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1 Introduction

Index options play a vital role in catering to investors’ risk-sharing needs over the business

cycles and the market for these products has witnessed impressive growth over the years.

On average, daily open interest for CBOE’s S&P 500 options rose from one million in 1996

to more than tenfold in 2020. In terms of economic magnitude and potential to transfer risk,

this means that the index options market controls trillions of dollars worth of the underlying

equity market. About two-thirds of this open interest is comprised of put option contracts,

among which out-of-the-money (OTM) put positions dominate. This indicates that a large

part of the market is driven by demand for insurance against stock market declines. While

the expensiveness of OTM puts and their return have been extensively investigated, little

research is dedicated to understanding their quantities that are supplied and demanded in

equilibrium.1 Studying the driving forces in index put option market is important and can

offer insights to recent empirical connections between index put buying pressure and S&P 500

index returns (Chen, Joslin, and Ni, 2019; Chordia, Kurov, Muravyev, and Subrahmanyam,

2021).

The main contribution of this paper is to show that (i) the size of the put option market,

(ii) the expensiveness of low-moneyness put options, and (iii) the link between put option

demand and the stock market can be rationalized within a heterogenous-agent model with

disappointment-averse risk preferences and tail risk. We find that accounting for asymmetries

in preferences coupled with the asymmetric nature of dividend shocks helps to explain the

observed level and dynamics of the put option market, provides joint predictions of positions

and pricing, and allows for a better understanding of the puzzling observations in the recent

literature.

Our focus on disappointment aversion is motivated by the experimental evidence sug-

gesting that investors value gains and losses differently, including cases when the decision

is made by teams or professional traders and managers.2 A growing literature, which we

review below, recognizes this asymmetric attitude towards gains and losses, and its im-

portant implications for asset pricing. Moreover, a disappointment-averse investor, being

particularly concerned about losses, is a natural demander of put protection against market

1Notable exceptions include the theoretical model of Buraschi and Jiltsov (2006), the empirical investiga-
tions of Bollen and Whaley (2004) and Johnson, Liang, and Liu (2016), and the recent work by Constantinides
and Lian (2021).

2Choi, Fisman, Gale, and Kariv (2007) and Gill and Prowse (2012) provide experimental evidence that
individuals have asymmetric attitudes towards gains versus losses. Sutter (2007) and Haigh and List (2005)
show that the same phenomenon emerges for team decisions and professional traders, respectively. Olsen
(1997) and Willman, Fenton-O’Creevy, Nicholson, and Soane (2002) provide survey evidence that profes-
sional investment managers exhibit aversion to losses. Pope and Schweitzer (2011) argue that experience,
competition, and large stakes do not mitigate loss aversion.
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corrections. It has been documented that writing put options on the S&P 500 offers high

expected returns, suggesting that investors should hold significantly negative positions in

these contracts.3 Indeed, in a partial equilibrium setting, standard power utility investors

with various degrees of risk aversion hold negative positions in put options (see e.g. Liu and

Pan, 2003; Branger and Hansis, 2012). However, in general equilibrium, since options are

in zero net supply, some investors have to be willing to hold put options despite the sellers

achieving high returns.

To rationalize the stylized facts about the put option market and extract new testable

predictions, we develop a dynamic general equilibrium model with rare event risk and two

classes of investors. The model features risk-averse investors with standard CRRA prefer-

ences and disappointment-averse investors who are especially concerned about the left-tail

outcomes. To model the asymmetric preferences towards gains versus losses, we rely on

the disappointment aversion (DA) framework of Gul (1991), in which an investor is loss

averse around her certainty equivalent. Considering the definition for the reference point,

DA preferences have at least two advantages over the prospect theory of Kahneman and

Tversky (1979), which is another commonly used framework to model investors’ loss aver-

sion. First, unlike in prospect theory, the threshold distinguishing disappointing outcomes

from non-disappointing outcomes is endogenous and related to the investor’s expectations.

Recent evidence suggests that expectations play an important role in the reference point

formation.4 Second, the generalized disappointment aversion (GDA) of Routledge and Zin

(2010), a one-parameter extension of DA preferences, explicitly allows for studying the effect

of different reference levels. A GDA investor is loss averse around a reference point that can

be different from her certainty equivalent.

Our first main result is that there is a sizable option market in the economy in which

some agents have asymmetric preferences over gains and losses. This result stands in sharp

contrast to the benchmark economy with heterogenous risk-averse investors in which the size

of the option market is negligible, even for very high values of risk aversion. We observe

that the option market becomes important quickly as the degree of disappointment aversion

increases. In normal times, the disappointment-averse investor buys put options from her

3Coval and Shumway (2001), Broadie, Chernov, and Johannes (2009), Benzoni, Collin-Dufresne, and
Goldstein (2011), Constantinides, Jackwerth, and Savov (2013), and Bondarenko (2014) document that
strategies involving writing put options on the S&P 500 index offer high raw returns. These returns are
significant even after standard risk adjustments (Broadie et al., 2009; Bondarenko, 2014), and taking into
account leverage (Constantinides et al., 2013).

4Choi et al. (2007), Arkes, Hirshleifer, Jiang, and Lim (2008), Abeler, Falk, Goette, and Huffman (2011),
and Gill and Prowse (2012) provide experimental evidence that expectations are important in the reference
point formation, while Pope and Schweitzer (2011) draw a similar conclusion by studying data from real life
contests.
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risk-averse counterpart to implement a portfolio insurance strategy and protect her portfolio

from drops in the stock price. The risk-averse investor can then be interpreted as representing

the intermediary firms making option markets who provide insurance to the disappointment-

averse group of investors that includes retail and institutional public investors. In times of

economic distress, however, a disappointment-averse investor can switch from buying to

selling put options.

Our second main result is that the size of the option market crucially depends on the

reference point distinguishing disappointing from non-disappointing outcomes. To reconcile

positive demand for put options with their equilibrium returns, this reference point, i.e.

the disappointment threshold, needs to be below the certainty equivalent of the investment.

When the reference point equals the certainty equivalent, any drop in final wealth below the

certainty equivalent constitutes a disappointing outcome. Therefore, the disappointment-

averse investor chooses not to participate in risky asset markets and invests all her wealth

in the risk-free asset. Moreover, the put option demand is hump-shaped in the disappoint-

ment threshold. Intuitively, if the threshold of disappointment is high, the investor has to

relinquish the whole upside of the investment to gain full protection against disappoint-

ing outcomes. The optimal strategy for such investor is to put all her wealth in the risk-

free asset. When the threshold of disappointment becomes lower, the investor can build a

disappointment-proof portfolio and still enjoy the upside of the stock investment. That is,

the optimal strategy for a disappointment-averse investor is to take a long position in the

stock and protect the downside of the investment by buying put options. However, for a

very low level of disappointment threshold, disappointing outcomes become unlikely and the

investor does not try to build a disappointment-proof portfolio.

Our third main result concerns the cross-section of options, i.e. the demand for options

with different levels of moneyness. We show that the presence of disappointment-averse

investors is able to generate open interest curve that peaks at or close to the at-the-money

contract. This is a well-documented stylized fact (see, e. g. Lakonishok, Lee, Pearson, and

Poteshman, 2007; Bollen and Whaley, 2004; Buraschi and Jiltsov, 2006) that has been shown

to be incompatible with the equilibrium option demand in the risk-averse economy (Judd

and Leisen, 2010).

Our fourth main result concerns the dynamics of the put option market. In our model,

the size of put option market exhibits cyclical behavior resulting in interesting co-movement

between the stock and the options markets. At lower levels of dividend fundamental (inter-

mediate and bad states when the disappointment-averse agent owns most of the economy

and is the net buyer of put options), the option market behaves pro-cyclically and is neg-

atively correlated with the equity risk premium. At higher levels of dividend fundamental
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(good states when the risk-averse agent owns the economy), the option market size becomes

counter-cyclical and is positively correlated with the equity premium. Similar to the intuition

in Longstaff and Wang (2012), changes in the size of the option market in our model signal

shifts in the distribution of wealth between different types of agents. The cyclicality and

the co-movement arise because these shifts in the market “demographics” drive the trading

activity and determine the behavior of asset prices.

We also investigate how the presence of disappointment-averse investors influences asset

prices. Our fifth main result is that, relative to the benchmark risk-averse economy, the

presence of disappointment-averse investors amplifies stock volatility generating up to 15–

20% of excess volatility, depending on the level of disappointment aversion.5 This excess

volatility result is due to the shape of the stochastic discount factor in our model. In contrast

to the representative-agent GDA model in which the pricing kernel is a step function, the

heterogenous-agent pricing kernel is a continuous and monotonically decreasing function of

the dividend fundamental. In addition to being countercyclical, the pricing kernel in our

model features a steep slope in intermediate and bad states of the economy. In these states,

shocks to the dividend news process lead to a larger increase in the stochastic discount factor

compared to the standard risk-averse model, thus generating excess stock market volatility.

When it comes to the valuation of derivative securities, the stochastic discount factor in the

economy with disappointment-averse agents delivers larger negative risk premia for out-of-

the-money options than the risk-averse benchmark case.

Our model is consistent with several stylized facts about put option demand in the

economy, including that (i) public investors are net buyers of put options; (ii) public investors

can switch from buyers to sellers in times of economic distress, when the risk-sharing capacity

in the economy dries up; (iii) buying pressure in index put options can predict S&P 500 index

returns; see Section 5 for a more detailed discussion.

Literature. This paper is related, on the one hand, to the literature on disappointment

aversion. DA and GDA preferences have appeared in equilibrium models with consump-

tion, and have been shown to explain equity premium and return predictability better than

standard preferences do. DA preferences are used by Epstein and Zin (2001), who argue

that they provide a substantial improvement in the empirical performance of a representa-

tive agent, intertemporal asset-pricing model. Bekaert, Hodrick, and Marshall (1997) use

DA preferences and find that first-order risk aversion substantially increases excess return

predictability. Routledge and Zin (2010) introduce generalized DA and show that GDA

preferences give rise to counter-cyclical risk aversion along with a large equity premium.

5This is in contrast to the benchmark risk-averse economy in which the volatility of the stock is barely
higher than the volatility of dividend news.
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Bonomo, Garcia, Meddahi, and Tedongap (2011) and Liu and Miao (2015) explore asset

pricing implications of GDA preferences in endowment and production economies, respec-

tively. Schreindorfer (2020) shows that, in addition to explaining the risk premium in the

stock market, GDA preferences can also help match the pricing moments of equity index

options. Ang, Chen, and Xing (2006), Lettau, Maggiori, and Weber (2014), Delikouras

(2017), Farago and Tedongap (2018), and Delikouras and Kostakis (2019) investigate the

link between the disappointment aversion and the cross-section of asset returns. What sets

us apart from the aforementioned works is that they consider a representative-agent economy

with disappointment aversion. Our paper, to the best of our knowledge, is the first one to

embed GDA preferences in a heterogenous-agent economy, which allows us to derive impli-

cations for both asset prices and quantities traded. Disappointment aversion has also been

studied in the context of individual decision-making in Dahlquist, Farago, and Tedongap

(2016) and Andries and Haddad (2020). Ang, Bekaert, and Liu (2005) provide a formal

treatment of both static and dynamic optimal portfolio choice using DA preferences when

the investor considers only a risk-free bond and a single stock. As already mentioned, their

key result shows that a sufficiently high degree of disappointment aversion leads to optimal

non-participation in the stock market. Our analysis complements this earlier work by high-

lighting that the optimal non-participation result is driven by the specific assumption about

the reference point being equal to the certainty equivalent.

On the other hand, the paper contributes to the literature that studies option pricing

and demand in partial and general equilibrium. In a partial equilibrium setting, Liu and

Pan (2003), Weinbaum (2009), and Branger and Hansis (2012) show that standard power

utility investors take short positions in put options to earn the premium provided by jump

risk. Therefore, an alternative preference specification may be needed if we would like to un-

derstand what type of preferences lead to optimal long positions. To investigate if investors’

asymmetric preferences explain the demand for put options, Driessen and Maenhout (2007)

study the optimal portfolio choice of loss-averse and disappointment-averse investors in an

empirical portfolio allocation setting when options are included in the set of investment op-

portunities. They find that long positions in out-of-the money put options are never optimal

for the investors they consider. The authors conclude that neither disappointment aversion,

nor loss aversion is sufficient to explain the demand for these derivatives. In this paper, we

demonstrate that the definition of a disappointing outcome is key in understanding the de-

mand for options generated by asymmetric investor preferences. In this sense, our results do

not contradict their findings, since we also show that the original DA preferences introduced

by Gul (1991) do not lead to long positions in put options.

Despite the size and the importance of the option market in the economy, the question
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who is buying and selling options in general equilibrium received relatively little attention in

the theoretical finance literature. Garleanu, Pedersen, and Poteshman (2009) relate patterns

in option markets to demand pressure and show that demand-pressure effects can play a role

in explaining various option pricing anomalies. However, the demand for derivatives in their

setting is assumed to be exogenous. In contrast, the focus of our paper is on endogenizing

the level and the dynamics of option demand in the economy. Bates’s (2008) paper, the

closest to ours, studies an equilibrium model where market crashes can occur and agents

have heterogeneous preferences towards crash risk. The paper shows that less crash-averse

agents sell insurance to more crash-averse investors through options markets. The main

emphasis, however, is on prices. Bates’s (2008) investigates the model’s ability to explain

the pricing puzzles in the option market. In contrast, the main focus of our paper is on the

equilibrium quantities and the size of the option market. In addition, the utility specification

of Bates (2008) is unusual in the literature, as the number of stock market crashes during

the investment period directly enters into the investor’s preferences. The approach involving

heterogeneous preferences seems promising, but it might be desirable to use preferences that

have been more extensively studied in other areas of the literature. One possible candidate

is disappointment aversion that is featured in our analysis.

In a related and important paper, Buraschi and Jiltsov (2006) show that the buying

activity in out-of-the-money put options can be generated by informational heterogeneity

between risk-averse agents. In their setting, investors, unable to directly observe the drivers

of economic fundamentals, rely on a Bayesian model to update their beliefs but use different

initial priors. The idea is that the agent who is more pessimistic about the expected dividend

growth demands insurance protection from the more optimistic investor. This economic

mechanism is different from ours, as we study the economy where agents agree about the

dynamics of economic fundamentals. Another important difference is that, by introducing

stochastic jump sizes, we are able to derive predictions for the cross-section of options. This

angle of analysis is missing from Buraschi and Jiltsov (2006), as their model only needs one

option to complete the market. Can one generate demand for multiple options with jump

risk and heterogenous beliefs instead of heterogenous preferences? Yes. However, as Chen,

Joslin, and Tran (2012) point out, such heterogenous beliefs model features a tension between

the size of the insurance market and the equity premium: Disagreement generates a large

demand for insurance when there is significant belief heterogeneity across investors and the

equity risk premium is at a low level (due to ample risk sharing capacity in the economy).

Similar to Buraschi and Jiltsov (2006) and Chen et al. (2012), our results rely on the role of

heterogenous investor groups for risk sharing and risk allocation in the economy. However,

our model focuses on a different risk-sharing mechanism between investors with heterogenous
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attitudes to losses and can generate large disaster insurance market and high equity premium

at the same time. This suggests that our results capture a different phenomenon and the

two approaches are complementary.

In a recent paper, Constantinides and Lian (2021) study the equilibrium net buy of index

puts by public investors. They do so in a static mean-variance setting, in which investors

exogenously specialize into buying out-of-the-money or at-the-money puts, but not both.

Relaxing the specification assumption in their model leads to a counterfactual implication

that public investors buy at-the-money and sell out-of-the-money puts. We show that this

is not the case in our setting. Our paper also differs from this work in a number of other

ways. Importantly, we consider a fully dynamic framework without restrictions on investors’

positions. This enables us to derive predictions about the cyclical behavior of the put market

and its co-movement with equity returns. Moreover, the roles of suppliers and demanders of

options is not fixed in our model. This is important as empirical research (e.g., Chen et al.,

2019) has shown that these roles can switch depending on the economic environment.

Layout. The remainder of the paper is organized as follows. Section 2 documents the

main features of the demand for S&P 500-based index options and motivates out focus on

put positions, Section 3 describes the economic fundamentals and outlines the equilibrium,

Section 4 presents model results for equilibrium asset prices and equilibrium asset demands,

Section 5 presents the empirical predictions, and Section 6 concludes. Derivations, figures,

and other supplementary materials are provided in the Appendix.

2 Demand for S&P 500 Index Options

This section summarizes the extent and nature of demand for index options. We focus on

CBOE S&P 500 index options (SPX and SPXW) which are the most actively traded cash-

settled equity index options listed in the U.S. A comparative study of index options markets

by Johnson et al. (2016) during 1990–2012 shows that SPX accounts for about 94% of the

total market value of all options with their underlying referenced to the S&P 500 index.6 In

our analysis, we include the SPXW (i.e., “Weeklys”) which are short-term SPX options that

were introduced in 2016 and quickly gained popularity among investors.

Table 1 reports the index option demand on a number of different dates. The sample

period is from January 4, 1996 through December 31, 2020. Gross open interest (OI) rep-

resents the sum of all open long and short positions. Following Johnson et al. (2016), we

report gross open interest in terms of index-equivalent units. Each SPX contract provides

6Besides SPX, investors can gain option-like exposure by trading options written on S&P 500 futures and
on the S&P 500 ETF (SPDR).
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exposure to 100 units of S&P 500 index. We multiply open interest by a contract multiple

of 100 in order to measure the amount of options demand in index-equivalent units.

We find that daily open interest has increased by almost 14 times during the sample and

the demand for index puts is substantially larger than calls. We observe the highest open

interest of 2.27 billions of index-equivalent units on March 19, 2020, which we refer to as the

“Peak of the sample.” For a comparison, we report the number of daily index shares which is

calculated by dividing the total market capitalization of the S&P 500 by the nominal index

level. Table 1 shows that the average number of index shares is 8.82 billions and that this

value is quite stable through time. At the peak options OI level in March 2020, the demand

for SPX options represented about 26% of total index shares. This number is economically

large and confirms the relative importance of SPX options market in the economy.

[ Insert Table 1 here ]

Table 1 also summarizes the size of index option in terms of market capitalization. The

market value for each option type on each day t is calculated as∑
i

100 ·OIi(t)Pi(t),

where 100 is the contract multiplier, and Pi(t) is the end-of-day price for each contract i. On

average, the market capitalization for SPX puts is slightly less than calls despite having a

substantially larger demand in terms of open interest. As we will show below, this reflects the

fact that the demand for index puts concentrates in low strike levels (i.e., out-of-the-money).

Figure 1 plots the time series of average daily open interest for call and put options. Each

bar represents an average value calculated from daily option quantities over each quarter.

Panel A plots open interest in terms of index-equivalent units. Panel B plots open interest

as a fraction of index shares in percentage terms, which is calculated by dividing daily gross

open interest by the total number of S&P 500 index shares. Figure 1 shows that the demand

for SPX options increased most visibly in the first half of the sample. It is also evident

that the demand for index puts dominates. In recent years, put open interest comprised

about two thirds of the total SPX option demand and represents more than 10% of the

underlying index shares on a daily basis. Results in Panels A and B demonstrate an almost

identical pattern in historical option demand. This finding is expected as Table 1 shows that

the number index shares does not substantially vary over time. Reporting open interest as

a fraction of index shares helps account for trends associated with size of the underlying

market as well as occasional changes that are due to index reconstitution. The remainder of

this paper reports open interest as the fraction of index shares. Nevertheless, we emphasize
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that our conclusions are qualitatively similar if we were to report empirical results in terms

of index-equivalent units.

[ Insert Figure 1 here ]

Table 2 reports the average daily open interest for put and call options sorted by mon-

eyness and maturity. All quantities are reported as the percentage of index shares. We sort

options into short-, medium-, and long-term based on their number of days to expiration τ .

Short-term options are those with maturity of 90 days or less and long-term options are those

with maturity greater than 270 days. Medium-term options are those with maturity between

90 and 270 days. We define moneyness K/F as the level of strike price K to the underlying

forward price.7 The forward price for each contract is calculated as Fi(t) = S(t)e(r(t,τ)−ds(t))τ

where daily interest-rate curve r(t, τ) and continuous dividend rate ds(t) are obtained from

Optionmetrics.

[ Insert Table 2 here ]

We consider three moneyness categories K/F ≤ 0.975, 0.975 < K/F < 1.025, and

K/F ≥ 1.025. Table 2 shows that the highest demand for index options concentrates in

puts with low strike price. This corresponds to out-of-the-money (OTM) puts. Short-term

OTM puts appear to be in highest demand. On average, open interest in OTM puts account

for almost 5% of equivalent index shares. Looking at call options, we find that the demand

concentrates around at-the-money (ATM) and the OTM calls with high strike price. Similar

to puts, short-term calls are in highest demand relative to medium- to long-term contracts.

Figure 2 plots the time series of average daily open interest for various option types. We

group options into different maturity and moneyness buckets and report the average gross

daily open interest as a percentage of index shares. Panels A–D report results for puts while

Panels E–H report results for calls. The figure illustrates the time-series pattern in options

demand through the sample. Clearly, Figure 2 shows that the growth in SPX options market

is largely driven by the demand for short-term OTM puts.

[ Insert Figure 2 here ]

Figure 3 provides a cross-sectional view in the demand for SPX options across a finer

spectrum of moneyness. In this figure, we classify puts and calls into 17 moneyness buckets.

Each bar represents the time-series average value of open interest for each option category.

For both puts and calls, we find that option demand peaks when the contracts become

7Our results are very similar if we define moneyness using option delta instead of K/F .
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close to at-the-money, i.e., when K/F is close to one. This finding is consistent with Judd

and Leisen (2010) and Bondarenko (2014), among others. For puts, we observe a clear

asymmetric demand for OTM puts.

[ Insert Figure 3 here ]

What groups of investors constitute the demand for index put options? Bollen and

Whaley (2004) show that, in the S&P 500 index option market, end users (i.e., non-market

makers) are net buyers of out-of-the-money and at-the-money puts. Chen et al. (2019)

study the demand for deep-out-of-the-money index puts and confirm that, in their data,

non-market makers, namely retail and institutional public investors, are net buyer of these

options types during normal times. Interestingly, they also find that public investors can

shift from being buyers to sellers and become “liquidity providers” of crash insurance during

times of distress. Our theoretical model offers insights to this empirical observation.

Understanding the driving forces in the index put option market is the focus our this

paper. For brevity, we focus our modeling attention on OTM index puts, which is the

dominant component of equity index option market. The next section introduces a model

that allows us to rationalize the observed empirical pattern in the market for index puts and

generate new theoretical insights.

3 Model

This section describes the economy and characterizes the equilibrium.

3.1 The Economy

We consider a heterogenous agent pure exchange economy over a finite time interval [0, T ].

The preferences of agent i can be described by a concave utility function with a kink at the

reference point θi:

Ui(Wi,T ) = ui(Wi,T )− `i (ui(θi)− ui(Wi,T )) I (Wi,T ≤ θi) , (1)

where I (·) is the indicator function and ui (·) has the power utility form:

ui(x) =


x1−γi − 1

1− γi
, γi > 0 and γi 6= 1,

log (x) , γi = 1.

(2)
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When `i = 0, the utility function Ui in (1) reduces to the standard constant relative risk

aversion (CRRA) utility, where the parameter governing risk aversion is γi. When `i > 0,

outcomes lower than θi are labeled as disappointing and receive a penalty, decreasing the

investor’s utility compared to the CRRA case. As `i increases, the penalty for disappointing

outcomes becomes larger, hence `i can be interpreted as the degree of disappointment aver-

sion. Panel A of Figure 4 shows how the shape of the utility function changes with increasing

`i if γi and θi are kept fixed. For comparison, Panel B of Figure 4 illustrates how the shape

of the power utility (when `i = 0) changes as the risk aversion parameter increases.

[ Insert Figure 4 here ]

Investor i is going to choose a portfolio allocation that maximizes E [Ui (Wi,T )].

The disappointment threshold is defined as a fraction of the certainty equivalent,

θi = κiRi, (3)

where Ri is the certainty equivalent of the investor’s final wealth, and it is implicitly defined

as the solution to

Ui (Ri) = E [Ui(Wi,T )] .

When κi = 1, the resulting utility specification corresponds to the disappointment aversion

preferences of Gul (1991), and we arrive at the generalized disappointment aversion prefer-

ences of Routledge and Zin (2010) if we set κi < 1. Panels C and D of Figure 4 illustrate the

shape of the utility function when the disappointment threshold is determined endogenously.

While changing κi moves the disappointment cutoff, the `i parameter determines the slope

of the utility derived from the disappointing outcomes.8 Our heterogeneous agent economy

is populated by two types of agents, i = {A,B}, having different preferences. We are going

to compare two economies throughout the paper.

The DA economy: one disappointment-averse agent and one risk-averse agent. The

main focus of the paper is on an economy, where investor A has asymmetric preferences with

respect to gains and losses, and investor B has standard CRRA preferences. In particular,

we are going to assume that `A > 0 and `B = 0. In addition, we are setting γA = γB = γ.

That is, the two agents in our main economy have the same risk aversion parameter, but

agent A is disappointment-averse, while agent B is not. This can also be illustrated using

8Alternatively, the disappointment threshold can be defined as a fraction of the investor’s initial wealth,
θi = κiWi,0. Berkelaar, Kouwenberg, and Post (2004) consider this case, setting κi = 1 in their application,
and refer to the resulting utility function as the “kinked power utility.” We obtain qualitatively similar
results with this utility specification as well.
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Panel C of Figure 4: agent B has the utility function represented by the solid line, while

agent A has the utility function represented by one of the dashed lines.

The RA economy: two risk-averse agents. To understand the impact of the presence of

disappointment-averse agents in the economy, we are going to compare the results to a bench-

mark economy without disappointment-averse agents. In particular, we assume `A = `B = 0

and γA > γB in the benchmark economy. That is, none of the agents are disappointment-

averse, and the heterogeneity comes from their risk aversion: agent A is more risk averse than

agent B. This can be illustrated by Panel B of Figure 4: agent B has the utility function

represented by the solid line, while agent A has the utility function represented by one of

the dashed lines. Note that agent B is identical in the two economies, so the only difference

between the DA and RA economies is the preferences of agent A.

The investment opportunity set consists of three securities: a stock, an option on the

stock, and a riskless bond. The risky stock pays a terminal dividend of DT at time T . The

process for publicly observable dividend news D is given by

dDt = Dt− [µDdt+ σDdwt − δDdNt] ,

where w is a standard Brownian motion and N is a Poisson process with constant intensity λ.

This means that in normal times, when no “disaster” takes place, the dividend news process

follows a geometric Brownian motion, but each disastrous jump reduces it by a fraction δD.

This specification of a deterministic jump size means that only one derivative security is

needed to complete the market. We relax this simplifying assumption later by introducing

random jumps with multiple outcomes to study the use of multiple derivatives.

The stock is in unit supply: At time 0 investor A is endowed with fraction α ∈ [0, 1] of

the stock and investor B is endowed with fraction (1− α). The derivative and the risk-free

bond are in zero net supply. Since there is no intermediate consumption, we assume, without

loss of generality, that the risk-free bond pays zero interest.9 The stock and derivative prices

are to be determined in equilibrium.

We will use the following baseline calibration. The expected dividend news growth rate

is µD = 3% and the fundamental diffusive volatility is σD = 15%. The jump in dividend

news occurs with intensity λ = 5% (once every twenty years) and implies that the level of

dividends falls by δD = 20%. These values are largely in line with the numbers used in

the literature and the historical properties of corporate dividends. In the DA economy, the

disappointment-averse agent’s preference parameters are γA = 1, `A = 2, and κA = 0.98,

9This assumption is equivalent to using the risk-free bond as a numeraire. Such normalization is common
in models with no intermediate consumption where there is no intertemporal choice that can pin the interest
rate down. See, for example, Pastor and Veronesi (2012) and Basak and Pavlova (2013).
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while the risk-averse agent has γB = 1. Note that our choice of κA is in line with the

literature, and our choice of `A actually falls on the conservative side.10 In the RA economy,

the more risk-averse agent has γA = 4, while the less risk averse agent has γB = 1. That

is, agent B has logarithmic preferences in both economies. Unless specified otherwise, the

total wealth is equally split between the two agents at time 0 (α = 0.5), and the investment

horizon of the agents is one month (T = 1/12).

3.2 The Equilibrium

Equilibrium is defined in a standard way: equilibrium portfolios and asset prices are such that

(i) given the set of investment opportunities, both investors optimally choose their portfolio

strategies, and (ii) stock, bond, and derivative markets clear. We will make comparisons of

the equilibrium in our economy with equilibrium in a benchmark economy populated by two

risk averse investors with different levels of risk aversion. The equilibrium results for the

benchmark economy are in Appendix B.

Proposition 1 discusses equilibrium terminal wealth profiles and equilibrium state price

density at time T .

Proposition 1. The equilibrium terminal wealth profiles are

ŴA,T =



θAD
−1DT if DT < D,

θA if D ≤ DT ≤ D,

θAD
−1
DT if DT > D,

(4)

and ŴB,T = DT − ŴA,T and thresholds D and D are defined as

D ≡

(
1 +

(
λA
λB

1

1 + `A

) 1
γ

)
θA, D ≡

(
1 +

(
λA
λB

) 1
γ

)
θA, (5)

where λA and λB solve a system of equations (A.15)–(A.16), θA = κARA, and the certainty

equivalent RA determined using equation (A.14).

10 Starting with κA, studies that calibrate a representative agent model with GDA preferences use κ values
between 0.97 and 0.99 (see Routledge and Zin, 2010; Bonomo et al., 2011; Schreindorfer, 2020). Our choice
of κA = 0.98 is right in the middle of that range. Regarding the degree of disappointment aversion, a wider
range has been used in the literature. Routledge and Zin (2010) and Schreindorfer (2020) use ` values around
9, while Bonomo et al. (2011) use 2.33 in their calibrations. Delikouras (2017) tries to estimate the value of
` using the cross section of stock returns and arrives at values between 3 and 8. Our choice of `A = 2 falls
on the conservative side of these values.
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The equilibrium state price density at time T is

ξT =



c1D
−γ
T if DT < D,

c2 (DT − θA)−γ if D ≤ DT < D,

c3D
−γ
T if DT ≥ D,

(6)

where c1 ≡
((

λA
1+`

)− 1
γ + λ

− 1
γ

B

)γ
, c2 ≡ λ−1

B , and c3 ≡
(
λ
− 1
γ

A + λ
− 1
γ

B

)γ
.

Proof. See Appendix A.1.

Let us start by looking at the equilibrium terminal wealth profiles. It is straightforward

to see from Proposition 1, that if `A = 0 (i.e, if the two agents are identical and not

disappointment averse), then ŴA,T = αDT and ŴB,T = (1− α)DT . That is, investors

share the terminal dividend realization in proportion to their initial wealth shares. Panel A

of Figure 5 shows terminal wealth profiles in the DA economy for our main calibration.

Note that the two agents have equal initial wealth shares, and therefore the dotted line in

the middle shows what the terminal wealth profiles would be without the disappointment

aversion of agent A (i.e., ŴA,T = ŴB,T = DT/2).

[ Insert Figure 5 here ]

It can be seen both from equation (4) and in Figure 5 that when agentA is disappointment-

averse, all states of the world are endogenously classified into three subsets: “good states”

(where DT > D), “intermediate states” (where D ≤ DT ≤ D), and “bad states” (where

DT < D). Note that it is straightforward to see from equation (5) that D > D whenever

` > 0. In intermediate states, the disappointment-averse investor keeps her wealth constant

exactly at her disappointment thresholds, θA, in order to avoid disappointing outcomes. This

can only be achieved if the disappointment-neutral investor (agent B) is willing to accept a

wealth profile that pays DT − θA in these intermediate states. That is, agent B fully insures

agent A in intermediate states. Agent A accepts disappointing outcomes in bad states (i.e.,

ŴA,T < θA in bad states), because these are the most expensive states to insure against.

However, she maintains some level of insurance to attain higher final wealth than if she

was disappointment-neutral (i.e., compared to the dotted line). In return for providing an

insurance in the intermediate and bad states, agent B attains a higher final wealth in good

states of the world (compared to the case when both agents are disappointment-neutral).
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Different panels of Figure 5 show the terminal wealth profiles for various combinations

of `A and κA. Comparing panel A to panel B illustrates the effect of increasing the degree

of agent A’s disappointment aversion (lower degree of disappointment aversion in panel B).

As `A increases, the set of intermediate states expands (i.e., the distance between D and D

increases). Agent A becomes more keen on avoiding disappointing outcomes, so she tries to

decrease the set of bad states. This can be achieved by extending the set of intermediate

states, where agent A’s final wealth is exactly at her disappointment threshold. Agent B is

willing to provide the insurance for an extended set of outcomes in exchange for a higher

upside in good states of the world.

Comparing the graphs in the upper row of Figure 5 to Panel C illustrates the effect of

changing the disappointment threshold. In the upper panels, we have κA = 0.98, which

means that agent A becomes disappointed if she looses more than 2% of her certainty equiv-

alent wealth by time T . The important observation is that in this case the upper threshold

of the intermediate states (D) remains very similar as `A increases from 1 to 2, while the

lower threshold (D) moves to the left. Looking at the density of DT , we can see that states

of the world are classified in such a way that a relatively large probability mass is assigned

to the good states, a smaller probability to the intermediate states, and practically zero

probability to the bad states. Note that increasing `A further results in a similar picture,

i.e., D remains similar and D moves further to the left. The intuition is as follows: since

agent A has a relatively low disappointment threshold, she can afford to fully insure herself

against disappointment with probability very close to one.

Panel C in the lower row of Figure 5 corresponds to κA = 1, which means that agent A

becomes disappointed if her final wealth is lower than her certainty equivalent wealth. In

this case the thresholds D and D are determined (endogenously) in such a way that largest

probability mass is assigned to the intermediate states. Comparing to Panels A and B, the

probabilities of both the good and the bad states in Panel C are relatively small: D moves to

the left and D moves to the right. For likely DT realizations in panel C, agent A has constant

end of period optimal wealth at her disappointment threshold. Intuitively, if the threshold

of disappointment is high, the investor has to relinquish the whole upside of the investment

to gain full protection against disappointing outcomes. The difference in the wealth profiles

between the κA = 1 and κA = 0.98 (κA < 1 in general) cases will have important implications

for optimal asset allocations.

Finally, Panel D of Figure 5 shows equilibrium terminal wealth profiles of the benchmark

RA economy with only risk-averse agents. Note that panel D corresponds to our main

calibration. We see that the more risk averse agent’s payoff is higher in the bad states and

the terminal payoff profile is slightly concave. The less risk averse agent enjoys a larger
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payoff in the good states of the economy and her terminal wealth is almost linear (if only

slightly convex) in the dividend payoff DT .

Let us now look at the equilibrium time T state price density. For the heterogeneous

agent DA economy, ξT is given by equation (6) of Proposition 1, while the following corollary

gives the state price density for the limiting representative agent economies.

Corollary 1. State prices at T in representative agent economies are as follows:

(i) If there is only agent A in the economy (α = 1), her equilibrium terminal wealth is

ŴA,T = DT and the state price density becomes

ξT =


(1 + `)λ−1

A D−γT if DT < θA,

λ−1
A D−γT if DT ≥ θA,

where λA = E
[
D−γT

]
+ `E

[
D−γT I (DT < θ)

]
and θA = κARA is determined as in Proposi-

tion 1.

(ii) If there is only agent B in the economy (α = 0), her equilibrium terminal wealth is

ŴB,T = DT and the state price density becomes

ξT = λ−1
B D−γT ,

where λB = E[D−γT ].

Figure 6 shows the state price density for different `A values. Let us start with the

limiting representative agent cases. When there is only the risk-averse agent in the economy

(α = 0), we get the standard CRRA pricing kernel, whose curvature is determined by the risk

aversion parameter, γ. When there is only the disappointment-averse agent in the economy

(α = 1), there are two important changes to ξT . First, there is a jump in the state price

density at the disappointment threshold θA. The location of the jump is determined mainly

by κA; decreasing κA moves the location of the jump to the left on Figure 6. The size of

the jump is mainly determined by `A; increasing `A leads to a larger jump in ξT . Second,

the state price density becomes steeper on the part below θA, which is also mainly driven by

`A. The discontinuous jump in ξT implied by a representative disappointment-averse agent

economy has already been documented in previous literature (see, e.g., Routledge and Zin,

2010; and Delikouras, 2017).

[ Insert Figure 6 here ]
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Our contribution in the current paper is to show how the shape of the state price density

in the heterogenous-agent DA economy bridges those from the two limiting representative-

agent economies. The state price density in the heterogeneous agent economy is made up of

three parts, separated by D and D, as it can bee seen from equation (6). In good states of the

economy, above D, the state price density is close to the α = 0 case (CRRA representative

agent). As we move to the region between D and D, instead of a discontinuous jump, the

state price density increases continuously but at a much steeper slope. Finally, in the states

of the economy when the fundamental falls below D, the state price density lies close to the

α = 1 case (disappointment-averse representative agent). This implies high prices of assets

that pay off in bad states of the economy.

Proposition 2 presents results for the equilibrium time t state price density and the market

prices of risk – risk premia per unit of Brownian and jump risk.

Proposition 2. The equilibrium state price density at time t is given by

ξt = c1F1t (D, γ) + c2F2t

(
D,D, θA, γ, 0

)
+ c3F3t

(
D, γ

)
, (7)

and market prices of diffusion and jump risk are ϕt and λQt /λt = 1− ψt, where

ϕt = − 1

ξt

[
c1
∂F1t

∂Dt

(D, γ) + c2
∂F2t

∂Dt

(
D,D, θA, γ, 0

)
+ c3

∂F3t

∂Dt

(
D, γ

) ]
DtσD, (8)

ψt = − 1

ξt−

[
c1∆F1t (D, γ) + c2∆F2t

(
D,D, θA, γ, 0

)
+ c3∆F3t

(
D, γ

) ]
. (9)

The expressions for D, D, and θA, as well as the constants c1, c2, and c3 are provided in

Proposition 1 and Fit(·), ∂Fit
∂Dt

(·), and ∆Fit (·) stand for Fi (T − t,Dt; ·), ∂Fi
∂D

(T − t,Dt; ·),

and ∆Fi (T − t,Dt−; ·) defined in Lemmas A.1 and A.2 in Appendix A.

Proof. See Appendix A.2.

4 Results

In this section, we study the equilibrium asset prices and equilibrium asset demands. We

show that the presence of a disappointment-averse agent in a heterogenous-agent model helps

to explain the size and the dynamics of the option market.
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4.1 Asset Prices in Equilibrium

The next two propositions discuss stock and derivative market valuations. First, we turn

our attention to the stock. Proposition 3 discusses the equilibrium stock price in the DA

economy.

Proposition 3. In equilibrium, the stock price is given by

St =
1

ξt

[
c1F1t (D, γ − 1) + c2F2t

(
D,D, θA, γ, 1

)
+ c3F3t

(
D, γ − 1

) ]
,

where the expressions for ξt and constants c1, c2, c3 are provided in Proposition 2. Functions

Fit(·) stand for Fi (T − t,Dt; ·) defined in Lemma A.1.

The equilibrium stock price dynamics is of the form

dSt = St− [µS,tdt+ σS,tdwt + δS,tdNt] ,

where the expressions for the drift µS,t, the diffusion volatility σS,t, and the jump volatility

δS,t are provided in equations (A.19), (A.20), and (A.21).

Proof. See Appendix A.3.

To illustrate the results in Proposition 3, Table 3 plots the properties of equilibrium stock

returns. The presence of disappointment-averse agents generates a sizable risk premium for

the stock and creates excess stock market volatility. Comparing Panels A and B shows

that the risk premium in the economy with disappointment-averse agents (DA economy) is

similar in magnitude to that generated by the heterogenous risk-averse benchmark model

(RA economy).11

[ Insert Table 3 here ]

Turning to Panels C and D of Table 3, we see that disappointment-averse investors

make the stock much more volatile than in the economy with only risk-averse agents with

heterogenous degrees of risk aversion. Indeed, in the RA economy the volatility of the stock

is barely higher than the volatility of dividend news. This is in contrast to up to 15–20% of

excess volatility in the DA economy.

11 Note that our main calibration leads to an equity risk premium of 4.07% in the DA economy and 4.06%
in the RA economy. We deliberately choose γA = 4 in the RA economy to match the risk premium of the DA
economy. Also note that we could easily have a higher equity premium in the main calibration by increasing
γB , but we prefer to use the low value of γB = 1 in order to highlight the effect agent A’s disappointment
aversion on the upcoming results.
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The next proposition discusses the equilibrium valuation of the put option on the stock.

Prices of other derivative securities, for example a call option, can be deduced using the

pull-call parity.

Proposition 4. The equilibrium price of a put option with strike price K and maturity T

is given by

Pt =



1

ξt
c1 (K · F1t (K, γ)− F1t (K, γ − 1)) if K ≤ D,

1

ξt

[
c1 (K · F1t (D, γ)− F1t (D, γ − 1))

+c2 (K · F2t (D,K, γ, 0)− F2t (D,K, γ, 1))
]

if D < K ≤ D,

1

ξt

[
c1 (K · F1t (D, γ)− F1t (D, γ − 1))

+c2

(
K · F2t

(
D,D, θA, γ, 0

)
− F2t

(
D,D, θA, γ, 1

))
+c3

(
K ·

(
F1t (K, γ)− F1t

(
D, γ

))
−
(
F1t (K, γ − 1)− F1t

(
D, γ − 1

))) ]
if K > D,

where the expressions for ξt, constants c1, c2,and c3 are provided in Proposition 2. Functions

Fit(·) stand for Fi (T − t,Dt; ·) as defined in Lemma A.1.

Moreover, the equilibrium price dynamics of the put option is of the form

dPt = Pt− [µP,tdt+ σP,tdwt + δP,tdNt] ,

where the expressions for the drift µP,t, the diffusion volatility σP,t, and the jump volatility

δP,t are provided in Appendix A.4.

Proof. See Appendix A.4.

To illustrate the equilibrium properties of put option returns, Figure 7 shows monthly

put option risk premia and the Black-Scholes implied volatility as a function of option mon-

eyness in our main calibrations of the two economies. Figure 7 demonstrates that (with

the same equity premium) the presence of disappointment-averse agents leads to lower risk

premia for out-of-the-money options and (slightly) higher implied volatilities compared to

the benchmark RA economy. Both economies are able to produce the volatility skew, which

is mainly driven by the distributional assumptions about the dividend fundamental.

[ Insert Figure 7 here ]
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4.2 Equilibrium Wealth and Risk Factor Exposures

Before we turn our attention to investors’ portfolio planning decisions in equilibrium, Propo-

sition 5 studies the equilibrium wealth profiles and the local exposures to the risk factors that

support the equilibrium wealth dynamics. Focusing on the equilibrium exposures helps to

build intuition about the relative attractiveness of the fundamental risk factors for different

types of investors. Given the available securities, investors choose their asset allocations to

achieve the optimal exposures to the diffusion and jump risk.

Proposition 5. The equilibrium investors’ wealth profiles, Ŵi,t, are given by

ŴA,t =
1

ξt

[( λA
1 + `

)− 1
γ

c
1− 1

γ

1 F1t (D, γ − 1) + θAc2F2t

(
D,D, θA, γ, 0

)
+ λ

− 1
γ

A c
1− 1

γ

3 F3t

(
D, γ − 1

) ]
,

(10)

ŴB,t =
1

ξt

[
λ
− 1
γ

B c
1− 1

γ

1 F1t (D, γ − 1) + c2F2t

(
D,D, θA, γ − 1, 0

)
+ λ

− 1
γ

B c
1− 1

γ

3 F3t

(
D, γ − 1

) ]
,

where functions Fit(·) stand for Fi (T − t,Dt; ·) as defined in Lemma A.1.

The equilibrium wealth dynamics is of the form

dŴi,t = Ŵi,t− [µW,i,tdt+ σW,i,tdwt + δW,i,tdNt] ,

where σW,i,t and δW,i,t capture local exposure to the diffusion and jump risk factors, respec-

tively,

σW,i,t = αi,t + ϕt, (11)

δW,i,t =
βi,t + ψt
1− ψt

. (12)

Expressions for ϕt and ψt are provided in Proposition 2, whereas αi,t and βi,t for i ∈ {A,B}
are given by (A.23)–(A.24) in Appendix A.6.

Figure 8 illustrates equilibrium wealth and risk factor exposures of the disappointment-

averse agent in the DA economy (Panel A) and of the more risk averse agent in the RA

economy for our main calibration. The illustration provides a number of insights into the

equilibrium mechanism by highlighting the role of the option market in achieving the equi-

librium risk exposures. The solid blue line in all panels is the equilibrium wealth of agent

A at t = 0, ŴA,0. Note how the optimal wealth profiles at t = 0 show a close resemblance

to the corresponding optimal terminal wealth profiles in Panels A and D of Figure 5. The

slope of the red dashed line tangent to the equilibrium wealth profile at D0 = 1 (the point
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where the horizontal and vertical gray lines are crossing) is equal to the equilibrium exposure

to diffusive risk normalized by the dividend news volatility, σW,A,0ŴA,0/σD. It shows that

agent A remains on the optimal wealth profile for an infinitesimally small diffusion shock,

dwt, i.e. her Brownian risk is hedged. The green arrow represents the equilibrium jump risk

exposure and shows what happens in case the rare jump occurs. In the top row of Panel A

in Figure 8, we see that if the jump in the dividend fundamental occurs in the next instance,

agent A’s wealth changes by δW,A,0ŴA,0 and she remains on the equilibrium wealth profile.

Looking at the slopes of the red and green lines which capture the optimal exposures to

the two types for risk in the economy, we see that the disappointment-averse agent A is willing

to accept a rather high diffusion risk exposure and only tolerates a relatively low negative

exposure to jump risk. Intuitively, the high diffusive risk exposure and very limited jump

risk exposure sought by the disappointment-averse investor can be achieved by holding the

risky stock and purchasing an insurance derivative that protects from downward stock price

movements. This generates the demand for put options in the DA economy. This demand

for disappointment protection is fulfilled by agent B who ends up with a high exposure to

both types of shocks.

The bottom row of Panel A depicts an alternative scenario demonstrating what would

happen if the agent could only invest in the stock and the riskless bond (i.e., no access to

the option market). For illustration purposes, we assume that the exposure to Brownian risk

remains the same as in the top row (this assumption will pin down the agent’s investment in

the stock). The allocation depicted in the bottom row of Panel A is clearly suboptimal: in

the event of the jump in the dividend fundamental, the agent’s wealth falls below the optimal

level. To hedge this risk, agent A wants to buy a put option, which serves as an insurance

if the jump occurs. At the same time, she also adjusts her stock position to achieve the

equilibrium exposure to both types of risks depicted in the top row of Panel A.

The graphs in Panel B of Figure 8 present corresponding results for agent A, the more

risk-averse agent, in the benchmark RA economy. Her optimal wealth profile is concave in

the dividend fundamental. In the top row, the slopes of the red and green lines capture

equilibrium diffusion and jump risk exposures, respectively. Contrasting these to the figure

on the left we note that the more risk-averse agent in the benchmark RA economy is much

more concerned with avoiding the diffusive risk and is less concerned about the jump risk

exposure, compared to the disappointment-averse agent in the DA economy. The bottom

graph of Panel B depicts the “suboptimal” allocation without access to the option market,

where the investor maintains her optimal diffusion risk exposure with only the stock and

the risk-free bond. The wealth of agent A would end up above the optimal level if a jump

occurred. Therefore, if the put option is available, she would like to sell it to increase her
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negative exposure to the jump risk. This is in line with results of Dieckmann and Gallmeyer

(2005).

To summarize, the disappointment-averse agent in the DA economy is going to buy the

put option to achieve the equilibrium exposure to both the diffusive and jump risks, while

the more risk-averse agent in the RA economy is going to sell the put option. By comparing

the suboptimal exposures (without the derivative) to the corresponding optimal ones in both

Panel A and B of Figure 8, we can see that a much bigger adjustment occurs in the DA

economy due to the introduction of the option. This implies, as we are going to see in the

following section, that the equilibrium size of the put option market is considerably larger

in the DA economy.

4.3 Asset Demands in Equilibrium

We now study investors’ portfolios in equilibrium. By taking positions in the available

assets, agents effectively invest in the diffusive and jump risks according to their desired

exposures outlined in Proposition 5. In order to explicitly identify who buys or sells risky

assets in response to cash flow news, Proposition 6 discusses investors’ portfolios in terms of

the absolute number of shares held of a certain security, as well as the relative proportion

of investor’s wealth invested in the stock and the derivative asset. We assume that the

derivative that completes the market is a put option.12 Market completeness allows us to

map the equilibrium risk exposures into the equilibrium asset demands.

Proposition 6. In equilibrium, the agents’ investments (in terms of the number of shares)

in the stock and the put option are

πS,i,t = φS,i,t
Ŵi,t

St
, πP,i,t = φP,i,t

Ŵi,t

Pt
, i ∈ {A,B} ,

where the equilibrium investors’ wealth profiles, Ŵi,t, are given in Proposition 5, stock and

put prices are as in Proposition 3, and the fractions of investors’ wealth invested in the stock

and the put option, φS,i,t and φP,i,t, are given by

φS,i,t =
δW,i,tσP,t − δP,tσW,i,t
δS,tσP,t − δP,tσS,t

,

φP,i,t =
δW,i,tσS,t − δS,tσW,i,t
−δS,tσP,t + δP,tσS,t

.

12Note that only at this step we need to specify the derivative that completes the market.
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σW,i,t and δW,i,t for i ∈ {A,B} are given by (11)–(12). Finally, Appendices A.3 and A.4

provide expressions for σj,t, δj,t for j ∈ {S, P}.

Figure 9 plots equilibrium number of stocks and out-of-the-money (K/St = 0.95) put

options demanded by agent A as a function of the initial wealth-share of the disappointment-

avers agents in the economy.13 The DA economy (left panel) is compared to the benchmark

RA economy (right panel). For low values of α the DA agent has little wealth and the

put option risk premium that can be earned by agent B from selling puts is relatively low.

Therefore, the number of put contracts in equilibrium is relatively low. As α increases the

DA investor has more demand for the portfolio protection offered by the put and is willing to

pay a higher premium for it. Consequently, the size of the option market increases: agent B

sells and agent A buys a higher number of put options. For values of α higher then 60-70%

the disappointment-averse agent A owns a high fraction of the wealth in the economy and

the risk-averse agent B has less initial wealth and thus can offer less risk sharing capacity.

This causes the intermediate flat region of the agent A’s wealth profile to become smaller.

Despite a lucrative risk premium from writing put options, the number of put options sold

by agent B (and bought by agent A) goes down.

Finally, we turn to an extreme case when the relative wealth share of the disappointment-

averse agent if close to 1. One can also think of this case as capturing the times of severe

economic distress when the risk sharing capacity in the economy is very limited. Indeed,

as we demonstrate in Section 5 similar effects are observed at lower levels of the dividend

fundamental. When the DA agent owns nearly all the wealth in the economy she starts

writing put options. Intuitively, when agent B is small enough, the payoff profile of the

disappointment-averse agent A becomes very close to that of the more risk-averse agent in

the benchmark economy. The set of intermediate states shrinks and to correctly replicate

the concave shape of her payoff with the stock and the put option, agent A sells put options.

In turn, agent B, instead of providing protection, finds it optimal to be long both the stock

and the put option, effectively implementing a synthetic call payoff profile. Both investors

are trying to achieve their desired exposures to the two types of risks. While the two risky

assets, the stock and the option, offer exposures to these risks in very different proportions.

Note that even when the disappointment-averse agent A is selling the put option to agent

B, the latter still has higher exposure to diffusive risk and higher exposure to jump risk.

In the high α region, the DA economy is similar to the benchmark RA economy. The

results depicted in the right panel are in line with the previous findings in the literature:

13 The relative wealth share of the disappointment-averse agent going from zero to one in Figure 9 can be
also interpreted in terms of the economy moving across different states, from good to bad. This is because the
agent A owns a higher fraction of wealth in the economy in bad states (low level of dividend fundamental),
while agent B dominates the economy in good states (high level of dividend fundamental).
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The more risk-averse investor sells put options to the less risk-averse investor. This asset

allocation allows the two agents to implement their optimal risk exposures. The more risk-

averse agent A here wants to avoid diffusion risk, but can tolerate more jump risk (compared

to the disappointment-averse agent), so she invests considerably less in the stock and sells a

small number of put options to bump up the jump risk exposure to the optimal level. The

overall risk exposure from this strategy for the more risk-averse agent is still much lower

than that of the less risk-averse agent who takes the other side of the trade.

[ Insert Figure 9 here ]

We further study how the size of the option market behaves for different values of prefer-

ence parameters. In the benchmark RA economy the size of the option market is negligible,

even for very high values of agent A’s risk aversion. In this economy, agents invest in the

stock and the risk-free asset and largely do not participate in the option market. For exam-

ple, when endowed with 50% of the stock supply, the more risk averse agent trades with the

less risk-averse counterpart to reduce the risky exposure and takes a very small (practically

zero) short position in the put option. In contrast to the benchmark RA case, the economy

with the disappointment-averse agent delivers considerably larger number of option contracts

demanded. The option market becomes important quickly as `A increases and at some point

gets to be largely insensitive to further changes in `A or changes in risk aversion γ (recall

that γA = γB = γ in the economy with disappointment aversion).

We also investigate the sensitivity of the option positions to changes in disaster param-

eters δD, λ (figure not reported). The option market’s size becomes lower as the jump size,

δD, increases (options become more expensive in the economy with larger disasters). At

the same time the size of the option market is not sensitive at all to jump intensity, λ. In

equilibrium, as λ increases, the risk-neutral disaster intensity λQ and the risk premium for

writing put options also increase. However, the market price of jump risk (λQ/λ) remains

constant and so does investors’ optimal exposure to jump risk .

4.4 Disappointment Threshold and Size of the Option Market

Figure 10 shows the risky asset demands in the disappointment-averse model for various

values of the disappointment threshold parameter κA. The left panel shows the stock demand

of agent A, while the right panel focuses on the demand for options. We see that the option

market size is hump-shaped in the disappointment threshold. For a relatively low level of

κA (e.g., κA = 0.9 – meaning that more than a 10% drop in terminal wealth below the

certainty equivalent level is labeled as disappointing) disappointment becomes unlikely. In
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this case, disappointment-averse investor A increases slightly her risky stock position from

the initial endowment of half a share and her long put position does not cover the entire

stock exposure. With a higher disappointment threshold (κA = 0.95), investor A becomes

disappointed more easily. In this case she implements a fully covered portfolio insurance

strategy, maintaining a long position in the stock (close to her initial endowment) and fully

hedging it by buying the corresponding number of put options. When the disappointment

threshold is even higher (κA = 0.98), in order to avoid disappointing outcomes investor A

has to give up some of the upside of the stock investment. We observe that agent A further

reduces stock exposure and sets the protection level of her insurance strategy even higher.

Finally, consider the special case of the DA preferences (κA = 1). As κA becomes close

to one (i.e the disappointment threshold is the certainty equivalent), the disappointment-

averse investor chooses not to participate in risky asset markets (for κA = 1, both πS,A,t and

πP,A,t are zero for `A > 1). That is, in this case there is no demand for the option as the

disappointment-averse agent chooses to invest all her wealth in the risk-free asset.

[ Insert Figure 10 here ]

We emphasize here that there is a clear-cut difference between DA and GDA preferences.

For the DA investor (κA = 1), we show that the non-participation result of Ang et al.

(2005) extends to the case when an option is added to the investment opportunity set. The

GDA investor, on the other hand, implements a protective put strategy by fully (for higher

levels of κA < 1), or partially (for lower levels of κA < 1) hedging her long position in the

stock. Intuitively, in the case of DA preferences, the disappointment threshold is so high

that the investor has to relinquish the whole upside of the investment to have full protection

against disappointing outcomes. When the threshold of disappointment becomes lower (the

GDA case), the investor can protect herself from disappointment while still enjoying some

of the upside of the stock investment. As long as κA < 1, even investors with very high

disappointment aversion hold sizable positions in the stock and use the option market to

protect themselves from disappointing outcomes.

4.5 Multiple Options

In this section we study the size of the option market when options with multiple strikes are

traded at the same time. It is a well-documented stylized fact that that the open interest

in the data peaks near the at-the-money contracts (see, e. g. Lakonishok et al., 2007;

Bollen and Whaley, 2004; Buraschi and Jiltsov, 2006) and this feature has been shown to be

incompatible with the risk-sharing option demand in existing equilibrium models (Judd and
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Leisen, 2010). In this subsection, we show that it arises naturally in the heterogenous-agent

economy with disappointment aversion.

To analyze the open interest curve across strikes, we consider stochastic jumps with two,

three, and four possible jump sizes, so that the multiple options are not redundant. To

illustrate the model results for the case of stochastic jump size, we estimate the parameters

of our dividend news process using earnings data from Robert Shiller’s website. The jump

size distribution is assumed to be normal for the estimation. For the figure, we approximate

it with a two-, three-, and four-point discretizations.

[ Insert Figure 11 here ]

Across moneyness, Figure 11 plots the number of options traded (open interest on the

left axis) alongside the Black-Scholes implied volatility (right axis). First, confirming our

earlier results, we observe the volatility skew. Second, turning our attention to the number

of option contracts, we observe that the open interest patterns closely match the patterns

we see in the data. Who is buying and who is selling each of these contracts? In the two-

options case, the DA agent is long both options. With three jumps and three options, the

DA investor buys the OTM and ATM puts and shorts the ITM option. With four jumps

and four options available, the DA investor buys the two middle moneyness puts and shorts

the two puts at the ends in terms of moneyness for both graphs. Comparing the two graphs

in the four-options case, we note that when the moneyness of the put option that is just out

of the money becomes closer to 1 the peak of the open interest curve shifts to this position.

This is in line with what we observe in the data.

Multiple options allow investors to better disentangle simultaneous exposures to diffusion

and jump risks in the stock market. Investors’ target is to achieve the desired exposure to

all risk factors given the risk sensitivities of the traded assets. More precisely, equilibrium

positions in the N risky assets (stock and N − 1 options) solve a system of N equations

with N unknowns. To build intuition, it is instructive to discuss the two-options case more

closely. The stock provides almost equal exposures to both the diffusive and jump risks in

dividend fundamental. Therefore both investors use the cross-section of options to replicate

their desired risk exposures. The DA agent is long both options but the amount invested in

the ATM option is higher than that for the OTM. The reason for this is that the ATM put’s

relative exposures to two jump risks closely match those of the DA investor’s equilibrium

wealth, which makes it an attractive asset for the DA investor. Whereas the OTM put is

very effective in providing a separate exposure to the negative jump risk, so a small amount

in enough to do the job.
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5 Empirical Content and Discussion

In this section, we discuss the empirical relevance and implications of our theoretical results.

5.1 Consistent Evidence

Our theoretical model is consistent with a number of stylized facts about the demand for

index puts in the economy:

1. Put (index) option market is economically large. See Section 2. On an average

trade date, the number of shares referenced by S&P 500 put index options is about

10% of the total equity of the market. In terms of notional value, this amounts to more

than 3 trillion dollars of underlying index value that is controlled by these positions.

2. Buying index puts is expensive. Indeed, index put options have been shown to

have highly negative expected returns. See, e.g., Broadie et al. (2009) and Bondarenko

(2014).

3. Public investors are net buyers of put options. See, e.g., Bollen and Whaley

(2004). In our model, the disappointment-averse investors are buyers of put options

during the “normal” times. This group of agents represents end-users or public in-

vestors (retail and institutional). The risk-averse investors that do not exhibit disap-

pointment aversion are sellers. They stand for broker-dealers and market-makers in

option markets.

4. Public investors can switch from buyers to sellers. See, e.g., Chen et al. (2019)

on how public investors (institutional) provide insurance to financial intermediaries in

times of economic distress by selling deep out-of-the-money index put options. In our

model, when the risk sharing capacity in the economy dries up the disappointment-

averse investors’ demand for put options can turn negative.

5. Across option moneyness, open interest peaks at the money. See Section 2

and the evidence in Judd and Leisen (2010), Bondarenko (2014).

6. Buying pressure in index put options can predict S&P 500 returns. See, Chen

et al. (2019) and Chordia et al. (2021). In our model, observable changes in the size

of the option market signal shifts in the market “demographics”. These shifts in the

distribution of wealth between different types of agents (which are not directly observ-

able) drive the trading activity and determine the behavior of asset prices. Paralleling

the results of Longstaff and Wang (2012) for the amount of credit in the economy, the
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economic mechanism of our model provides a link between the size of option market

and asset-pricing moments. In line with our model mechanism, Chordia et al. (2021)

argue that the predictability they document is largely driven by investors’ demand for

insurance.

5.2 New Predictions

The disappointment-averse agent in our model owns a relatively larger wealth share of the

economy in bad states (when the dividend fundamental is low), while the risk-averse agent

dominates the economy in the good states. This leads to the following predictions about the

behavior of the put option market (when the disappointment-averse, i.e. public, investors

are buying put options):

1. Cyclicality of the put option market. At lower levels of dividend fundamental

(intermediate states and bad states when the disappointment-averse agent owns a larger

part of the economy, but does not start yet selling put options), the option market

behaves procyclically: The size of the put option market increases as the economy

expands. However, at higher levels of dividend fundamental (good states when the

risk-averse agent owns the economy), the option market size becomes countercyclical.

2. Price-quantity relationship in the put option market. There is a positive re-

lationship between changes in put option prices and equilibrium quantities of out-of-

the-money options demanded in good times. This relationship turns to negative in

intermediate and bad states.

3. Correlation with the equity premium. Changes in the hedging demand as cap-

tured by the open interest in out-of-the money put options are positively (resp., nega-

tively) correlated with the equity risk premium in good (resp., intermediate and bad)

states of the economy.

Figure 12 illustrates these predictions. In particular, the graphs show various quantities

at time t = T/2, as the function of the current value of the dividend fundamental, Dt, in the

DA economy. By time t = T/2, Dt has moved away from its initial value of D0 = 1 (good

or bad news have arrived), and the equilibrium has adjusted accordingly. For reference, all

graphs feature the probability density function of Dt. The top two panels show the stock

price (left) and the equity risk premium (right). The bottom two panels show the option

demand in terms of put option contracts held by the disappointment-averse investor (left)

and the price of the option as measured by implied volatility (right).
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First of all, we see that the stock price moves in line with the dividend news in the

economy. Therefore, all of the aforementioned predictions can also be formulated in terms

of the stock market level. Second, the graph showing the option demand tells a similar

picture to Figure 9 which varies the importance of the disappointment-averse agent on the

horizontal axis. As stated in prediction 1, there is a hump-shaped relation between the size

of the option market and the health of the economy. In good states, demand for options

decreases as the level of dividend fundamental increases even further. In other words, in

this region the size of the option market decreases in cash-flow news. However, as the

economy starts to contract we observe the opposite, procyclical behavior: The size of the

option market becomes increasing in cash-flow news. Finally, when the level of dividend

fundamental is very low and the proportion of the disappointment-averse agents in the

economy is sufficiently high we can observe the option market flipping. The disappointment-

averse agent, who is normally a net buyer becomes a net seller of out-of-the money puts.

The intuition behind this result is discussed in detail in Section 3.3. If the economy is in

distress but the proportion of disappointment-averse agents is not very high (α = 0.25 in the

figure), then the disappointment-averse investors simply stay out of the risky asset market

altogether.

Looking at the the implied volatility plot, we also see that in normal times (when the

disappointment-averse investors are net buyers of put options) implied volatility is falling and

the option price is becoming cheaper as the economy expands. Comparing this result to the

behavior of the put option demand confirms prediction 2. Indeed, in bad and intermediate

states increases in put option demand coincide with the put option becoming less expensive.

For high dividend levels, this pattern reverses and as the option is becoming cheaper the

demand for it drops as well.

Finally, we also observe the stock market risk premium being naturally countercyclical.

In line with prediction 3, this means that in good states the put option market demand

and the equity risk premium move together, both decrease as the economy expands. As

the level of dividend fundamental falls and we move into the intermediate and bad states of

the economy, the premium for the stock continues to rise while the equilibrium quantity of

out-of-the money put options traded falls.

5.3 Intuition: Supply and Demand Effects in Equilibrium

The intuition behind the predictions outlined in the previous subsection can be understood

from the lens of demand and supply analysis.

In periods of economic expansion, as the economy moves to states with higher and higher
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dividend fundamental, we observe a buyer’s market for put options. Risk-average agent (sup-

plier of put options) makes up most of the economy, whereas the disappointment-averse agent

(demander of put options) makes up a smaller part of the economy. Indeed, the risk-averse

agent enters the good states with a profit from selling put options in the previous period,

while the disappointment-averse agent enters good states with a loss as put options never

become in-the-money. Loosely speaking, there are more people looking to sell crash insur-

ance than there are people looking to buy it. In such economy, we observe that shocks to

the demand side dominate and quantity of put options demanded decreases as the econ-

omy expands further. If the economy starts to cool off, demand for put options picks up

again. The market for put options in these states is countercyclical. Moreover, as quan-

tity demanded changes the price moves in the same direction and we observe a positive

price-quantity relationship in the put option market.

In periods of economic downturn, the situation is reversed. In bad states, the risk-averse

agent starts experiencing some losses from selling put options in the earlier periods. Some

options became in-the-money. On the other hand, the disappointment-averse agent makes

money from her portfolio protection strategy. As a result, disappointment-averse agent ends

up owning a larger share of the economy. The risk-averse agent, who underwrites put options,

becomes more constrained as her wealth deteriorates. In this case we have a seller’s market:

there are more potential buyers than sellers of crash insurance. The relatively lower fraction

of risk-averse agents implies that shocks to the supply side of put option market dominate.

If the economy contracts further, equilibrium quantity of put options demanded decreases

as well coupled with the increase in price. The market for put options in these states is

procyclical and we observe price and quantity moving in opposite directions.

Depending on whether demand or supply shocks dominate, changes in put options open

interest can be positively or negatively associated with changes in stock market risk premium.

This model implication (prediction 3 in the previous subsection) potentially reconciles the

seemingly contradicting findings of Chen et al. (2019) and Chordia et al. (2021). On the

one hand, our findings are in line with the evidence presented in Chen et al. (2019). They

show that in periods with a negative price-quantity relation in the deep out-of-the-money

index put option market, public net-buying demand negatively predicts future market excess

returns. In our setting, market expected excess returns are countercyclical and can move in

the opposite directions with out-of-the-money put quantities demanded when the latter are

procyclical. This happens when supply shocks in the option market dominate, i.e. in periods

of economic slowdown and recession. On the other hand, the two can be positively related as

well, which happens when demand shocks in the option market dominate. This means that

the finding of Chordia et al. (2021) that net put buying positively predicts market returns
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can be due to the overrepresentation of expansion periods in their 2006–2017 sample.

6 Conclusion

In this paper, the main focus is on the derivatives markets and the most important results

concern equilibrium asset demands. We study the potential of asymmetric preferences to

explain the stylized facts about the amount of put option trading. To this end, we analyze a

dynamic heterogenous-agent economy with rare event risk and two classes of investors: risk-

averse investors and disappointment-averse investors. The latter are especially concerned

about the left-tail outcomes of their investments. To model the asymmetries in investor

preferences, we rely on the generalized disappointment aversion framework in which investor

is loss-averse around a reference point defined in terms of her certainty equivalent.

We show that accounting for asymmetries in preferences coupled with the asymmetric

nature of dividend shocks helps to rationalize the observed size and dynamics of the put

option market. Risk aversion alone is not enough. In the economy populated by heterogenous

risk-averse investors the size of the option market is negligible, even for very high values of risk

aversion. In contrast to the risk-averse setting, we demonstrate that the presence of agents

with asymmetric preferences over gains and losses gives rise to a sizable option market in the

economy. The size of the option market is hump-shaped in the disappointment threshold. For

a relatively low level of disappointment threshold disappointing event becomes unlikely and

the investor does not try to implement a portfolio insurance strategy. As the disappointment

threshold becomes very high, the disappointment-averse investor chooses not to participate

in risky asset markets and invests all her wealth in the risk-free asset. In the cross-section of

options, we find that asymmetric preferences explain the shape of the observed open interest

curve that poses a challenge to existing models. Finally, we derive new predictions about

the behavior of put option demand over the business cycle and the resulting co-movement

between the stock and the options markets.
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Appendix

A Proofs

A.1 Proposition 1

Proof. The portfolio choice problem for the risk averse agent B is solved by maximizing

LB = E [u(WB,T )] + λB (WB,0 − E[ξTWB,T ]) ,

where u(x) = ui(x), i ∈ A,B is given in (2). We obtain the agent’s optimal terminal wealth
as

ŴB,T = (λBξT )−
1
γ ,

where λB solves

WB,0 = E[ξT ŴB,T ]. (A.1)

To solve the portfolio problem of the disappointment-averse agent A we proceed in two
steps. First, we maximize the disappointment-averse agent’s objective function subject to
the static budget constraint for a given disappointment threshold θA. Second, we find the
(endogenously determined) agent’s disappointment threshold. In the first step we rely on the
results of Basak and Shapiro (2001) and Berkelaar et al. (2004) on the solution of nonstandard
optimization problems. Alternatively, if the

Maximizing

LA = E [u(WA,T )]− `AE [(u(θA)− u(WA,T )) I(WA,T ≤ θA)] + λA (WA,0 − E[ξTWA,T ])

gives the agent’s optimal terminal wealth as

ŴA,T =



(λAξT )−
1
γ if ξT ≤ ξ(θA) ≡ θ−γA

λA
,

θA if ξ < ξT ≤ ξ,

(
λAξT

1 + `A

)− 1
γ

if ξT > ξ(θA) ≡ (1 + `A) θ−γA
λA

,

(A.2)

where λA solves

WA,0 = E[ξT ŴA,T ]. (A.3)

Let ŴA,T (θA) be the optimal wealth profile for a given θA. If the disappointment threshold
is defined as in (3), we determine the certainty equivalent RA as θA/κ, where θA is the fixed
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point of

u(κ−1θA) = E
[
u(ŴA,T (θA)− `A

(
u(θA)− u

(
ŴA,T (θA)

))
I
(
ŴA,T (θA) ≤ θA

)]
,

or, equivalently, for γ 6= 1

κγ−1θ1−γ
A =E

[(
ŴA,T (θA)

)1−γ
]
− `Aθ1−γ

A E
[
I(ŴA,T (θA) < θA)

]
(A.4)

+ `AE

[(
ŴA,T (θA)

)1−γ
I
(
ŴA,T (θA) < θA

)]
,

and for γ = 1

log θA − log κ =E
[
log
(
ŴA,T (θA)

)]
− `A log θAE

[
I(ŴA,T (θA) < θA)

]
(A.5)

+ `AE
[
log
(
ŴA,T (θA)

)
I
(
ŴA,T (θA) < θA

)]
.

Imposing the market clearing condition

ŴA,T + ŴB,T = DT

allows to solve for the equilibrium terminal state price density as follows

ξT =



c1D
−γ
T if DT < D ≡

(
1 +

(
λA
λB

1
1+`A

) 1
γ

)
θA,

c2 (DT − θA)−γ if D ≤ DT < D,

c3D
−γ
T if DT ≥ D ≡

(
1 +

(
λA
λB

) 1
γ

)
θA,

(A.6)

where c1 ≡
((

λA
1+`A

)− 1
γ

+ λ
− 1
γ

B

)γ
, c2 ≡ λ−1

B , and c3 ≡
(
λ
− 1
γ

A + λ
− 1
γ

B

)γ
. The result in (4)

then follows from using (A.6) in (A.2).
For γ 6= 1, the fixed point equation (A.4) determining θA becomes

κγ−1θ1−γ
A = θ1−γ

A E
[
I
(
D ≤ DT < D

)]
+

(
1 +

(
λA
λB

) 1
γ

)γ−1

E
[
D1−γ
T I(DT ≥ D)

]
(A.7)

− `Aθ1−γ
A E [I(DT < D)] + (1 + `A)

(
1 +

(
λA
λB

1

1 + `A

) 1
γ

)γ−1

E
[
D1−γ
T I(DT < D)

]
.
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For γ = 1, the equation (A.5) can be further simplified to yield

0 = log(D/D0)− E[log(DT/D0)]− log(D/D0)E
[
I(DT < D)

]
+ E

[
log(DT/D0)I(DT < D)

]
+ (1 + `A) log(D/D0)E [I(DT < D)]− (1 + `A)E [log(DT/D0)I(DT < D)− log κ] .

Alternatively, if the disappointment threshold is defined as θi = κiWi,0 we have

θA = κAαS0,

where S0 can be obtained as

S0 = c1E
[
D1−γ
T I(DT < D)

]
+ c2E

[
(DT − θA)−γDT I

(
D ≤ DT < D

)]
(A.8)

+ c3E
[
D1−γ
T I(DT ≥ D)

]
.

Moreover, using (A.6) and (4) in the budget constraint of agent (A.3) we obtain the
equation for agent A’s Lagrange multiplier λA

αS0 =

(
λA

1 + `A

)− 1
γ

((
λA

1 + `A

)− 1
γ

+ λ
− 1
γ

B

)γ−1

E
[
D1−γ
T I(DT < D)

]
(A.9)

+ θAλ
−1
B E

[
(DT − θA)−γI

(
D ≤ DT < D

)]
+ λ

− 1
γ

A

(
λ
− 1
γ

A + λ
− 1
γ

B

)γ−1

E
[
D1−γ
T I(DT ≥ D)

]
.

Similarly, to determine λB for agent B we can write his budget constraint (A.1) as

(1− α)S0 =λ
− 1
γ

B

((
λA

1 + `A

)− 1
γ

+ λ
− 1
γ

B

)γ−1

E
[
D1−γ
T I(DT < D)

]
(A.10)

+ λ−1
B E

[
(DT − θA)1−γI

(
D ≤ DT < D

)]
+ λ

− 1
γ

B

(
λ
− 1
γ

A + λ
− 1
γ

B

)γ−1

E
[
D1−γ
T I(DT ≥ D)

]
.

Finally, in order to compute θA, λA, and λB we need explicit expressions for conditional
expectations in (A.7), (A.8), (A.9), and (A.10). We make use of the following result.

Lemma A.1.

Et
[
D−γT I(DT < D)

]
= F1(T − t,Dt;D, γ), (A.11)

Et

[
(DT − θ)−γDψ

T I
(
D ≤ DT < D

)]
= F2(T − t,Dt;D,D, θ, γ, ψ), (A.12)

Et
[
D−γT I(DT ≥ D)

]
= F3(T − t,Dt;D, γ). (A.13)
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where functions F1, F2, and F3 are given by

F1(τ,D; a, γ) = D−γe−λτ
∞∑
n=0

(λτ)n

n!
e−β(τ,n,γ)Φ

(
d2

( a
D
, τ, n, γ

))
,

F2(τ,D; a, b, θ, γ, ψ) = θψ−γ
e−λτ√
2πτσ2

D

∞∑
n=0

(λτ)n

n!
Ψ

(
τ,
θ

D
; a, b, θ, γ, ψ

)
,

F3(τ,D; b, γ) = D−γe−λτ
∞∑
n=0

(λτ)n

n!
e−β(τ,n,γ)Φ

(
−d2

(
b

D
, τ, n, γ

))
.

Φ(x) denotes the cumulative distribution function of the standard normal distribution and Ψ
is defined by

Ψ (τ, x; a, b, θ, γ, ψ) =

∫ ln b/θ

ln a/θ

(ey − 1)−γ eψye
− (α(τ,n)−y−ln x)2

2τσ2
D dy.

Moreover, auxiliary functions α, β, d1 and d2 are defined as follows

α(τ, n) ≡ τ(µD − σ2
D/2) + n ln(1− δD),

β(τ, n, γ) ≡ γα(τ, n)− γ2τσ2
D/2,

d1(x, τ, n) ≡ lnx− α(τ, n)√
τσD

,

d2(x, τ, n, γ) ≡ d1(x, τ, n) + γ
√
τσD.

Proof. Results in (A.11) and (A.13) follow from the fact that for a random variable Xt

defined as Xt = µt+ σWt + δNt we have

E
[
ekXtI (Xt ∈ [a, b])

]
=

∫ b

a

ekx
e−λt√
2πtσ2

∞∑
n=0

(λt)n

n!
e−

(tµ+nδ−x)2

2tσ2 dx

= e−λt
∞∑
n=0

(λt)n

n!
e(µ

′(n)k+(
√
tσ)2k2/2)

×
[
Φ

(
b− µ′(n)√

tσ
−
√
tσk

)
− Φ

(
a− µ′(n)√

tσ
−
√
tσk

)]
,

where µ′(n) = tµ+ nδ.
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To compute the expectation in (A.12) we use a change of variable and rewrite it as follows

Et

[
(DT − θ)−γ Dψ

T I (DT ∈ [a, b])
]

= θψ−γA

∫ ln b
θ

+ln θ
Dt

ln a
θ

+ln θ
Dt

(
Dt

θ
ex − 1

)−γ (
Dt

θ
ex
)ψ

e−λt√
2πtσ2

×
∞∑
n=0

(λt)n

n!
e−

(tµ+nδ−x)2

2tσ2 dx

= θψ−γ
e−λt√
2πtσ2

×
∞∑
n=0

(λt)n

n!

∫ ln b
θ

ln a
θ

(ey − 1)−γ eψye−
(tµ+nδ−y−ln θ

Dt
)
2

2tσ2 dy,

where µ = µD − σ2
D/2, σ = σD, and δ = ln(1− δD).

Using Lemma A.1 in (A.7), we can compute the certainty equivalent RA = θA/κ, where
θA solves the following equation for γ 6= 1

κγ−1θ1−γ
A = θ1−γ

A F2(T,D0;D,D, θA, 0, 0) +

(
1 +

(
λA
λB

) 1
γ

)γ−1

F3(T,D0;D, γ − 1) (A.14)

− `Aθ1−γ
A F1 (T,D0;D, 0) + (1 + `A)

(
1 +

(
λA
λB

1

1 + `A

) 1
γ

)γ−1

F1 (T,D0;D, γ − 1) .

and, similarly, for γ = 1

log κ = log(D/D0)− T (µ+ λδ)− log(D/D0)F1(T,D0;D, 0) + F4(T,D0;D)

+ (1 + `A) log(D/D0)F1(T,D0;D, , 0)− (1 + `A)F4(T,D0;D),

where µ = µD − σ2
D/2, δ = ln(1− δD) and

F4(τ,D; a) = e−λτ
∞∑
n=0

(λτ)n

n!

(
α(τ, n)Φ

(
d1

( a
D
, τ, n

))
−
√
τσDφ

(
d1

( a
D
, τ, n

)))
.

with functions α and d1 as defined in Lemma A.1.
Moreover, the budget constraint of investor A in equation (A.9) can be written as

αS0 =

(
λA

1 + `A

)− 1
γ

((
λA

1 + `A

)− 1
γ

+ λ
− 1
γ

B

)γ−1

F1(T,D0;D, , γ − 1) (A.15)

+ θAλ
−1
B F2(T,D0;D,D, θA, γ, 0) + λ

− 1
γ

A

(
λ
− 1
γ

A + λ
− 1
γ

B

)γ−1

F3(T,D0;D, γ − 1).
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Similarly, for agent B we can write his budget constraint (A.10) as

(1− α)S0 =λ
− 1
γ

B

((
λA

1 + `A

)− 1
γ

+ λ
− 1
γ

B

)γ−1

F1(T,D0;D, γ − 1) (A.16)

+ λ−1
B F2(T,D0;D,D, θA, γ − 1, 0) + λ

− 1
γ

B

(
λ
− 1
γ

A + λ
− 1
γ

B

)γ−1

F3(T,D0;D, γ − 1),

where

S0 = c1F1 (0, D0;D, γ − 1) + c2F2

(
0, D0;D,D, θA, γ, 1

)
+ c3F3

(
0, D0D, γ − 1

)
.

A.2 Proposition 2

Proof. In our model, since we normalize the riskless rate to zero, the state price density is a
martingale,

ξt = Et [ξT ] . (A.17)

Using the expression for the time-T stochastic discount factor from (6), we can rewrite (A.17)
as

ξt = c1Et
[
D−γT I(DT < D)

]
+ c2Et

[
(DT − θA)−γI

(
D ≤ DT < D

)]
) + c3Et

[
D−γT I(DT ≥ D)

]
,

where

c1 ≡

((
λA

1 + `A

)− 1
γ

+ λ
− 1
γ

B

)γ

,

c2 ≡ λ−1
B ,

c3 ≡
(
λ
− 1
γ

A + λ
− 1
γ

B

)γ
.

Applying Lemma A.1 to compute the conditional expectations immediately gives the result
in (7).

From the dynamics of the stochastic discount factor we can recover the market prices of
risk, since

dξt = ξt− [−ϕtdWt − ψt(dNt − λdt)] . (A.18)

Applying Ito’s lemma to (7) allows to recover expressions for ϕt and ψt in (8) and (9).
The next Lemma gives expressions for partial derivatives and induced jump sizes of the Fi
functions in (7).
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Lemma A.2. The partial derivatives of the Fi functions, i ∈ 1, 2, 3, defined in Lemma A.1
with respect to D are

∂F1(τ,D; a, γ)

∂D
= −D−γ−1e−λτ

∞∑
n=0

(λτ)n

n!
e−β(τ,n,γ)

(
γΦ
(
d2

( a
D
, τ, n, γ

))
+
φ
(
d2

(
a
D
, τ, n, γ

))
√
τσD

)
,

∂F3(τ,D; b, γ)

∂D
= −D−γ−1e−λτ

∞∑
n=0

(λτ)n

n!
e−β(τ,n,γ)

(
γΦ

(
−d2

(
b

D
, τ, n, γ

))
−
φ
(
−d2

(
b
D
, τ, n, γ

))
√
τσD

)
m

and

∂F2(τ,D; a, b, θ, γ, ψ)

∂D
= θψ−γ

e−λτ√
2πτσ2

D

∞∑
n=0

(λτ)n

n!

∂Ψ
(
τ, θ

D
; γ, ψ

)
∂D

,

where

∂Ψ
(
τ, θ

D
; a, b, γ, ψ

)
∂D

=

∫ ln b/θA

ln a/θA

(ey − 1)−γ eψy
−α(τ, n) + y + ln θ

D

τσ2
DD

e
−

(α(τ,n)−y−ln θ
D )

2

2τσ2
D dy.

Moreover,

∆Fi (T − t,Dt−; γ) ≡ Fi (T − t,Dt− + ∆Dt; γ)− Fi (T − t,Dt−; γ) .

A.3 Proposition 3

Proof. The expression for the stock price follows from using the results presented in Propo-
sition 1 and Proposition 2 in

St =
1

ξt
Et [ξTDT ] ,

where the explicit expression for the expectation can be obtained using Lemma A.1. Applying
Ito’s lemma to the both sides of ξtSt = Et [ξTDT ] gives the following expressions for µS,t, σS,t
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and δS,t:

µS,t = ϕtσS,t − λδS,t (1− ψt) , (A.19)

σS,t = ϕt +
1

ξtSt

(
c1
∂F1t

∂Dt

(D, γ − 1) + c2
∂F2t

∂Dt

(
D,D, θA, γ, 1

)
+ c3

∂F3t

∂Dt

(
D, γ − 1

) )
DtσD, (A.20)

δS,t =
1

1− ψt

(
1 +

1

ξt−St−

(
c1∆F1t (D, γ − 1) + c2∆F2t

(
D,D, θA, γ, 1

)
+ c3∆F3t

(
D, γ − 1

) ))
− 1, (A.21)

where ξt, ϕt, ψt, constants c1, c2, c3 are given in Proposition 2 and functions ∂Fit
∂Dt

(·), and

∆Fit (·) stand for ∂Fi
∂D

(T − t,Dt; ·), and ∆Fi (T − t,Dt−, ·) defined in Lemma A.2.

A.4 Proposition 4

Proof. The price of the contingent claim on ST of the form Φ(x) can be obtained as

Ft =
1

ξt
Et[ξTΦ(DT )].

The payoff of the put is

max (K −DT , 0) = (K −DT ) I (DT < K)

Then

Et [ξTΦ (ST )] = Et [ξT (K −DT ) I (DT < K)] (A.22)

= KEt [ξT I (lnDT < lnK)]− Et [ξTDT I (lnDT < lnK)]

Depending on where K is relative to D and D, we have the three cases: (i) K ≤ D, (ii)
D < K ≤ D, or (iii) D < K and the expectations in (A.22) can be computed using the
results Lemma A.1. The dynamics of the put is then obtained similarly to the stock. For
the put option on the stock the drift µP,t is given by

µP,t = ϕtσP,t − λδP,t (1− ψt)

and, depending on the level of the strike price, the diffusion volatility σP,t and the jump
volatility δP,t are as follows:
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1. If K ≤ D,

σP,t = ϕt +
1

ξtPt
c1

(
K · ∂F1t

∂Dt

(K, γ)− ∂F1t

∂Dt

(K, γ − 1)

)
DtσD,

δP,t =
1

1− ψt

(
1 +

1

ξt−Pt−
c1 (K ·∆F1t (K, γ)−∆F1t (K, γ − 1))

)
− 1.

2. If D < K ≤ D,

σP,t = ϕt +
1

ξtPt

[
c1

(
K · ∂F1t

∂Dt

(D, γ)− ∂F1t

∂Dt

(D, γ − 1)

)
+ c2

(
K · ∂F2t

∂Dt

(D,K, θA, γ, 0)− ∂F2t

∂Dt

(D,K, θA, γ, 1)

)]
DtσD,

δP,t =
1

1− ψt

(
1 +

1

ξt−Pt−

[
c1 (K ·∆F1t (D, γ)−∆F1t (D, γ − 1))

+ c2 (K ·∆F2t (D,K, θA, γ, 0)−∆F2t (D,K, θA, γ, 1))
])
− 1.

3. If K > D,

σP,t = ϕt +
1

ξtPt

[
c1

(
K · ∂F1t

∂Dt

(D, γ)− ∂F1t

∂Dt

(D, γ − 1)

)
+ c2

(
K · ∂F2t

∂Dt

(
D,D, θA, γ, 0

)
− ∂F2t

∂Dt

(
D,D, θA, γ, 1

))
+ c3

(
K ·

(
∂F1t

∂Dt

(K, γ)− ∂F1t

∂Dt

(
D, γ

))

−
(
∂F1t

∂Dt

(K, γ − 1)− ∂F1t

∂Dt

(
D, γ − 1

)))]
DtσD,

δP,t =
1

1− ψt

(
1 +

1

ξt−Pt−

[
c1 (K ·∆F1t (D, γ)−∆F1t (D, γ − 1))

+ λ−1
B

(
K ·∆F2t

(
D,D, θA, γ, 0

)
−∆F2t

(
D,D, θA, γ, 1

))
+ c3

(
K ·

(
∆F1t (K, γ)−∆F1t

(
D, γ

))
−
(
∆F1t (K, γ − 1)−∆F1t

(
D, γ − 1

)) )])
− 1.

Expressions for ξt, ϕt, ψt, constants c1, c2, c3 are given in Proposition 2 and functions ∂Fit
∂Dt

(·),
and ∆Fit (·) stand for ∂Fi

∂D
(T − t,Dt; ·), and ∆Fi (T − t,Dt−, ·) defined in Lemma A.2.
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A.5 Proposition 5

Equilibrium time t wealth can be computed from

Ŵi,t =
1

ξt
Et

[
ξT Ŵi,T

]
using results of Proposition 1 and Lemma A.1. The equilibrium wealth dynamics of agent i
can be written as

dWi,t = Wi,t− [µW,i,tdt+ σW,i,tdwt + δW,i,tdNt] ,

where σW,i,t and δW,i,t capture local exposure to the risk factors: diffusion risk dwt and the
jump risk dNt. Recalling that the dynamics of the stochastic discount factor is

dξt = ξt− [ψtλdt− ϕtdwt − ψtdNt]

we can obtain the dynamics of the discounted wealth process Zi,t = ξtWi,t as

dZi,t
Zi,t−

= (µW,i,t + ψtλ− ϕtσW,i,t) dt

+ (−ϕt + σW,i,t)dwt + ((1− ψt) (1 + δW,i,t)− 1) dNt.

The risk exposures can be determined from the diffusion and jump parts of the Z-dynamics.
Indeed, we have

σW,i,t = αi,t + ϕt,

δW,i,t =
βi,t + ψt
1− ψt

.

In order to find αi and βi we solve for the equilibrium dynamics of ξtŴit

dξtŴit

ξt−Ŵit−
= (. . . ) dt+ αi,tdwt + βi,tdNt,
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where we do not care about the exact form of the dt term. Using results in (7) and (10) we
obtain αi,t and βi,t as

αA,t =
1

ξtŴA,t

((
λA

1 + `A

)− 1
γ

c
1− 1

γ

1

∂F1t

∂Dt

(D, γ − 1) + θAc2
∂F2t

∂Dt

(
D,D, θAγ, 0

)
(A.23)

+λ
− 1
γ

A c
1− 1

γ

1

∂F3t

∂Dt

(
D, γ − 1

))
DtσD,

αB,t =
1

ξtŴB,t

(
λ
− 1
γ

B c
1− 1

γ

1

∂F1t

∂Dt

(D, γ − 1) + λ−1
B

∂F2t

∂Dt

(
D,D, θA, γ − 1, 0

)
+λ
− 1
γ

B c
1− 1

γ

3

∂F3t

∂Dt

(D, γ − 1)

)
DtσD,

and

βA,t =
1

ξt−ŴAt−

((
λA

1 + `A

)− 1
γ

c
1− 1

γ

1 ∆F1t (D, γ − 1) + θAc2∆F2t

(
D,D, θA, γ, 0

)
(A.24)

+λ
− 1
γ

A c
1− 1

γ

3 ∆F3t

(
D, γ − 1

))
,

βB,t =
1

ξt−ŴBt−

(
λ
− 1
γ

B c
1− 1

γ

1 ∆F1t (D, γ − 1) + c2∆F2t

(
D,D, θA, γ − 1

)
+λ
− 1
γ

B c
1− 1

γ

3 ∆F3t

(
D, γ − 1

))
,

∂Fit
∂Dt

(·) and ∆Fit (·) stand for ∂Fi
∂D

(T − t,Dt; ·) and ∆Fi (T − t,Dt−, ·) defined in Lemma A.2.

A.6 Proposition 6

Proof. From standard portfolio theory we know that the wealth dynamics is of the form

dWi,t = Wi,t− [(φS,i,tµS,t + φP,i,tµP,t) dt+ (φS,i,tσS,t + φP,i,tσP,t) dwt + (φS,i,tδS,t + φP,i,tδP,t) dNt] .

Equilibrium portfolio shares can then be determined from the diffusion and jump parts of
the dynamics of the discounted wealth process Zi,t = ξtWi,t. Indeed, we have a system of
two equations with two unknowns,

−ϕt + φS,i,tσS,t + φP,i,tσP,t = αi,t

(1− ψt) (1 + φS,i,tδS,t + φP,i,tδP,t)− 1 = βi,t.
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This allows us to solve for portfolio shares φS,i,t and φP,i,t as

φS,i,t = −δP,t(αi,t + ϕt)(ψt − 1) + (βi,t + ψt)σP,t
(ψt − 1)(δS,tσP,t − δP,tσS,t)

φP,i,t =
δS,t(αi,t + ϕt)(ψt − 1) + (βi,t + ψt)σS,t

(ψt − 1)(δS,tσP,t − δP,tσS,t)

Alternatively, using the definitions of the exposures to the two risk factors that support
the equilibrium wealth dynamics of agent i, we can write the expressions for the equilibrium
positions in the risky assets as

φS,i,t =
δW,i,tσP,t − δP,tσW,i,t
δS,tσP,t − δP,tσS,t

,

φP,i,t =
δW,i,tσS,t − δS,tσW,i,t
−δS,tσP,t + δP,tσS,t

.
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B Benchmark Risk-Averse Economy

Using the results in Bhamra and Uppal (2014), we present here equilibrium in a benchmark
heterogenous-agent economy, populated by two agents with CRRA preferences. We assume
that the risk aversion of agent A is higher than that of agent B: γA > γB. The rest of
assumptions about the economy are the same as in Section 3.

Proposition 7 (Wealth profiles). The equilibrium terminal wealth profiles are

ŴA,T = yTDT ,

ŴB,T = (1− yT )DT ,

where yT is the terminal wealth share of the more risk averse agent A given by

yT =


∑∞

n=1
(−1)n+1

n

(
λB
λA
DγB−γA
T

)n/γA (n γB
γA

n−1

)
, λA

λB
DγA−γB
T > R,

1−
∑∞

n=1
(−1)n+1

n

(
λA
λB
DγA−γB
T

)n/γB (n γA
γB
n−1

)
, λA

λB
DγA−γB
T < R,

with R =
(

(η−1)η−1

ηη

)γB
for η = γA/γB, and

(
z
k

)
= Γ(z+1)

Γ(z−k+1)Γ(k+1)
, where Γ(z) is a Gamma

function, and individual Lagrange multipliers, λA and λB are implicitly defined as the solution
to the following system of equations

λA = (αS0)−1GA (T,D0; 1− γA, 1− γA) ,

λB = ((1− α)S0)−1GB (T,D0; 1− γB, 1− γB) ,

where expressions for Gi (·), i = A,B and R are provided in (B.7) and (B.8).

Proof. Since the securities market is dynamically complete, there exists a unique state price
density process, ξ. In our model, ξ is a martingale with dynamics

dξt = ξt− [−ϕtdwt − ψt(dNt − λdt)] ,

where the market prices of risk process ϕ and ψ will be endogenously determined in equilib-
rium. Maximizing the individual investor’s expected objective function

Et [ui(Wi,T )] = Et

[
1

1− γi
W 1−γi
i,T

]
, i = A,B

subject to the budget constraint

Et [ξTWi,T ] = ξtWi,t (B.1)
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evaluated at t = 0 leads to the optimal terminal wealth profile:

ŴA,T = (λAξT )
− 1
γA , (B.2)

ŴB,T = (λBξT )
− 1
γB , (B.3)

where λA and λB solve (B.1) for i = A,B evaluated at time t = 0. Using the market clearing
condition

ŴA,T + ŴB,T = DT

in (B.2) and (B.3) yields

ξT = λ−1
A Ŵ−γA

A,T = λ−1
B

(
DT − ŴA,T

)−γB
, (B.4)

which can be rearranged as follows(
ŴA,T

DT

)(
1− ŴA,T

DT

)−γB/γA
=

(
λB
λA

)1/γA

D
γB/γA−1
T

We see that the terminal wealth share of agent A, yT ≡ ŴA,T

DT
is implicitly defined by

yT = g−1

((
λB
λA

)1/γA

D
γB/γA−1
T

)
,

where g−1 is the inverse of g(x) = x(1 − x)−γB/γA . The explicit expression for yT follows
from Proposition 1 in Bhamra and Uppal (2014).

Lagrange multipliers λA and λB which solve the agents’ budget constraints at t = 0,

E
[
λ−1
A y1−γA

T D1−γA
T

]
= αS0, (B.5)

E
[
λ−1
B (1− yT )1−γB D1−γB

T

]
= (1− α)S0. (B.6)

Note that yT depends on the Lagrange multipliers itself, and thus (B.5) and (B.6) for a
system of equations that allow to determine λA and λB. To be able to compute λA and λB
explicitly we make use of the following result.

Lemma B.3. Conditional expectations of yaTD
b
T and (1−yT )aDb

T can be computed as follows

Et
[
yaTD

b
T

]
= GA(T − t,Dt; a, b),

Et
[
(1− yT )aDb

T

]
= GB(T − t,Dt; a, b),

where

Gi(τ,D; a, b) = Gi1(τ,D; a, b, R) +Gi2(τ,D; a, b, R), i ∈ A,B (B.7)
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with

R =
1

(γA − γB)
ln

(
R
λB
λA

)
(B.8)

and

GA1(τ,D; a, b, c) =

∫ c

−∞
(H1(y))a ebyfX[τ ]

(y − lnD)dy, (B.9)

GA2(τ,D; a, b, c) =

∫ ∞
c

(H2(y))a ebyfX[τ ]
(y − lnD)dy,

GB1(τ,D; a, b, c) =

∫ c

−∞
(1−H1(y))a ebyfX[τ ]

(y − lnD)dy,

GB2(τ,D; a, b, c) =

∫ ∞
c

(1−H2(y))a ebyfX[τ ]
(y − lnD)dy,

with

H1(y) = 1−
∞∑
n=1

(−1)n+1

n

(
λA
λB

(ey)γA−γB
)n/γB ( n γA

γB

n− 1

)
,

H2(y) =
∞∑
n=1

(−1)n+1

n

(
λB
λA

(ey)γB−γA
)n/γA ( nγB

γA

n− 1

)
,

fX[τ ]
(x) =

e−λτ√
2πτσ2

D

∞∑
k=0

(λτ)k

k!
e
−

(τ(µD−σ2D/2)+k ln(1−δD)−x)
2

2τσ2
D .

Hence, the expectation in agent’s A budget constraint can be computed as

E
[
λ−1
A y1−γA

T D1−γA
T

]
= λ−1

A GA (T,D0; 1− γA, 1− γA) .

Similarly, for agent B we can compute the expectation in B’s time 0 budget constraint as

E
[
λ−1
B (1− yT )1−γBD1−γB

T

]
= λ−1

B GB (T,D0; 1− γB, 1− γB) .

Proposition 8 (State-price density). The equilibrium state price density at time t is given
by

ξt = λ−1
A GA (T − t,Dt;−γA,−γA) . (B.10)
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The market prices of diffusion and jump risk are ϕt and λQt /λt = 1− ψt, where

ϕt = − 1

GA (T − t,Dt;−γA,−γA)

∂GA

∂D
(T − t,Dt;−γA,−γA)DtσD, (B.11)

ψt = − 1

GA (T − t,Dt−;−γA,−γA)
∆GA (T − t,Dt−;−γA,−γA) . (B.12)

The expressions for GA (·), ∂GA
∂D

(·), and ∆GA (·) are given in (B.7), (B.14), and (B.15),
respectively.

Proof. In our model, since we normalize the riskless rate to zero, the state price density is a
martingale,

ξt = Et [ξT ] . (B.13)

Using the expression for the time-T stochastic discount factor from (B.4), we can rewrite
(B.13) as

ξt = Et
[
λ−1
A y−γAT D−γAT

]
and the result for ξt follows immediately from Lemma B.3. From the dynamics of the
stochastic discount factor in (A.18) we can recover the market prices of risk by applying
Ito’s lemma to (B.10).

The partial derivative of GA (or, analogously, for GB) with respect to D is

∂GA

∂D
(T − t,Dt; a, b) =

∂GA1

∂D
(T − t,Dt; a, b, R) +

∂GA1

∂D
(T − t,Dt; a, b, R), (B.14)

where

∂GA1

∂D
(T − t,Dt; a, b, c) =

∫ c

−∞
(H1(y))a ebyfX[T−t](y − lnDt)dy,

∂GA2

∂D
(T − t,Dt; a, b, c) =

∫ ∞
c

(H2(y))a eby
∂fX[T−t](y − lnDt)

∂D
dy,

with
∂fX[T−t] (y−lnDt)

∂D
equal to

− e−λ(T−t)√
2π(T − t)σ2

∞∑
n=0

(λ(T − t))n

n!
e
− ((T−t)µ+nδ−y+lnDt)

2

2(T−t)σ2
((T − t)µ+ nδ − y + lnDt)

(T − t)σ2Dt

with µ = µD − σ2
D/2, σ = σD, δ = ln(1 − δD). Moreover, we define ∆GA (∆GB can be

defined analogously) as

∆GA(T − t,Dt−; a, b) = ∆GA1(T − t,Dt−; a, b, R) + ∆GA2(T − t,Dt−; a, b, R), (B.15)
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where

∆GA1(T − t,Dt−; a, b, c) = GA1(T − t,Dt−(1− δD); a, b, c)−GA1(T − t,Dt−; a, b, c),

∆GA2(T − t,Dt−; a, b, c) = GA2(T − t,Dt−(1− δD); a, b, c)−GA2(T − t,Dt−; a, b, c).

Proposition 9 (Stock price and dynamics). In equilibrium, the stock price is

St =
GA (T − t,Dt;−γA, 1− γA)

GA (T − t,Dt;−γA,−γA)

with dynamics

dSt = St− [µS,tdt+ σS,tdwt + δS,tdNt] ,

where the drift µS,t, the diffusion volatility σS,t , and the jump volatility δS,t are defined by

µS,t = ϕtσS,t − λδS,t (1− ψt) ,

σS,t = ϕt +
1

GA (T − t,Dt;−γA, 1− γA)

∂GA

∂D
(T − t,Dt;−γA, 1− γA)DtσD,

δS,t =
1

1− ψt

(
1 +

∆GA (T − t,Dt−;−γA, 1− γA)

GA (T − t,Dt−;−γA, 1− γA)

)
− 1,

and ϕ and ψ are provided in (B.11) and (B.12). The expressions for GA (·), ∂GA
∂D

(·), and
∆GA (·) are given in (B.7), (B.14), and (B.15), respectively.

Proof. Stock price can be determined from

ξtSt = Et [ξTDT ] , (B.16)

where, using (B.4) together with Lemma B.3, the right hand side can be written as

Et [ξTDT ] = λ−1
A Et

[
y−γAT D1−γA

T

]
= λ−1

A GA(T − t,Dt;−γA, 1− γA)

Applying Ito’s lemma on both sides of (B.16) allows us to recover the equilibrium stock price
dynamics.

The risk premium on the stock is

1

dt
Et−

[
dSt
St−

]
= µS,t + λδS,t = ϕtσS,t + λδS,tψt.

Proposition 10 (Put option price and dynamics). If the strike price is K ≤ eR, the equi-
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librium price of the put option on the stock market is given by

Pt =
1

ξt
λ−1
A

[
K ·GA1 (T − t,Dt;−γA,−γA, lnK)−GA1 (T − t,Dt;−γA, 1− γA, lnK)

]
with dynamics

dPt = Pt− [µP,tdt+ σP,tdwt + δP,tdNt]

where

µP,t = ϕtσP,t − λδP,t (1− ψt) ,

σP,t = ϕt +
1

ξtPt
λ−1
A

[
K · ∂GA1

∂D
(T − t,Dt;−γA,−γA, lnK)

− ∂GA1

∂D
(T − t,Dt;−γA, 1− γA, lnK)

]
DtσD,

δP,t =
1

1− ψt

( 1

ξt−Pt−
λ−1
A

[
K ·∆GA1(T − t,Dt−;−γA,−γA, lnK)

−∆GA1(T − t,Dt−;−γA, 1− γA, lnK)
]

+ 1
)
− 1.

If the strike price is K > eR, the equilibrium price of the put option on the stock market is
given by

Pt =
λ−1
A

ξt

[
K ·

(
GA1(T − t,Dt;−γA,−γA, R) +GK

A2(T − t,Dt;−γA,−γA, R)
)

−
(
GA1(T − t,Dt;−γA, 1− γA, R) +GK

A2(T − t,Dt;−γA, 1− γA, R)
) ]
,

and

µP,t = ϕtσP,t − λδP,t (1− ψt) ,

σP,t = ϕt +
1

ξtPt
λ−1
A

[
K ·

(∂GA1

∂D
(T − t,Dt;−γA,−γA, R) +

∂GK
A2

∂D
(T − t,Dt;−γA,−γA, R)

)

−
(∂GA1

∂D
(T − t,Dt;−γA, 1− γA, R) +

∂GK
A2

∂D
(T − t,Dt;−γA, 1− γA, R)

)]
DtσD,

δP,t =
1

1− ψt

( 1

ξt−Ft−
λ−1
A

[
K ·

(
∆GA1(T − t,Dt;−γA,−γA, R) + ∆GK

A2(T − t,Dt;−γA,−γA, R)
)

−
(
∆GA1(T − t,Dt;−γA, 1− γA, R) + ∆GK

A2(T − t,Dt;−γA, 1− γA, R)
)]

+ 1
)
− 1.
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Proof. The option price can be determined from

ξtPt = Et [ξTΦ(DT )] , (B.17)

where the payoff function Φ (·) is defined by Φ(x) = max [K − x, 0]. Then the right hand
side of (B.17) can be written as follows

Et [ξTΦ (DT )] = Et [ξT (K −DT ) I (DT < K)]

= KEt [ξT I (lnDT < lnK)]− Et [ξTDT I (lnDT < lnK)]

Depending on the level of K, we have the following two cases:

1. If lnK ≤ R,

Et [ξTΦ (DT )] = λ−1
A

[
K ·GA1(T − t,Dt;−γA,−γA, lnK)

−GA1(T − t,Dt;−γA, 1− γA, lnK)
]
.

2. If lnK > R,

Et [ξTΦ (DT )] = λ−1
A

[
K ·

(
GA1(T − t,Dt;−γA,−γA, R) +GK

A2(T − t,Dt;−γA,−γA, R)
)

−
(
GA1(T − t,Dt;−γA, 1− γA, R) +GK

A2(T − t,Dt;−γA, 1− γA, R)
) ]
,

where GA1 (·) is defined by (B.9) and

GK
A2(T − t,Dt; a, b, c) =

∫ lnK

c

(H2(y))a ebyfX[T−t](y − lnDt)dy.

Applying Ito on both sides of (B.17) allows us to recover the dynamics of P .

Proposition 11 (Investors’ portfolios in equilibrium). In equilibrium, the fractions of in-
vestors’ wealth invested in the stock and the put option are

φi,S,t =
δP,t(αi,t + ϕt)(ψt − 1) + (βi,t + ψt)σP,t

(ψt − 1)(δP,tσS,t − δS,tσP,t)
,

φi,P,t =
δS,t(αi,t + ϕt)(ψt − 1) + (βi,t + ψt)σS,t

(ψt − 1)(δS,tσP,t − δP,tσS,t)
, i ∈ {A,B} ,
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where αi,t and βi,t are given by

αi,t =
1

Gi (T − t,Dt; 1− γi, 1− γi)
∂Gi

∂D
(T − t,Dt; 1− γi, 1− γi)DtσD,

βi,t =
1

Gi (T − t,Dt−; 1− γi, 1− γi)
∆Gi (T − t,Dt−; 1− γi, 1− γi) .

Moreover, the investors’ portfolios in terms of the number of shares in the stock and the put
option are

πi,S,t = φi,S,t
Ŵi,t

St
, πi,P,t = φi,P,t

Ŵi,t

Pt
,

where

Ŵi,t =
1

ξt
λ−1
i Gi(T − t,Dt; 1− γi, 1− γi), i ∈ {A,B} .

with the expressions for ϕt, ψt, σS,t, δS,t, σP,t, δP,t provided in Lemmas 8, 9, and 10. Func-
tions Gi (·), ∂Gi

∂D
(·), and ∆Gi (·) are given by (B.7), (B.14), (B.15), respectively.

Proof. The wealth process of agents’ self-financing portfolio has the dynamics (recall that in
our setting the riskless rate is zero)

dWi,t = Wi,t−

[
φi,S,t

dSt
St

+ φi,P,t
dPt
Pt

]
= Wi,t− [(φi,S,tµS,t + φi,P,tµP,t) dt+ (φi,S,tσS + φi,P,tσP,t) dwt + (φi,S,tδS,t + φi,P,tδP,t) dNt] .

We also know that

ξtŴA,T = Et
[
λ−1
A y1−γA

T D1−γA
T

]
= λ−1

A GA (T − t,Dt; 1− γA, 1− γA) , (B.18)

ξtŴB,T = Et
[
λ−1
B (1− yT )1−γBD1−γB

T

]
= λ−1

B GB (T − t,Dt; 1− γB, 1− γB) . (B.19)

To determine the equilibrium portfolio strategy, i.e. the portfolio which generates Ŵi,t we
apply Ito’s lemma to (B.18) and (B.19) and compare the results with the dynamics of the
self-financing portfolio. This gives a system of two equations with two unknowns,

−ϕt + φi,S,tσS,t + φi,P,tσP,t = αi,t

(1− ψt) (1 + φi,S,tδS,t + φi,P,tδP,t)− 1 = βi,t.

that allow us to solve for φi,S,t and φi,P,t. Finally, we find αi,t and βi,t from the equilibrium

dynamics of ξtŴi,t and using the expressions in (B.18) and (B.19).
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C Tables and Figures

Table 1: SPX option quantities

The table reports option quantity measures on different dates: start, middle and end of the sample.

The sample starts on January 4, 1996 and ends on December 31, 2020. “Peak of sample” refers to

the date with the highest number of open interest. The last row reports that average daily values

for the sample. An open interest contract for SPX corresponds to 100 underlying index shares.

Open interest (OI) for puts and calls are reported in billions of index-equivalent units. The column

titled “Index shares” reports the number of S&P 500 equivalent shares outstanding (in billions)

defined as the market capitalization divided by the index level. The market value (MV) of put and

call contracts is reported in billions of dollars. The last column provides the market capitalization

of S&P 500 in billions of dollars.

Date OI Put OI Call Index shares MV Put MV Call MV Index

Start of sample 1996-01-04 0.05 0.03 7.35 0.31 1.25 4537.22

Mid of sample 2008-07-07 0.73 0.43 8.96 55.53 9.47 11216.24

End of sample 2020-12-31 0.75 0.36 8.83 26.56 146.93 33161.23

Peak of sample 2020-03-19 1.43 0.84 8.63 519.46 44.36 20794.27

Sample mean 0.55 0.32 8.82 18.80 29.31 13704.96

Table 2: SPX option quantities by type: Sample average

The table reports sample-average values of daily open interest by moneyness and maturity type as

a fraction of index-equivalent shares in percentage terms. We report results separately for put and

call options. We sort options based on their days to maturity (τ) and moneyness (K/F ). Short-

term options are those with maturity τ ≤ 90 days. Medium-term options are those with maturity

90 < τ ≤ 270. Long-term options are those with maturity τ > 270. We define moneyness K/F as

the level of strike price over the forward price of the underlying.

Maturity Low strike At-the-money High strike

K/F ≤ 0.975 0.975 < K/F < 1.025 1.025 ≤ K/F

Put Short-term 2.983 0.575 0.295

Medium-term 1.159 0.123 0.121

Long-term 0.703 0.059 0.082

Call Short-term 0.548 0.702 0.956

Medium-term 0.253 0.144 0.434

Long-term 0.141 0.066 0.279
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Figure 1: Historical open interest in CBOE SPX options

This figure plots the time series of SPX open interest during our sample period. The sample starts

on January 4, 1996 and ends on December 31, 2020. Reported values correspond to averaged

daily open interest for each year-quarter. An open interest for SPX contract corresponds to 100

underlying index shares. Panel A reports open interest for puts and calls in billions of index-

equivalent units. Panel B reports open interest for puts and calls a fraction (in percentage) of

the number of S&P 500 equivalent shares outstanding. The number of S&P 500 equivalent shares

outstanding (in billions) defined as the market capitalization divided by the index level.
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Figure 3: Open interest across moneyness levels

This figure plots the average daily open interest level of SPX puts and calls across option moneyness

for different maturity buckets. Average open interest are reported as a fraction of index-equivalent

shares in percentage terms. The sample period is from January 4, 1996 to December 31, 2020. We

sort options into four day-to-maturity buckets: 10–50 (Panel A), 70–110 (Panel B), 160–200 (Panel

C), and 250–290 (Panel D). Each panel plots the average open interest across moneyness for put

and call options separately. Option moneyness (K/F ) is defined as the level of strike price over the

forward price of the underlying. Vertical dashed line indicates the moneyness level close to one.
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Figure 4: Utility functions

Wi,T ∼ N(1.05, 0.1) is used to determine the disappointment threshold θi = κiRi for the DA utility in Panels

C and D.

A. Kinked power utility B. Power utility
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Figure 5: Terminal wealth profiles

Parameters common across figures are T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2,

and α = 0.5. In Panels A–C, agent A is disappointment-averse with γA = 1 and disappointment threshold

defined in terms of the certainty equivalent as θA = κARA. Disappointment aversion parameters `A and

κA are reported in the header of each panel. In Panel D, agent A is risk-averse with γA = 4. For agent B,

γB = 1 in all four panels. The shaded area in all the graphs corresponds to the pdf of DT .
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Figure 6: State price density at time T

Parameters common across figures are T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2,

γA = γB = 1. Disappointment threshold is defined in terms of the certainty equivalent as θA = κARA.
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Figure 7: Properties of equilibrium put option returns

The figure shows put option risk premia (monthly) and Black-Scholes implied volatilities (annual) as a

function of option moneyness. Parameters common across figures are α = 0.5, T = 1/12, t = 0, D0 = 1,

µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2. The preference parameters in the DA economy are γA = 1,

`A = 2, κA = 0.98, and γB = 1. The preference parameters in the RA economy γA = 4 and γB = 1.
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Table 3: Properties of equilibrium stock returns

Parameters common across the table are T = 1/12, t = 0, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05,

δD = 0.2. When agent A is disappointment-averse (DA), her disappointment threshold is defined in terms

of the certainty equivalent as θA = κARA, where κA = 0.98, and `A ∈ {1, 2}. When agent A is risk-averse

(RA), her preference parameter is γA ∈ {4, 10}. For agent B, γ ∈ {1, 2} in both cases. Total volatility is

defined as vj,t =
√
σ2
j,t + δ2j,tλ, j = S,D.

Stock risk premium, RPS,t %
Panel A: DA model

α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95
γB = γA = 1, `A = 1 2.57 2.98 4.06 7.14 16.43
γB = γA = 1, `A = 2 2.57 2.98 4.07 7.05 25.01
γB = γA = 2, `A = 1 5.23 6.13 8.16 13.50 19.82
γB = γA = 2, `A = 2 5.23 6.15 8.63 15.38 29.36

Panel B: RA benchmark
α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95

γB = 1, γA = 4 2.60 3.09 4.06 5.89 9.08
γB = 1, γA = 10 2.82 3.25 4.67 8.39 21.73
γB = 2, γA = 4 5.20 5.82 6.83 8.27 9.93
γB = 2, γA = 10 5.29 6.40 8.74 13.82 25.14

Stock excess volatility, (vS,t − vD)/vD %
Panel C: DA model

α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95
γB = γA = 1, `A = 1 0.10 0.60 1.89 5.41 10.43
γB = γA = 1, `A = 2 0.10 0.60 1.92 5.69 17.69
γB = γA = 2, `A = 1 0.19 1.16 3.26 8.53 8.45
γB = γA = 2, `A = 2 0.19 1.22 3.66 10.54 13.37

Panel D: RA benchmark
α = 0.05 α = 0.25 α = 0.5 α = 0.75 α = 0.95

γB = 1, γA = 4 0.01 0.04 0.13 0.28 0.24
γB = 1, γA = 10 0.03 0.07 0.28 1.17 3.51
γB = 2, γA = 4 0.01 0.03 0.07 0.09 0.04
γB = 2, γA = 10 0.02 0.11 0.35 0.99 1.41
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Figure 8: Equilibrium wealth and risk factor exposure

The graphs show the equilibrium time t wealth profile of agent A (solid blue line). Parameters common

across figures are t = 0, T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2, K/St = 0.95, and

α = 0.5. The preference parameters in the DA economy are γA = 1, `A = 2, κA = 0.98, and γB = 1. The

preference parameters in the RA economy γA = 4 and γB = 1.
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Figure 9: Equilibrium asset positions

The graphs show the number of stocks (πS,A,t) and the number of options (πP,A,t) held by agent A. Note that

corresponding values for agent B are πS,B,t = 1 − πS,A,t and πP,B,t = −πP,A,t. Parameters common across

figures are t = 0, T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2, κA = 0.98, K/St = 0.95.
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Figure 10: Sensitivity of asset positions to the disappointment threshold

The graphs show the number of stocks (πS,A,t) and the number of options (πP,A,t) held by agent A. Note

that corresponding values for agent B are πS,B,t = 1 − πS,A,t and πP,B,t = −πP,A,t. Parameters used are

t = 0, T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05, δD = 0.2, α = 0.5, γB = 1, K/St = 0.95.
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Figure 11: Open interest and implied volatility across moneyness

The graph shows the total number of options traded in the economy. Base values of parameters are t = 0,

T = 1/12, D0 = 1, µD = 0.03, σD = 0.10, λ = 0.6, α = 0.5, γB = 1, κA = 0.98, and `A = 2. For the

two-jump case, the jump sizes take values δD ∈ {0.12,−0.10} with equal probabilities. For the three-jump

case, the jump sizes take values δD ∈ {0.18, 0.01,−0.16} with probabilities 0.3, 0.4, and 0.3, respectively.

For the four-jump case, the jump sizes take values δD ∈ {0.23, 0.08,−0.06,−0.21} with probabilities 0.15,

0.35, 0.35, and 0.15, respectively.
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Figure 12: Effect of cash flow news on stock and option markets

Parameters common across figures are α = 0.5, t = T/2, T = 1/12, D0 = 1, µD = 0.03, σD = 0.15, λ = 0.05,

δD = 0.2, κA = 0.98, K/St = 0.95.
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