPX using a jump-diffusion process with stochastic

volatility and stochastic jump intensity. With the term structure data of VIX and

SKEW, we estimate model parameters and obtain the four processes of variance,

jump intensity and their long-term mean levels. Our results can be used to describe

SPX risk-neutral distribution and to price SPX options.
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1 Introduction

The CBOE SKEW is an index launched by the Chicago Board Options Exchange

(CBOE) in February 2011.2 Its term structure tracks the risk-neutral skewness of the

S&P 500 (SPX) index for different maturities. The observable public information of

the SKEW could be useful in forecasting future stock returns, even market crashes.

However, the literature on SKEW is sparse, and a theory of the CBOE SKEW has

not been developed. This paper fills the gap by establishing a theory for the SKEW

index by modelling SPX using a jump-diffusion process with stochastic volatility and

stochastic jump intensity. We propose a new sequential procedure to estimate model

parameters and latent variables explicitly by fitting the market data with the model

implied term structure of the CBOE volatility index (VIX) and SKEW.

The CBOE has been dedicated to developing new markets for higher moment

trading, including volatility (second moment), over the last 20 years. First introduced

in 1993, VIX serves as the premier benchmark for U.S. stock market volatility. VIX

was revised in 2003 by averaging the weighted prices of out-of-the-money SPX puts

and calls over a wide range of strike prices, and enhanced by using the weekly options

in 2014. Moreover, CBOE made it possible for market participants to directly invest

in the VIX index by launching the VIX futures in 2004 and the VIX options in

2006. These VIX derivatives are among the most actively traded products with total

trading volumes of 51.6 million contracts and 144.4 million contracts, respectively, in

2015. In addition to VIX, CBOE launched SKEW in 2011, which is a global, 30-day

forward-looking, strike-independent measure of the slope of the implied volatility and

reflects the asymmetry of the risk-neutral distribution of the SPX logarithmic returns.

SKEW is a complementary risk indicator to VIX and is calculated from SPX option

2The CBOE SKEW index is referred to as SKEW hereafter.
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prices similar to VIX. It is the first observable information regarding the skewness

risk across different maturities, and provides the foundation for the creation of SKEW

derivatives and potential skewness trading.

The importance of the skewness risk in explaining the cross-sectional variation of

stock returns has been tested by a large strand in the empirical asset pricing literature;

see, among others, for coskewness (Harvey and Siddique, 2000), for idiosyncratic skew-

ness (Boyer, Mitton and Vorkink, 2010), for market skewness (Chang, Christoffersen

and Jacobs, 2013), for ex-ante risk-neutral skewness (Conrad, Dittmar and Ghysels,

2013), and for realized skewness (Amaya, Christoffersen, Jacobs and Vasquez, 2015).3

However, these skewness measures are constructed by the academics either from his-

torical returns or option prices. The public availability and observability of SKEW

give rise to an easily accessible measure of aggregate skewness. This unified public

measure of skewness points towards a standardized risk gauge. Nevertheless, the lit-

erature on SKEW is sparse. Faff and Liu (2014) propose an alternative measure of

market asymmetry against the SKEW index. Wang and Daigler (2014) find evidence

supporting the bidirectional information flow between SPX and VIX options markets

by analyzing the SKEW and VIX indices for SPX and VIX. Their articles focus on

the informational aspect of SKEW. The intrinsic nature of SKEW has not yet been

explored. In this paper, we build a theory of the CBOE SKEW and look at the

empirical performance of different option-pricing models.

Zhang et al. (2016) point out the inability of the Heston (1993) model to capture

short-term skewness and stochastic long-term variance. To further calibrate more

realistic and sophisticated option-pricing models, we provide analytical formulas for

3The determinants of cross-sectional skewness have also been tested, such as the trading volume
and past returns (see Chen, Hong and Stein, 2001), the systematic and firm-specific factors (see
Dennis and Mayhew, 2002), the investor sentiment (see Han, 2008), and the heterogeneous beliefs
(see Friesen, Zhang and Zorn, 2012).
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the CBOE SKEW in various affine jump-diffusion models (see Duffie, Pan and Sin-

gleton, 2000), and obtain the latent diffusive-volatility and jump-intensity variables

in a five-factor model using the term structure data of the CBOE VIX and SKEW.

The SKEW and VIX theoretical calculation formulas provide a channel to estimate

the unobserved diffusive variance, jump intensity as well as other fixed parameters,

which are crucial factors for option pricing and hedging.

The option-pricing literature is well-established. However, the model estimation

methodologies are not unified, and are challenging when the state variables are un-

observable. The estimation approaches include the simulated method of moments

(SMM) used by Bakshi, Cao and Chen (2000), the efficient method of moments

(EMM) adopted by Chernov and Ghysels (2000) and Anderson, Benzoni and Lund

(2002), the implied-state generalized method of moments (IS-GMM) proposed by

Pan (2002), and the Markov Chain Monte Carlo (MCMC) method applied by Er-

aker, Johannes and Polson (2003) and Eraker (2004). These estimators impose severe

computational burdens, and are not easy to implement. Moreover, the types of data

used for estimation are different. For instance, Bakshi, Cao and Chen (2000) use op-

tions data, Chernov, Ghysels (2000), Pan (2002) and Eraker (2004) use joint returns

and options data, whereas Andersen, Benzoni and Lund (2002) and Eraker, Johannes

and Polson (2003) use returns data only. In contrast, given the public information of

VIX and SKEW, we propose an easily implemented sequential estimation procedure,

which consistently obtains the model parameters and the latent variables across the

second and third cumulants (or equivalently central moments) of the risk-neutral dis-

tribution of the SPX returns. This paper is the first to uncover the diffusive-variance

and jump-intensity processes explicitly using combined VIX and SKEW data, which

are carefully designed by CBOE using Bakshi, Kapadia and Madan’s (2003) model-

free methodology and reflect the most important features of the returns’ distribution.
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In this paper, we find that the Merton-extended Heston model improves the fitting

performance of the VIX term structure by 60% compared with the Merton-Heston

model. The Merton-Heston (Merton-extended Heston) model outperforms the Hes-

ton model by 14% (20%) when fitting the SKEW term structure. The performance of

the five-factor (three-factor) model in fitting the SKEW term structure exceeds that

of the Merton-extended Heston (Merton-Heston) model by 15% (2%). Our estima-

tion results suggest that the five-factor model is superior when modelling the term

structure of the CBOE VIX and SKEW.

The remainder of this paper proceeds as follows. Section 2 introduces the CBOE

SKEW index. Section 3 develops a theory of the CBOE SKEW. Section 4 discusses

the data. Section 5 presents the estimation procedure and compares the empirical

performance. Section 6 provides concluding remarks. All proofs are in the Appendix.

2 Definition of the CBOE SKEW

The CBOE SKEW is an index launched by the Chicago Board Options Exchange

(CBOE) on February 23, 2011. Its term structure tracks the risk-neutral skewness

of the S&P 500 (SPX) index for different maturities. The SKEW is computed from

all of the out-of-the-money (OTM) SPX option prices by using Bakshi, Kapadia and

Madan’s (2003) methodology.

At time t, the SKEW is defined as

SKEWt = 100− 10× Skt, (1)

where Skt is the risk-neutral skewness given by

Skt = EQ
t

[

(RT
t − µ)3

σ3

]

; (2)

RT
t is the logarithmic return of SPX at time T , denoted as ST , against the current

forward price with maturity T , F T
t ; µ is the expected return and σ2 is the variance
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in risk-neutral measure Q:

RT
t = ln

ST

F T
t

, µ = EQ
t (R

T
t ), σ2 = EQ

t [(R
T
t − µ)2]. (3)

Expanding equation (2) gives

Skt =
EQ

t [(R
T
t )

3]− 3EQ
t (R

T
t )E

Q
t [(R

T
t )

2] + 2[EQ
t (R

T
t )]

3

EQ
t [(R

T
t )

2]− [EQ
t (R

T
t )]

2
. (4)

Following Bakshi, Kapadia and Madan (2003), the CBOE evaluates the first three

moments of log return EQ
t (R

T
t ), E

Q
t [(R

T
t )

2] and EQ
t [(R

T
t )

3] in the risk-neutral measure

by using the current prices of European options with all available strikes as follows:

EQ
t (R

T
t ) = −erτ

∑

i

1

K2
i

Q(Ki)∆Ki + ln
K0

F T
t

+
F T
t

K0
− 1, (5)

EQ
t [(R

T
t )

2] = erτ
∑

i

2− 2 ln Ki

FT
t

K2
i

Q(Ki)∆Ki + ln2 K0

F T
t

+ 2 ln
K0

F T
t

(

F T
t

K0
− 1

)

, (6)

EQ
t [(R

T
t )

3] = erτ
∑

i

6 ln Ki

FT
t

− 3 ln2 Ki

FT
t

K2
i

Q(Ki)∆Ki + ln3 K0

F T
t

+3 ln2 K0

F T
t

(

F T
t

K0
− 1

)

, (7)

where F T
t is the forward index level derived from SPX option prices using put-call

parity; K0 is the first listed price below F T
t ; Ki is the strike price of the ith OTM

option (a call if Ki > K0 and a put if Ki < K0); ∆Ki is half the difference between

strikes on either side of Ki, i.e., ∆Ki =
1
2
(Ki+1−Ki−1), and for minimum (maximum)

strike, ∆Ki is simply the distance to the next strike above (below); r is the risk-free

interest rate; Q(Ki) is the midpoint of the bid-ask spread for each option with strike

Ki; and τ is the time to expiration as a fraction of a year. The reasoning behind

equations (5), (6) and (7) are included in Appendix A.

The SKEW index refers to 30-day maturity, i.e., τ = τ0 ≡ 30/365. In general, 30-

day options are not available. The current 30-day skewness Skt is derived by inter- or
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extrapolation from the current risk-neutral skewness at adjacent expirations, Sknear
t

and Sknext
t as follows:

Skt = ωSkt,near + (1− ω)Skt,next, (8)

where ω is a weight determined by

ω =
τnext − τ0
τnext − τnear

,

and τnear and τnext are the times to expiration (up to minute) of the near- and next-

term options, respectively. The near- and next-term options are usually the first and

second SPX contract months. “Near-term” options must have at least one week to

expiration in order to minimize possible close-to-expiration pricing anomalies. For

near-term options with less than one week to expiration, the data roll to the second

SPX contract month. “Next-term” is the next contract month following near-term.

While calculating time to expiration, the SPX options are deemed to expire at the

open of trading on the SPX settlement day, i.e., the third Friday of the month.

3 Theory

Option-pricing models have been developed by using different kinds of stochastic

processes for the underlying stock, such as jump-diffusion with stochastic volatility

and stochastic jump intensity. The purpose of making volatility and jump intensity

stochastic is to capture the time-varying second and third moments of stock return.

Traditionally, these models are usually estimated by using some numerical approaches,

with volatility and jump intensity being latent variables. These numerical estimation

procedures are often highly technical and very time-consuming.

With the observable information of two term structures of VIX and SKEW from

the CBOE, it is now possible to estimate the risk-neutral underlying process explicitly.
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The volatility and jump intensity processes are not latent any more. In fact, in this

paper we will make them semi-observable. In order to achieve this goal, we need some

theoretical results on the term structures of VIX and risk-neutral skewness implied

in different models.

To intuit the result, we begin with the simplest case, i.e., the Black-Scholes (1973)

model.

Proposition 1 In the Black-Scholes (1973) model, the risk-neutral underlying stock

is modelled by

dSt

St
= rdt+ σdBt,

where Bt is a standard Brownian motion, r is the risk-free rate and σ is volatility.

The model-implied squared VIX and skewness at time t for time to maturity τ are as

follows:

V IX2
t,τ = σ2, Skt,τ = 0. (9)

This is a trivial case. The log return is normally distributed; hence, the volatility

term structure is flat and the skewness is zero.

In order to create skewness, we need to include jumps, e.g., the Poisson process,

into the model. Merton’s (1976) jump-diffusion model is a pioneer along this direction.

Proposition 2 In the Merton (1976) model, the risk-neutral underlying stock is mod-

elled by

dSt

St
= rdt+ σdBt + (ex − 1)dNt − λ(ex − 1)dt,

where Nt is a Poisson process with constant jump size x and jump intensity λ. The

model-implied squared VIX and skewness at time t for time to maturity τ are as

follows:

V IX2
t,τ = σ2 + 2λ(ex − 1− x), Skt,τ =

λx3

(σ2 + λx2)3/2
τ−1/2. (10)
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Proof. See Appendix B.1.

Remark 2.1. Here we present a result with a constant jump size in order to make

the formulas of the VIX and SKEW term structures simple and intuitive.4 It can be

extended to an arbitrary distribution without much difficulty; see e.g., Zhang, Zhao

and Chang (2012).

Remark 2.2. The VIX term structure is again flat with a squared VIX being σ2 +

2λ(ex − 1 − x), which is different from the annualized term variance (variance swap

rate) V art,τ = σ2 + λx2. The difference is due to the CBOE definition of VIX. It is

small for small x; see Luo and Zhang (2012) for a detailed discussion.

Remark 2.3. Noticing that
√
τ Skt,τ is a constant in this model, we obtain a simple

criterion as follows: If
√
τ Skt,τ is not a constant, then Merton’s (1976) jump-diffusion

model does not apply in the options market.

The returns in the Merton model are independent and identically distributed

(i.i.d.). Furthermore, for any i.i.d. variable, its variance and third cumulant are

additive and Skt,τ is proportional to 1√
τ
, resulting in infinite instantaneous skewness

and zero long term skewness. Note that
√
τ Skt,τ is regular for i.i.d. returns; we

introduce a new concept of the regularized skewness.

Definition The regularized skewness, RSkt,τ , at time t, is given by

RSkt,τ =
√
τ Skt,τ =

√
τEQ

t

[

(Rt,τ − µ(Rt,τ ))
3

σ3(Rt,τ )

]

, (11)

where Rt,τ denotes the logarithmic return over the period [t, t+τ ], µ(Rt,τ ) and σ2(Rt,τ )

denote its mean and variance, respectively.

4The assumption of constant jump size is also used in the literature, see, among others, Liu and
Pan (2003) and Branger, Kraft and Meinerding (2016)
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In addition to jumps, skewness can also be created by using stochastic volatility

with leverage effect, i.e., correlation between stock return and volatility. Along this

direction, Heston’s (1993) model has become a standard platform partially because

of its analytical tractability due to an affine structure. Das and Sundaram (1999)

describe analytically the skewness implied in a stochastic volatility model which is

similar to Heston’s (1993) setup; unfortunately, their closed-form formula does not

apply in the Heston model . Zhao, Zhang and Chang (2013) provide a partial result

for a special case of zero mean-reverting speed, i.e., κ = 0. A full explicit formula

was not available until the recent work of Zhang et al. (2016).

Proposition 3 (Zhang et al., 2016) In the Heston (1993) model, the risk-neutral

underlying stock is modelled by

dSt

St
= rdt+

√
vtdB

S
t ,

dvt = κ(θ − vt)dt+ σv

√
vtdB

v
t ,

where two standard Brownian motions, BS
t and Bv

t , are correlated with a constant

coefficient ρ. The model-implied squared VIX and skewness at time t for time to

maturity τ are as follows:

V IX2
t,τ = (1− ω)θ + ωvt, ω =

1− e−κτ

κτ
, (12)

Skt,τ =
TCH

(V arH)3/2
, (13)

where the term variance and third cumulant are given by

V arH = Et(X
2
T )− Et(XTYT ) +

1

4
Et(Y

2
T ), (14)

TCH = Et(X
3
T )−

3

2
Et(X

2
TYT ) +

3

4
Et(XTY

2
T )−

1

8
Et(Y

3
T ). (15)

The integrated return uncertainty, XT , and integrated instantaneous variance uncer-
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tainty, YT , are defined by

XT ≡
∫ T

t

√
vudB

S
u , YT ≡

∫ T

t

[vu −Et(vu)]du = σv

∫ T

t

1− e−κ(T−u)

κ

√
vudB

v
u.

The variance and covariance of XT and YT are given by

Et(X
2
T ) =

∫ T

t

Et(vu)du, (16)

Et(XTYT ) = ρσv

∫ T

t

A1Et(vu)du, A1 =
1− e−κτ∗

κ
, τ ∗ = T − u, (17)

Et(Y
2
T ) = σ2

v

∫ T

t

A2
1Et(vu)du. (18)

The third and co-third cumulants of XT and YT are given by

Et(X
3
T ) = 3ρσv

∫ T

t

A1 Et(vu)du, (19)

Et(X
2
TYT ) = σ2

v

∫ T

t

A2 Et(vu)du,

A2 =

(

1− e−κτ∗

κ

)2

+ 2ρ2
1− e−κτ∗ − κτ ∗e−κτ∗

κ2
, (20)

Et(XTY
2
T ) = ρσ3

v

∫ T

t

A3 Et(vu)du,

A3 = 2
1− e−κτ∗ − κτ ∗e−κτ∗

κ2

1− e−κτ∗

κ
+

1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3
, (21)

Et(Y
3
T ) = 3σ4

v

∫ T

t

A4 Et(vu)du,

A4 =
1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3

1− e−κτ∗

κ
, (22)

and Et(vu) = θ + (vt − θ)e−κ(u−t) is the expected instantaneous variance.

Proof. See Zhang et al. (2016).

Remark 3.1. Through asymptotic analysis, Zhang et al. (2016) shows that for

κ > 0, if τ is small, the skewness is given by

Skt,τ =
3

2
ρ
σv√
vt

√
τ + o(

√
τ ).
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If τ is large, then the skewness is given by

Skt,τ =
3ρσv

κ
− 3

2
σ2
v

κ2
√

1− ρσv

κ
+ 1

4
σ2
v

κ2

1√
θτ

+ o

(

1√
τ

)

.

Hence, the regularized skewness
√
τ Skt,τ behaves linearly with τ for small τ , and

approaches to a constant for large τ .

When modelling the VIX term structure, Luo and Zhang (2012) observe that both

short and long ends of the term structure are time-varying. Hence, it is necessary to

include a new factor of stochastic long-term mean into the standard Heston model

in order to enhance its performance in fitting the term structure of variance. Egloff,

Leippold and Wu (2010) show the high persistence (low mean reverting speed) of the

variance long-term mean, to retain the martingale property of the stochastic variance

long-term mean, we set its mean-reverting speed to be zero.5 The impact of the new

factor on skewness is presented in the next proposition.

Proposition 4 In an extended Heston model with stochastic long term mean, the

risk-neutral underlying stock is modelled by

dSt

St

= rdt+
√
vtdB

S
t

dvt = κ(θt − vt)dt+ σv

√
vtdB

v
t .

dθt = σθ

√

θtdB
θ
t ,

5We assume that the stochastic long-term mean follows a square root process with zero drift. We
regard this setup as a limiting case of the CIR model (see Cox, Ingersoll and Ross, 1985) when the
mean-reverting speed approaches zero. Thus, its time-t conditional mean goes to the current long-
term mean level θt, and its conditional variance to σ2

θθt(T−t), where T is a future time. Note that the
conditional variance is infinite for an infinitely large future time, but as we show later in the data, the
conditional variance is finite, for the longest time to maturity in the data is three years. The standard
deviation factor σθ

√
θt avoids the possibility of negative values, but a zero long-term mean is not

precluded. The stochastic long-term mean θt follows a noncentral chi-squared distribution with zero
degrees of freedom (see Siegel, 1979), which is a Possion mixture of central chi-square distributions
with even degrees of freedom. Specifically, the noncentral χ2

0(λ) distribution is a mixture of central

{χ2
2K} distributions with Poisson weights P (K = k) = (λ/2)k

k! e−λ/2, k = 0, 1, 2, · · · (the central χ2
0

distribution is identically zero), where λ is the noncentrality parameter. In this setup, the Feller
condition is violated, so the variance long-term mean is not strictly positive and is accessible to zero.



The CBOE SKEW 13

where the new standard Brownian motion, Bθ
t , is independent of BS

t and Bv
t , and σθ

is the volatility of the long-term mean of variance. The model-implied squared VIX

and skewness at time t for time to maturity τ are as follows

V IX2
t,τ = (1− ω)θt + ωvt, ω =

1− e−κτ

κτ
,

Skt,τ =
TCH + TCHM

[V arH + V arHM ]3/2
, (23)

where the contributions of long-term mean variation to the variance and the third

cumulant are given by

V arHM =
1

4
σ2
θθtC1, (24)

TCHM = −3

2
σ2
θθtC1 +

3

2
ρσvσ

2
θθtC2 −

3

8
σ2
vσ

2
θθtC3 −

3

8
σ4
θθtC4, (25)

C1 =

∫ T

t

(e−κ(T−u) − 1 + κ(T − u))2

κ2
du, (26)

C2 =

∫ T

t

1− e−κ(T−u)

κ

∫ u

t

(1− e−κ(u−s))
e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (27)

C3 =

∫ T

t

(1− e−κ(T−u))2

κ2

∫ u

t

(1− e−κ(u−s))
e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (28)

C4 =

∫ T

t

(e−κ(T−u) − 1 + κ(T − u))2

κ2

∫ u

t

e−κ(T−s) − 1 + κ(T − s)

κ
dsdu, (29)

and the term variance, V arH , and third cumulant, TCH , of the Heston model are

given by Proposition 3.

Proof. See Appendix B.2.

Remark 4.1. In the extended Heston model, for κ > 0, if τ is small, the asymptotic

skewness is the same as that in the Heston model, given by

Skt,τ =
3

2
ρ
σv√
vt

√
τ + o(

√
τ ).
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If τ is large, then the skewness is given by

Skt,τ = −3
√
3

5

σθ√
θt

√
τ + o(

√
τ).

Hence the regularized skewness
√
τ Skt,τ behaves linearly with τ for both small τ and

large τ .

With the Merton (1976) jump-diffusion model, we are not able to create a flexible

SKEW term structure because the model-implied skewness times
√
τ is a constant

across different τ . With the Heston (1993) model, we are not able to produce a large

short-term skewness because the model-implied skewness goes to zero for small τ .

Hence, it is necessary to combine these two models in order to create a SKEW term

structure flexible enough to fit market data. The result of a hybrid Merton-Heston

model is presented in the next proposition.

Proposition 5 In a hybrid Merton-Heston model, i.e., a jump-diffusion model with

stochastic volatility, the risk-neutral underlying stock is modelled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λ(ex − 1)dt,

dvt = κ(θ − vt)dt+ σv

√
vtdB

v
t .

The model-implied squared VIX and skewness at time t for time to maturity τ are as

follows

V IX2
t,τ = (1− ω)θ + ωvt + 2λ(ex − 1− x), ω =

1− e−κτ

κτ
,

Skt,τ =
TCH + λx3τ

[V arH + λx2τ ]3/2
, (30)

where the term variance, V arH , and third cumulant, TCH , of the Heston model are

given by Proposition 3.
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Remark 5.1. Due to the independence between the jump and diffusion processes,

the term variance and third-cumulant of the hybrid Merton-Heston model is simply

the sum of the contributions from each model. The short-term skewness is no longer

zero due to the third cumulant contributed from jumps.

Remark 5.2. In the hybrid Merton-Heston model, for κ > 0, if τ is small, the

asymptotic skewness is given by

Skt,τ =
λx3

(vt + λx2)3/2
1√
τ
+ c

√
τ + o(

√
τ),

where

c =
3ρσvvt

2(vt + λx2)3/2
+

3[ρσvvt + κ(vt − θv)]λx3

4(vt + λx2)5/2
.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

1√
τ
+ o

(

1√
τ

)

,

where

a = λx3 + θ

[

3ρ
σv

κ
− 3

2
(1 + 2ρ2)

σ2
v

κ2
+

9

4
ρ
σ3
v

κ3
− 3

8

σ4
v

κ4

]

,

b = λx2 + θ

(

1− ρ
σv

κ
+

1

4

σ2
v

κ2

)

.

Hence, the regularized skewness
√
τ Skt,τ approaches to a constant for both small τ

and large τ .

The time-varying feature of VIX has been picked up by stochastic instantaneous

variance, vt, in the continuous-time models presented before. The time-varying fea-

ture of SKEW has to be picked up by jump-related variables. The jump size is usually

assumed to follow a static distribution (in particular, a constant in this paper); hence,

we have to rely on the stochastic jump intensity, λt, to capture the time-varying

SKEW. Retaining the affine structure, we propose the following three-factor model.
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Proposition 6 In a jump-diffusion model with stochastic volatility and stochastic

jump intensity with the same mean-reverting speed, the risk-neutral underlying stock

is modelled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt,

dvt = κ(θv − vt)dt+ σv

√
vtdB

v
t ,

dλt = κ(θλ − λt)dt+ σλ

√

λtdB
λ
t ,

where Bλ
t is independent of BS

t , B
v
t , Nt.

6 The model-implied squared VIX and skew-

ness at time t for time to maturity τ are as follows:

V IX2
t,τ = (1− ω)θV + ωVt,

Skt,τ =
TCH + TCJ

[V arH + V arJ ]3/2
, (31)

where

θV = θv + 2θλ(ex − 1− x), Vt = vt + 2λt(e
x − 1− x),

the contributions of the jump component to variance and the third cumulant are given

by

V arJ = ΛT
t x

2τ + (ex − 1− x)2Et(Z
2
T ), (32)

TCJ = ΛT
t x

3τ − 3x2(ex − 1− x)Et(Z
2
T )− (ex − 1− x)3Et(Z

3
T ), (33)

the average jump intensity, ΛT
t , is given by

ΛT
t =

1

T − t

∫ T

t

Et(λu)du = (1− ω)θλ + ωλt.

6In the literature, the stochastic jump intensity is usually assumed to depend on variance; see,
among others, Andersen, Benzoni and Lund (2002), Pan (2002) and Eraker (2004). In their setup,
the jump intensity also shares the same mean-reverting speed with the diffusive variance. Chen,
Joslin and Tran (2012) assume the same process for the stochastic jump intensity as that in our
Proposition 6.
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ZT is defined by

ZT ≡
∫ T

t

[λu −Et(λu)]du = σλ

∫ T

t

1− e−κ(T−u)

κ

√

λudB
λ
u ,

and the variance and third cumulant of ZT are given by

Et(Z
2
T ) = σ2

λ

∫ T

t

(1− e−κτ∗

κ

)2

Et(λu)du, τ ∗ = T − u, (34)

Et(Z
3
T ) = 3σ4

λ

∫ T

t

1− e−2κτ∗ − 2κτ ∗e−κτ∗

κ3

1− e−κτ∗

κ
Et(λu)du, (35)

and Et(λu) = θλ+(λt−θλ)e−κ(u−t) is the expected jump intensity. The term variance,

V arH , and third cumulant, TCH , of the Heston model are given by Proposition 3.

Proof. See Appendix B.3.

Remark 6.1. The mean-reverting speed of λt is designed to be the same as that of

vt, so that the resulting instantaneous squared VIX defined by Luo and Zhang (2012),

Vt = vt + 2λt(e
x − 1− x), follows a mean-reverting process with the same speed:

dVt = κ(θV − Vt)dt+ σv

√
vtdB

v
t + 2(ex − 1− x)σλ

√

λtdB
λ
t .

The VIX term structure model of Luo and Zhang (2012) can be directly applied.

Remark 6.2. As we can see from equations (32) and (33), the term variance, V arJ ,

and third cumulant, TCJ , contributed from jumps consist of two components. One of

them is due to the average jump intensity, ΛT
t ; the other one is due to the uncertainty,

σλ, in jump intensity. There is no interaction term between stochastic volatility and

jumps because they are independent.

Remark 6.3. In this three-factor model, for κ > 0, if τ is small, the asymptotic

skewness is given by

Skt,τ =
λtx

3

(vt + λtx2)3/2
1√
τ
+ c

√
τ + o(

√
τ ),
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where

c =
3ρσvvt

2(vt + λtx2)3/2
+

(3ρσvvtλt + κvtλt + 2κvtθ
λ − 3κθvλt)x

3

4(vt + λtx2)5/2
+

κλt(λt − θλ)x5

4(vt + λtx2)5/2
.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

1√
τ
+ o

(

1√
τ

)

,

where

a = θλ
[

x3 − 3x2(ex − 1− x)
σ2
λ

κ2
− 3(ex − 1− x)3

σ4
λ

κ4

]

+θv
[

3ρ
σv

κ
− 3

2
(1 + 2ρ2)

σ2
v

κ2
+

9

4
ρ
σ3
v

κ3
− 3

8

σ4
v

κ4

]

,

b = θλ
[

x2 + (ex − 1− x)2
σ2
λ

κ2

]

+ θv
(

1− ρ
σv

κ
+

1

4

σ2
v

κ2

)

.

Hence the regularized skewness
√
τ Skt,τ approaches to a constant for both small τ

and large τ .

As explained earlier, we need two variance factors, i.e., an instantaneous one, vt,

and a long-term one, θvt , to capture the information of the time-varying VIX term

structure. Similarly, in order the capture the information of the time-varying SKEW

term structure, we also need two factors, i.e., instantaneous and long-term jump

intensity, λt and θλt . The simplest five-factor model is presented as follows.

Proposition 7 In a jump-diffusion model with stochastic volatility and stochastic

jump intensity as well as stochastic corresponding long term mean levels, the risk-
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neutral underlying stock is modelled by

dSt

St

= rdt+
√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt,

dvt = κ(θvt − vt)dt+ σv

√
vtdB

v
t ,

dλt = κ(θλt − λt)dt+ σλ

√

λtdB
λ
t ,

dθvt = σ1

√

θvt dB
v
1,t,

dθλt = σ2

√

θλt dB
λ
2,t,

where the Brownian motions Bv
1,t, B

λ
2,t are independent of each other and BS

t , B
v
t , B

λ
t

and Nt. The model-implied squared VIX and skewness at time t for time to maturity

τ are as follows:

V IX2
t,τ = (1− ω)θVt + ωVt,

Skt,τ =
TCH + TCJ + TCM

[V arH + V arJ + V arM ]3/2
, (36)

where

θVt = θvt + 2θλt (e
x − 1− x), Vt = vt + 2λt(e

x − 1− x),

the contributions of long term mean variation to variance and third cumulant are

given by

V arM = V arHM + (ex − 1− x)2σ2
2θ

λ
t C1, (37)

TCM = TCHM − 3σ2
2θ

λ
t [x

2(ex − 1− x)C1 + (ex − 1− x)3(σ2
λC3 + σ2

2C4)],(38)

and the variance V arH , third cumulant TCH , of the Heston model are given by Propo-

sition 3, V arHM , TCHM , C1, C3, C4 are given by Proposition 4, V arJ and TCJ , of

jump component are given by Proposition 6.

Remark 7.1. The result is built by combining those of the propositions 4 and 6

and including the additional term variance and third cumulant contributed from the

uncertainty of long-term mean jump intensity, θλt .
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Remark 7.2. In this five-factor model, for κ > 0, if τ is small, the asymptotic

skewness is given by

Skt,τ =
λtx

3

(vt + λtx2)3/2
1√
τ
+ o

(

1√
τ

)

.

If τ is large, then the skewness is given by

Skt,τ =
a

b
√
b

√
τ + o(

√
τ),

where

a = −1

5
(ex − 1− x)3θλt σ

4
2 −

1

40
θvt σ

4
1,

b =
1

3
(ex − 1− x)2θλt σ

2
2 +

1

12
θvt σ

2
1.

Hence the regularized skewness
√
τ Skt,τ approaches to a constant for small τ , and

behaves linearly with τ for large τ .

4 Data

Our daily data on the term structure of VIX are from 24 November 2010 to 31

December 2015, and the data on the term structure of SKEW range from 2 January

1990 to 31 December 2015, provided by the CBOE website.7 On each day, we have

VIX and SKEW data for up to 12 maturity dates. The time to maturity becomes one

day shorter as we move forward by one day. We are particularly interested in times to

maturity, τ = 1, 2, · · · 15 months. Following the practice of the CBOE, we compute

the SKEW at time t for the desirable time to maturity τ by using interpolation as

follows:

SKEWt,τ = ωSKEWt,last + (1− ω)SKEWt,next,

7The 30-day VIX and SKEW indices are available from 2 January 1990 to 31 December 2015.
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where ω is a weight determined by

ω =
τnext − τ

τnext − τlast
,

and τlast and τnext are the times to maturity (up to minute) of the last and next

available data, respectively.8 We select the days with the maximum time to maturity

no less than 15 months (6183 trading days in total), and the summary statistics for the

interpolated SKEW term structure are reported in Table 1. The average one-month

SKEW is 118.28, which is equivalent to the skewness -1.828 of the SPX monthly

returns. The average SKEW slightly decreases as the time to maturity increases,

but it is still around 115 for the 15-month time to maturity. The maximum of the

interpolated SKEW is 201.15 for the four-month time to maturity, and the minimum

is 87.20 for the two-month time to maturity, which corresponds to a positive skewness

1.280.

Figure 1 shows the time evolution of the SKEW term structure for time to matu-

rity from one month to 15 months, and Figure 2 shows the time series of three selected

SKEWs with constant time to maturity. The sample period is from 2 January 1990

to 31 December 2015. As we can see from the figures, the SKEW term structure has

a relative stable shape before the financial tsunami. It has become erratic since 2010.

The level of SKEW significantly increases in recent years, which indicates that option

traders expected higher tail risk after the financial crisis.

Figure 3 shows a few samples of SKEW term structures with outliers. They either

have a very low minimum SKEW (smaller than 90) or a very high maximum SKEW

(higher than 180). The minimum SKEW value (85.28) occurred on 17 May 2013 with

expiry date 20 July 2013, and the maximum value (204.72) on 28 May 2013 with expiry

8There is an inconsistency in the CBOE practice on calculating the number of days for the time
to maturity. The business day convention is used in computing the term structure of the SKEW;
however, the calendar day is used in computing the 30-day SKEW index. In this paper, we construct
constant time to maturity SKEW by using the business day convention.
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date 21 September 2013. The index CBOE put/call ratio changed from 1.35 to 0.96

on 17 May 2013, which implies a bullish sentiment shift. Followed by 0.71, the index

put/call ratio is roughly 1.1 on 28 May 2013, which exhibits a bearish sentiment.9

Therefore, the outliers in May 2013 might be caused by market sentiment. The other

two outliers in 2013 could be induced by the low liquidity of long-term options. The

four examples in October 2015 indicate option market participants anticipate more

negative skewed mid-term or long-term returns due to the concerns about the stock

market instability.

5 Model Estimation and Empirical Performance

The latent state variables in the stochastic volatility models have placed a big chal-

lenge for the estimation. Several approaches have been proposed in the literature;

see, for example, Bakshi, Cao and Chen (2000) for the simulated method of moments

(SMM), Chernov and Ghysels (2000) and Anderson, Benzoni and Lund (2002) for

the efficient method of moments (EMM), Pan (2002) for the implied-state general-

ized method of moments (IS-GMM), and Eraker, Johannes and Polson (2003) and

Eraker (2004) for the Markov Chain Monte Carlo (MCMC) method. These estima-

tors, using options and/or returns data, impose severe computational burdens and

are not easy to implement. In this paper, with the carefully processed and pub-

licly available term structure data of the CBOE VIX and SKEW, we develop a new

easily implemented estimation procedure, which learns about the model parameters

sequentially with feasible computation steps.

We use the term structure data of VIX and SKEW to estimate the models pro-

posed in Section 4. Due to the availability of the CBOE VIX term structure data,

we adjust all other data to 24 November 2010 to 31 December 2015 (1284 trading

9The index put/call ratio data are from the CBOE website.
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days), including SPX (with extra one-month data before the starting date), the 30-day

VIX index and the SKEW term structure data. We apply the sequential estimation

method starting from the Black-Scholes (1973) model.

In the Black-Scholes model, there is just one constant unknown σ2. We fit the

theoretical value of VIX, 100σ, with the VIX term structure data (1284 days with

roughly 10 observations each day). The optimal value of σ2 is 0.0432, with the VIX

root mean squared error (RMSE) 5.4698. The theoretical value of SKEW in the

Black-Scholes model is 100, and the SKEW RMSE is 26.6709. The estimation results

are reported in Table 2.

In the Merton model, we can confirm two values: the total variance (denoted

as V ar) and the regularized skewness (denoted as RSk). The estimation at the

VIX stage, which refers to the estimation using the VIX term structure data, is the

same as that in the Black-Scholes model. The estimation at the SKEW stage is as

follows: We fit the theoretical value of SKEW = 100− 10RSk√
τ

with the SKEW term

structure data. The optimal value for RSk=-1.02, and the SKEW RMSE is 16.655.

To further estimate the model, we need an extra condition, which is the diffusive

variance proportion 0.88 (denoted as Prop), computed as the ratio of the average

monthly diffusive variance to the average monthly realized variance of the SPX daily
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logarithmic returns10. Solving the following three equations

V ar = σ2 + 2λ(ex − 1− x), RSk =
λx3

(σ2 + λx2)
3
2

, P rop =
σ2

σ2 + λx2
,

gives

σ2 = 0.0399, λ = 0.00167, x = −180.5%.

The resulting jump size is unreasonably high in magnitude.

In the Heston model, we use a two-step iterative approach, which is also used by

Christoffersen, Heston and Jacobs (2009), to estimate the model parameters (κ, θ)

and latent variable {Vt} using the term structure of the CBOE VIX. We follow the

same procedure adopted by Luo and Zhang (2012) to estimate the mean-reverting

speed κ, θ and daily realizations of instantaneous variance. Specifically, the estimation

procedure is as follows:

Step 1 Given an initial value κ and θ, obtain the daily realizations of the instan-

taneous variance {Vt}, t = 1, 2, · · · , T , where T is the total number of trading days

in the sample. In this step, we are required to solve T optimization problems,

{Vt} = argmin

nt
∑

j=1

(V IXt,τj − V IXMkt
t,τj

)2,

where V IXt,τj is the model-implied value of VIX with maturity τj on day t, V IXMkt
t,τj

is the corresponding market value and nt is the total number of maturities for the

VIX term structure on day t.

10Barndorff-Nielsen and Shephard (2004) define the discrete version of the diffusive (integrated)

variance as DVt−τ,t = π
2

∑P |δsi||δsi+1|, where P denotes a partition of the interval [t − τ, t], si
denotes the ith logarithmic price and δ the first-order difference. We choose the period of a month,
i.e., τ = 1/12, to calculate the diffusive variance with a daily partition in our paper. The diffusive

DVt approaches the integrated variance in the probability limit sense, plim
||P||→0

DVt =
∫ t

t−τ
vsds, and

is robust to rare jumps, whereas the realized variance RVt =
∑P

(δsi)
2 approaches the integrated

variance plus the jump variance, plim
||P||→0

RVt =
∫ t

t−τ vsds +
∑Nt

i=1(xi)
2, where Nt denotes the total

number of jumps in [t−τ, t] and xi denotes the jump size given the ith jump arrival. We calculate the
diffusive variance and realized variance on each trading day from 24 November 2010 to 31 December
2015, and take the proportion of the average diffusive variance and realized variance.
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Step 2 Estimate κ and θ with {Vt} obtained in step 1 by minimizing the overall

objective function for VIX:

{κ, θ} = argmin
T
∑

t=1

nt
∑

j=1

(V IXt,τj − V IXMkt
t,τj

)2.

Step 1 and Step 2 are repeated until no further significant decrease exists in the

overall objective (i.e., the aggregate sum of the VIX squared errors). The estimation

results are as follows:

κ = 0.312, θ = 0.149,

with VIX RMSE 1.3696. However, the model is not fully estimated as we can only

determine κ and θ at the VIX level. To obtain ρ and σv, we need the SPX and 30-day

VIX data as well as the SKEW term structure data. Specifically, we estimate ρ with

Corr(d logSt, dV IX2
t ), and σv with

{σv} = argmin

T
∑

t=1

mt
∑

j=1

(SKEWt,τj − SKEWMkt
t,τj

)2,

where SKEWt,τj is the theoretical value of SKEW with maturity τj on date t,

SKEWMkt
t,τj

is the corresponding market value, mt is the total number of maturi-

ties for the SKEW term structure on day t, and T is the total number of trading days

in the sample. Note that mt might be different from nt, but T is the same for the

two-level estimation: the VIX level and the SKEW level. The optimization gives

ρ = −0.784, σv = 0.609,

with SKEW RMSE 10.201.

In the extended Heston model, where the long-term mean level of the variance is

an additional stochastic variable, the estimation procedure is similar to that in the

Heston model. Instead, we estimate one parameter κ and two latent variables {Vt, θt}.

The estimation gives

κ = 1.96,
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with VIX RMSE 0.5539. At the SKEW level, in addition to the unrestricted estima-

tion results

ρ = −0.784, σv = 0.899, σ1 = 0.240,

with SKEW RMSE 9.122. Note that the average long-term mean θ (0.071) is half of

the previous Heston estimation (0.149). The VIX RMSE reduced by more than half

in the extended Heston model. We further check the estimation results using

var(dVt) ≈ E(vart(dVt)) = σ2E(Vt)dt,

where var(dVt) denotes the unconditional variance of the change of the instantaneous

variance Vt and E(Vt) denotes its expected value. The rough estimation results in σv =

0.831, σ1 = 0.235, confirming the consistency of the estimation using the SKEW term

structure data. We use the expected conditional variance E(vart(dVt)) to approximate

the unconditional variance var(dVt), for the difference between them var(Et(dVt)) =

var(dVt)−E(vart(dVt)) is of order (dt)
2.

In the Merton-Heston model, which includes a jump component, we adjust the cor-

relation coefficient ρ using the diffusive variance proportion (0.88), which is the same

as the additional condition in the calibration of the Merton model. Our estimation

for ρ is based on the following relationship

Corr(d logSt, dV IX2
t ) ≈ ρ

√

E(vt)

E(vt + x2λt)
,

where we use the expected conditional variance or covariance to approximate the

unconditional one. We substitute vt = Vt−2λ(ex−1−x) and θv = θV −2λ(ex−1−x)

into the SKEW formula, where Vt and vt denote the instantaneous VIX square and

diffusive variance, respectively, θ and θv denote their corresponding long-term mean

levels. The estimation result for the Merton-Heston Model is as follows

ρ = −0.836, σv = 0.633, x = −16.7%, θv = 0.142, λ = 0.274,
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with SKEW RMSE 8.779.

In the Merton-extended Heston model, we estimate the parameters based on the

VIX estimation results under the extended Heston model. We omit the impact of the

stochastic long-term mean on the calculation of ρ, substitute vt = Vt− 2λ(ex− 1−x)

and θvt = θVt − 2λ(ex − 1 − x) into the SKEW formula, and the estimation result is

as follows

ρ = −0.836, σv = 0.983, x = −10.6%, σ1 = 0.173, λ = 0.641,

with SKEW RMSE 8.158. We are interested in the behaviour of the regularized

skewness, for it is a constant for the independent and identically distributed returns, as

the case in the Merton model. The incorporation of the stochastic volatility changed

this feature. We show the aggregate regularized skewness by substituting the optimal

estimated parameters and the averages of the latent variables in Figure 4 for the

Merton-Heston and Merton-extended Heston models.

In the three-factor model, which is a generalization of the Merton-Heston model by

relaxing the constraints σλ = 0, λt = θλ, we take all the optimal values in the Merton-

Heston model at the SKEW-level estimation to see how the generalization improves

the fitting performance. Given an initial value for σλ, the daily estimation using the

SKEW term structure data is as follows: With the optimal mean-reverting speed

κ = 0.312, the long-term mean of the instantaneous VIX square θ = 0.149 and time

series {Vt} obtained from the VIX-level estimation as well as the correlation coefficient

ρ = −0.836, the volatility of volatility σv = 0.633, the jump size x = −16.7% and the

long-term mean of the diffusive variance θv = 0.142 from the SKEW-level estimation

for the Merton-Heston model, we can estimate daily diffusive variance vt by solving

T optimizations

{vt} = argmin

mt
∑

j=1

(SKEWt,τj − SKEWMkt
t,τj

)2,
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with the constraint vt < Vt. Note that we substitute λt =
Vt−vt

2(ex−1−x)
and θλ = θV −θv

2(ex−1−x)

into the SKEW formula. For the estimation of σλ, as the SKEW formula is insen-

sitive to σλ, we estimate it using
√

var(dλt)
E(λt)dt

with the optimal daily (dt = 1
252

) real-

izations of the jump intensity {λt}, computed as Vt−vt
2(ex−1−x)

, where the instantaneous

VIX square {Vt} is the optimal realization from the VIX-level estimation, and the

diffusive variance {vt} is from the SKEW-level estimation. We repeat this two-step

iterative procedure until the value of σλ remains unchanged after each optimization

for {λt}. The SKEW RMSE reduced from 8.779 in the Merton-Heston model to 8.604

in the three-factor model. The daily realizations of the instantaneous VIX square,

the diffusive variance and the jump intensity are shown in Figure 5.

In the five-factor model, which is a generalization of the Merton-extended Heston

model by relaxing the constraints σλ = 0, σ2 = 0, λt = θλt , the daily estimation

procedure is similar to that in the three-factor model, but all the optimal values are

from the VIX-level estimation under the extended Heston model and the SKEW level

estimation under the Merton-extended Heston model. We substitute λt =
Vt−vt

2(ex−1−x)

and θλt =
θVt −θvt

2(ex−1−x)
into the SKEW formula, and adopt a three-step iterative procedure

for the estimation of the five-factor model. Specifically, given an initial value of σλ, we

use a two-step procedure, which is the same as that for the VIX-level estimation, to

obtain {vt}, {θvt } and σ2, and then add an outer loop to estimate σλ using
√

var(dλt)
E(λt)dt

with the optimal realizations of the jump intensity {λt} until we get an unchanged

σλ. The SKEW RMSE reduced from 8.158 in the Merton-extended Heston model

to 6.953 in the five-factor model. In Figure 6, the date 29 November 2013 is chosen

to demonstrate the fitting performance of the five-factor model. From this figure,

we see that the jumps are essential to produce the nonzero short-term skewness, and

the instantaneous skewness becomes infinity at point zero. The daily realizations of

the instantaneous VIX square, diffusive variance and the jump intensity are shown in
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Figure 7.

In Table 2, we report all the parameter estimates and corresponding RMSEs

for the aforementioned eight models. We measure and compare the models’ fitting

performances in terms of RMSEs. We find that the Merton-extended Heston model

improve the fitting performance of the VIX term structure by 60% compared with

the Merton-Heston model, and the Merton-Heston (Merton-extended Heston) model

outperforms the Heston model by 14% (20%) when fitting the SKEW term structure.

The performance of the five-factor (three-factor) model in fitting the SKEW term

structure exceeds that of the Merton-extended Heston (Merton-Heston) model by

15% (2%). Our estimation results suggest that the five-factor model is superior when

modelling the term structure of the CBOE VIX and SKEW.

We show in the model section that the Black-Scholes (1973), Merton (1976) and

Heston (1993) models exhibit zero skewness, constant regularized skewness and zero

instantaneous skewness, respectively, which are implausible to explain the stylized

skewness of the distribution of the SPX log returns; see Das and Sundaram (1999) and

Zhang et al. (2016). Note that the nonzero correlation between the SPX logarithmic

returns and the daily changes of the VIX square is dominated by the diffusive variance

term. It is essential to incorporate the Heston stochastic volatility into the model

setup. The estimation result in the Merton model confirms the importance of the

stochastic volatility in measuring skewness, as the jump component is extremely large

without the correlation term in the skewness formula. Therefore, a model (e.g., the

Merton-Heston model) with both a jump component and a return-correlated diffusive

variance component, is basic for capturing the time-changing skewness. However, to

better model the behaviour of skewness, we further propose a five-factor model, where

the diffusive variance, jump intensity and their long-term mean levels are changing

over time. Luo and Zhang (2012) show the advantages of modelling the term structure
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of the VIX square using the extended Heston model, where the long-term mean level

follows a martingale process. We find additionally that the extended Heston model is

advantageous in modelling the term structure of SKEW compared with the standard

Heston model in terms of the lower root mean squared error.

6 Conclusion

In this paper, we derive skewness formulas under various affine jump diffusion models,

proposed by Duffie, Pan and Singleton (2000), which are typically used in option

pricing. Given the VIX formulas in Luo and Zhang (2012), the skewness formulas

provide a new perspective to identify the model parameters as well as the latent

variables using the combined CBOE VIX and SKEW term structure data, which are

daily updated on the CBOE website, as opposed to the option cross-sectional data,

which are only available in subscribed databases. We also analyse the asymptotic

behaviours of the skewness formulas.

To model skewness more accurately, we propose an affine jump diffusion model

with five factors, which are logarithmic returns, diffusive variance, jump intensity and

the long-term mean levels of diffusive variance and jump intensity. We compare the

empirical performances of different models, and find that the five-factor model is the

most powerful one to fit both the VIX and SKEW term structure in terms of the

lowest root mean squared errors. As the VIX and SKEW term structure data are

extracted from option prices, the parameters and latent variables are estimated under

the risk-neutral measure, and can be directly applied to option pricing.
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A The First Three Moments of Log Return

Bakshi, Kapadia and Madan (2003) propose a methodology of evaluating the first

three moments of log return, EQ
t (R

T
t ), E

Q
t [(R

T
t )

2] and EQ
t [(R

T
t )

3] by using current

prices of European options as follows.

For any twice differentiable function f(ST ), following equality holds

f(ST ) = f(K0) + f ′(K0)(ST −K0) +

∫ K0

0

f ′′(K)max(K − ST , 0)dK

+

∫ +∞

K0

f ′′(K)max(ST −K, 0)dK, (39)

where K0 is a reference strike price that could take any value. This mathematical

equality has a profound financial meaning: A European-style derivative with an ar-

bitrary payoff function, f(ST ), can be decomposed into a portfolio of bonds with a

face value f(K0), f
′(K0) amount of forward contract and f ′′(K) amount of European

options, with strikes between 0 and K0 for puts and between K0 and +∞ for calls.

Applying equation (39) to the power of log return gives

ln
ST

F T
t

= ln
K0

F T
t

+
ST

K0
− 1−

∫ K0

0

1

K2
max(K − ST , 0)dK

−
∫ +∞

K0

1

K2
max(ST −K, 0)dK,

ln2 ST

F T
t

= ln2 K0

F T
t

+ 2 ln
K0

F T
t

(

ST

K0

− 1

)

+

∫ K0

0

2− 2 ln K
FT
t

K2
max(K − ST , 0)dK

+

∫ +∞

K0

2− 2 ln K
FT
t

K2
max(ST −K, 0)dK,

ln3 ST

F T
t

= ln3 K0

F T
t

+ 3 ln2 K0

F T
t

(

ST

K0
− 1

)

+

∫ K0

0

6 ln K
FT
t

− 3 ln2 K
FT
t

K2
max(K − ST , 0)dK

+

∫ +∞

K0

6 ln K
FT
t

− 3 ln2 K
FT
t

K2
max(ST −K, 0)dK.

Applying conditional expectation to the three equations in the risk-neutral measure,
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we notice that

EQ
t [max(ST −K, 0)] = erτct(K), EQ

t [max(K − ST , 0)] = erτpt(K),

where ct(K) (pt(K)) is call (put) option price at the current time. Evaluating the inte-

gration approximately using discretization gives the first three moments in equations

(5), (6) and (7).

B Model-Implied VIX and Skewness Formulas

B.1 The Merton Model

In the Merton (1976) model, the risk-neutral logarithmic process of the underlying

stock is as follows

d lnSt =
[

r − 1

2
σ2 − λ(ex − 1− x)

]

dt+ σdBt + xdNt − λxdt.

We define the logarithmic return from time t to T as RT
t ≡ ln ST

St
, then the variance

and third cumulant of RT
t are given by

EQ
t [R

T
t − EQ

t (R
T
t )]

2 = EQ
t

(

∫ T

t

σdBt + xdNt − λxdt
)2

= (σ2 + λx2)τ,

EQ
t [R

T
t − EQ

t (R
T
t )]

3 = EQ
t

(

∫ T

t

σdBt + xdNt − λxdt
)3

= λx3τ.

Therefore, the skewness of logarithmic return is given by

Skt =
EQ

t [R
T
t −EQ

t (R
T
t )]

3

{EQ
t [R

T
t −EQ

t (R
T
t )]

2}3/2
=

λx3

(σ2 + λx2)3/2
τ−1/2.

B.2 The Heston Model with Stochastic Long-Term Mean

We generalize the Heston variance process by adding another stochastic component,

the long term mean θt, as follows

dvt = κ(θt − vt)dt+ σv

√
vtdB

v
t , (40)

dθt = σθ

√

θtdB
θ
t , (41)
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where Bθ
t is independent of Bv

t and BS
t .

Converting equation (40) into the stochastic integral form and plugging equation

(41) yields

vs = Et(vs) + σv

∫ s

t

e−κ(s−u)√vudB
v
u + σθ

∫ s

t

(1− e−κ(s−u))
√

θudB
θ
u, (42)

where the expectation of vs at time t (t < s) is given by

Et(vs) = θt + (vt − θt)e
−κ(s−t).

Following the procedure in Zhang et al. (2016), we define two integrals as

XT ≡
∫ T

t

√
vudB

S
u , YT ≡

∫ T

t

[vu −EQ
t (vu)]du.

Substituting equation (42) and interchanging the order of integrations gives

YT = σv

∫ T

t

∫ s

t

e−κ(s−u)√vudB
v
uds+ σθ

∫ T

t

∫ s

t

(1− e−κ(s−u))
√

θudB
θ
uds,

= σv

∫ T

t

1− e−κ(T−u)

κ

√
vudB

v
u + σθ

∫ T

t

e−κ(T−u) − 1 + κ(T − u)

κ

√

θudB
θ
u.

We introduce new martingale processes, Y H
s and Y M

s , as follows

Y H
s = σv

∫ s

t

1− e−κ(T−u)

κ

√
vudB

v
u,

Y M
s = σθ

∫ s

t

e−κ(T−u) − 1 + κ(T − u)

κ

√

θudB
θ
u.

Therefore, at time T , we have YT = Y H
T + Y M

T .

To express the contribution of long-term mean variation explicitly, using the in-

dependency of Bθ
s and the martingale property of Y H

s , Y M
s and θs, we expand and

simplify the variance and third cumulant of RT
t in Zhang et al. (2016) as follows:

EQ
t [R

T
t − EQ

t (R
T
t )]

2 = EQ
t (X

2
T )− EQ

t (XTYT ) +
1

4
EQ

t (Y
2
T )

= V arH −EQ
t (XTY

M
T ) +

1

4
EQ

t [2Y
H
T Y M

T + (Y M
T )2]

= V arH +
1

4
EQ

t [(Y
M
T )2],
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EQ
t [R

T
t − EQ

t (R
T
t )]

3 = EQ
t (X

3
T )−

3

2
EQ

t (X
2
TYT ) +

3

4
EQ

t (XTY
2
T )−

1

8
EQ

t (Y
3
T )

= TCH − 3

2
EQ

t (X
2
TY

M
T ) +

3

4
EQ

t [2XTY
H
T Y M

T +XT (Y
M
T )2]

−1

8
EQ

t [3(Y
H
T )2Y M

T + 3Y H
T (Y M

T )2 + (Y M
T )3]

= TCH − 3

2
EQ

t (X
2
TY

M
T ) +

3

2
EQ

t (XTY
H
T Y M

T )

−1

8
EQ

t [3(Y
H
T )2Y M

T + (Y M
T )3],

where the variance V arH and third cumulant TCH are of the original forms in Zhang

et al. (2016), with no impact of stochastic long-term mean.

We need the following results in expressing the extra terms arising from the

stochastic long-term mean.

Lemma 1 The correlations between Y M
s and θs as well as vs are given by

EQ
t (Y

M
s θs) = σ2

θθt

∫ s

t

e−κ(T−u) − 1 + κ(T − u)

κ
du, (43)

EQ
t (Y

M
s vs) = σ2

θθt

∫ s

t

(1− e−κ(s−u))
e−κ(T−u) − 1 + κ(T − u)

κ
du. (44)

Proof. See Appendix B.2.1.

Using Ito’s Isometry and the martingale property of θu, we have

EQ
t [(Y

M
T )2] = EQ

t

(

σθ

∫ T

t

e−κ(T−u) − 1 + κ(T − u)

κ

√

θudB
θ
u

)2

= σ2
θθtC1,

where C1 =
∫ T

t
(e−κ(T−u)−1+κ(T−u))2

κ2 du.

Using Ito’s Lemma and martingale property of Xu and Y M
u , we have

EQ
t (X

2
TY

M
T ) = EQ

t

∫ T

t

d(X2
uY

M
u )

= EQ
t

∫ T

t

2XuY
M
u dXu +X2

udY
M
u + Y M

u (dXu)
2 + 2XudXudY

M
u

=

∫ T

t

EQ
t (Y

M
u vu)du = σ2

θθtC1.
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Using Ito’s Lemma and martingale property of Xu, Y
H
u and Y M

u , we have

EQ
t [XTY

H
T Y M

T ] = EQ
t

∫ T

t

d(XuY
H
u Y M

u )

= EQ
t

∫ T

t

Y H
u Y M

u dXu +XuY
M
u dY H

u +XuY
H
u dY M

u

+Y M
u dXudY

H
u + Y H

u dXudY
M
u +XudY

H
u dY M

u

= ρσv

∫ T

t

1− e−κ(T−u)

κ
EQ

t (Y
M
u vu)du = ρσvσ

2
θθtC2,

where C2 =
∫ T

t
1−e−κ(T−u)

κ

∫ u

t
(1− e−κ(u−s)) e

−κ(T−s)−1+κ(T−s)
κ

dsdu.

Using Ito’s Lemma and martingale property of Y H
u and Y M

u , we have

EQ
t [(Y

H
T )2Y M

T ] = EQ
t

∫ T

t

d[(Y H
u )2Y M

T ]

= EQ
t

∫ T

t

2Y H
u Y M

u dY H
u + (Y H

u )2dY M
u + Y M

u (dY H
u )2 + 2Y H

u dY H
u dY M

u

= σ2
v

∫ T

t

(1− e−κ(T−u))2

κ2
EQ

t (Y
M
u vu)du = σ2

vσ
2
θθtC3,

where C3 =
∫ T

t
(1−e−κ(T−u))2

κ2

∫ u

t
(1− e−κ(u−s)) e

−κ(T−s)−1+κ(T−s)
κ

dsdu.

Using Ito’s Lemma and martingale property of Y M
u , we have

EQ
t [(Y

M
T )3] = EQ

t

∫ T

t

d(Y M
u )3 = EQ

t

∫ T

t

3(Y M
u )2dY M

u + 3Y M
u (dY M

u )2

= 3σ2
θ

∫ T

t

(e−κ(T−u) − 1 + κ(T − u))2

κ2
EQ

t (Y
M
u θu)du = 3σ4

θθtC4,

where C4 =
∫ T

t
(e−κ(T−u)−1+κ(T−u))2

κ2

∫ u

t
e−κ(T−s)−1+κ(T−s)

κ
dsdu.

B.2.1 Proof of Lemma 1

Using Ito’s Lemma and martingale property of Y M
u and θu, we have

EQ
t (Y

M
s θs) = EQ

t

∫ s

t

d(Y M
u θu) = EQ

t

∫ s

t

θudY
M
u + Y M

u dθu + dY M
u dθu

= σ2
θθt

∫ s

t

e−κ(T−u) − 1 + κ(T − u)

κ
du,

which is equivalent to equation (43).
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Furthermore, we have the integral

∫ s

t

EQ
t (Y

M
u θu)du = σ2

θθt

∫ s

t

∫ u

t

e−κ(T−r) − 1 + κ(T − r)

κ
drdu

= σ2
θθt

∫ s

t

(s− u)
e−κ(T−u) − 1 + κ(T − u)

κ
du.

Using Ito’s Lemma and martingale property of Y M
u , we have

EQ
t (Y

M
s vs) = EQ

t

∫ s

t

d(Y M
u vu) = EQ

t

∫ s

t

vudY
M
u + Y M

u dvu + dY M
u dvu

= −κEQ
t

∫ s

t

EQ
t (Y

M
u vu)du+ κ

∫ s

t

EQ
t (Y

M
u θu)du

= −κEQ
t

∫ s

t

EQ
t (Y

M
u vu)du+ σ2

θθt

∫ s

t

κ(s− u)
e−κ(T−u) − 1 + κ(T − u)

κ
du.

Solving the ordinary differential equation (ODE) gives

∫ s

t

EQ
t (Y

M
u vu)du = σ2

θθt

∫ s

t

e−κ(s−r)

∫ r

t

κ(r − u)
e−κ(T−u) − 1 + κ(T − u)

κ
dudr

= σ2
θθt

∫ s

t

e−κ(s−u) − 1 + κ(s− u)

κ

e−κ(T−u) − 1 + κ(T − u)

κ
du.

Taking differentiation with respect to s gives

EQ
t (Y

M
s vs) = σ2

θθt

∫ s

t

(1− e−κ(s−u))
e−κ(T−u) − 1 + κ(T − u)

κ
du,

which is equivalent to equation (44). This completes the proof.

B.3 The Jump Diffusion Models

In a jump-diffusion model, the risk-neutral underlying stock is modelled by

dSt

St
= rdt+

√
vtdB

S
t + (ex − 1)dNt − λt(e

x − 1)dt, (45)

where r is the risk-free rate, the jump size x is constant, and the diffusive variance vt

and jump intensity λt are stochastic. We do not specify the processes for vt and λt

to derive generic expressions for the second and third central moments of logarithmic

return in jump-diffusion models.
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Applying Ito’s Lemma to equation (45) gives

d lnSt =
[

r − 1

2
vt − λt(e

x − 1− x)
]

dt+
√
vtdB

S
t + xdNt − λtxdt. (46)

The logarithmic return from current time t, to a future time, T , is defined by

RT
t ≡ ln

ST

St

=

∫ T

t

[

r − 1

2
vu − λu(e

x − 1− x)
]

du+
√
vudB

S
u + xdNu − λuxdu. (47)

The conditional expectation at time t is then given by

EQ
t (R

T
t ) =

∫ T

t

[

r − 1

2
EQ

t (vu)− EQ
t (λu)(e

x − 1− x)
]

du. (48)

Following the notations in Zhang et al. (2016), we introduce another two integrals

ZT ≡
∫ T

t

[λu − EQ
t (λu)]du, IT ≡

∫ T

t

dNu − λudu.

With those notations as well as XT and YT , subtracting (48) from (47) yields

RT
t − EQ

t (R
T
t ) = XT − 1

2
YT + xIT − (ex − 1− x)ZT . (49)

Assuming that there is no jumps in variance, and using the incremental indepen-

dency property of a Poisson process, we obtain the variance and third cumulant of

RT
t as follows

EQ
t [R

T
t − EQ

t (R
T
t )]

2 = EQ
t (X

2
T )−EQ

t (XTYT ) +
1

4
EQ

t (Y
2
T ) + x2EQ

t (I
2
T )

+(ex − 1− x)2EQ
t (Z

2
T ),

EQ
t [R

T
t − EQ

t (R
T
t )]

3 = EQ
t (X

3
T )−

3

2
EQ

t (X
2
TYT ) +

3

4
EQ

t (XTY
2
T )−

1

8
EQ

t (Y
3
T )

+x3EQ
t (I

3
T )− 3x2(ex − 1− x)EQ

t (Z
2
T )− (ex − 1− x)3EQ

t (Z
3
T ),

where the variance of XT , the variance and third cumulant of IT are given by

EQ
t (X

2
T ) =

∫ T

t

EQ
t (vu)du, EQ

t (I
2
T ) = EQ

t (I
3
T ) =

∫ T

t

EQ
t (λu)du.
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To express the terms in variance and third cumulant of RT
t explicitly, we need

to specify the processes for the diffusive variance and jump intensity. See Zhang et

al. (2016) for the case of the Heston model. Furthermore, if the jump intensity also

follows a square root process, we obtain similar results for EQ
t (Z

2
T ) and EQ

t (Z
3
T ) to

the Heston model.
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Table 1: Descriptive Statistics of the CBOE SKEW Term Structure
We interpolate the daily SKEW term structure to constant time to maturity, τ = 1,
2, · · · , 15 months. The sample period is from 2 January 1990 to 31 December 2015.
We only consider the days when the maximum time to maturity is not less than 15
months.

Maturity Mean Std Dev Skewness Kurtosis Minimum Maximum
1 118.2838 6.4471 0.8605 4.1506 101.0830 152.6511
2 117.7163 6.5946 1.9604 11.9646 87.1974 176.4242
3 117.5648 7.1675 2.4682 16.3426 96.8083 185.8500
4 117.6166 5.9607 1.7114 13.4535 102.1300 201.1458
5 117.4569 5.7951 0.9476 5.7038 101.9557 176.1263
6 116.9714 6.0167 0.7759 3.8101 99.5674 151.1067
7 116.4618 6.3072 0.7679 3.4917 99.8546 147.7979
8 115.9695 6.5611 0.8015 3.5354 98.3849 153.6933
9 115.4839 6.7418 0.8370 3.8238 99.2181 165.8313
10 115.0946 6.8667 0.7507 3.4183 95.4138 152.2994
11 114.9395 7.0655 0.6711 3.1955 93.1753 147.1083
12 115.0983 7.3712 0.8476 3.6436 97.0592 152.6782
13 115.3490 7.7741 1.1685 4.9493 97.8423 158.9494
14 115.4172 7.9974 1.2156 5.0365 97.1610 164.1166
15 115.2539 8.1480 1.3494 6.4342 96.4798 179.0453



T
h
e
C
B
O
E
S
K
E
W

44

Table 2: Estimation Results
This table shows the estimation results for eight models: BS (Black-Scholes), M (Merton), H (Heston), eH (extended
Heston), MH (Merton-Heston), 3F (three-factor), MeH (Merton-extended Heston) and 5F (five-factor). The estimation
comprises two levels: the VIX level and the SKEW level. For the M model, the VIX and SKEW term structure data
are not sufficient to determine the parameters. Therefore, we use the diffusive variance proportion (0.88) computed
as the ratio of the average monthly diffusive variance to average monthly realized variance with the SPX daily return
data as an additional condition. For the 3F and 5F models, we use the optimal parameters estimated from the MH
and MeH models, respectively, and separate the diffusive variance from total variance indicated by instantaneous VIX
square, which also includes the jump variance. The correlation coefficient between the logarithmic return and the change
of diffusive variance is calculated using the S&P 500 index (SPX) and the 30-day VIX index, and adjusted with the
diffusive variance proportion for the models where jumps exist in prices. The average values of the latent variables
(v, λ, θv, θλ) are reported with the corresponding standard deviations in parentheses. The columns labelled VIX and
SKEW report the root mean squared errors (RMSE) for the estimations using the VIX and SKEW term structure data,
respectively. The sample period is from 24 November 2010 to 31 December 2015.

RMSE
κ ρ x σv σλ σ1 σ2 v λ θv θλ VIX SKEW

BS - - - - - - - 0.0432 - - - 5.4698 26.671
M - - -180.5% - - - - 0.0399 0.00167 - - 5.4698 16.655
H 0.312 -0.784 - 0.609 - - - 0.0343(0.0258) - 0.149 - 1.3696 10.201
eH 1.96 -0.784 - 0.899 - 0.240 - 0.0303(0.0283) - 0.0709(0.0245) - 0.5539 9.122
MH 0.312 -0.836 -16.7% 0.633 - - - 0.0270(0.0258) 0.274 0.142 - 1.3696 8.779
3F 0.312 -0.836 -16.7% 0.633 6.010 - - 0.0187(0.0190) 0.589(0.504) 0.142 0.274 1.3696 8.604
MeH 1.96 -0.836 -10.6% 0.983 - 0.173 - 0.0233(0.0283) 0.641 0.0639(0.0245) - 0.5539 8.158
5F 1.96 -0.836 -10.6% 0.983 9.748 0.173 5.269 0.0247(0.0295) 0.508(0.598) 0.0504(0.0395) 1.88(1.77) 0.5539 6.953
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Figure 1: The Time Evolution of the CBOE SKEW Term Structure.
This graph shows the time evolution of the interpolated SKEW term structure for
the time to maturity, τ = 1, 2, · · · , 15 months. The sample period is from 2 January
1990 to 31 December 2015. We only consider the days when the maximum time to
maturity is not less than 15 months.
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Figure 2: The Time Series of the CBOE SKEW with Fixed Times to Maturity
This graph shows the time series of the CBOE SKEWwith one month, six months and
15 months to maturity. The sample period is from 2 January 1990 to 31 December
2015. We only consider the days when the maximum time to maturity is not less
than 15 months.
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Figure 3: A few Samples of the CBOE SKEW Term Structure with Outliers
We choose the days when the CBOE SKEW is above 180 or below 90 for the period
2 January 1990 to 31 December 2015.
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Figure 4: Model-Implied Aggregate Regularized Skewness.
The regularized skewness is defined as the product of the skewness and the square root
of the time to maturity. The blue solid line represents the model-implied regularized
skewness in the Merton-Heston model (upper) or the Merton-extended Heston model
(lower), respectively, where the inputs are the optimal estimated parameters and
averages of the latent variables: κ = 0.312, ρ = −0.836, x = −16.7%, σv = 0.633,
λ = 0.274, θV = 0.149, θv = 0.142, V̄t = 0.0343 and v̄t = 0.0270 for the Merton-
Heston model and κ = 1.96, ρ = −0.836, x = −10.6%, σv = 0.983, σ1 = 0.173,
λ = 0.641, θ̄Vt = 0.0709, θ̄vt = 0.0639, V̄t = 0.0303 and v̄t = 0.0233 for the Merton-
extended Heston model. The green dashed line represents the linear asymptote of
the model-implied regularized skewness at zero and the red dotted line represents the
Merton-implied regularized skewness. The sample period is from 24 November 2010
to 31 December 2015.
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Figure 5: The Three-Factor Model
This graph shows the daily optimal realizations of the instantaneous squared VIX,
diffusive variance, jump intensity and their long term mean levels during the sample
period from 24 November 2010 to 31 December 2015. The averages of the instan-
taneous squared VIX, diffusive variance and jump intensity are 0.0343, 0.0187 and
0.589 with standard deviations 0.0258, 0.0190 and 0.504, respectively. Their long-term
mean levels are 0.149, 0.142 and 0.274, respectively. The other optimal parameters
include ρ = −0.836 from the correlation between the SPX logarithmic returns and
the 30-day VIX square, and κ = 0.312, x = −16.7%, σv = 0.633 and σλ = 6.010 from
the sequential estimation using the term structure data of the VIX and SKEW.
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Figure 6: Fitting Performance on a Representative Date
This graph shows the fitting performance on 29 November 2013 in the five-factor
model. The sample period for estimation is from 24 November 2010 to 31 December
2015. The solid lines represent the theoretical values given the optimal estimate of
the model parameters and latent variables, and the dots represent the market values.
We obtain ρ = −0.836 using the correlation between the SPX logarithmic returns and
the 30-day VIX square. The estimation using the VIX term structure data results in
κ = 1.96, Vt = 0.0147 and θVt = 0.0537 with VIX RMSE 0.3772, and the estimation
using the SKEW term structure data results in x = −10.6%, σv = 0.983, σλ = 9.748,
σ1 = 0.173, σ2 = 5.269, vt = 0.0026, θvt = 0.0209, λt = 1.11 and θλt = 3.00 with
SKEW RMSE 1.442.
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Figure 7: The Five-Factor Model
This graph shows the daily optimal realizations of the instantaneous squared VIX,
diffusive variance, jump intensity and their long term mean levels during the sample
period from 24 November 2010 to 31 December 2015. The averages of the instanta-
neous squared VIX, diffusive variance and jump intensity are 0.0303, 0.0247 and 0.508
with standard deviations 0.0283, 0.0295 and 0.598, respectively. The averages of their
long-term mean levels are 0.0709, 0.0504 and 1.88 with standard deviations 0.0245,
0.0395 and 1.77, respectively. The other optimal parameters include ρ = −0.836 from
the correlation between the SPX logarithmic returns and the 30-day VIX square, and
κ = 1.96, x = −10.6%, σv = 0.983, σλ = 9.748, σ1 = 0.173, σ2 = 5.269 from the
sequential estimation using the term structure data of the VIX and SKEW.
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